CINXE.COM

Search results for: inventory replenishment

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inventory replenishment</title> <meta name="description" content="Search results for: inventory replenishment"> <meta name="keywords" content="inventory replenishment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inventory replenishment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inventory replenishment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 787</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inventory replenishment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">787</span> Optimal Selection of Replenishment Policies Using Distance Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Gupta">Amit Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Juneja"> Deepak Juneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorabh%20Gupta"> Sorabh Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a model based on distance based approach (DBA) method employed for evaluation, selection, and ranking of replenishment policies for a single location inventory, which hitherto not developed in the literature. This work recognizes the significance of the selection problem, identifies the selection criteria, the relative importance of selection criteria for this research problem. The developed model is capable of comparing any number of alternate inventory policies for various selection criteria where cardinal values are assigned as a rating to alternate inventory polices for selection criteria and weights of selection criteria. The illustrated example demonstrates the model and presents the result in terms of ranking of replenishment policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DBA" title="DBA">DBA</a>, <a href="https://publications.waset.org/abstracts/search?q=ranking" title=" ranking"> ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=replenishment%20policies" title=" replenishment policies"> replenishment policies</a>, <a href="https://publications.waset.org/abstracts/search?q=selection%20criteria" title=" selection criteria"> selection criteria</a> </p> <a href="https://publications.waset.org/abstracts/116031/optimal-selection-of-replenishment-policies-using-distance-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">786</span> Determining Inventory Replenishment Policy for Major Component in Assembly-to-Order of Cooling System Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tippawan%20Nasawan">Tippawan Nasawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to find the replenishment policy in Assembly-to-Order manufacturing (ATO) which some of the major components have lead-time longer than customer lead-time. The variety of products, independent component demand, and long component lead-time are the difficulty that has resulted in the overstock problem. In addition, the ordering cost is trivial when compared to the cost of material of the major component. A conceptual design of the Decision Supporting System (DSS) has introduced to assist the replenishment policy. Component replenishment by using the variable which calls Available to Promise (ATP) for making the decision is one of the keys. The Poisson distribution is adopted to realize demand patterns in order to calculate Safety Stock (SS) at the specified Customer Service Level (CSL). When distribution cannot identify, nonparametric will be applied instead. The test result after comparing the ending inventory between the new policy and the old policy, the overstock has significantly reduced by 46.9 percent or about 469,891.51 US-Dollars for the cost of the major component (material cost only). Besides, the number of the major component inventory is also reduced by about 41 percent which helps to mitigate the chance of damage and keeping stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assembly-to-Order" title="Assembly-to-Order">Assembly-to-Order</a>, <a href="https://publications.waset.org/abstracts/search?q=Decision%20Supporting%20System" title=" Decision Supporting System"> Decision Supporting System</a>, <a href="https://publications.waset.org/abstracts/search?q=Component%20replenishment" title=" Component replenishment "> Component replenishment </a>, <a href="https://publications.waset.org/abstracts/search?q=Poisson%20distribution" title=" Poisson distribution "> Poisson distribution </a> </p> <a href="https://publications.waset.org/abstracts/120812/determining-inventory-replenishment-policy-for-major-component-in-assembly-to-order-of-cooling-system-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">785</span> A Model for Optimizing Inventory Replenishment and Shelf Space Management in Retail Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nermine%20A.%20Harraz">Nermine A. Harraz</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20Abouali"> Aliaa Abouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The retail stores put up for sale multiple items while the spaces in the backroom and display areas constitute a scarce resource. Availability, volume, and location of the product displayed in the showroom influence the customer’s demand. Managing these operations individually will result in sub-optimal overall retail store’s profit; therefore, a non-linear integer programming model (NLIP) is developed to determine the inventory replenishment and shelf space allocation decisions that together maximize the retailer’s profit under shelf space and backroom storage constraints taking into consideration that the demand rate is positively dependent on the amount and location of items displayed in the showroom. The developed model is solved using LINGO® software. The NLIP model is implemented in a real world case study in a large retail outlet providing a large variety of products. The proposed model is validated and shows logical results when using the experimental data collected from the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=retailing%20management" title="retailing management">retailing management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment" title=" inventory replenishment"> inventory replenishment</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20space%20allocation" title=" shelf space allocation"> shelf space allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=showroom" title=" showroom"> showroom</a>, <a href="https://publications.waset.org/abstracts/search?q=backroom" title=" backroom "> backroom </a> </p> <a href="https://publications.waset.org/abstracts/10385/a-model-for-optimizing-inventory-replenishment-and-shelf-space-management-in-retail-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">784</span> Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Jong%20Yao">Ming-Jong Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Sum%20Shui"> Chin-Sum Shui</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Han%20Wang"> Chih-Han Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20inventory%20routing%20problem" title="cyclic inventory routing problem">cyclic inventory routing problem</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20replenishment" title=" joint replenishment"> joint replenishment</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20vehicle" title=" heterogeneous vehicle"> heterogeneous vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/159424/joint-replenishment-and-heterogeneous-vehicle-routing-problem-with-cyclical-schedule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">783</span> Improving Sales through Inventory Reduction: A Retail Chain Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Mattos">M. G. Mattos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20E.