CINXE.COM

%!PS-Adobe-2.0 %%Creator: dvips(k) 2020.1 Copyright 2020 Radical Eye Software %%Title: arXiv:2006.01810v3 [math.AG] 14 May 2022 %%CreationDate: Tue May 17 02:39:27 2022 %%Pages: 37 %%PageOrder: Ascend %%BoundingBox: 0 0 596 842 %%DocumentFonts: EUFM10 %%DocumentPaperSizes: a4 %%EndComments %%BeginDefaults %%ViewingOrientation: 1 0 0 1 %%EndDefaults %DVIPSWebPage: (www.radicaleye.com) %DVIPSCommandLine: dvips -R2 -P pk -z SL4-torus-knots-45.dvi -o %DVIPSParameters: dpi=600, compressed %DVIPSSource: TeX output 2022.05.17:0239 %%BeginProcSet: texc.pro 0 0 %! /TeXDict 300 dict def TeXDict begin/N{def}def/B{bind def}N/S{exch}N/X{S N}B/A{dup}B/TR{translate}N/isls false N/vsize 11 72 mul N/hsize 8.5 72 mul N/landplus90{false}def/@rigin{isls{[0 landplus90{1 -1}{-1 1}ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{ landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR[ matrix currentmatrix{A A round sub abs 0.00001 lt{round}if}forall round exch round exch]setmatrix}N/@landscape{/isls true N}B/@manualfeed{ statusdict/manualfeed true put}B/@copies{/#copies X}B/FMat[1 0 0 -1 0 0] N/FBB[0 0 0 0]N/nn 0 N/IEn 0 N/ctr 0 N/df-tail{/nn 8 dict N nn begin /FontType 3 N/FontMatrix fntrx N/FontBBox FBB N string/base X array /BitMaps X/BuildChar{CharBuilder}N/Encoding IEn N end A{/foo setfont}2 array copy cvx N load 0 nn put/ctr 0 N[}B/sf 0 N/df{/sf 1 N/fntrx FMat N df-tail}B/dfs{div/sf X/fntrx[sf 0 0 sf neg 0 0]N df-tail}B/E{pop nn A definefont setfont}B/Cw{Cd A length 5 sub get}B/Ch{Cd A length 4 sub get }B/Cx{128 Cd A length 3 sub get sub}B/Cy{Cd A length 2 sub get 127 sub} B/Cdx{Cd A length 1 sub get}B/Ci{Cd A type/stringtype ne{ctr get/ctr ctr 1 add N}if}B/id 0 N/rw 0 N/rc 0 N/gp 0 N/cp 0 N/G 0 N/CharBuilder{save 3 1 roll S A/base get 2 index get S/BitMaps get S get/Cd X pop/ctr 0 N Cdx 0 Cx Cy Ch sub Cx Cw add Cy setcachedevice Cw Ch true[1 0 0 -1 -.1 Cx sub Cy .1 sub]/id Ci N/rw Cw 7 add 8 idiv string N/rc 0 N/gp 0 N/cp 0 N{ rc 0 ne{rc 1 sub/rc X rw}{G}ifelse}imagemask restore}B/G{{id gp get/gp gp 1 add N A 18 mod S 18 idiv pl S get exec}loop}B/adv{cp add/cp X}B /chg{rw cp id gp 4 index getinterval putinterval A gp add/gp X adv}B/nd{ /cp 0 N rw exit}B/lsh{rw cp 2 copy get A 0 eq{pop 1}{A 255 eq{pop 254}{ A A add 255 and S 1 and or}ifelse}ifelse put 1 adv}B/rsh{rw cp 2 copy get A 0 eq{pop 128}{A 255 eq{pop 127}{A 2 idiv S 128 and or}ifelse} ifelse put 1 adv}B/clr{rw cp 2 index string putinterval adv}B/set{rw cp fillstr 0 4 index getinterval putinterval adv}B/fillstr 18 string 0 1 17 {2 copy 255 put pop}for N/pl[{adv 1 chg}{adv 1 chg nd}{1 add chg}{1 add chg nd}{adv lsh}{adv lsh nd}{adv rsh}{adv rsh nd}{1 add adv}{/rc X nd}{ 1 add set}{1 add clr}{adv 2 chg}{adv 2 chg nd}{pop nd}]A{bind pop} forall N/D{/cc X A type/stringtype ne{]}if nn/base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{A A length 1 sub A 2 index S get sf div put }if put/ctr ctr 1 add N}B/I{cc 1 add D}B/bop{userdict/bop-hook known{ bop-hook}if/SI save N @rigin 0 0 moveto/V matrix currentmatrix A 1 get A mul exch 0 get A mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N/eop{ SI restore userdict/eop-hook known{eop-hook}if showpage}N/@start{ userdict/start-hook known{start-hook}if pop/VResolution X/Resolution X 1000 div/DVImag X/IEn 256 array N 2 string 0 1 255{IEn S A 360 add 36 4 index cvrs cvn put}for pop 65781.76 div/vsize X 65781.76 div/hsize X}N /dir 0 def/dyy{/dir 0 def}B/dyt{/dir 1 def}B/dty{/dir 2 def}B/dtt{/dir 3 def}B/p{dir 2 eq{-90 rotate show 90 rotate}{dir 3 eq{-90 rotate show 90 rotate}{show}ifelse}ifelse}N/RMat[1 0 0 -1 0 0]N/BDot 260 string N/Rx 0 N/Ry 0 N/V{}B/RV/v{/Ry X/Rx X V}B statusdict begin/product where{pop false[(Display)(NeXT)(LaserWriter 16/600)]{A length product length le{A length product exch 0 exch getinterval eq{pop true exit}if}{pop}ifelse} forall}{false}ifelse end{{gsave TR -.1 .1 TR 1 1 scale Rx Ry false RMat{ BDot}imagemask grestore}}{{gsave TR -.1 .1 TR Rx Ry scale 1 1 false RMat {BDot}imagemask grestore}}ifelse B/QV{gsave newpath transform round exch round exch itransform moveto Rx 0 rlineto 0 Ry neg rlineto Rx neg 0 rlineto fill grestore}B/a{moveto}B/delta 0 N/tail{A/delta X 0 rmoveto}B /M{S p delta add tail}B/b{S p tail}B/c{-4 M}B/d{-3 M}B/e{-2 M}B/f{-1 M} B/g{0 M}B/h{1 M}B/i{2 M}B/j{3 M}B/k{4 M}B/w{0 rmoveto}B/l{p -4 w}B/m{p -3 w}B/n{p -2 w}B/o{p -1 w}B/q{p 1 w}B/r{p 2 w}B/s{p 3 w}B/t{p 4 w}B/x{ 0 S rmoveto}B/y{3 2 roll p a}B/bos{/SS save N}B/eos{SS restore}B end %%EndProcSet %%BeginProcSet: l3backend-dvips.pro 0 0 %% %% This is file `l3backend-dvips.pro', %% generated with the docstrip utility. %% %% The original source files were: %% %% l3backend-header.dtx (with options: `header,dvips') %% %% Copyright (C) 1990-2020 The LaTeX3 Project %% %% It may be distributed and/or modified under the conditions of %% the LaTeX Project Public License (LPPL), either version 1.3c of %% this license or (at your option) any later version. The latest %% version of this license is in the file: %% %% https://www.latex-project.org/lppl.txt %% %% This file is part of the "l3backend bundle" (The Work in LPPL) %% and all files in that bundle must be distributed together. %% %% File: l3backend-header.dtx /color.sc { } def /color.fc { } def TeXDict begin /TeXcolorseparation { setcolor } def end true setglobal /pdf.globaldict 4 dict def false setglobal /pdf.cvs { 65534 string cvs } def /pdf.dvi.pt { 72.27 mul Resolution div } def /pdf.pt.dvi { 72.27 div Resolution mul } def /pdf.rect.ht { dup 1 get neg exch 3 get add } def /pdf.linkmargin { 1 pdf.pt.dvi } def /pdf.linkdp.pad { 0 } def /pdf.linkht.pad { 0 } def /pdf.rect { /Rect [ pdf.llx pdf.lly pdf.urx pdf.ury ] } def /pdf.save.ll { currentpoint /pdf.lly exch def /pdf.llx exch def } def /pdf.save.ur { currentpoint /pdf.ury exch def /pdf.urx exch def } def /pdf.save.linkll { currentpoint pdf.linkmargin add pdf.linkdp.pad add /pdf.lly exch def pdf.linkmargin sub /pdf.llx exch def } def /pdf.save.linkur { currentpoint pdf.linkmargin sub pdf.linkht.pad sub /pdf.ury exch def pdf.linkmargin add /pdf.urx exch def } def /pdf.dest.anchor { currentpoint exch pdf.dvi.pt 72 add /pdf.dest.x exch def pdf.dvi.pt vsize 72 sub exch sub /pdf.dest.y exch def } def /pdf.dest.point { pdf.dest.x pdf.dest.y } def /pdf.dest2device { /pdf.dest.y exch def /pdf.dest.x exch def matrix currentmatrix matrix defaultmatrix matrix invertmatrix matrix concatmatrix cvx exec /pdf.dev.y exch def /pdf.dev.x exch def /pdf.tmpd exch def /pdf.tmpc exch def /pdf.tmpb exch def /pdf.tmpa exch def pdf.dest.x pdf.tmpa mul pdf.dest.y pdf.tmpc mul add pdf.dev.x add pdf.dest.x pdf.tmpb mul pdf.dest.y pdf.tmpd mul add pdf.dev.y add } def /pdf.bordertracking false def /pdf.bordertracking.begin { SDict /pdf.bordertracking true put SDict /pdf.leftboundary undef SDict /pdf.rightboundary undef /a where { /a { currentpoint pop SDict /pdf.rightboundary known dup { SDict /pdf.rightboundary get 2 index lt { not } if } if { pop } { SDict exch /pdf.rightboundary exch put } ifelse moveto currentpoint pop SDict /pdf.leftboundary known dup { SDict /pdf.leftboundary get 2 index gt { not } if } if { pop } { SDict exch /pdf.leftboundary exch put } ifelse } put } if } def /pdf.bordertracking.end { /a where { /a { moveto } put } if /x where { /x { 0 exch rmoveto } put } if SDict /pdf.leftboundary known { pdf.outerbox 0 pdf.leftboundary put } if SDict /pdf.rightboundary known { pdf.outerbox 2 pdf.rightboundary put } if SDict /pdf.bordertracking false put } def /pdf.bordertracking.endpage { pdf.bordertracking { pdf.bordertracking.end true setglobal pdf.globaldict /pdf.brokenlink.rect [ pdf.outerbox aload pop ] put pdf.globaldict /pdf.brokenlink.skip pdf.baselineskip put pdf.globaldict /pdf.brokenlink.dict pdf.link.dict pdf.cvs put false setglobal mark pdf.link.dict cvx exec /Rect [ pdf.llx pdf.lly pdf.outerbox 2 get pdf.linkmargin add currentpoint exch pop pdf.outerbox pdf.rect.ht sub pdf.linkmargin sub ] /ANN pdf.pdfmark } if } def /pdf.bordertracking.continue { /pdf.link.dict pdf.globaldict /pdf.brokenlink.dict get def /pdf.outerbox pdf.globaldict /pdf.brokenlink.rect get def /pdf.baselineskip pdf.globaldict /pdf.brokenlink.skip get def pdf.globaldict dup dup /pdf.brokenlink.dict undef /pdf.brokenlink.skip undef /pdf.brokenlink.rect undef currentpoint /pdf.originy exch def /pdf.originx exch def /a where { /a { moveto SDict begin currentpoint pdf.originy ne exch pdf.originx ne or { pdf.save.linkll /pdf.lly pdf.lly pdf.outerbox 1 get sub def pdf.bordertracking.begin } if end } put } if /x where { /x { 0 exch rmoveto SDict begin currentpoint pdf.originy ne exch pdf.originx ne or { pdf.save.linkll /pdf.lly pdf.lly pdf.outerbox 1 get sub def pdf.bordertracking.begin } if end } put } if } def /pdf.breaklink { pop counttomark 2 mod 0 eq { counttomark /pdf.count exch def { pdf.count 0 eq { exit } if counttomark 2 roll 1 index /Rect eq { dup 4 array copy dup dup 1 get pdf.outerbox pdf.rect.ht pdf.linkmargin 2 mul add sub 3 exch put dup pdf.outerbox 2 get pdf.linkmargin add 2 exch put dup dup 3 get pdf.outerbox pdf.rect.ht pdf.linkmargin 2 mul add add 1 exch put /pdf.currentrect exch def pdf.breaklink.write { pdf.currentrect dup pdf.outerbox 0 get pdf.linkmargin sub 0 exch put dup pdf.outerbox 2 get pdf.linkmargin add 2 exch put dup dup 1 get pdf.baselineskip add 1 exch put dup dup 3 get pdf.baselineskip add 3 exch put /pdf.currentrect exch def pdf.breaklink.write } 1 index 3 get pdf.linkmargin 2 mul add pdf.outerbox pdf.rect.ht add 2 index 1 get sub pdf.baselineskip div round cvi 1 sub exch repeat pdf.currentrect dup pdf.outerbox 0 get pdf.linkmargin sub 0 exch put dup dup 1 get pdf.baselineskip add 1 exch put dup dup 3 get pdf.baselineskip add 3 exch put dup 2 index 2 get 2 exch put /pdf.currentrect exch def pdf.breaklink.write SDict /pdf.pdfmark.good false put exit } { pdf.count 2 sub /pdf.count exch def } ifelse } loop } if /ANN } def /pdf.breaklink.write { counttomark 1 sub index /_objdef eq { counttomark -2 roll dup wcheck { readonly counttomark 2 roll } { pop pop } ifelse } if counttomark 1 add copy pop pdf.currentrect /ANN pdfmark } def /pdf.pdfmark { SDict /pdf.pdfmark.good true put dup /ANN eq { pdf.pdfmark.store pdf.pdfmark.dict begin Subtype /Link eq currentdict /Rect known and SDict /pdf.outerbox known and SDict /pdf.baselineskip known and { Rect 3 get pdf.linkmargin 2 mul add pdf.outerbox pdf.rect.ht add Rect 1 get sub pdf.baselineskip div round cvi 0 gt { pdf.breaklink } if } if end SDict /pdf.outerbox undef SDict /pdf.baselineskip undef currentdict /pdf.pdfmark.dict undef } if pdf.pdfmark.good { pdfmark } { cleartomark } ifelse } def /pdf.pdfmark.store { /pdf.pdfmark.dict 65534 dict def counttomark 1 add copy pop { dup mark eq { pop exit } { pdf.pdfmark.dict begin def end } ifelse } loop } def %% %% %% End of file `l3backend-dvips.pro'. %%EndProcSet %%BeginProcSet: texps.pro 0 0 %! TeXDict begin/rf{findfont dup length 1 add dict begin{1 index/FID ne 2 index/UniqueID ne and{def}{pop pop}ifelse}forall[1 index 0 6 -1 roll exec 0 exch 5 -1 roll VResolution Resolution div mul neg 0 0]FontType 0 ne{/Metrics exch def dict begin Encoding{exch dup type/integertype ne{ pop pop 1 sub dup 0 le{pop}{[}ifelse}{FontMatrix 0 get div Metrics 0 get div def}ifelse}forall Metrics/Metrics currentdict end def}{{1 index type /nametype eq{exit}if exch pop}loop}ifelse[2 index currentdict end definefont 3 -1 roll makefont/setfont cvx]cvx def}def/ObliqueSlant{dup sin S cos div neg}B/SlantFont{4 index mul add}def/ExtendFont{3 -1 roll mul exch}def/ReEncodeFont{CharStrings rcheck{/Encoding false def dup[ exch{dup CharStrings exch known not{pop/.notdef/Encoding true def}if} forall Encoding{]exch pop}{cleartomark}ifelse}if/Encoding exch def}def end %%EndProcSet %%BeginProcSet: special.pro 0 0 %! TeXDict begin/SDict 200 dict N SDict begin/@SpecialDefaults{/hs 612 N /vs 792 N/ho 0 N/vo 0 N/hsc 1 N/vsc 1 N/ang 0 N/CLIP 0 N/rwiSeen false N /rhiSeen false N/letter{}N/note{}N/a4{}N/legal{}N}B/@scaleunit 100 N /@hscale{@scaleunit div/hsc X}B/@vscale{@scaleunit div/vsc X}B/@hsize{ /hs X/CLIP 1 N}B/@vsize{/vs X/CLIP 1 N}B/@clip{/CLIP 2 N}B/@hoffset{/ho X}B/@voffset{/vo X}B/@angle{/ang X}B/@rwi{10 div/rwi X/rwiSeen true N}B /@rhi{10 div/rhi X/rhiSeen true N}B/@llx{/llx X}B/@lly{/lly X}B/@urx{ /urx X}B/@ury{/ury X}B/magscale true def end/@MacSetUp{userdict/md known {userdict/md get type/dicttype eq{userdict begin md length 10 add md maxlength ge{/md md dup length 20 add dict copy def}if end md begin /letter{}N/note{}N/legal{}N/od{txpose 1 0 mtx defaultmatrix dtransform S atan/pa X newpath clippath mark{transform{itransform moveto}}{transform{ itransform lineto}}{6 -2 roll transform 6 -2 roll transform 6 -2 roll transform{itransform 6 2 roll itransform 6 2 roll itransform 6 2 roll curveto}}{{closepath}}pathforall newpath counttomark array astore/gc xdf pop ct 39 0 put 10 fz 0 fs 2 F/|______Courier fnt invertflag{PaintBlack} if}N/txpose{pxs pys scale ppr aload pop por{noflips{pop S neg S TR pop 1 -1 scale}if xflip yflip and{pop S neg S TR 180 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{pop S neg S TR pop 180 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{ppr 1 get neg ppr 0 get neg TR}if}{ noflips{TR pop pop 270 rotate 1 -1 scale}if xflip yflip and{TR pop pop 90 rotate 1 -1 scale ppr 3 get ppr 1 get neg sub neg ppr 2 get ppr 0 get neg sub neg TR}if xflip yflip not and{TR pop pop 90 rotate ppr 3 get ppr 1 get neg sub neg 0 TR}if yflip xflip not and{TR pop pop 270 rotate ppr 2 get ppr 0 get neg sub neg 0 S TR}if}ifelse scaleby96{ppr aload pop 4 -1 roll add 2 div 3 1 roll add 2 div 2 copy TR .96 dup scale neg S neg S TR}if}N/cp{pop pop showpage pm restore}N end}if}if}N/normalscale{ Resolution 72 div VResolution 72 div neg scale magscale{DVImag dup scale }if 0 setgray}N/@beginspecial{SDict begin/SpecialSave save N gsave normalscale currentpoint TR @SpecialDefaults count/ocount X/dcount countdictstack N}N/@setspecial{CLIP 1 eq{newpath 0 0 moveto hs 0 rlineto 0 vs rlineto hs neg 0 rlineto closepath clip}if ho vo TR hsc vsc scale ang rotate rwiSeen{rwi urx llx sub div rhiSeen{rhi ury lly sub div}{dup} ifelse scale llx neg lly neg TR}{rhiSeen{rhi ury lly sub div dup scale llx neg lly neg TR}if}ifelse CLIP 2 eq{newpath llx lly moveto urx lly lineto urx ury lineto llx ury lineto closepath clip}if/showpage{}N /erasepage{}N/setpagedevice{pop}N/copypage{}N newpath}N/@endspecial{ count ocount sub{pop}repeat countdictstack dcount sub{end}repeat grestore SpecialSave restore end}N/@defspecial{SDict begin}N /@fedspecial{end}B/li{lineto}B/rl{rlineto}B/rc{rcurveto}B/np{/SaveX currentpoint/SaveY X N 1 setlinecap newpath}N/st{stroke SaveX SaveY moveto}N/fil{fill SaveX SaveY moveto}N/ellipse{/endangle X/startangle X /yrad X/xrad X/savematrix matrix currentmatrix N TR xrad yrad scale 0 0 1 startangle endangle arc savematrix setmatrix}N end %%EndProcSet %%BeginProcSet: color.pro 0 0 %! TeXDict begin/setcmykcolor where{pop}{/setcmykcolor{dup 10 eq{pop setrgbcolor}{1 sub 4 1 roll 3{3 index add neg dup 0 lt{pop 0}if 3 1 roll }repeat setrgbcolor pop}ifelse}B}ifelse/TeXcolorcmyk{setcmykcolor}def /TeXcolorrgb{setrgbcolor}def/TeXcolorgrey{setgray}def/TeXcolorgray{ setgray}def/TeXcolorhsb{sethsbcolor}def/currentcmykcolor where{pop}{ /currentcmykcolor{currentrgbcolor 10}B}ifelse/DC{exch dup userdict exch known{pop pop}{X}ifelse}B/GreenYellow{0.15 0 0.69 0 setcmykcolor}DC /Yellow{0 0 1 0 setcmykcolor}DC/Goldenrod{0 0.10 0.84 0 setcmykcolor}DC /Dandelion{0 0.29 0.84 0 setcmykcolor}DC/Apricot{0 0.32 0.52 0 setcmykcolor}DC/Peach{0 0.50 0.70 0 setcmykcolor}DC/Melon{0 0.46 0.50 0 setcmykcolor}DC/YellowOrange{0 0.42 1 0 setcmykcolor}DC/Orange{0 0.61 0.87 0 setcmykcolor}DC/BurntOrange{0 0.51 1 0 setcmykcolor}DC /Bittersweet{0 0.75 1 0.24 setcmykcolor}DC/RedOrange{0 0.77 0.87 0 setcmykcolor}DC/Mahogany{0 0.85 0.87 0.35 setcmykcolor}DC/Maroon{0 0.87 0.68 0.32 setcmykcolor}DC/BrickRed{0 0.89 0.94 0.28 setcmykcolor}DC/Red{ 0 1 1 0 setcmykcolor}DC/OrangeRed{0 1 0.50 0 setcmykcolor}DC/RubineRed{ 0 1 0.13 0 setcmykcolor}DC/WildStrawberry{0 0.96 0.39 0 setcmykcolor}DC /Salmon{0 0.53 0.38 0 setcmykcolor}DC/CarnationPink{0 0.63 0 0 setcmykcolor}DC/Magenta{0 1 0 0 setcmykcolor}DC/VioletRed{0 0.81 0 0 setcmykcolor}DC/Rhodamine{0 0.82 0 0 setcmykcolor}DC/Mulberry{0.34 0.90 0 0.02 setcmykcolor}DC/RedViolet{0.07 0.90 0 0.34 setcmykcolor}DC /Fuchsia{0.47 0.91 0 0.08 setcmykcolor}DC/Lavender{0 0.48 0 0 setcmykcolor}DC/Thistle{0.12 0.59 0 0 setcmykcolor}DC/Orchid{0.32 0.64 0 0 setcmykcolor}DC/DarkOrchid{0.40 0.80 0.20 0 setcmykcolor}DC/Purple{ 0.45 0.86 0 0 setcmykcolor}DC/Plum{0.50 1 0 0 setcmykcolor}DC/Violet{ 0.79 0.88 0 0 setcmykcolor}DC/RoyalPurple{0.75 0.90 0 0 setcmykcolor}DC /BlueViolet{0.86 0.91 0 0.04 setcmykcolor}DC/Periwinkle{0.57 0.55 0 0 setcmykcolor}DC/CadetBlue{0.62 0.57 0.23 0 setcmykcolor}DC /CornflowerBlue{0.65 0.13 0 0 setcmykcolor}DC/MidnightBlue{0.98 0.13 0 0.43 setcmykcolor}DC/NavyBlue{0.94 0.54 0 0 setcmykcolor}DC/RoyalBlue{1 0.50 0 0 setcmykcolor}DC/Blue{1 1 0 0 setcmykcolor}DC/Cerulean{0.94 0.11 0 0 setcmykcolor}DC/Cyan{1 0 0 0 setcmykcolor}DC/ProcessBlue{0.96 0 0 0 setcmykcolor}DC/SkyBlue{0.62 0 0.12 0 setcmykcolor}DC/Turquoise{0.85 0 0.20 0 setcmykcolor}DC/TealBlue{0.86 0 0.34 0.02 setcmykcolor}DC /Aquamarine{0.82 0 0.30 0 setcmykcolor}DC/BlueGreen{0.85 0 0.33 0 setcmykcolor}DC/Emerald{1 0 0.50 0 setcmykcolor}DC/JungleGreen{0.99 0 0.52 0 setcmykcolor}DC/SeaGreen{0.69 0 0.50 0 setcmykcolor}DC/Green{1 0 1 0 setcmykcolor}DC/ForestGreen{0.91 0 0.88 0.12 setcmykcolor}DC /PineGreen{0.92 0 0.59 0.25 setcmykcolor}DC/LimeGreen{0.50 0 1 0 setcmykcolor}DC/YellowGreen{0.44 0 0.74 0 setcmykcolor}DC/SpringGreen{ 0.26 0 0.76 0 setcmykcolor}DC/OliveGreen{0.64 0 0.95 0.40 setcmykcolor} DC/RawSienna{0 0.72 1 0.45 setcmykcolor}DC/Sepia{0 0.83 1 0.70 setcmykcolor}DC/Brown{0 0.81 1 0.60 setcmykcolor}DC/Tan{0.14 0.42 0.56 0 setcmykcolor}DC/Gray{0 0 0 0.50 setcmykcolor}DC/Black{0 0 0 1 setcmykcolor}DC/White{0 0 0 0 setcmykcolor}DC end %%EndProcSet %%BeginProcSet: hps.pro 0 0 %! /HPSdict 20 dict dup begin/braindeaddistill 50 def/rfch{dup length 1 sub 1 exch getinterval}bind def/splituri{dup(#)search{exch pop}{()exch} ifelse dup(file:)anchorsearch{pop exch pop 3 -1 roll pop false}{pop 3 -1 roll exch pop true}ifelse}bind def/lookuptarget{exch rfch dup /TargetAnchors where{pop TargetAnchors dup 3 -1 roll known{exch get true }{pop(target unknown:)print == false}ifelse}{pop pop (target dictionary unknown\012)print false}ifelse}bind def/savecount 0 def/stackstopped{count counttomark sub/savecount exch store stopped count savecount sub 1 sub dup 0 gt{{exch pop}repeat}{pop}ifelse}bind def /tempstring 128 string def/targetvalidate{1 index dup length 127 gt exch tempstring cvs dup(/)search{pop pop pop exch pop true exch}{pop}ifelse token{pop length 0 ne}{true}ifelse or not}bind def/targetdump-hook where {pop}{/targetdump-hook{dup mark exch gsave initmat setmatrix{{mark/Dest 4 2 roll targetvalidate{aload pop exch pop/Page 3 1 roll/View exch[exch /FitH exch]/DEST pdfmark}{cleartomark}ifelse}forall}stackstopped pop grestore}bind def}ifelse/baseurl{mark exch 1 dict dup 3 -1 roll/Base exch put/URI exch/DOCVIEW{pdfmark}stackstopped pop}bind def /externalhack systemdict/PDF known def/oldstyle true def/initmat matrix currentmatrix def/actiondict 2 dict dup/Subtype/URI put def /weblinkhandler{dup 3 1 roll mark 4 1 roll/Title 4 1 roll splituri 3 -1 roll dup length 0 gt{cvn/Dest exch 4 2 roll}{pop}ifelse{externalhack{ /HTTPFile exch}{actiondict dup 3 -1 roll/URI exch put/Action exch} ifelse}{externalhack{/HTTPFile exch}{/File exch/Action/GoToR}ifelse} ifelse counttomark 2 sub -1 roll aload pop/Rect 4 1 roll/Border 3 1 roll /Color exch oldstyle{/LNK}{/Subtype/Link/ANN}ifelse gsave initmat setmatrix{pdfmark}stackstopped grestore}bind def/externalhandler where{ pop}{/externalhandler{2 copy{weblinkhandler}exec{/externalhack externalhack not store 2 copy{weblinkhandler}exec{/externalhack externalhack not store/oldstyle false store 2 copy{weblinkhandler}exec{ (WARNING: external refs disabled\012)print/externalhandler{pop pop}bind store externalhandler}{pop pop}ifelse}{pop pop/externalhack externalhack not store}ifelse}{pop pop/externalhandler{weblinkhandler pop}bind store} ifelse}bind def}ifelse/pdfmnew{dup type/stringtype eq{externalhandler}{ exch dup rfch exch 3 -1 roll lookuptarget{mark 4 1 roll/Title 4 1 roll aload pop exch pop/Page 3 1 roll/View exch[exch/FitH exch]5 -1 roll aload pop/Rect 4 1 roll/Border 3 1 roll/Color exch/LNK gsave initmat setmatrix pdfmark grestore}{pop pop}ifelse}ifelse}bind def/pdfmold{dup type/stringtype eq{externalhandler}{exch dup rfch exch 3 -1 roll lookuptarget{mark 4 1 roll/Title 4 1 roll aload pop exch pop/Page 3 1 roll/View exch[exch/FitH exch]5 -1 roll aload pop pop 0 3 getinterval /Rect 3 1 roll/Border exch/LNK gsave initmat setmatrix pdfmark grestore} {pop pop}ifelse}ifelse}bind def/pdfm where{pop}{/pdfm /currentdistillerparams where{pop currentdistillerparams dup /CoreDistVersion known{/CoreDistVersion get}{0}ifelse dup braindeaddistill le{(WARNING: switching to old pdfm because version =) print ==/pdfmold}{pop/pdfmnew}ifelse load}{/pdfmark where{pop{dup type /stringtype eq{externalhandler}{2 copy mark 3 1 roll{pdfmnew} stackstopped{2 copy mark 3 1 roll{pdfmold}stackstopped{ (WARNING: pdfm disabled\012)print/pdfm{pop pop}store}{ (WARNING: new pdfm failed, switching to old pdfm\012)print/pdfm/pdfmold load store}ifelse}{/pdfm/pdfmnew load store}ifelse pop pop}ifelse}}{{ pop pop}}ifelse}ifelse bind def}ifelse end def %%EndProcSet TeXDict begin @defspecial systemdict /pdfmark known{userdict /?pdfmark systemdict /exec get put}{userdict /?pdfmark systemdict /pop get put userdict /pdfmark systemdict /cleartomark get put}ifelse /DvipsToPDF{72.27 mul Resolution div} def/PDFToDvips{72.27 div Resolution mul} def/BPToDvips{72 div Resolution mul}def product (Ghostscript) search {pop pop pop revision 927 gt}{pop false} ifelse{/BorderArrayPatch{} def}{/BorderArrayPatch{[exch{dup dup type/integertype eq exch type/realtype eq or{BPToDvips}if}forall]}def} ifelse /HyperBorder {1 PDFToDvips} def/H.V {pdf@hoff pdf@voff null} def/H.B {/Rect[pdf@llx pdf@lly pdf@urx pdf@ury]} def/H.S {currentpoint HyperBorder add /pdf@lly exch def dup DvipsToPDF 72 add /pdf@hoff exch def HyperBorder sub /pdf@llx exch def} def/H.L {2 sub dup/HyperBasePt exch def PDFToDvips /HyperBaseDvips exch def currentpoint HyperBaseDvips sub /pdf@ury exch def/pdf@urx exch def} def/H.A {H.L currentpoint exch pop vsize 72 sub exch DvipsToPDF HyperBasePt sub sub /pdf@voff exch def} def/H.R {currentpoint HyperBorder sub /pdf@ury exch def HyperBorder add /pdf@urx exch def currentpoint exch pop vsize 72 sub exch DvipsToPDF sub /pdf@voff exch def} def @fedspecial end %%BeginFont: EUFM10 %!PS-AdobeFont-1.0: EUFM10 003.003 %%Title: EUFM10 %Version: 003.003 %%CreationDate: Mon Jun 13 12:00:00 2011 %%Creator: American Mathematical Society %Copyright: Copyright (c) 1997, 2009, 2011 American Mathematical Society %Copyright: (<http://www.ams.org>), with Reserved Font Name EUFM10. % This Font Software is licensed under the SIL Open Font License, Version 1.1. % This license is in the accompanying file OFL.txt, and is also % available with a FAQ at: http://scripts.sil.org/OFL. %%EndComments %%VMusage: 120000 150000 11 dict begin /FontInfo 15 dict dup begin /version (003.003) readonly def /Notice (Copyright \050c\051 1997, 2009, 2011 American Mathematical Society \050<http://www.ams.org>\051, with Reserved Font Name EUFM10.) readonly def /FullName (EUFM10) readonly def /FamilyName (Euler) readonly def /ItalicAngle 0 def /isFixedPitch false def /UnderlinePosition -100 def /UnderlineThickness 50 def /Weight (Medium) readonly def end readonly def /FontName /EUFM10 def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 77 /M put dup 88 /X put readonly def /PaintType 0 def /FontType 1 def /FontMatrix [ 0.001 0 0 0.001 0 0 ] readonly def /FontBBox {-28 -257 1055 741} readonly def currentdict end currentfile eexec D9D66F633B846A989B9974B0179FC6CC445BCF7C3C3333173232E3FDBFF43949 1DB866C39088C203DC22FDC758584860EC7BB67FDA28CC6208249060E18FAB32 204779B5C03C0493BBBBC95CF02692CC4DEAA8D2EA90B5C2E64374E92BCB8501 429B8FAE4A76C0C6B76D6FF7CF9A7D5EDFBCA0E959541C59BD05B7DE43D25D53 FC3DDA6EF0C2743978A6D03E19CCED4A11F2EA4BCC3110BE8B8D9E2772361969 C19258EFAFDC276CB1ADE9208A941A36D18F9FB1C33DEF76AA315DD8F41F8A25 49C7430314EE2809A98E244A1A670E1EFD2F0C69497DDC0198A3CFEDA8D6E80C A6F11B9092C621BD328C3DB66415828640B5EE88B39914EBFE6AC80D995AC00E 1BAFBA187C4B4445E0F60F276EFBEE2AA5138D268D6D7DF57EBB68891A2B8869 7F1869AA09E7C470722D07EDB5DF2AA3A5AE5ECB8D542689330AFC35A5B5D121 54574B6E888139EEAC2FFB961D5AA9D13C25EEED77D57C138C90E597E89A94AC 49D0E1EB09B5BD3231CD51E91CCA7FD1B9790FD7F124D452E59506D27801BC1E 2C5291975FCDFD27ABE8F3FE7C58AA12824926D5CCDE997BAA26C01A5F86987A E09263B8B44BCCC3FA85B8045EA5595DD7AC06697B07FE8C5F6BCFC4115CACE5 9830BDA6426EED646F57EDD6C99920EE65C04057AE00B6E39615BF4484E1E6E1 69214C5309045A326EDC498923FB0D409A98C4F3C7EA699AE83EE6FAAF642CCF 105364E17E8C16B41A4F4564C84716C2A8462C41888C5EBCB775F40FE260443D 032D17699E41F2B60597A1A2AA9DF62C0F3F1CFE6F4D32AADAE248700ADFF765 9DF276D70C1AF91FDB76B7F4676B2CC6147E75E1AD77B6B1E041136667541773 1DCDB412159F6A66A36413F533185A1BB9B8C0F4168920A8A39BD04FB09875E7 DF33A84041EF083898DBFC6F729FF6551AFADF27C4E17665BCA45BC07817A664 982B1985908D1DE0AB5C10BA6F22AAEA93D4100A1E5D04749F0835AD03EEDB87 9F95FAFEE38AAB265FDACDA6504187202C470A65539C58B4DC2D0C97D7CC11B8 B2EE21767B3CE382263779A1D31D2D3DC8178E0E9B95948B7A06636C1D552543 0534E83BC839BB79BE390AACAB568FE851C4D50ED8CFA2602E730A15BBF7DF3A 3486AE7E4F21E5F4EA94A3D1322050932AD8AFD67F82D4C86F084465A54F2CB7 1873C306F1E575A5D5E5204A56CA0064377FBE01CC9ECC74E803636E009C4C7A 7B1A9573CC39E943517C1865E2E3FBAD3BBC9611FF18C46E93A355F6D53DC852 88B93BB635FB5C00A739CA4BD018334995275E5B85AF6B003F14B42E6CE77365 ACA5771BDD5AB3A114D6DB826218866ED9A2BF21D72763EE95A66B7B588B417B 20D3AE846ECF2693940C8546752233B220056CFAAC2FF8DD647CA967898DCB04 197B84DD29BB125505ACFA3D838E3DCA6843B76B9B3F7CC59BB4CF9B3F22F0CC 0EB2656F49D9F37E59BE7A2B301494C24128E12C1F5928573B60A5F10DD7995D 8C943B9F730123CAA9DD0D86FB21A3C891245AC31B810E4C954B1C6946F0C2CC A0A6B6439ADB075D21522955F05B53E765E4DD3B35BF998937F27992C47D21B5 A393003B49C0F9B0082FEDFD718FAC01CE4E5C21C8C2ADBE3B027005FF0B311A EAC65A6DD39EF2D483EA315D78C566AB3D1C95F220BBE2719BA9AB18CEBC1CCC E1C61BE60027189BE40A3E0E35D2A383FEB8D9DA5EDC5E7AB64B581501800126 FC145DF78D794F97B288AAB5D9791801FBEDC45340C6AB2076A5F47415A00AC7 91F9473A0C4CA56823841FA2FDBB21BF8106F7BF941DFAAB144DD75586F28C1F F9A8200B0F4E24F868F0DE741FD959FD3DA1C61FE32727B0257CA03DD79B273E 94CCE820CF19E4078515F39A28584C5381228EB17451940964F02CC67D64170F 9CF64781D17973FBF806D7782CBA2428704BF9D2E1B7BCE1D5F311F562ED9F9A F911BC8DF587BDCF4A962B5EAE8B8BAAA3B634E12079CD96170DDBF54DB29F2C CC4F9E803939A4E22F5B33938547E6BB2B23CE88D31E22AFF05ADC36407240A5 53AC36A35F3D3A5A2EFEDCA530EF7A5431974305FD02282DC1C5EB0342B74B82 2C160184AC2797781AB5A5ABBF59AEA07EF656155D9E0291D800011C994E6E95 D0BCAA7DADD5646A414B9D1DC457152A2DAD497D57C43D241BE5A23C85AEEAA1 F629DA58543D98866EEAB1F0A5B1F253F97213F4EC91A4018500ABA740211B0A 8A0B706A9295ADB26EA5D28E75B9A101B1DC1C17480D921ABEAD01334F171D9D BEF21FD5B2C197DE178076EAA8F3B76E56EB1DF569DBF3A64728FEB6427EB4BA 8D7137D55E5A8D9C4754187F5974B1DF0EA4F2070AC5B5C8D8D84D699551996C 4D08EA4AB071DA68DF9184006B1DA1A09709583966C392B39B9852980902DBE3 4A16B03748CCD2B3694C067435B4A1CCB3E6F6EE887360BC356F9330CF13C754 41E7AF81E84B35DBF545A2AB458404FCA4BED391E964A679AFD3688B670D5BD0 8FE9398548DBC55B938EDD8F2408BA4504B8621674A1FADA50D8C71BBEC6746A DFF087B85901A8506954F10D6BA833CB9B287232C6C8C052D6663ACC4E593A4A 5758A768E286928821EA3A8BBDB519EEACF625111D61CA023336B85183835942 AD9F8E95E0A64171E24C0498E7651BF5B50E763650ECB961F80D8DB69DC16530 8773FD205ECD7051AD8CCD5F6D0DBE67CF75A4C83716FABEFA717BEE17FD1D4E 38F663B69D8A3328FF91D228627F0C1A58DB6DD9F2349FA52011DAA9D6618759 C4B708C62C1FCAB8D9A640AA999D38A874 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark %%EndFont TeXDict begin 39158274 55380987 1000 600 600 (SL4-torus-knots-45.dvi) @start %DVIPSBitmapFont: Fa cmtt9 9 18 [/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup /arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute /caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash /visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two /three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater /question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft /backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j /k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /dieresis 128{/.notdef}repeat] A/EN0 X IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-2 -20 41 53]N /Fa 18 123 df<121E123FEA7F80EAFFC0A4EA7F80EA3F00121E0A0A728927>46 D<EB01FE903807FF80011F13C04913E090B512F04814F84813033907F800FCEBF01F390F C07FFE381F80FF1381485AD83E0713FF007E13F1397C0FC07FA2EC803FEAFC1F00F8EB00 1FA800FCEB803FD87C0F133EECC07EA2397E07F1FC003E13FFD83F0313F8D81F8113F001 8013E0390FC07FC03907F01F3E9038F8007F3903FF03FF6C90B5FC6C14FE013F13F86D13 F0010713C001011300202E7DAD27>64 D<3803FFC0000F13F04813FC487F487F81903880 7FC0383F001F001E6D7E000C1307C7FCEB1FFF90B5FC12075A5A383FFC07EA7FC0EAFF00 12FCA3140F7E007F133FEBC0FF6CB612806C15C07E6C13F36C13C1C69038007F8022207C 9F27>97 D<EB0FFE90387FFF8090B512C0000314E04814F05A381FF80F9038E007E0393F 8003C0397F00018091C7FC127E12FE5AA67E007E14F0007FEB01F8A2383FC003D81FE013 F0EBFC0F6CB512E06C14C06C1480C614006D5AEB0FF01D207B9F27>99 D<EB0FF8EB3FFE90B512804814C04814E04814F0390FF80FF8381FE003393F8001FC48C7 FCA2007E14FEB6FCA515FC00FCC8FC7E007E143C007F147E6C7E6D13FED81FF013FC380F FE036CB512F86C14F06C14E06C14C0013F1300EB07FC1F207D9F27>101 D<153F90391FC0FF80D97FF313C048B612E05A5A4814CF3A1FF07FC7C09039C01FC38090 39800FC000003F80EB0007A4EB800F001F5CEBC01FEBF07F6CB55A92C7FC485B5CEB7FF0 EB1FC090C9FCA213A06CB5FC6C14E04814F848804880397F8001FF007EC7EA3F80007C14 0F00FC15C0481407A46C140F007EEC1F80D87F80137F3A3FF003FF006CB55A6C5C6C5C00 0114E06C6C1380D90FFCC7FC23337EA027>103 D<130F497E497EA46D5A6DC7FC90C8FC A7383FFF80487FA47EEA000FB3A2003FB512E04814F0B612F8A26C14F06C14E01D2F7BAE 27>105 D<387FFF80B57EA47EEA000FB3B0007FB512F8B612FCA46C14F81E2E7CAD27> 108 D<397F07C01F3AFF9FF07FC09039FFF9FFE091B57EA26C81390FF87FE19038E03F80 01C01300A3EB803EAF3A7FF07FC1FF27FFF8FFE3138001F913E7A201F813E3277FF07FC1 13002920819F27>I<387FE07F39FFF1FFC001F77F90B57E817E0003EB81FCEBFE005B5B A25BAF3A7FFF81FFE0B500C313F014C7A214C36C018113E024207F9F27>I<EB1FE0EB7F F83801FFFE487F4814804814C0391FF03FE0393FC00FF0EB8007397F0003F8007E1301A2 48EB00FCA76C1301007E14F8007F1303A2393F8007F0EBC00F391FF03FE06CB512C06C14 806C14006C5B38007FF8EB1FE01E207C9F27>I<397FE07F8039FFF1FFE001F77F90B57E 816C800003EB81FF9039FE007F8001F8133FED1FC049130FA216E01507A6150F6D14C015 1F7FED3F806D137F9039FF83FF00ECFFFE5D5D01F75B01F313C001F090C7FC91C8FCAB38 7FFF80B57EA46C5B23317F9F27>I<393FFC03FC397FFE0FFF00FF013F13804A13C0007F 90B5FC6CB6FC39007FFE1F9138F80F809138E002004AC7FC5CA291C8FCA3137EAB003FB5 7E4880B6FCA27E6C5C22207E9F27>114 D<9038FFF3800007EBFFC05A5A5A5A38FF801F 38FE000F5AEC07806C90C7FCEA7F8013FC383FFFE06C13FC000713FF00011480D8000F13 C09038007FE0140F0038EB03F0127C12FC7E6C13079038C03FE090B5FC15C01580150000 FB13FC38707FF01C207B9F27>I<131C133E137EA7003FB512F04814F8B6FCA36C14F0D8 007EC7FCAB1518153C157EA4017F13FE15FCEB3FC3ECFFF86D13F06D13E06D13C06D1380 903800FE001F297EA827>I<397FE01FF8486C487EA4007F131F00031300B114011403EB F80F90B612E06C15F07E7FEB3FFC90391FF07FE024207F9F27>I<3A7FFC0FFF80486C48 13C0A46C486C13803A07E001F80000035CA2EBF00300015CA2EBF80700005CA390387C0F 80A36D48C7FCA3EB3F3FEB1F3EA214FE6D5AA36D5AA26D5A22207E9F27>I<000FB512FE 4814FF5AA315FE90380003FCEC07F8EC0FF0EC1FE0001EEB3FC0C7EA7F80ECFF00495AEB 03F8495A495A495AEB7F8049C7FC4848131E4848133F485A485A485A485A48B6FCB7FCA4 6C14FE20207E9F27>122 D E /Fa load 0 Fa currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fb cmsl9 9 28 [/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi /ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla /germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright /numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright /asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six /seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at /A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft /quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i /j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis 128{/.notdef}repeat] A/EN1 X IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-8 -21 86 56]N /Fb 28 122 df<ED1FE0EDFFF802037F91380FF01E91383F800F91387E003F4AEB7F8049 5A4948EBFF00824948137E163C93C7FCA2495AA64948137C000FB612FCA339001F800315 01D93F005BA6017E495AA649495AA64848495AA50003141F3A7FFFC3FFFEA2B5FC29357E B42B>12 D<387FFFF8A4B512F015057D921A>45 D<DB3FE01340912603FFFC13E0020F90 38FE01C091393FE01F839139FF0003C7D901FCEB01E7D907F0EB00EF4948147FD91F80EC 3F8049C8FC017E151F13FE485A4848150F1800485A120F5B121F5B003F160E17064992C7 FC127FA348CBFCA60307B512E018C0A292390007FC00705AA26C4B5AA36C7EA2121F6D4A 5A120F6C7E6C6C141F6C6C143F6C6C1473017F903801E1C090393FE00FC0010FB5EA8040 010301FCC8FC9038007FE0333778B43C>71 D<90B500FC90381FFFF0A3D903FEC73807FE 006D4815F018C049485D050EC7FC5F17785F4C5A4948EB03804CC8FC161E5E16705E9039 0FE003C04B5A150F151F4B7E15FF90391FC1EFE0ECC38F9138C707F014DE9138FC03F814 F890393FE001FC14C04A6C7E82828349C7123F83161F83160F8301FE1407707EA2838300 014B7EB500FC013F13F85EA23C337DB23C>75 D<ED7FE0913803FFFC021F13FF91397FC0 3FC09139FE000FE0D903F8EB03F849486D7ED90FC06D7E4948147E49C8127F017EED3F80 5B0001EE1FC0485A485AEF0FE0485AA2121F5B003F17F0A25B127FA348C9EA1FE0A5EF3F C0A3EF7F80A218005F5F6C15015F6D4A5A003F15075F6C6C4A5A4C5A6C6C4A5A6C6C4AC7 FC6C6C14FE6C6CEB03F86CB4EB0FF090397FC07FC0011FB5C8FC010713FC010013C03437 78B43C>79 D<001FB81280A3903AF003FC007FD98001141FD83E00150F003C495A170712 38007817001270A24A5AA25AA4C7484890C7FCA64A5AA64A5AA64AC9FCA614FEA5EB03FF 0007B67EA3313377B237>84 D<B500F0903803FFFC5EA2D807FEC813C06C48ED7E00173C 000116381778177017F06D5D00004B5AA24C5A7F6D4AC7FCA2160E161E6E131C013F143C 16385EA26E5B131F4B5AA26E485A010F130793C8FC5D150E6E5A13075DA25DECF8F00103 5B14F95D14FF6D5B92C9FCA25CA26D5AA25CA21470363576B23A>86 D<EB07FCEB1FFF017F13C09038F80FE03901F003F0486C6C7EA200076D7EA26C5A6C5AC8 FCA24A5A14FF130FEB7FF13801FF01EA03F8390FE003F0EA1FC01380123FD87F0014E0A2 00FE903807E1C0A2140FA2007F131B913873E3803A3F81E3FF00381FFFC36CEB01FC3901 FC00F023237CA126>97 D<14FF010713E04913F090383F80F890387E00FCEBF801D801F0 13FE0003EB03FCEA07E0390FC001F8EC00F048481300123FA290C8FC5AA412FEA3127EA2 127F15306C1470A26C6C13E09038C001C0390FE003803907F81F003801FFFE6C13F8EB1F C01F237CA122>99 D<167EED1FFCA2153F1501A21500ED01F8A6ED03F0A6903901FE07E0 903807FF87011F13E790387F81F79038FC007F4848131F484814C04848130F485AA2485A 123FED1F8090C7FC5AA400FEEC3F00A4127EA2157EA26C14FE1401381F8003000FEB0F7F 3A07E03EFFF03803FFFC6C13F03A003F80FC0027357BB32B>I<EB03FCEB0FFF013F1380 90387E0FC03901F803E03903F001F0EA07E0D80FC013F8EB8000121F123F90C7FC5AA2B6 FCA348C8FCA25AA66C1460007E14E0A26CEB01C06CEB0380390FC00F003807F03E3803FF FC6C13F038003F801D237BA122>I<15FCEC07FF021F1380EC3F1F91387C3FC014F8EB01 F001031480903907E01F00150E4948C7FCA4495AA649C8FC000FB5FCA3D8003FC8FCA213 7EA65BA6485AA6485AA51207B512C0A322357EB417>I<163C91387F01FE903901FFE3FF 0107EBF79F90390FC1FE3F90391F007C1E013EEB7E1C49EB3E0013FC49133F1201A34848 137EA21201157C5D3800F8014A5A90387E0FC090B55AD8018F90C7FCEB83F8D80380C8FC A312076C7E90B57E15F06C8015FE1207390F8000FF001EC7EA3F80003E141F48140F1278 12F8A3ED1F00A2007C143E007E14FC6CEB03F8391FE01FE00007B55A000149C7FC38003F F028337FA126>I<EB01F8EB7FF0A213FF1307A21303495AA6495AA690381F80FE913883 FF80028F13C091389E07E09138B803F014E0EB3FC0A214801400A3017EEB07E0A649EB0F C0A64848EB1F80A50003143F3A7FFFC7FFFCA2B5FC26347EB32B>I<EB0780EB0FC0131F EB3FE0A214C0A2EB1F80EB0F0090C7FCA9131FEA07FFA3C67EA2137EA65BA6485AA6485A A51207B5FCA313337EB215>I<EB01F8EB7FF0A213FF1307A21303495AA6495AA6495A92 383FFF8017005DED1FF016C0D93F0090C7FC153C5D15E0EC03C04A5AD97E0EC8FC143E14 7F5C90387FDF80148F9038FE0FC0EBFC07816E7EA26E7EEA01F86E7E157C157E157F0003 4A7E267FFFC313F8A2B55C29347EB329>107 D<EB03F0EBFFE0A3130FA21307EB0FC0A6 EB1F80A6EB3F00A6137EA65BA6485AA6485AA51207B51280A2140014347EB315>I<9026 0F80FFEB07F82603FF839038C01FFE48018F9038E07FFF913B9E07F0F03F803C007FB801 F1C00FD93FF0D9FB8013C002E0EBFF0002C05B02805BA202005BA2017E4948EB1F80A649 4948EB3F00A648484948137EA50003021F14FE3D7FFFC3FFFE1FFFF0A2B500C75C3C217E A041>I<90380F80FE3A03FF83FF8048018F13C091389E07E03A007FB803F0EB3FE014C0 A214801400A3017EEB07E0A649EB0FC0A64848EB1F80A50003143F3A7FFFC7FFFCA2B5FC 26217EA02B>I<14FF010713C0011F13F090383F81F890387C007C48487F4848133F497F 48481480120F485A16C0123FA290C7FC5AA400FEEC3F80A31600007E5C157EA25D6C495A 5D6C6C485A390FC00FC03907F03F802603FFFEC7FCC613F8EB3FC022237CA126>I<9039 03E03F809039FFE1FFE04801E77F9138FF81FC3A001FFC00FE6D48137E02E07F17805C16 1F17C0A2495AA649C7EA3F80A3EE7F00A2167E017E14FE4B5A017F5C4B5A6E485A9138C0 1FC09039FDF07F809026FCFFFEC7FCEC3FFCEC0FE091C9FCA2485AA6485AA2487EB512C0 5CA22A3080A02B>I<90383E03E03907FE0FF0EC3FF8000FEB79FC38007E6114C1017D13 F8EC80F0017FC7FCA2137EA213FE5BA5485AA6485AA51207B512C0A31E217EA01E>114 D<903807F81090383FFE7090387FFFF0EBFC073801E0013803C00012074913E0120FA27F 150013F06CB47E14F06C13FC6C7F6C7F013F1380010313C0EB003FEC0FE0003013071238 A2007814C0A2127CEC0F80007E14005C38FF80FE38F3FFF800E15B38C07F801C237EA11E >I<130E5BA4133CA25BA213F8120112031207EA1FF0B512FEA33803F000A2485AA6485A A6485A1438A5383F0070A314E07EEB81C0380FC3803807FF006C5AEA01F8172F7AAD1E> I<D801F0131F007FEB07FF00FF5BA2000F130000078049137EA648485BA64848485AA514 03D83F005B1407A2140F6C131FEC3BF83A0F80F7FF803807FFE76C13873A00FE07E00021 2279A02B>I<3A7FFF807FFCA2B53800FFF8D807F8EB3FC06C48EB1F00151E151C7F0001 5C1578157015F06C6C5B4A5AA24A5A13FED97E07C7FC5C140EEB7F1C133F5CA25CEB1FF0 5CA25C5C130F91C8FCA226217A9F29>I<3C7FFF0FFFC1FFF04A13C3B516E03C0FF001FC 007F806C486C48EB3E00173C4A6C1338D803F015780203147017F0DA077C5B1601DA0E7E 5BD801F81403DA1C3E5B1607023891C7FC5E9138703F0ED800FC141E9138E01F1C163CD9 FDC013381678D9FF805B137F4A6C5AA2017E5CA2017C5C133C01386DC8FC34217A9F37> I<90B5EBFFF8A248494813F03B000FF0007F806D48EB3E00163C16386E13780103147016 F05E6E485A13014B5A150702FC90C7FC01005B150E5D14FEEC7E3815781570EC7FF06E5A 5DA25D141F92C8FC141EA2141CA25C147814705C123E387E01C0EA7F0300FE5B49C9FCEA FC1EEA783CEA7FF86C5AEA0FC02D30819F29>121 D E /Fb load 0 Fb currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fc msbm10 9 1 [/lessornotequal/greaterornotequal/notlessequal/notgreaterequal/notless /notgreater/notprecedes/notfollows/lessornotdbleql/greaterornotdbleql /notlessorslnteql/notgreaterorslnteql/lessnotequal/greaternotequal /notprecedesoreql/notfollowsoreql/precedeornoteqvlnt/followornoteqvlnt /lessornotsimilar/greaterornotsimilar/notlessdblequal/notgreaterdblequal /precedenotslnteql/follownotslnteql/precedenotdbleqv/follownotdbleqv /lessnotdblequal/greaternotdblequal/notsimilar/notapproxequal/upslope /downslope/notsubsetoreql/notsupersetoreql/notsubsetordbleql /notsupersetordbleql/subsetornotdbleql/supersetornotdbleql/subsetornoteql /supersetornoteql/subsetnoteql/supersetnoteql/notsubseteql/notsuperseteql /notparallel/notbar/notshortbar/notshortparallel/notturnstile/notforces /notsatisfies/notforcesextra/nottriangeqlright/nottriangeqlleft /nottriangleleft/nottriangleright/notarrowleft/notarrowright/notdblarrowleft /notdblarrowright/notdblarrowboth/notarrowboth/dividemultiply/emptyset /notexistential/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/hatwide /hatwider/tildewide/tildewider/.notdef/Finv/Gmir 4{/.notdef}repeat/Omegainv /eth/equalorsimilar/beth/gimel/daleth/lessdot/greaterdot/multicloseleft /multicloseright/barshort/parallelshort/integerdivide/similar/approxequal /approxorequal/followsorequal/precedesorequal/archleftdown/archrightdown /Digamma/kappa/k/planckover2pi/planckover2pi1/epsiloninv 128{/.notdef}repeat ] A/EN2 X IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-5 -36 175 69]N /Fc 1 68 df<DA0FFC130C91B5EA801C010314F0903A0FFC07FFFC90383FF000D97DE013 3FD9F1C0EB1F1C484848EB079CD803C3EC03DC4848C7EA01FCD80F071400D80E0E157C00 1C163CA24848151C170C17001270A25BA212E0AB1270A27FA21238A36C7EA2000E1603D8 0F07150FD80787151E6C6C6C143C2601E3C014F86C6C6CEB03F0D97CF0EB1FE0903A3F7C 01FF80010FB5EAFE00010314F8010014C0DA0FFCC7FC30357DB323>67 D E /Fc load 0 Fc currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fd cmbx9 9 10 /EN1 load IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-6 -21 89 56]N /Fd 10 58 df<EB03FE90383FFFE090B512F8488048EB07FE3907FC01FF48486C138049 137F001F15C0A24848EB3FE0A2007F15F0A500FF15F8B1007F15F0A4003F15E0A26D137F 001F15C0A26C6CEBFF806C6C4813003903FF07FE6CEBFFFC6C5C013F13E0D903FEC7FC25 327DB02C>48 D<143C14FC1303131FEA03FFB5FCA3EAFC1F1200B3B2007FB512FEA41F31 7AB02C>I<EB1FF890B57E000314E04814F8391FE07FFC393F001FFE6E7E486C6C13806D 7ED8FFE014C08016E0A3EA7FC0EA3F80EA1F00C7FC16C05C1680A24A13005D4A5A4A5A15 E04A5A4A5A02FEC7FC495A903903F003E0EB07E0EB0FC0EB1F8090393E0007C05B49130F 48B6FC5A5A5A5A5A481580B7FCA423317CB02C>I<EB0FFC90387FFFC048B512F03903F8 1FF83907C00FFC48486C7ED81FC07F13E0D83FF0148013F8A41600EA1FF06C485AD80380 5BC75B4A5A4A5AECFFE0013F5B92C7FC8115F09038003FF8EC0FFC6E7E816E138016C0A2 000F15E0EA1F80EA3FC0EA7FE0EAFFF0A316C0A2D87FE01480495AD83F801400001F495A 390FF03FFC6CB55A6C14E0C61480D91FF8C7FC23327CB02C>I<153F5D5DA25C5C5C5CA2 5C5C5C91B5FC14FBEB01F31303EB07E3EB0FC31483EB1F03133F137E13FC13F8EA01F012 03EA07E0EA0FC01380EA1F005A127E5AB712FEA4C700071300A80107B512FEA427317EB0 2C>I<000C140ED80FE013FE90B5FCA25D5D5D5D158092C7FC14FC14E001BCC8FC1380A5 EB83FC90389FFF8090B512E015F89038FC0FFC9038E003FE01C07F496C1380130016C0C7 FCA216E0A2120C123FEA7F8013C0EAFFE0A216C013C016806C485A01001400003E5C391F 800FFC390FE03FF86CB55A6C14C0C691C7FCEB1FF823327CB02C>I<EC7FC0903803FFF0 010F7F90383FE07C90387F803E9038FF003F48485B4848EBFF8000075BEA0FF8A2121F00 3F6D130049137E153C007F91C7FCA214FF01F113C0D8FFF313F001F77F9038FF07FC9038 FC03FE6E7E01F81480A216C013F0A216E0A4127FA4123F16C0A2121F1680EA0FF8000715 006D485A6C6C485A6CB55A6C6C13E0011F5BD907FEC7FC23327CB02C>I<123EEA3F8090 B612F8A416F04815E016C0168016005D5D007EC7FC007C495A4A5A48495A4A5A5D4AC7FC C75A147E147C14FC495AA21303A2495AA2130FA3495AA3133FA4137FA86D5AA2010FC8FC 25337BB12C>I<EB07FE90383FFFC090B512F03901F807F83903E001FC48486C7E484813 7F121FED3F80A2123F7F7F7F01FCEB7F0013FFECC0FE6C13F0ECF9FC6CEBFFF85D6C5C6C 806C806C804880000780D80FF71480EA1FE1263FC07F13C0141F267F800713E08048C7FC 157F153F151FA316C06C7E16806D133F003F1500D81FF013FE390FFC03FC6CB55A00015C 6C6C13C0D90FFCC7FC23327CB02C>I<EB07FC90383FFF8090B57E3903FE0FF03907F807 F8000F6D7E48486C7E123F81127F1680A200FF15C0A516E0A4127F5CA2123FA2001F5BEA 0FF83807FC1F3803FFFD6C13F926007FF113C0EB1FE1EB0001A2D807801480EA0FC0EA1F E0486C481300A25D4A5A01E05B381FC00F49485A390FE07FC06CB55A6C91C7FC6C13FC38 003FC023327CB02C>I E /Fd load 0 Fd currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fe cmr10 10 9 /EN1 load IEn S/IEn X FBB FMat/FMat[0.012 0 0 -0.012 0 0]N/FBB[-5 -23 84 62]N /Fe 9 62 df<14E01301EB03C0EB0780EB0F00131EA25B5B13F85B12015B12035B1207A2 485AA2121F90C7FCA25AA2123EA2127EA5127C12FCB2127C127EA5123EA2123FA27EA27F 120FA26C7EA212037F12017F12007F13787F7FA27FEB0780EB03C0EB01E01300135278BD 20>40 D<126012F012787E7E7EA26C7E6C7E7F12017F12007F1378137CA27FA2133F7FA2 1480A2130FA214C0A5130714E0B214C0130FA51480A2131FA21400A25B133EA25BA21378 13F85B12015B12035B485A48C7FCA2121E5A5A5A126013527CBD20>I<EB01C013031307 131F13FFB5FCA2131F1200B3B3A8497E007FB512F0A31C3879B72A>49 D<EB0FF0EB7FFE48B57E3903E03FC03907800FE0390E0007F0486D7E48806E7E5A6E7E12 7CB4FC16807F157FA26CC7FCA2001C14FFC8FC1600A25C5D5D14035D4A5A4A5A5D4A5A4A C7FC143E5C5C495A495A495A5C49C8FC011EEB03805B5B491307484814005B485A48C75A 48B6FC5A5A485CB6FCA321387CB72A>I<EB07F8EB3FFF4913C03901F80FE03903E003F0 D807807F496C7E488013C0486C6C7EA4120F495AD803805BC7FCA25D14035D4A5A5D4A5A EC7F80D91FFEC7FC5CECFF809038000FE0EC03F06E7E6E7E81157F1680A2ED3FC0A216E0 A2123E127F487EA316C090C7FC48147F007C158012706CECFF006C5C000F495A3907C003 F83903F80FF06CB512C06C6C90C7FCEB07F8233A7DB72A>I<EC3FC0903801FFF0010713 FC90380FE03E90381F000F013E5B49EB3F8049137F485A485A120749EB3F00000F141E00 1F91C7FC5BA2123FA3387F0020EB03FF4913C0497F39FF1C03F090383000F849137C157E 497FA2491480151F16C0A290C7FC16E0A47EA57E6D14C0A2121FED3F80120F6D14000007 147E6C6C137C6D5B6C6C485A3900FE07E090383FFFC06D90C7FCEB03FC233A7DB72A>54 D<EB03F8EB1FFF4913C09038FC07E03901F001F03903C000F8157C48487F120F90C7FC81 5AA37FA26D133EA2D80FF0133C6D137CD807FE5B6D5B6CEBC3E06CEBE7C06CEBFF806D48 C7FC6D7E010F7F013F13E0497FD801F813FC3903E03FFE3807C01F390F8007FF48486C13 80001E1300003EEC7FC048141FED0FE0A2481407A21503A416C0127CED07807EED0F006C 141E6C6C5BD807E013F83903FC03F0C6B55A013F1380D907FCC7FC233A7DB72A>56 D<EB03F8EB1FFF017F7F9038FC07E03901F001F048486C7E48487F000F147C4848137E15 3E003F143F48C7FC1680A248141F16C0A516E0A47E153FA27E7F001F147FA26C6C13DF12 073903E0019F3901F8071F2600FFFE13C0EB7FFCEB1FF8EB00801400ED3F80A31600A200 0F147E487E486C5B5D14015D49485A6C48485A001EEB1F80260FC07FC7FC3807FFFC0001 13F038003FC0233A7DB72A>I<007FB812F8B912FCA26C17F8CCFCAE007FB812F8B912FC A26C17F836167B9F41>61 D E /Fe load 0 Fe currentfont 83.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Ff cmr7 7 5 /EN1 load IEn S/IEn X FBB FMat/FMat[0.0171429 0 0 -0.0171429 0 0]N/FBB[-4 -17 65 44]N /Ff 5 115 df<13381378EA01F8121F12FF12FE12E01200B3AAB512F8A315267BA521> 49 D<13FF000313E0000F7F381E07F8383801FC486C7E0078137F00FC7F6C1480A2141F A2127CC7123F1500A2147EA25C5C495A495AEB078049C7FC131E5B13709038E00380EA01 C0EA03803907000700120E1218003FB5FC5AB55AA319267DA521>I<13FF000713E0487F 381F01F8383C00FC147E007E137F80A3003C5BC7127EA25C5C495AEB0FE03801FF8091C7 FC380003E0EB00F8147C147E80A21580A21238127C12FEA21500485B0078137E5C383F03 F86CB45A000713C0C690C7FC19277DA521>I<120E121FEA3F80A3EA1F00120EC7FCA7EA 078012FFA3121F120FB2EAFFF8A30D287EA713>105 D<380F07C038FF1FF0EB38F81371 EA1F61EA0FC1EBC0F014005BAFEAFFFCA3151A7E991A>114 D E /Ff load 0 Ff currentfont 58.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont /Fg 178[87 77[{}1 83.022 /EUFM10 rf %DVIPSBitmapFont: Fh cmmi7 7 4 [/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta /gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma /tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1 /arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf /arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle /oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle /sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater /star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat /natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q /r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie 128{/.notdef} repeat] A/EN3 X IEn S/IEn X FBB FMat/FMat[0.0171429 0 0 -0.0171429 0 0]N/FBB[-1 -17 68 44]N /Fh 4 67 df<EA01C03903E001F01407EC1FF83907C03BF014619038C1C1E001C3C7FCEA 0F86139C13F013FF4813E0EB07F8EB00FC147E003E133E150EA348EB3C1CA21518153848 EB1E70EC0FE00070EB07C01F1B7C9927>20 D<48B512F8000714FC4814F84814F0D83C07 C7FC1270485AA2EA000EA2131EA35BA3137CA21378A213F8A3485AA26C5A1E1A7D981F> 28 D<ED0780150FA2151FA2153F157FA24B7E15EFEC01CFEC038FA2EC070F140F140E02 1C7F150714381478147014E0130114C0D903807FA249B5FC5BA290381C0003A25B5B8249 130112015B1203120FD8FFF890383FFFC0A25B2A2A7CA932>65 D<017FB512F016FEEEFF 80903A03F0003FC0161FEE0FE04948130717F0A3494814E0160F17C0161F4948EB3F80EE 7F0016FEED03F849B512E0A291380003F8ED00FC017E147E821780A25BA44848EC7F00A2 16FE4B5A4848495AED0FF0ED3FE0B712804BC7FC15F02C287CA732>I E /Fh load 0 Fh currentfont 58.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fi cmsy10 10 5 [/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus /minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot /circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset /reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar /approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes /follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast /arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup /arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime /infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal /existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular /aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union /intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright /floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright /angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv /backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq /intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl /paragraph/club/diamond/heart/spade 128{/.notdef}repeat] A/EN4 X IEn S/IEn X FBB FMat/FMat[0.012 0 0 -0.012 0 0]N/FBB[-4 -82 94 66]N /Fi 5 104 df<007FB81280B912C0A26C17803204799641>0 D<ED07FF033F13E04AB512 F0020714F8141F91387F007F02F8130FD901E01307D907C014F0495A49C713E0133E017E EC0FC049158049141F0001ED3F004848143E5E484814F0000F15404991C7FCA2121F5B12 3FA348CAFCEE01C01607160F48ED1F80163FA2167F1700A25E7F4B5A1503A26C6C495A15 0F6D131F6D495A6C6C137B9038FF01F36C9038FFE3F06C14876CEBFE076C01F85B39007F C00F90C75BA24B5AA24BC7FC153E157E485CD80FC05B391FF001F0393FFE03E048B51280 92C8FC001F13FC000713F0C613802D457CBA31>71 D<04C05FDB03E05F1507030F60031F 60646470177E1CFEA21B01033F1703515A70160F1B1F1B3F157B0373177F70EEFBF8F201 F3F203E303E1EE07C370ED0FC7F21F87DA01C1EF07F003C0163E70157C1AF84A48923801 F00F70EC03E0711307DA0700DB0FC05BF11F80043F1500020E6E133E4F131F614A011F49 5A71485A18074A4B485C706C485A4A4BC7FCEFF87E040749143F4AECF9F870B45A49485D 6049486D5B95C8FC01076E5A003890C85AD87E0F1578D87FFE157000FF0420EEC1C04992 C913E749F2FF0064491AF849735AD83FC0F10F80D80F8096C8FC5A3F7DBA64>77 D<15FE1407141FEC7FC0ECFE00495AEB03F0A2495AB3A8495AA2495A49C7FC13FEEA07FC EAFFF0138013F0EA07FCC67E133F6D7E6D7EA26D7EB3A86D7EA2EB01FC6D7EEC7FC0EC1F FE140714001F537BBD2A>102 D<127EEAFFE013F8EA07FEC67EEB3F806D7E130F6D7EB3 A86D7EA26D7E6D7E147FEC3FC0EC0FFE1403140FEC3FC0EC7F0014FC495A495AA2495AB3 A8495A131F495A01FFC7FCEA07FEEAFFF813E0007EC8FC1F537BBD2A>I E /Fi load 0 Fi currentfont 83.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fj cmmi10 10 8 /EN3 load IEn S/IEn X FBB FMat/FMat[0.012 0 0 -0.012 0 0]N/FBB[-4 -23 87 62]N /Fj 8 114 df<EC3FE0903801FFF0010F13E090381FC000017FC7FC13FC485A485A485A 485A121F5B123FA2387FFFFE80A290C8FC127E12FEA5127EA3123E123FA26C14406C6C13 E03807C0033903F81F806CB5120038007FFCEB0FE01C257DA322>15 D<14035CA5EDFFC04A13E0143F91B5FC903903FC7F80D907F0C7FC495A495A495A91C8FC 5B13FEA3485AA512007FA2137F90383FBFF06DB47E6D7F495B90383F7FE0017CC8FC13F0 485A485A485A120F90C9FC5A123EA2123C127CA312FCA3127E127F7FEA3FE0EA1FFC13FF 6C13E0000313F86C13FF6C6C13C0010F7F01037F9038007FF8140F14031400A4011E5B90 381F81E06DB45A01035BD9007EC7FC234B7EB924>24 D<027FB512C00103B612E05B131F 4915C090267F81FEC7FC9038FC007E48487FEA03E048487F000F81485AA248C7FCA2127E A3484AC7FCA3153E157E5A5D5D14015D6C495A007C495A5D6C011FC8FC6C133E380F81FC 3807FFF06C5BC66CC9FC2B257DA32F>27 D<013FB512FE90B7FC5A4815FE4815FC260F80 1CC7FCEA1E00001C133C5A48133814785AC7FCA25CA31301A25CA21303A3495AA3130FA2 5CA2131FA349C8FC7F130E28257EA324>I<EC3FE0903801FFFC010713FF011F14809039 7F801FC09038FC0007D801E0EB0180484890C7FC5B48C9FCA57F3803C0F03801EFFE6CB5 FCA200035BD80780C8FC48C9FC121CA25A5AA35AA26C14180070141C5D00785C003E495A 391F800FC06CB55A6C91C7FC000113FC38003FE022287FA527>34 D<121E123FEA7F80EAFFC0A213E0A2127F123F121E1200A4EA01C0A3EA0380A2EA0700A2 120E5A123C123812100B1A7A8917>59 D<D803E0017F14FE3D07F803FFC007FF80486C48 D9F00F13E03D1C3E1F81F83F03F0DA3C00EB780126383F78D9FCF07F4AEBFDE000704990 387DC0004AEB7F804A91C7FC91C700FE1301485A017E5CA21200494948495AA34E5A4848 495AA24E5AA24848495A95381F80E0A34848494890383F01C0A395383E03804848495AF1 0700190EF01E1E484849C7EA1FFC000F6E6E5A6CC7000EEC03E043267EA449>109 D<02FC13C0903803FF01010F138390391F83C78090383E01EF9038FC00FF4848137F4914 00485A000780485A157E485AA2123F90C75A5AA300FE495AA448495AA44A5AA2140F007C 131F007E495A003E137F14FF381F83EF390FFF9F800003131FEA00FC13004AC7FCA4147E A45CA2130190387FFFF0A322357DA425>113 D E /Fj load 0 Fj currentfont 83.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fk cmex8 8 2 [/parenleftbig/parenrightbig/bracketleftbig/bracketrightbig/floorleftbig /floorrightbig/ceilingleftbig/ceilingrightbig/braceleftbig/bracerightbig /angbracketleftbig/angbracketrightbig/vextendsingle/vextenddouble/slashbig /backslashbig/parenleftBig/parenrightBig/parenleftbigg/parenrightbigg /bracketleftbigg/bracketrightbigg/floorleftbigg/floorrightbigg /ceilingleftbigg/ceilingrightbigg/braceleftbigg/bracerightbigg /angbracketleftbigg/angbracketrightbigg/slashbigg/backslashbigg /parenleftBigg/parenrightBigg/bracketleftBigg/bracketrightBigg/floorleftBigg /floorrightBigg/ceilingleftBigg/ceilingrightBigg/braceleftBigg /bracerightBigg/angbracketleftBigg/angbracketrightBigg/slashBigg /backslashBigg/slashBig/backslashBig/parenlefttp/parenrighttp/bracketlefttp /bracketrighttp/bracketleftbt/bracketrightbt/bracketleftex/bracketrightex /bracelefttp/bracerighttp/braceleftbt/bracerightbt/braceleftmid /bracerightmid/braceex/arrowvertex/parenleftbt/parenrightbt/parenleftex /parenrightex/angbracketleftBig/angbracketrightBig/unionsqtext /unionsqdisplay/contintegraltext/contintegraldisplay/circledottext /circledotdisplay/circleplustext/circleplusdisplay/circlemultiplytext /circlemultiplydisplay/summationtext/producttext/integraltext/uniontext /intersectiontext/unionmultitext/logicalandtext/logicalortext /summationdisplay/productdisplay/integraldisplay/uniondisplay /intersectiondisplay/unionmultidisplay/logicalanddisplay/logicalordisplay /coproducttext/coproductdisplay/hatwide/hatwider/hatwidest/tildewide /tildewider/tildewidest/bracketleftBig/bracketrightBig/floorleftBig /floorrightBig/ceilingleftBig/ceilingrightBig/braceleftBig/bracerightBig /radicalbig/radicalBig/radicalbigg/radicalBigg/radicalbt/radicalvertex /radicaltp/arrowvertexdbl/arrowtp/arrowbt/bracehtipdownleft /bracehtipdownright/bracehtipupleft/bracehtipupright/arrowdbltp/arrowdblbt 128{/.notdef}repeat] A/EN5 X IEn S/IEn X FBB FMat/FMat[0.015 0 0 -0.015 0 0]N/FBB[-3 -198 103 51]N /Fk 2 18 df<EC01C01403EC0780EC0F00141E5C5C5CA2495A495A13075C49C7FC5B131E 133E133C137C137813F85B1201A2485AA3485AA2120F5BA3121F90C8FCA35AA3123E127E A7127C12FCB3A3127C127EA7123E123FA37EA37F120FA37F1207A26C7EA36C7EA212007F 1378137C133C133E131E131F7F6D7E8013036D7E6D7EA21478808080EC0780EC03C01401 1A7773822A>16 D<12C07E7E12787E7E7E7E7F6C7E6C7E7F12001378137C133C133E131E 131F7F80130780A26D7EA36D7EA2801300A380147CA3147EA3143E143FA7801580B3A315 005CA7143E147EA3147CA314FC5CA313015CA2495AA3495AA25C130F91C7FC5B131E133E 133C137C13785B12015B485A485AA248C8FC121E5A5A5A5A5A19777D822A>I E /Fk load 0 Fk currentfont 66.6667 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fl msbm10 8 1 /EN2 load IEn S/IEn X FBB FMat/FMat[0.015 0 0 -0.015 0 0]N/FBB[-5 -31 156 61]N /Fl 1 91 df<000FB612FC5A3A183E00301801F0EB6030EA19C0001BC7EAC060001EEB01 804815C0003890380301801406ED03000030130C15060010495AC712305D14605D4A5AEB 01805DEB03004A5AD90603C7FC130C140613185C495A016014014A130313C04A13074848 5AD8030014064948130E120649C7121ED80C06143612184914E64848EB01CCED070C4848 133EB712FC7E282E7EAD37>90 D E /Fl load 0 Fl currentfont 66.6667 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fm cmmib8 8 2 /EN3 load IEn S/IEn X FBB FMat/FMat[0.015 0 0 -0.015 0 0]N/FBB[-2 -19 85 50]N /Fm 2 35 df<EC7FE0903807FFF0131F017F13E09038FFC0004890C7FCEA03FC485A120F 485AA2123F5B48B51280A21500B55A01C0C7FCA3127FA3123F7F001F14E0390FFC07F06C B512E06C14C0C61400EB0FF81C1F7D9D22>15 D<ECFF80010F13F0013F13F890B512FC48 14FE5A5A9038F001FC390F80007848C8FC121EA2EB3FF0381FFFF86C7FA2485B5A003C13 E0D87807C7FC90C8FC5A15206C147000FEEB01F0007FB5FC15E06C14C06C14806C140000 0313FC38007FE01F207E9E25>34 D E /Fm load 0 Fm currentfont 66.6667 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fn cmmib10 10.95 2 /EN3 load IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-3 -25 110 68]N /Fn 2 35 df<913803FFE0023F13F049B5FC010714E0011F14C0D97FFEC7FCEBFFF04813 C0485B4890C8FC485AA2485A123FA2485A90B512FE81B7FC5D5D01F0C8FC5BA7127FA212 3F7F6C6CEB01C0000FEC07E001FE130F3903FF807F6C90B512806C6CEBFE00011F13F801 0113C024297CA72C>15 D<EC0FFC91387FFF800103B512E0010F14F84914FC137F90B612 FE5A9138C00FFC3903FC0001D807F0EB00F0491400485A5BA3903887FF8001BF7F90B57E 7EEBF803380FFF9F48EBFFC07FD83F1F90C7FC383E00E04890C8FCA25AA416E06C14016C 1403D87FC0EB3FC090B61280A26C15006C14FC6C5C000314E0C61480D91FF8C7FC272C7D A930>34 D E /Fn load 0 Fn currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fo msam10 10.95 1 [/squaredot/squareplus/squaremultiply/square/squaresolid/squaresmallsolid /diamond/diamondsolid/clockwise/anticlockwise/harpoonleftright /harpoonrightleft/squareminus/forces/forcesbar/satisfies/dblarrowheadright /dblarrowheadleft/dblarrowleft/dblarrowright/dblarrowup/dblarrowdwn /harpoonupright/harpoondownright/harpoonupleft/harpoondownleft /arrowtailright/arrowtailleft/arrowparrleftright/arrowparrrightleft /shiftleft/shiftright/squiggleright/squiggleleftright/curlyleft/curlyright /circleequal/followsorequal/greaterorsimilar/greaterorapproxeql/multimap /therefore/because/equalsdots/defines/precedesorequal/lessorsimilar /lessorapproxeql/equalorless/equalorgreater/equalorprecedes/equalorfollows /precedesorcurly/lessdblequal/lessorequalslant/lessorgreater/primereverse /axisshort/equaldotrightleft/equaldotleftright/followsorcurly /greaterdblequal/greaterorequalslant/greaterorless/squareimage /squareoriginal/triangleright/triangleleft/trianglerightequal /triangleleftequal/star/between/triangledownsld/trianglerightsld /triangleleftsld/arrowaxisright/arrowaxisleft/triangle/trianglesolid /triangleinv/ringinequal/lessequalgreater/greaterlessequal/lessdbleqlgreater /greaterdbleqlless/Yen/arrowtripleright/arrowtripleleft/check/orunderscore /nand/perpcorrespond/angle/measuredangle/sphericalangle/proportional/smile /frown/subsetdbl/supersetdbl/uniondbl/intersectiondbl/uprise/downfall /multiopenleft/multiopenright/subsetdblequal/supersetdblequal/difference /geomequivalent/muchless/muchgreater/rightanglenw/rightanglene/circleR /circleS/fork/dotplus/revsimilar/revasymptequal/rightanglesw/rightanglese /maltesecross/complement/intercal/circlering/circleasterisk/circleminus 128{ /.notdef}repeat] A/EN6 X IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-1 -46 120 94]N /Fo 1 4 df<007FB912E0BA12F0A300F0CBFCB3B3B2BAFCA36C18E03C3E7BBD47>3 D E /Fo load 0 Fo currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fp cmti10 10.95 49 [/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi /ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla /germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright /numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright /asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six /seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at /A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft /quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i /j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis 128{/.notdef}repeat] A/EN7 X IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-4 -25 102 68]N /Fp 49 123 df<EE03FF043F13E093B512F8923901FC00FCDB03F0133EDB07C0131F030F 147F4B4813FF153F93C7FC4B14FE18FC037E147803FE1400A34A5AA64A5AA30103B712E0 5BA3903A0007F0000FEF1FC0A24A5AA2EF3F80A34A5AEF7F00A44A4813FEA44C5AEC7F00 A3933803F80E181E14FEA2933807F03CA349481578A20403137018F0933801F1E0494890 3800FFC0EF7F80EF3F0094C7FC495AA35CA2EA1E0F003F5B127F00FF5B131F91CAFC12FE EAF83EEA7C3CEA3FF86C5AEA07C0385383BF33>12 D<DC07FCEC7FF893273FFF8003B5FC 93B5D8C00F14C0923D01FC07E03FC00FE0923D03F001F07E0001F0922607C00349EB00F8 030F902607F1F8130392281F800FF3F01307A2033F4A5A93260007C715F04BD9038F15E0 DD000FEC03C04E4890C7FC15FEA34E5AA24A5AA44EC9FC4A5A0103BBFC5BA27F90260007 F0C748C77E1BFEA34D5A4A484C5AA44D48495A4A5AA3505A4D5A4A5AA2505AA24D5AA24A C792381FC0701CF0A34D4890383F81E014FEA2F383C0604A023F021F1380010119879738 0F8F00F207FE4DC76C5A4948715A97C8FC177E5C17FE01075DA2001E9038E07801003F02 FC5B387F0FC100FF01C3495A02835C4C5A3AFE1F03F80F3BF81E01E01F80D87C3CD9F03E CBFC3A3FF800FFFC6C486D5AD807C0EB0FC0555383BF50>14 D<15031507150E153C1578 15F0EC01E0EC03C014071580EC0F00141E143E5C5CA2495A13035C495AA2495A131F91C7 FC5B133E137EA25BA25B1201A2485AA3485AA3485AA3121F5BA3123F90C8FCA45A127EA5 5AAE127CA6123C123EA2121EA27EA27E7F12036C7EA21200205A73C325>40 D<14031580EC01C015E0140015F0A21578A2157C153CA2153EA3151E151FAD153FA7157E A515FE15FCA3140115F8A3140315F0A2140715E0A2140F15C0A2EC1F80A3EC3F00A2147E A2147C14FC5C13015C495AA2495A495AA249C7FC131E133E5B5B5B485A485A485A48C8FC 121E5A5A5A12C0205A7FC325>I<EA01E0EA03F0EA07F8120FEA1FFCA313F8120FEA07B8 EA0038A21370A213E0A2EA01C0A2EA0380A2EA0700120E5A123C5A5A5A12800E1C7A891C >44 D<387FFFF8B5FCA414F01506789621>I<120FEA1F80EA3FC0127F12FFA3EA7F8013 00123C0A0A77891C>I<15031507150F150E151E153E157E15FC14031407141F903801FF F8130FEB1FF314C390380E07F01300A3EC0FE0A4EC1FC0A4EC3F80A4EC7F00A414FEA449 5AA4495AA4495AA4495AA4495A497E007FB512E015F0B612E07E203D77BC2E>49 D<ED7F80913803FFE0020F13F891383F80FC91387C007E02F07F49487F49481480495A49 C7FC011E15C01418EB3C3880A20178EC3F80A34A1400D93C785BD93FF0137E6D4813FED9 0F805B90C7485AA24B5AED0FE0ED3FC0DA7FFFC7FC4A5A15F8A2EC01FCEC007E81A26F7E A282A5153F121E123F5A484A5AA3484AC7FC00F85C5A4A5A4A5A00785C4A5A6CEB1FC000 3E495A261F81FEC8FC380FFFF8000313E0C690C9FC2A3F78BC2E>51 D<ED0FE0ED7FF8913801FFFC913807F03E91380FC01E91383F000F027C131F4A137F4948 13FF1303495A494813FE4A13FC011F147849C8FC5B137E13FE485AA212035B0007EB3FE0 ECFFF801F17F390FF3C03E9038F7003F01EE7FD81FFC148049130F4914C0123F5B16E049 131F127F5BA216C0153F90C7FC5AA2ED7F805AA216005D5DA24A5AA2007E495A5D4A5A4A 5A6C495A6C49C7FCEBC0FE6CB45A6C13F06C5BC66CC8FC283F76BC2E>54 D<D9381F14F09038787FC0D979FFEB01E001F79038E003C090B5FC48ED0780EE0F004801 C15BD9FE00133E49EB70FED807F0EB7FFC49133F4848EB1F7849EB00F048C712015E003E 1403003C4A5A127C00784A5A5A4BC7FC5AC85A157EA25DA24A5AA214035D14075D140FA2 4A5AA2143F5D147FA292C8FC5CA2495AA3495AA3495AA3130F5CA2131FA25CA26D5A6DC9 FC2C3F74BC2E>I<173C177CA217FEA21601A216031607A2160FA2161FA2163DA2167916 F916F1150116E1923803C1FFA2ED0780A24B5A5D151E153E153C5DA25DA24A5A14035D14 075D4AC7FC844AB6FCA25C5C0278C7127F14F85C495AA2495AA2495AA249C8FC5B131E13 3E017E8213FED807FF15FF007F01E0013FEBFF80B57E4A5B70140039417BC044>65 D<DCFF801380030F9038E001C0033F9038F8038092B5EAFC0702039038807E0F913A0FFC 001F1FDA1FF0903807BF00DA7FC014FF4AC77E49488049485D495A49481400495A49485D 495AA249C9FC48485EA2485A1207495E120F5B001F5F95C7FC5B123FA2485AA4485AA590 CCFCA2170E171EA35FA35FA26C5E6D4A5AA2003F4B5A6D4A5A001F4BC8FC6C6C141E6D5C 6C6C5C6C6C495A6CB4EB07E06C9038E01FC06DB5C9FC011F13FC010713F0010013803A42 72BF41>67 D<49B812F0A490260003FCC7127F181FF007E0A24A481403A44A5A19C0A34A 5AA2177094387807804A4813F0180395C7FC1601DA7F805BA2160316079139FF001FC092 B5FCA3495D9138FE003F160FA2494891C8FCA44948131EA3161C494890C9FCA4495AA449 5AA4495A497E007FEBFFE0B6FCA25D3C3E7BBD3B>70 D<DCFF801380030F9038E001C003 3F9038F8038092B5EAFC0702039038807E0F913A0FFC001F1FDA1FF0903807BF00DA7FC0 14FF4AC77E49488049485D495A49481400495A49485D495AA249C9FC48485EA2485A1207 495E120F5B001F5F95C7FC5B123FA2485AA4485AA44BB512F890C74880A260DB000190C7 FC5FA34C5AA46C6C4A5AA36C7E4C5A121F6C6C141F6D143F6C6C4A5A6C6C14FB6CB4EB03 F36C9038E01FE16DB5EA80C0011F9038FE0040010701F890C8FC010013803A4272BF46> I<49B512FE4914FFA26D14FE90390003FE005DA34A5AA44A5AA44A5AA44A5AA44A5AA44A C7FCA4495AA4495AA4495AA4495AA4495AA4495AA4495A13FF007FEBFF80B6FCA292C7FC 283E7BBD23>73 D<49B67E83495D7F90260003FEC8FC5DA34A5AA44A5AA44A5AA44A5AA4 4A5AA44AC9FCA4495AA4495A18C0EF01E0A24948EC03C0A217071880495AEF0F00A25F49 48141E173EA25F494814FC16014C5A160F4948133F01FF49B45A007F90B6FCB8FC5FA233 3E7BBD39>76 D<49B593380FFFF87017FC494E13F86D60D90003F0F800505AA21AF7DA07 BF4B485AA2DB9FC0EC03CFA2DA0F1F4B485AF10F1FA2191E021E4D5A193C1978A2023C4C 48C7FC6F7EF001E0F003C0027817FEF00780A2F00F0002F092381E01FCA2183C6F7ED901 E04B485AA218F0EF01E0D903C04C5AEF03C0A2EF0780D907804A48485AED03F8171EA2D9 0F004A495A5FA25F011E4D5AEEF9E0EEFBC0A2496DB44849C8FCA294C7FC017C5C01FC17 FED803FF4A1301007F01F892B512FEB54A5A16F0DAF0005E563E7BBD52>I<EEFFC00307 13F8033F13FE9238FF80FF913A03FC003F80DA07F06D7EDA1FC06D7E4A486D7E4AC76C7E 02FE6E7E495A49486E7E495A495A494881013F825C137F49C913805B1201485AA2120749 16FF120FA25B121F190048485DA448484B5AA34D5AA25B4D5A12FF60171F60007F163F60 