CINXE.COM

Search results for: cutter path

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cutter path</title> <meta name="description" content="Search results for: cutter path"> <meta name="keywords" content="cutter path"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cutter path" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cutter path"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1245</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cutter path</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1245</span> Eliminating Cutter-Path Deviation For Five-Axis Nc Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20C.%20Lin">Alan C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsong%20Der%20Lin"> Tsong Der Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a deviation control method to add interpolation points to numerical control (NC) codes of five-axis machining in order to achieve the required machining accuracy. Specific research issues include: (1) converting machining data between the CL (cutter location) domain and the NC domain, (2) calculating the deviation between the deviated path and the linear path, (3) finding interpolation points, and (4) determining tool orientations for the interpolation points. System implementation with practical examples will also be included to highlight the applicability of the proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD%2FCAM" title="CAD/CAM">CAD/CAM</a>, <a href="https://publications.waset.org/abstracts/search?q=cutter%20path" title=" cutter path"> cutter path</a>, <a href="https://publications.waset.org/abstracts/search?q=five-axis%20machining" title=" five-axis machining"> five-axis machining</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20control" title=" numerical control"> numerical control</a> </p> <a href="https://publications.waset.org/abstracts/30394/eliminating-cutter-path-deviation-for-five-axis-nc-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1244</span> Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangyuan%20Shao">Fangyuan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Gao"> Deli Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axe-shaped%20cutter" title="axe-shaped cutter">axe-shaped cutter</a>, <a href="https://publications.waset.org/abstracts/search?q=PDC%20cutter" title=" PDC cutter"> PDC cutter</a>, <a href="https://publications.waset.org/abstracts/search?q=rotary%20cutting%20test" title=" rotary cutting test"> rotary cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20turret%20lathe" title=" vertical turret lathe"> vertical turret lathe</a> </p> <a href="https://publications.waset.org/abstracts/139822/analysis-of-rock-cutting-progress-with-a-new-axe-shaped-pdc-cutter-to-improve-pdc-bit-performance-in-elastoplastic-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1243</span> A Novel Machining Method and Tool-Path Generation for Bent Mandrel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hong%20Lu">Hong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongquan%20Zhang"> Yongquan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Fan"> Wei Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangang%20Su"> Xiangang Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bent%20mandrel" title="bent mandrel">bent mandrel</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20machining%20model" title=" instantaneous machining model"> instantaneous machining model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20method" title=" simulation method"> simulation method</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-path%20generation" title=" tool-path generation"> tool-path generation</a> </p> <a href="https://publications.waset.org/abstracts/40631/a-novel-machining-method-and-tool-path-generation-for-bent-mandrel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1242</span> Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fangyuan%20Shao">Fangyuan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Gao"> Deli Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond%20compact" title="polycrystalline diamond compact">polycrystalline diamond compact</a>, <a href="https://publications.waset.org/abstracts/search?q=22%20mm-PDC%20cutters" title=" 22 mm-PDC cutters"> 22 mm-PDC cutters</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20efficiency" title=" cutting efficiency"> cutting efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20specific%20energy" title=" mechanical specific energy"> mechanical specific energy</a> </p> <a href="https://publications.waset.org/abstracts/140607/larger-diameter-22-mm-pdc-cutter-greatly-improves-drilling-efficiency-of-pdc-bit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1241</span> Mathematical Model of a Compound Gear Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsueh-Cheng%20Yang">Hsueh-Cheng Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation and design of compound involute spur gearings can be used in gear pump. A compound rack cutter with asymmetric involute teeth is presented for determining the mathematical model of compound gear pumps. This paper covers the following topics: (a) generation and geometry of compound rack cutter is presented and used to generate a compound gear and a compound pinion. (b) Based on the developed compound gears, stress analysis was performed for the symmetric gears and the asymmetric gears. Comparing the results of the stress analysis for the asymmetric involute teeth is superior to the symmetric involute teeth. A numerical example that illustrates the developed compound rack cutter is represented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compound" title="compound">compound</a>, <a href="https://publications.waset.org/abstracts/search?q=involute%20teeth" title=" involute teeth"> involute teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=gear%20pump" title=" gear pump"> gear pump</a>, <a href="https://publications.waset.org/abstracts/search?q=rack%20cutter" title=" rack cutter"> rack