%20P%C3%A9cora%20Jr"> J. E. Pécora Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Briso"> T. A. Briso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today&#39;s challenging business environment, with unpredictable demand and volatility, requires a supply chain strategy that handles uncertainty and risks in the right way. Even though inventory models have been previously explored, this paper seeks to apply these concepts on a practical situation. This study involves the inventory replenishment problem, applying techniques that are mainly based on mathematical assumptions and modeling. The primary goal is to improve the retailer&rsquo;s supply chain processes taking store differences when setting the various target stock levels. Through inventory review policy, picking piece implementation and minimum exposure definition, we were able not only to promote the inventory reduction as well as improve sales results. The inventory management theory from literature review was then tested on a single case study regarding a particular department in one of the largest Latam retail chains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory" title="inventory">inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=retail" title=" retail"> retail</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20stock" title=" safety stock"> safety stock</a>, <a href="https://publications.waset.org/abstracts/search?q=sales" title=" sales"> sales</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/78978/improving-sales-through-inventory-reduction-a-retail-chain-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">782</span> Simulating Economic Order Quantity and Reorder Point Policy for a Repairable Items Inventory System </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mojahid%20F.%20Saeed%20Osman">Mojahid F. Saeed Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Repairable items inventory system is a management tool used to incorporate all information concerning inventory levels and movements for repaired and new items. This paper presents development of an effective simulation model for managing the inventory of repairable items for a production system where production lines send their faulty items to a repair shop considering the stochastic failure behavior and repair times. The developed model imitates the process of handling the on-hand inventory of repaired items and the replenishment of the inventory of new items using Economic Order Quantity and Reorder Point ordering policy in a flexible and risk-free environment. We demonstrate the appropriateness and effectiveness of the proposed simulation model using an illustrative case problem. The developed simulation model can be used as a reliable tool for estimating a healthy on-hand inventory of new and repaired items, backordered items, and downtime due to unavailability of repaired items, and validating and examining Economic Order Quantity and Reorder Point ordering policy, which would further be compared with other ordering strategies as future work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory%20system" title="inventory system">inventory system</a>, <a href="https://publications.waset.org/abstracts/search?q=repairable%20items" title=" repairable items"> repairable items</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20order%20quantity" title=" economic order quantity"> economic order quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=reorder%20point" title=" reorder point"> reorder point</a> </p> <a href="https://publications.waset.org/abstracts/122752/simulating-economic-order-quantity-and-reorder-point-policy-for-a-repairable-items-inventory-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">781</span> Spare Part Inventory Optimization Policy: A Study Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zukhrof%20Romadhon">Zukhrof Romadhon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nani%20Kurniati"> Nani Kurniati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Availability of Spare parts is critical to support maintenance tasks and the production system. Managing spare part inventory deals with some parameters and objective functions, as well as the tradeoff between inventory costs and spare parts availability. Several mathematical models and methods have been developed to optimize the spare part policy. Many researchers who proposed optimization models need to be considered to identify other potential models. This work presents a review of several pertinent literature on spare part inventory optimization and analyzes the gaps for future research. Initial investigation on scholars and many journal database systems under specific keywords related to spare parts found about 17K papers. Filtering was conducted based on five main aspects, i.e., replenishment policy, objective function, echelon network, lead time, model solving, and additional aspects of part classification. Future topics could be identified based on the number of papers that haven’t addressed specific aspects, including joint optimization of spare part inventory and maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spare%20part" title="spare part">spare part</a>, <a href="https://publications.waset.org/abstracts/search?q=spare%20part%20inventory" title=" spare part inventory"> spare part inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20model" title=" inventory model"> inventory model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a> </p> <a href="https://publications.waset.org/abstracts/181509/spare-part-inventory-optimization-policy-a-study-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">780</span> Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Benga">E. Benga</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tengen"> T. Tengen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alugongo"> A. Alugongo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodic%20inventory" title="periodic inventory">periodic inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20inventory" title=" continuous inventory"> continuous inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20inventory" title=" hybrid inventory"> hybrid inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20plant" title=" manufacturing plant"> manufacturing plant</a> </p> <a href="https://publications.waset.org/abstracts/64054/hybrid-inventory-model-optimization-under-uncertainties-a-case-study-in-a-manufacturing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">779</span> Countering the Bullwhip Effect by Absorbing It Downstream in the Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geng%20Cui">Geng Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoto%20Imura"> Naoto Imura</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuhiro%20Nishinari"> Katsuhiro Nishinari</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Ezaki"> Takahiro Ezaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bullwhip effect, which refers to the amplification of demand variance as one moves up the supply chain, has been observed in various industries and extensively studied through analytic approaches. Existing methods to mitigate the bullwhip effect, such as decentralized demand information, vendor-managed inventory, and the Collaborative Planning, Forecasting, and Replenishment System, rely on the willingness and ability of supply chain participants to share their information. However, in practice, information sharing is often difficult to