4D5AA24DC7FC4C5A6C7E4C5A4C5A001F4B5A6D4A5A000F5E6DEC7F8000074BC8FC6C6CEB 01FC6C6CEB07F86CB4EB0FE090397FC07F8090261FFFFEC9FC010713F801001380394273 BF46>79 D<49B77E18F04916FC6D82903B0003FC0003FF05001380F07FC0183F4A48EC1F E0A44A4815F0A319E04A48143FA319C04A48147FA21980F0FF004A5A4D5A4D5A4D5A4AC7 485AEF3FE0933801FF8092B548C7FC4915F817E04ACAFCA2495AA4495AA4495AA4495AA4 495AA4495A13FF007FEBFF80B6FCA292CAFC3C3E7BBD3E>I<92381FE00192397FFC0380 913A01FFFE070002076D5A91390FE03F9F91391F8007FF4A486C5A027C130114FC495A4A 6D5A13035C13074A5C130FA3011F5DA35F94C7FC80A214F8EB0FFEECFFE015FC6DEBFF80 6D14E06D806D806E7F141F02037FEC003F1507ED01FF81A282A312077F48C8127EA4485D A25E1501485D6D495A15076D5C007F4A5A6D49C8FCD87DF8137E3978FF01FC486CB45A6D 13E0D8E00F5B26C001FEC9FC314279BF33>83 D<90B9FC5A5AA2913A001FE003FED807F8 150001E0167E494948133E485AA290C7FC484A48133C121EA25A4BC7FCA25A18784A5A5A A2C716004A5AA44A5AA44A5AA44A5AA44A5AA44A5AA44AC9FCA4495AA4495A497E003FB6 7EA4383D71BC41>I<267FFFFE90B500F890B512C04B6E4814E0B504F815C06C13FC0001 9027800007FEC7381FFC0049C749EC07E04D5D715DA204034BC7FC16071A1E160F041F5D A2043F5D1AF8047B5D190104F35D4F5AED01E34F5AED03C34FC8FCED07836D171EED0F03 6C021F5D151E033E5D033C15F8037C5D0378140103F05D1803DA01E05D4E5AEC03C07148 C9FCEC07800401131EEC0F0060141E023E5D143C027C5D027814FF4A5DA24A5D605C95CA FC5C5F91C7FC5F5B017E5D137C5F137853406EBD5B>87 D<023FB612FE5CA218FC913AFF FC0007F803C0130F92C7EA1FF0494815E002F8EC3FC04AEC7F800103EDFF004A5B4A5C4C 5A01074A5A4A495A161F49C75B4C5A4C5A011E4AC7FC010E5B90C7485A5E4B5A4B5A151F 4B5A5E4B5A4BC8FC4A5A14035D4A5A4A5A4A5A023F141E5D4A5A4AC75A495A130349485C 5C495A494814F8013F5D494813015C49C7485A485A4848140700074B5A49141F4848147F 4848EB01FF4848011F5B48B7FCA2B8C7FCA2373E79BD38>90 D<147E49B47E010713C790 390FC3EF8090391F00FFC0133E49EB7F8013FC485A485A00071500A2485AA2001F14FE5B 123FA24848485AA44848485AA4913807F01C48153CA391380FE078127E141F023F13F012 3E003F903877E1E0381F01E73A0F87C3E3C03A07FF81FF806C01001300D800FC137C2629 77A72E>97 D<EB1FC0EA0FFFA438003F80A449C7FCA413FEA4485AA4485AA2143F9038F9 FFC0484813E09038F7C3F09038FF01F8EBFC00484813FC157C49137E5B485A157FA215FF 485AA315FE387F0001A400FEEB03FCA315F814074814F0A2EC0FE015C0007C131F158000 7EEB3F00003E137E5C6C485A380F87F03807FFC06C5BD800FCC7FC204077BE2A>I<EC1F C0ECFFF0010313F8903807F07C90381FC01E90383F001F017E133F49137F000114FF485A 4913FE000714FC484813781500121F5B123FA2485AA448C8FCA55AA21504007E1406150F 007F141E6C143C15F8391F8001F0000FEB07E03907E03F806CB512006C13F838003FC020 2977A72A>I<167FED1FFF5DA3ED00FEA4ED01FCA4ED03F8A4ED07F0A4ED0FE0A2147E90 3801FF8F0107EBDFC090380FC3FF49C6FC133E49EB7F8013FC485A485A00071500A2485A A2001F14FE5B123FA24848485AA44848485AA4913807F01C48153CA391380FE078127E14 1F023F13F0123E003F903877E1E0381F01E73A0F87C3E3C03A07FF81FF806C01001300D8 00FC137C284077BE2E>I<EC3F80903801FFF0010713F890381FE0FC90383F003E137E49 131F485A485A12074848133E121F49137C003F14FC90388003F8007FEB0FF090389FFFC0 90B51200B512F801E0C7FC90C8FCA25AA71508150C007E141E153C15786CEB01F06CEB03 E09038800FC0390FC07F003807FFFE000113F038007F80202976A72A>I<167CED01FEED 07FF92380F878017C0ED1F0FED3F1F163F157F037E1380EE1F00EDFE0E93C7FCA24A5AA5 4A5AA54A5A0107B512F8825EA29026000FE0C7FCA54A5AA64A5AA54AC8FCA514FEA5495A A413035CA4495AA4495AA3001E5B123F48485A12FF91C9FCA2EAFE3EEAF83CEA7878EA3F F06C5AEA07C02A5383BF1C>I<EC01F8EC0FFC91383FFE1C91387E0F3E9138FC07FF9038 01F003D903E013FE01071301EB0FC0131FD93F8013FCA2EB7F005B49EB03F8A21201A248 48EB07F0A44848EB0FE0A4ED1FC05BA21203ED3F80157FA26C6C13FF4A13003800FC0790 387E1F7FEB3FFE90381FFCFEEB07E090C7FCA24A5AA44A5AA2121C003E495A007F5C4813 0F4A5A48495A4849C7FC387E01FC6CB45A6C13E0000390C8FC283B7CA72A>I<EB03F813 FF5AA3380007F0A4495AA4495AA4495AA449C9FCA2EC03F8EC1FFE9038FE7FFF9138FC1F 809039FFF00FC014C04801807F1400A25B485AA25BA24848495AA44848495AA34BC7FC48 5AA215FEA24848EC0380913801FC07A33B7F0003F80F00A2161E15F000FE5D1638167802 015B486DB45A48EC7F8000706EC7FC29407ABE2E>I<147014F8EB01FC1303A214F8EB01 F0EB00E01400AD137C48B4FC481380EA078F380E0FC0121E121C003C13E0007813C0131F 127012F0EB3F80A212E038007F00A213FEA3485AA3485AA33807F01C143CEA0FE0A21478 EA1FC0147014F014E01381380F83C0EBC7803807FF006C5AEA00F8163E79BC1C>I<EB03 F8EA01FFA4380007F0A4495AA4495AA4495AA449C8FCA2ED03E0ED0FF001FEEB3FF8ED7C 3CEDE07C913801C0FC3901FC0381EC0703140E021C13F83A03F83801F091387000E04A13 00EBF9C048485A01FFC8FC5B6D7E4813E014F8EBE3FEEBE0FF48486C7E143F6E7EA2D83F 8014381678A33A7F003F80F0A3ED81E000FE131FED83C01680EC0F8748903807FF00486D 5A0070EB00F826407ABE2A>107 D<EB07F0EA01FF5AA338000FE0A4EB1FC0A4EB3F80A4 EB7F00A413FEA4485AA4485AA4485AA4485AA4485AA4485AA4387F03801307A338FE0F00 A3131EA2127E5BEA3E38EA3FF86C5AEA07C0144079BE17>I<D801F0D93FC0137FD803FC 903AFFF003FFC02607FE03D9F80F7F3D0F1F0FC0FC1F83F0001E903B9F007E3E01F8003C 01BE147802F8D97FF07F00384914E012784A14C04848481480A24A1400A24848C700FE49 5A1200A301FE4948495AA34E5A4848495AA24E5AA248484948157095383F80F0A3484849 4890387F01E0A2F103C0187E48484948EC07801A0061F03E1E494AEB1FFC4991C7EA0FF0 6CC7000E6E5A442979A74A>I<D801F0EB3F803A03FC01FFE02607FE077F3A0F1F0FC1F8 001E90389F00FC003C13BC02F87F00385B12785C48485AA25CA2484848485A1200A301FE 495AA34B5A485AA24B5AA24848153892381FC078A3484890383F80F0A2EE81E016014848 EC03C01780160792381F0F0049EB0FFE49EB07F86CC76C5A2D2979A733>I<EC1FC0ECFF F801037F903807F07E90381FC01FD93F001380017EEB0FC05B1201484814E05B1207485A 16F0121F5B123F16E04848131FA448C7EA3FC0A3ED7F80A248150015FEA2007E495A5D00 7F495A7E4A5A6C6C485A000F013FC7FC3807E0FE3803FFF86C5B38003F80242977A72E> I<903903E001F8903907F807FE496C487E903A1E3E3E0F80903A3C3F7807C0017801F013 E015E001709038C003F013F015803901E07F0017F8A21607EBC0FEC7FCA217F04948130F A44948EB1FE0A317C04948133F1780A2EE7F004948137E6E13FE5E4B5A011F495A02F85B 4B5A9138FC1F8090263F9FFFC7FCEC8FFCEC83E00280C8FC49C9FCA413FEA4485AA31203 387FFFF0A2B5FC6C5B2D3A80A72E>I<023F1320903901FF80F00107EBC1E090380FC1E3 90381F80F790383E007F4914C001FC133F485A120348481480A2485AA2001FEC7F005B12 3FA2484813FEA44848485AA44A5A5AA34A5A127E140F141F003E495A003F137F6C13FF38 0F83EF6CB4485A6C131FEA00FC13004A5AA44AC7FCA414FEA3130190B512F8A4243A77A7 2A>I<D801F013FC3903FC07FF486C4813803A0F1F1F07C0001E9038BC03E0001CEBF807 003CEBF00F0038EBE01F127802C013C0D8F03FEB0F80913880070092C7FCA24848C8FC12 00A313FEA4485AA4485AA4485AA4485AA45B5B6CC9FC232979A726>I<EC7F80903801FF E0010713F090380FC0F890381F003C133E017E133E017C137E01FC13FEA2000114FC15F8 1570150013FF14F014FE6C7F15806D13C06D13E06D13F01307EB007F140F1407120C123F 481303138039FF0007E0A24814C048130F00781480EC1F006C133E381F01FC6CB45A6C13 E0C690C7FC1F297AA725>I<EB01C0EB03E01307130FA4EB1FC0A4EB3F80A4EB7F00A300 7FB5FCB6FCA33800FE00485AA4485AA4485AA4485AA4485AA4383F800E141EA2143CEA7F 001478A214F0EB01E0003F13C0EB0380381F0F00EA0FFE6C5AEA03F0183A78B81E>I<13 7C48B41438486D137C260787C013FEEA0F07001E7F001C4A5AEA3C0F123812784B5A38F0 1FC0A2EB3F8000E04A5A1200EB7F00A24B5A13FEA34848495AA4484890383F80E01681A3 92387F03C0A39238FF078012014A14003A00FC03BF0F90397E0F1F1E90393FFE0FFC6D48 6C5A903907F003F02B2979A731>I<017CEB03C048B4EB07E0489038800FF0380787C0D8 0F07131F001E13E0001CEC0FF8D83C0FEB07F0003814031278150138F01FC0A2EB3F8000 E015E01200EB7F00A2ED03C013FEA34848EB0780A3ED0F00485A150E151EA2151C5DA200 015C15F06D485A0000495A90387E07806DB4C7FCEB1FFCEB03F0252979A72A>I<017C16 F048B491387001F8486D9038F803FC3A0787C001FCD80F071507001E13E0001C913903F8 03FED83C0FED01FC0038160012784B48137C38F01FC0A2EB3F8000E04A4813781200EB7F 00A24B4813F013FEA3484890393F8001E0A3EF03C04848EB7F00A218801707A2EF0F005D 0001161E4A141CD800FCEC803CDA03DF5B903A7F078FC1F0903A3FFF07FFE090260FFE03 5B902703F8007FC7FC372979A73C>I<903907C007E090393FF00FF890397FFC3FFC9039 F87E7C3E3A01E03EF01F2603C03F133F3A07801FE07FD80F00EBC0FFA2001E013F13FEED 807C4815381600A2003849C7FCC7FCA314FEA4495AA44948131C163CA2001C1578387E07 F012FF16F0010FEB01E012FED8FC1FEB03C03AF81CF807803A783CFC1F00397FF87FFE39 3FE01FF8390FC007E028297BA72A>I<137C48B41438486D137C260787C013FEEA0F0700 1E7F001CEC01FCEA3C0F12381278ED03F838F01FC0A2EB3F8000E0EC07F01200EB7F00A2 ED0FE013FEA34848EB1FC0A44848EB3F80A4ED7F00A35D00015C14013800FC03EB7E0F6D B45AEB1FFDEB07F1EB00014A5AA25D000E1307003F5C387F800F5D4A5A1300007E49C7FC 007C137E00785B387C01F8383E07E06CB45A6C90C8FCEA03F8273B79A72C>I<02F81370 D903FC13F0497E90390FFF01E049138149EBC3C049EBFF80D97E071300EBF80049131E48 485B6C485B90C75A4A5A4A5A4A5A4AC7FC141E5C5C5C495A495A495A49C8FC131E49EB01 C0491303A249EB0780485A4848130FD807FEEB3F00390FFFC0FE14FFD81F075BD83C035B D87C015BD878005B48EB7F80023EC7FC24297CA725>I E /Fp load 0 Fp currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fq cmmi6 6 20 /EN3 load IEn S/IEn X FBB FMat/FMat[0.02 0 0 -0.02 0 0]N/FBB[-2 -14 61 37]N /Fq 20 117 df<EB0FE0EB7FF83801F07C3903C03E073907801F0EEA0F00001EEB0F8E00 3E149CA24814B815F815F04814E0140715C0A21278140FEC3FC66CEBF3C7391E03E3EE39 0FFF81FC3901FC007820177E9528>11 D<EC1F80ECFFE0903801E0F09038038078EB0700 010E133C5B49137CA25B15784913F815F0A23901C001E09038C7FBC09038CFFF00158039 0387F3C0EB8003EC01E0A2EA070015F0A3000EEB03E0A3EC07C0121EEC0F80001F1400EB 803E383BC0F83839FFE038387F8090C8FC5AA45AA41E2E7EA323>I<EA03803907C00780 EC1FC0147F390F81C7809038838700018EC7FC139CEA1FF013FF14E0EB07F0383E00F880 EC7C30153848EBF870A21560EC78E04814C0EC3F800070EB0F001D177D9524>20 D<1238127C12FE12FFA2127F123B1203A31206A2120C121C12181270122008117B8613> 59 D<140C141CA21438A21470A314E0A2EB01C0A2EB0380A3EB0700A2130EA35BA25BA2 5BA35BA2485AA3485AA248C7FCA3120EA25AA25AA35AA25AA25A16317CA420>61 D<90B5FCA3EB07E0EB0FC0A4EB1F80A4EB3F00A4137EA45BA4485AA4485AA3387FFF80B5 1200A218227DA11B>73 D<EC01F0EC3FE0A3140715C0A4EC0F80A490381F1F00EBFFDF38 01E0FF48487E3807807E380F003E121E123E003C5B127CA3485BA215C015E0903801F1C0 12781303D838071380381E1EF3390FF87F003803E03E1C247EA220>100 D<EB1FC0EBFFF03803E07838078038EA1F00123E123C007C1370387807E0B51280EBFC00 00F8C7FC5AA41410143800781370383801E0381E07C0380FFF00EA03F815177D951D>I< 141FEC3FC0EC71E014F31301ECE3C0903803E180ECE000A4495AA448B5FCA25A38000F80 A349C7FCA6133EA55BA55BA3EA38F01278EAF9E0A2EA71C0EA7F80001EC8FC1B2F7CA31E >I<1338137CA2137813701300A7EA0780EA1FE01239EA31F0127112E1A2EAE3E01203EA 07C0A3EA0F80A2EA1F0C130E131C123E13181338EA1E70EA0FE0EA07800F237DA116> 105 D<140C141E143EA2141C1400A7EB07C0EB1FE0EB38F0EB70F813E0A2EA01C0A23800 01F0A4EB03E0A4EB07C0A4EB0F80A4EB1F00A21238EA783EEAF83C5BEA70F0EA7FE0EA1F 80172D81A119>I<137CEA0FF8A312015BA4485AA43807C00FEC3F8014E1EBC183380F83 07EB860F139C9038B00700D81FE0C7FC13F813FFEB3F80383E07C080903803E18015C039 7C07C380A21500EB03C700F813C6EB01FC387000781A247DA221>I<13F8EA1FF0A31203 13E0A4EA07C0A4EA0F80A4EA1F00A4123EA45AA213601370EAF8E0A3EAF9C01279EA3F80 EA1F000D247EA214>I<001F01FE13FE3B3F83FF83FF803B73C707C707C09039EC03CC03 D8E3F801F813E001F013F0A201E013E000070107EB07C001C013C0A2EE0F80390F800F80 A2EE1F0C170E271F001F00131C163E17181738003E013EEB1E70EE0FE0001C011CEB07C0 2F177D9536>I<001F13FE393F83FF803933C707C03873EC03D863F813E0EAE3F0A213E0 0007EB07C013C0A2EC0F80EA0F80A2EC1F0C150ED81F00131C143E15181538003EEB1E70 EC0FE0001CEB07C01F177D9526>I<3901F01F803903F87FE090383CE0F039073FC07000 06EB0078000E147C133EA2C65AA44913F8A215F01401D801F013E0EBF80315C0EC078039 03FE1E00EBEFFCEBE3E001E0C7FC485AA4485AEA7FF8A212FF1E20819520>112 D<EB1F03EBFFCF3801E0FF3803C07F3807807E380F003E121E123E003C137C127CA34813 F8A4EB01F012781303EA3807381E1FE0EA0FFBEA03E3EA0003EB07C0A4EB0F80EBFFF8A2 5A18207E951C>I<380F01F0383F87F83833CE1CEA73F83863F03C00E3137C13E0143838 07C000A4485AA448C7FCA4123EA2121C16177D951D>I<EB3F80EBFFE03801E0F0380380 70EB00F0EA0701A2EB80E0EBF80013FF6C13C06C13E07EEB0FF0EA3001EA780000F813E0 A24813C03870018038780700EA3FFEEA07F814177D951D>I<1338137813F8A4485AA448 5AB51280A33807C000A4485AA448C7FCA213031480383E0700A2130E5BEA1E38EA0FF0EA 07C011217D9F18>I E /Fq load 0 Fq currentfont 50 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fr cmsy6 6 8 /EN4 load IEn S/IEn X FBB FMat/FMat[0.02 0 0 -0.02 0 0]N/FBB[-2 -49 66 40]N /Fr 8 107 df<B712C0A322037A8D30>0 D<136013F0A30060136000F013F0EAFC63EAFE 67383FFFC03807FE00EA01F8EA07FE383FFFC038FE67F0EAFC63EAF0F000601360000013 00A3136014157B9620>3 D<13FCEA03FF000F13C04813E04813F0A24813F8A2B512FCA6 6C13F8A26C13F0A26C13E06C13C000031300EA00FC16167C9720>15 D<12C012F012FC123FEA0FC0EA03F0EA00FC133FEB0FC0EB03F0EB00FC143FEC0FC0EC03 F0EC00FC153FED0FC01503150FED3F0015FCEC03F0EC0FC0023FC7FC14FCEB03F0EB0FC0 013FC8FC13FCEA03F0EA0FC0003FC9FC127C12F05ACAFCA9007FB61280B712C0A2222F7A A230>21 D<D801F01404D807FE140C487E487F383E0FC0263801F0131C486C6C13180060 017C133800E06D13704890380FC1F0913807FFE06E13C06E138000409038003E00260E7C 9230>24 D<EA01E0EA03F01207A3EA0FE0A313C0A2121F1380A213005AA2123EA2127E12 7CA21278A212F85A12300C1A7E9B12>48 D<903807FFF0131F137FD801F8C7FCEA03E0EA 078048C8FC121E121C5AA25AA35AA2B612F0A300E0C8FCA21270A37EA27E121E7E6C7EEA 03E0EA01F839007FFFF0131F13071C237A9D2A>50 D<12E0B3B3AD033179A413>106 D E /Fr load 0 Fr currentfont 50 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fs cmsy8 8 14 /EN4 load IEn S/IEn X FBB FMat/FMat[0.015 0 0 -0.015 0 0]N/FBB[-3 -65 79 52]N /Fs 14 107 df<B812C0A32A037A9137>0 D<006015C000E01401007014030078EC0780 6CEC0F006C141E6C5C6C6C5B6C6C5B6C6C485A6C6C485A90387807806D48C7FCEB1E1E6D 5AEB07F86D5A6D5A497E497EEB0F3CEB1E1E497E496C7E496C7E48486C7E48486C7E4848 137848C77E001E80488048EC07800070EC03C048140100601400222376A137>2 D<131EA2131F131EA30070EB0380007C130F00FEEB1FC0007FEB3F80EB9C7F390FEDFC00 3803FFF0C613C0013FC7FCEBFFC0000313F0380FEDFC397F9C7F80EB1E3F00FEEB1FC000 7CEB0F8000701303000090C7FCA3131F131EA21A1D7C9E23>I<EB7F803801FFE0000713 F8487F487F487FA2481480A2B612C0A86C1480A26C1400A26C5B6C5B6C5B000113E03800 7F801A1A7C9D23>15 D<17C01603160FEE3F0016FCED03F0ED0FC0033FC7FC15FCEC03F0 EC0FC0023FC8FC14FCEB03F0EB0FC0013FC9FC13FCEA03F0EA0FC0003FCAFC12FC12F012 FC123FEA0FC0EA03F0EA00FC133FEB0FC0EB03F0EB00FC143FEC0FC0EC03F0EC00FC153F ED0FC0ED03F0ED00FC163FEE0F80EE03C0160193C7FCAD007FB71280B812C0A22A3B7AAB 37>20 D<12C012F012FC123FEA0FC0EA03F0EA00FC133FEB0FC0EB03F0EB00FC143FEC0F C0EC03F0EC00FC153FED0FC0ED03F0ED00FC163FEE0FC01603160FEE3F0016FCED03F0ED 0FC0033FC7FC15FCEC03F0EC0FC0023FC8FC14FCEB03F0EB0FC0013FC9FC13FCEA03F0EA 0FC0003FCAFC127C12F05ACBFCAD007FB71280B812C0A22A3B7AAB37>I<137813FCEA01 FEA4EA03FCA313F81207A213F0A2120F13E0A3EA1FC0A21380A3EA3F00A3123E127EA212 7CA212FC5A12780F227EA413>48 D<D91FC0EC0FF0D9FFF8EC3FFC4801FEECFFFE00076D 0103EBFF8048913AC007F007C00180903AE00FC001E03C1E003FF01F80004890260FF83E C7127000386D6C5A480103017814386E6C5ADA00FF153C484B141C6F5A153F6F7E6F7E82 4B7E6C023F15380070EC3DFEED78FF6C02F86D13704A486C6C13F06C903B07E03FF001E0 001E903B0FC01FFC07C0280F803F800FB5FC6CB5D800031480000101FC6DEBFE006C01F0 6D6C5AD93FC0EC0FE03E1F7C9D47>I<91B512C01307131F49C8FC13F8485AEA03C0485A 48C9FC120E5AA25AA25AA35AA3B712C0A300E0C9FCA31270A37EA27EA27E120F6C7E6C7E EA01F06C7E133F6DB512C013071300222B7AA52F>I<ED018016C0ED0380A2ED0700A215 0EA25DA25DA25DA25D14015D4A5AA24AC7FCA2140EA25CA25CA25CA25C13015C495AA249 C8FCA2130EA25BA25BA25BA25B12015B485AA248C9FCA2120EA25AA25AA25AA25A126022 3D76AE00>54 D<1807181E0103B712FC011F16F8017F16F048B812C048EEFE0027078000 3EC8FC48C7127E5A4814FE007E5CA2127C00F0130100405CC7FCA214035DA314075DA314 0F5DA3141F5DA3143F92C9FCA35C147EA35CA25C13015C13035C495A5C0104CAFC38347E AE27>84 D<EC1FC014FF1303903807F800EB0FE0EB1F80133F91C7FCB3A3137E5B485AEA 07F0B45A90C8FC13E0EA07F0EA01F86C7E137E7FB3A380131FEB0FE0EB07F8903803FFC0 1300141F1A437CB123>102 D<127EEAFFC013F0EA07F8EA01FCEA007E137F7FB3A36D7E 6D7E6D7EEB03F8903801FFC0EB003FEB01FF903803F800EB07E0495A495A49C7FCB3A35B 137E485AEA07F8B45A13C0007EC8FC1A437CB123>I<12E0B3B3B3AD034378B114>106 D E /Fs load 0 Fs currentfont 66.6667 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Ft cmex10 10.95 36 /EN5 load IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-4 -271 132 70]N /Ft 36 112 df<140E141E143C147814F014E01301EB03C0EB0780130F14005B133EA25B A25BA2485AA212035B1207A25B120FA3485AA4123FA290C7FCA25AA6127EA212FEB3A212 7EA2127FA67EA27FA2121FA46C7EA312077FA212037F1201A26C7EA2137CA27FA27F7F14 801307EB03C0EB01E0130014F01478143C141E140E176C72832A>0 D<126012F012787E7E120E120F6C7E6C7E7F12017F6C7EA2137CA27FA27FA21480130F14 C0A2130714E0A3EB03F0A414F8A21301A214FCA61300A214FEB3A214FCA21301A614F8A2 1303A214F0A4EB07E0A314C0130FA21480131F1400A2133EA25BA25BA2485A5B12035B48 5A48C7FC120E121E5A5A5A1260176C7C832A>I<B51280A400F0C7FCB3B3B3B3B3AAB512 80A4116C6E8326>I<B51280A4EA0007B3B3B3B3B3AAB5FCA4116C7E8326>I<150F157FEC 01FFEC07FCEC1FE0EC3F80EC7F0014FE495A495AA2495AB3AE5C130FA2495A495A49C7FC EA01FEEA03F8EA0FF0EA7F8000FEC8FCA2EA7F80EA0FF0EA03F8EA01FEEA007F6D7E6D7E 6D7EA2130780B3AE6D7EA26D7E6D7E147FEC3F80EC1FE0EC07FCEC01FFEC007F150F206C 768335>8 D<127012FEEA7FC0EA1FF0EA07FCEA01FEEA007F6D7E6D7E6D7EA26D7EB3AE 130380A26D7E6D7E147FEC3F80EC1FE0EC07F8EC01FEEC007FA2EC01FEEC07F8EC1FE0EC 3F80EC7F0014FE495A495AA25C1307B3AE495AA2495A495A49C7FCEA01FEEA07FCEA1FF0 EA7FC000FEC8FC1270206C768335>I<126012F0B3B3B3A31260043B73811E>12 D<ED03C01507ED0F80ED1F00153E5D5D5D14014A5A4A5A4A5AA24AC7FC5C147E147C14FC 495AA2495AA2495AA2495AA2495AA2133F91C8FC5B137E13FEA25B1201A3485AA3485AA4 120F5BA3121FA25BA2123FA45BA2127FA890C9FCA25AB3A77EA27FA8123FA27FA4121FA2 7FA2120FA37F1207A46C7EA36C7EA312007FA2137E137F7F80131FA26D7EA26D7EA26D7E A26D7EA26D7E147C147E80806E7EA26E7E6E7E6E7E140081157C8181ED0F80ED07C01503 22A3708336>16 D<127012F8127C7E7E6C7E6C7E12037F6C7E6C7E137CA27F133F6D7E13 0F806D7EA26D7EA26D7EA26D7EA2147EA2147F8081141F81A2140F81A36E7EA36E7EA481 1401A381A21400A281A481A21680A8153FA216C0B3A71680A2157FA81600A25DA45DA214 01A25DA314035DA44A5AA34A5AA35D141FA25D143F92C7FC5C147EA25CA2495AA2495AA2 495AA2495A5C131F49C8FC133E5BA25B485A485A5B1207485A48C9FC123E5A5A127022A3 7D8336>I<17F01601EE03E0EE07C0EE0F80EE1F00163E5E5E5E15014B5A4B5A4B5A151F 93C7FC153E157E157C5D14014A5AA24A5A5D140F4A5AA24AC8FCA2147EA25CA2495AA213 035C13075C130FA25C131FA2495AA349C9FCA313FEA3485AA4485AA31207A25BA3120FA2 5BA2121FA45BA2123FA55BA2127FAA90CAFC5AB3AC7E7FAA123FA27FA5121FA27FA4120F A27FA21207A37FA21203A36C7EA46C7EA3137FA36D7EA36D7EA2130F80A2130780130380 1301A26D7EA2147EA280A26E7EA26E7E1407816E7EA26E7E1400157C157E153E8182150F 6F7E6F7E6F7E150082167C8282EE0F80EE07C0EE03E0EE01F016002CDA6D8343>I<1270 12F8127C7E7E6C7E6C7E6C7E6C7E12007F137C7F7F80130F6D7E8013036D7E806D7EA214 7E143E143F6E7EA26E7EA26E7EA26E7EA26E7EA281140081157E157FA28182A26F7EA36F 7EA36F7EA36F7EA46F7EA382A21500A382A282A21780A4163FA217C0A5161FA217E0AA16 0F17F0B3AC17E0161FAA17C0A2163FA51780A2167FA41700A25EA25EA31501A25EA34B5A A44B5AA34B5AA34B5AA34B5AA293C7FC5DA2157E15FE5D14015DA24A5AA24A5AA24A5AA2 4A5AA24AC8FC143E147E5CA2495A5C495A13075C495A131F91C9FC133E5B5B5B1201485A 485A485A48CAFC123E5A5A12702CDA7D8343>I<B6FCA600FCC7FCB3B3B3B3B3B3B3B3B3 B3B3A8B6FCA618DA6A8330>I<B6FCA6C7123FB3B3B3B3B3B3B3B3B3B3B3A8B6FCA618DA 7F8330>I<1778EE01F81607161FEE7FE0EEFF80923803FE004B5AED0FF04B5A4B5A4B5A 4BC7FC4A5A4A5AA24A5AA24A5AA24A5AA34A5AB3B3B3A94A5AA44AC8FCA25C1301495A5C 13075C495A495A495A49C9FC13FE485AEA07F8EA0FE0EA3FC048CAFC12FCA2127FEA3FC0 EA0FE0EA07F8EA01FC6C7E137F6D7E6D7E6D7E6D7E801303806D7E130080A26E7EA46E7E B3B3B3A96E7EA36E7EA26E7EA26E7EA26E7E6E7E6F7E6F7E6F7E6F7EED07FC6F7E923800 FF80EE7FE0EE1FF816071601EE00782DDA758344>26 D[<177CEE01FC1607160F161FEE 7FF0EEFFE04B13804B13004B5A4B5A4B5A4B5A4B5A5E15FF4A5B93C7FC5C5D1407A24A5A A25D141FA44A5AB3B3B3B3A65D147FA35D14FFA25D5B92C8FCA2495AA2495AA2495A495A 5C133F495A495A4890C9FC485A485AEA0FF0485AEA7FC048CAFC5AA27EEA7FC0EA1FE06C 7EEA07FC6C7E6C7E6C7F6D7E6D7E131F806D7E6D7EA26D7EA26D7EA2817F81A2147F81A3 143F81B3B3B3B3A66E7EA4140F81A26E7EA214038180826E7F157F826F7E6F7E6F7E6F7E 6F7E6F13806F13E0EE7FF0EE1FFC160F16071601EE007C>46 272 115 131 73 40 D<EF07C0A2EF0F80EF1F005F177E177C17FC4C5A4C5AA24C5A4C5AA24C 5A163F94C7FC5E16FE5E15015E15034B5AA24B5AA24B5AA24B5AA2157F4BC8FCA25D1401 5D1403A24A5AA24A5AA2141F5DA2143F5D147FA25D14FFA292C9FC5BA2495AA35C1307A3 495AA3131F5CA3133F5CA2137FA25CA213FFA35CA25AA491CAFC5AA5485AA6120F5BA612 1FA35BA5123FA65BA4127FAD5BA312FFB3A732A4668250>48 D<127812F8127C7E123F6C 7E120F7F6C7E6C7EA26C7E6C7EA2137E137F7F806D7E130F801307806D7EA26D7EA26D7E A2147FA2816E7EA2141F81140F81A26E7EA26E7EA2811401A2818082A2157F82A2153F82 A26F7EA3150F82A36F7EA3821503A38281A283A281A283A3167FA283A4163F83A5707EA6 83160FA683A31607A583A682A41880AD82A318C0B3A732A47D8250>I<157CEC01FC1403 140F141FEC3FF0EC7FE0ECFFC001031300495A495A5C131F495A495A495AA2485B5A91C7 FC5A5B120F5B121FA25B123FA25B127FA4485AB3B3AC1E525D7E51>56 D<127812FE7E13C07FEA3FF86C7EEA07FE6C7E6C7F6C7F6D7E6D7E6D7E80130F6D7E807F 6D138015C07F15E0147F15F0A2143F15F8A2141F15FCA4140F15FEB3B3AB1F52717E51> I<EAFFE0B3B3AC6C7EA4123F7FA2121F7FA2120F7F12077F7E807E6C7FA26D7E6D7E6D7E 130F806D7E6D7E010013C0EC7FE0EC3FF0EC1FFC140F14031401EC007C1E525D8051>I< EC0FFEB3B3AB15FC141FA415F8143FA215F0147FA215E014FF15C05B15804913005B5C49 5A131F5C495A495A495A485B4890C7FC485AEA1FFC485AEAFFE05B90C8FC5A12781F5271 8051>I<EC0FFEB3B3AB15FC141FA415F8A2143FA215F0147F15E0A2ECFFC0A215805B15 005B5C495A130F5C495A495A5C495A49C7FC485A485A485A485AEA3FE0485A48C8FC5AA2 7EEA7FC06C7EEA0FF06C7E6C7E6C7E6C7E6D7E6D7E806D7E6D7E8013076D7E807F15807F 15C0A2EC7FE0A215F0143F15F8A2141FA215FCA4140F15FEB3B3AB1FA6718051>I<EAFF E0B3B3AB127F7FA4123FA27FA2121FA27F120FA26C7EA26C7EA26C7F7E80137F6D7EA26D 7E6D7E6D7E13036D7E6D7EEC7F80EC3FC0EC1FF0EC07F8EC03FC1400A21403EC07F8EC1F F0EC3FC0EC7F80ECFF00495A495A1307495A495A495AA2495A13FF5C5A4890C7FCA2485A A2485AA2121F5BA2123FA25BA2127FA45B12FFB3B3AB1EA65D8051>I<EAFFE0B3A7127F A37FAD123FA47FA6121FA57FA3120FA67F1207A66C7EA57E80A47EA280A3137FA280A213 3FA280131FA380130FA36D7EA3130380A36D7EA27F81A2147F81A2143F81141FA281140F A26E7EA26E7EA2140181140081A26F7E153FA26F7EA26F7EA26F7EA26F7E150182150082 167F8283161F707EA2707E707EA2707E707E177C177E8383EF0F80EF07C0A232A4668450 >64 D<933801FFC0B3A71880A35EAD1800A45EA65FA5160FA35FA6161F5FA64C5AA55F16 7FA45FA216FFA35FA25DA294C7FCA25D5EA315075EA34B5AA35E151FA34B5AA25E157FA2 5E15FFA293C8FC5C5DA214035DA24A5AA24A5AA25D141F5D143FA24A5A92C9FCA214FEA2 495AA2495AA2495A5C130F5C131F495A91CAFC5B137E5BA2485A485AA2485A485A5B121F 48CBFC123E5A5A127832A47D8450>I<0038180E007C181F00FEF03F80B3B3B3B3AABBFC A56C19006C60415B7B7F4C>70 D<003C1B0F007EF31F80B4F33FC0B3B3B3B3B3B3A990BD FCA57E1D80001F1C005A7F7B7F65>I<933803FFF0043F13FF0303B612F0030F15FC033F 15FF92B812C0020317F04A9026FE3F9F7F021F01E0018113FE91263FFE009038801FFFDA 7FF803077FDAFFE003017F010301809238007FF04990C76F7ED90FFCEF0FFC4A17074948 717E4948717E4948717F4948727E91C8163F4848737E4848737EA24848737E491903000F 87491901001F87491900A2003F874986A2007F1C8090C9173FA3481CC0481B1FA3BEFCA7 48C9D83F80C8121FA36C1B3F6C1C80A36D1A7F003F1C00A26D62001F63A26D1901000F63 6D19030007636D19076C6C4F5AA26C6C4F5A6C6C4F5A6E187F6D6C4E5A6D6C4D90C7FC6D 6C4D5A6D6C4D5A6E170F6DB4EF3FF86D6D4C5A010001E0923801FFC0DA7FF803075BDA3F FE031F90C8FC91261FFFE0903881FFFE020701FE019F13F86E90B75A020017C0033F93C9 FC030F15FC030315F0DB003F91CAFC040313F05A5B7B7F65>76 D<953801FFFE067FEBFF F80503B7FC051F16E094B812FC040317FF040F18C0043F18F093B6D81FE314FC030302C0 D9E00F13FF4BD9FE00020180031F01F0DB003F13E04B018004077FDBFFFEC7030113FC4A 01F8716C7E4A01E0F01FFF4A49727F4A90C804037F4A48737FDA3FF8736C7E4A48747E4A 48747E4949747E4949747E4990C9717F4A874948757F4948767E4A1C3F4948767E017F8A 4A1C0F4948767EA24890CA727E491D0100038B498900072080491E7F000F20C0491E3FA2 001F20E0491E1FA2003F20F0491E0FA3007F20F8491E07A400FF20FC90CB1903A390C1FC A890CBD81FE0CA1203A46D1E07007F20F8A46D1E0F003F20F0A36D1E1F001F20E0A26D1E 3F000F20C0A26D1E7F000720806D1EFF000320006D650001676D1D036C6D525AA26D6C52 5A6E1C1F013F666D6C525A6E1C7F6D6C525A6D6C515B6E636D6D5090C7FC6D6D505A6D6D 505A6E6C505A6E6C505ADA1FFE4F485A6E6C4F5B6E01C0060F5B6E6D4E90C8FC6E01F8F0 7FFE6E01FE4D485A92263FFF80040713F06F01F0043F5B030701FE4BB512806FD9FFC002 0F91C9FC030002FF01E3B512FC043F91B712F0040F18C0040395CAFC040017FC051F16E0 050393CBFCDD007F14F8060149CCFC7E7F7B7F89>I<007FBB12F8BC7EA3D87FE0C90001 80003FEF00076C6CEF007F6DF00FFF000F19036C6C18006DF17F806C6C193F6CF20FC06C 6D18076E18036D6C19E0013F19016D6C18006E19F0010F1A706D7E6E19386D6C19007F6D 7F816E7E143F6E7E81140F6E7E816E7E806E7F826F7E153F6F7E82150F6F7E826F7E8181 5E167C16785E15014B5A4B5A5E4BCCFC151E153E5D15785D4A5A14034A5A4A5A92CDFC14 1E143E4A19384A19705C494819F001031AE0494818014948180391CC13C0011E1907013E 190F49F11F8049197F4919FF4848060313000003190F4848187F4848943803FFFE90CA48 B5FC48BBFC48625ABCFC6C62555B7B7F60>80 D<BC12E0A4000701E0C9EBFC00000119F0 6C61A2017F60B3B3B3B3A3496C4B7FA2486D4B7F000701FE030F13FCB600F049B612E0A4 4B5B7B7F56>I<007FBF12F8C07EA38B6C0180CB12036C6DDE0001806C6DF1000F0B0114 806C6DF2003F6C6D1B076C6D090113C0F6007F6C6DF43FE06C6D1C0F6FF307F06D1D036D 6D1B016D6DF300F820786D6D1C3C6D6D1C1C6D6D1C1E200E6D7F6D6D1C076E6D1B00A26E 7F6E7F82806E7F6E7FA26E7F6E7F6F7FA26F7F6F7F6F7FA26F7F6F7F83816F7F707FA270 7F707F707FA2707F707F707FA2707F717F8583717F717F61715B715B7190CDFC6017004D 5A604D5A4D5A4D5A4D5A173F4DCEFC177E5F4C5A4C5A4C5A160F4C5A5F4CCFFC167E5E15 014B5A5E4B5A4B5A4B5A4BD0FC5D15FE4B1C074A481C0E4A5A4A481C1E4A481C1C021F1D 3C4A481C7C92D012F8027E1C014AF403F049481C0749481C0F0107F51FE049481C7F4A98 3801FFC049481B0749CF121F017E99B51280491B07000199B6FC48484FB7120090C0FC48 665A5A48665AC0FC6C66787F7B7F83>88 D<C01280A5000102FCCA001FECC000D8003F51 C7FC010F1BF86D636D63A26D63B3B3B3B3B3AF496D4D7FA2496D4D7F496E93B57E013F02 E0030314FE48B600FC031FECFFC0B800F8010FB81280A5697F7B7F74>I<170E173F8417 7FA24D7EA34C7FA34C7FA34C7FA34C7F17F3041F7F17E1A2043F7F17C0A2047F80EF807F A204FF80EF003FA24B814C131FA20303814C130FA20307814C1307A2030F814C1303A203 1F814C1301A2033F814C7F037F824C147FA203FF8293C8123FA24A834B151FA20203834B 150FA20207834B1507A2020F834B1503A2021F834B1501A2023F834B81A2027F844B167F A202FF8492CA123FA249854A171F0103854A170FA20107854A1707A2010F854A1703A201 1F854A1701A2013F854A83A2017F864A187FA201FF8691CC123FA2488749191FA2000387 49190FA2000787491907000F87491903A2001F87491901A2003F874985A2007F1C80491A 7FA200FF1CC090CE123FA2481B1F007E1C80003CF30F005A7F7B7F65>94 D<163CED01FC1507151FED3FF0EDFFC04A1300EC03FC4A5A4A5A4A5A4A5A147F5D4AC7FC A3495AB3B3AC495AA3495A5C130F495A5C495A49C8FC13FEEA03FC485AEA1FE0EA7FC048 C9FC12FCB4FCEA7FC0EA1FE0EA07F86C7EC67E137F6D7E6D7E806D7E1307806D7EA36D7E B3B3AC6D7EA36E7E81143F6E7E6E7E6E7E6E7E6EB4FC6E13C0ED3FF0ED1FFC15071501ED 003C26A375833D>110 D<127012FE6C7EEA7FE06C7EEA0FFCEA03FEC67E6D7E6D7E6D7E 6D7E8013076D7EA36D7EB3B3AC6D7EA36E7E143F816E7E140F6E7E6E7E6E7E6EB4FCED7F 80ED1FE0ED0FF8ED03FC15001503ED0FF8ED1FE0ED7F80EDFF00EC01FC4A5A4A5A4A5A14 1F4A5A5D147F4AC7FCA3495AB3B3AC495AA3495A130F5C495A495A495A49C8FCEA03FEEA 0FFCEA3FF0485AEAFF8048C9FC127026A375833D>I E /Ft load 0 Ft currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fu xydash10 10 2 [/a0/a1/a2/a3/a4/a5/a6/a7/a8/a9/a10/a11/a12/a13/a14/a15/a16/a17/a18/a19/a20 /a21/a22/a23/a24/a25/a26/a27/a28/a29/a30/a31/a32/a33/a34/a35/a36/a37/a38/a39 /a40/a41/a42/a43/a44/a45/a46/a47/a48/a49/a50/a51/a52/a53/a54/a55/a56/a57/a58 /a59/a60/a61/a62/a63/a64/a65/a66/a67/a68/a69/a70/a71/a72/a73/a74/a75/a76/a77 /a78/a79/a80/a81/a82/a83/a84/a85/a86/a87/a88/a89/a90/a91/a92/a93/a94/a95/a96 /a97/a98/a99/a100/a101/a102/a103/a104/a105/a106/a107/a108/a109/a110/a111 /a112/a113/a114/a115/a116/a117/a118/a119/a120/a121/a122/a123/a124/a125/a126 /a127 128{/.notdef}repeat] A/EN8 X IEn S/IEn X FBB FMat/FMat[0.012 0 0 -0.012 0 0]N/FBB[-3 -45 44 43]N /Fu 2 77 df<126012F012FC127E6C7EEA0FC0EA07F0EA01F8EA00FE133FEB1FC0EB07E0 6D7EEB00FC147E6E7EEC0FC0EC07F0EC01F8EC00FE153FED1FC0ED07E0ED03F0ED00FC16 7C163C261B82812A>73 D<126012F87E127FEA1FC06C7EEA03F8EA00FE137FEB1FC0EB07 F0EB03FCEB00FEEC3F80EC0FE06E7EEC01FCEC007FED3F80ED0FE0ED03F8ED01FCED007E 161F160E281982812A>76 D E /Fu load 0 Fu currentfont 83.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fv xybtip10 10 5 [/d0/d1/d2/d3/d4/d5/d6/d7/d8/d9/d10/d11/d12/d13/d14/d15/d16/d17/d18/d19/d20 /d21/d22/d23/d24/d25/d26/d27/d28/d29/d30/d31/d32/d33/d34/d35/d36/d37/d38/d39 /d40/d41/d42/d43/d44/d45/d46/d47/d48/d49/d50/d51/d52/d53/d54/d55/d56/d57/d58 /d59/d60/d61/d62/d63/d64/d65/d66/d67/d68/d69/d70/d71/d72/d73/d74/d75/d76/d77 /d78/d79/d80/d81/d82/d83/d84/d85/d86/d87/d88/d89/d90/d91/d92/d93/d94/d95/d96 /d97/d98/d99/d100/d101/d102/d103/d104/d105/d106/d107/d108/d109/d110/d111 /d112/d113/d114/d115/d116/d117/d118/d119/d120/d121/d122/d123/d124/d125/d126 /d127 128{/.notdef}repeat] A/EN9 X IEn S/IEn X FBB FMat/FMat[0.012 0 0 -0.012 0 0]N/FBB[-46 -47 46 45]N /Fv 5 80 df<127012F01278A27EA27EA27EA26C7EA36C7EA26C7EA36C7EA31378A47FA3 7FA57FA6EB0780A5EB0300112D8FAA00>15 D<1278EAFFE013FF14F0000713FE39001FFF C0010013F8EC0FFE913801FFC09138003FF0ED07FCED01FF9238003FC0EE0FF0EE03F816 0017302D11AB8E00>36 D<EA7F80EAFFFEEBFFF06C13FFC66C13F0010113FE9039000FFF 80020013F0ED0FFE923801FF809238007FE0EE0FF8EE01FCEE007C17182E0FAC8C00>I< EE01F0EE7FF8ED0FFF037F13F0913907FFFE00023F1380902601FFF0C7FC01071380D93F F8C8FCEBFFC0D803FEC9FCEA0FF8EA3FC0B4CAFC12FC12F012402D11AB8100>47 D<126012F0A51278A67EA57EA37EA46C7EA36C7EA36C7EA26C7EA31378A27FA27FA27FA2 EB07801400112D828100>79 D E /Fv load 0 Fv currentfont 83.