cutter</a> </p> <a href="https://publications.waset.org/abstracts/37181/mathematical-model-of-a-compound-gear-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1240</span> Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fanyuan%20Shao">Fanyuan Shao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deli%20Gao"> Deli Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycrystalline%20diamond%20compact" title="polycrystalline diamond compact">polycrystalline diamond compact</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope"> scanning electron microscope</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20distance" title=" cutting distance"> cutting distance</a> </p> <a href="https://publications.waset.org/abstracts/139046/effect-of-microstructure-on-wear-resistance-of-polycrystalline-diamond-composite-cutter-of-bit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1239</span> Effect of the Tooling Conditions on the Machining Stability of a Milling Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Run%20Chen"> Yong-Run Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Cheng%20Shih"> Wei-Cheng Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Shen-He%20Tsui"> Shen-He Tsui</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tooling%20condition" title="tooling condition">tooling condition</a>, <a href="https://publications.waset.org/abstracts/search?q=machining%20stability" title=" machining stability"> machining stability</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20machine" title=" milling machine"> milling machine</a>, <a href="https://publications.waset.org/abstracts/search?q=chatter" title=" chatter"> chatter</a> </p> <a href="https://publications.waset.org/abstracts/49448/effect-of-the-tooling-conditions-on-the-machining-stability-of-a-milling-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1238</span> Automatic Tofu Stick Cutter to Increase the Production Capacity of Small and Medium Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaca%20Nugraha%20Zaid">Chaca Nugraha Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hikmat%20Ronaldo"> Hikmat Ronaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Emerald%20Falah%20Brayoga"> Emerald Falah Brayoga</a>, <a href="https://publications.waset.org/abstracts/search?q=Azizah%20Eddy%20Setiawati"> Azizah Eddy Setiawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Soviandini%20Dwiki%20Kartika%20Putri"> Soviandini Dwiki Kartika Putri</a>, <a href="https://publications.waset.org/abstracts/search?q=Novita%20Wijayanti"> Novita Wijayanti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the tofu stick production, the manual cutting process takes a half of working day or 4 hours for 21 kg of tofu. This issue has hampered the small and medium enterprises (SMEs) to increase the capacity of production to fulfill the market demand. In order to address the issue, the cutting process should be automized to create fast, efficient, and effective tools. This innovation to tackle this problem is an automatic cutter tool that is able to move continuously to cut the tofu into stick size. The tool uses the 78,5-watt electric motor and automatic sensors to drive the cutting tool automatically, resulting faster process time with more uniform size compared to the manual cutter. The component of this tool, i.e., cutting knife and the driver, electric motor, limit switch sensors, riley, Arduino nano, and power supply. The cutting speed cutting speed of this tool is 101,25 mm/s producing 64 tofu sticks. Benefits that can be obtained from the use of automatic tofu stick cutter, i.e. (1) Faster process (2) More uniform cutting result; (3) The quality of the tofu stick is maintained due to minimal contact with humans so that contamination can be suppressed; (4) The cutting knife can be modified to the desired size of the owner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic" title="automatic">automatic</a>, <a href="https://publications.waset.org/abstracts/search?q=cutter" title=" cutter"> cutter</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20and%20medium%20enterprise" title=" small and medium enterprise"> small and medium enterprise</a>, <a href="https://publications.waset.org/abstracts/search?q=tofu%20stick" title=" tofu stick"> tofu stick</a> </p> <a href="https://publications.waset.org/abstracts/98000/automatic-tofu-stick-cutter-to-increase-the-production-capacity-of-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1237</span> Development of Portable Water Jet Cutter Mobile Hand Tool: Analysis of Nozzle Geometries and Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razali%20Bin%20Abidin">Razali Bin Abidin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the development of a portable water jet cutter for soft materials such as meat. Twelve geometries of nozzles were simulated using finite element method. Water pressure was set to 1500 lb/in². Through the simulation, highest average water output speed was 133.04 m/s. The nozzle was fabricated from Al - alloy 5052 with the Factor of Safety~ 3. This indicates that the nozzle made of Al-alloy 5052 is capable of performing the cutting process without any fracture. Preliminary design of mobile water jet hand tool is presented at the end of this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20jet" title="water jet">water jet</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-alloy%205052" title=" Al-alloy 5052"> Al-alloy 5052</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20geometry" title=" nozzle geometry"> nozzle geometry</a> </p> <a href="https://publications.waset.org/abstracts/25624/development-of-portable-water-jet-cutter-mobile-hand-tool-analysis-of-nozzle-geometries-and-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1236</span> Kebbi State University of Science and Technology, Aliero, Kebbi State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ugbajah%20Maryjane">Ugbajah Maryjane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the production of grass cutter and the