realize due to privacy concerns. The purpose of this study is to explore new ways to mitigate the bullwhip effect without the need for information sharing. This paper proposes a 'bullwhip absorption strategy' (BAS) to alleviate the bullwhip effect by absorbing it downstream in the supply chain. To achieve this, a two-stage supply chain system was employed, consisting of a single retailer and a single manufacturer. In each time period, the retailer receives an order generated according to an autoregressive process. Upon receiving the order, the retailer depletes the ordered amount, forecasts future demand based on past records, and places an order with the manufacturer using the order-up-to replenishment policy. The manufacturer follows a similar process. In essence, the mechanism of the model is similar to that of the beer game. The BAS is implemented at the retailer's level to counteract the bullwhip effect. This strategy requires the retailer to reduce the uncertainty in its orders, thereby absorbing the bullwhip effect downstream in the supply chain. The advantage of the BAS is that upstream participants can benefit from a reduced bullwhip effect. Although the retailer may incur additional costs, if the gain in the upstream segment can compensate for the retailer's loss, the entire supply chain will be better off. Two indicators, order variance and inventory variance, were used to quantify the bullwhip effect in relation to the strength of absorption. It was found that implementing the BAS at the retailer's level results in a reduction in both the retailer's and the manufacturer's order variances. However, when examining the impact on inventory variances, a trade-off relationship was observed. The manufacturer's inventory variance monotonically decreases with an increase in absorption strength, while the retailer's inventory variance does not always decrease as the absorption strength grows. This is especially true when the autoregression coefficient has a high value, causing the retailer's inventory variance to become a monotonically increasing function of the absorption strength. Finally, numerical simulations were conducted for verification, and the results were consistent with our theoretical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bullwhip%20effect" title="bullwhip effect">bullwhip effect</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20forecasting" title=" demand forecasting"> demand forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=order-to-up%20policy" title=" order-to-up policy"> order-to-up policy</a> </p> <a href="https://publications.waset.org/abstracts/172843/countering-the-bullwhip-effect-by-absorbing-it-downstream-in-the-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">778</span> Inventory Decisions for Perishable Products with Age and Stock Dependent Demand Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maher%20Agi">Maher Agi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardik%20Soni"> Hardik Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a deterministic model for optimized control of the inventory of a perishable product subject to both physical deterioration and degradation of its freshness condition. The demand for the product depends on its current inventory level and freshness condition. Our model allows for any positive amount of end of cycle inventory. Some useful conditions that characterize the optimal solution of the model are derived and an algorithm is presented for finding the optimal values of the price, the inventory cycle, the end of cycle inventory level and the order quantity. Numerical examples are then given. Our work shows how the product freshness in conjunction with the inventory deterioration affects the inventory management decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title="inventory management">inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=lot%20sizing" title=" lot sizing"> lot sizing</a>, <a href="https://publications.waset.org/abstracts/search?q=perishable%20products" title=" perishable products"> perishable products</a>, <a href="https://publications.waset.org/abstracts/search?q=deteriorating%20inventory" title=" deteriorating inventory"> deteriorating inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=age-dependent%20demand" title=" age-dependent demand"> age-dependent demand</a>, <a href="https://publications.waset.org/abstracts/search?q=stock-dependent%20demand" title=" stock-dependent demand"> stock-dependent demand</a> </p> <a href="https://publications.waset.org/abstracts/86620/inventory-decisions-for-perishable-products-with-age-and-stock-dependent-demand-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">777</span> Analysis of a Discrete-time Geo/G/1 Queue Integrated with (s, Q) Inventory Policy at a Service Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akash%20Verma">Akash Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sujit%20Kumar%20Samanta"> Sujit Kumar Samanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines a discrete-time Geo/G/1 queueing-inventory system attached with (s, Q) inventory policy. Assume that the customers follow the Bernoulli process on arrival. Each customer demands a single item with arbitrarily distributed service time. The inventory is replenished by an outside supplier, and the lead time for the replenishment is determined by a geometric distribution. There is a single server and infinite waiting space in this facility. Demands must wait in the specified waiting area during a stock-out period. The customers are served on a first-come-first-served basis. With the help of the embedded Markov chain technique, we determine the joint probability distributions of the number of customers in the system and the number of items in stock at the post-departure epoch using the Matrix Analytic approach. We relate the system length distribution at post-departure and outside observer's epochs to determine the joint probability distribution at the outside observer's epoch. We use probability distributions at random epochs to determine the waiting time distribution. We obtain the performance measures to construct the cost function. The optimum values of the order quantity and reordering point are found numerically for the variety of model parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20queueing%20inventory%20model" title="discrete-time queueing inventory model">discrete-time queueing inventory model</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20analytic%20method" title=" matrix analytic method"> matrix analytic method</a>, <a href="https://publications.waset.org/abstracts/search?q=waiting-time%20analysis" title=" waiting-time analysis"> waiting-time analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20optimization" title=" cost optimization"> cost optimization</a> </p> <a href="https://publications.waset.org/abstracts/186892/analysis-of-a-discrete-time-geog1-queue-integrated-with-s-q-inventory-policy-at-a-service-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">776</span> Reimagining the Management of Telco Supply Chain with Blockchain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeaha%20Yang">Jeaha Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Khan"> Ahmed Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Donna%20L.