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fw xyatip10 10 5 /EN9 load IEn S/IEn X FBB FMat/FMat[0.012 0 0 -0.012 0 0]N/FBB[-46 -47 46 45]N /Fw 5 80 df<13071480EB0F00A2131EA25BA25BA25BA3485AA2485AA3485AA348C7FCA4 121EA35AA55AA65AA51260112D82AA00>15 D<126012F0A21278A27E123E121E7EA26C7E 7F12036C7E7F12001378137C133C7F131F6D7E6D7E13036D7E806D7E147C8080EC0F80EC 07C0EC03E0EC01F8EC00FC157E151E150C1F269DA300>36 D<124012E07E7E12787EA27E 121F7E6C7E7F6C7E12016C7E7F137C7F131E7F806D7E6D7E6D7E6D7E147C8080EC0F80EC 07C0EC03E0EC01F8EC00FC157E151F150F150620259EA200>I<124012F012FCB4FCEA3F C0EA0FF8EA03FE3800FFC0EB3FF8903807FF80010113F09039003FFF80020713FE913900 7FFFF0030F13F8ED007FEE01F02D11AB8E00>47 D<1303EB0780A5EB0F00A6131EA55BA3 5BA45BA3485AA3485AA2485AA348C7FCA2121EA25AA25AA25A1270112D8F8100>79 D E /Fw load 0 Fw currentfont 83.3333 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fx cmmi8 8 50 /EN3 load IEn S/IEn X FBB FMat/FMat[0.015 0 0 -0.015 0 0]N/FBB[-4 -19 74 50]N /Fx 50 122 df<14FE903807FF80011F13E090387F03F09039FC01F8062601F800130E48 4813FC4848137C4848EB7E1C121F491438003F147F90C7EA3F705A16E0A200FE15C0A216 801600A3127E5D4A5A003E903803DF0E6C90380F9F8E3A0FC07E0F9C2607FFFC13FC6C90 38F007F83A007F0001E0271F7E9D2D>11 D<15FE913803FF80020F13C091381F03E09138 3C01F0EC70004A13F8495AA2495A49C7FC1501130E16F05BED03E0ED07C049148091383F DF00ECFFFE5D497FEC7FDF9138000F80A249EB07C0A316E0485AA44848EB0FC0A3168000 07141F16005D153E486C5B5D390EE003F09038F80FE0391C7FFF80D91FFEC7FCEB07F090 C9FC5AA45AA45AA21260253C7FAE28>I<133FD9FFC0137000037F486D13E0487F489038 FC01C0EA3F803A3C003E038048131E4890380E070048130FEC070E5AC7139C140315B8A3 15F0A25DA35DA35DA31407A292C7FC5CA4141EA45CA214381410242C7F9D24>I<137001 F8133C0001EB01FE14033803F007141EEC3C7CEC7038484848C7FCEBE3C0EBE78001FEC8 FC485AEBFFF014FC14FF391F807F80EC1FC0140F16C0D83F0013C1A31680007E14C31583 ED8700EC07C74814FE007C6D5A0038EB00F0221F7D9D29>20 D<13FE6D7E80EB1FE0130F 130780A26D7EA2130180A2130080A2147FA28081A2141F81A26E7E141F143F4A7E14F7EB 01E3903803C3F8EB0781010F7FEB1F01EB3E00497F485A4848137F485A48487F001F1580 485A48C7121F00FE15C048140F4815E000701403232F7DAD29>I<130E011FEB038049EB 07C016E0017EEB0FC0A449EB1F80A44848EB3F00A44848137EA316184848EBFC38A31401 000FECF870EBF003140F9039F81EFCE0391FFFFC7F9138F83FC090398FC00F000180C8FC 48C9FCA4127EA45AA25A1270252C7E9D2A>I<D801F81307003FEC0F80151FA2D803F0EB 3F00A3157E485A5DA24A5AEA0FC04A5A5D4A5A4848485A141F4AC7FC147E48485AEB01F0 495AEB0FC0D87E3FC8FC13FEEA7FF813E0EAFF800078C9FC211E7D9D23>I<146014E0A4 ECFFE04913F0010713F8011F13F090383F9FE049C7FC13FE485AA2485AA2485AA512037F 3801FBFE6CB5FC7F495A3801F7FCD803C0C7FC485A48C8FC5A123E123C127CA25AA37EA2 7E6C7EEA7FE0EA3FFC6CB47E6C13E06C13FC00017F38003FFF130F01011380EB003FEC1F 00A21320EB781EEB7FFCEB1FF8EB07E01D3C7EAD1F>I<90B612F0000315F85A5A4815F0 3A3E0381C00038380701127000E01303130FEA000E5D131E1407133CA281137C137813F8 A2120101F07FA2120301E07F1207140301C05B6C486C5A251E7E9C29>I<EC0FC0EC7FF0 4A7E903803F07C903807C03E90380F803F49487E1680133E137E137C13FC49133F1201A3 4848EB7F00A3157E484813FE5D4A5AA2000F495A4A5A6D485A9038FC3F80261F9FFEC7FC EB8FFCEB87E00180C8FC48C9FCA4127EA45AA25A1270212C7E9D24>I<90B6FC00031580 5A5A481500263E01E0C7FC00385B1270EAE003A21200495AA3130FA291C8FC5BA45B133E A2137EA35B137C1338211E7E9C1F>28 D<156015705DA44A5AA44A5AA44AC7FCA2EC3FE0 903803FFF8010F13FE90383FCE3F90397E0E0F8001F8EB07C03A03F01C03E0D807E0EB01 F0EA0FC0018014F8001F1338EA3F00A2127E1470A248EC03F0A214E0ED07E016C0007C14 0F903901C01F80007E1500003E147E001F5C390F8383F03907E39FE06CB51280C649C7FC EB1FF00107C8FCA3130EA45BA45B1318253C7DAD2A>30 D<EB03F8EB1FFF017F138048B5 12C03803F0073807800148C8FC120E5AA3EA0E0F380FFFC06C7FA2485B001CC8FC5A5AA2 5AA314066C130E0070131E007E13FC6CB45A6C5B000713C0D801FEC7FC1A1F7E9D21>34 D<90B812FC4817FE12075A4817FCD83E07C8EA01C0EA380E485A12E049130CC648130E5D 5BA2153C4848ED0380157C170703FC140002015C03DC130E02035CDA079E133C9026E01F 1E13F8903AF07E1F83F0903AFFFC0FFFE06C01F85C4A6C5B6D486C90C7FC011FC712FC37 1E7E9C3B>36 D<147E903803FF804913C090381F83E090383E01F0017C13F8EBF80015FC 485A12035B1207EBC001120FA3391F8003F8A315F0003F130715E0EC0FC0A2007FEB1F80 EC3F003877C07E3873E1FC3871FFF000705BD8E03FC7FC90C8FCA47E7EB512E06C7F6C7F 7E1207C712381E2B7B9D24>I<ED1F800003EC7FE048ECFFF04A13F8000E5B48903807E0 FC91380F803C4890380E001C5C4849131EA24A131C5A5CA25C01011438A24A1370010314 F000F0EC01E0ED03C0D87807EB0780007E9038001F00D83F87137E391FFF03FC6CEBFFF8 6C5C000114C06C6C90C7FCEB1FF8013EC8FCA35BA313FCA3485AA25B6C5A272C7C9D2E> 39 D<123C127E12FFA4127E123C08087A8714>58 D<123C127EB4FCA21380A2127F123F 1203A312071300A2120EA25A123C12385A122009157A8714>I<17C01603EE0F80EE3F00 16FCED03F0ED0FC0033FC7FC15FCEC03F0EC0FC0023FC8FC14FCEB03F0EB0FC0013FC9FC 13FCEA03F0EA0FC0003FCAFC12FC12F012FC123FEA0FC0EA03F0EA00FC133FEB0FC0EB03 F0EB00FC143FEC0FC0EC03F0EC00FC153FED0FC0ED03F0ED00FC163FEE0FC0160316012A 2B7AA537>I<15C01401A2EC0380A3EC0700A2140EA35CA35CA35CA35CA2495AA3495AA3 49C7FCA3130EA25BA35BA35BA35BA3485AA2485AA348C8FCA3120EA35AA35AA25AA35AA2 5A1A437CB123>I<12C012F012FC123FEA0FC0EA03F0EA00FC133FEB0FC0EB03F0EB00FC 143FEC0FC0EC03F0EC00FC153FED0FC0ED03F0ED00FC163FEE0FC01603160FEE3F0016FC ED03F0ED0FC0033FC7FC15FCEC03F0EC0FC0023FC8FC14FCEB03F0EB0FC0013FC9FC13FC EA03F0EA0FC0003FCAFC12FC12F012C02A2B7AA537>I<167016F8A215011503A21507A2 150F151F82153B1579157115E1A2EC01C11403ED81FEEC07011500140E5CA25C14781470 4A7FA249487F49B6FCA25B49C77E130E5B178049143F137813705BA21203000F157FD8FF FC903807FFFE6D5B496D13FC2F2F7DAE35>65 D<011FB6FC4915E06D15F8903A00FE0003 FCEE00FE177FA24948801880A3494815005FA217FE49485C4C5AEE07F04C5A4948EB7F80 91B6C7FC16FC16FF903A1FC0003FC0EE0FE0707E1603494880A21601A249C7FC1603A25F 01FE14074C5AA24C5A4848EC7F804CC7FCED07FCB75A16C04BC8FC312D7DAC35>I<9238 7FC003913903FFF807021FEBFC0F91397FC03E1F903A01FE00071ED903F8EB03BED90FE0 EB01FED91F80130049C812FC017E157C5B485A48481578A2485A120F491570001F163048 481500A348CAFCA312FEA616031780EE0700127E160EA26C5D5E6C7E16F06C6C495A6C6C EB07C0D803F8011FC7FC6CB413FE39007FFFF8011F13E0D903FEC8FC302F7CAD32>I<01 1FB6FC4915E06D15F8903A00FE0003FEEE00FFEF3F80171F4948EC0FC0170718E0A24948 EC03F0A4495AA449481407A4494815E0170FA218C04948141F1880A2EF3F0049C8FC177E 5FA201FE4A5A4C5A4C5AEE1F8048484AC7FC16FEED0FF8B712E0168003FCC8FC342D7DAC 3A>I<92387FC003913903FFF807021FEBFC0F91397FC03E1F903A01FE00071ED903F8EB 03BED90FE0EB01FED91F80130049C812FC017E157C5B485A48481578A2485A120F491570 001F163048481500A348CAFCA312FEA392383FFFFCA39238003F80A2EE7F00127EA36C15 FEA26C7E15016C6C5C6C6C1303D803F8EB0F7C6CB4EB7E3C3A007FFFFC18011FEBE00801 0390C8FC302F7CAD37>71 D<90381FFFFC5B7F010013005CA3495AA4495AA4495AA4495A A4495AA4495AA449C7FCA413FEA4485AA3B512F0A25C1E2D7DAC1F>73 D<90261FFF80913803FFE0495E6D5E0100EFF8004E5ADAEFC0143BA2D901CF4B5A18E7A2 EF01C7D9038F4A485AA2DA87E0EB070F170ED907074B5A171CA21738010E4B48C7FC6E7E 17E0EE01C0011C167EEE0380EE0700A290273801F80E5BA25E5E01704B5A167016E0EC00 FC499039FDC003F0EDFF80A2160048484B5A6D5BD807F0137CB50203B57E157849017092 C7FC432D7CAC44>77 D<913807F00691383FFE0E91B5FC903901F80F9E903903E003FC90 3807800149C7FC011E147C013E1478133C137CA201FC1470A316007F7F14F06DB4FC15E0 6D13F86D7F6D7F01037FD9007F13801407EC007F153FED1FC0150F1680120C121CA21600 003C5C151E153E153C007E5C007F5C90388003E0397BF00FC000F1B55A26E07FFEC7FC38 C00FF0272F7CAD2B>83 D<3E7FFFC01FFFF003FFF0B54916F86C19F02807F80001FEC7EA 7F00494A143CA26D17386112034B6C5C180103075D030F4A5A150E031C4AC7FC60033814 0E606D137003F05C000114E04A486C5B7013F0DA03805C02074A5A1500020E4A5A17074A 92C8FCD9FE3C140E14380000495C17BC4A14B8EE3FF06D5A5F5C91C75BA2495D94C9FC5B 0178143EA20170141C452E7CAC43>87 D<90260FFFFC90B5FC814B14FE9026003FE0EB1F E04B14006E6C131C5F5F6E6C5B4C5A913807F8034C5A6E6C48C7FC161E6E6C5A5E5E6E6C 5A5E6F5AA26F7EA24B7E15FF5CEDCFF0EC038F91380707F8140E4A6C7E14384A6C7E14E0 130149486C7E495A49C76C7E131E496E7E13FC00074B7ED87FFF0103B5FCB56C5A6C497E 382D7EAC3A>I<EB03F0EB0FFC90383FFE7090387E0FF8EBF8073803F00313E0EA07C000 0F14F0EA1F80A2123F90380007E05AA300FEEB0FC0A315C3EC1F875AA2007C133F007E14 0E003E13FF5B391F07DF9C390FFF8FFC3907FE07F83901F801E0201F7E9D25>97 D<13FC121FA3EA01F8A4485AA4485AA4380FC3E0EBCFF8EBFFFCEBFC3E381FF01F9038E0 0F8013C0018013C0EA3F00A4007E131FA448EB3F80A315005C147E485B7E387C01F85C38 3C03E0381E0FC06CB4C7FC6C5AEA03F01A2F7DAD1E>I<EB01FCEB07FF011F138090387F 03C001FC13E03801F0073803E00F1207D80FC013C0001F14809038800700003F90C7FC90 C8FC5AA312FEA6007E14401560EC01E0003EEB03C06CEB0F80390FC07F003807FFFC6C13 F0C613801B1F7E9D1F>I<ED0FC0EC01FFA39138001F80A4ED3F00A4157EA4903803F0FC EB0FFCEB3FFEEB7E0F9038F807F83803F00313E0EA07C0000F5CEA1F80A2123F49485A5A A300FE495AA315C34A5A5AA2007C133F007E140E003E13FF5B391F07DF9C390FFF8FFC39 07FE07F83901F801E0222F7EAD24>I<EB01FCEB0FFF013F138090387F07C03801FC0339 03F001E0EA07E0EA0FC0EC03C0EA1F80003FEB0780EC3F00387FFFFE5C14E090C8FC127E 12FEA3127EA215401560003EEB01E0003FEB03C06CEB0F80390FC07F003807FFFC6C13F0 38007F801B1F7E9D21>I<157CEC01FE4A7E9138078780EC0F9FEC1F1F153F143FED1F00 150E027EC7FCA55CA390387FFFFCA25DD901F8C7FCA5495AA5495AA6495AA5495AA491C8 FC5BA3133E121CEA7E7E137C12FE1378485A485A127FEA3F806CC9FC213D7CAE22>I<14 7CEB03FF49139C90381F83FEEB3F01EB7E005B4848137E15FC485A1207A29038E001F812 0FA3391FC003F0A4EC07E0A2120F140FEC1FC00007133F3803E0FF3801FFEF6CEBDF80EB 3F1F1300A2EC3F00A31238007C137E00FE5BA238FC03F8EB0FF0387FFFC06C90C7FCEA0F F81F2C7F9D22>I<1307EB0F80EB1FC0A21480A2EB0E0090C7FCA8EA01E0EA07F8487EEA 1E3E1238A2EA707EA212E05BA21240EA01F8A3485AA2485AA214C0EA0FC1A2EA1F81EB83 80A2EB8700A2EA0F8E13FC6C5AEA01F0122E7EAC18>105 D<15E0EC03F0A21407A2EC03 E0EC01C091C7FCA814F8EB03FE497E90380F0F80131C013C13C013381370EC1F8013E0A2 13409038003F00A4147EA45CA4495AA4495AA4495AA338380FC0127C38FE1F8091C7FCEA FC3E13FCEA7FF86C5AEA1F801C3B81AC1D>I<EB1F80EA03FFA3D8003FC7FCA4137EA45B A4484813F0EC03FC1407EC0F0E3903F01C3EEC387EEC60FE14C03907E180FC9038E300F8 01EE137001FC1300485A13FF14C014F0381F87F81381EB80FC150CD83F00131CA4007E14 3814F81570147C48EB7FE0007CEB3FC00038EB0F801F2F7DAD25>I<137EEA0FFEA3EA00 FCA4EA01F8A4EA03F0A4EA07E0A4EA0FC0A4EA1F80A4EA3F00A4127EA31318EAFC38A4EA F870A3EAFCE0127FEA3FC0EA0F000F2F7DAD15>I<2707C007F013FE3C0FF01FFC03FF80 281FF87FFE0F7F3C3CFCF83F1F07E03C387DE01FBC03F026707F8013F0A2020013E0D8E0 FE14C0491480A21240D801F84948485AA34D5A4848137EA24D5AF081804848491483EF3F 03A2F0070048484848137E180E173E183C48484848EB1FF8000F01016E5A6CC748EB07C0 391F7E9D3E>I<39078007F0390FE03FFC486C487E3938F8F83F9038F9C01F2670FF8013 8014005BEAE1FCA25B1241D803F0EB3F00A3157E485AA25D161848481438EC01F8A21670 391F8003F0A2020113E0EDF1C048C7EAFF806CEC7F00000E143E251F7E9D2B>I<013C13 FC90387F03FFD9FF8713803A01C7DF07C09138FC03E0260387F813F0ECF00102E013F838 070FC0A3120239001F8003A490393F0007F0A316E0017E130F16C0ED1F80A201FEEB3F00 6D137E5DECC3F83901F9FFE001F85B027EC7FC91C8FC485AA4485AA4EA7FFE12FFA2252B 839D24>112 D<903803E01890381FF83890383FFCF8EBFC1F3901F80FF03803F007EA07 E013C0000F14E0EA1F80A2123F9038000FC05AA300FEEB1F80A4EC3F005AA2007C5B147E 007E13FEEA3E03EA1F0F6CB45AEA07FCEA01F0C7FC495AA4495AA490B5FCA31D2B7E9D20 >I<3807803F390FE0FF80D81FF113C03838FBC19038FF83E0481307EBFE0F13FCD8E1F8 13C01580EC0700004190C7FCEA03F0A4485AA4485AA4485AA448C8FC7E120E1B1F7E9D20 >I<EB07E0EB1FF8EB7FFCEBF81E3801F00FEBE01F0003133FA20007133E141C140013FE EBFFC06C13E014F06C13F838007FFC131F1301EA1800007C137C12FEA214784813F84813 F038F001E0387C07C0383FFF806C1300EA07F8181F7C9D21>I<1307EB0F80131FA2EB3F 00A4137EA45B387FFFF8B5FC14F03801F800A4485AA4485AA4485AA31430381F8070A314 E0EB01C0A2EB8380380F8F0013FE6C5AEA01F0152B7EA919>I<EA03E0486C131C486C13 3ED81C7C133FD8387E137EA21270A2484813FCA3EA41F80001EB01F8EA03F0A33907E003 F0A4390FC007E0A40007EB0FC0141FEBE03F3803F0FF6CB512806C13DFEB3F1F1300EC3F 00120E001F137E5A485B5C387E01F0387C03E0383C0FC0D81FFFC7FC6C5AEA03F0202C7E 9D23>121 D E /Fx load 0 Fx currentfont 66.6667 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fy cmti9 9 51 /EN7 load IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-4 -21 86 56]N /Fy 51 123 df<923801FF80030F13F0033F13F892387E007C03F8131E4A48133E4A4813 7F020714FE5D020F147C173817004A5AA54AC8FCA4011FB612E04915F06D15E09039007E 0007A34AEB0FC0A4EE1F80495AA3EE3F00A2495AA2167EA217184948141CEEFC38A44A14 70010F14F816FCEE7CE0EE3FC04A131F011FEC0F0093C7FCA291C9FC5BA2EA1C3E123EEA 7F3C137CEAFE78127CEA78F0EA3FE06C5A6CCAFC304582B42B>12 D<DB03FE903801FF8092271FFF800F13F04BD9C03F13F8923B7E01E0FE007C9227F003F1 F0131E912801E007F3E0133E0203177F02074A4813FE03C013CF020FD9038F147C932600 0F801338051F14004A5AA24DC8FCA34AC7FCA2177EA2011FB912E04918F06D18E0D9007E C738FE00075FA2F10FC05CA24C5AF11F80A2495AA24C48EB3F00A3495A197E4C5A1A0C1A 0E4948EEFC1CA24C5AA21A38495A1A704C48137CF13FE0F11FC04948EE0F8094C9FC5E91 C7FC163E5B261C3E0E5B003E131F3A7F3C3F807816F83AFE787F01F0007C90383E03E03A 78F03C0FC0273FE01FFFCAFC6C486C5A390F0003F8484582B444>14 D<EA03C0EA07E0EA0FF0A2EA1FF8A213F0120F1207EA0070A213E0A2EA01C0A2EA038012 071300120E5A5A5A5A12400D187B8818>44 D<387FFF80B5FCA31400110579921B>I<12 0E123FEA7F80A212FFA21300127E123C0909788818>I<137813FCEA01FE1203A213FCA2 EA01F8EA00E01300AE120E123FEA7F80A212FFA21300127E123C0F20789F18>58 D<161C163CA2167C16FCA21501821503A21507150F150E151CA21538A2157015F015E0EC 01C0A24A487EA24A487EA2140E141E141C5CA25CA25C130191B6FC5BA249C7EA7F80163F 130E131E131C133C13385BA25B12011203D80FF0147FD8FFFE90380FFFFEA217FC2F367B B539>65 D<DB0FF013C09238FFFC010203EBFE03913A0FF80F878091393FC003CF91397F 0001DFD901FCEB00FF4948EC7F00EB07E0495A494880013F153E49C8FC13FE5B0001163C 485AA2485A000F1638A2485A94C7FCA2485AA3485AA590CBFC5A4C7E1603A27E4CC7FCA2 160EA26C5D7F5E001F5D6C6C5C4B5A6C6C495A6C6C010FC8FCD801FC133E6CB413FC9038 3FFFF0010F13C0D901FEC9FC323775B437>67 D<0107B712E05B7F903A001FC0001F1707 4A4813031701A34AC713C0A414FE160EA34948011C138094C7FCA2163C49485BED01F891 B5FCA2495CECF0011500A249485BA217061707903A1FC001C00E1500EE001CA249485CA2 1778177049C812F05F1601160301FE4A5A161F00014AB45A007FB7FCB8C7FC7E33337CB2 34>69 D<010FB71280A3903A003F80007F171F4AC7120F1707A302FE1500A4495AA21630 16384948EB700694C7FCA216F049485B1501150791B5FC495CA2ECE0071503D91FC05BA4 494848C8FCA392C9FC49CAFCA413FEA4485AA21203B512FCA25C31337BB232>I<92391F E001809238FFF8030207EBFE07913A1FF01F0F0091393F80079F9139FE0001FF495AD903 F06D5A495A4948147E495A49C8127C5B13FE5B00011678485AA2485A000F1670A2485A94 C7FC5B123FA3485AA490CBFC92383FFFF8484A7F6F5B9238007F8094C7FC7EA216FEA37E 4B5A7F121F6D1303000F5D6C6C13076C6C131ED801FCEB3C783A00FF01F83090397FFFE0 10011F0180C8FCD903FCC9FC313775B43B>I<0107B56CB512F04914816D1480903C001F C00003F800A24A48495AA44AC7485AA402FE4A5AA449484A5AA449484AC7FCA291B7FCA2 495D02F0C7FCA34948495AA44948495AA44948495AA449C7485AA401FE4A5AA20001153F 277FFFF80FB5FCB55B6C803C337CB239>I<0107B512804914C06D14809039001FC000A2 4A5AA44AC7FCA414FEA4495AA4495AA4495AA4495AA4495AA4495AA449C8FCA413FEA212 01387FFFF8B57E6C5B22337CB21E>I<0107B5398007FFF04917F86D17F09028001FC000 01130018FC4A4814F0EF03C04D5A050EC7FC4AC75A5F17F04C5A02FEEB03804CC8FC160E 163C494813705E4B5A1507903803F80F4B7E153F4B7E903807F1E7ECF3C79138F703F814 FEEB0FFC4A6C7E14E08290381FC000A2167FA2495A707EA2707E49C7FCA2707EA201FE81 A2000182267FFFF890B57EB549806C6E5C3D337CB23B>75 D<010FB512C0A25E9026003F C0C7FC5D4AC8FCA414FEA4495AA4495AA4495AA4495AA4495AA2EE018017C04948EB0380 A2EE0700A249C7FC160EA2161E01FE141C163C167C5E4848130115070003EC3FF0B7FC5E A22A337BB230>I<902607FFE0EDFFFC495E7F9026001FF0913803FE00A2023B4B5A180E A2181C0273ED1DF818391871A2DAE1F84A5AA2EF01C3EF0383D901C1ED87E0EF0707A217 0ED903814A485AA21738EC80FCD907004A485AA217E0EE01C0010E4CC7FCEE0380A2EE07 0049020E137EA2ED7E1CA2494A5B5EA25E494B5AED7FC01680A201F04A485A000180D807 F8013E1307287FFF803C01B512C0B55C6CEC380146337BB245>I<902607FFC090380FFF F0496D5B6D819026001FF0903800FE001878143FDA3BF81470A3DA71FC5CA2EC70FEA202 E04A5A157FA21680902601C03F495AA2ED1FC0A2D903804AC7FCED0FE0A216F090260700 07130EA2ED03F8A2010E6E5A1501A2ED00FE495DA2167FA24915F0163FA2161F495DA216 0FA201F06E5A1201EA07F8267FFF801303B55D6C15013C337CB239>I<ED1FE0913801FF FC020713FF91391FE03FC091393F000FE002FEEB07F0D901F813034948EB01F8494814FC 49481300494814FE49C8FC49157E01FE157F485AA2485A12075B120F5B121F17FF5B123F A34848EC01FEA4EE03FC48C8FCEE07F8A217F0160F17E0161F6C16C0EE3F80A2EE7F006C 6C14FE4B5A4B5A6C6C5C000FEC0FE06D495A6C6C495A6C6C01FEC7FC3901FE03FC39007F FFF06D1380D907FCC8FC303775B43B>I<0107B612C04915F86D81903A001FC001FEEE00 7F4A48EB3F80EF1FC0A34AC713E0A402FEEC3FC0A318804948147F18005F5F4948495A4C 5AEE0FF0EE3FC049B6C7FC16FC16E002F0C9FC495AA4495AA4495AA449CAFCA413FEA212 01387FFFF8B5FC7E33337CB234>I<ED1FE0913801FFFC020713FF91391FE03FC091393F 800FE09139FE0007F0D901F813034948EB01F8494814FC49481300494814FE49C8FC5B01 FE157F485AA2485A12075B120FA2485A17FFA2485AA34848EC01FEA490C8EA03FC5A17F8 160717F0160F17E0161F6C16C0EE3F80141E027FEB7F006C9038FF80FE903981E1C0FC90 398380C1F8D81FC3EBE3F03A0FC700E7E001E7EBFFC0D807F75C6CB449C7FC6CEB03FC3B 007FFFF001806D13E0EB07FC90C7EB03005EEC01F0160EEDF83EEDFFFCA25E5E805EED7F 80031FC7FC304475B43B>I<0107B6FC4915E06D15F8903A001FC007FCEE00FE4A48137F EF3F80A34AC713C0A402FEEC7F80A3EFFF00495A5F4C5A4C5A4948495AEE1FE0EEFF8091 B548C7FC4914F85E9138F001F86F7E4948137EA2167FA2495AA449485BA35E90387F0001 A218C018E001FEED01C0A20001EE0380397FFFF800B591387F0F006CED3FFEC96C5AEE03 F033357CB238>I<913901FC018091380FFF034A138791397E07CF009138F800EFD901E0 137F495A4948133E130F91C7FC5B011E143C133EA3017E1438A393C7FC137FA214C0EB3F F8ECFF806D13F06D13FC6D7F6D7F7FD9003F7F14039138007FC0151FA2150FA3120C120E 485DA393C7FC003C5C151E153E003E143C007E5C007F5C6D485A397BC003C039F1F80F80 00E0B5C8FCEB3FFC38C00FF029377AB42B>I<0007B8FC5AA2903AF001FC007FD81F8015 1F49485A001E160E5AA20038495AA248161E171C4A5A5AA34849481318C71500A34A5AA4 4AC8FCA414FEA4495AA4495AA4495AA4495AA2131F003FB512F0A3303373B237>I<B500 C090381FFF806E5B4A1500D807FCC7EA07F849EC03E0178012034CC7FC5E160E5EA25E16 7816706D5CA200014A5A15035E4BC8FCA2150E151E151C5D7F5D000014F05D4A5AA24A5A A24AC9FC140E13FF5C137F5C147814705CA25CA25C91CAFCA2133EA2133C1338313570B2 39>86 D<B53CC03FFFF003FFF802E06E5A02C04A6C13F02807F80001FEC7EA7F80494AEC 3E00193C1938A26115036115074E5A030F140361031D4AC7FC820338140EA203705C6D13 F0000302E05C140103C05CDA038014F060DA0700130160020E4A5AA24A4AC8FCA24A140E 147802705C5C5FD9F9C014781770D9FB806D5AA201FFC76C5AA2495DA26C4892C9FCA249 147E5B167C5B1678491470453570B24D>I<EB01F8EB07FC90381FFE3890383F0F7C9038 7C07FCEBF803EA01F048486C5A1207EA0FC0A2001F495A1380123FA24848485AA4007E49 5A12FE15C3168091381F8700127EA2143FEC7F8E003EEBFF0ED83F01138E391F07CF9C39 0FFF07F83807FE033901F801E0212279A027>97 D<133EEA0FFF485A120FEA007EA25BA4 485AA4485AA4485AEBE1F0EBE7FCEBFFFE380FFE1F9038F80F8013F001E013C0EA1FC013 8015E0A2EA3F00A315C0007E131FA4007CEB3F8012FC15005C147EA2007C5B5C495AEA3C 03383E07E0381E0F806CB4C7FC6C5AEA01F01B3578B323>I<14FE903803FF80010F13C0 90383F83E0EB7E00EBF803000113073803F00FEA07E0000F14C09038C00780001F90C7FC 5B123FA248C8FCA4127E12FEA3127E1520157015E0003EEB01C0003FEB07806CEB1F0038 0FC0FE3807FFF86C13E0C66CC7FC1C2279A023>I<ED03E0EDFFF04A13E0801507A2ED0F C0A4ED1F80A4ED3F00A4157EEB01F8EB07FCEB1FFE90383F0FFCEB7C07EBF803EA01F048 486C5A1207EA0FC0A2001F495A1380123FA24848485AA4007E495A12FE15C3168091381F 8700127EA2143FEC7F8E003EEBFF0ED83F01138E391F07CF9C390FFF07F83807FE033901 F801E0243579B327>I<EB01FCEB0FFE90383FFF80EB7F079038FC03C0EA03F0EA07E013 C0120FEA1F80003FEB0780EC0F00387F007EEBFFFC5CB512C048C8FCA35AA5154015E000 7CEB01C0007EEB0380003EEB0F006C133EEB81FC380FFFF0000313C0C648C7FC1B2278A0 23>I<151FED3FC0EDFFE0EC01F1EDE3F0EC03E71407EDC7E016C091380FC380EDC000A2 4A5AA54AC7FCA490381FFFFE497F6D5BD9007EC7FCA35CA6495AA5495AA5495AA5495AA4 5C131FA391C8FCA25BEA1C3E123EEA7F3C137CEAFE78127CEA78F0EA3FE06C5A6CC9FC24 4582B418>I<141FECFFC04913E7903907E0EF8090380FC07FEB1F8090383F003F013E14 00137E5BA20001147E5B1203A248485BA449485AA2120F12074A5AA21407A20003495A14 1F3801F07F3800FFF76D485AEB1F8FEB000FA24A5AA4001C49C7FC123E007F137E147C00 FE13FC387C01F8EB07E0383FFFC06C90C8FCEA03FC21317DA023>I<EB07C048B47E485B 7EEA000FA2495AA449C8FCA4137EA45BEC1FC0EC7FE09038FDFFF83801FBE09038FF807C EBFE0049137E12035B5BA248485BA44848485AA34A5AEA1F80A2913807E0C016E0D83F00 EBE1C0EC0FC1A2EDC380007E148316001587158E48EB07FC007C6D5A00386D5A23357BB3 27>I<EB0380EB07C0EB0FE0A214C0A2EB070090C7FCAAEA01F0EA03FC487EEA0E3EEA1C 3FA21238A21270137EA212E0EA60FC1200485AA3485AA3485A14C0380FC0E0EBC1C0A2EA 1F81EB8380A2EB8700A2EA0F8E13FC6C5AEA01F013337AB118>I<153815FCA21401A2EC 00F815701500AA143E14FF491380903803C7C090380707E0EB0E031407131CA21338A290 38700FC013301300A2EC1F80A4EC3F00A4147EA45CA4495AA4495AA4381C07E0123E387F 0FC05CD8FE1FC7FCEA7C3EEA787CEA3FF86C5AEA0F801E4283B118>I<EB07C048B47E48 5B7EEA000FA2495AA449C7FCA4137EA45B1578EC01FCEC03FE3901F8078EEC0E1FEC183F EC307F3903F060FE14E09038F1C07C9038F380384848C7FC13FE5B7F380FFFC080EBC7F0 EBC1F8381F80FCA2150C150ED83F00131CA31518007E143814F81570EC7CF048EB3FE000 7CEB1FC00038EB0F8020357BB323>I<131F3807FF804813007EEA003FA2137EA45BA448 5AA4485AA4485AA4485AA4485AA448C7FCA4127EA21318131C485AA45B12F812FCEA7CE0 EA3FC06C5A6CC7FC113579B314>I<2703E003F8137F3C07F00FFC01FF80280FF83FFF07 13E03B1C7C7C1F0F83903B7EF00F9E01F026387FC013B8028001F07F1270020013E0017E 14C0A248484948485A12601200A248484948485AA34D5A4848137EA294381F818019C048 4849EC8380EF3F03A2F0070048484848133E180EA2183C48484848EB1FF8000F01016E5A 6CC748EB07C03A227AA03F>I<3903C007F0390FE01FFC6D487E391CF8F81F2638FDE013 8090387FC00FD9FF8013C04813005B5BA2D8E1F8EB1F8012611201A24848EB3F00A3157E 485AA2EDFC18161C48481438EC01F8A21670D81F8013F0166016E0EDF1C048C7EAFF806C EC7F00000E143E26227AA02B>I<14FE903803FFC0010F13E090383F83F090387E00F849 13FC4848137C4848137E485A120F5B001F147F5B123F157E48C712FEA4007EEB01FC12FE 15F81403007E14F0140715E0EC0FC0003EEB1F80003FEB3F006C137E380FC1FC3807FFF0 6C13C0C66CC7FC202279A027>I<010F133F90393F80FFC002C113E0903973E7C1F09039 E3FF01F89038E1FE00D9E3FC13FC3801C3F85CA216FE48485A1201EA000716FC90380FC0 01A490391F8003F8A216F01507D93F0013E0A2ED0FC0168090397F801F00153E6E5AECE1 F89038FCFFF0EC7FC06EC7FC91C8FC485AA4485AA4485AA2EA7FFFB57E91C8FC273080A0 27>I<903801F00C90380FFC1C90381FFE7C90383E0EF8EBFC07EA01F8EBF003D803E013 F01207EA0FC0A2001FEB07E01380123FA2397F000FC0A4007EEB1F8012FEA3EC3F00A212 7E5C14FEEA3E011303EA1F0F6CB45AEA07FCEA01F0C7FC495AA4495AA4495AA248B5FC15 8015001E3079A023>I<3903C01F803907E07FE0390FF0FFF0391CF9E07838387FC0EC80 FCEBFF013970FE03F813FCEC01F0EC00E0D8E1F8130012611201A2485AA4485AA4485AA4 485AA448C8FC7E120E1E227AA020>I<EB03F0EB0FFCEB3FFEEB7C1FEBF807EBF00F0001 131FEBE03F1203143E141CEBF00013FCEBFFC014E06C13F014F86C13FC133FEB03FE1300 147E123C007E137C12FEA24813784813F838E001F0387003E0387C0FC0383FFF80381FFE 00EA03F818227AA01F>I<130E131F5BA3137EA45BA4485AA2B512E014F014E03803F000 A3485AA4485AA4485AA448C7FCA214C014E0387E01C0A2EB0380A2EB0700127C130EEA3E 3CEA3FF86C5AEA07C0143079AE19>I<EA01F0486C1307486CEB0F80D80E3E131F121C12 181238017EEB3F001270A25B00E0147E1260EA01F8A25D485AA34848485AA21660167091 3803F0E013C0A39039E007F1C0EC0FE10003EB1FF19039F079F3803A01FFF0FF006C6C48 7E90381F803C24227AA029>I<D801F01370486C13F83907FC01FCEA0E3E121C12180038 1300017E137C1270153C5B00E014381260EA01F8A21570485AA3484813E0A3EC01C0A290 38C00380A29038E00700A2140E00035B3801F8383800FFF06D5AEB1F801E227AA023>I< 01F81570D803FC010E13F8486C90381F01FCD80F1F133F001C150316010038150049017E 137C1270173C137E00E04A13381260C65AA24A481370EA01F8A34848484813E0A3EE01C0 A201E013E0EE0380EBF0079238F00700140F0001150E3A00FC3CF83C90397FF87FF86D48 6C5A90390FC00FC02E227AA033>I<011F137C90387FC0FE9038FFE1FF3A01E1F3878039 0380FF073A0700FE0FC0151F000E9038FC3F805AED1F00150E484848C7FC12181200A249 5AA4495AA215061507391C0FC00E123E127F5DD8FE1F5B12FCD8783F5B903873E1E0393F E1FFC0D81FC05B260F803EC7FC22227CA023>I<EA01F0486C130E486C131FD80E3E133F 121C12181238017E137E1270A25B00E014FC1260EA01F8A2EC01F8EA03F0A33907E003F0 A4EC07E013C0A3EC0FC0EBE01F0003133FEBF0FF6CB512806C13DFEB3F1F1300EC3F00A2 000E133E003F137E147C4813FC5C387E01F0387C03E0387807C0383C1F80D81FFFC7FCEA 0FFCEA07F020317AA025>I<903807801CEB1FC090383FE03890387FF0789038FFF87048 EBFFE09038F07FC03803C00F9038800380EC0700C7120E5C5C5C5C495A495A49C7FC130E 5B5B491360491370484813E0485A38070001390FF003C09038FE0F8048B5FCD83C1F1300 38380FFE00705B486C5AEB01E01E227CA01F>I E /Fy load 0 Fy currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: Fz msbm10 10.95 3 /EN2 load IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-6 -42 213 84]N /Fz 3 91 df<DB3FF8EB01800203B51303021F14E0913A7FF00FFC07902701FFC001B5FC 903A07E780007FD90F8FC7EA1FFBD91E1EEC0F83D97C1CEC03C34948EC01E301E0ED00F3 484848157B0003173F484848151F0100160F120E49481507121C180348485A180195C7FC 1270A349CBFC12E0AE1270A26D7EA21238A3121C6D7E120E19406C6C6C16F00180160126 03C07015030001EF07E06C6C6CED0FC001F8EE1F80D97C1CED7E00D91E1E5DD90F8FEC07 F8902607E7C0EB1FE0903B01FFF801FF806D6CB548C7FC021F14F8020314C09126003FFC C8FC3C427DBF2A>67 D<007FB612FCB812C06C16F83B01C007807FFED800E09039000F3F 80020E90380707C093380381E0EF80F0933801C07884181C706C7EA284A8180EA34C485A 183C604C485A93380787E093380F3FC093B5C7FC020FB512F817C004E7C8FC91390E1C07 80ED1E0392380E01C003077F168003031370923801C078EEE03803007FEE701EEE780EEE 3807041C7FEE1E0393380E01C004077FEF80F004031370706C7EEFE03C04007FEF700F94 3878078094383803C048486C91381C01E0007FB500FE90381FFFFCB6806C823E3E7EBD39 >82 D<0003B812F05AA2903B0FF8001C00E0D91F8090383801C0D80E7CC7EA7803490270 1380D80FE09138E007005B49903801C00E90C70003131EEE801C001E4A485A1778001C02 0E1370031E5B151CC848485AED780303705B4B48C7FC5E913801C00E02035B15804A485A 4A1378020E13704A5BA24A485AEC780302705B4A48C8FC01015BECC00E49485AA249485A 491378010E017014064949140E140101385B9026780380141E13704948C8121C00014915 3CEBC00E484848157C18FC48485A480178EC01DC000E017014034849EC079CD83C01ED1F 1C003849EC3E38484848EB01F8EE0FF0B912F8A3373E7DBD41>90 D E /Fz load 0 Fz currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FA stmary10 10.95 1 [/shortleftarrow/shortrightarrow/shortuparrow/shortdownarrow/Yup/Ydown/Yleft /Yright/varcurlyvee/varcurlywedge/minuso/baro/sslash/bbslash/moo/varotimes /varoast/varobar/varodot/varoslash/varobslash/varocircle/varoplus/varominus /boxast/boxbar/boxdot/boxslash/boxbslash/boxcircle/boxbox/boxempty/lightning /merge/vartimes/fatsemi/ssearrow/curlywedgeuparrow/sswarrow /curlywedgedownarrow/fatslash/fatbslash/lbag/rbag/varbigcirc /leftrightarroweq/curlyveedownarrow/curlyveeuparrow/nnwarrow/nnearrow /leftslice/rightslice/varolessthan/varogreaterthan/varovee/varowedge /talloblong/interleave/obar/obslash/olessthan/ogreaterthan/ovee/owedge /oblong/inplus/niplus/nplus/subsetplus/supsetplus/subsetpluseq/supsetpluseq /Lbag/Rbag/llbracket/rrbracket/llparenthesis/rrparenthesis/binampersand /bindnasrepma/trianglelefteqslant/trianglerighteqslant/ntrianglelefteqslant /ntrianglerighteqslant/llfloor/rrfloor/llceil/rrceil/arrownot/Arrownot /Mapstochar/mapsfromchar/Mapsfromchar/leftrightarrowtriangle /leftarrowtriangle/rightarrowtriangle/bigtriangledown/bigtriangleup /bigcurlyvee/bigcurlywedge/bigsqcap/bigbox/bigparallel/biginterleave /hugetriangledown/hugetriangleup/hugecurlyvee/hugecurlywedge/hugesqcap /hugebox/hugeparallel/hugeinterleave/hugenplus/largellbracket/Largellbracket /LARGEllbracket/hugellbracket/Hugellbrackettop/Hugellbracketbot /Hugellbracketex/Hugenplus/largerrbracket/Largerrbracket/LARGErrbracket /hugerrbracket/Hugerrbrackettop/Hugerrbracketbot/Hugerrbracketex 128{ /.notdef}repeat] A/EN10 X IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-12 -270 96 73]N /FA 1 13 df<9338C00180923901E003C0A2923903C00780A3923907800F00A392380F00 1EA3031E5BA34B5BA24B5BA34B485AA34A48485AA34A48485AA34A4848C7FCA291380F00 1EA3021E5BA34A5BA34A5BA34A485AA24948485AA34948485AA3494848C8FCA390380F00 1EA3011E5BA3495BA2495BA349485AA34848485AA34848485AA3484848C9FCA2380F001E A3001E5BA3485BA3485BA348485AA2386000C0325B7BC33D>12 D E /FA load 0 FA currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont /FB 167[65 10[95 77[{}2 90.9091 /EUFM10 rf %DVIPSBitmapFont: FC cmsy10 10.95 34 /EN4 load IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-4 -89 103 71]N /FC 34 117 df<007FB812F8B912FCA26C17F83604789847>0 D<121E123FEA7F80EAFF C0A4EA7F80EA3F00121E0A0A799B19>I<0060166000F016F06C1501007CED03E06CED07 C06CED0F806C6CEC1F006C6C143E6C6C5C6C6C5C6C6C495A017C495A6D495A6D495A6D6C 48C7FC903807C03E6D6C5A6D6C5A903800F9F0EC7FE06E5A6E5AA24A7E4A7EECF9F09038 01F0F8903803E07C49487E49487E49486C7E013E6D7E496D7E496D7E48486D7E4848147C 48488048488048C8EA0F80003EED07C048ED03E048ED01F0481500006016602C2C73AC47 >I<1506150FB3A9007FB912E0BA12F0A26C18E0C8000FC9FCB3A6007FB912E0BA12F0A2 6C18E03C3C7BBC47>6 D<ED7FE0913807FFFE023FEBFFC09139FF871FF0903A03F80701 FCD907C0EB003ED91F00EC0F80013E6F7E0178ED01E0496F7E4848167848488249161C48 C78148170F000E8348EF0380A248EF01C0A348EF00E0A4481870A3BA12F0A300E0C70007 C81270A4007018E0A46CEF01C0A36CEF0380A26CEF0700000F5F6C170E6C6C5E6D163C6C 6C5E6C6C5E01784B5A013EED07C06D4B5AD907C0023EC7FCD903F8EB01FC903A00FF871F F0023FB512C0020749C8FC9138007FE03C3C7BB447>8 D<EB07F8EB1FFE90387FFF8048 B512E04880488048804880A24880A2481580A2B712C0A86C1580A26C1500A26C5CA26C5C 6C5C6C5C6C5C6C6C1380D91FFEC7FCEB07F822227BA72D>15 D<007FB912E0BA12F0A26C 18E0CDFCAE007FB912E0BA12F0A26C18E0CDFCAE007FB912E0BA12F0A26C18E03C287BAA 47>17 D<0203B612F8021F15FC91B7FC4916F8D907FCC9FCEB1FE0EB3F80017ECAFC13F8 485A485A485A5B48CBFC5A121E5AA35AA35AAA1278A37EA37E121F7E6C7E7F6C7E6C7E6C 7E137E7FEB1FE0EB07FC6DB712F8010016FC141F020315F891CAFCAE001FB812F84817FC A26C17F8364878B947>I<1818187CEF01FCEF07F8EF1FE0EF7F80933801FE00EE07F8EE 1FE0EE7F80DB01FEC7FCED07F8ED1FE0ED7F80DA01FEC8FCEC07F8EC1FE0EC7F80D901FE C9FCEB07F8EB1FE0EB7F80D801FECAFCEA07F8EA1FE0EA7F8000FECBFCA2EA7F80EA1FE0 EA07F8EA01FE38007F80EB1FE0EB07F8EB01FE9038007F80EC1FE0EC07F8EC01FE913800 7F80ED1FE0ED07F8ED01FE9238007F80EE1FE0EE07F8EE01FE9338007F80EF1FE0EF07F8 EF01FCEF007C18181800AE007FB812F8B912FCA26C17F8364878B947>20 D<126012F812FEEA7F80EA1FE0EA07F8EA01FE38007F80EB1FE0EB07F8EB01FE9038007F 80EC1FE0EC07F8EC01FE9138007F80ED1FE0ED07F8ED01FE9238007F80EE1FE0EE07F8EE 01FE9338007F80EF1FE0EF07F8EF01FCA2EF07F8EF1FE0EF7F80933801FE00EE07F8EE1F E0EE7F80DB01FEC7FCED07F8ED1FE0ED7F80DA01FEC8FCEC07F8EC1FE0EC7F80D901FEC9 FCEB07F8EB1FE0EB7F80D801FECAFCEA07F8EA1FE0EA7F8000FECBFC12F81260CCFCAE00 7FB812F8B912FCA26C17F8364878B947>I<D91FE01620D97FF816302601FFFE1670486D 7E48804814F09038E01FF8271F8007FC15E0391E0001FE48D9007F14010038DA3FC014C0 0078DA0FE013030070DA07F8EB0780DB03FE131F48913A01FF807F006F90B5FC043F5B70 5B04075B0060030113E000409238007F803C157BA047>24 D<0203B612F8021F15FC91B7 FC4916F8D907FCC9FCEB1FE0EB3F80017ECAFC13F8485A485A485A5B48CBFC5A121E5AA3 5AA35AAA1278A37EA37E121F7E6C7E7F6C7E6C7E6C7E137E7FEB1FE0EB07FC6DB712F801 0016FC141F020315F8363678B147>26 D<19301978A385A385A285A2737EA2737E737E86 737E1A7C8686F20FC0F207F0007FBB12FCBDFCA26C1AFCCDEA07F0F20FC0F21F001A3E62 624F5A624F5A4F5AA24FC7FCA2191EA261A361A3193050307BAE5B>33 D<0203B512E0021F14F091B6FC4915E0D907FCC8FCEB1FE0EB3F80017EC9FC13F8485A48 5A485A5B48CAFC5A121E5AA35AA35AA3B812E017F0A217E000F0CAFCA31278A37EA37E12 1F7E6C7E7F6C7E6C7E6C7E137E7FEB1FE0EB07FC6DB612E0010015F0141F020314E02C36 78B13D>50 D<176017F0A2EE01E0A2EE03C0A2EE0780A2EE0F00A2161EA25EA25EA25EA2 4B5AA24B5AA24B5AA24BC7FCA2151EA25DA25DA25DA24A5AA24A5AA24A5AA24AC8FCA214 1EA25CA25CA25CA2495AA2495AA2495AA249C9FCA2131EA25BA25BA25BA2485AA2485AA2 485AA248CAFCA2121EA25AA25AA25AA212602C5473C000>54 D<126012F0AE12FCA412F0 AE126006227BA700>I<1518153CA35DEB03FCEB0FFF013F5BEB7E07EBF80148486C7E48 48487ED807C07FA2D80F807FEC03DFD81F00EBCF80A2489038078FC0A4007E90380F07E0 A4141EA200FE15F0143CA41478A414F0A3EB01E0A4EB03C0A4EB0780A2007E15E0EB0F00 A3007F140F131E003F15C0A36C48148001BC131F000F150013F85D0007143E00035C6C48 5BEBF8013900FE07E090B55AD801EF90C7FCEBE3FC01E0C8FC485AA36C5A244D7CC52D> 59 D<92B512FE020FECFFF0027F15FC0103B87E010F83013F17F0D97FE00100802601FE 0002077F2603F00102017FD807E09238003FFFD80FC0701380001F17077213C0D83F8049 80007F7113E01300007E187F00F8010317F00060183FC75BA2191FA214075DA21AE0A24A 5AA2193F1AC04A5A1A80A2F17F004A5A19FEA24B4A5A027F5E180392C85B4A4B5A4E5A4A 4B5A01014CC7FC187E4A4A5A0103ED03F04A4A5AEF1FC0010703FFC8FC4AEB03FE010FEC 3FF89139E007FFE049B61280017F02FCC9FC48B612F04815804802F8CAFC6C91CBFC443E 7FBD46>68 D<EEFFE0030F13FC033F7F4AB6FC020715805C91383FE00F91387F0001D901 FC7FD903F01500495A49485C49485C49C71201495D017E1403494A5A00015E494A5A0003 4B5A4848021EC7FC1618000F92C8FC5B121FA25B123FA34848153817FC4C5A160300FF15 07A24C5AA3161F5F6D143FA24C5A6D14FF127F6D495B5D6C6C5B6D4990C7FC6CB45B02C0 B5FC6C9038FFFCFE6C14F96CECE1FC6C148139007FFC03D91FE05B90C712075E5E150F5E 4B5A153F4892C8FCD807C0137ED81FF05B48B4485A48EBFFF0B612C06C5C001F49C9FC00 0713F838007FC0314B7CBF36>71 D<4AB41638021F6D15F891B56C140101036E1403010F EF07F049170F90267FC07F16E09038FC003F4848171F484818C04848173F48485C001F19 8049177F123F48C7007F1600007E6000F85D006060C81501A203FF5D93C71203A34E5A4A 5AA261180F4A5A027FB7FC49B85A13075BA2F0BFC090260007F0C7123F140FA24B4A5A14 1FA25D023F15FF96C7FC5D147FA292C75A5C605C13011A044A0203143E0103187EF101FC 5C01079338FF03F84AEEFFF01AE0494817804A6EEBFE0049C913F8010CEE7FC047427FBD 4D>I<033FB612F80207B7FC023F16F091B812E0010317C049170090281FF8000FC0C7FC 49C7121F017E5D01FE143F48484AC8FCA2484814FE13E0491301C85B1503A25E1507A34B 5AA35E151FA34B5AA44B5AA44BC9FCA35D1401A25D1403A25D14075DA24A4814F04B1303 021F4A5A4B130F4AC7485A027E5D0003B8C7FC000F5E003F16F84816E0B812806C03FCC8 FC3D3E83BD32>I<177F933807FF80041F13C0047F13E04BB5FC4B14F0150FED1F809238 3F007F157E03FE133F4A5A4A5A18E04A4814C0020F15004B133E021F14104B90C7FC143F A24A5AA214FF92C9FCA25B5CA213035CA21307A25C130FA35C131FA35C133FA25CA2137F 5CA249C91206181E49167E000117FE49ED01FC2603FFFE1403DAFFF0EB07F84802FF14F0 04F813E04892B512C048178048EEFE00D87E015D26FC000F14F000F0010014C000C0DA07 FEC7FC37427CBF3F>76 D<0470F0018004F818031501030319071D0F70181F0307193F1E 006565705F64150F525A1C0F70171F1C3F4B187FED1E7F525A71ED01FBF303F3033CEF07 E3043FEE0FC783F31F87037894383F07F8041F167E7115FC03F0EE01F80803130F040F16 F071EC07E0DA01E0DC0FC05BF21F80706CEC3F00DA03C0167E08FE131F020701035D0380 6D495A4F5ADA0F004B5A706C495A4F485C021E163F706C49C7FC023E16FE023C4B48143F 94387F83F84AED87F0F0CFE002F891383FDFC04AEDFF807190C8FC49485D715AD810035E 263807C06E5A007C5F267F0F806E48EEF0E0B5C86C4816F394CAEBFFC0491C8076130049 1BFC6C48F20FF06C48F207C06C4897C8FCEA07C063457DBF6D>I<92B612E0020F15FF02 7F16E00103B812F8010F83013F83D97FE0D9000F7F2601FE00EC007F2603F001030F7FD8 07E01603D80FC082121F4B80EA3F80127F010095C7FC007E130312F8006060C749140161 61180302075E4B4A5A4E5A4E5A4EC8FC4A4814FEEF03F8EF3FF093381FFFC091261FE07F 90C9FCEEFFFC03E113F003E37FEC3FC39238C07FFC161F4B6C7E147F707E15004A6D7FA2 4A7F010182824A811303716CEB03C04A170F0107033FEC1F804A6FEB3F00716C137E010F 18FE4A9238FE01F8011F92390FFF87F04A6EEBFFE01A8049486E91C7FC91C86C13FC017E 6F13F00138043FC8FC4A407FBD4D>82 D<1A0E1A3E1A7E021FB812FC91B912F8010318F0 010F18E0013F188049EFFE0048B912E0D803F0C790C9FC48485B120F48485C003F1403A2 127F495C48C712075A12F800605DC8120FA35E151FA35E153FA44B5AA45E15FFA393CAFC 5CA35D1403A35D1407A25DA2140F5DA2141F5DA24A5AA34A5AA24ACBFC5C5CEB01F014C0 47477DC032>84 D<D80FC0ED03E0D83FF0ED07F8D87FFC82486C4B7E6C6C8200076D5C00 016D1680EA007F6D6C80011F15006E153F010F161F800107160FA20103170080A3010116 1EA2183E6E153C187C1878010016F84D5AA24D5A4D5AA24D5A4DC7FC5F177E5FA24C5A4C 5A4C5A4C5A4C5A163F4CC8FC4A13FE4B5A0101495A4B5A4B5A4B5AED7F804BC9FCECFDFE 4A5AECFFF8495B5D5D5D4ACAFC5C495A5C5C148091CBFC39427EBD38>86 D<EC1FFE49B512E0010714F8013F14FF90267FE0017FD801FEC7EA1FE0D803F8EC07F0D8 07E0EC01F8D80F80EC007C48C97E001E161E4882A248EE0780A248EE03C0B3B3A50060EE 018032397BB63D>92 D<15C04A7EA24A7EA24A7EA3EC0F3CA2EC1E1EA24A7EA34A6C7EA2 4A6C7EA249486C7EA349486C7EA249481378A249C77EA2011E80A34980A2496E7EA2496E 7EA348486E7EA248486E7EA248481578A348C97EA2001E82A24882A348EE0780A248EE03 C0A20060EE018032397BB63D>94 D<157FEC03FF141FEC3FE0EC7F80ECFE00495A495AA2 495AB3AA495AA2495A5C017FC7FC13FEEA07FCEAFFF0138013F0EA07FCC67E137FEB1F80 806D7EA26D7EB3AA6D7EA26D7E6D7EEC7F80EC3FE0EC1FFF1403EC007F205B7AC32D> 102 D<127EEAFFE013F8EA07FEC67EEB3F806D7E6D7EA26D7EB3AA6D7EA26D7E1300147E