constraints in Anambra state, Nigeria. Specifically, it described socio-economic characteristics of the respondents, determinants of net farm income and constraints to grass cutter production. Multistage and random sampling methods were used to select 50 respondents for this study. Primary data were collected by means of structured questionnaire. Non-parametric and parametric statistical tools including frequency percentage mean ranking counts, cost and returns and returns and multiple regression were deployed for data analysis. Majority 84% produce on small scale, 64 % had formal education 68% had 3-4 years of farming experience hence small scaled production were common. The income (returns) on investment was used as index of profitability, gross margin (#5,972,280), net farm income (#5,327,055.2) net return on investment (2.5) and return on investment 3.1. Net farm income was significantly influence by stock size and years of farming experience. Grass cutter farmers production problem would be ameliorated by the expression of extension education awareness campaigns to discourage unhealthy practices such as indiscriminant bush burning, use of toxic chemicals as baits, and provision of credits to the farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20factors" title="socio-economic factors">socio-economic factors</a>, <a href="https://publications.waset.org/abstracts/search?q=profitability" title=" profitability"> profitability</a>, <a href="https://publications.waset.org/abstracts/search?q=awareness" title=" awareness"> awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20chemicals" title=" toxic chemicals"> toxic chemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=credits" title=" credits"> credits</a> </p> <a href="https://publications.waset.org/abstracts/16650/kebbi-state-university-of-science-and-technology-aliero-kebbi-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1235</span> Top-K Shortest Distance as a Similarity Measure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Lebedev">Andrey Lebedev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20Dmitrenok"> Ilya Dmitrenok</a>, <a href="https://publications.waset.org/abstracts/search?q=JooYoung%20Lee"> JooYoung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Leonard%20Johard"> Leonard Johard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20matching" title="graph matching">graph matching</a>, <a href="https://publications.waset.org/abstracts/search?q=link%20prediction" title=" link prediction"> link prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=shortest%20path" title=" shortest path"> shortest path</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity" title=" similarity"> similarity</a> </p> <a href="https://publications.waset.org/abstracts/63488/top-k-shortest-distance-as-a-similarity-measure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1234</span> A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Agarwal">Divya Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushpendra%20S.%20Bharti"> Pushpendra S. Bharti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20mobile%20robots" title=" autonomous mobile robots"> autonomous mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a> </p> <a href="https://publications.waset.org/abstracts/93693/a-review-on-comparative-analysis-of-path-planning-and-collision-avoidance-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1233</span> Theoretical and Experimental Analysis of End Milling Process with Multiple Finger Inserted Cutters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Krishna%20Mohana%20Rao">G. Krishna Mohana Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ravi%20Kumar"> P. Ravi Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Milling is the process of removing unwanted material with suitable tool. Even though the milling process is having wider application, the vibration of machine tool and work piece during the process produces chatter on the products. Various methods of preventing the chatter have been incorporated into machine tool systems. Damper is cut into equal number of parts. Each part is called as finger. Multiple fingers were inserted in the hollow portion of the shank to reduce tool vibrations. In the present work, nonlinear static and dynamic analysis of the damper inserted end milling cutter used to reduce the chatter was done. A comparison is made for the milling cutter with multiple dampers. Surface roughness was determined by machining with multiple finger inserted milling cutters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20inserts" title="damping inserts">damping inserts</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20milling" title=" end milling"> end milling</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrations" title=" vibrations"> vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20fingers" title=" number of fingers"> number of fingers</a> </p> <a href="https://publications.waset.org/abstracts/4973/theoretical-and-experimental-analysis-of-end-milling-process-with-multiple-finger-inserted-cutters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1232</span> Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lana%20Dalawr%20Jalal">Lana Dalawr Jalal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex three-dimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title="obstacle avoidance">obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=three-dimensional%20path%20planning%20unmanned%20aerial%20vehicles" title=" three-dimensional path planning unmanned aerial vehicles"> three-dimensional path planning unmanned aerial vehicles</a> </p> <a href="https://publications.waset.org/abstracts/26160/three-dimensional-off-line-path-planning-for-unmanned-aerial-vehicle-using-modified-particle-swarm-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1231</span> Joint Path and Push Planning among Moveable Obstacles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Emeli">Victor Emeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Akansel%20Cosgun"> Akansel Cosgun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper explores the navigation among movable obstacles (NAMO) problem and proposes joint path and push planning: which path to take and in what direction the obstacles should be pushed at, given a start and goal position. We present a planning algorithm for selecting a path and the obstacles to be pushed, where a rapidly-exploring random tree (RRT)-based heuristic is employed to calculate a minimal collision path. When it is necessary to apply a pushing force to slide an obstacle out of the way, the planners leverage means-end analysis through a dynamic physics simulation to determine the sequence of linear pushes to clear the necessary space. Simulation experiments show that our approach finds solutions in higher clutter percentages (up to 49%) compared to the straight-line push planner (37%) and RRT without pushing (18%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title="motion planning">motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=push%20planning" title=" push planning"> push planning</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20navigation" title=" robot navigation"> robot navigation</a> </p> <a href="https://publications.waset.org/abstracts/128403/joint-path-and-push-planning-among-moveable-obstacles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1230</span> Path Planning for Orchard Robot Using Occupancy Grid Map in 2D Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyam%20Raikwar">Satyam Raikwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Herlitzius"> Thomas Herlitzius</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Fehrmann"> Jens Fehrmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the autonomous navigation of orchard and field robots is an emerging technology of the mobile robotics in agriculture. One of the core aspects of autonomous navigation builds upon path planning, which is still a crucial issue. Generally, for simple representation, the path planning for a mobile robot is performed in a two-dimensional space, which creates a path between the start and goal point. This paper presents the automatic path planning approach for robots used in orchards and vineyards using occupancy grid maps with field consideration. The orchards and vineyards are usually structured environment and their topology is assumed to be constant over time; therefore, in this approach, an RGB image of a field is used as a working environment. These images undergone different image processing operations and then discretized into two-dimensional grid matrices. The individual grid or cell of these grid matrices represents the occupancy of the space, whether it is free or occupied. The grid matrix represents the robot workspace for motion and path planning. After the grid matrix is described, a probabilistic roadmap (PRM) path algorithm is used to create the obstacle-free path over these occupancy grids. The path created by this method was successfully verified in the test area. Furthermore, this approach is used in the navigation of the orchard robot. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orchard%20robots" title="orchard robots">orchard robots</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20path%20planning" title=" automatic path planning"> automatic path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=occupancy%20grid" title=" occupancy grid"> occupancy grid</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20roadmap" title=" probabilistic roadmap"> probabilistic roadmap</a> </p> <a href="https://publications.waset.org/abstracts/110023/path-planning-for-orchard-robot-using-occupancy-grid-map-in-2d-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1229</span> Independence and Path Independence on Cayley Digraphs of Left Groups and Right Groups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuttawoot%20Nupo">Nuttawoot Nupo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayan%20Panma"> Sayan Panma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A semigroup S is said to be a left (right) zero semigroup if S satisfies the equation xy=x (xy=y) for all x,y in S. In addition, the semigroup S is called a left (right) group if S is isomorphic to the direct product of a group and a left (right) zero semigroup. The Cayley digraph Cay(S,A) of a semigroup S with a connection set A is defined to be a digraph with the vertex set S and the arc set E(Cay(S,A))={(x,xa) | x∈S, a∈A} where A is any subset of S. All sets in this research are assumed to be finite. Let D be a digraph together with a vertex set V and an arc set E. Let u and v be two different vertices in V and I a nonempty subset of V. The vertices u and v are said to be independent if (u,v)∉E and (v,u)∉E. The set I is called an independent set of D if any two different vertices in I are independent. The independence number of D is the maximum cardinality of an independent set of D. Moreover, the vertices u and v are said to be path independent if there is no dipath from u to v and there is no dipath from v to u. The set I is called a path independent set of D if any two different vertices in I are path independent. The path independence number of D is the maximum cardinality of a path independent set of D. In this research, we describe a lower bound and an upper bound of the independence number of Cayley digraphs of left groups and right groups. Some examples corresponding to those bounds are illustrated here. Furthermore, the exact value of the path independence number of Cayley digraphs of left groups and right groups are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cayley%20digraphs" title="Cayley digraphs">Cayley digraphs</a>, <a href="https://publications.waset.org/abstracts/search?q=independence%20number" title=" independence number"> independence number</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20groups" title=" left groups"> left groups</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20independence%20number" title=" path