%20Rodela"> Donna L. Rodela</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Qaudeer"> Mohammed A. Qaudeer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional supply chain silos still exist today due to the difficulty of establishing trust between various partners and technological barriers across industries. Companies lose opportunities and revenue and inadvertently make poor business decisions resulting in further challenges. Blockchain technology can bring a new level of transparency through sharing information with a distributed ledger in a decentralized manner that creates a basis of trust for business. Blockchain is a loosely coupled, hub-style communication network in which trading partners can work indirectly with each other for simpler integration, but they work together through the orchestration of their supply chain operations under a coherent process that is developed jointly. A Blockchain increases efficiencies, lowers costs, and improves interoperability to strengthen and automate the supply chain management process while all partners share the risk. Blockchain ledger is built to track inventory lifecycle for supply chain transparency and keeps a journal of inventory movement for real-time reconciliation. State design patterns are used to capture the life cycle (behavior) of inventory management as a state machine for a common, transparent and coherent process which creates an opportunity for trading partners to become more responsive in terms of changes or improvements in process, reconcile discrepancies, and comply with internal governance and external regulations. It enables end-to-end, inter-company visibility at the unit level for more accurate demand planning with better insight into order fulfillment and replenishment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20trace-ability" title=" inventory trace-ability"> inventory trace-ability</a>, <a href="https://publications.waset.org/abstracts/search?q=perpetual%20inventory%20system" title=" perpetual inventory system"> perpetual inventory system</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20lifecycle" title=" inventory lifecycle"> inventory lifecycle</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20consignment" title=" inventory consignment"> inventory consignment</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20transparency" title=" supply chain transparency"> supply chain transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20thread" title=" digital thread"> digital thread</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20planning" title=" demand planning"> demand planning</a>, <a href="https://publications.waset.org/abstracts/search?q=hyper%20ledger%20fabric" title=" hyper ledger fabric"> hyper ledger fabric</a> </p> <a href="https://publications.waset.org/abstracts/152844/reimagining-the-management-of-telco-supply-chain-with-blockchain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">775</span> Optimal Emergency Shipment Policy for a Single-Echelon Periodic Review Inventory System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Poormoaied">Saeed Poormoaied</a>, <a href="https://publications.waset.org/abstracts/search?q=Zumbul%20Atan"> Zumbul Atan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emergency shipments provide a powerful mechanism to alleviate the risk of imminent stock-outs and can result in substantial benefits in an inventory system. Customer satisfaction and high service level are immediate consequences of utilizing emergency shipments. In this paper, we consider a single-echelon periodic review inventory system consisting of a single local warehouse, being replenished from a central warehouse with ample capacity in an infinite horizon setting. Since the structure of the optimal policy appears to be complicated, we analyze this problem under an order-up-to-S inventory control policy framework, the (S, T) policy, with the emergency shipment consideration. In each period of the periodic review policy, there is a single opportunity at any point of time for the emergency shipment so that in case of stock-outs, an emergency shipment is requested. The goal is to determine the timing and amount of the emergency shipment during a period (emergency shipment policy) as well as the base stock periodic review policy parameters (replenishment policy). We show that how taking advantage of having an emergency shipment during periods improves the performance of the classical (S, T) policy, especially when fixed and unit emergency shipment costs are small. Investigating the structure of the objective function, we develop an exact algorithm for finding the optimal solution. We also provide a heuristic and an approximation algorithm for the periodic review inventory system problem. The experimental analyses indicate that the heuristic algorithm is computationally more efficient than the approximation algorithm, but in terms of the solution efficiency, the approximation algorithm performs very well. We achieve up to 13% cost savings in the (S, T) policy if we apply the proposed emergency shipment policy. Moreover, our computational results reveal that the approximated solution is often within 0.21% of the globally optimal solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20shipment" title="emergency shipment">emergency shipment</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory" title=" inventory"> inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20review%20policy" title=" periodic review policy"> periodic review policy</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation%20algorithm." title=" approximation algorithm."> approximation algorithm.</a> </p> <a href="https://publications.waset.org/abstracts/105991/optimal-emergency-shipment-policy-for-a-single-echelon-periodic-review-inventory-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">774</span> Cooperative Replenishment through Bidding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Hezarkhani">Behzad Hezarkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Greys%20Sosic"> Greys Sosic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collaborative purchasing and replenishment have proven to be beneficial in supply chain management. This talk addresses the situation where buyers, potentially in possession of private procurement channels, carry out cooperative purchasing by submitting their bids to a coordinator. The collaborative organization is faced with two basic decisions: (1) who will be allocated with the products, and (2) how much each party should pay. We discuss mechanisms that could achieve desirable outcomes in this settings with special attention to the strategic behavior of the buyers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title="supply chain management">supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20purchasing%20organizations" title=" group purchasing organizations"> group purchasing organizations</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title=" game theory"> game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism%20design" title=" mechanism design"> mechanism design</a> </p> <a href="https://publications.waset.org/abstracts/56598/cooperative-replenishment-through-bidding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">773</span> Modeling the Three - Echelon Repairable Parts Inventory System under (S-1, S) Policy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Kapoor">Rohit Kapoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an attempt is made to formulate 3-echelon repairable parts inventory system under (S-1, S) policy. This analytical model is the extension of an exact formulation of two - echelon repairable parts inventory system, already reported in the established literature. In the present paper, we try to formulate the total cost expression consisting of two