EC3F80EC1FE0EC07FF14011407EC1FE0EC3F80EC7E005C1301495AA2495AB3AA495AA249 5A495A01FFC7FCEA07FEEAFFF813E0007EC8FC205B7AC32D>I<146014F0A2EB01E0A3EB 03C0A3EB0780A2EB0F00A3131EA35BA25BA35BA3485AA3485AA2485AA348C7FCA3121EA2 5AA35AA35AA21278A37EA37EA27EA36C7EA36C7EA26C7EA36C7EA31378A37FA27FA37FA3 EB0780A2EB03C0A3EB01E0A3EB00F0A21460145A77C323>I<126012F0A21278A37EA37E A27EA36C7EA36C7EA26C7EA36C7EA31378A37FA27FA37FA3EB0780A2EB03C0A3EB01E0A3 EB00F0A2EB01E0A3EB03C0A3EB0780A2EB0F00A3131EA35BA25BA35BA3485AA3485AA248 5AA348C7FCA3121EA25AA35AA35AA21260145A7BC323>I<126012F0B3B3B3B3B1126004 5B76C319>I<0060160600F0160FB3B3AEB9FCA36C16FE30377AB63D>116 D E /FC load 0 FC currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FD cmmi10 10.95 78 /EN3 load IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-5 -25 95 68]N /FD 78 123 df<EC0FF0EC7FFE49B5FC903907F81FC090270FE007E013C090271F8003F0 13E0D93F00EC01C0017EEB01F84914FC48480100EB0380000315FE485A000FEE07005B00 1FEDFF0E49147F003F5EA248485DA25FA248C85B5FA25F94C7FCA37EA25E6C1403ED07BF 6C6C90391F3F0380037E13833B0FC001F81F873C07F00FE00F8F000001B5008013FE6C90 39FE0003FCD91FE0EB01F033297CA73A>11 D<16FF030313C0030F13F092381F01F89238 7C007C03F07F4A5A4A48133F4B7F4AC7FC140E4A1580A24AEC3F00A25CA24A147EA2495A 5F5F494813014C5A5F9238FFCFC0D90703EBFF804A49C7FCA26E7FD90E01EB8F8091C7EA 07C08316034981A3834914011603A35BA4494A5AA35F0001150F5F161F5F00034BC7FCA2 6D147E5ED80778495A0138EB07E0011EEB1FC06D6CB4C8FC390E07FFFE6D13F09038007F 8091CAFC5AA45AA45AA45AA35A31527DBF33>I<EB03F8D90FFE140690263FFF80130E49 7F48B56C131C5A486E13389038FC1FF8260FC003147048C77E003E027C13E0003C143C48 91381E01C0127000F0140E4891380F03801507C8EB0700A2168E1503A2169CA316B8A216 F0A35EA35EA35EA31507A293C7FC5DA4151EA45DA45DA31570A215202F3C7FA72F>I<EC 1FF8903801FFFC1307011F13F890383FE00049C7FCEA01FEEA03F8485A120F5B485A123F A2485A90B5128015C0B6FC158090C8FCA35AA6127EA2127F7E6C7EA26C6C13703907E001 F03903F80FE0C6B5128090387FFE00EB0FF01E287CA625>15 D<4A7E1403A6EDBFE0EDFF F8A25C91381F7FF091383C3FC04AC7FC5C495A495A495A49C8FC131E133E133C5B5BA248 5A12035B12075B120F90C9FC5AA2123EA35AA412FC5AA77EA47E7E7E13C0EA3FF013FC6C B47E6C13F06C13FE6C6D7EC680013F7F010F7F01017FEB003FEC07FC1401A21400A35DA2 01185B90381C01E090381F83C06DB45A010390C7FCEB00FC25527CBE28>I<D801F0EB1F C0D807FCEBFFF8260FFE037F3A1E3F07E07E3A1C1F8F007F0038019E7F02B81480007013 F05CA248485A5CA34848C7EA7F001200A301FE14FEA44848495AA44848495AA44848495A A44848495AA449495A5B6CC7FCC8FC4B5AA44BC7FCA415FEA44A5AA35DA2EC00E0293C7D A72D>I<15FCEC03FF020F138091381F87C091383E03E091387801F014F8D901F013F890 3803E000495A010F14FC495AA249C7FC5B017E14FE13FE5B1201A248481301A212074914 FC120FA2491303121FA348B612F8A44815F0903880000FA216E090C7121FA24815C0153F A2481580157F1600A215FEA25D4A5AA2007E495A4A5AA24A5A003E5C4AC7FC6C133E5C6C 5B3807C3F06CB45A6C1380D8007EC8FC27417DBF2B>I<131C017E143E4BB4FC01FE0107 13805D151E4848017813005D913801C0FE91380380782603F80FC8FC141E14385C3807F1 E0EBF7C001FFC9FC14FC48EBFF8015E09038E03FF8EC07FC391FC001FE1400157FA24848 156017E0A348C738FE01C0A392387E038012FEEE0700153EED3F0E48EC1FFC486E5A0070 EC03E02B297BA734>20 D<EB0FC0EB1FF0EB0FFCEB03FEEB00FFA26E7EA36E7EA36E7EA2 140F81A2140781A26E7EA36E7EA36E7EA28182A2153F82A282157F15FF913801EFF0EC03 CF140791380F87F8EC1F07EC3E03027C7F14F801011301D903F07FEB07E049486C7E495A 49C7FC017EEC7F8013FE485A4848EC3FC0485A4848141F484815E0123F4848140F48C813 F0481507007CED03F8003815012D407CBE35>I<14E0D903F0EB01C0EE03E00107EC07F0 A34948EB0FE0A44948EB1FC0A44948EB3F80A449C7EA7F00A401FE14FEA44848903801FC 031707A30003913803F80EA21507171C0007140F6D131D037913389026FF81F013704890 39FFE07FF001E79038803FE0903AE1FE000F8001E0C9FC485AA4485AA448CAFCA412FEA3 5AA21270303C7EA737>I<017FEC01C0261FFF80EB07E04890C7FC160FA2C6FC49EC1FC0 A3EE3F80485AEE7F00A216FE485A4B5A5E150348485C4B5A4B5A151F48485C4BC7FC157E 5D4848485A4A5A4A5AEC0F80263F803FC8FC147EEB81F8EB83F0387F0FC0017FC9FC13FC 13F0EAFF80007CCAFC2B287CA72D>I<4A7E1403A6EDFFE04A13F8141F147F903901FE7F F0903903FC3FC0D907F0C7FC495A495A133F495AA249C8FCA2485AA71200A2137FEC1FF8 90383FFFFE7F7F495B90383E3FF001F8C8FC485A485A5B485A48C9FC5A121E123E123C12 7CA25AA47EA37E7EEA7FC013F0EA3FFE6C6C7E6C13F06C13FC6CEBFF80C614E0013F13F8 01077F13019038003FFE140F1401EC007EA4010C137C011F137890380FC0F06DB45A0101 5BD9003FC7FC25527EBE28>I<011FB612FE017F8148B812804817005A485E9027C03801 C0C7FCD81E0013034801785B481370127048140714F0C712E0130193C8FC5DEB03C0A313 071480010F5B82A2EB1F00A25B133E017E80A213FE5B000181150F498012036F5A6C485C 6C486D5A31287DA634>I<ED1FC0EDFFF0020313FC913807E07E91381F803F91393F001F 80027C130F02FC14C0495A494814E0A2495A130F4A14F0131F5C133F17E049C7121FA401 FEEC3FC0A3EE7F80485A170016FEA24848495A5E6D495A4B5A486C5CED1F8001F749C7FC 9038F3C0FE390FE1FFF801E013E0EC3F8091C9FC485AA4485AA448CAFCA412FEA35AA212 702C3C7EA72F>I<020FB512FE027F8049B71280010716005B013F5D90277FE03FE0C7FC 9038FF000FD801FC6D7E484813034980485A120F491301121F485A150390C7FC5AA300FE 4A5AA34B5AA25E48141F5E6C4AC8FC127E157E003E5C003F495A6C495A390F800FC03907 E03F802603FFFEC9FCC613F8EB3FC031287DA634>I<011FB61280017F15C048B712E048 16C05A481680261F800EC8FCEA1E0048131E5A1270485BA2C7FC147CA21478A214F8A349 5AA31303A3495AA3130FA25CA2131FA3495A6DC9FC130E2B287DA628>I<16301670A45E A44B5AA44B5AA44BC7FCA4150EA2EDFFC0020F13FC023F13FF903A01FF1C7F80D903F8EB 0FE0D90FE0EB03F0903A1F803801F8D93F001300017C15FC49157E00015C4848157F4848 153F120F48485BA2485A177F4848485AA400FE494813FEA217FC1601DA070013F8007E15 0317F0EE07E06C010EEB0FC0EE1F806CED3F000180147E6C6C485BD807E0EB03F8D803F8 EB0FE0D801FEEBFF8027007FFFFEC7FC011F13F801011380D90038C8FC5CA45CA4495AA4 495AA491C9FC30527CBE36>30 D<137E2601FFC01520486D157026070FF015E0260E07F8 EC01C06EEC0380D81C03ED0700260C01FE140E0000161E6D6C5C17385F6E6C5B4C5A023F 495A6F48C7FC160E021F5BEDE03C1638020F5B6F5AEDF1C0913807F38003FFC8FC5D5D14 03A31401A24A7E1407140E4A7E5CEC787F02F07F14E0EB01C049486C7EEB0700130E496D 7E5B5B01F06D7E485A496D7E485A48C76C6C5A000EEE0380489238FE0700481401489138 00FF0E48ED7FFC0060ED1FF8C9EA07F0343B7EA739>I<EE0380A34CC7FCA4160EA45EA4 5EA45EA4017C4A13E048B4ED01F0486DEC03F826078FC01407D80E07D901C013FC001C13 E0003816031701D8700FD9038013F81700A226E01FC015784BC7FCA226C03F8015701200 90387F000EA218E013FE5DEF01C0485AEF03805DEF0700A24848150E4B5B12016D5D5F4B 5B6C6CEC03C0017E4A5A017F021FC7FC90391FC1C07E90390FF9C1F86DB512E001001480 DA0FFCC8FCEC0380A34AC9FCA4140EA45CA45CA336527DBE3B>I<0120ED01C00170ED03 E001F8ED07F049150F484816F812034915074848150318F048C91201A2000E1600121E00 1C1430003C027814E0003814F81401A248EE01C0A24A5A1703188000F05C170718004B5B 170E0207141E6C496C5B021F147C6C496C5B6C9038FFF8013B7F87FDFF0FF0D9FFF9EBFF E002F05C6C5B6C496C5B6C496C48C7FC6C48486C5AD801F8EB07F035297EA739>I<EC1F F0903801FFFC010713FF011F14804914C090397F801FE09039F80007C0D801E0EB0380D8 038090C7FC48C9FCA2120EA47EEB03FE3803DFFF6CB57E92C7FC485B38078FFC000EC9FC 5A5A127812705AA51504150E6C5C0070143C007C14F8393F8007F06CB55A6C5C6C91C7FC 000113FC38007FC0232B7DA82A>I<011FB912F8017F18FC48BA12FE4819FC5A4819F8D9 C0E0C9EA0700261E01C0EE0380123C48485AD87007CAFC12E0010E1406C648140EA25B16 1EF1070049141C163C190E49147CA204FC5C193C03011538030315780001DA07BC5C150F DB1F3E495A033E4A5A6DD97C1E130F0000902601FC1F495A9026FC0FF8D9C0FFC7FC90B5 00F0EBFFFE6D496C5BDB80075B6D496C13E0D91FFC6D5BD907E06D48C8FC47287DA64B> 36 D<EC01FCEC0FFF023F13C091387E07E0903901F803F0903903F001F8903807C00001 0F14FC495A49C712FEA2137E13FE4914FF12015B120316FE48481301A44848EB03FCA3ED 07F8121F16F0ED0FE05B486CEB1FC01680ED3F00003B147E157C3971F001F83970F803F0 90387C0FE090383FFF806D48C7FC38F007F848C9FCA67EA212FEB6FC6C14C06C806C807E 1201C812701560283A7AA72F>I<EE0FE00160EC3FF801E0ECFFFC4848497F4848497F48 C748148092380FE03F000E91381F800F92391E0007C0484A13035D48027013015DA24849 5A5D140392C7FC4849EC03801406140EEF0700140C021C140EA26C5E4A143C00785E5F00 7C017813016CED07E0263F8070495AD81FE0EC3F80280FF8F001FFC7FCD807FFEB0FFE6C 90B512F86C5D6C6C14C0011F91C8FC010713FC6D13E002E0C9FC495AA3130FA3495AA313 3FA291CAFCA25BA3137E133C323C7BA73B>39 D<121E123FEA7F80EAFFC0A4EA7F80EA3F 00121E0A0A798919>58 D<121E123FEA7F80EAFFC0A313E0127F123F121E1200A5EA01C0 A3EA0380A212071300120EA25A5A5A12200B1C798919>I<1818187CEF01FCEF07F8EF1F E0EF7F80933801FE00EE07F8EE1FE0EE7F80DB01FEC7FCED07F8ED1FE0ED7F80DA01FEC8 FCEC07F8EC1FE0EC7F80D901FEC9FCEB07F8EB1FE0EB7F80D801FECAFCEA07F8EA1FE0EA 7F8000FECBFCA2EA7F80EA1FE0EA07F8EA01FE38007F80EB1FE0EB07F8EB01FE9038007F 80EC1FE0EC07F8EC01FE9138007F80ED1FE0ED07F8ED01FE9238007F80EE1FE0EE07F8EE 01FE9338007F80EF1FE0EF07F8EF01FCEF007C1818363678B147>I<ED0180ED03C0A2ED 0780A3ED0F00A3151EA35DA35DA35DA34A5AA34A5AA34A5AA34AC7FCA2141EA35CA35CA3 5CA3495AA3495AA3495AA349C8FCA3131EA35BA25BA35BA3485AA3485AA3485AA348C9FC A3121EA35AA35AA35AA21260225B7BC32D>I<126012F812FEEA7F80EA1FE0EA07F8EA01 FE38007F80EB1FE0EB07F8EB01FE9038007F80EC1FE0EC07F8EC01FE9138007F80ED1FE0 ED07F8ED01FE9238007F80EE1FE0EE07F8EE01FE9338007F80EF1FE0EF07F8EF01FCA2EF 07F8EF1FE0EF7F80933801FE00EE07F8EE1FE0EE7F80DB01FEC7FCED07F8ED1FE0ED7F80 DA01FEC8FCEC07F8EC1FE0EC7F80D901FEC9FCEB07F8EB1FE0EB7F80D801FECAFCEA07F8 EA1FE0EA7F8000FECBFC12F81260363678B147>I<5C5CA44A7EA84A7EA300F0163CD87F 80EC07F8D83FFE9038C1FFF0000FB712C000031600C615FC011F14E001071480010149C7 FC9038007FF8A34A7EA2903801FCFEECF87E49487E49486C7EECC00F49486C7EEC000301 1E6D7E011C1300013C8001381470498001601418014014082E2C81AC2D>I<EF0F80A217 1FA2173F177FA217FF845EA25E5E17BFEE0F3FA2161E163E163C167C04787F16F0171FED 01E0150316C0ED0780A2ED0F00A2151E153E153C4B80A24B130F14015D14035D4A5A92B6 FC5C5CA2023CC7EA0FF8A24A140714F85C13015C495AA2495A130F91C8FC5B49825B2603 FF80140F007F01F80103B512F84C14FCB517F86C5B3E417DC044>65 D<91B712F84916FF19E08590260001FCC7EA3FF8F00FFC727E727E4A4880A21A80A24A5A A44A48160060A24E5A4A485D4E5A181F4E5A4A48EC7FC04E5ADD03FEC7FCEF1FFC4AB612 E095C8FC18E092C7EA0FF802FEEC03FE717E717F727E495A727EA3494882A449485E187F A261494815FF615F4D90C7FC49484A5A4D5A4D5A4D5A4948ECFFE0017F02075B007FB8C8 FCB812FC17F06C93C9FC413E7DBD45>I<DC1FF01302922601FFFE1307030F9038FF800E 037FECE01E913B01FFF007F03E4A90398000F87EDA0FFCC7EA7CFCDA1FF0143DDA7FC014 1F4A48140F4990C813F8D903FC1507495A495A4948ED03F0133F495A495A19E04890C9FC 485AA2484817C0120FA24848178095C7FC5B123FA2485AA4485AA55BA218181838A360A2 60127F6D4B5AA2003F4C5A6D4BC7FC001F5E170E6C6C153C6C6C5D6D5D6C6CEC03E06C6C 4A5A6C01E0013FC8FC90393FFC01FE6DB512F8010714E0010114809026001FF8C9FC4042 7BBF41>I<91B712F84916FF19C019F090260001FEC76C7EF00FFCF003FE727E4A486E13 80197FF13FC0A24A48ED1FE0A21AF0A24A48150FA31AF84A5AA3191F4A5AA31AF04A5A19 3FA34AC913E0197FA21AC0494816FFA21A806049481700A24E5A6149481507614E5A181F 49484B5A614E5A4EC7FC4948EC03FE4D5A4D5AEF3FE0494849B45A017F020F90C8FC007F B712FCB812F017C06C03FCC9FC453E7DBD4B>I<49B912C0A490260001FEC71203F0003F F11F80190F4A5A1907A34A5A1A00A34A5A1707A2190E4A48130E190696C7FC171E4A4813 1C173C177CEE01FC4AB55AA49139FF0003F01600A349485C1938A2614948495A19F06193 C8FC49484B5AA24E5AA2494815074EC7FCA2181E4948153E6018FC17034948EC0FF8017F 15FF007FB85AB9FC60A2423E7DBD43>I<91B9FC5BA390260001FEC712071800197E193E 4A48151EA44A5A191CA34A5AA21706050713384A48130E19181900171E4A48131CA2173C 177C91397F8003F892B5FCA391B65AED00031601160049485CA44948495AA35F494890C9 FCA4495AA4495AA4495A497E007FB512F8B6FCA26C5C403E7DBD3A>I<DC3FF013049226 03FFFE130E031F6D131C037FECC03C913B01FFF007E07C4A90390001F0FCDA0FFC903800 F9F8DA1FF0147FDA7FC0143F4A48141F4948C813F04948150F495A495A4948ED07E0133F 495A495A91C913C05A485AA248481780120F5B001F180095C7FC5B123FA2485AA4485AA4 041FB512E0495CA219C09339000FF80060A34D5AA2127F7F4D5A123F7F121F4D5A6C7E6D 15FF6C6C5C6C6C4A90C7FC6C6CEC0FDF6C01E0EB3F9F903A7FFC01FE0F011FB5EAFC0601 07ECF00201010280C8FC9026003FF8C9FC3F427BBF47>I<49B6D8803FB512F0A31BE0D9 000190C8383FE0004B5EA34A484B5AA44A484BC7FCA44A484A5AA44A484A5AA44A484A5A A44AB75AA44AC8EA1FE0A449484B5AA449484B5AA449484BC8FCA449484A5AA449484A5A A449484A5A496C4A7E007FB5D8E00FB512F8B64980A203C05D4C3E7DBD4C>I<49B61280 4915C0A26D1580D9000190C7FC5DA34A5AA44A5AA44A5AA44A5AA44A5AA44A5AA44AC8FC A4495AA4495AA4495AA4495AA4495AA4495A497E007FB512E0B6FCA25D2A3E7DBD28>I< 49B66C90387FFFF01BF896B512F085D9000190C8380FFE004B16F01A804FC7FC4A48153C 6119E0F003C04A484A5A060EC8FC6018784A485CEF01C04D5A050FC9FC4A48131C5F17F0 4C5A91383FC0031607161F4C7E91387F807F923881EFF8ED83C792388707FC9138FF0E03 153C4B6C7E15E04901C07F4B7E92C77F4A147F495A717EA2844948141F84170FA249486E 7EA28417034948811701A284494882496C4A7F007FB500E0013F13FFB65CA24B5D4D3E7D BD4D>75 D<49B612E0835FA2D900010180C7FC4BC8FCA34A5AA44A5AA44A5AA44A5AA44A 5AA44A5AA44AC9FCA4495A1804180EA24948151CA2183C1838495A1870A218F0494815E0 1701A2EF03C049481407170FEF1F80177F4948EB01FF017F021F1300007FB8FCB9FC5FA2 373E7DBD3E>I<49B56C93B5128062621D0090270001DFC04B90C7FC631A0E1A1CDA039F EE1DFC1A391A71A29126070FE04B5AA2F101C3F10383020EEF87F0F10707A2190E021C4C 485A6F7E1938197002384D5A19E0A2F001C002704B48485A6F7EF00700180E02E04DC8FC 60A260D901C04B13FE6F7E604D5AD903804C5AEF0380A2EF0700D90700020E495AED00FE 5FA2010E4B495A5FA25F496E48495AA2705A133C017C92C7485AD803FF027E4A7E007F01 FC033FB512C0B5027C498016784A01385E593E7CBD58>I<49B54AB512F082A27016E0D9 00019239000FFC00F103F0DBDFE015C019019126039FF04A5A158F821587DA07074BC7FC 82150382DA0E01150EA26F7EA24A6E5B167F83163F4A5E83161F834A010F5CA2707EA24A 6E5B160383160149484B5A17FF821881494891387F8380A2EF3FC3A249C801E7C8FC171F 18F7170F010E16FEA21707A2496F5AA21701133C017C5ED803FF1500007F13FCB5167818 704A15304C3E7DBD49>I<49B712F018FF19C08590260001FEC76C7EF00FF8727E727E4A 48140185A34A5A1A80A21A004A485CA3614A481407A2614E5A4A485D181F4E5A4E5A4A48 4948C7FCEF07FEEF3FF892B612E091B7128005FCC8FC92CBFCA2495AA4495AA4495AA449 5AA4495AA4495A497E007FB512E0B6FCA25D413E7DBD3A>80 D<EE3FF00303B5FC031F14 C092397FC03FE0913A01FE0007F8DA07F86D7EDA0FE06D7EDA3FC06D7E4A48EC7F804AC8 EA3FC0EB03FC0107EE1FE0495A494816F04A150F494816F8137F495A4890C9FCA2484817 FCA2485A120F5B121FA25B123F19F84848161FA44848EE3FF0A3F07FE0A25BF0FFC0A219 805F19004D5AA24D5A60007F160F03F8495A9026C003FE5C003FD90FFF495ADA1E07495A 6C6C486C6C48C7FC9139380181FE260FF070EBC3FCEEC7F83B07F8E000CFE0D803FCECFF C0D801FE5D2800FFF003FEC8FC90393FF81FF8010FB500E0130C13039026007FF1141C91 260001F013181838A2705BEF01F09338FE07E093B5FC60A2606F91C7FC5F5F705A705AEE 0FC03E527BBF48>I<49B77E18F818FF8590280001FE000113E09438003FF0F00FF8727E 4A5A727EA34A4881A44A484A5AA34E5A4A5A614E5A4E5A4A484A5A4E5A4D48C7FCEF0FFC 4A48EB7FF092B6128005FCC8FC5F9139FF0001FEEE007F717E717E4948140F84A3494881 A44948141FA44948143FA44948027F5BF10380A2F107004948143F496C160E007FB500E0 131FB66F5A050F13784B6DB45ACA00015B9438003F8041407DBD45>I<DB07FC1310DB3F FF133892B5EAC0700203ECE0F0913907F807F191390FC000FB4A48EB7FE0023EC7121F5C 4A140F494815C013034A140713074A1580130FA3011F1600A317066E91C7FC8080EB0FFE ECFFC015FC6DEBFFC06D14F86D14FE6D806E806E800207801400030F7F1500163FEE0FF8 1607A3160312061207000E5EA35F001E1507A25F001F150F485E4CC7FC6D143E167E486C 5C01F0495AD87CFCEB07F090397F803FC0486CB55A486C49C8FCD8E00713F839C0007FC0 35427BBF38>I<90B912FC5A5AA2913B0003FC000FF8D807F8160101E016000180495A00 0F187890C7FC120E001E4A481470121CA25A4B5AA25A19E04B5A5AA2C816004B5AA44BC9 FCA44A5AA44A5AA44A5AA44A5AA44A5AA44A5AA44A5A4A7E000FB612F882485D7E3E3D7F BC35>I<003FB500F090387FFFFEA319FC26003FE0C7000313804A913800FE0018F81878 49485DA449C8485AA448484B5AA448484B5AA448484BC7FCA44848151EA448485DA44848 5DA448485DA490C8485AA2484B5A7E4C5AA24CC8FC161EA26C6C5C5E001F4A5A6C6C495A 6DEB0FC06C6CEB3F802703FE01FEC9FC6CB55A6C6C13F0011F13C0D903FECAFC3F407BBD 3E>I<B691380FFFFE5FA25C00010180020113C091C9EAFE00606C5F604D5AA24D5A1707 606E4AC7FCA2017F151E173E173C5FA25F16016E5C4C5A013F14075F4CC8FCA2161E163E 163C6E5BA2011F5C15015E4B5A15075E150F02F090C9FC151E010F133E153C5DA25D14F1 5DECFBC0A26DB45AA292CAFC5CA25C5CA25C13035C5C3F407BBD35>I<007FB5011FB5D8 C003B512804C18C0B61A806C1880000101C09026007FE0C7383FF0006C90C80180EC0FC0 99C7FCA21B0E63A2634D7E634C16F063DC03BF4A5A16076E023F4A5A160E017F4EC8FC16 1C1A0E0438151E0478151C04705D16E062DB01C07F62922603801F130162DB07004A5A5D DAC00E4BC9FC5D013F170E5D614B153C03F015384B5DECC1C061DAC38014F0F0F1C002C7 C7EA0FF36102CE03F7CAFC14DE02FC15FE5C011F5E5C605C604A5D5C6091C8FC60011E15 0795CBFC5A407CBD56>I<027FB5D88007B512C091B65BA26E02001580020001F00101EB F000DB7FC06D1380033F4BC7FC7014F84E5A6F6C495A4E5A6F6C5C4EC8FC606F6C133E60 6F6C5B4D5A4D5A6F6C485A4D5A6F018FC9FC179E17BEEE7FFC5F705A5FA2707EA283163F 167F4C7EED01F7923803E3FEED07C3ED0F8392381F01FF153EDB3C007F5D15F84A486D7E 4A5A4A486D7E4A5A4AC7FC023E6E7E5C02786E7E5C495A01036F7EEB0FC0D93FE06E7E48 B46CEC1FFF007F01FE49B512FE85B55F6C5B4A3E7EBD4B>I<007FB56C0107B51280B6FC 5F92C76C1400C601E0020013E06D486FC7FC187C606D6C4A5A606D6C4A5A17074D5A6D6C 4AC8FC173E173C6D6C5C17F84C5A6D6C495A4C5A6E495A6D92C9FC161E6DEB803E5E5E91 387FC1F05EEDC3C0EC3FE7EDEF8003FFCAFC6E5A5D6E5AA25DA25D141FA35D143FA35D14 7FA392CBFC5CA35C130113030003B512FE48805DA2413E7DBD35>I<023FB712F05CA219 E0DAFFFCC7EA3FC003C0EC7F8092C8EAFF00D901FC5C4A4A5A4A4A5A49484A5A4A4A5A60 4A4A5A01074B5A91C848C7FC4C5A010E14034C5A4C5A494A5A010C4A5A90C85B4C5A4CC8 FC4B5A15034B5A4B5A4B5A4B5A5E4B5A4BC9FC4A5A4A5A14074A4814704A5A4A5A4A485C 5D4AC8FC49484A5A495A13074948140349485D49481407495A4A4AC7FC49C85A48485D48 48157E000716FE484814034848140F4848ECFFFC48B7FCA2B85AA23C3E7BBD3E>I<151E ED7F80EDFFC0EC01E1EC03C191380780E0140F15005C91383E01C0A2147CA214F80101EB 0380A2EB03F0ED0700A2EB07E0150E130F4A5AA2011F5BA24A5A133F5DEC81C0EB7F014A 5A4AC7FCA2EBFE0E5C5C1478EBFC7000015BEBFDC0EBFF8091C8FC5B5B5BA41203120712 0F121F123D127900F014030060EC07800000EC0F000178131E017C1378013C5BEC03E090 381FFFC06D90C7FCEB07FC23417FBF26>96 D<EC3F80ECFFE00103EBF0E090390FE0F9F0 90391F803BF890383F001F017E5C49130F485A1203495C1207485AA2001F4A5A5B123FA2 4848495AA448C748C7FCA49238FE0180481503A3007E903901FC0700A214036C0107130E 140F6C131ED9803C5B3A0FC1F07C383A07FFE03FF80001496C5A3A007E0007C029297DA7 30>I<EB1FC0EA0FFFA438003F80A449C8FCA413FEA4485AA4485AA2EC1F80ECFFE0D807 F17F9038F7C0F89038FF007C497F4848133F5B49148049131F485AA2ED3FC0A2485AA316 8048C7127FA400FEECFF00A35D1401485C14035D5D007C495A007E130F5D003E495A003F 49C7FC6C137E380FC1F86CB45A6C13C0D8007EC8FC22407CBE27>I<EC07F0EC7FFE49B5 FC903903F80F8090390FE003C090381F800790393F000FE0017E131F49133F485A0003EC 7FC04848133F000F158049EB1E00001F91C7FC5B123FA2485AA448C9FCA76C154016E0A2 6CEC03C0ED07806C6CEB0F00000F143E3907C001F83903F00FF06CB512C06C49C7FCEB1F F023297DA727>I<EE0FE0ED07FFA49238001FC0A4EE3F80A4EE7F00A416FEA44B5AA2EC 3F81ECFFE10103EBF3F890380FE0FB90381F803B90383F001F017E5C49130F485A120349 5C1207485AA2001F4A5A5B123FA24848495AA448C748C7FCA49238FE0180481503A3007E 903901FC0700A214036C0107130E140F6C131ED9803C5B3A0FC1F07C383A07FFE03FF800 01496C5A3A007E0007C02B407DBE2F>I<EC1FE0ECFFFC01037F90380FF01F90393F800F 8090387F000701FCEB03C0485A1203485A4848EB0780121F49EB0F00003F5C153E397F80 01FC903887FFF090B512C0B548C7FC01F8C8FC90C9FCA25AA71680007EEC01C0A2ED0780 6CEC0F00151E6C6C137C390FC003F03907E01FE06CB51280C601FCC7FCEB3FE022297CA7 2A>I<163EEEFF804B13C0923803E1E0923807C3F0ED0F87ED1F8F169FED3F1FA2037F13 E0EE0FC0EE0780037EC7FC15FEA54A5AA54A5A0103B512FE5BA25E90260007F0C7FCA54A 5AA64A5AA54A5AA54AC8FCA514FEA5495AA45C1303A35CA2380F07E0EA3F87127FEBC7C0 EAFF87EB8F80130F4848C9FCEA7C1EEA783CEA3FF86C5AEA07C02C537CBF2D>I<EC01FC EC07FF021F138791397F07CF809139FC01DFC0903901F800FF494814804948137F495A13 1F49481400A249C7FCA24914FE5B1201A24848495AA449495A1207A34B5A5BA212034B5A 6D131F1201153F0000ECFFC0EB7C0190383E07DF90381FFF1F6D48485AEB03F890C7FCA2 4BC7FCA415FE121E123F486C485A00FF5C14034A5A49485A48EB3F80007C01FFC8FC383F FFFC6C13F0000113802A3B80A72B>I<147814FC1301EB03FEA2EB07FCEB03F814F0EB01 E090C7FCAC13FC487E487E38070F80000E13C0121C003813E0A21270EB1FC0A212E0EB3F 80A212C038007F00A213FEA3485AA3485AA33807F00C141CEA0FE0A21438EA1FC01470A2 14E0A2380FC1C0EBC7803807FF006C5AEA00F8173E7DBC1F>105 D<ED03C0ED07E0ED0FF0151FA316E0ED0FC0ED078092C7FCACEC07E0EC1FF84A7EEC787E ECE03FEB01C0EB03801680EB0700130EED7F005BA3011813FE90C7FCA34A5AA44A5AA44A 5AA44A5AA44A5AA44A5AA44AC7FCA414FE121E003F5BEA7F8100FF5BEB83F01387EB07E0 48485AD87C3FC8FCEA3FFEEA1FF8EA0FE0245081BC25>I<EB03F8EA01FFA4380007F0A4 495AA4495AA4495AA449C8FCA2ED01F0ED07FC01FEEB1FFEED3E0EED783FEDE07F3A01FC 01C0FFEC0381EC0701140E2603F81C13FE91383800FC4A13784A13003807F3C0EBFF8049 C8FC6D7E4813F014FCEBE3FF9038E07F8048486C7E141F6E7EA2D83F80140C161CA33A7F 001FC038A3020F137012FE16E01407EDE1C048903803FF80486D13000070EB007C28407B BE2F>I<EB07F0EA01FF5AA338000FE0A4EB1FC0A4EB3F80A4EB7F00A413FEA4485AA448 5AA4485AA4485AA4485AA4485AA4387F01801303A338FE0700A4130E127E5B123EEA1FF8 6C5AEA03E014407DBE1B>I<D801F0D91FE0EB0FF0D807FCD97FF8EB3FFC280FFE01FFFE 90B5FC3E1E3F03E07F01F03F803E1C1F8F803F87C01FC00038903B9E001F8F000F02BC14 9E007001F802DC804A14F84A5C4848485CA24A5CA24848C74848495A1200A301FE4AC748 5AA34FC7FC484814FEA219FEA248484948ED0180953801FC03A2F003F848484948ED0700 A2F1F00EA2484849485DA262060113F0494A6DB45A494A6E5A6CC76C48021FC7FC49297D A750>I<D801F0EB1FE0D807FCEB7FF83A0FFE01FFFE3A1E3F03E07F3B1C1F8F803F8000 3890389E001F14BC007001F814C05C5C48485AA25CA24848C7EA3F801200A301FEEC7F00 A316FE485AA24B5AA248481503923803F807A2ED07F04848150EA2EEE01CA248481538A2 1770923803E1E049903801FFC0496D13806CC8EA3E0030297DA737>I<D903E0137E903A 0FF803FF80496C4813C0903A3C7E1F03E0903A383F3C01F0017090387800F84B13FC01E0 5B4B13FE4B137E484848C7FCA217FFA2EB80FEC7FCA217FE49481301A44948EB03FCA317 F84948130717F0160F17E0494814C0EE1F806E133F1700011F147E6E5B6E485A9138DE07 E090393F8FFFC0028790C7FCEC81F80280C8FC49C9FCA413FEA4485AA31203387FFFF0A2 B5FC7E303A84A72E>112 D<91383F80089138FFE03C0103EBF07890390FE0F8F890381F 803990383F001F017E14F049130F485A12034914E01207485AA2001FEC1FC05B123FA248 48EB3F80A448C7EA7F00A415FE5AA3007E495AA214036C13074A5A6C131FEB803F380FC1 F36CB4485A000113C738007E0713004A5AA44A5AA44A5AA3147F90383FFFFEA4263A7DA7 29>I<D801F0137E3A07FC01FF80260FFE0713C03A1E3F0F81E03A1C1F9E03F00038EBB8 07ECF00F0070141F14E014C0D8E03F14E09138800FC0ED078092C7FC4848C8FC1200A313 FEA4485AA4485AA4485AA4485AA45B5B6CC9FC24297DA729>I<EC1FC0ECFFF801037F90 3807E03E90380F800F90381E0007013EEB1F80013C133F017C137FA201FCEBFF0081153E 6D13186D6CC7FC14F8ECFF806D7F15F06D7F6D7F130701017FEB000F14011400001F147E 487E007F143E7F48485BA290C712784814F80078495A0070495A003C495A391F803F8026 0FFFFEC7FC000313F838007FC021297CA72B>I<147014F813011303A4495AA4495AA449 5AA3007FB512E0B6FCA339003F800049C7FCA413FEA4485AA4485AA4485AA4484813C014 01A2EC0380EA1FC0EC0700A2140E5C000F5B5C3807C1E06CB45A6C5BD8007EC7FC1B3A7E B821>I<137C48B4140E486D131F26078FC0EB3F80EA0E07001C7F0018ED7F00EA380F12 70A216FE48485AA3484848485A1200EB7F00A24B5A13FEA34848495AA4484890380FE018 1738A392381FC070A30001023F13E0157F6D13EF00000101EBC1C0903A7E07C7C3809039 3FFF03FF6D486C1300903903F8007C2D297DA734>I<017C14E048B4EB01F04890388003 F83A078FC007FCEA0E07001C13E01503D8380F130100701400167CA248485A163CA24848 481338120049C7FCA2167013FEA21660484814E0A2ED01C0A2485AED0380A2ED0700A215 0E5D12015D6C6C5B5D90387F03C06DB45A010F90C7FCEB03F826297DA72C>I<D903F013 7E903A0FFC01FF8090263FFE0313C0903A7C1F0783E09039F00F8E03D801C09038DC07F0 D80380EBF80F26070007131F15F0000E130F03E013E048ED0FC0EE078093C7FC0018495A C7FCA34A5AA44AC8FCA402FEEB01801603121E003FED0700387F81FC00FF150EA201835C 01035C26FE077E137826FC0E3E5B3A781C1F03E03A3FF80FFF806C486C90C7FC3907C001 FC2C297DA734>120 D<137C48B4140E486D131F26078FC0EB3F80EA0E07001C7F0018ED 7F00EA380F1270A216FE48485AA3484848485A1200EB7F00A24B5A13FEA34848495AA448 48495AA44B5AA30001143F4B5A6D13FF00005BEB7E076DB46CC7FCEB1FFEEB03F890C7FC 15FEA25D001F1301D83F805B387FC0035D4A5A49485A01005B007E49C8FC0070133E6C13 FC383E03F8381FFFE000071380D801FCC9FC293B7DA72D>I<02F8130CD903FE131C497E 49EB803849147049EBE0F049EBFFE0D97C0713C09039F0007F8049EB07004848130E6C5A 90C75A15785DEC01C04A5A4AC7FC140E5C5C5C5CEB03C0495A010EC8FC4914604914E05B 49EB01C0484813034848130748B4EB0F809138E03F004890B5FCD81E075BD83C015BD838 005B486D5A48EB3FC06EC7FC26297DA72A>I E /FD load 0 FD currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FE cmcsc10 10.95 26 [/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup /arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute /caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash /suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand /quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less /equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y /Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b /c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut /tilde/dieresis 128{/.notdef}repeat] A/EN11 X IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-1 -25 98 68]N /FE 26 122 df<DB1FF8EB01804AB51303020FECE007023F14F0913AFFF803FC0F499039 C0007E1FD907FEC7EA1F3FD90FF8EC07BF4948EC03FFD93FC08049488049C9FC48177F5B 4848163F120749161F120F4848160FA3485A1807127FA34993C7FC12FFAC127F7FF00380 A2123FA26C7EA2F007006C7E12076D160E12036C6C5E7F6C5F6D6C1578D93FE05D6D6C4A 5A6D6C4A5AD907FEEC0F80902601FFC0013FC7FC6D9038F801FC023FB55A020F14E00201 14809126001FF8C8FC39427ABF47>67 D<B912F8A4C601E0C7127F6D48140FEF03FC1701 1700187C183CA3181CA4040E7FA595C7FC161EA2163E167EED01FE91B5FCA4ECC001ED00 7E163E161EA2040EEB0380A3F00700A393C7FCA260180EA2181EA3183E187E187CEF01FC 1703170F496C14FFB9FC60A3393E7CBD43>69 D<B612F8A439007FF0006D5AB3B3B0497E B612F8A41D3E7DBD25>73 D<B500E093381FFFFCA36E5EC6F1FC00D977F8EE77F8A3D973 FC16E7A2D971FEED01C7A3D970FFED0387A26E6CEC0707A36E6C140EA26E6C141CA36E6C 1438A26E6C1470A36E6C14E0A26E6CEB01C0A36E6CEB0380A292397F800700A392383FC0 0EA26F6C5AA36F6C5AA36F6C5AA26F6C5AA36FB45AA26F5BA213F8486C6EC7FCD807FF4D 7EB500F8013E010FB512FCA3161C4E3E7BBD5A>77 D<B712F016FF17C017F8C69039E000 3FFC6D48EB03FF04007F717E717E717EA284170F84A760171F604D5A604D5A4C48C8FCEE 07FEEE3FF891B612E094C9FC839139C0007FE0EE0FF0707E707E707E707E84177F84A784 A51A80F101C0EF3FF0A3496C021FEB0380B600E0EB0FF80507EB0700943803FE0F943801 FFFECB6C5AF00FF042407CBD49>82 D<EC01E0A24A7EA34A7EA34A7EA24A7E141CA2EC3C FFEC387FA24A6C7EA34A6C7EA2010180ECC00FA249486C7EA349486C7EA24980010E1301 010FB5FC4980A2011CC7FC49147FA20178810170143FA201F08149141F1201707E486C14 1FD80FF84A7ED8FFFE49B512C0A332317DB038>97 D<B612FEEDFFC016F03A03FC000FF8 6C48EB03FE15016F7EEE7F80A217C0A6178016FF17004B5AED07FCED1FF890B612E01680 16F09039F80007FCED01FE923800FF80167FEE3FC017E0161F17F0A617E0163FA2EE7FC0 EEFF804B1300486CEB07FEB75A16F093C7FC2C2F7CAE35>I<DA0FF81330DA7FFF137001 03B5EAC0F0903907FC03E090391FE00079D93F80133F49C7121F01FC140F484814070003 1503485A000F1501485A1600485AA2007F1670A25BA200FF1600A9127F17707FA2123FA2 6C6C15E0A26C7E0007ED01C06C7E0001ED03806C6CEC0700017F140E6D6C5BD91FE01378 903907FC03F06DB55AD9007F1380DA0FFCC7FC2C317BAF36>I<B612FCEDFFC016F03A03 FE000FF86C48EB01FE6F7EEE3F80EE1FC0EE0FE017F0160717F8160317FCA2EE01FEA417 FFAA17FEA317FC1603A217F8EE07F0A2EE0FE0EE1FC0EE3F80EE7F00ED01FE486CEB0FFC B712F016C04BC7FC302F7CAE39>I<B8FCA33903FE00016C489038003F80161F160F1607 A21603A317C0ED1C01A393C7FCA2153CA215FC90B5FCA3EBFC00153CA2151CA21770A392 C712E0A41601A2EE03C0A21607160F161F486C14FFB81280A32C2F7CAE33>I<B712FEA3 3903FE00036C48EB007F828282A282A3EE0380A21538A293C7FCA31578A2EC01F890B5FC A3EBFC01EC0078A21538A592C8FCAA487EB512FCA3292F7CAE31>I<B5D8F81FB5FCA3D8 03FEC7EA7FC06C48EC3F80B190B7FCA301FCC7123FB3486CEC7FC0B5D8F81FB5FCA3302F 7CAE38>104 D<B512F8A33803FE006C5AB3B3A3487EB512F8A3152F7DAE1B>I<B500F890 383FFF80A3D803FEC7381FF8006C4815E01780041EC7FC5E5E5E4B5A4B5A4B5A4BC8FC15 1C5D5D5D140114074A7E4A7E143FEC79FCECF0FEEBFDE09038FFC07F9138003F80498049 131F6F7E6F7EA26F7E6F7E821500167F83163F707E8383486C15FCB500F890B512C0A332 2F7CAE3A>107 D<B512FCA3D803FEC8FC6C5AB3A7160EA4161CA4163CA2167C16FC1501 ED03F8486C131FB7FCA3272F7CAE2F>I<D8FFFE923807FFF0A3D803FF92380FFC006C5F D9DF80141DA3D9CFC01439A2D9C7E01471A3D9C3F014E1A2D9C1F8EB01C1A3D9C0FCEB03 81A2027EEB0701A36E130EA291381F801CA391380FC038A2913807E070A3913803F0E0A3 913801F9C0A2913800FF80A3486CEB7F00487E486C013E497EB5008091B512F0A2151C3C 2F7CAE44>I<D8FFFC49B5FCA27FD801FF9038001FF06EEB0FE0EE07C0D9DFC0EB038080 13CFEBC7F0EBC3F8A2EBC1FCEBC0FEA2147FEC3F8015C0141FEC0FE015F01407EC03F815 FC1401EC00FE157FA2ED3F83ED1FC3A2ED0FE3ED07F316FB1503ED01FFA281167F163FA2 486C141F486C140F487EB56C13071603A2302F7CAE38>I<EC1FF891B5FC010714E09039 0FF00FF090393FC003FC49C77E01FE147F4848EC3F804848EC1FC04848EC0FE0000F16F0 491407001F16F8491403003F16FCA2007F16FE491401A300FF16FFAA007F16FE6D1403A2 003F16FCA26D1407001F16F86C6CEC0FF0A26C6CEC1FE0000316C06C6CEC3F806C6CEC7F 0090397F8001FE6D6C485A90390FF81FF06DB55A010091C7FCEC1FF830317BAF3A>I<B6 12FCEDFF8016E03A03FE001FF86C48EB03FC6F7E6F7EA2EE7F80A217C0A61780A2EEFF00 A24B5A4B5AED1FF890B612E0168003FCC7FC01FCC9FCB1487EB512F8A32A2F7CAE33>I< B612E015FE6F7E3A03FE003FE06C48EB07F86F7E6F7EA26F7EA283A594C7FCA24B5AA24B 5A4B5AED3FE090B612804BC8FC5D9038FC007E151F826F7E82150782A382A382A2188093 38FE01C0150316FF486C6DEB0380B5D8F800138793387FFF00705AC9EA03F832307CAE37 >114 D<90383FC00C9038FFF81C0003EBFE3C3807E03F390F0007FC001E1301481300A2 48147C153C12F8A2151CA27EA26C1400EA7F8013E0EA3FFEEBFFE06C13FE6CEBFF806C14 C0000114E06C6C13F0010F13F8010013FC1407EC01FE1400157F153F126000E0141FA46C 141EA26C143E153C6C147CB414789038C001F039F3F807E000F1B512C0D8E07F130038C0 07FC20317BAF2A>I<007FB712F8A39039801FF0073A7E000FE00000781678A200701638 00F0163CA348161CA5C71500B3A8EC3FF8011FB512F0A32E2E7CAD36>I<B5D8F801B5FC A3D803FEC7EA1FF06C48EC0FE0EE07C0EE0380B3AB0000ED0700A27F017E140EA26D5C6D 6C5B6D6C13786D6C485A903903FC07C00100B55ADA3FFEC7FCEC07F830307CAE38>I<B5 00E0903807FFF0A3D807FEC700011300D801FC6E5A17786C7E17706D15F06D5DA26D6C49 5AA26E1303011F5DA26D6C49C7FCA26E5B0107140EA26D6C5BA26E133C01011438800100 5CA26E13F06E5B1581023F5BA215C3021F5B15E7020F90C8FCA2EC07FEA36E5AA26E5AA3 6E5AA234307EAE38>I<3B7FFFF001FFFEA30001D9C00013E06C496DC7FC017F147E167C 6D6C13786D6C5B6D6C5B15016D6C485AD903FC5B15076D6C48C8FC903800FF1EEC7F9C15 BCEC3FF86E5AA2140F6E7E14034A7E4A7EEC1EFF141C91383C7F804A6C7E14709138F01F E049486C7E49486C7E148001076D7E49486C7E130E011E6D7E496E7E017C6E7E13FC0001 82D80FFE4A7EB549B512C0A3322F7DAE38>120 D<B500E0903807FFF0A3000390C70001 13806C48913800FC006C6C5D6E5C017F4A5A6D6C5C6E1303011F5D6D6C13076E49C7FC01 07140E6D6C131E6E5B010114386D6C13786F5A027F5BEC3FC191381FE3C05EEC0FF76EB4 C8FC5D14036E5AB04A7E91B512F0A3342F7EAE38>I E /FE load 0 FE currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FF cmmi9 9 5 /EN3 load IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-4 -21 80 56]N /FF 5 111 df<121C127E127FEAFF80A213C0127FA2121D1201A4EA0380A3EA0700A212 0EA25A5A5A12200A187A8815>59 D<0107B712FC5BA2903A001FC0000717004A48147CA2 183CA24AC81238A414FE1607A34948010E13301800A2161E49485B16FC91B5FCA2495CEC F0001678A249481370A218C018E049489038E001C016609338000380A24948EC0700A25F 170E49C8121E5FA2177C01FE4A5A16070001ED3FF0007FB7FCB85AA236337DB239>69 D<DB0FF81318DB7FFF13380203B5EA8078913A0FF803E0F091393FC000F102FFC7127BD9 01FC143B4948EC1FE0EB07E04948140FEB3F8049C8EA07C0137E5B12014848168012075B 120F491600121F5B003F93C7FCA2485AA348CBFCA5480207B512C0A2188092390007F800 5FA34C5AA2127FA24C5A6C7E121F6D143F000F4B5A6C6C14FFD803F8EB01EF6C6CEB07C7 2800FF803F03C7FC90393FFFFE01010F01F0C8FC0101138035377CB43C>71 D<EB07C048B47E485B7EEA000FA2495AA449C8FCA4137EA45B151FED7F80913801FFC039 01F803E191380783E0EC0E07EC1C0F3A03F0381FC014709138E00F809039F1C007002607 E780C7FC01EFC8FC13FCEBFF804813F080EBC3FCEBC07E48487EA2ED018016C0D83F00EB 0380A3ED0700127EA2EC1F0E5D48EB0FFC007C6D5A0038EB03E023357DB328>107 D<D801E013FE3A07F803FF80260FFC0F7F3A1E3E1F07E03A1C3F3C03F00038EB700102E0 7F003013C000701380A214004848495AEA607E1200A249495AA34B5A485AA292381F8180 17C04848EC8380ED3F03A292383E07004848137EED3E0EA2163C4848EB1FF800076E5A6C 48EB03C02A227EA02E>110 D E /FF load 0 FF currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FG cmr6 6 7 /EN1 load IEn S/IEn X FBB FMat/FMat[0.02 0 0 -0.02 0 0]N/FBB[-3 -14 60 37]N /FG 7 62 df<1438B2B712FEA3C70038C7FCB227277C9F2F>43 D<13FF000313C0380781 E0380F00F0001E137848133CA248131EA400F8131FAD0078131EA2007C133E003C133CA2 6C13786C13F0380781E03803FFC0C6130018227DA01E>48 D<137013F0120712FFA212F9 1201B3A6B512E0A313217AA01E>I<EA01FC380FFF804813C0383C0FE0387003F0387C01 F8EAFE0014FCA2147C127C003813FCC7FC14F8130114F0EB03E0EB07C01480EB0F00131E 13385B3801E01CEA038038070038120E5A383FFFF85AB512F0A316217CA01E>I<13FE38 03FFC04813E0380F03F0381E00F8003F13FC147C138013006C13FC000C13F8C7FCEB01F0 EB03E0EB0FC03801FF00A2380003E0EB00F8147C147E143E143F127CA212FEA2147E5A00 7813FC383E01F8381FFFF0000713C00001130018227DA01E>I<14E0130113031307A213 0F131FA2133B137313E3A2EA01C3EA0383EA0703A2120E121CA21238127012E0B6FCA338 0003E0A6EB7FFFA318227DA11E>I<B712FEA27ECAFCA9007FB612FEB7FCA2270F7C932F> 