independence number"> path independence number</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20groups" title=" right groups"> right groups</a> </p> <a href="https://publications.waset.org/abstracts/59306/independence-and-path-independence-on-cayley-digraphs-of-left-groups-and-right-groups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">231</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1228</span> Optimizing Network Latency with Fast Path Assignment for Incoming Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qing%20Lyu">Qing Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20Zhu"> Hang Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various flows in the network require to go through different types of middlebox. The improper placement of network middlebox and path assignment for flows could greatly increase the network latency and also decrease the performance of network. Minimizing the total end to end latency of all the ows requires to assign path for the incoming flows. In this paper, the flow path assignment problem in regard to the placement of various kinds of middlebox is studied. The flow path assignment problem is formulated to a linear programming problem, which is very time consuming. On the other hand, a naive greedy algorithm is studied. Which is very fast but causes much more latency than the linear programming algorithm. At last, the paper presents a heuristic algorithm named FPA, which takes bottleneck link information and estimated bandwidth occupancy into consideration, and achieves near optimal latency in much less time. Evaluation results validate the effectiveness of the proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20path" title="flow path">flow path</a>, <a href="https://publications.waset.org/abstracts/search?q=latency" title=" latency"> latency</a>, <a href="https://publications.waset.org/abstracts/search?q=middlebox" title=" middlebox"> middlebox</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a> </p> <a href="https://publications.waset.org/abstracts/103177/optimizing-network-latency-with-fast-path-assignment-for-incoming-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1227</span> Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Ali">Alam Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Pathak"> Ashok Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path analysis is a statistical technique used to evaluate the direct and indirect effects of variables in path models. One or more structural regression equations are used to estimate a series of parameters in path models to find the better fit of data. However, sometimes the assumptions of classical regression models, such as ordinary least squares (OLS), are violated by the nature of the data, resulting in insignificant direct and indirect effects of exogenous variables. This article aims to explore the effectiveness of a copula-based regression approach as an alternative to classical regression, specifically when variables are linked through an elliptical copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title="path analysis">path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=copula-based%20regression%20models" title=" copula-based regression models"> copula-based regression models</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20effects" title=" direct and indirect effects"> direct and indirect effects</a>, <a href="https://publications.waset.org/abstracts/search?q=k-fold%20cross%20validation%20technique" title=" k-fold cross validation technique"> k-fold cross validation technique</a> </p> <a href="https://publications.waset.org/abstracts/186900/copula-based-estimation-of-direct-and-indirect-effects-in-path-analysis-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1226</span> Critical Path Segments Method for Scheduling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sherif%20M.%20Hafez">Sherif M. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=Remon%20F.%20Aziz"> Remon F. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=May%20S.%20A.%20Elalim"> May S. A. Elalim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Project managers today rely on scheduling tools based on the Critical Path Method (CPM) to determine the overall project duration and the activities’ float times which lead to greater efficiency in planning and control of projects. CPM was useful for scheduling construction projects, but researchers had highlighted a number of serious drawbacks that limit its use as a decision support tool and lacks the ability to clearly record and represent detailed information. This paper discusses the drawbacks of CPM as a scheduling technique and presents a modified critical path method (CPM) model which is called critical path segments (CPS). The CPS scheduling mechanism addresses the problems of CPM in three ways: decomposing the activity duration of separated but connected time segments; all relationships among activities are converted into finish–to–start relationship; and analysis and calculations are made with forward path. Sample cases are included to illustrate the shortages in CPM, CPS full analysis and calculations are explained in details, and how schedules can be handled better with the CPS technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title="construction management">construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20path%20method" title=" critical path method"> critical path method</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20path%20segments" title=" critical path segments"> critical path segments</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20pass" title=" forward pass"> forward pass</a>, <a href="https://publications.waset.org/abstracts/search?q=float" title=" float"> float</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20control" title=" project control"> project control</a> </p> <a href="https://publications.waset.org/abstracts/17760/critical-path-segments-method-for-scheduling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1225</span> Pressure