components, viz., system investment cost and expected backorder cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%28S-1" title="(S-1">(S-1</a>, <a href="https://publications.waset.org/abstracts/search?q=S%29%20inventory%20policy" title=" S) inventory policy"> S) inventory policy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-echelon%20inventory%20system" title=" multi-echelon inventory system"> multi-echelon inventory system</a>, <a href="https://publications.waset.org/abstracts/search?q=repairable%20parts" title=" repairable parts"> repairable parts</a> </p> <a href="https://publications.waset.org/abstracts/36101/modeling-the-three-echelon-repairable-parts-inventory-system-under-s-1-s-policy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">772</span> Ranking of Inventory Policies Using Distance Based Approach Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gupta%20Amit">Gupta Amit</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumar%20Ramesh"> Kumar Ramesh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Tewari"> P. C. Tewari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Globalization is putting enormous pressure on the business organizations specially manufacturing one to rethink the supply chain in innovative manners. Inventory consumes major portion of total sale revenue. Effective and efficient inventory management plays a vital role for the successful functioning of any organization. Selection of inventory policy is one of the important purchasing activities. This paper focuses on selection and ranking of alternative inventory policies. A deterministic quantitative model-based on Distance Based Approach (DBA) method has been developed for evaluation and ranking of inventory policies. We have employed this concept first time for this type of the selection problem. Four inventory policies Economic Order Quantity (EOQ), Just in Time (JIT), Vendor Managed Inventory (VMI) and monthly policy are considered. Improper selection could affect a company’s competitiveness in terms of the productivity of its facilities and quality of its products. The ranking of inventory policies is a multi-criteria problem. There is a need to first identify the selection criteria and then processes the information with reference to relative importance of attributes for comparison. Criteria values for each inventory policy can be obtained either analytically or by using a simulation technique or they are linguistic subjective judgments defined by fuzzy sets, like, for example, the values of criteria. A methodology is developed and applied to rank the inventory policies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory%20policy" title="inventory policy">inventory policy</a>, <a href="https://publications.waset.org/abstracts/search?q=ranking" title=" ranking"> ranking</a>, <a href="https://publications.waset.org/abstracts/search?q=DBA" title=" DBA"> DBA</a>, <a href="https://publications.waset.org/abstracts/search?q=selection%20criteria" title=" selection criteria"> selection criteria</a> </p> <a href="https://publications.waset.org/abstracts/1726/ranking-of-inventory-policies-using-distance-based-approach-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1726.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">771</span> An Inventory Management Model to Manage the Stock Level for Irregular Demand Items</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Patriarca">Riccardo Patriarca</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulio%20Di%20Gravio"> Giulio Di Gravio</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Costantino"> Francesco Costantino</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Tronci"> Massimo Tronci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate inventory management policy acquires a crucial role in the several high-availability sectors. In these sectors, due to the high-cost of spares and backorders, an (S-1, S) replenishment policy is necessary for high-availability items. The policy enables the shipment of a substitute efficient item anytime the inventory size decreases by one. This policy can be modelled following the Multi-Echelon Technique for Recoverable Item Control (METRIC). The METRIC is a system-based technique that allows defining the optimum stock level in a multi-echelon network, adopting measures in line with the decision-maker’s perspective. The METRIC defines an availability-cost function with inventory costs and required service levels, using as inputs data about the demand trend, the supplying and maintenance characteristics of the network and the budget/availability constraints. The traditional METRIC relies on the hypothesis that a Poisson distribution well represents the demand distribution in case of items with a low failure rate. However, in this research, we will explore the effects of using a Poisson distribution to model the demand of low failure rate items characterized by an irregular demand trend. This characteristic of a demand is not included in the traditional METRIC formulation leading to the need of revising its traditional formulation. Using the CV (Coefficient of Variation) and ADI (Average inter-Demand Interval) classification, we will define the inherent flaws of Poisson-based METRIC for irregular demand items, defining an innovative ad hoc distribution which can better fit the irregular demands. This distribution will allow defining proper stock levels to reduce stocking and backorder costs due to the high irregularities in the demand trend. A case study in the aviation domain will clarify the benefits of this innovative METRIC approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=METRIC" title="METRIC">METRIC</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=irregular%20demand" title=" irregular demand"> irregular demand</a>, <a href="https://publications.waset.org/abstracts/search?q=spare%20parts" title=" spare parts"> spare parts</a> </p> <a href="https://publications.waset.org/abstracts/73000/an-inventory-management-model-to-manage-the-stock-level-for-irregular-demand-items" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">770</span> Two-Warehouse Inventory Model for Deteriorating Items with Inventory-Level-Dependent Demand under Two Dispatching Policies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Zhao">Lei Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Yuan"> Zhe Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyue%20Kuang"> Wenyue Kuang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies two-warehouse inventory models for a deteriorating item considering that the demand is influenced by inventory levels. The problem mainly focuses on the optimal order policy and the optimal order cycle with inventory-level-dependent demand in two-warehouse system for retailers. It considers the different deterioration rates and the inventory holding costs in owned warehouse (OW) and rented warehouse (RW), and the conditions of transportation cost, allowed shortage and partial backlogging. Two inventory models are formulated: last-in first-out (LIFO) model and first-in-first-out (FIFO) model based on the policy choices of LIFO and FIFO, and a comparative analysis of LIFO model and FIFO model is made. The study finds that the FIFO policy is more in line with realistic operating conditions. Especially when the inventory holding cost of OW is high, and there is no difference or big difference between deterioration rates of OW and RW, the FIFO policy has better applicability. Meanwhile, this paper considers the differences between the effects of warehouse and shelf inventory levels on demand, and then builds retailers’ inventory decision model and studies the factors of the optimal order quantity, the optimal order cycle and the average inventory cost per unit time. To minimize the average total cost, the optimal dispatching policies are provided for retailers’ decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FIFO%20model" title="FIFO model">FIFO model</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory-level-dependent" title=" inventory-level-dependent"> inventory-level-dependent</a>, <a href="https://publications.waset.org/abstracts/search?q=LIFO%20model" title=" LIFO model"> LIFO model</a>, <a href="https://publications.waset.org/abstracts/search?q=two-warehouse%20inventory" title=" two-warehouse inventory"> two-warehouse inventory</a> </p> <a href="https://publications.waset.org/abstracts/50101/two-warehouse-inventory-model-for-deteriorating-items-with-inventory-level-dependent-demand-under-two-dispatching-policies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50101.