61 D E /FG load 0 FG currentfont 50 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FH cmcsc10 9 48 /EN11 load IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-1 -21 81 56]N /FH 48 123 df<B5FCA3EA0FF0EA07E0B3ACEA0FF0B5FCA310267DA517>16 D<137813FCA212011203EA07F8EA0FE0EA1FC0EA3F801300127C5A5A5A0E0E6FB329>19 D<14C0EB0180EB030013065B131C5B5B13F05B1201485AA2485AA2120F90C7FCA25A121E A2123EA2123C127CA612FC5AAD7E127CA6123C123EA2121EA2121F7EA27F1207A26C7EA2 6C7E12007F13707F7F130C7F7FEB0180EB00C0124B77B721>40 D<12C012607E7E7E120E 7E6C7E7F12017F6C7EA21378A2137C133CA2133E131EA2131FA27F1480A614C01307AD13 0F1480A614005BA2131EA2133E133CA2137C1378A25BA2485A5B12035B48C7FC120E120C 5A5A5A5A124B7BB721>I<123C127FEAFF80A313C0A2127F123E1200A4EA0180A3EA0300 A21206120E120C5A5A12200A18798818>44 D<B512F0A514057E921C>I<121C127FA2EA FF80A3EA7F00A2121C0909798818>I<150C151CA21538A31570A215E0A3EC01C0A3EC03 80A2EC0700A3140EA35CA25CA35CA35CA2495AA3495AA249C7FCA3130EA35BA25BA35BA3 5BA2485AA3485AA348C8FCA2120EA35AA35AA25AA35AA25A1E4B7BB729>I<EB0FF0EB3F FCEBF81F3901F00F803903C003C0000714E0390F8001F090C7FC4814F8A24814FCA2007E 147EA500FE147FB2007E147EA56C14FCA36C14F8EB8001000F14F03907C003E03903E007 C03901F00F803900F81F00EB3FFCEB0FF020347CB129>I<13075B133F13FF120FB5FC13 3F12F01200B3B3A2497EB612C0A31A3278B129>I<EB3FC0EBFFF8000313FE380780FF39 0E003FC048EB1FE048130FEC07F04814F8007E1303B4FC018013FCA21401A3EA7F00003E 1303C7FC15F8A2EC07F0A2EC0FE015C0EC1F801500143E5C5C495A5C495A495A010EC7FC 5B5B49131C5B485A4848133848C7FC1206481478001FB512F85A5AB612F0A31E327BB129 >I<EB0FF0EB7FFE48B512803903F01FC03907800FE0390F0007F0001EEB03F8EA1F80D8 3FC013FC1401A4001F1303D80F8013F8C7FCA2EC07F015E0EC0FC0EC1F80EC3F0014FCEB 3FF0A2EB003EEC0F80EC07E0EC03F0EC01F815FCA2EC00FEA215FFA2123E127F487EA315 FEEB0001007E14FC12780038EB03F8003CEB07F0001FEB0FE03907E03FC06CB51280C6EB FE00EB1FF020347CB129>I<EC01C014031407A2140F141FA2143FA2147F14EF14CF1301 EB038F140F1307130E130C131C13381330137013E013C01201EA038013005A120EA25A5A A25A5AB712C0A3C7380FC000A94A7E0107B51280A322337DB229>I<00181460391F8007 E090B512C01580150014FC14F014C0001CC8FCAAEB0FE0EB3FF8EBF03E381DC00F391F00 0780001E14C0EC03E0001C14F01208C7EA01F8A315FCA4123C127EB4FCA315F85A481303 007014F0A26CEB07E0003C14C06CEB0F806CEB1F003807C0FE6CB45A6C13F038003F801E 347BB129>I<1238123E003FB61280A34815005D5D0078C7121C00705C5D5D5A4A5A4A5A C7FC4AC7FC140E5CA25C1478147014F05C13011303A2495AA3130FA2131F5CA3133FA513 7FA86DC8FC131E21347BB129>55 D<EB0FF0EB3FFE90B512803901F81FC03907C007E090 388001F0D80F0013F8481300121E003E147CA4123FA26D13F86C7E9038F001F0D80FFC13 E09038FE03C03907FF87806CEBDE006C13FC6C6C5AEB3FFEECFF8090B512C0D801E113E0 3907C07FF0390F803FF8391F000FFC001E1307003EEB01FE481300157F48143FA2151FA4 151E127C153E6C143C003F14786C6C13F0390FC003E03907F80FC00001B5128039007FFE 00EB0FF020347CB129>I<EB0FF0EB3FFC90B5FC3901F81F803903E007C03907C003E039 0F8001F0EA1F0048EB00F8A2007E14FCA2157C00FE147EA5157FA4127E15FFA2123E003F 5B7E6CEB037FEA0780EBC0063801E01C3900FEF87EEB3FE090C7FCA215FCA3000F14F838 1F8001D83FC013F0A2EC03E0EC07C001801380391F000F00001E133E380F80FC6CB45A6C 13E0C66CC7FC20347CB129>I<15F0A34A7EA24A7EA34A7EA34A7EEC0E7FA24A6C7EA34A 6C7EA202787FEC700FA202F07FECE007A2010180ECC003A249486C7EA349C77EA349B6FC A24981011CC7123FA2013C810138141FA24981160FA2496E7EA300016F7E487ED80FF84A 7EB591B512F0A334367CB53D>65 D<DA03FF1303021F13E091B5EAF80701039038007C0F D907F8131ED91FE0EB071FD93F80EB03BF49C7EA01FF01FC804848157F12034848153F49 151F120F485A170F123F5B1707127FA290C9FC481600AB7E6D1507A2123FA27F001F160E A26C7E0007161C7F6C6C15386C7E00001670017F15E06D6CEB01C0D91FE0EB0380D907F8 EB0F006DB4137E0100EBFFF8021F13E0020390C7FC30377BB43B>67 D<B712C016F816FE3B01FE0001FF8000009138003FE0EE0FF0EE03F8707E707E177F8318 80EF1FC0A2EF0FE0A318F01707A318F8AA18F0A3170F18E0A2EF1FC0A21880173FEF7F00 17FE4C5A4C5A4C5AEE1FE00001EDFF80B748C7FC16F816C035337DB23E>I<B812E0A3D8 01FEC7127F0000150FEE03F01601A21600A21770A417381507A31700A25DA25D157F90B6 FCA349C67E151F81A281A592C8FCAB487EB6FCA32D337DB235>70 D<DA03FE130691383FFFC091B5EAF00E0103903800F81ED90FF8131ED91FC0EB0F3E4948 EB07FE017EC71203491401484814000003167E485A4848153EA2485A171E123F5B170E12 7FA290C9FC4893C7FCAA0303B512F07E7FDB00011300003F6F5AA27F121FA26C7EA26C7E 6C7E12016C7E017F14016D6C1303D91FE0EB07BED90FF8EB0F1ED903FFEB7E0601009038 FFF802023F01E0C7FC020390C8FC34377BB440>I<B512FEA3000113006C5AB3B3A7487E B512FEA317337DB21E>73 D<B593387FFF80A300016D9238FFC0006C60D9EFC0EC01DFA3 D9E7E0EC039FA2D9E3F0EC071FA3D9E1F8140EA2D9E0FC141CA3027E1438A26E1470A36E 6C13E0A291390FC001C0A3913907E00380A3913903F00700A2913801F80EA36E6C5AA2ED 7E38A36F5AA26F5AA3486C6D5AD807FC4C7EB527E007801FB51280A341337CB24A>77 D<D8FFFE91381FFFFC7FA2C66D010013806EEC3E006E141C13EFEBE7F08013E3EBE1FC80 EBE0FF806E7E81141F6E7E816E7E14036E7E811400157F1680ED3FC0151FED0FE016F015 07ED03F816FCED01FE1500167F179C163FEE1FDC17FC160F16071603A216011600487ED8 07FC157CB500E0143C171CA236337DB23D>I<B7FC16E016F83A03FC0003FE0001EC00FF EE3F80EE1FC0EE0FE017F01607A217F8A617F0A2EE0FE0A2EE1FC0EE3F80EEFF00ED03FC 90B612F016C001FCC9FCB3A2487EB512F8A32D337CB237>80 D<90391FF00180EB7FFE48 B512833903F00FC73907C003E748C712FF001E147F48143F151F48140FA200F81407A315 037EA27E007E91C7FCEA7F807FEA3FF8EBFF806C13F86CEBFF806C14E06C14F8C680013F 7F01037FEB003F02031380EC007FED3FC0151FED0FE0150712E01503A47E16C07E15076C 15806C140F6C15006D131ED8F3E0137C39F1FE01F839E07FFFF0D8C01F13C0D903FEC7FC 23377BB42E>83 D<007FB81280A39039C003F800D87E00151F007C160F00781607A20070 160300F017C0A3481601A6C792C7FCB3AB4A7E011FB6FCA332337CB23B>I<B500FE9038 1FFFFCA3000190C813806C48ED3E00171CB3AF017E5D137FA26D5DA26D6C5C130F6E495A 6D6C495A6D6C49C7FCD901FC131ED9007F13FC6EB45A020F13E0020090C8FC36357DB23D >I<143CA2147EA314FFA3903801DF80A201037F148FA201077F1407A290380E03F0A201 1E7FEB1C01A2013C7FEB3800A249137E90387FFFFE90B6FCA29038E0003F000115804913 1FA24848EB0FC0A2486C14E0EA1FE0D8FFF890B5FCA328277EA62E>97 D<B67E15E015F8390FE001FC00076D7E157F811680A516005D157E5DEC03F890B512E081 9038E001FCEC007E81ED1F8016C0150F16E0A516C0151FED3F80157F000F903801FF00B6 12FC5D15C023267DA52B>I<02FF1330010713E0011FEBF07090397FC07CF09038FE001F D801F8130748481303485A48481301485A150048C8FCA2481570127EA200FE1500A8127E 1670127F7EA26C6C14E0A26C6C13016C6C14C06C6CEB03806C6C1307D800FEEB0F009038 7FC07C90381FFFF8010713E00100138024287DA62C>I<B67E15F015FC390FE001FE0007 EB003FED1FC0150FED07E0ED03F0150116F8A2ED00FCA316FEA916FCA2150116F8A2ED03 F0ED07E0A2ED1FC0ED3F80000F903801FE00B65A15F0158027267DA52F>I<B71280A339 0FE0007F0007140F1507A2ED03C0A315011407A392C7FC5C5C90B5FCA3EBE01F806E13E0 A491380001C0A41503A21507151F000FEC7F80B7FCA323267DA52A>I<02FF1330010713 E0011FEBF07090397FC07CF09038FE001FD801F8130748481303485A48481301485A1500 48C8FCA2481570127EA200FE1500A64AB5FCA2127E91380007F0007F14037EA26C7EA26C 7E6C7E6C7E6C6C1307D800FE130F90387FC03E90391FFFFC700107EBF0100100EB800028 287DA630>103 D<B5FCA3EA0FF0EA07E0B3ACEA0FF0B5FCA310267DA517>105 D<B57EA3D80FF0C7FC6C5AB2150EA5151EA3153CA2157C15FC000F1307B6FCA31F267DA5 26>108 D<D8FFF0EC0FFFA3D80FF8EC1FF0000716E0017C143BA36D1473A26D14E3A390 390F8001C3A2903907C00383A3903903E00703A2903801F00EA3903800F81CA2EC7C38A3 EC3E70A2EC1FE0A3390F800FC0D81FC0EC07F03BFFF807807FFFA330267DA538>I<D8FF E0EB7FFCA27FD807F8EB0FE06DEB07C0ED0380137E7FA2EB1F80EB0FC0A2EB07E0EB03F0 A2EB01F8EB00FC14FE147E143FEC1F83A2EC0FC3EC07E3A2EC03F3EC01FB15FF80157FA2 153F151F486C130F487ED8FFF813071503A226267DA52E>I<49B4FC010F13E090383F01 F890387C007C4848133FD803E0EB0F80000715C04848EB07E0491303001F15F048C7EA01 F8A24815FCA2007E1400A200FE15FEA9007FEC01FCA36C15F86D1303001F15F06D130700 0F15E06C6CEB0FC06C6CEB1F806C6CEB3F006C6C137E90383F01F890380FFFE0010190C7 FC27287DA62F>I<B6FC15E015F8390FE001FC0007EB007E811680151F16C0A61680153F 1600157EEC03FC90B512F015C001E0C8FCAD487EB5FCA322267DA52A>I<B512FCECFF80 15F0390FE007F80007EB00FC157E157F811680A516005D157EEC01F8EC07F090B512C092 C7FC9038E00FC0EC03E06E7E81140081A481A21602160715FF486C137FB5EB3F06ED1F8E ED0FFCC8EA03F028277DA52D>114 D<EBFE033803FFC3000F13E7381F81FF383E007F00 3C7F007C7F00787F12F8A280A27E6C90C7FC127F13E0EA3FFEEBFFE06C13F800077F6C7F C66C7E13079038007F80141FEC0FC0A200E01307A47E15806C130F6C1400B4131EEBC07E 38E7FFF800C15B38C03FC01A287DA622>I<007FB612F8A3903800FC03007C1400007815 780070153800F0153CA248151CA5C71400B3A2497E90387FFFF8A326267EA52C>I<B5EB 7FFCA3D80FF0EB0FE06C48EB07C0ED0380B3A60003EC07007F0001140E7F00005C017C5B 90383F81F090380FFFE06D5BD900FEC7FC26277DA52E>I<B5903807FFC0A3D807F89038 01FE006C48EB00F85E7F00015DA26C6C495AA26D1303017E5CA26D49C7FCA26E5A011F13 0EA26D6C5AA2ECE03C01071338A26D6C5AA2ECF8F001015BA2903800FDC0A214FF6E5AA2 6EC8FCA3141EA22A277FA52E>I<B5903803FFC0A3D807F8903801FE000003EC00F86C6C 14E015016C6C495A017F5C15076D6C48C7FC90381FC00E151E6D6C5A01071338ECF0786D 6C5A01015B14FD6DB45A5D147F6EC8FCAC5C903807FFF8A32A267FA52E>121 D<003FB512FCA39038E001F890380003F0003E1307003CEB0FE0007C14C00078EB1F8014 3F00701400147E14FE5CC6485A13035C495A130F495A5C49C7FC49131C137E5B12015B48 48133C12075B48481378121F484813F8EB0001007E130FB6FCA31E267DA526>I E /FH load 0 FH currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FI cmr9 9 76 /EN1 load IEn S/IEn X FBB FMat/FMat[0.0133333 0 0 -0.0133333 0 0]N/FBB[-6 -21 78 56]N /FI 76 127 df<91391FE007F09139FFF81FF801079038FE7FFC903A0FE01FFC7E903A1F 803FF0FF90397E007FE0495C5B0001167E4990383F803C0003021F1300ABB812C0A33B03 F0001F8000B3A7486C497EB50083B5FCA330357FB42D>11 D<EC0FF0EC7FFC903803FFFE 903807F01F90390FC0078090383F001F017EEB3FC0137C13FC5B0001EC1F80ED0F0092C7 FCA8ED0FC0B7FCA33901F8001F150FB3A6486CEB1FE0267FFFC1B5FCA328357FB42B>I< EA07E012FFA3120F1207B3A6EA0FF0B5FCA310217EA015>16 D<137813FCA212011203EA 07F8EA0FE013C0EA1F80EA3F00127E127C12F012600E0E71B326>19 D<001C1338007E13FC007F7F38FF81FFA201C11380EA7FC0A2001D133B00011303A43903 800700A33807000EA2000E5BA2485B485B485B0020134019187EB326>34 D<EB01C01303EB0780EB0F00131E5B133813785B485AA2485AA2485AA2120F90C7FC5AA2 121E123EA3123C127CA512FCA25AAC7EA2127CA5123C123EA3121E121FA27E7F1207A26C 7EA26C7EA26C7E13781338133C7F7FEB0780EB03C01301124A79B71E>40 D<12C07E7E12787E7E120E120F6C7E6C7EA26C7EA26C7EA27F1378137CA2133C133EA313 1E131FA51480A2130FAC131FA21400A5131E133EA3133C137CA2137813F85BA2485AA248 5AA2485A48C7FC120E121E5A5A5A5A5A114A7BB71E>I<121C127E127FEAFF80A213C012 7FA2121D1201A4EA0380A3EA0700A2120EA25A5A5A12200A187A8815>44 D<B512F0A514057F921A>I<121C123E127FEAFF80A3EA7F00123E121C09097A8815>I<15 301578A215F0A3EC01E0A3EC03C0A3EC0780A3EC0F00A3141EA25CA35CA35CA3495AA349 5AA3495AA249C7FCA3131EA35BA35BA35BA3485AA3485AA2485AA348C8FCA3121EA35AA3 5AA35AA212601D4B7CB726>I<EB0FE0EB7FFC497E3903F83F803907E00FC0EBC007390F 8003E0001F14F0EB00014814F8A3007EEB00FCA500FE14FEB2007E14FCA56CEB01F8A36C 14F0EB8003000F14E03907C007C0EBE00F3903F83F803900FFFE006D5AEB0FE01F347DB1 26>I<13075B5B13FF120FB5FC133F12F01200B3B3A2497E007FB51280A319327AB126>I< EB3FC0EBFFF0000313FC380780FE380E003F48EB1F804814C0EC0FE05A007CEB07F0B4FC 15F813801403A2EA7F00A2001C1307C7FC15F0A3EC0FE015C0141F1580EC3F00147E147C 5C495A495A495A5C49C7FC131E5B4913385B485A491370485A48C7FC000E14F0001FB5FC 5A5AB612E0A31D327CB126>I<EB1FE0EB7FFC48B5FC3903E03F803907800FC0D80E0013 E048EB07F0121FD83F8013F8EBC003A4381F8007D80F0013F0C7FCA2EC0FE0A2EC1FC015 80EC3F00EB01FEEB7FF814E014FCEB003FEC0F80EC07E015F0140315F815FC140115FEA2 123E127FEAFF80A315FCEB0003007E14F812780038EB07F06C14E0000FEB0FC03907E03F 806CB51200C613FCEB1FE01F347DB126>I<EC03C01407A2140FA2141F143FA2147F14FF 14EF1301EB03CF148F1307140F130E131E131C13381378137013F0EA01E013C01203EA07 8013005A120E5A123C123812785AB71280A3C7380FC000A94A7E0107B51280A321337EB2 26>I<000814C0381F800F90B5FC1580ECFE005C14F014C0D81C7CC7FC90C8FCA9EB0FC0 EB3FF8EBFFFC381DF07E381FC01F9038000F8015C0001E1307001C14E0000C14F0C71203 A315F8A31218123E127F5AA215F0A2481307007814E012700078EB0FC0003814806CEB1F 006C133E3807C0FC6CB45A6C13E038007F801D347CB126>I<14FE903807FF804913C090 383F01E090387C00709038F801F03901F003F83803E007EA07C0A2EA0F80001FEB03F0EC 01E048C8FCA35A007E7FEB07F8EB1FFE38FE3FFF9038700F809038E007C09038C003E039 FF8001F015F81300EC00FCA25A15FEA4127EA56C14FCA36CEB01F8A2D80F8013F0EC03E0 EA07C03903E007C03901F81F803900FFFE00EB3FFCEB0FE01F347DB126>I<1238123E00 3FB6FCA34814FE15FCA20078C712380070147015E0A248EB01C0EC0380A2C7EA0700140E 5CA25C5CA25C1301A2495AA213075C130FA2131FA349C7FCA35BA55BA8137E133C20347C B126>I<EB0FE0EB7FFC90B5FC3901F01F803903C007C039078003E0380F00014814F012 1E003EEB00F8A4123FA290388001F0EA1FC09038E003E0D80FF813C09038FE07803907FF 1F006C13FE6C5B6C5BEB3FFC49B4FC48B51280D803E113C0D807C013E0390F803FF0391F 001FF8003E1307EC03FC48130015FE48147EA2153EA4153C127C157C6C147815F06CEB01 E0390FC003C03907F01F800001B5120038007FFCEB1FE01F347DB126>I<EB0FE0EB7FF8 EBFFFE3801F83F3903E00F803907C007C0390F8003E0EA1F0048EB01F0A2007E14F8A300 FEEB00FCA515FEA4127E1401A27E14037E380F80063807C00E3803E01C3801FFF86CEBF0 FCEB3FC0EB020090C7FCEC01F8A3000F14F0381F8003D83FC013E0A2EC07C0EC0F800180 1300381F001E001E137C380F81F86CB45A6C13C0C66CC7FC1F347DB126>I<121C123E12 7FEAFF80A3EA7F00123E121CC7FCAE121C123E127FEAFF80A3EA7F00123E121C09207A9F 15>I<15E04A7EA34A7EA34A7EA3EC0EFEA3EC1C7FA34A6C7EA202787FEC701FA202F07F ECE00FA2010180ECC007A2010380EC8003A249486C7EA3010E6D7E010FB5FCA24980011C C77EA2496E7EA20178810170141FA201F08149140FA20001821607487ED80FF84A7EB549 B512E0A333367DB53A>65 D<B7FC16E016F83A03FC0003FE0001EC00FFEE7F80EE3FC016 1FEE0FE0A217F0A617E0161F17C0EE3F80EE7F00ED01FEED07FC90B612F05E16FC9039FC 0001FE9238007F80EE1FC017E0EE0FF0160717F8160317FCA617F81607A2EE0FF0EE1FE0 163FEE7FC00003913803FF00B75A16F816C02E337DB236>I<DA07FC130C91393FFF801C 91B512E0903A03FE01F03C903A0FF0003C7CD91FC0131E49C7EA07FC017E14035B484814 014848140012074848157CA24848153CA2485AA2007F161CA390C9FC481600AB7E6D151C A3123FA26C6C1538A26C7E17706C7E000316E06C7E6C6CEC01C0017EEC03806DEC0700D9 1FC0130ED90FF0133C903903FE01F80100B55A023F13C0DA07FEC7FC2E377CB437>I<B7 7E16F016FE3A01FE0001FF00009138003FC0EE0FE0707E707E707E707E177E177FEF3F80 A2EF1FC0A3EF0FE0A418F0AA18E0A3171F18C0A21880173F18005F17FE5F4C5AEE07F04C 5AEE3FC000014AB45AB748C7FC16F8168034337EB23B>I<B812C0A3D803FCC7FC000115 1FEE07E01603A21601A21600A4030E1370A41700151EA2153E15FE90B5FCA3EBFC00153E 151EA2150E171CA3173892C7FCA41778A2177017F01601A21607160F0003157FB812E0A3 2E337DB234>I<B81280A33903FC00010001EC003FEE0FC01607A21603A21601A4EE00E0 150EA31700A2151EA2153E15FE90B5FCA3EBFC00153E151EA2150EA592C8FCAB487EB512 FEA32B337DB232>I<DA07FC130C91393FFF801C91B512E0903A03FE01F03C903A0FF000 3C7CD91FC0131E49C7EA07FC017E14035B484814014848140012074848157CA24848153C A2485AA2007F161CA390C9FC4893C7FCAA0303B512E07E7F92390003FE00705A123F7F12 1FA26C7EA26C7E12036C7E6C7E017E14036D1407D91FC0EB0F7CD90FF0EB1E3CD903FEEB FC1C0100B5EAF00C023F01C0C7FCDA07FEC8FC33377CB43C>I<B5D8FE03B512F8A30001 90C73807FC006C486E5AB390B7FCA349C71203B3A3486C4A7EB5D8FE03B512F8A335337E B23A>I<B512FEA3000113006C5AB3B3A7487EB512FEA317337EB21C>I<013FB51280A390 39001FF0006E5AB3B0121C127FA2EAFF80A25DEB001F7E007C495A003891C7FC6C137E38 0F81FC6CB45A6C13E0C66CC8FC21357EB227>I<B500FE90380FFFF8A3000190C7000313 006C48EC01F85F17C04C5A4CC7FC160E163C5E5E4B5A4B5A4B5A4BC8FC151E5D5D15F814 014A7E4A7E140EEC1C7F4A6C7E14704A6C7E6D486C7E02807FEC0007496D7E8215016F7E 8282707E707EA2707E707E8316038383486C913807FF80B500FE013F13FCA336337EB23C >I<B512FEA3D803FEC9FC6C5AB3A9EE0380A416071700A45EA25EA25E16FF4B5A000314 0FB7FCA329337DB230>I<D8FFFE923803FFF8A3D803FF923807FE006C5FD9DF80140EA3 D9CFC0141CA3D9C7E01438A2D9C3F01470A3D9C1F814E0A3D9C0FCEB01C0A2027EEB0380 A36EEB0700A391381F800EA36E6C5AA26E6C5AA36E6C5AA36E6C5AA2913800FDC0A3ED7F 80A3486C6DC7FCD80FF84B7EB5D8801E90387FFFF8A33D337CB246>I<D8FFFE91383FFF F87FA2C66D010113006EEB007C1738EBEFE0EBE7F0A2EBE3F8EBE1FC8013E0147F81143F 6E7E81140F6E7E6E7EA26E7E6E7E8181ED3F8016C0151FED0FE016F01507ED03F8ED01FC A2ED00FE167F17B8163FEE1FF8A2160F1607A216031601486C1400EA07FCB500E0147817 38A235337EB23A>I<EC07FC91387FFFC049B512F0903907FC07FC90390FE000FED93F80 EB3F8049C76C7E01FE6E7E48486E7E48486E7E49140148486E7E000F8249157E001F167F A24848ED3F80A2007F17C0A290C9121FA24817E0AB6C17C06D153FA3003F17806D157FA2 001F17006D5D000F5E6C6C4A5AA26C6C4A5A6C6C4A5A6C6C4A5A017F4A5A6D6C495AD91F E001FFC7FC903907FC07FC0101B512F06D6C13C0DA07FCC8FC33377CB43C>I<B612FEED FFC016F03A03FC0007FC0001EC00FE167FEE3F80EE1FC017E0160FA217F0A617E0A2161F 17C0EE3F80EE7F0016FEED07FC90B612F016C04BC7FC01FCC9FCB3487EB512F8A32C337D B234>I<B612FCEDFF8016F03A01FE0007FC0000EC01FEED007F707E707E83160F83A75F 161F5F4C5A4CC7FCED01FEED07FC90B612F01680829039FE001FE0ED03F06F7E6F7E8216 7E167FA683A4181CA2EE3FC0A2486C021F1338B500FE14E093380FF070933803FFE0C96C 13C09338003F8036357EB239>82 D<90381FE00390387FFC0748B5FC3903F01F8F390780 03DF48C7B4FC001E804880A24880A200F880A381A27EA2007E91C7FC127F13C0EA3FF013 FF6C13F06C13FF6C14C06C80C614F8013F7F01037FEB003FEC03FF1400ED3F80151F16C0 150F126000E01407A47E1680A26C140F16006C5C6C141E6C6C5BD8FBE013F839F1FC03F0 00E0B55A011F138026C003FEC7FC22377CB42B>I<007FB712FEA39039C007F001D87E00 EC007E007C163E0078161E170E127000F0160FA3481607A6C71500B3AB4A7E011FB512FC A330337DB237>I<B500FE90383FFFF8A3000190C7000113006C48EC007C1738B3AF017E 5DA2137F7F5F6D7E4C5A6D6C495A6D6C49C7FC6D6C130E6D6C133C9039007F01F86EB45A 020F13C0DA01FEC8FC35357EB23A>I<B500F0903807FFF8A3D807FEC813C06C48ED3F00 0001163C171C6C6C5DA26D15786D1570A26E14F0013F5DA26D6C495AA26E1303010F5DA2 6D6C49C7FCA2800103140EA26E131E0101141CA26D6C5BA26E13786E1370A2ED80F0023F 5BA291381FC1C0A215E3020F5BA2DA07F7C8FCA215FF6E5AA36E5AA26E5AA3157035357E B23A>I<B5D8F007B590381FFFF0A3D803FEC7D83FF0010313006C48DA1FC0EB00FC1A78 6D6E7E00001970A27114F0017F60A24C7E6D6C4C5AA24C7E6D6C01394A5AA2EE79FE6D6C 01704AC7FCA2EEF0FF6D6C496C130EA21501D903F8496C6C5AA3913BFC03801FC03C0101 1738A2913BFE07000FE07801001770A2DAFF0E903807F0F0027F5EA24BEB03F9DA3F9C5D A203B8EB01FDDA1FF8ECFF80A36E486D90C8FCA36E48147EA36E48143CA34C357FB24F> I<267FFFFC90B512C0A3C601E090383FF800D97F80EB0FC0013F5D6E91C7FC6D6C131E01 0F141C6E133C6D6C5B010314706E13F06D6C485AD900FF5B150391387F8780DA3FC7C8FC 15CFEC1FFE6E5A5D14076E7EA26E7E4A7EA24A7F91380F3FC0140E91381E1FE04A6C7EEC 380702787F4A6C7EECE00101018049486C7E49487F91C77F496E7E011E6E7E131C013C6E 7E017C6E7E13FCD807FFEC1FFEB500C090B512F8A335337EB23A>I<B500F8903801FFFE A3000301809038007FE0C690C8EA3F00171E6D6C5C6D6C143817786D6C14705F6D6C1301 6D6C5C16036D6C495A6D6C91C7FC5E6D6C130E5E91387F803C91383FC03816786E6C5A6E 6C5A15F1913807FBC05EEC03FF6E90C8FC5D1400B14A7E91B512FCA337337FB23A>I<00 3FB612FCA39039FC0003F801E0EB07F00180130F90C713E0003EEC1FC0003C143F007C15 800078EC7F005D5D007013014A5A5D14074A5AC75B141F5D4A5A147F92C7FC14FE13015C 495A13075C495A011F141C5C133F495A91C7FC5B4848143C5B12035B48481478120F4914 F848481301003F140349130F48C7127FB7FCA326337CB22F>I<EAFFF0A4EAF000B3B3B3 ADEAFFF0A40C4B79B715>I<EAFFF0A41200B3B3B3AD12FFA40C4B7FB715>93 D<EB7F803803FFF04813FC380F80FE381F003F486C6C7E6D6C7EA26E7EEA1F80EA0F00C7 FCA3EB03FF133F3801FFC73803FC07EA0FE0EA1FC0EA3F80EA7F00A200FEECE1C0A4140F A2007F131B393F8033F33A1FC0E1FF80260FFFC113006CEB80FE3900FE007C22237DA126 >97 D<EA03F012FFA312071203AEEC3FC0ECFFF001F313FC9038F7C0FE9038FE003F49EB 1F8049EB0FC05BED07E0A216F01503A216F8A816F0A2150716E0A26DEB0FC016806DEB1F 0001EE133E9038C781FC9038C3FFF8018113E0C7EA3F8025357EB32B>I<EB07F8EB3FFF 90B512803901FC07C03903F003E03907E007F0380FC00FEA1F80A2393F0007E0EC03C048 90C7FC127EA212FEA8127E127FA26C14387F001F14706C7E6C6C13E03903F001C03901FE 07806CB51200EB3FFEEB07F01D237EA122>I<153FEC0FFFA3EC007F81AEEB0FF0EB7FFC 90B5FC3901FC0FBF3907E001FF48487E497F001F8048C7FCA25A127EA212FEA8127EA212 7F7EA26C6C5B5D6C6C5A6C6C4813803A03F81F3FFC3801FFFE38007FF8D91FE013002635 7DB32B>I<EB0FE0EB7FFC497E3801F83F3903E00F803907C007C0390F8003E0121FD83F 0013F014015A007E14F8A212FEB6FCA348C8FCA5127E127FA26C14386C7E15706C7E6C6C 13E03903F001C03901FE07806CB51200EB3FFEEB07F01D237EA122>I<14FEEB03FF010F 138090381F8FC090383E1FE0137C13F81201EC0FC03903F0078091C7FCABB512F0A3D803 F0C7FCB3A7487E387FFFE0A31B357FB417>I<151F90391FC07F8090387FF0FF3A01FFFD E7C03903F07F873907C01F073A0F800F8380001FECC000EB00074880A76C5CEB800F000F 5C6C6C48C7FCEBF07EEBFFFC380C7FF0EB1FC0001CC9FCA2121EA27EEBFFFE6CEBFFC015 F06C80000F80391F0001FE003EEB007F48141F168048140FA5007CEC1F00A2003F147E6C 6C5B390FF007F80003B512E0C61480D91FFCC7FC22337EA126>I<EA03F012FFA3120712 03AEEC1FC0EC7FF09038F1FFF89038F3C0FC9038F7007E13FE497F5BA35BB3486CEB7F80 B538C7FFFCA326347EB32B>I<1207EA0F80EA1FC0EA3FE0A3EA1FC0EA0F80EA0700C7FC A9EA07E012FFA3120F1207B3A6EA0FF0B5FCA310337EB215>I<EB01C0EB03E0EB07F0EB 0FF8A3EB07F0EB03E0EB01C090C7FCA9EB01F8137FA313031301B3AF1218127E00FF13F0 1303A214E0387E07C0387C0F80383FFF00EA1FFCEA03F0154385B217>I<EA03F012FFA3 12071203AF913807FFE0A36E1300EC01F8EC03E05D4A5A020EC7FC143C5C5C13F1EBF3F8 13F7EBFEFCEBFC7EEBF83E497E816E7E1407816E7E1401816E7E81486C7FB500C313F0A3 24347EB329>I<EA07E012FFA3120F1207B3B3A7EA0FF0B5FCA310347EB315>I<2703F01F E013FF00FF90267FF80313C04A6C487F903BF3C0FE1E07F03C07F7003F3801F8D803F614 3001FC90391FE000FC495CA3495CB3486C496C487EB53BC7FFFE3FFFF0A33C217EA041> I<3903F01FC000FFEB7FF09038F1FFF89038F3C0FC3907F7007EEA03FE497F5BA35BB348 6CEB7F80B538C7FFFCA326217EA02B>I<EB07F0EB3FFE90B57E3901F80FC03903E003E0 48486C7E48486C7E001F8090C7127C48147E003E143E007E143FA300FE1580A8007E1500 A2007F5C6C147EA26C6C5BA26C6C485A6C6C485A3903F80FE0C6B51280D93FFEC7FCEB07 F021237EA126>I<3903F03FC000FFEBFFF001F313FC9038F7C0FE3907FE007F6C48EB3F 8049EB1FC049130F16E0150716F0A2150316F8A816F01507A216E0150F6D14C0ED1F806D EB3F006D137E9038F781FC9038F3FFF801F113E09038F03F8091C8FCAA487EB512C0A325 307EA02B>I<3803E07C00FF13FF01E113809038E39FC03807E71FEA03EE9038EC0F8090 38FC070049C7FCA35BB2487EB512E0A31A217FA01E>114 D<EBFF06000713CE4813FEEA 1F00003C133E007C131E127800F8130EA37E6C90C7FCEA7F8013F86CB47E6C13E06C13F8 6C7F00017F38000FFF1300EC3F800060131F12E0140F7EA27E15006C5B6C133E38FF80FC 38F7FFF800E113E038C07F8019237EA11E>I<1370A513F0A31201A212031207120F121F B512FEA33803F000AF1407A8140EEA01F8A23800FC1CEB7FF8EB3FF0EB0FC0182F7FAD1E >I<D803F0133F00FFEB0FFFA30007EB007F000380B3A25DA25D12019039F801BF803A00 FC073FFCEB7FFEEB3FFCD907F0130026227EA02B>I<B53801FFF0A33A0FF0007F806C48 EB1F006D131E0003141C153C6C6C1338A26D137800001470A2017E5BA2EB7F01013F5BA2 90381F8380A214C7010F90C7FCA2EB07EEA214FE6D5AA26D5AA36D5AA224217E9F29>I< B53A1FFFC3FFF0A33C07F800FE007F804949EB3E000003161CA26D486C133C00011638A2 6D486C13780000029F1370A2D9FE07EB80F0017E010F5BA2D97F0F13C190263F0E075BA2 029E13E390261F9C035BA202FC13F790260FF80190C7FCA216FF6D486C5AA36D48137CA3 6D48133834217F9F37>I<B53803FFF8A32603FC0013800001ECFC0000005C017E5B9038 7F01E090383F83C0011F5BEB0FC7D907EFC7FC14FE6D5A6D5A6D7E80497E5BECDF809038 079FC090380F0FE0EB1E0790381C03F090383C01F801787FEBF0000001147ED80FF813FF 26FFFC0313FCA326207F9F29>I<3A7FFF80FFF8A33A07F8003FC06C48EB1F806C6CEB0F 00150E6D131E0000141CA2017E5BA2017F13786D1370A26D6C5AA214C1010F5B14E30107 5BA2D903F7C7FCA214FF6D5AA26D5AA31478A21470A214F05CA2495A127CEAFE035C49C8 FC5BEAFC1EEA783CEA3FF86C5AEA07C025307F9F29>I<003FB512F0A39038800FE0393E 001FC0003C14800038133F0078EB7F0014FE00705B1301495A495A00005B495A131F495A EC0070137E13FE485A485A4913F01207484813E0381FC0011380003F1303387F001FB6FC A31C207E9F22>I<B712F8A32503809426>I<3807C002390FF80780381FFE0F48B5120048 5B38F83FFC38F00FF8382001F019087AB126>126 D E /FI load 0 FI currentfont 75 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FJ cmr8 8 49 /EN1 load IEn S/IEn X FBB FMat/FMat[0.015 0 0 -0.015 0 0]N/FBB[-5 -19 71 50]N /FJ 49 127 df<B712F0A33903FC000F0001EC03F815001678A21638A4161CA41600B3A7 487EB512FCA3262D7EAC2C>0 D<140FA34A7EA34A7EA34A7EA3ECEFF014E7A2903801C7 F814C301037F1483148101077F14011400497F130E81011E80011C133FA2013C80013813 1FA20178800170130FA201F080491307A2000181491303A200038100071401D80FF0497E D8FFFC90387FFFF0A32C2F7EAE31>3 D<B9FCA3D803FCC7EA3FC000011680B3B3486CEC 7FC0B5D8F81FB5FCA3302D7EAC35>5 D<EA01E0EA03F0A21207120FEA1FE01380EA3F00 127E127C12F012600C0C72AD23>19 D<1307130F131E133C1378137013F0EA01E0120313 C012071380120F13005AA2121E123EA35AA612FC5AAD7E127CA67EA3121E121FA27E1380 120713C0120313E01201EA00F013701378133C131E130F130710437AB11B>40 D<126012F012787E7E120E120FEA078013C0120313E0120113F0120013F8A21378137CA3 133EA6133F131FAD133F133EA6137CA3137813F8A213F0120113E0120313C012071380EA 0F00120E121E5A5A5A126010437CB11B>I<EC0380B3A4B812FCA3C7D80380C7FCB3A42E 2F7CA737>43 D<B512C0A512057F9018>45 D<123C127E12FFA4127E123C08087A8714> I<EB3FC0EBFFF0000313FC3807F0FE380FC03F497E391F000F80A24814C0003E1307007E 14E0A500FE14F0B0007E14E0A46CEB0FC0A36C1480390F801F006D5A3807F0FE6CB45AC6 13F0EB3FC01C2D7DAB23>48 D<130E131E137EEA01FE12FFA2EAFE7E1200B3AF13FF007F 13FFA3182C7BAB23>I<EB7F803801FFF0000713FC380F81FE381E007F0038EB3F8048EB 1FC0007814E000FC130F7E6C14F01407A2127E123CC7120FA215E0A2EC1FC01580143F15 00147E5C495A495A14C0495A49C7FC131E5B4913705B485A484813E048C7FC120E001FB5 FC5A5AB612C0A31C2C7DAB23>I<EB3F803801FFF04813FC3807C0FE380E007F001EEB3F 80123F9038801FC0A4381F003F000E1480C7FCA2EC7F00147E5CEB03F8EBFFF014C014F0 EB00FC147E80EC1F8015C0EC0FE0A215F0A2123C127EB4FCA215E0A248EB1FC0127C0078 EB3F806C1400381F80FE3807FFFC6C13F038007F801C2D7DAB23>I<140F5CA25C5CA25C 5BA25BEB07BF143F130F131E131C1338137813F013E01201EA03C013801207EA0F00120E 121E5A123812785AB612FCA3C7EA3F00A8EC7F8090381FFFFCA31E2D7EAC23>I<000CEB 0180381F801F90B5FC15005C14F85C14C0D81C7CC7FC90C8FCA7EB1FC0EB7FF0381DFFFC 381FE07EEB801F01001380001EEB0FC0120CC7EA07E0A315F0A3123C127E12FEA215E0A2 48130F007014C00078EB1F8000381400001E133E380F80FC6CB45A000113E038007F801C 2D7DAB23>I<EB03F8EB0FFEEB3FFF90387E0780EBF8033901E00FC03803C01F1207EA0F 80121F9038000F804890C7FCA3127EA2EB1FF038FE3FF8EB7FFEEBE03F6C487E9038800F 80010013C0EC07E0A34814F0A4127EA4003E14E0123FA26CEB0FC01580EA0F803907C01F 003803F07E6CB45A38007FF0EB1FC01C2D7DAB23>I<1238123E003FB512F8A34814F015 E015C038700001EC0380EC070048130EA25CC75A5CA25C495AA21303495AA2130F91C7FC A25BA25B133EA2137EA513FEA8137C13381D2E7CAC23>I<EB1FC0EBFFF04813FC3803E0 7E3807801F390F000F805A001EEB07C0123EA4123F9038800F80EA1FC09038F01F00380F F81EEBFE7C6C6C5A6C5B7E6C6C7E3801FFFE3803EFFFD807831380D80F0113C0381E007F 003EEB3FE048130FEC07F0481303A21401A315E0127C14036C14C0EC0780391F800F0038 0FE07E3803FFFC6C13F038003FC01C2D7DAB23>I<EB3F80EBFFF0487F3807E07C380F80 3E001F7F9038000F805A007E14C0A2140700FE14E0A415F0A4007E130FA37E6C131F380F 803FEBC0773807FFE7000113C76CEB87E0EB0007A3EC0FC0A2001F1480383F801F1500A2 143E495A001C5B380F03F06CB45A6C1380C648C7FC1C2D7DAB23>I<B812FCA27ECBFCAD 007FB712FCB8FCA22E137C9937>61 D<EC03C0A24A7EA34A7EA34A7EA3EC39FCA2EC79FE 1470A2ECF0FF4A7EA249486C7EA349486C7EA2010780EC000FA24980010E1307A2011FB5 7EA249809038380001A201788001701300A249147FA30001ED3F801203D80FF0EC7FC0D8 FFFE0107B5FCA3302F7EAE35>65 D<DA1FF013C09138FFFE010107EBFF8390390FF807C3 90393FC001E749C7127F01FC143F4848141F4848140F00071507485A491403121F123F49 1401A2127F90C8FC93C7FC5AA97EA26DEC01C0123FA27F121F000FED03807F6C6CEC0700 12036C6C140E6C6C5C017F5CD93FC013F090390FF807E06DB51280010049C7FCEC1FF02A 2F7CAD33>67 D<B612FCEDFF8016F03A03FC000FF80001EC01FCED007FEE3F80EE1FC016 0F17E0EE07F0160317F8A217FC1601A317FEAA17FCA3EE03F8A217F0160717E0160FEE1F C0EE3F80EE7F00ED01FE0003EC0FF8B75A16C003FCC7FC2F2D7EAC36>I<B712FEA33903 FC00030001EC007F828282A282A392381C0380A493C7FC153CA215FC90B5FCA3EBFC0015 3CA2151C17E0A3EE01C01500A31603A217801607160F161F163F0003EC01FFB81200A32B 2D7EAC30>I<B712FCA33903FC00030001EC00FE163EA2161EA2160EA316071538A31600 A21578A2EC01F890B5FCA3EBFC01EC0078A21538A592C7FCA9487EB512FCA3282D7EAC2E >I<DA1FF013C09138FFFE010107EBFF8390390FF807C390393FC001E749C7127F01FC14 3F4848141F4848140F00071507485A491403121F123F491401A2127F90C8FC93C7FC5AA8 92383FFFFE7EA26D9038003FC0003F151FA27F121F120F7F6C7E12036C7ED800FE143F13 7FD93FC013F790390FF803E36DB512C101001400DA1FF813002F2F7CAD37>I<B5D8F81F B5FCA3D803FEC7EA7FC06C48EC3F80B090B7FCA301FCC7123FB2486CEC7FC0B5D8F81FB5 FCA3302D7EAC35>I<B512F8A33803FE006C5AB3B3487EB512F8A3152D7EAC19>I<B500F8 EB7FFFA3D803FEC7EA3FF06C48EC1F80041EC7FC5E5E5E4B5A4B5A4B5A4BC8FC151C5D5D 4A5A4A5A4A7E140F4A7E4A7EEC7BFC14E19038FDC0FE9038FF80FF4A7E496D7E496D7E82 150F6F7E8215036F7E6F7E8282707E83707E486C4A7EB5D8F801B51280A3312D7EAC37> 75 D<B512FCA3D803FEC8FC6C5AB3A5161CA41638A41678A216F815011503ED07F00003 143FB7FCA3262D7EAC2C>I<D8FFFE92381FFFC0A3D803FF92383FF0006C5FD9DF801477 A3D9CFC014E7A2D9C7E0EB01C7A3D9C3F0EB0387A2D9C1F8EB0707A3D9C0FC130EA3027E 131CA26E1338A391381F8070A291380FC0E0A3913807E1C0A2913803F380A3913801FF00 A36E5A487ED80FF8017C497EB500800103B512C0A215383A2D7DAC41>I<D8FFFC49B5FC 7FA2D801FF9038001FF06EEB07C06EEB038013DFEBCFE08013C7EBC3F8EBC1FC8013C014 7F1580143FEC1FC0EC0FE015F01407EC03F815FCEC01FE1400157F1683153FED1FC3ED0F E316F31507ED03FB16FF8181167FA2163F161F487ED80FF8140FB56C13071603A2302D7E AC35>I<EC3FF0903801FFFE01076D7E90391FE01FE090393F8007F09039FE0001FC4848 6D7E4848147F4848EC3F8049141F000F16C04848EC0FE0A24848EC07F0A2007F16F8A290 C81203A24816FCAA6C6CEC07F8A3003F16F06D140F001F16E0A26C6CEC1FC06D143F0007 16806C6CEC7F006C6C14FE6C6C495A90397F8007F890391FF03FE00107B51280010149C7 FC9038003FF02E2F7CAD37>I<B612F8EDFF8016E03A03FC001FF00001EC03F86F7E6F7E 82821780A717005E5E4B5A4B5AED1FF090B65A168003F8C7FC01FCC9FCB0487EB512F8A3 292D7EAC30>I<B612E015FE6F7E3A03FC003FE00001EC07F06F7E6F7E82150082A65E15 015E4B5A4B5AED3FE090B612804BC8FCA29038FC007FED1F806F7E82150782A582A4EF03 8016FC1503486C903901FE0700B500F86D5A9238007FFE705AC9EA07F0312E7EAC34>82 D<90383F80303901FFF07048EBFCF0380FC07E381F000F001E1307481303007C13011278 00F81300A21570A27EA26C1400127F7FEA3FF8EBFF806C13F86C13FE6C7F6C14C0C614E0 130F010013F0EC0FF814031401EC00FCA20060147C12E0A46C1478A26C14F07E6CEB01E0 39FF8003C039F7F00F8000F1B5120038E07FFE38C00FF01E2F7CAD27>I<007FB712F8A3 9039800FE007D87E00140000781678A20070163800F0163CA348161CA5C71500B3A74A7E 011FB512F0A32E2D7EAC33>I<B5D8F801B5FCA3D803FEC7EA1FF06C48EC07C0EE0380B3 AB0000ED07007F137E160E6D5C6D7E010F1478D907E05B903903F807E00100B51280023F 90C7FCEC07F8302E7EAC35>I<B500E090381FFFC0A3D803FEC73803FC006C48EC01F05F 7F00005E6D14036D5DA26D6C49C7FCA26E5B011F140EA26D6C5BA26E133C01071438A26D 6C5BA26E13F001015CA26D6C485AA2ECFF03027F5BA2DA3F87C8FCA215CFEC1FCEA2EC0F FCA36E5AA26E5AA36E5AA2322E7FAC35>I<B500E090381FFFC0A3D803FEC73803FC0000 01ED01F06C6C15C06E1303017F5D6D6C49C7FC6E5B011F140E6D6C131E6E5B010714386D 6C13786E5B01015C903800FF015EEC7F8391383FC78093C8FCEC1FEFEC0FFE5D14076E5A AF140749B512E0A3322D7FAC35>89 D<003FB612C0A39039F0003F800180EB7F0090C75A 003E5C003C495A007C130300785C14074A5A00705C141F4A5A5DC7127F4AC7FC5C13015C 495A13075C495A131F5C013F14E0495A91C7FC5B485A4913011203485A5B000FEC03C05B 48481307003F140F49133F48C712FFB7FCA3232D7CAC2B>I<EAFFE0A3EAE000B3B3B3A7 EAFFE0A30B4379B114>I<EAFFE0A31200B3B3B3A712FFA30B437FB114>93 D<136013F0487E487E487EEA0F9F383F0FC0387E07E038F801F0387000E000201340140B 79AD23>I<157CEC1FFCA314011400ABEB1FE0EB7FF83801FFFE3803F81F3807E007380F C001381F800048C7FCA25A127EA212FEA7127EA37EA2381F8001000F13036C6C487E3A03 F03EFFE03801FFFC6C13F090391FC0F800232F7EAD27>100 D<EB1F80EBFFF0487F3803 F0FC3807C03E380F803F48487E481480140F127E15C0A212FEB6FCA348C8FCA4127EA212 7F6CEB01C0A2391F800380EA0FC03907E007003803F81E3801FFFC6C6C5AEB1FC01A207E 9E1F>I<EA0780EA0FC0EA1FE0A4EA0FC0EA0780C7FCA8EA03E012FFA3120F1207B3A4EA FFFEA30F2E7FAD13>105 D<3807C1F038FFC7FCEBCFFEEBDE7FEA0FD8EA07F8EBF03E14 1C14005BB17FB51280A3181E7E9D1C>114 D<38078010380FE03C381FF87C383FFFF848 13F038F87FE038F01FC03820078016087AAC23>126 D E /FJ load 0 FJ currentfont 66.6667 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FK cmr10 10.95 88 /EN1 load IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-6 -25 91 68]N /FK 88 128 df<B812FEA4C69038E0000F6D481301EE007F8383A283A283A5EF0380A594 C7FCB3B1497EB612FCA4313E7DBD39>0 D<ED7FE0913807FFFE021F6D7E91397FC03FE0 903A01FE0007F8D907F8EB01FE49486D7ED91FC0EC3F8049486E7E49C86C7E01FE6F7E00 018349150348486F7E000783491500000F83A24848EE7F80A2003F18C049163FA2007F18 E0A3D981C0EC381F00FF18F0A291B612F8A802C0C71238A2007F18E00180C9FC6D163FA3 003F18C0A26C6CEE7F80A36C6CEEFF00A26C6C4B5A00035F6D15036C6C4B5A00005F017F 4B5A6D6C4A5A6D6C4A5AD90FF002FFC7FC6D6C495AD901FEEB07F8903A007FC03FE0021F B51280020749C8FC9138007FE03C427BBF47>2 D<153C157EA415FFA34A7FA34A7FA34A 7FA215BFA291380F3FF0151FA2021E7F150FA2023E7F143C1507027C7F14781503A202F0 7F81A20101814A7EA20103815C167F0107815C163FA249C77F161FA24981011E140FA201 3E81133C1607A249811603A201F881000181487ED80FFF02071380B5D8F001B6FCA43841 7DC03F>I<BA12F8A4C601C0C7381FF800017F5EB3B3B0496C4A7EB6D8E03FB512F8A43D 3E7DBD44>5 D<007FB812F8B9FCA3D87FF0C71201003FED001F6DED07FC6C6C15016C6C 