Angle and Profile Shift Factor Effects on the Natural Frequency of Spur Tooth Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raad%20Hassan">Ali Raad Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an (irregular) case relating to base circle, root circle, and pressure angle has been discussed and a computer programme has been developed to simulate and plot spur gear tooth profile, including involute and trochoid curves based on the formulation of rack cutter using different values of pressure angle and profile shift factor and it gave the values of all important geometric parameters. The results showed the flexibility of this approach and versatility of the programme to draw many different cases of spur gear teeth of any module, pressure angle, profile shift factor, number of teeth and rack cutter tip radius. The procedure developed can be extended to produce finite element models of heretofore intractable geometrical forms, to exploring fabrication of nonstandard tooth forms also. Finite elements model of these irregular cases have been built using above programme, and modal analysis has been done using ANSYS software, and natural frequencies of these selected cases have been obtained and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=involute" title="involute">involute</a>, <a href="https://publications.waset.org/abstracts/search?q=trochoid" title=" trochoid"> trochoid</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20angle" title=" pressure angle"> pressure angle</a>, <a href="https://publications.waset.org/abstracts/search?q=profile%20shift%20factor" title=" profile shift factor"> profile shift factor</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/88687/pressure-angle-and-profile-shift-factor-effects-on-the-natural-frequency-of-spur-tooth-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1224</span> A Case Study of Assessment of Fire Affected Concrete Structure by NDT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Gopalkrishnan">Nikhil Gopalkrishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Bhaskaran"> Praveen Bhaskaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhargava"> Aditya Bhargava</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyandeep%20Bhumarkar"> Gyandeep Bhumarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper is an attempt to perform various Non-Destructive Tests on concrete structure as NDT is gaining a wide importance in the branch of civil engineering these days. Various tests that are performed under NDT not only enable us to determine the strength of concrete structure, but also provide us in-hand information regarding the durability, in-situ properties of the concrete structure. Keeping these points in our mind, we have focused our views on performing a case study to show the comparison between the NDT test results performed on a particular concrete structure and another structure at the same site which is subjected to a continuous fire of say 48-72 hours. The mix design and concrete grade of both the structures were same before the one was affected by fire. The variations in the compressive strength, concrete quality and in-situ properties of the two structures have been discussed in this paper. NDT tests namely Ultrasonic Pulse Velocity Test, Rebound Hammer Test, Core-Cutter Test was performed at both the sites. The main objective of this research is to analyze the variations in the strength and quality of the concrete structure which is subjected to a high temperature fire and the one which isn’t exposed to it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-cutter%20test" title="core-cutter test">core-cutter test</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=rebound%20hammer%20test" title=" rebound hammer test"> rebound hammer test</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20pulse%20velocity%20test" title=" ultrasonic pulse velocity test"> ultrasonic pulse velocity test</a> </p> <a href="https://publications.waset.org/abstracts/42037/a-case-study-of-assessment-of-fire-affected-concrete-structure-by-ndt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1223</span> Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usriatur%20Rohma">Usriatur Rohma</a>, <a href="https://publications.waset.org/abstracts/search?q=Adji%20Achmad%20Rinaldo%20Fernandes"> Adji Achmad Rinaldo Fernandes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20path%20analysis" title="nonparametric path analysis">nonparametric path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20spline" title=" truncated spline"> truncated spline</a>, <a href="https://publications.waset.org/abstracts/search?q=linear" title=" linear"> linear</a>, <a href="https://publications.waset.org/abstracts/search?q=quadratic" title=" quadratic"> quadratic</a>, <a href="https://publications.waset.org/abstracts/search?q=rural%20poverty" title=" rural poverty"> rural poverty</a>, <a href="https://publications.waset.org/abstracts/search?q=jackknife%20resampling" title=" jackknife resampling"> jackknife resampling</a> </p> <a href="https://publications.waset.org/abstracts/186676/nonparametric-path-analysis-with-truncated-spline-approach-in-modeling-rural-poverty-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1222</span> Analysis of Path Nonparametric Truncated Spline Maximum Cubic Order in Farmers Loyalty Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adji%20Achmad%20Rinaldo%20Fernandes">Adji Achmad Rinaldo Fernandes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path analysis tests the relationship between variables through cause and effect. Before conducting further tests on path analysis, the assumption of linearity must be met. If the shape of the relationship is not linear and the shape of the curve is unknown, then use a nonparametric approach, one of which is a truncated spline. The purpose of this study is to estimate the function and get the best model on the nonparametric truncated spline