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">769</span> Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makram%20Ben%20Jeddou">Makram Ben Jeddou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABC%20classification" title="ABC classification">ABC classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20criteria%20inventory%20%20classification%20models" title=" multi criteria inventory classification models"> multi criteria inventory classification models</a>, <a href="https://publications.waset.org/abstracts/search?q=ZF-model" title=" ZF-model"> ZF-model</a> </p> <a href="https://publications.waset.org/abstracts/22613/sensitive-analysis-of-the-zf-model-for-abc-multi-criteria-inventory-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">768</span> Inventory Management System of Seasonal Raw Materials of Feeds at San Jose Batangas through Integer Linear Programming and VBA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Glenda%20Marie%20D.%20Balitaan">Glenda Marie D. Balitaan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The branch of business management that deals with inventory planning and control is known as inventory management. It comprises keeping track of supply levels and forecasting demand, as well as scheduling when and how to plan. Keeping excess inventory results in a loss of money, takes up physical space, and raises the risk of damage, spoilage, and loss. On the other hand, too little inventory frequently causes operations to be disrupted and raises the possibility of low customer satisfaction, both of which can be detrimental to a company's reputation. The United Victorious Feed mill Corporation's present inventory management practices were assessed in terms of inventory level, warehouse allocation, ordering frequency, shelf life, and production requirement. To help the company achieve their optimal level of inventory, a mathematical model was created using Integer Linear Programming. Due to the season, the goal function was to reduce the cost of purchasing US Soya and Yellow Corn. Warehouse space, annual production requirements, and shelf life were all considered. To ensure that the user only uses one application to record all relevant information, like production output and delivery, the researcher built a Visual Basic system. Additionally, the technology allows management to change the model's parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title="inventory management">inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20linear%20programming" title=" integer linear programming"> integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management%20system" title=" inventory management system"> inventory management system</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20mill" title=" feed mill"> feed mill</a> </p> <a href="https://publications.waset.org/abstracts/160839/inventory-management-system-of-seasonal-raw-materials-of-feeds-at-san-jose-batangas-through-integer-linear-programming-and-vba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">767</span> Optimizing a Hybrid Inventory System with Random Demand and Lead Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benga%20Ebouele">Benga Ebouele</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Tengen"> Thomas Tengen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implementing either periodic or continuous inventory review model within most manufacturing-companies-supply chains as a management tool may incur higher costs. These high costs affect the system flexibility which in turn affects the level of service required to satisfy customers. However, these effects are not clearly understood because the parameters of both inventory review policies (protection demand interval, order quantity, etc.) are not designed to be fully utilized under different and uncertain conditions such as poor manufacturing, supplies and delivery performance. Coming up with a hybrid model which may combine in some sense the feature of both continuous and a periodic inventory review models should be useful. Therefore, there is a need to build and evaluate such hybrid model on the annual total cost, stock out probability and system’s flexibility in order to search for the most cost effective inventory review model. This work also seeks to find the optimal sets of parameters of inventory management under stochastic condition so as to optimise each policy independently. The results reveal that a continuous inventory system always incurs lesser cost than a periodic (R, S) inventory system, but this difference tends to decrease as time goes by. Although the hybrid inventory is the only one that can yield lesser cost over time, it is not always desirable but also natural to use it in order to help the system to meet high performance specification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demand%20and%20lead%20time%20randomness" title="demand and lead time randomness">demand and lead time randomness</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20Inventory%20model" title=" hybrid Inventory model"> hybrid Inventory model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/41794/optimizing-a-hybrid-inventory-system-with-random-demand-and-lead-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">766</span> An Economic Order Quantity Model for Deteriorating Items with Ramp Type Demand, Time Dependent Holding Cost and Price Discount Offered on Backorders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Paul">Arjun Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrijit%20Goswami"> Adrijit Goswami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our present work, an economic order quantity inventory model with shortages is developed where holding cost is expressed as linearly increasing function of time and demand rate is a ramp type function of time. The items considered in the model are deteriorating in nature so that a small fraction of the items is depleted with the passage of time. In order to consider a more realistic situation, the deterioration rate is assumed to follow a continuous uniform distribution with the parameters involved being triangular fuzzy numbers. The inventory manager offers his customer a discount in case he is willing to backorder his demand when there is a stock-out. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval. For better illustration of our proposed model in both the crisp and fuzzy sense and for providing richer insights, a numerical example is cited to exemplify the policy and to analyze the sensitivity of the model parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20deterioration%20rate" title="fuzzy deterioration rate">fuzzy deterioration rate</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20discount%20on%20backorder" title=" price discount on backorder"> price discount on backorder</a>, <a href="https://publications.waset.org/abstracts/search?q=ramp%20type%20demand" title=" ramp type demand"> ramp type demand</a>, <a href="https://publications.waset.org/abstracts/search?q=shortage" title=" shortage"> shortage</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20varying%20holding%20cost" title=" time varying holding cost"> time varying holding cost</a> </p> <a href="https://publications.waset.org/abstracts/80703/an-economic-order-quantity-model-for-deteriorating-items-with-ramp-type-demand-time-dependent-holding-cost-and-price-discount-offered-on-backorders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">765</span> A Dynamical Approach for Relating Energy Consumption to Hybrid Inventory Level in the Supply Chain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benga%20Ebouele">Benga Ebouele</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Tengen"> Thomas Tengen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to long lead time, work in process (WIP) inventory can manifest within the supply chain of most manufacturing system. It implies that there are lesser finished good on hand and more in the process because the work remains in the factory too long and cannot be sold to either customers The supply chain of most manufacturing system is then considered as inefficient as it take so much time to produce the finished good. Time consumed in each operation of the supply chain has an associated energy costs. Such phenomena can be harmful for a hybrid inventory system because a lot of space to store these semi-finished goods may be needed and one is not sure about the final energy cost of producing, holding and delivering the good to customers. The principle that reduces waste of energy within the supply chain of most manufacturing firms should therefore be available to all inventory managers in pursuit of profitability. Decision making by inventory managers in this condition is a modeling process, whereby a dynamical approach is used to depict, examine, specify and even operationalize the relationship between energy consumption and hybrid inventory level. The relationship between energy consumption and inventory level is established, which indicates a poor level of control and hence a potential for energy savings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modelling" title="dynamic modelling">dynamic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20used" title=" energy used"> energy used</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20inventory" title=" hybrid inventory"> hybrid inventory</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/41799/a-dynamical-approach-for-relating-energy-consumption-to-hybrid-inventory-level-in-the-supply-chain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">764</span> Estimation of PM2.5 Emissions and Source Apportionment Using Receptor and Dispersion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swetha%20Priya%20Darshini%20Thammadi">Swetha Priya Darshini Thammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Kumar%20Pisini"> Sateesh Kumar Pisini</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Shukla"> Sanjay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Source apportionment using Dispersion model depends primarily on the quality of Emission Inventory. In the present study, a CMB receptor model has been used to identify the sources of PM<sub>2.5</sub>, while the AERMOD dispersion model has been used to account for missing sources of PM<sub>2.5 </sub>in the Emission Inventory. A statistical approach has been developed to quantify the missing sources not considered in the Emission Inventory. The inventory of each grid was improved by adjusting emissions based on road lengths and deficit in measured and modelled concentrations. The results showed that in CMB analyses, fugitive sources - soil and road dust - contribute significantly to ambient PM<sub>2.5</sub> pollution. As a result, AERMOD significantly underestimated the ambient air concentration at most locations. The revised Emission Inventory showed a significant improvement in AERMOD performance which is evident through statistical tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMB" title="CMB">CMB</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=AERMOD" title=" AERMOD"> AERMOD</a>, <a href="https://publications.waset.org/abstracts/search?q=PM%E2%82%82.%E2%82%85" title=" PM₂.₅"> PM₂.₅</a>, <a href="https://publications.waset.org/abstracts/search?q=fugitive" title=" fugitive"> fugitive</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20inventory" title=" emission inventory"> emission inventory</a> </p> <a href="https://publications.waset.org/abstracts/95921/estimation-of-pm25-emissions-and-source-apportionment-using-receptor-and-dispersion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">763</span> Inventory Policy Above Country Level for Cooperating Countries for Vaccines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aysun%20P%C4%B1narba%C5%9F%C4%B1">Aysun Pınarbaşı</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9la%20Vizv%C3%A1ri"> Béla Vizvári</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=covid-19" title="covid-19">covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20policy" title=" inventory policy"> inventory policy</a>, <a href="https://publications.waset.org/abstracts/search?q=bounded%20total%20demand" title=" bounded total demand"> bounded total demand</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20holding%20cost" title=" inventory holding cost"> inventory holding cost</a>, <a href="https://publications.waset.org/abstracts/search?q=cauchy%20distribution" title=" cauchy distribution"> cauchy distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=sigmoid%20function" title=" sigmoid function"> sigmoid function</a> </p> <a href="https://publications.waset.org/abstracts/162848/inventory-policy-above-country-level-for-cooperating-countries-for-vaccines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">762</span> Analysis of Some Solutions to Protect the Western Tombolo of Giens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yves%20Lacroix">Yves Lacroix</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Van%20Than"> Van Van Than</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20L%C3%A9andri"> Didier Léandri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Liardet"> Pierre Liardet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tombolo of Giens is located in the town of Hyères (France). We recall the history of coastal erosion, and prominent factors affecting the evolution of the western tombolo. We then discuss the possibility of stabilizing the western tombolo. Our argumentation relies on a coupled model integrating swells, currents, water levels and sediment transport. We present the conclusions of the simulations of various scenarios, including pre-existing propositions from coastal engineering offices. We conclude that beach replenishment seems to be necessary but not sufficient for the stabilization of the beach. Breakwaters reveal effective particularly in the most exposed northern area. Some solutions fulfill conditions so as to be elected as satisfactory. We give a comparative analysis of the efficiency of 14 alternatives