CINXE.COM
<?xml version="1.0" encoding="utf-8"?> <feed xmlns="http://www.w3.org/2005/Atom"> <title type="text">Recent zbMATH articles in MSC 93C80</title> <id>https://zbmath.org/atom/cc/93C80</id> <updated>2025-04-04T17:10:03.436181Z</updated> <link href="https://zbmath.org/" /> <link href="https://zbmath.org/atom/cc/93C80" rel="self" /> <generator>Werkzeug</generator> <entry xml:base="https://zbmath.org/atom/cc/93C80"> <title type="text">A frequency-domain approach for enhanced performance and task flexibility in finite-time ILC</title> <id>https://zbmath.org/1553.93061</id> <updated>2025-04-04T17:10:03.436181Z</updated> <link href="https://zbmath.org/1553.93061" /> <author> <name>"van Haren, Max"</name> <uri>https://zbmath.org/authors/?q=ai:van-haren.max</uri> </author> <author> <name>"Tsurumoto, Kentaro"</name> <uri>https://zbmath.org/authors/?q=ai:tsurumoto.kentaro</uri> </author> <author> <name>"Mae, Masahiro"</name> <uri>https://zbmath.org/authors/?q=ai:mae.masahiro</uri> </author> <author> <name>"Blanken, Lennart"</name> <uri>https://zbmath.org/authors/?q=ai:blanken.lennart</uri> </author> <author> <name>"Ohnishi, Wataru"</name> <uri>https://zbmath.org/authors/?q=ai:ohnishi.wataru</uri> </author> <author> <name>"Oomen, Tom"</name> <uri>https://zbmath.org/authors/?q=ai:oomen.tom</uri> </author> <content type="text">Summary: Iterative learning control (ILC) techniques are capable of improving the tracking performance of control systems that repeatedly perform similar tasks by utilizing data from past iterations. The aim of this paper is to achieve both the task flexibility enabled by ILC with basis functions and the performance of frequency-domain ILC, with an intuitive design procedure. The cost function of norm-optimal ILC is determined that recovers frequency-domain ILC, and consequently, the feedforward signal is parameterized in terms of basis functions and frequency-domain ILC. The resulting method has the performance and design procedure of frequency-domain ILC and the task flexibility of basis functions ILC, and are complimentary to each other. Validation on a benchmark example confirms the capabilities of the framework.</content> </entry> <entry xml:base="https://zbmath.org/atom/cc/93C80"> <title type="text">Static output feedback LFC for semi-Markov type interconnected multi-area power systems: a non-fragile PI strategy</title> <id>https://zbmath.org/1553.93070</id> <updated>2025-04-04T17:10:03.436181Z</updated> <link href="https://zbmath.org/1553.93070" /> <author> <name>"Li, Xiaoqing"</name> <uri>https://zbmath.org/authors/?q=ai:li.xiaoqing.1</uri> </author> <author> <name>"Li, Yulong"</name> <uri>https://zbmath.org/authors/?q=ai:li.yulong</uri> </author> <author> <name>"Cheng, Jun"</name> <uri>https://zbmath.org/authors/?q=ai:cheng.jun</uri> </author> <author> <name>"Shi, Kaibo"</name> <uri>https://zbmath.org/authors/?q=ai:shi.kaibo</uri> </author> <author> <name>"Qiu, Kun"</name> <uri>https://zbmath.org/authors/?q=ai:qiu.kun</uri> </author> <content type="text">Summary: This article addresses the static output feedback load frequency control (LFC) problem for semi-Markov type interconnected multi-area power systems (IMAPSs) through non-fragile proportional-integral (PI) strategy. Primarily, by roundly exploiting the dynamical properties and considering random mutations of the IMAPSs, the semi-Markov jump process (MJP) is elaborately scheduled for establishing the dynamical model with precision. Subsequently, on account of the characteristic of geographical isolation, a memory-like sampled-data LFC mechanism considering time-varying transmission delay for the semi-Markov jump IMPASs is formulated accordingly. Additionally, the non-fragile issue is explored for the PI controller gain fluctuations to meet the actual operation scenario. After that, a mode-dependent two-side polynomial-type looped Lyapunov functional is constructed for enhancing flexibility. Then, in virtue of the stochastic analysis technique, some relaxed conditions guaranteeing stochastic stability with prescribed \(H_{\infty}\) performance are thereby derived in the shape of linear matrix inequalities (LMIs). Ultimately, a numerical example is carried out to validate the efficacy of the developed control methodology. {\copyright} 2024 John Wiley \& Sons Ltd.</content> </entry> <entry xml:base="https://zbmath.org/atom/cc/93C80"> <title type="text">On the kite-platform interactions in offshore airborne wind energy systems: frequency analysis and control approach</title> <id>https://zbmath.org/1553.93197</id> <updated>2025-04-04T17:10:03.436181Z</updated> <link href="https://zbmath.org/1553.93197" /> <author> <name>"Trombini, Sofia"</name> <uri>https://zbmath.org/authors/?q=ai:trombini.sofia</uri> </author> <author> <name>"Pasta, Edoardo"</name> <uri>https://zbmath.org/authors/?q=ai:pasta.edoardo</uri> </author> <author> <name>"Fagiano, Lorenzo"</name> <uri>https://zbmath.org/authors/?q=ai:fagiano.lorenzo-mario</uri> </author> <content type="text">Summary: This study investigates deep offshore, pumping airborne wind energy systems, focusing on the kite-platform interaction. The considered system includes a 360\,m\(^2\) soft-wing kite, connected by a tether to a winch installed on a 10-meter-deep spar with four mooring lines. Wind power is converted into electricity with a feedback controlled periodic trajectory of the kite and corresponding reeling motion of the tether. An analysis of the mutual influence between the platform and the kite dynamics, with different wave regimes, reveals a rather small sensitivity of the flight pattern to the platform oscillations; on the other hand, the frequency of tether force oscillations can be close to the platform resonance peaks, resulting in possible increased fatigue loads and damage of the floating and submerged components. A control design procedure is then proposed to avoid this problem, acting on the kite path planner. Simulation results confirm the effectiveness of the approach.</content> </entry> </feed>