path of linear, quadratic, and cubic orders with 1 and 2-knot points and determine the significance of the best function estimator in modeling farmer loyalty through the jackknife resampling method. This study uses secondary data through questionnaires to farmers in Sumbawa Regency who use SP-36 subsidized fertilizer products as many as 100 respondents. Based on the results of the analysis, it is known that the best-truncated spline nonparametric path model is the quadratic order of 2 knots with a coefficient of determination of 85.50%; the significance of the best-truncated spline nonparametric path estimator shows that all exogenous variables have a significant effect on endogenous variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonparametric%20path%20analysis" title="nonparametric path analysis">nonparametric path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer%20loyalty" title=" farmer loyalty"> farmer loyalty</a>, <a href="https://publications.waset.org/abstracts/search?q=jackknife%20resampling" title=" jackknife resampling"> jackknife resampling</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20spline" title=" truncated spline"> truncated spline</a> </p> <a href="https://publications.waset.org/abstracts/186760/analysis-of-path-nonparametric-truncated-spline-maximum-cubic-order-in-farmers-loyalty-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1221</span> Generalized Central Paths for Convex Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-Zhi%20Liao">Li-Zhi Liao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The central path has played the key role in the interior point method. However, the convergence of the central path may not be true even in some convex programming problems with linear constraints. In this paper, the generalized central paths are introduced for convex programming. One advantage of the generalized central paths is that the paths will always converge to some optimal solutions of the convex programming problem for any initial interior point. Some additional theoretical properties for the generalized central paths will be also reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20path" title="central path">central path</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20programming" title=" convex programming"> convex programming</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20central%20path" title=" generalized central path"> generalized central path</a>, <a href="https://publications.waset.org/abstracts/search?q=interior%20point%20method" title=" interior point method"> interior point method</a> </p> <a href="https://publications.waset.org/abstracts/58039/generalized-central-paths-for-convex-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1220</span> Construction Project Planning Using Fuzzy Critical Path Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20M.%20Aldenali">Omar M. Aldenali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planning is one of the most important phases of the management science and network planning, which represents the project activities relationship. Critical path is one of the project management techniques used to plan and control the execution of a project activities. The objective of this paper is to implement a fuzzy logic approach to arrange network planning on construction projects. This method is used to finding out critical path in the fuzzy construction project network. The trapezoidal fuzzy numbers are used to represent the activity construction project times. A numerical example that represents a house construction project is introduced. The critical path method is implemented on the fuzzy construction network activities, and the results showed that this method significantly affects the completion time of the construction projects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20project" title="construction project">construction project</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20path" title=" critical path"> critical path</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20network%20project" title=" fuzzy network project"> fuzzy network project</a>, <a href="https://publications.waset.org/abstracts/search?q=planning" title=" planning"> planning</a> </p> <a href="https://publications.waset.org/abstracts/111693/construction-project-planning-using-fuzzy-critical-path-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1219</span> Graphical Theoretical Construction of Discrete time Share Price Paths from Matroid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Wang">Min Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Utev"> Sergey Utev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lessons from the 2007-09 global financial crisis have driven scientific research, which considers the design of new methodologies and financial models in the global market. The quantum mechanics approach was introduced in the unpredictable stock market modeling. One famous quantum tool is Feynman path integral method, which was used to model insurance risk by Tamturk and Utev and adapted to formalize the path-dependent option pricing by Hao and Utev. The research is based on the path-dependent calculation method, which is motivated by the Feynman path integral method. The path calculation can be studied in two ways, one way is to label, and the other is computational. Labeling is a part of the representation of objects, and generating functions can provide many different ways of representing share price paths. In this paper, the recent works on graphical theoretical construction of individual share price path via matroid is presented. Firstly, a study is done on the knowledge of matroid, relationship between lattice path matroid and Tutte polynomials and ways to connect points in the lattice path matroid and Tutte polynomials is suggested. Secondly, It is found that a general binary tree can be validly constructed from a connected lattice path matroid rather than general lattice path matroid. Lastly, it is suggested