for the protection of the tombolo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakwaters" title="breakwaters">breakwaters</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20models" title=" coupled models"> coupled models</a>, <a href="https://publications.waset.org/abstracts/search?q=replenishment" title=" replenishment"> replenishment</a>, <a href="https://publications.waset.org/abstracts/search?q=silting" title=" silting"> silting</a> </p> <a href="https://publications.waset.org/abstracts/26605/analysis-of-some-solutions-to-protect-the-western-tombolo-of-giens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">761</span> Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20L%C3%B3pez-Soto">Diana López-Soto</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Yacout"> Soumaya Yacout</a>, <a href="https://publications.waset.org/abstracts/search?q=Francisco%20%C3%81ngel-Bello"> Francisco Ángel-Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABC%20multi-criteria%20inventory%20classification" title="ABC multi-criteria inventory classification">ABC multi-criteria inventory classification</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-class%20LAD%20model" title=" multi-class LAD model"> multi-class LAD model</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20classification" title=" multi-criteria classification"> multi-criteria classification</a> </p> <a href="https://publications.waset.org/abstracts/29498/multi-criteria-inventory-classification-process-based-on-logical-analysis-of-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">881</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">760</span> Reducing Inventory Costs by Reducing Inventory Levels: Kuwait Flour Mills and Bakeries Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Al-Qattan">Dana Al-Qattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Goodarzi"> Faiza Goodarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20Al-Resheedan"> Heba Al-Resheedan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kawther%20Shehab"> Kawther Shehab</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoug%20Al-Ansari"> Shoug Al-Ansari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project involves working with different types of forecasting methods and facility planning tools to help the company we have chosen to improve and reduce its inventory, increase its sales, and decrease its wastes and losses. The methods that have been used by the company have shown no improvement in decreasing the annual losses. The research made in the company has shown that no interest has been made in exploring different techniques to help the company. In this report, we introduce several methods and techniques that will help the company make more accurate forecasts and use of the available space efficiently. We expect our approach to reduce costs without affecting the quality of the product, and hence making production more viable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title="production planning">production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20management" title=" inventory management"> inventory management</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20control" title=" inventory control"> inventory control</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=facility%20planning%20and%20design" title=" facility planning and design"> facility planning and design</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20economy%20and%20costs" title=" engineering economy and costs"> engineering economy and costs</a> </p> <a href="https://publications.waset.org/abstracts/9187/reducing-inventory-costs-by-reducing-inventory-levels-kuwait-flour-mills-and-bakeries-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">759</span> A Robust Optimization for Multi-Period Lost-Sales Inventory Control Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shunichi%20Ohmori">Shunichi Ohmori</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirawadee%20Arunyanart"> Sirawadee Arunyanart</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuho%20Yoshimoto"> Kazuho Yoshimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider a periodic review inventory control problem of minimizing production cost, inventory cost, and lost-sales under demand uncertainty, in which product demands are not specified exactly and it is only known to belong to a given uncertainty set, yet the constraints must hold for possible values of the data from the uncertainty set. We propose a robust optimization formulation for obtaining lowest cost possible and guaranteeing the feasibility with respect to range of order quantity and inventory level under demand uncertainty. Our formulation is based on the adaptive robust counterpart, which suppose order quantity is affine function of past demands. We derive certainty equivalent problem via second-order cone programming, which gives 'not too pessimistic' worst-case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20optimization" title="robust optimization">robust optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=inventory%20control" title=" inventory control"> inventory control</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20managment" title=" supply chain managment"> supply chain managment</a>, <a href="https://publications.waset.org/abstracts/search?q=second-order%20programming" title=" second-order programming"> second-order programming</a> </p> <a href="https://publications.waset.org/abstracts/42923/a-robust-optimization-for-multi-period-lost-sales-inventory-control-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">758</span> Inventory Control for Purchased Part under Long Lead Time and Uncertain Demand: MRP vs Demand-Driven MRP Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shofa">M. J. Shofa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hidayatno"> A. Hidayatno</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Armand"> O. M. Armand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MRP as a production control system is appropriate for the deterministic environment. Unfortunately, most production systems such as customer demands are stochastic. Demand-Driven MRP (DDMRP) is a new approach for inventory control system, and it deals with demand uncertainty. The objective of this paper is to compare the MRP and DDMRP work for a long lead time and uncertain demand in terms of on-hand inventory levels. The evaluation is conducted through a discrete event simulation using purchased part data from an automotive company. The result is MRP gives 50,759 pcs / day while DDMRP gives 34,835 pcs / day (reduce 32%), it means DDMRP is more effective inventory control than MRP in terms of on-hand inventory levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Demand-Driven%20MRP" title="Demand-Driven MRP">Demand-Driven MRP</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20lead%20time" title=" long lead time"> long lead time</a>, <a href="https://publications.waset.org/abstracts/search?q=MRP" title=" MRP"> MRP</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertain%20demand" title=" uncertain demand"> uncertain demand</a> </p> <a href="https://publications.waset.org/abstracts/71415/inventory-control-for-purchased-part-under-long-lead-time-and-uncertain-demand-mrp-vs-demand-driven-mrp-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=26">26</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=27">27</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inventory%20replenishment&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10