that there is a way to represent share price paths via a general binary tree, and an algorithm is developed to construct share price paths from general binary trees. A relationship is also provided between lattice integer points and Tutte polynomials of a transversal matroid. Use this way of connection together with the algorithm, a share price path can be constructed from a given connected lattice path matroid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20construction" title="combinatorial construction">combinatorial construction</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20representation" title=" graphical representation"> graphical representation</a>, <a href="https://publications.waset.org/abstracts/search?q=matroid" title=" matroid"> matroid</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20calculation" title=" path calculation"> path calculation</a>, <a href="https://publications.waset.org/abstracts/search?q=share%20price" title=" share price"> share price</a>, <a href="https://publications.waset.org/abstracts/search?q=Tutte%20polynomial" title=" Tutte polynomial "> Tutte polynomial </a> </p> <a href="https://publications.waset.org/abstracts/118431/graphical-theoretical-construction-of-discrete-time-share-price-paths-from-matroid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1218</span> Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nemer">M. Nemer</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20I.%20Konukseven"> E. I. Konukseven</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD-based%20tools" title="CAD-based tools">CAD-based tools</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20deburring" title=" edge deburring"> edge deburring</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20scanning" title=" edge scanning"> edge scanning</a>, <a href="https://publications.waset.org/abstracts/search?q=offline%20programming" title=" offline programming"> offline programming</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20generation" title=" path generation"> path generation</a> </p> <a href="https://publications.waset.org/abstracts/57270/retraction-free-motion-approach-and-its-application-in-automated-robotic-edge-finishing-and-inspection-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1217</span> Path-Spin to Spin-Spin Hybrid Quantum Entanglement: A Conversion Protocol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indranil%20Bayal">Indranil Bayal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradipta%20Panchadhyayee"> Pradipta Panchadhyayee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path-spin hybrid entanglement generated and confined in a single spin-1/2 particle is converted to spin-spin hybrid interparticle entanglement, which finds its important applications in quantum information processing. This protocol uses beam splitter, spin flipper, spin measurement, classical channel, unitary transformations, etc., and requires no collective operation on the pair of particles whose spin variables share complete entanglement after the accomplishment of the protocol. The specialty of the protocol lies in the fact that the path-spin entanglement is transferred between spin degrees of freedom of two separate particles initially possessed by a single party. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entanglement" title="entanglement">entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=path-spin%20entanglement" title=" path-spin entanglement"> path-spin entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-spin%20entanglement" title=" spin-spin entanglement"> spin-spin entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=CNOT%20operation" title=" CNOT operation"> CNOT operation</a> </p> <a href="https://publications.waset.org/abstracts/142538/path-spin-to-spin-spin-hybrid-quantum-entanglement-a-conversion-protocol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1216</span> The Effect of Critical Activity on Critical Path and Project Duration in Precedence Diagram Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Nisar">J. Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Halim"> S. Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activity in Precedence Diagram Method (PDM) provides a more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in the PDM network will have an anomalous effect on the critical path and the project completion date. In this study, we classified the critical activities in two groups i.e., 1. activity on single critical path and 2. activity on multi-critical paths, and six classes i.e., normal, reverse, neutral, perverse, decrease-reverse and increase-normal, based on their effects on project duration in PDM. Furthermore, we determined the maximum float of time by which the duration each type of critical activities can be changed without effecting the project duration. This study would help the project manager to clearly understand the behavior of each critical activity on critical path, and he/she would be able to change the project duration by shortening or lengthening activities based on project budget and project deadline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20management" title="construction management">construction management</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20path%20method" title=" critical path method"> critical path method</a>, <a href="https://publications.waset.org/abstracts/search?q=project%20scheduling%20network" title=" project scheduling network"> project scheduling network</a>, <a href="https://publications.waset.org/abstracts/search?q=precedence%20diagram%20method" title=" precedence diagram method"> precedence diagram method</a> </p> <a href="https://publications.waset.org/abstracts/97001/the-effect-of-critical-activity-on-critical-path-and-project-duration-in-precedence-diagram-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=41">41</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutter%20path&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10