15000007177C7F6C6D153C7E806C6D151C6D7E133F6E151E6D6C150E130F806D7E6D6D14 007F816D7F147F816E7E6E7E140FA26E5A6E5AA25D4A5A4A5A4AC9FC021E150E5C147C5C 4948151E495A4948151C5C49C9FC011E163C133E49167C5B484816FC4848150149150748 48151F000F923801FFF848B8FC5A5AB9FC7E373E7BBD42>I<0103B612FCA490C7D87FE0 C8FC6F5AA7D87F80EE1FF0486C163F6D167FD81FF0EEFF806C6C4B130000075FA26D1503 00035FAB6C6C4B5AA300005FA26D150F6D5E0280141F013F5ED91FC04A5AD90FE04AC7FC D907F014FED903F8EBC1FCD901FEEBC7F86DB65A023F14C0020F91C8FC020013F0ED3FC0 A84B7E0103B612FCA43C3E7BBD47>9 D<9239FF8007F0020F9038E03FFC027F9038F8FF FE913AFF00FDFC3FD903F890387FF07F49489039FFE0FF8090260FC0015BEB1F80013F5D D97F00ED7F006FEB003E017E6E90C7FC13FEADB97EA4C648C76CC8FCB3AC486C4A7E007F D9FC3FEBFF80A439407FBF35>11 D<EC01FE91381FFFC091B57E903901FE01F0903907F0 00784948137C90391F8001FCD93F007F49130313FEA2496D5A1201ED007093C7FCAA16FE B7FCA43901FC000315011500B3AA486C497EB5D8F87F13FCA42E407EBF33>I<DA03FE14 FF91271FFFC00F13E091B5D8E07F7F903C01FE03F0FF00F8902807F0007BF8133C4948D9 FFF0133E90261F800101C013FE494848497F495E01FE1500A2494A6D5A00011401030015 3896C7FCAA197FBBFCA4D801FCC738FE00018485B3AA486C496CECFF80B5D8F87FD9FC3F 13FEA447407EBF4C>14 D<133E133F137F13FFA2EA01FEEA03FCEA07F813F0EA0FE0EA1F C01380EA3E005A5A1270122010116EBE2D>19 D<B7FCA420047AB52D>22 D<121E123FEA7F80EAFFC0A8EA7F80ABEA3F00AC121EAC120CC7FCA8121E123FEA7F80EA FFC0A4EA7F80EA3F00121E0A4179C019>33 D<001E130F003FEB1F80397F803FC039FFC0 7FE0A301E013F0007F133F003F131F001EEB0F7000001300A5484813E0A339038001C0A2 0007130301001380000EEB0700A248130E485B485B002013101C1C7DBE2D>I<121E123F EA7F80EAFFC0A313E0127F123F121E1200A5EA01C0A3EA0380A212071300120EA25A5A5A 12200B1C79BE19>39 D<1438147814F0EB01E0EB03C0EB0780EB0F00A2131E5B137C1378 13F85B1201485AA2485AA3485AA3121F90C7FCA25AA2123EA2127EA5127C12FCB2127C12 7EA5123EA2123FA27EA27F120FA36C7EA36C7EA26C7E12007F1378137C133C7F7FA2EB07 80EB03C0EB01E0EB00F014781438155A78C323>I<12C07E7E12787E7E7EA26C7E6C7E7F 12017F12007F137CA27FA37FA31480130FA214C0A21307A214E0A5130314F0B214E01307 A514C0A2130FA21480A2131F1400A3133EA35BA25B5B12015B12035B485A48C7FCA2121E 5A5A5A5A5A145A7AC323>I<1506150FB3A9007FB912E0BA12F0A26C18E0C8000FC9FCB3 A915063C3C7BB447>43 D<121E123FEA7F80EAFFC0A313E0127F123F121E1200A5EA01C0 A3EA0380A212071300120EA25A5A5A12200B1C798919>I<B512FEA617067F961E>I<121E 123FEA7F80EAFFC0A4EA7F80EA3F00121E0A0A798919>I<EB01FE90380FFFC0013F13F0 90387F03F89038FC00FC4848137E48487F4848EB1F8049130F000F15C04848EB07E0A300 3F15F0A348C7EA03F8A64815FCB3A26C15F8A46D1307003F15F0A3001F15E0A26D130F00 0F15C0A26C6CEB1F806C6CEB3F006C6C137E6C6C5B90387F03F86DB45A010F13C0D901FE C7FC263F7DBC2D>48 D<14E013011303130F137FEA07FFB5FCA2139FEAF81F1200B3B3AA 497EB612FCA41E3D78BC2D>I<EB07FC90383FFF8090B512E048803903F01FF839078007 FE390F0001FF001E7F481580ED7FC048143F16E0127F486C131F16F07FA46C5A6CC7FC12 0CC813E0A2153F16C0157F1680A2EDFF004A5A5D4A5A4A5A5D4A5A4A5A4AC7FC147E147C 5C495A495AEB078049C71270131E5B5B017014E05B485A485A48C7120148B6FC5A5A5AB7 12C0A4243D7CBC2D>I<EB07FC90383FFF8090B512E03901F80FF03903C003FC48486C7E 000EC77E121ED81F80EB7F807F486C14C07FA46C5A6C5A6C481480C8FC15FF16005D1401 5D4A5A4A5A4A5AEC3FC0D91FFFC7FC14FCECFF809038000FE0EC03F86E7E6E7E81ED7F80 16C0A2ED3FE0A216F0A2120EEA3F80487EA2487EA216E0A249137F6C4814C090C7FC003C ECFF80003E15006C495A390FC003FC3907F80FF86CB55AC614C0013F5BD907F8C7FC243F 7CBC2D>I<151E153EA2157E15FEA21401A214031407A2140E141E141C143C1478147014 F0EB01E014C01303EB078014005B131E131C133C5B137013F05B485A12035B48C7FC5A12 0E121E5A123812785AB8FCA4C73801FE00AB4A7E0103B6FCA4283E7EBD2D>I<00041403 D80F80131F01F813FF90B55A5D5D5D15C05D4AC7FCEB7FF090C9FCACEB01FE90380FFF80 4913E090387E07F09038F001F8496C7E49137E49137F90C7EA3F801206C813C0151F16E0 A316F0A4123E127F487E7FA216E05B90C7FC007EEC3FC0127016806C147F003C15006C14 FE6C495A9038C003F83907F00FF00001B55A6C1480D93FFEC7FCEB0FF0243F7CBC2D>I< EC1FE0ECFFF801037F903807F03E90381F8007D93F001380017E131F49EB3FC04848137F A2485A120749EB3F80000FEC1F0092C7FC485AA2123FA3485AA2EB81FF018713C090388F DFF039FF9C01F89038B800FC01F0137E157F497F16804914C0151F16E0A25BA216F0A412 7FA5123F16E07FA2121FED3FC0120F6D1480000715006D5B000314FE6C6C485A3900FE07 F890387FFFF06D13C0010F5BD903FCC7FC243F7CBC2D>I<1238123C123F90B612FCA448 15F816F0A216E00078C7EA03C00070EC0780A2ED0F00151E5A5D5DA2C85A4A5A4A5AA24A 5A140F92C7FC5C141E143E143C147CA25CA21301A2495AA31307A3130F5CA3131FA5133F A96D5AA20107C8FC26407BBD2D>I<EB03FC90381FFF804913E09038FC07F03901F000F8 D803C0137C48487F90C77E48EC0F80121EED07C0A2123EA3123FA26DEB0F807F6C7E01F8 EB1F006D133E6CB4133C6E5A6CEBE0F06CEBF3E06CEBFFC06C91C7FC6D7F011F7F6D13F0 013F7F01FD7F3901F07FFE48486C7E2607C00F138048486C13C0381F0001001E6D13E000 3E143F48141FED0FF01507481403A21501A416E07E127CED03C07E003FEC07806C6CEB0F 006C6C5BD807F0137E3903FC03FC6CB512F06C6C5B011F1380D903FCC7FC243F7CBC2D> I<EB03FCEB1FFF4913C09038FE07E03901F801F048486C7E48487F157E485A001F80123F 491480127FED1FC0A212FF16E0A616F0A4127F153FA3123F7F001F147F120F6C6C13FFA2 3903F001DF3901F8039F3A00FFBF1FE0EB3FFEEB0FF890C7FCA2ED3FC0A31680A21600D8 0F805B486C137E486C13FE5D14015D49485A6C48485A391E000FC0390FC07F806CB5C7FC 6C13FC6C5B38003FC0243F7CBC2D>I<121E123FEA7F80EAFFC0A4EA7F80EA3F00121EC7 FCB3121E123FEA7F80EAFFC0A4EA7F80EA3F00121E0A2779A619>I<121E123FEA7F80EA FFC0A4EA7F80EA3F00121EC7FCB3121E123FEA7F8012FF13C0A3127F123F121F1201A5EA 0380A4EA0700A2120EA25AA25A5A12200A3979A619>I<007FB912E0BA12F0A26C18E0CD FCAE007FB912E0BA12F0A26C18E03C167BA147>61 D<ED0F80A34B7EA34B7EA34B7EA34B 7EA3913801E7FCA3913803C3FEA391380781FFA3020F801500A24A80021E137FA2023E80 023C133FA2027C800278131FA202F8804A130FA20101814A1307A249B67EA34981913880 0001A2010F8291C8FCA24982011E157FA2013E82013C153FA2017C82171FEA01FE2607FF 80EC7FFCB500F8011FB512F8A43D417DC044>65 D<B712FCEEFF8017F017FCC69039C000 0FFE6D48EB03FF7013807013C0EF7FE0173F18F0171F18F8A3170F171FA318F0A2EF3FE0 177F18C0EFFF804C1300EE07FEEE1FF891B612E094C7FC17F0913980000FFCEE01FF7013 80EF7FC0EF3FE0EF1FF018F8170F18FC170718FEA8EF0FFCA3EF1FF8EF3FF0177FEFFFE0 4C13C0496C010F1380B8EAFE005F17E094C7FC373E7DBD40>I<DB3FF01306912603FFFE 130E020F9038FF801E023F14E0913AFFF007F03E010390398000F87E4948C7EA3CFED90F F8141ED91FE0140F494814074948140349C8FC48481501000316005B4848167E120FA248 48163EA2123F5B181E127FA25B180012FFAC127FA26D160EA2123FA27F121F181C6C7EA2 6C6C163812036D1678000117706C6C16E06D6C14016D6C15C06D6CEC0780D90FF8EC0F00 D907FE141E6D6C6C137C01009038F003F8023FB512E0020F5C020349C7FC9138003FF037 427BBF42>I<B712FEEEFFC017F017FCC69039E0000FFF6D4801017F706C7E717EEF0FF0 717E717E717EA2717E1980187F19C0183F19E0A3F01FF0A519F8AB19F0A5F03FE0A219C0 187FA21980F0FF00A24D5A4D5A17074D5A4D5AEF7FE0933801FF80496C010F90C7FCB812 FC5F17C04CC8FC3D3E7EBD45>I<B912E0A4C69038E000016D48EB001FEF0FF017031701 A21700A31870A404381338A518001678A316F8150791B5FCA4ECC00715001678A3043813 0EA3181CA393C7FCA2183C1838A21878A318F8170118F01703170F173F496CEB01FFB9FC 18E0A3373E7DBD3E>I<B912C0A4C69038E000016D48EB003FEF0FE017071703A21701A2 1700A51870161CA41800A2163CA2167C16FC150391B5FCA4ECC0031500167C163CA2161C A693C8FCAD497EB612F8A4343E7EBD3B>I<DB3FE0130C912603FFFC131C021F01FF133C 027F14C0913AFFF00FE07C010390390001F0FCD907FCEB0079D90FF0143D4948141F4948 140F4948140749C81203485A484815011207491500120F5B001F177CA2485AA2183C127F A25B95C7FC12FFAB043FB512F0127FA27F9339000FFE00003F705AA27F121FA26C7EA212 077F6C7E12016C7E6D7E6D6C140F6D7ED90FF8141FD907FE143E6D6C6CEBFC7C01009039 F007F83C6EB5EAE01C021FECC00C020349C8FC9138003FF03C427BBF47>I<B6D8E03FB5 12F8A4C601E0C7383FF8006D486E5AB3A591B7FCA402C0C7121FB3A7496C4A7EB6D8E03F B512F8A43D3E7DBD44>I<B612F8A439007FF0006D5AB3B3B0497EB612F8A41D3E7EBD21> I<B612FCA4C601E0C9FC6D5AB3AEEF0380A51707A21800A35FA35FA25F5F5F5EEE07FE49 6C133FB8FCA4313E7DBD39>76 D<B500E093387FFFF0A36E93B5FCC6F1F000D977F89238 01DFE0A3D973FCED039FA3D971FEED071FA2D970FF150EA36E6C141CA26E6C1438A36E6C 1470A36E6C14E0A26E6CEB01C0A36E6CEB0380A36E6CEB0700A26E6C130EA36F6C5AA36F 6C5AA26F6C5AA36F6C5AA2923807F9C0A36FB45AA36F90C7FCA201F86D5A487ED807FF4D 7EB500F8017C013FB512F0A316384C3E7DBD53>I<B500C091B512F88080A2C66C6C0207 13006EEC01FC01776F5A6E1570EB73FF13718101707F147F816E7E141F816E7E1407816E 7E80826E7F157F826F7E151F826F7E1507826F7E8117806F13C0167F17E0EE3FF0161F17 F8EE0FFC160717FEEE03FF8218F082177FA2173F171FA2170F170713F8486C1503D807FF 1501B512F817001870A23D3E7DBD44>I<ED7FE0913807FFFE021F6D7E91397FC03FE090 3A01FE0007F8D907F8EB01FE49486D7E49486E7E49486E7E49486E7E49C86C7E48486F7E 49150300038348486F7EA248486F7EA2001F188049167F003F18C0A3007F18E049163FA3 00FF18F0AC007F18E06D167FA4003F18C06D16FF001F1880A26D5D000F1800A26C6C4B5A 00035F6D15076C6C4B5A6C5F6D6C4A5A6D6C4A5A6D6C4A5A6D6C4AC7FCD907FCEB03FED9 01FEEB07F8903A007FC03FE0021FB51280020749C8FC9138007FE03C427BBF47>I<B712 F816FF17E017F8C69039E0003FFC6D48EB07FEEE01FF701380EF7FC0EF3FE0A218F0171F A218F8A718F0A2173F18E018C0177FEFFF804C1300EE07FEEE3FF891B65A17C04CC7FC02 C0C9FCB3A5497EB612E0A4353E7DBD3E>I<ED7FE0913807FFFE021F6D7E91397FC03FE0 903A01FE0007F8D907FCEB03FED90FF0EB00FF49486E7E49486E7E49486E7E49C86C7E48 486F7EA248486F7E000783491501000F834981001F1880A24848EE7FC0A3007F18E0A249 163FA200FF18F0AC007F18E0A26D167FA3003F18C0A26C6CEEFF80A36C6C4B1300ED1F80 6C6C90393FE003FE0003DA7FF05B6D9038F078070001902601C01C5B2600FF0390380C0F F0903B7F83800E1FE0D93FC39038063FC0D91FE39038077F80D90FF36D48C7FC902607FB C05BD901FFEB07F8903A007FF03FE0021FB548131814079139007FE1E0ED0001711338A2 706C13787113F0EFFF0318FFA27113E0A27113C0A2711380711300715AEF01F83D527BBF 47>I<B712C016FCEEFF8017E0C69039E0007FF06D48EB0FFCEE03FE707E707F717EA284 173F84A760177F606017FF4C90C7FCEE03FCEE0FF8EE7FE091B6128004FCC8FC829139C0 01FF809238003FC0707E707E707E707E83160183A784A51904190E18C082A2496C027F13 1CB600E0EB3FE0051F133894380FF078943807FFF0CA000113E09438003F803F407DBD43 >I<D903FC131890391FFF8038017FEBE07848B512F03A03FC03FCF83907F0007FD80FC0 131F4848130F150748C712031501127E1500A200FE1578A46C1538A37F6C6C14007F7FEA 3FFEEBFFE06C13FE6CEBFFE06C14FC6C806CECFF806C15C06D14E0011F14F01301D9001F 13F8020113FCEC003FED0FFE1503A2ED01FF81126012E0167FA47E167EA27E16FC7E6CEC 01F87E6DEB03F001E0EB07E0D8FDF8EB0FC03AF8FF803F80486CB51200011F5BD8E00713 F839C0007FC028427BBF33>I<003FB91280A4D9F000EBE001018090397FC0003F48C7ED 1FC0007C1707A200781703A300701701A548EF00E0A5C81600B3B04B7E010FB612FEA43B 3D7DBC42>I<B6D8E001B512F8A4C601E0C7000F13006D48EC03FC715A715AB3B3A3013F 4B5AA280131F4D5A130F6E4A5A13076E4AC7FC6D6C141E01015D6DB4147C6E6C485A9139 3FF00FE0020FB55A02035C020049C8FCED1FF03D407DBD44>I<B6017FB5D8C007B5FCA4 000301C0010001F0C7EA7FF06C49DA7FC0EC1FC06CF20F8072EC07006E023F5D017F190E 8480013F6184177F6D6C60A2EFE7FC6D6C60A2933801C3FE6E18F001076104037F6E0281 1401010361040714806E14006D4E5A19C0040E137F6D01804CC7FCA24CEB3FE0DA7FC016 0EA24CEB1FF003E0161E023F171C047814F8DBF070010F133C021F173804F014FC6F4813 07020F5F19FEDBF9C01303DA07FD5EA2DBFF80EB01FF6E5FA293C8FCA26E5FA24B157F02 0094C8FCA24B81037C153EA20378151E0338151C58407EBD5D>87 D<007FB5D8E00FB512E0A428007FFE0001EBF800D91FF89038007FC06D6C6EC7FC173E6D 6C143C6E147C6D5D6D7F4C5A6D01C05B91387FE0034C5ADA3FF05B91381FF80F4CC8FC91 380FFC1E163E6E6C5A913803FF7816F86E5B805E157F6F7EA26F7EA24B7E82157FEDFBFF 03F17F1401DA03E07F83913807C07F4A486C7EA24A486C7E021E6D7E143E4A6D7E02786D 7E14F849486D7F4A8101038049486E7EA249486E7E011F6F7EEB7FC02603FFF0EC7FFEB5 00FE0107B512FEA43F3E7EBD44>I<003FB712F8A317F091C7123F01F815E001E0147F01 80ECFFC090C81380003E5C1700484A5A150700785D150F4B5A5E0070143F5E4B5A15FF5E C75A4A90C7FC5D14075D4A5A141F5D143F4A5A5D14FF5D4990C8FC5B4A141C1307495A5C 131F5C495A017F153C5C13FF485B91C8FC4816785B484815F8120F491401001F15034848 140F49143F007FEC01FF90B7FCB8FCA32E3E7BBD38>90 D<EAFFFCA4EAF000B3B3B3B3AB EAFFFCA40E5B77C319>I<6D1340486C13E039038001C03907000380000EEB0700A24813 0E003C131E0038131CA2485BA3485BA500EFEB778039FF807FC001C013E001E013F0007F 133FA3393FC01FE0391F800FC0390F0007801C1C73BE2D>I<EAFFFCA4EA003CB3B3B3B3 ABEAFFFCA40E5B7FC319>I<1318133C137E13FF4813803803E7C03807C3E0380F81F038 1F00F8003C133C48131E48130F00601306180D76BD2D>I<1380EA01C0EA0380EA070012 0EA25A123C1238A25AA35AA512EFEAFF8013C013E0127FA3EA3FC0EA1F80EA0F000B1C7A BE19>96 D<EB1FF8EBFFFE00036D7E3907E01FE0390FC007F06D6C7E486C6C7E140081A2 6C48137F6C5A6C5AC8FCA491B5FC130F133F9038FFC07F3803FE00EA07F8EA0FE0485A48 5A48C7FCA200FEED0380A415FFA2127F5C3B3F8003BF8700391FC0071F260FF01E13FE39 07FFFC0F00019038F007F83A003FC003E0292A7DA82D>I<EA01FC12FFA4120712031201 B0EC03FC91381FFF804A13E09138FC07F89039FDE001FC9039FF80007E91C77E49158016 1F4915C0EE0FE0A317F01607A217F8A917F0A2160F17E0A217C0161F6D1580EE3F006D14 7ED9FB805B9039F1E003F89039E0F80FF091387FFFC0D9C01F5BC7D803FCC7FC2D407EBE 33>I<49B4FC010F13F0013F13FC90387F007E01FC7F48485B4848EBFF80485A120F485A ED7F004848133E151C007F91C7FCA290C9FCA25AA97E7FA2123FED01C06C7EED03806C7E 0007EC07007F6C6C130ED801FE133C39007F80F86DB45A010F13C0D901FEC7FC222A7DA8 28>I<ED01FC15FFA4150715031501B0EB01FE90380FFFC1013F13F190387F80F99038FE 003DD801F8130F484813074848130348481301121F5B123FA2127F90C7FCA25AA97EA27F 123FA36C7E000F14036D130700074A7E6C6C497ED801FC013D13F839007F01F190383FFF E1010F1381903A01FE01FC002D407DBE33>I<EB01FE90380FFFC0013F13F090387F03F8 9038FC00FCD803F0137E497F12074848EB1F80121F4914C0003F140FA2007F15E090C7FC A25A90B6FCA390C9FCA67E7FA2123F16E06C7EED01C06C7E0007EC03806C7E6C6CEB0700 D800FE131E90387FC07C90381FFFF001075B010090C7FC232A7EA828>I<EC0FE0EC7FF8 903801FFFC903803F87E903807E0FE90380FC1FFEB1F81133F140190387F00FE017E137C 01FE1300AEB6FCA4C648C7FCB3AC487E007F13FFA420407EBF1C>I<167C903903F803FE 90391FFF07FF017F9038DF9F809039FE0FFE1F3901F803F82603F001EB0F003A07E000FC 0693C7FC4848137EA2001F147FA7000F147EA26C6C5BA26C6C485A6C6C485A3903FE0FE0 90B55AD8071F90C8FCEB03F848CAFCA57F7F6CB512F015FE6C6E7E6C15E0488148813A0F C0001FFC48C7120348EC00FE007E157E167F4881A5007E157EA26C5D6C6C495A6C6C495A D807F0EB0FE0D803FEEB7FC0C6B6C7FC013F13FC010313C0293D7EA82D>I<EA01FC12FF A4120712031201B0EC01FE91380FFFC0023F7F91387C07F09138F003F89039FDC001FCEB FF80150091C77E5BA35BB3A5486C497EB5D8F87F13FCA42E3F7DBE33>I<EA01E0487E48 7E487EA46C5A6C5A6C5AC8FCACEA01FC127FA4120712031201B3AA487EB512F0A4143E7D BD1A>I<147814FCEB01FEEB03FFA4EB01FEEB00FC14781400AC147FEB7FFFA413017F14 7FB3B3A4123E127F38FF807E14FE14FCA2EB01F8007E13F0383E07E0381FFFC06C1300EA 01FC185185BD1C>I<EA01FC12FFA4120712031201B192B51280A492383FF80016C093C7 FC153C5D5D4A5A4A5A4A5A020EC8FC141E143F14FF01FD7F9038FFDFC0148FEC0FE0496C 7EEBFC0301F87F6E7E6E7EA2157F6F7EA26F7E6F7EA282486C14FCB539F07FFFE0A42B3F 7EBE30>I<EA01FC12FFA4120712031201B3B3AF487EB512F8A4153F7DBE1A>I<2701F801 FE14FF00FF90270FFFC00713E0023FD9E01F7F913B7C07F03E03F8913BF003F87801FC3D 07F9C001FCE000FE2603FB80EBFDC000010200157E01FFC7B448137F4992C7FCA3495CB3 A5486C496CECFF80B5D8F87FD9FC3F13FEA447287DA74C>I<3901F801FE00FF90380FFF C0023F7F91387C07F09138F003F83A07F9C001FC3803FB800001140001FFC77E5BA35BB3 A5486C497EB5D8F87F13FCA42E287DA733>I<14FF010713E0011F13F890387F81FE9038 FC003F4848EB1F804848EB0FC04848EB07E04848EB03F0001F15F8491301003F15FCA248 C812FEA44815FFA96C15FEA36C6CEB01FCA36C6CEB03F8000F15F06D13076C6CEB0FE06C 6CEB1FC06C6CEB3F803A007F81FE006DB45A010F13F0010090C7FC282A7EA82D>I<3901 FC03FC00FF90381FFF804A13E09138FC0FF89039FDE003FC3A07FF8000FE6C90C7127F6C 481580163F49EC1FC017E0A2160F17F0A2160717F8A917F0160FA217E0161F17C0163F6D 1580EE7F006D14FE6E485A9039FDE003F89039FCF80FF091387FFFC0021F5BDA03FCC7FC 91C9FCAC487EB512F8A42D3A7EA733>I<02FE131C903907FFC03C011F13E090387F80F0 9039FE00387C4848131C4848EB0EFC4848130748481303121F5B003F14015B127FA290C7 FC5AA97E7FA2123F7FA2001F14036C7E6C6C1307150F6C6C131DD801FE137939007F81F1 90383FFFE1010F1381903801FC0190C7FCAC4B7E92B512F8A42D3A7DA730>I<3901F80F C000FFEB3FF0EC7FF8ECF1FC9038F9C3FE3807FB8312033801FF03EC01FC9038FE00F815 701500A25BB3A4487EB512FEA41F287EA724>I<90383FC0603901FFF8E0000713FD380F C03F381E000F481303127C0078130112F81400A37E7E6C6C1300EA7FF0EBFF806C13F86C 7F6C13FF6C1480000114C06C6C13E013039038003FF014070060EB03F800E01301A26C13 00A37E15F06C130115E06C130339FF8007C039FBE01F8000F1B5120000E013FC38C01FE0 1D2A7DA824>I<131CA6133CA4137CA213FCA2120112031207001FB512C0B6FCA3D801FC C7FCB315E0A90000EB01C013FE137E90387F038090383F8700EB1FFE6D5AEB01F81B397E B723>I<D801FC14FE00FF147FA4000714030003140100011400B3A41501A3150312004B 7E017E010E13804B13FC90383F80786DB45A01075B0100903800FE002E297DA733>I<B5 39E00FFFE0A42703FE000313006C48EB00FC16F07F00005DA26D13016D5CA26D6C485AA2 ECC007011F91C7FCA290380FE00EA2ECF01E0107131CA26D6C5AA2ECFC7801011370A2EC FEF001005BA2EC7FC0A36E5AA26EC8FCA3140E2B287EA630>I<B53BC3FFFE03FFF8A429 07FC001FE00013C06C486D48EB3F006D161E00016F131C15076D163C00004A6C1338A201 7F5E4B7E151DD93F805DED3DFC1538D91FC04A5AED78FE9238707E03D90FE0017F5BEDE0 3F02F0140701070387C7FC9138F1C01F02F9148F010315CE9138FB800F02FF14DE6D15FC ED00076D5DA24A1303027E5CA2027C1301023C5C023813003D287EA642>I<B539F01FFF E0A400019039800FFE003A007F0007F0028013C0D93FC05B011F49C7FC90380FE00EECF0 1E6D6C5A01035B6D6C5A6E5AEB00FF6E5A6E5A81141F814A7E81147BECF1FC903801E1FE ECC0FF01037F49486C7ED90F007F011E6D7E011C130F013C6D7E01FC80D807FE497EB539 803FFFF8A42D277FA630>I<B539E00FFFE0A42703FE000313006C48EB00F85E7F00005D A2017F495AA2EC8003013F5CA26D6C48C7FCA26E5A010F130EA26D6C5AA2ECF83C010313 38A26D6C5AA2ECFEF001005BA2EC7FC0A36E5AA36EC8FCA2140EA2141E141C143C1438A2 147800181370007E13F0B45B13015C130348485AD87E0FC9FCEA7C3EEA3FFC6C5AEA07E0 2B3A7EA630>I<001FB61280A3D9E000130001805B49485A001E1303001C495A003C5C14 0F4A5A0038495A5D147F4AC7FC5CEA0001495A495A5C130F90391FE00380EB3FC0148013 7FEBFF005B00011407485A485A491400000F5C485A495B4848137F007F495AB7FCA32127 7EA628>I<D801F01310D807FE133C390FFF807848EBFBF848EBFFF0486C13E0D8780713 C0D8F00113803920003E001E0979BC2D>126 D<001C130E007EEB1F80007F133F39FF80 7FC0A3397F003F80007E131F001CEB0E001A0977BD2D>I E /FK load 0 FK currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont %DVIPSBitmapFont: FL cmbx10 10.95 54 /EN1 load IEn S/IEn X FBB FMat/FMat[0.0109589 0 0 -0.0109589 0 0]N/FBB[-7 -25 106 68]N /FL 54 124 df<ED7FF091380FFFFE027F6D7E49B67E01079038C01FE0903A0FFC0007F0 D91FF0EB1FF84948133F4948804948137FA291C7FC5AA2705A705A705AEE038093C8FCA5 EE03FCB8FCA50001903880001F160FB3AB007FD9FE03B512F0A534407EBF3A>12 D<B612E0A91B097F9823>45 D<EA07C0EA1FF0EA3FF8EA7FFCA2EAFFFEA5EA7FFCA2EA3F F8EA1FF0EA07C00F0F798E1D>I<140F5C147F495A130F48B5FCB6FCA313F7EAFE071200 B3B3A8003FB612F8A5253C79BB34>49 D<903803FF80013F13F090B512FE00036E7E4881 260FF80F7F261FC0017F003F6D7FD87FF06D7E6D6D7EA2486C6D7EA36F1380A26C5AA26C 5A6C5A0003C7FCC8481300A35E153F5E4B5AA24B5A4A5B5E4A90C7FC4A5A4A5A4A5A15E0 4A5A4A5A9139FE000F80495A495A4948EB1F00495AEB1F8049C7FC017E5C5B48B7FC485D 5A5A5A5A5AA2B75AA4293C7BBB34>I<ECFFC0010F13FC013F13FF4914C02601FF0113F0 3A03F8007FF8496D7E1207D80FFC806D131F486C80A66C4A5A5B6C5AD801F85CC8485AA2 4B5A4A5B4A5B020F90C7FC903807FFFC15F015FE6F7ED9000113E09138007FF86F7E826F 7E17808117C0A2EA07C0D81FF015E0487E487EA2487EA317C0A25B007F4A13805B6C4815 0001C0495AD81FF0495A3A0FFE01FFF86CB65A000115C06C6C91C7FC011F13FC010113C0 2B3D7CBB34>I<ED01F815031507A2150F151F153FA2157F15FF5C5CA25C5CEC1FBFEC3F 3F143E147C14FCEB01F814F0EB03E01307EB0FC0EB1F801400133E137E5B485A5B485A12 07485A5B48C7FC5A127E5AB812F8A5C8387FF800AA49B612F8A52D3C7DBB34>I<000E15 38D80FC0EB01F801FC131F90B6FC5E5E5E5E93C7FC5D5D15F015C092C8FC14F801C0C9FC A8ECFFC001C713F801DF13FE90B67E02017F9039F8007FF001E08049133F498090C76C7E C8FC82A31780A21207EA1FC0487E487E487EA31700A25B007F5D49133F01805C6CC7485A 7F3A1FE001FFF0260FF8075B6CB612806C92C7FCC614FC013F13E0D907FEC8FC293D7BBB 34>I<EC03FE91383FFFC091B57E010314F890390FFE01FC90381FF800D97FE07F9038FF C0034849487E1400485C485AA2485A001F6E5AA26F5A003FEC00F04991C7FC127FA3EC1F FCEC7FFFD8FFF9B512C016F09039FBC01FF89039FF800FFC4A6C7E4980A26F13805B17C0 A25B17E0A3127FA5123FA217C0121F7F1780120F00074A13007F6C6C495A6C6D485A6C90 38E07FF86DB55A6D14C0010F5C010349C7FC9038007FE02B3D7CBB34>I<121F7F13F890 B712F0A45A17E017C0178017005E5E5A007EC7EA03F84B5A007C4A5A4B5A5E4BC7FC485C 15FE4A5AC75B4A5A14074A5AA24A5AA2143F4A5AA214FF92C8FCA25BA25BA3495AA3130F A5131FA96D5AA26D5AEB01E02C3F7ABD34>I<EC7FE0903807FFFE011F6D7E4914E09039 FF807FF03A01FE001FF848486D7E49130748486D7EA2000F6E7EA2121FA27F7F7FD9FF80 5BECE00302F05B6CEBFC079138FF0FF8ED9FF06CECFFE05E6C92C7FC7E6C15C06D14F06D 808290B67E48813807FE7F260FF81F1480381FF0076E14C04848C6FC49133F007F6E13E0 15074848130181167FA2163FA217C0A26C7E17806C6C147F6DECFF006C6C495A6D13033A 0FFF801FFC000390B512F06C5D6C6C1480011F49C7FC010113E02B3D7CBB34>I<ECFFC0 010713FC013F13FF49803A01FFC07FE0489038003FF048486D7E4848130F001F6E7E8248 5A82007F801780A212FF17C0A517E0A4127F5DA2123F5D6C7EA2000F5C6C6C5B6C6C137B 6CEBFFF36C7E011F01C313C00107130390C7FCA31780D801E05BEA07F8486C1500A2486C 5C150F5E4B5A5B000F4A5A49495A9039E001FFC02607F8075B6CB6C7FC6C14FC6C14F001 3F13C0D907FCC8FC2B3D7CBB34>I<16FC4B7EA24B7EA34B7FA24B7FA34B7FA24B7FA34B 7FA292B57E15FD15FC020180EDF87F02038015F0820207814B7E020F8115C082021F814B 7E023F811500824A81027E7F02FE815C8201018291B7FC4982A3498302E0C7121F010F83 5C83011F834A80013F8391C8FC834983017E81B500FE49B612FCA5463F7CBE4F>65 D<922607FF80130E92B500F8133E020702FE137E021F9138FF80FE027F15E149B538801F FB01079039F80003FF4901C07F013F90C8127F4948153F4948151F4849150F4A15074849 1503485B1801485B481700A291CAFC5A197E5A5BA2190012FFAC127FA26D173EA27EA27E 80197C7E6C7F19F86C6D15016C6D16F06E15036C6DED07E06D6CED0FC06D6CED3F80010F 01C0EC7F006D01F8EB01FE01019039FF801FFC6D6C90B512F0021F15C0020792C7FC0200 14FC030713C03F407ABE4C>67 D<BAFCA41980D8003F90C7123F17071701EF007F183FA2 181FF00FC0A31807EE07C0A3F003E0A3160F95C7FC161F163F16FF92B5FCA51500163F16 1F040F147CA2160719F8A593C71201A219F01803A21807A2180FF01FE0183F18FF170317 1FBAFCA219C0A33E3D7DBC45>69 D<B912FEA484D8003F90C77E170F1703170084A284F0 1F80A3180FA2EE07C0A2F007C0A4040F90C7FCA2161F163F16FF92B5FCA51500163F161F 160FA21607A693C9FCACB712F0A53A3D7DBC42>I<922607FF80130E92B500F8133E0207 02FE137E021F9138FF80FE027F15E149B538801FFB01079039F80003FF4901C07F013F90 C8127F4948153F4948151F4849150F4A150748491503485B1801485B481700A291CAFC5A 197E5A5BA296C7FC12FFAB040FB612FC127FA27FA26C92C7387FFE00A27E80A27E6C7FA2 6C7F6C7F806C7F6D7E6D6C6C14FF010F6D5B6D01F85B01019038FF801F6D6C90B512F302 1F15C00207ED003E020002FC130E030701C090C7FC46407ABE52>I<B7D8C07FB612E0A5 D8003F90C8001FEB8000B3A492B8FCA592C8121FB3A7B7D8C07FB612E0A54B3E7DBD52> I<B712C0A5D8003F90C7FCB3B3B0B712C0A5223E7DBD28>I<B700C090B6FCA5D8003F90 C8D801FCC7FC4E5AF00FF04E5AF03F804EC8FC18FE4D5AEF07F84D5AEF1FC04D5A4DC9FC 17FE4C5AEE07F84C5AEE1FC04C5A4C7E16FF03037F4B7F4B7F5D4B7F4B7F03FE7F4B7E4B 6C7F03E0804B6C7F4B7E4B6C7F8482707F707F8483717F717F8583717F717F8583717F72 7E8684B7D8C00FB612C0A54A3E7DBD52>75 D<B712F0A5D8003F90C9FCB3AD183EA4187E 187CA418FCA21701A2EF03F8A21707170F171F177F17FF1607B9FC18F0A4373E7DBD3F> I<B66C040FB512F06F5EA26F5EA2D8003FF2C0006F167BA26E6C16F3A26E6CED01E3A26E 6CED03C3A36E6CED0783A26E6DEC0F03A26E6D141EA26E6D143CA36E6D1478A26F6C14F0 A26F6CEB01E0A26F6CEB03C0A36F6CEB0780A26F9038800F00A26FEBC01EA26F6D5AA36F 6D5AA2706C5AA293383FFDE0A270B45AA3705BA27090C7FCA2705AA2B626C001FC010FB6 12F0A3705A17705C3E7DBD63>I<B66C027FB512E081A28181D8003F6D9139001F800081 81A2816E7F6E7F6E7F6E7FA26E7F6E7F6E7F6E7F6F7FA26F7F6F7F6F7F6F7F6F7FA26F7F 6F7F7013807013C07013E0A27013F07013F87013FC7013FE7013FFA271139F7113DF7113 FF8383A28383838484A28484848484A2B600C080197F193F191FA24B3E7DBD52>I<ED3F FF0203B512F0021F14FE027F6E7E902701FFF80713E00107D9C00013F84990C7EA3FFCD9 3FFE6EB4FCD97FF802077F49486E7F48844A8048496E7F48844A157F4884488491C9123F A24884A34848701380A400FF19C0AD007F1980A26D5EA26C1900A26E5D6C60A26C6D4B5A A26C6D4A5B6C606E5C6C6D4A5B6C6D4A5B6D6C4A5B6D6C4A90C7FC6D01C0EBFFFE0107D9 F80713F8010190B612E06D5E021F4AC8FC020314F0DA003F90C9FC42407ABE4F>I<B812 F017FF18C018F018FC28003FFE00017F9338003FFF7113807113C07113E0A27113F0A319 F8A819F0A34D13E019C05F4D13804D13004CB45A91B712F860188005FCC7FC92CAFCB3A4 B712C0A53D3E7DBD47>I<B87E17FCEFFF8018F08428003FFE000113FE9338003FFF717F 717F717FA2717FA285A761A34D5B614D5B4D90C8FCEF7FFE933803FFFC91B712F018C04D C9FC717E9126FE00077F7013F0707F82717E84173FA284A685A5F207C019C083A2719038 E00F80B70080ECF01F719038F83F007190B5FC05005C061F13F8CB000113E04A3F7DBD4E >82 D<903A01FF8001C0011FEBF807017FEBFE0F90B6129F000315FF48EB007FD80FFC13 0FD81FF01303497F003FEC007F5B007F153F161FA200FF150FA36D1407A27F7F01FE91C7 FCEBFFE06C13FEECFFF06C14FF16C06C15F0826C816C816C816C16806C16C0133F010F15 E01301D9001F14F01400150F030113F881167F0078153F12F8A2161FA36C16F0A27E17E0 6C153F6D15C06D147F01F0ECFF8001FE4913009038FFE00791B512FCD8FE3F5CD8FC0F14 E0D8F803148027E0001FFCC7FC2D407ABE3A>I<003FB912FCA5903BFE007FFE007FD87F F0EE0FFE01C0160349160190C71500007E187EA3007C183EA400FC183F48181FA5C81600 B3AF011FB712F8A5403D7CBC49>I<B7D8C001B61280A5D8003F90C9007EC7FCB3B3A56D 5FA2816D4C5AA26D4C5A6D7F6F4A5A6D6D141F6D6D4A5A6E6CECFF8091271FFFC00F90C8 FC6E90B512FC02035D020015E0031F91C9FC030013F0493F7DBD50>I<B7021FB512C0A5 C66C90C9383F8000A26D6D93C7FC616D177E6F15FE6D5F6F1401A26D6D5D18036D5F6F14 076D5F6F140FA26D6D5D181F027F5E6F143F6E93C8FC705BA26E6D137E18FE6E5DEEE001 6E5DEEF003A26E01F85B17076E5DEEFC0F6E5DEEFE1FA2DB7FFF5B173F6F91C9FC17FF6F 5BA26F5BA36F5BA26F5BA26F5BA36F5BA2705AA270CAFC4A3F7EBD4F>I<B7021FB512C0 A5C66C01809139003F80006D6D4BC7FC6F15FE7F6D6D4A5A6F4A5A7F6D6D4A5A6F4A5A7F 6D6D4A5A70495A806E6D49C8FC7013FE806E6D485A4D5A6E13F86E6D485A4D5A6EEBFE1F 6E01FF5B4D5A6F13FF6F91C9FC5F816F5B5F816F5B5FB3A2020FB612F8A54A3E7EBD4F> 89 D<903803FF80013F13F890B512FE00036E7E2607FC017F48486C6C7E6D6D7E001F81 6D131F82150F826C5AA26C5AEA01E0C8FC153FEC7FFF0107B5FC133F9038FFFC0F000313 E0000F1300485A485A5B485AA2485AA4151FA26C6C133F6DEB7BFF6C6C01F313FE391FFE 03F16CB512E10003EC807FC69038FE001FD90FF890C7FC2F2B7DA933>97 D<13FFB5FCA512077EAFED7FE0913807FFFC021F13FF027F14C04AC67F02FCEB3FF802F0 6D7E4A6D7E4A13074A6D7EA21880A27013C0A318E0AA18C0A34C1380A218005E6E5C6E49 5A6E495A6E495A903AFCFF01FFE0D9F83FB51280496C91C7FCD9E00713F8C813C033407D BE3A>I<EC7FF0903803FFFE011FEBFF804914E09039FFE01FF0489038800FF848EB001F 484814FC4848133F121F5B123FED1FF8A24848EB0FF0ED03C092C7FC12FFAA127FA27F12 3F163E6C7EA26C6C147C000715FC9039FF8001F800019038C003F06C9038F00FE06DB512 C0011F1400010713FC9038007FE0272B7DA92E>I<EE07F8ED07FFA5ED003F161FAFEC7F E0903803FFFC011F13FF017F14DF9039FFF00FFF48EB800348497E4848EB007F4848143F 121F5B123FA2485AA312FFAA127FA36C7EA2121F167F6C7E6C6C14FF6D01037F6C6D48EB FFE0C6EBE03F6DB512BF011FEBFE3F010713F89026007FC0EBE00033407DBE3A>I<EC7F E0903807FFFC011F13FF017F14C09039FFE07FE0489038801FF04848486C7E00076E7E48 4813034848801501003F81A248487FA21780A212FF90B7FCA401F0C9FCA4127FA37F123F EE0F80121F6C7E6DEC1F006C6C5C6C6D137E6C6D485A6C9038F807F8013FB55A010F14C0 010391C7FC9038003FF0292B7DA930>I<EC07FCEC7FFF49B512C0010714E090390FFC3F F0EB1FF090393FE07FF8EB7FC0148013FFA2489038003FF0ED1FE0ED0FC092C7FCAAB612 E0A500010180C7FCB3AC007FEBFF80A525407DBF20>I<903A03FF8007E0011F9038F03F F8017F9038FCFFFC48B712FE48010113F13A07FC007FC14848EB3FE117FC484890381FF0 F81700003F81A7001F5DA26C6C495AA26C6C495A6CB448485A91B5C7FC4814FC019F13F0 D80F03138090CAFCA27F121F7F6C7E90B512FEEDFFE016FC6C81EEFF806C16C07E000716 E0001F16F0393FE0000149EB003F4848EC0FF890C8FC481507A56C6CEC0FF0A26C6CEC1F E0D81FF0EC7FC06D14FF2707FF800F13006C90B55AC615F8011F14C0010101FCC7FC2F3D 7DA834>I<13FFB5FCA512077EAFED1FF0EDFFFE02036D7E4A80DA0FC07F91381F007F02 3C804A133F5C4A80A25CA25CB3A5B5D8FE0FB512E0A5333F7CBE3A>I<EA01F0EA07FC48 7E487EA2481380A56C1300A26C5A6C5AEA01F0C8FCA813FFB5FCA512077EB3ABB512F8A5 15407CBF1D>I<13FFB5FCA512077EB092380FFFFEA5DB01FEC7FC4B5AED07F0ED1FE04B 5A4B5A03FEC8FC4A5AEC07F84A5A141F4A7E14FF8181ECF7FF02E77F14C302817F02007F 6F7E82153F6F7E6F7E6F7E83816F7F6F7FB5D8FC07EBFFC0A5323F7DBE37>107 D<13FFB5FCA512077EB3B3AFB512FCA5163F7CBE1D>I<01FFD91FF8ECFFC0B5D97FFF01 0313F84AB5D8C00F13FE0207DAE03F7F91290FE07FF07F037F91261F003FEBF801000701 3CDAF9E0806C4990391FFBC00002705D4A02FFC77FA24A5CA24A5CB3A5B5D8FE07B5D8F0 3FEBFF80A551297CA858>I<01FFEB1FF0B5EBFFFE02036D7E4A80DA0FC07F91381F007F 0007013C806C49133F5C4A80A25CA25CB3A5B5D8FE0FB512E0A533297CA83A>I<EC7FF0 903803FFFE011FEBFFC0017F14F09039FFE03FF8489038800FFC3A03FE0003FE48486D7E 000F168048486D13C0A2003F16E049147F007F16F0A400FF16F8AA007F16F0A46C6CECFF E0A2001F16C06C6C491380A26C6C4913003A03FF800FFE6C9038E03FFC6C6CB512F0011F 14C0010791C7FC9038007FF02D2B7DA934>I<01FFEB7FE0B53807FFFC021F13FF027F14 C0DAFF017F9139FC007FF8000701F06D7E6C496D7E4A130F4A6D7EA2701380A218C0A282 18E0AA18C05EA218805E1800A26E495A6E495A6E495A6E495A9139FF01FFE002BFB51280 029F91C7FC028713F8028013C092C9FCACB512FEA5333B7DA83A>I<3901FE01FC00FFEB 0FFF4A13C04A13E091387E3FF0147800079038F07FF8000313E013FF14C0ED3FF01480ED 1FE0ED078092C7FC91C8FCB3A3B6FCA525297DA82B>114 D<90381FFC0E90B5123E0003 14FE120F381FE007383F800190C7FC007E147E153E12FEA27EA201C090C7FC13F8EBFFE0 6C13FE6E7E6C14E06C14F86C806C800001806C7E010F1480EB007F020313C01400007814 7F00F8143F151F7EA26C1580A26C143F6D14006D137E9038F803FE90B512F8485CD8F83F 13C026E00FFEC7FC222B7DA929>I<EB07C0A5130FA4131FA3133F137FA213FF5A120700 1FEBFFFEB6FCA40001EBC000B3151FA96C143E14E0017F137CECF0FC90383FFFF8010F13 F0010313E001001380203B7EB929>I<D9FF80EB0FF8B5EB0FFFA50007EC007F6C153FB3 A5167FA316FF6C5C923803DFFC6CD9C007EBFFE09138E01F9F6DB5121F011F13FE010713 F8010001E0EBE000332A7CA83A>I<B500FC90383FFFC0A5000101C0903803E0006E1307 A26C5E6E130F017F5D6E131F013F92C7FC6E5B011F143E6E137E010F147C6E13FCA26D5C 15816D5C15C36D5C15E76D5C15FF6E5BA36E90C8FCA26E5AA26E5AA26E5AA26E5AA23228 7EA737>I<B53CFC3FFFFC03FFFEA50003D980009039C0000F806E161F6C037F15006E49 6C5B6C183E836E48157E017F177C6E486D13FC013F02EF5C83DAFC071401011F02C75CDA FE0FEBFE03010F02835C17FFDAFF1F14076D02015C03BF148F6DD9BE005C18CF03FE14DF 6D49017F90C7FC18FF6D496D5AA36E486D5AA26E486D5AA36E486D5AA26E486D5A47287E A74C>I<B500FC90383FFFC0A5000101C0903803E0006E1307A26C5E6E130F017F5D6E13 1F013F92C7FC6E5B011F143E6E137E010F147C6E13FCA26D5C15816D5C15C36D5C15E76D 5C15FF6E5BA36E90C8FCA26E5AA26E5AA26E5AA26E5AA35D14075D000E130FD83F805B38 7FC01FD8FFE090C9FC5C143E147E5CEBC1F8387FC3F0387E0FE06CB45A6C5B6C48CAFCEA 03F8323B7EA737>121 D<B912E0A43304809A34>123 D E /FL load 0 FL currentfont 91.25 scalefont put/FMat X/FBB X/IEn X %EndDVIPSBitmapFont end %%EndProlog %%BeginSetup %%Feature: *Resolution 600dpi TeXDict begin %%BeginPaperSize: a4 /setpagedevice where { pop << /PageSize [595 842] >> setpagedevice } { /a4 where { pop a4 } if } ifelse %%EndPaperSize end HPSdict begin /TargetAnchors 0 dict dup begin end targetdump-hook def end TeXDict begin %%EndSetup %%Page: 1 1 gsave %matrix defaultmatrix setmatrix 90 rotate /stampsize 20 def /Times-Roman findfont stampsize scalefont setfont currentfont /FontBBox get aload pop /pdf@top exch 1000 div stampsize mul def pop /pdf@bottom exch 1000 div stampsize mul def pop 243 -32 moveto currentpoint /pdf@lly exch pdf@bottom add def /pdf@llx exch 2 sub def 0.5 setgray (arXiv:2006.01810v3 [math.AG] 14 May 2022) show currentpoint /pdf@ury exch pdf@top add def /pdf@urx exch 2 add def /pdfmark where{pop}{userdict /pdfmark /cleartomark load put}ifelse [ /H /I /Border [0 0 1] /BS <</S/D/D[2 6]/W 1>> /Color [0 1 1] /Action << /Subtype /URI /URI (http://arxiv.org/abs/2006.01810v3)>> /Subtype /Link /Rect[pdf@llx pdf@lly pdf@urx pdf@ury] /ANN pdfmark grestore TeXDict begin HPSdict begin 1 0 bop 0 0 a SDict begin [/Producer (dvips + Distiller)/Title ()/Subject ()/Creator (LaTeX with hyperref)/Author ()/Keywords () /DOCINFO pdfmark end 0 0 a 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.1) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray Black 0 TeXcolorgray 125 183 a SDict begin [/Count 0/Dest (section.1) cvn/Title (1. Introduction) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 2/Dest (section.2) cvn/Title (2. Moduli of representations and character varieties) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.2.1) cvn/Title (2.1. The semi-simple filtration) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.2.2) cvn/Title (2.2. Grothendieck ring of varieties) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (section.3) cvn/Title (3. Representation varieties of torus knots) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (section.4) cvn/Title (4. Representations of fixed type) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 1/Dest (section.5) cvn/Title (5. Explicit formulas for some strata) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (section*.1) cvn/Title (Multiplicity) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 5/Dest (section.6) cvn/Title (6. Count of components) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.6.1) cvn/Title (6.1. Partition \040= \1731r\175) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.6.2) cvn/Title (6.2. Partition ' = \1731r-2,21\175) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.6.3) cvn/Title (6.3. Partition '' = \1731r-3,31\175) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.6.4) cvn/Title (6.4. Computation of the number of components) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.6.5) cvn/Title (6.5. Case of coprime indices) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 2/Dest (section.7) cvn/Title (7. Irreducible character varieties for `39`42`"613A``45`47`"603ASL2 and `39`42`"613A``45`47`"603ASL3) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.7.1) cvn/Title (7.1. Rank 2) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.7.2) cvn/Title (7.2. Rank 3) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 2/Dest (section.8) cvn/Title (8. Irreducible character variety for `39`42`"613A``45`47`"603ASL4) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.8.1) cvn/Title (8.1. Configurations with all the isotypic components of multiplicity 1) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (subsection.8.2) cvn/Title (8.2. Configurations with isotypic components of higher multiplicity) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (section.9) cvn/Title (9. Motive of the character varieties) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/Count 0/Dest (section*.2) cvn/Title (References) /OUT pdfmark end 125 183 a 125 183 a SDict begin [/PageMode /UseOutlines/Page 1/View [/Fit] /DOCVIEW pdfmark end 125 183 a 125 183 a SDict begin [ {Catalog}<<>> /PUT pdfmark end 125 183 a 125 183 a SDict begin H.S end 125 183 a 125 183 a SDict begin 13 H.A end 125 183 a 125 183 a SDict begin [/View [/XYZ H.V]/Dest (Doc-Start) cvn /DEST pdfmark end 125 183 a 0 TeXcolorgray 0 TeXcolorgray 189 531 a FL(MOTIVE)44 b(OF)h(THE)f FK(SL)1238 545 y FJ(4)1277 531 y FL(-CHARA)m(CTER)g(V)-12 b(ARIETY)46 b(OF)e(TOR)m(US)i(KNOTS)p 0 TeXcolorgray 0 TeXcolorgray 897 763 a FI(\023)887 782 y(ANGEL)26 b(GONZ)1424 763 y(\023)1414 782 y(ALEZ-PRIETO)e(AND)g(VICENTE)i(MU)2694 763 y(~)2684 782 y(NOZ)p 0 TeXcolorgray 423 1051 a FH(Abstra)n(ct.)p 0 TeXcolorgray 43 w FI(In)c(this)i(pap)r(er,)g(w)n(e)g(compute)e(the)h (motiv)n(e)f(of)i(the)f(c)n(haracter)h(v)l(ariet)n(y)f(of)h(represen-) 423 1142 y(tations)33 b(of)f(the)g(fundamen)n(tal)e(group)i(of)g(the)g (complemen)n(t)e(of)i(an)g(arbitrary)g(torus)f(knot)g(in)n(to)423 1234 y(SL)514 1242 y FG(4)549 1234 y FI(\()p FF(k)r FI(\),)25 b(for)h(an)n(y)e(algebraically)k(closed)e(\014eld)e FF(k)j FI(of)f(zero)g(c)n(haracteristic.)36 b(F)-6 b(or)25 b(that)g(purp)r (ose,)g(w)n(e)423 1325 y(in)n(tro)r(duce)31 b(a)h(strati\014cation)g (of)g(the)f(v)l(ariet)n(y)g(in)g(terms)g(of)h(the)e(t)n(yp)r(e)h(of)h (a)f(canonical)i(\014ltration)423 1416 y(attac)n(hed)21 b(to)g(an)n(y)f(represen)n(tation.)33 b(This)22 b(allo)n(ws)g(us)f(to)g (reduce)f(the)h(computation)f(of)h(the)f(motiv)n(e)423 1508 y(to)26 b(a)g(com)n(binatorial)h(problem.)125 1803 y SDict begin H.S end 125 1803 a 125 1803 a SDict begin 13 H.A end 125 1803 a 125 1803 a SDict begin [/View [/XYZ H.V]/Dest (section.1) cvn /DEST pdfmark end 125 1803 a 1501 1946 a FK(1.)46 b FE(Intr)n(oduction)224 2144 y FK(Let)21 b(\000)f(b)s(e)g(a)h(\014nitely)d(generated)j(group)f(and)g (let)g FD(G)h FK(b)s(e)f(an)g(algebraic)g(group)g(o)m(v)m(er)h(an)g (algebraically)125 2252 y(closed)38 b(\014eld)f FD(k)k FK(of)d(zero)h(c)m(haracteristic.)66 b(The)37 b(space)i FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))40 b(of)e(represen)m(tations)g FD(\032)h FK(:)f(\000)h FC(!)f FD(G)125 2360 y FK(forms)29 b(an)i(algebraic)f(v)-5 b(ariet)m(y)31 b(kno)m(wn)f(as)g(the)h (represen)m(tation)f(v)-5 b(ariet)m(y)d(.)42 b(Moreo)m(v)m(er,)33 b(if)c(w)m(e)i(w)m(an)m(t)h(to)125 2467 y(parametrize)h(isomorphism)d (classes)j(of)h(represen)m(tations,)g(w)m(e)f(need)g(to)h(consider)e (the)h(Geometric)125 2575 y(In)m(v)-5 b(arian)m(t)30 b(Theory)g(\(GIT\))g(quotien)m(t)1387 2726 y FB(M)p FK(\(\000)p FD(;)15 b(G)p FK(\))27 b(=)e FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))21 b FA(\014)f FD(G;)125 2877 y FK(where)33 b FD(G)i FK(acts)g(on)f FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))35 b(b)m(y)f(conjugation.)53 b(This)32 b(giv)m(es)j(rise)e(to)i (the)f(mo)s(duli)e(space)i(of)h(repre-)125 2985 y(sen)m(tations)30 b(of)h(\000)f(in)m(to)g FD(G)p FK(,)h(also)g(called)e(the)i FD(G)p FK(-c)m(haracter)i(v)-5 b(ariet)m(y)30 b(of)h(\000.)224 3128 y(Character)41 b(v)-5 b(arieties)40 b(are)h(v)m(ery)g(ric)m(h)e (ob)5 b(jects)41 b(that)h(con)m(tain)e(subtle)g(geometric)h (information)125 3236 y(linking)25 b(distan)m(t)i(areas)i(in)d (mathematics.)41 b(An)27 b(imp)s(ortan)m(t)g(instance)h(is)f(when)g(w)m (e)h(tak)m(e)i(\000)25 b(=)g FD(\031)3436 3250 y FJ(1)3475 3236 y FK(\(\006\))125 3344 y(to)32 b(b)s(e)e(the)i(fundamen)m(tal)e (group)h(of)g(the)h(compact)g(orien)m(table)f(surface)g(of)h(gen)m(us)f FD(g)s FK(.)44 b(In)31 b(this)f(case,)125 3452 y(these)j(c)m(haracter)i (v)-5 b(arieties)33 b(are)h(one)f(of)h(the)f(three)h(incarnations)e(of) h(the)g(mo)s(duli)e(space)j(of)f(Higgs)125 3560 y(bundles,)g(as)i (stated)h(b)m(y)f(the)g(celebrated)g(non-ab)s(elian)e(Ho)s(dge)i (corresp)s(ondence)f([)3062 3560 y SDict begin H.S end 3062 3560 a 0 TeXcolorgray FK(1)p 0 TeXcolorgray 3108 3502 a SDict begin H.R end 3108 3502 a 3108 3560 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Corlette:1988) cvn H.B /ANN pdfmark end 3108 3560 a FK(,)3168 3560 y SDict begin H.S end 3168 3560 a 0 TeXcolorgray FK(17)p 0 TeXcolorgray 3259 3502 a SDict begin H.R end 3259 3502 a 3259 3560 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.hitchin) cvn H.B /ANN pdfmark end 3259 3560 a FK(,)3319 3560 y SDict begin H.S end 3319 3560 a 0 TeXcolorgray FK(31)p 0 TeXcolorgray 3410 3502 a SDict begin H.R end 3410 3502 a 3410 3560 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.SimpsonI) cvn H.B /ANN pdfmark end 3410 3560 a FK(,)3470 3560 y SDict begin H.S end 3470 3560 a 0 TeXcolorgray FK(32)p 0 TeXcolorgray 3561 3502 a SDict begin H.R end 3561 3502 a 3561 3560 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.SimpsonII) cvn H.B /ANN pdfmark end 3561 3560 a FK(].)125 3668 y(F)-8 b(or)32 b(this)e(reason,)i(c)m (haracter)h(v)-5 b(arieties)31 b(of)h(surface)f(groups)g(ha)m(v)m(e)i (b)s(een)d(widely)g(studied,)g(particu-)125 3776 y(larly)25 b(regarding)i(the)g(computation)g(of)g(some)h(algebraic)f(in)m(v)-5 b(arian)m(ts)26 b(lik)m(e)h(their)f FD(E)5 b FK(-p)s(olynomial)25 b(\(an)125 3884 y(alternating)h(sum)h(of)g(its)g(Ho)s(dge)g(n)m(um)m(b) s(ers)f(in)g(the)i(spirit)d(of)i(the)g(Euler)f(c)m(haracteristic\).)41 b(Comput-)125 3992 y(ing)26 b(suc)m(h)i(in)m(v)-5 b(arian)m(t)26 b(is)h(a)h(hard)f(problem)f(that)i(has)f(b)s(een)g(tac)m(kled)i(from)e (an)g(arithmetic)g(viewp)s(oin)m(t)125 4100 y([)150 4100 y SDict begin H.S end 150 4100 a 0 TeXcolorgray FK(14)p 0 TeXcolorgray 241 4041 a SDict begin H.R end 241 4041 a 241 4100 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Hausel-Letellier-Villegas:2013) cvn H.B /ANN pdfmark end 241 4100 a FK(,)295 4100 y SDict begin H.S end 295 4100 a 0 TeXcolorgray FK(15)p 0 TeXcolorgray 386 4041 a SDict begin H.R end 386 4041 a 386 4100 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Hausel-Rodriguez-Villegas:2008) cvn H.B /ANN pdfmark end 386 4100 a FK(],)j(from)g(a)g(geometric)g (p)s(ersp)s(ectiv)m(e)f([)1669 4100 y SDict begin H.S end 1669 4100 a 0 TeXcolorgray FK(22)p 0 TeXcolorgray 1760 4041 a SDict begin H.R end 1760 4041 a 1760 4100 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.lomune) cvn H.B /ANN pdfmark end 1760 4100 a FK(,)1815 4100 y SDict begin H.S end 1815 4100 a 0 TeXcolorgray FK(26)p 0 TeXcolorgray 1906 4041 a SDict begin H.R end 1906 4041 a 1906 4100 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MM) cvn H.B /ANN pdfmark end 1906 4100 a FK(])g(and)g(from)g(the)h(p)s(oin)m(t)f(of)g(view)g(of)h (T)-8 b(op)s(ological)125 4208 y(Quan)m(tum)29 b(Field)g(Theories)h([) 1157 4208 y SDict begin H.S end 1157 4208 a 0 TeXcolorgray FK(9)p 0 TeXcolorgray 1202 4149 a SDict begin H.R end 1202 4149 a 1202 4208 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.GP-2019) cvn H.B /ANN pdfmark end 1202 4208 a FK(,)1258 4208 y SDict begin H.S end 1258 4208 a 0 TeXcolorgray FK(10)p 0 TeXcolorgray 1349 4149 a SDict begin H.R end 1349 4149 a 1349 4208 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.GPLM-2017) cvn H.B /ANN pdfmark end 1349 4208 a FK(].)224 4351 y(Character)f(v)-5 b(arieties)27 b(also)i(pla)m(y)e(a)i(prominen)m (t)e(role)h(in)f(the)h(top)s(ology)h(of)f(3-manifolds,)g(starting)125 4459 y(with)d(the)j(foundational)d(w)m(ork)i(of)g(Culler)e(and)i (Shalen)e([)2083 4459 y SDict begin H.S end 2083 4459 a 0 TeXcolorgray FK(2)p 0 TeXcolorgray 2129 4400 a SDict begin H.R end 2129 4400 a 2129 4459 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.CS) cvn H.B /ANN pdfmark end 2129 4459 a FK(].)40 b(There,)27 b(the)g(authors)g(used)f(some)i(quite)125 4567 y(simple)h(algebro-geometric)j(prop)s(erties)e(of)h(SL)1783 4581 y FJ(2)1822 4567 y FK(\()p Fz(C)18 b FK(\))q(-c)n(haracte)q(r)37 b(v)-5 b(arieties)30 b(to)i(pro)m(vide)f(new)f(pro)s(ofs)125 4675 y(of)e(v)m(ery)h(remark)-5 b(able)27 b(results,)h(as)h(Th)m (urston's)e(theorem)i(that)f(sa)m(ys)h(that)g(the)g(space)g(of)f(h)m (yp)s(erb)s(olic)125 4783 y(structures)h(on)i(an)f(acylindrical)d (3-manifold)i(is)h(compact,)i(or)e(the)h(Smith)d(conjecture.)224 4926 y(Since)33 b(the)h(publication)d(of)j(that)g(pap)s(er,)g(c)m (haracter)i(v)-5 b(arieties)33 b(of)h(3-manifolds)e(ha)m(v)m(e)j(b)s (een)e(the)125 5034 y(ob)5 b(ject)33 b(of)f(v)m(ery)h(in)m(tense)f (researc)m(h.)46 b(In)32 b(particular,)f(they)i(ha)m(v)m(e)g(b)s(een)f (used)f(to)i(study)e(knots)i FD(K)i FC(\032)125 5142 y FD(S)186 5109 y FJ(3)225 5142 y FK(,)42 b(b)m(y)e(analyzing)e(the)i (c)m(haracter)i(v)-5 b(arieties)39 b(asso)s(ciated)h(to)g(the)g (fundamen)m(tal)e(group)i(of)f(their)p 0 TeXcolorgray 125 5230 499 4 v 224 5322 a FI(2020)29 b Fy(Mathematics)g(Subje)l(ct)g (Classi\014c)l(ation.)39 b FI(Primary:)34 b(14M35.)i(Secondary:)e (57K31,)28 b(14D20,)f(14C15.)224 5413 y Fy(Key)h(wor)l(ds)h(and)f(phr)l (ases.)40 b FI(T)-6 b(orus)26 b(knot,)f(c)n(haracter)h(v)l(arieties,)h (represen)n(tations.)p 0 TeXcolorgray 0 TeXcolorgray 1850 5513 a FJ(1)p 0 TeXcolorgray eop end end %%Page: 2 2 TeXDict begin HPSdict begin 2 1 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.2) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(2)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(complemen)m(ts,)29 b(\000)d(=)e FD(\031)922 280 y FJ(1)962 266 y FK(\()p FD(S)1058 233 y FJ(3)1116 266 y FC(\000)18 b FD(K)7 b FK(\).)40 b(The)29 b(geometry)i(of)f(these)f (knot)h(c)m(haracter)h(v)-5 b(arieties)29 b(has)g(b)s(een)125 374 y(studied)d(in)i([)571 374 y SDict begin H.S end 571 374 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 616 315 a SDict begin H.R end 616 315 a 616 374 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Florentino-Lawton:2012) cvn H.B /ANN pdfmark end 616 374 a FK(,)670 374 y SDict begin H.S end 670 374 a 0 TeXcolorgray FK(6)p 0 TeXcolorgray 716 315 a SDict begin H.R end 716 315 a 716 374 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Florentino-Nozad-Zamora:2019) cvn H.B /ANN pdfmark end 716 374 a FK(,)770 374 y SDict begin H.S end 770 374 a 0 TeXcolorgray FK(19)p 0 TeXcolorgray 860 315 a SDict begin H.R end 860 315 a 860 374 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Lawton) cvn H.B /ANN pdfmark end 860 374 a FK(,)914 374 y SDict begin H.S end 914 374 a 0 TeXcolorgray FK(20)p 0 TeXcolorgray 1005 315 a SDict begin H.R end 1005 315 a 1005 374 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.LM) cvn H.B /ANN pdfmark end 1005 374 a FK(])h(for)f(trivial)f(links)f (\(i.e.)k(when)d(\000)i(is)e(a)i(free)g(group\))f(and)g([)3007 374 y SDict begin H.S end 3007 374 a 0 TeXcolorgray FK(3)p 0 TeXcolorgray 3053 315 a SDict begin H.R end 3053 315 a 3053 374 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Falbel:2014) cvn H.B /ANN pdfmark end 3053 374 a FK(,)3107 374 y SDict begin H.S end 3107 374 a 0 TeXcolorgray FK(16)p 0 TeXcolorgray 3198 315 a SDict begin H.R end 3198 315 a 3198 374 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.HMP) cvn H.B /ANN pdfmark end 3198 374 a FK(])h(for)f(\014gure)125 482 y(eigh)m(t)j(knots.)45 b(Ho)m(w)m(ev)m(er,)34 b(one)d(of)h(the)g (most)g(studied)d(cases)k(is)d(when)h FD(K)38 b FK(is)31 b(an)g(\()p FD(n;)15 b(m)p FK(\)-torus)32 b(knot.)125 589 y(In)d(this)g(case,)j(w)m(e)f(need)f(to)h(consider)e(represen)m (tations)i(of)f(the)h(group)1325 739 y(\000)25 b(=)g(\000)1560 753 y Fx(n;m)1714 739 y FK(=)g FC(h)p FD(x;)15 b(y)k FC(j)c FD(x)2093 701 y Fx(n)2165 739 y FK(=)25 b FD(y)2309 701 y Fx(m)2376 739 y FC(i)125 888 y FK(in)m(to)36 b(an)h(algebraic)f (group)g FD(G)p FK(,)j(t)m(ypically)c FD(G)h FK(=)g(SL)1935 902 y Fx(r)1973 888 y FK(\()p Fz(C)18 b FK(\).)66 b(F)-8 b(or)37 b FD(G)f FK(=)g(SL)2684 902 y FJ(2)2723 888 y FK(\()p Fz(C)18 b FK(\))43 b(they)37 b(w)m(ere)g(studied)125 996 y(in)32 b([)259 996 y SDict begin H.S end 259 996 a 0 TeXcolorgray FK(18)p 0 TeXcolorgray 350 937 a SDict begin H.R end 350 937 a 350 996 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.KM) cvn H.B /ANN pdfmark end 350 996 a FK(,)409 996 y SDict begin H.S end 409 996 a 0 TeXcolorgray FK(24)p 0 TeXcolorgray 500 937 a SDict begin H.R end 500 937 a 500 996 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Martin-Oller) cvn H.B /ANN pdfmark end 500 996 a FK(,)559 996 y SDict begin H.S end 559 996 a 0 TeXcolorgray FK(27)p 0 TeXcolorgray 650 937 a SDict begin H.R end 650 937 a 650 996 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Munoz) cvn H.B /ANN pdfmark end 650 996 a FK(],)j(and)e(the)h(case)h FD(G)c FK(=)g(SL)1582 1010 y FJ(3)1621 996 y FK(\()p Fz(C)18 b FK(\))40 b(w)m(as)35 b(addressed)d(in)h([)2523 996 y SDict begin H.S end 2523 996 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 2614 937 a SDict begin H.R end 2614 937 a 2614 996 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 2614 996 a FK(].)51 b(It)34 b(w)m(as)g(also)g(studied)e(for)125 1104 y FD(G)25 b FK(=)g(SU\(2\))31 b(in)e([)713 1104 y SDict begin H.S end 713 1104 a 0 TeXcolorgray FK(25)p 0 TeXcolorgray 805 1045 a SDict begin H.R end 805 1045 a 805 1104 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Martinez-Munoz:2015) cvn H.B /ANN pdfmark end 805 1104 a FK(].)224 1247 y(Nev)m(ertheless,)k(m)m(uc)m(h) e(less)g(is)g(kno)m(wn)g(in)f(the)i(higher)e(rank)h(case)h FD(r)e FC(\025)d FK(4,)32 b(ev)m(en)h(for)e(torus)g(knots.)125 1355 y(In)23 b(particular,)h(pro)m(viding)d(a)k(complete)f(description) e(of)i(their)f(geometry)j(is)d(still)f(an)h(op)s(en)h(problem.)125 1463 y(In)k(this)h(pap)s(er,)g(w)m(e)h(will)d(address)i(the)h(problem)e (of)i(computing,)f(o)m(v)m(er)i(an)e(arbitrary)g(algebraically)125 1571 y(closed)h(\014eld)f FD(k)k FK(of)e(zero)g(c)m(haracteristic,)g (the)f(virtual)f(classes)h(of)h(the)f(c)m(haracter)i(v)-5 b(arieties)30 b(of)h(torus)125 1679 y(knots)38 b(in)g(the)h (Grothendiec)m(k)g(ring)e(of)i(algebraic)g(v)-5 b(arieties,)41 b FD(K)7 b FK(\()p FC(V)g FD(ar)2592 1694 y Fx(k)2635 1679 y FK(\).)66 b(As)39 b(w)m(e)g(will)d(see,)42 b(these)125 1787 y(classes)28 b(lie)f(in)f(the)j(subring)d(of)i FD(K)7 b FK(\()p FC(V)g FD(ar)1483 1802 y Fx(k)1526 1787 y FK(\))28 b(generated)h(b)m(y)f(the)h(class)f(of)g(the)g(a\016ne)h(line)d FD(q)i FK(=)d([)p FD(k)s FK(])k(\(the)125 1895 y(so-called)j(Lefsc)m (hetz)i(motiv)m(e\),)h(so)d(it)h(actually)f(computes)h(the)g(motiv)m(e) g(of)g(the)g(c)m(haracter)h(v)-5 b(ariet)m(y)125 2003 y(in)29 b(the)h(Cho)m(w)g(ring)f(and)h(its)g FD(E)5 b FK(-p)s(olynomial.)224 2146 y(This)21 b(pap)s(er)h(is)g(structured)g (as)h(follo)m(ws.)37 b(In)22 b(Section)2041 2146 y SDict begin H.S end 2041 2146 a 0 TeXcolorgray FK(2)p 0 TeXcolorgray 2087 2088 a SDict begin H.R end 2087 2088 a 2087 2146 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.2) cvn H.B /ANN pdfmark end 2087 2146 a 22 w FK(w)m(e)i(review)e(some)h (generalities)f(ab)s(out)h(rep-)125 2254 y(resen)m(tation)i(and)g(c)m (haracter)h(v)-5 b(arieties)25 b(as)g(w)m(ell)f(as)h(the)h(Grothendiec) m(k)f(ring)f(of)h(algebraic)g(v)-5 b(arieties.)125 2362 y(P)m(articularly)d(,)38 b(in)e(Section)1091 2362 y SDict begin H.S end 1091 2362 a 0 TeXcolorgray FK(2.1)p 0 TeXcolorgray 1208 2303 a SDict begin H.R end 1208 2303 a 1208 2362 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.2.1) cvn H.B /ANN pdfmark end 1208 2362 a 37 w FK(w)m(e)i(in)m(tro)s(duce)e (a)i(canonical)f(\014ltration)f(attac)m(hed)k(to)e(a)g(represen-)125 2470 y(tation,)33 b(with)e(semi-simple)f(graded)i(represen)m(tation,)i (that)f(w)m(e)g(will)c(refer)j(to)i(as)e(the)h(semi-simple)125 2578 y(\014ltration.)42 b(This)30 b(\014ltration)g(will)f(b)s(e)i(v)m (ery)h(useful)e(b)s(ecause)h(it)g(induces)f(a)i(natural)f(decomp)s (osition)125 2686 y(of)40 b(the)h(represen)m(tation)g(v)-5 b(ariet)m(y)41 b(according)g(to)g(the)g(t)m(yp)s(e)g(\(i.e.)g(the)g (dimension)d(and)i(m)m(ultiplic-)125 2794 y(it)m(y)e(of)g(eac)m(h)h (isot)m(ypic)f(comp)s(onen)m(t)g(of)g(the)h(graded)f(pieces\))g(of)g (the)g(semi-simple)e(\014ltration)h(of)h(a)125 2902 y(represen)m (tation.)224 3045 y(In)32 b(Section)660 3045 y SDict begin H.S end 660 3045 a 0 TeXcolorgray FK(3)p 0 TeXcolorgray 706 2986 a SDict begin H.R end 706 2986 a 706 3045 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.3) cvn H.B /ANN pdfmark end 706 3045 a FK(,)h(w)m(e)g(sp)s(ecialize)e(to)j(the)e (case)i(of)f(torus)f(knots.)47 b(There,)33 b(w)m(e)g(outline)e(the)i (strategy)125 3153 y(that)d(w)m(e)g(will)d(follo)m(w)i(throughout)h (this)e(pap)s(er.)40 b(W)-8 b(e)31 b(fo)s(cus)e(on)g(the)h(sub)m(v)-5 b(ariet)m(y)30 b FD(R)3003 3120 y FJ(irr)3081 3153 y FK(\(\000)p FD(;)15 b FK(SL)3321 3167 y Fx(r)3359 3153 y FK(\()p FD(k)s FK(\)\))27 b FC(\032)125 3261 y FD(R)q FK(\(\000)p FD(;)15 b FK(SL)434 3275 y Fx(r)472 3261 y FK(\()p FD(k)s FK(\)\))36 b(of)g(irreducible)31 b(represen)m (tations.)55 b(The)34 b(k)m(ey)i(p)s(oin)m(t)e(is)g(that,)j(as)f(sho)m (wn)e(in)g(Prop)s(o-)125 3369 y(sition)380 3369 y SDict begin H.S end 380 3369 a 0 TeXcolorgray FK(3.2)p 0 TeXcolorgray 497 3310 a SDict begin H.R end 497 3310 a 497 3369 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.2) cvn H.B /ANN pdfmark end 497 3369 a FK(,)40 b(an)e(irreducible)d (represen)m(tation)k FD(\032)f FK(:)h(\000)1963 3383 y Fx(n;m)2130 3369 y FC(!)g FK(SL)2367 3383 y Fx(r)2405 3369 y FK(\()p FD(k)s FK(\))g(lifts,)g(up)e(to)i(rescaling,)h(to)f(a) 125 3477 y(represen)m(tation)30 b(of)h(the)f(free)h(pro)s(duct)1435 3634 y Fz(Z)1500 3648 y Fx(n)1563 3634 y FD(?)21 b Fz(Z)1694 3648 y Fx(m)1891 3740 y FJ(~)-42 b Fx(\032)2035 3877 y Fw(\045)p Fv(\045)2000 3855 y Fu(L)1925 3810 y(L)1850 3765 y(L)1775 3719 y(L)1700 3674 y(L)1503 3972 y FK(\000)1560 3986 y Fx(n;m)1857 4005 y(\032)1982 3950 y Fw(/)p Fv(/)p 1716 3951 267 4 v 1596 3674 a Fw(O)p Fv(O)p 1594 3883 4 209 v 2009 3972 a FK(SL)2117 3986 y Fx(r)2154 3972 y FK(\()p FD(k)s FK(\))p FD(:)125 4158 y FK(This)25 b(op)s(ens)i(the)h (do)s(or)f(to)h(computing)f(the)h(motiv)m(e)g(of)g(the)f(irreducible)e (represen)m(tation)i(v)-5 b(ariet)m(y)28 b(of)125 4266 y(torus)i(knots)g(through)g(the)g(represen)m(tation)h(v)-5 b(ariet)m(y)31 b(of)f Fz(Z)2167 4280 y Fx(n)2230 4266 y FD(?)20 b Fz(Z)2360 4280 y Fx(m)2453 4266 y FK(via)489 4417 y([)p FD(R)584 4379 y FJ(irr)663 4417 y FK(\(\000)755 4431 y Fx(n;m)884 4417 y FD(;)15 b FK(SL)1032 4431 y Fx(r)1070 4417 y FK(\()p FD(k)s FK(\)\)])26 b(=)f([)p FD(R)q FK(\()p Fz(Z)1567 4431 y Fx(n)1630 4417 y FD(?)c Fz(Z)1761 4431 y Fx(m)1823 4417 y FD(;)15 b FK(SL)1971 4431 y Fx(r)2009 4417 y FK(\()p FD(k)s FK(\)\)])22 b FC(\000)d FK([)p FD(R)2396 4379 y FJ(red)2499 4417 y FK(\()p Fz(Z)2599 4431 y Fx(n)2662 4417 y FD(?)h Fz(Z)2792 4431 y Fx(m)2855 4417 y FD(;)15 b FK(SL)3002 4431 y Fx(r)3040 4417 y FK(\()p FD(k)s FK(\)\)])p FD(;)125 4572 y FK(where)29 b FD(R)457 4539 y FJ(red)559 4572 y FK(\()p Fz(Z)659 4586 y Fx(n)722 4572 y FD(?)21 b Fz(Z)853 4586 y Fx(m)915 4572 y FD(;)15 b FK(SL)1063 4586 y Fx(r)1101 4572 y FK(\()p FD(k)s FK(\)\))32 b(is)d(the)i(sub)m(v)-5 b(ariet)m(y)30 b(of)g(reducible)e(represen)m(tations)j(of)f Fz(Z)3262 4586 y Fx(n)3325 4572 y FD(?)21 b Fz(Z)3456 4586 y Fx(m)3518 4572 y FK(.)224 4716 y(This)28 b(greatly)j(simpli\014es)26 b(the)k(problem)f(b)s(ecause)g(the)i(represen)m(tations)e FD(\032)d FK(:)f Fz(Z)2950 4730 y Fx(n)3012 4716 y FD(?)20 b Fz(Z)3142 4730 y Fx(m)3229 4716 y FC(!)25 b FK(SL)3453 4730 y Fx(r)3491 4716 y FK(\()p FD(k)s FK(\))125 4823 y(retain)34 b(some)h(crucial)f(prop)s(erties)f(from)i(the)g(classical)f (represen)m(tation)h(theory)g(of)g(\014nite)f(groups,)125 4931 y(for)25 b(instance,)h(only)f(\014nitely)f(man)m(y)i (con\014gurations)e(of)i(eigen)m(v)-5 b(alues)25 b(are)h(allo)m(w)m(ed) g(for)f(the)h(elemen)m(ts)125 5039 y FD(\032)p FK(\()p FD(x)p FK(\))p FD(;)15 b(\032)p FK(\()p FD(y)s FK(\))26 b FC(2)f FK(SL)719 5053 y Fx(r)757 5039 y FK(\()p FD(k)s FK(\).)39 b(Hence,)27 b(w)m(e)d(can)h(re\014ne)e(the)i(decomp)s (osition)e(of)h(the)h(represen)m(tation)f(v)-5 b(ariet)m(y)125 5147 y(according)30 b(to)h(its)f(semi-simple)e(\014ltration)h(in)g (order)h(to)h(obtain)f(a)g(decomp)s(osition)125 5310 y(\(1\))1110 5310 y SDict begin H.S end 1110 5310 a 1110 5310 a SDict begin 13 H.A end 1110 5310 a 1110 5310 a SDict begin [/View [/XYZ H.V]/Dest (equation.1.1) cvn /DEST pdfmark end 1110 5310 a FD(R)1180 5272 y FJ(red)1282 5310 y FK(\()p Fz(Z)1382 5324 y Fx(n)1445 5310 y FD(?)21 b Fz(Z)1576 5324 y Fx(m)1638 5310 y FD(;)15 b FK(SL)1786 5324 y Fx(r)1823 5310 y FK(\()p FD(k)s FK(\)\))27 b(=)2101 5224 y Ft(G)2131 5415 y Fx(\024)2256 5224 y Ft(G)2217 5421 y Fx(\034)8 b Fs(2T)2359 5402 y Fr(\003)2342 5437 y Fq(\024)2410 5310 y FD(R)q FK(\()p FD(\034)i FK(\))p FD(;)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 3 3 TeXDict begin HPSdict begin 3 2 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.3) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)560 b(3)p 0 TeXcolorgray 125 266 a FK(where)33 b FD(\024)i FK(runs)e(o)m(v)m(er)j(the)e(p)s(ossible) e(con\014gurations)i(of)h(eigen)m(v)-5 b(alues,)35 b FC(T)2662 233 y Fs(\003)2639 288 y Fx(\024)2735 266 y FK(are)g(the)g(t)m(yp)s(es)f(of)h(semi-)125 374 y(simple)k (\014ltrations)i(that)h(corresp)s(ond)f(to)i(reducible)c(represen)m (tations)j(with)f(eigen)m(v)-5 b(alues)41 b(tak)m(en)125 482 y(from)34 b FD(\024)p FK(,)i(and)e FD(R)q FK(\()p FD(\034)10 b FK(\))36 b(is)d(the)i(collection)g(of)g(represen)m (tations)g FD(\032)d FK(:)h Fz(Z)2474 496 y Fx(n)2540 482 y FD(?)23 b Fz(Z)2673 496 y Fx(m)2768 482 y FC(!)33 b FK(SL)2999 496 y Fx(r)3037 482 y FK(\()p FD(k)s FK(\))i(with)f(semi-) 125 589 y(simple)i(\014ltration)i(of)h(t)m(yp)s(e)g FD(\034)50 b FC(2)39 b(T)1392 556 y Fs(\003)1369 612 y Fx(\024)1431 589 y FK(.)67 b(Notice)40 b(that)f(the)g(previous)f(decomp)s(osition)f (has)i(\014nitely)125 697 y(man)m(y)30 b(strata)h(since)f(there)h(are)f (\014nitely)f(man)m(y)h(c)m(hoices)i(for)e FD(\024)g FK(and)g FD(\034)10 b FK(.)224 841 y(Lea)m(ving)21 b(aside)f(for)h(a)g (momen)m(t)g(the)g(coun)m(t)g(of)g(the)g(n)m(um)m(b)s(er)e(of)i(con)m (tributing)e(strata,)24 b(the)d(problem)125 949 y(of)32 b(computing)f(the)h(motiv)m(e)g([)p FD(R)q FK(\()p FD(\034)10 b FK(\)])29 b FC(2)e FD(K)7 b FK(\()p FC(V)g FD(ar)1766 964 y Fx(k)1809 949 y FK(\))33 b(for)e(a)h(\014xed)g(t)m(yp)s(e)g FD(\034)42 b FK(is)31 b(addressed)f(in)h(Section)3541 949 y SDict begin H.S end 3541 949 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 3586 890 a SDict begin H.R end 3586 890 a 3586 949 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.4) cvn H.B /ANN pdfmark end 3586 949 a FK(,)125 1057 y(whic)m(h)26 b(is)i(the)g(heart)g(of)h(this)e(pap)s(er.)39 b(Roughly)27 b(sp)s(eaking,)h(in)e(Prop)s(osition)2777 1057 y SDict begin H.S end 2777 1057 a 0 TeXcolorgray FK(4.5)p 0 TeXcolorgray 2893 998 a SDict begin H.R end 2893 998 a 2893 1057 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.5) cvn H.B /ANN pdfmark end 2893 1057 a 28 w FK(and)h(Corollary) 3495 1057 y SDict begin H.S end 3495 1057 a 0 TeXcolorgray FK(4.7)p 0 TeXcolorgray 3611 998 a SDict begin H.R end 3611 998 a 3611 1057 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.7) cvn H.B /ANN pdfmark end 3611 1057 a 125 1165 a FK(w)m(e)34 b(will)e(sho)m(w)i(that)g(\(for)h(lo)m(w)f(rank\))g FD(R)q FK(\()p FD(\034)10 b FK(\))34 b(is)f(the)i(total)g(space)f(of)h (a)f(lo)s(cally)f(trivial)f(\014bration)h(in)125 1272 y(the)d(Zariski)e(top)s(ology)125 1489 y(\(2\))1620 1489 y SDict begin H.S end 1620 1489 a 1620 1489 a SDict begin 13 H.A end 1620 1489 a 1620 1489 a SDict begin [/View [/XYZ H.V]/Dest (equation.1.2) cvn /DEST pdfmark end 1620 1489 a FD(R)q FK(\()p FD(\034)10 b FK(\))26 b FC(!)f FB(M)2047 1503 y Fx(\034)2091 1489 y FD(;)125 1705 y FK(that)35 b(\014b)s(ers)f(o)m(v)m(er)j(the)e(sub)m(v)-5 b(ariet)m(y)35 b FB(M)1473 1719 y Fx(\034)1552 1705 y FK(of)h(semi-simple)c(represen)m(tations)k(of)f(t)m(yp)s(e)h FD(\034)10 b FK(.)55 b(The)35 b(\014b)s(er)125 1813 y(of)k(this)g(map)h (is)e(giv)m(en)i(b)m(y)g(a)g(quotien)m(t)g FC(M)1681 1827 y Fx(\034)1724 1813 y FD(=)p FC(G)1823 1827 y Fx(\034)1867 1813 y FK(,)i(where)d FC(M)2315 1827 y Fx(\034)2398 1813 y FK(is)g(a)h(v)-5 b(ariet)m(y)40 b(parametrizing)f(the)125 1921 y(w)m(a)m(ys)33 b(in)f(whic)m(h)g(a)h(semi-simple)e(represen)m (tation)i(can)g(b)s(e)f(completed)h(to)h(an)f(arbitrary)f(reducible)125 2029 y(represen)m(tation)37 b(and)f FC(G)963 2043 y Fx(\034)1043 2029 y FC(\032)g FK(GL)1278 2043 y Fx(r)1316 2029 y FK(\()p FD(k)s FK(\))i(is)e(a)h Fp(gauge)i(gr)-5 b(oup)43 b FK(acting)38 b(freely)e(on)h FC(M)2949 2043 y Fx(\034)2992 2029 y FK(,)i(that)f(iden)m(ti\014es)125 2137 y(equiv)-5 b(alen)m(t)29 b(completions.)224 2280 y(The)f(description)e(of)i(Section)1289 2280 y SDict begin H.S end 1289 2280 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 1334 2222 a SDict begin H.R end 1334 2222 a 1334 2280 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.4) cvn H.B /ANN pdfmark end 1334 2280 a 28 w FK(will)d(b)s(e)j(enough)g(for)f(computing)g(the)i(motiv)m(es)f(of)g FC(M)3243 2294 y Fx(\034)3315 2280 y FK(and)f FC(G)3543 2294 y Fx(\034)3586 2280 y FK(.)125 2388 y(In)i(this)g(w)m(a)m(y)-8 b(,)32 b(in)c(Section)1040 2388 y SDict begin H.S end 1040 2388 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 1086 2330 a SDict begin H.R end 1086 2330 a 1086 2388 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.5) cvn H.B /ANN pdfmark end 1086 2388 a 30 w FK(w)m(e)i(giv)m(e)h(a)f(com)m(binatorial)f(recip)s (e)g(for)h(calculating)g(them)g(in)e(terms)i(of)125 2496 y(the)35 b(rep)s(eated)g(eigen)m(v)-5 b(alues)35 b(of)g FD(\024)g FK(and)f(the)h(t)m(yp)s(e)h FD(\034)10 b FK(.)54 b(Observ)m(e)35 b(that,)i(since)d(w)m(e)i(are)f(dealing)f(with)125 2604 y(reducible)39 b(represen)m(tations,)46 b(all)41 b(the)h(irreducible)d(comp)s(onen)m(ts)j(app)s(earing)e(in)h FB(M)3122 2618 y Fx(\034)3208 2604 y FK(are)h(forced)125 2712 y(to)j(ha)m(v)m(e)h(lo)m(w)m(er)f(rank.)83 b(In)44 b(suc)m(h)g(manner,)k(the)d(results)e(of)i(this)e(section)i(pro)m(vide) f(a)h(recursiv)m(e)125 2820 y(metho)s(d)c(for)g(computing)g(the)h (motiv)m(e)g(of)g FD(R)q FK(\()p FD(\034)10 b FK(\))44 b FC(\032)g FD(R)q FK(\(\000)2181 2834 y Fx(n;m)2310 2820 y FD(;)15 b FK(SL)2458 2834 y Fx(r)2496 2820 y FK(\()p FD(k)s FK(\)\))43 b(from)e(the)h(kno)m(wledge)f(of)125 2932 y([)p FD(R)220 2899 y FJ(irr)298 2932 y FK(\(\000)390 2946 y Fx(n;m)519 2932 y FD(;)15 b FK(SL)667 2946 y Fx(s)704 2932 y FK(\()p FD(k)s FK(\)\)])32 b(for)e FD(s)25 b(<)g(r)s FK(.)224 3076 y(Regarding)41 b(the)h(n)m(um)m(b)s(er)e(of)h(comp)s (onen)m(ts)h(in)e(\()1959 3076 y SDict begin H.S end 1959 3076 a 0 TeXcolorgray FK(1)p 0 TeXcolorgray 2005 3017 a SDict begin H.R end 2005 3017 a 2005 3076 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.1.1) cvn H.B /ANN pdfmark end 2005 3076 a FK(\),)k(as)e(a)g(b)m(ypro)s(duct)e(of)h(Section)3210 3076 y SDict begin H.S end 3210 3076 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 3256 3017 a SDict begin H.R end 3256 3017 a 3256 3076 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.5) cvn H.B /ANN pdfmark end 3256 3076 a FK(,)j(w)m(e)e(will)125 3184 y(sho)m(w)30 b(that)i(the)f(motiv)m(e)h([)p FD(R)q FK(\()p FD(\034)10 b FK(\)])32 b(for)e FD(\034)37 b FC(2)25 b(T)1651 3151 y Fs(\003)1628 3206 y Fx(\024)1721 3184 y FK(do)s(es)31 b(not)g(dep)s(end)e(on)i(the)g(particular)f(v)-5 b(alues)30 b(of)h(the)125 3292 y(eigen)m(v)-5 b(alues)22 b(of)g(the)g(con\014guration)g FD(\024)p FK(,)i(but)d(only)h(on)g(the)g (m)m(ultiplicit)m(y)d(of)k(its)e(rep)s(eated)h(eigen)m(v)-5 b(alues.)125 3399 y(Hence,)31 b(the)g(sum)e(in)g FD(\024)i FK(of)f(\()1096 3399 y SDict begin H.S end 1096 3399 a 0 TeXcolorgray FK(1)p 0 TeXcolorgray 1142 3341 a SDict begin H.R end 1142 3341 a 1142 3399 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.1.1) cvn H.B /ANN pdfmark end 1142 3399 a FK(\))h(amoun)m(ts)g(to)g(m)m(ultiplying)c([)p FD(R)q FK(\()p FD(\034)10 b FK(\)])31 b(b)m(y)f(a)h(com)m(binatorial)f (co)s(e\016cien)m(t)125 3507 y(that)f(coun)m(ts)g(the)g(n)m(um)m(b)s (er)f(of)g(admissible)e(con\014gurations)i(with)g(prescrib)s(ed)e(m)m (ultiplicities.)36 b(This)125 3615 y(coun)m(ting)e(is)g(a)i(com)m (binatorial)e(problem)f(that)j(is)e(addressed)g(in)g(Section)2764 3615 y SDict begin H.S end 2764 3615 a 0 TeXcolorgray FK(6)p 0 TeXcolorgray 2810 3557 a SDict begin H.R end 2810 3557 a 2810 3615 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.6) cvn H.B /ANN pdfmark end 2810 3615 a FK(.)54 b(In)35 b(Section)3330 3615 y SDict begin H.S end 3330 3615 a 0 TeXcolorgray FK(6.5)p 0 TeXcolorgray 3447 3557 a SDict begin H.R end 3447 3557 a 3447 3615 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.6.5) cvn H.B /ANN pdfmark end 3447 3615 a FK(,)h(w)m(e)125 3723 y(p)s(erform)42 b(the)j(calculation)e(in)g(the)h(case)i(that)e(the)h(\(rather)f (arti\014cial\))f(condition)g(gcd\()p FD(n;)15 b(r)s FK(\))49 b(=)125 3831 y(gcd\()p FD(m;)15 b(r)s FK(\))26 b(=)f(1)i(holds,)f(obtaining)f(closed)h(form)m(ulas)g(for)g(these)h(co) s(e\016cien)m(ts)h(in)d(terms)h(of)h(the)g(usual)125 3939 y(m)m(ultinomial)40 b(n)m(um)m(b)s(ers.)79 b(This)42 b(h)m(yp)s(othesis)g(is)h(dropp)s(ed)f(in)g(Section)2694 3939 y SDict begin H.S end 2694 3939 a 0 TeXcolorgray FK(6.4)p 0 TeXcolorgray 2810 3881 a SDict begin H.R end 2810 3881 a 2810 3939 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.6.4) cvn H.B /ANN pdfmark end 2810 3939 a FK(,)47 b(where)d(the)f(general)125 4047 y(case)33 b(is)e(studied)g(b)m(y)h (means)g(of)h(generating)f(functions.)45 b(In)32 b(that)h(setting,)g(w) m(e)g(get)g(more)g(in)m(v)m(olv)m(ed)125 4155 y(form)m(ulas)f(that)j (turn)e(out)h(to)g(agree)h(with)e(the)h(simpler)d(closed)j(forms)f(of)h (Section)3072 4155 y SDict begin H.S end 3072 4155 a 0 TeXcolorgray FK(6.5)p 0 TeXcolorgray 3188 4096 a SDict begin H.R end 3188 4096 a 3188 4155 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.6.5) cvn H.B /ANN pdfmark end 3188 4155 a 34 w FK(for)f FD(r)h FC(\024)d FK(4,)125 4263 y(ev)m(en)g(if)e(the)i(primalit)m(y)d(condition)h(no)h(longer)g(holds.) 224 4406 y(In)45 b(Section)686 4406 y SDict begin H.S end 686 4406 a 0 TeXcolorgray FK(7)p 0 TeXcolorgray 731 4348 a SDict begin H.R end 731 4348 a 731 4406 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.7) cvn H.B /ANN pdfmark end 731 4406 a FK(,)k(w)m(e)d(use)f(the)g(metho)s(d)g(dev)m(elop)s(ed)g (in)f(this)g(pap)s(er)g(to)i(compute)f(the)h(motiv)m(e)125 4514 y(of)41 b(the)h(c)m(haracter)i(v)-5 b(ariet)m(y)42 b(of)g(irreducible)c(represen)m(tations)k(of)g(torus)g(knots)f(for)h FD(G)j FK(=)f(SL)3451 4528 y FJ(2)3491 4514 y FK(\()p FD(k)s FK(\))125 4622 y(\(Section)483 4622 y SDict begin H.S end 483 4622 a 0 TeXcolorgray FK(7.1)p 0 TeXcolorgray 599 4564 a SDict begin H.R end 599 4564 a 599 4622 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.7.1) cvn H.B /ANN pdfmark end 599 4622 a FK(\))36 b(and)f FD(G)g FK(=)e(SL)1169 4636 y FJ(3)1209 4622 y FK(\()p FD(k)s FK(\))j(\(Section)1724 4622 y SDict begin H.S end 1724 4622 a 0 TeXcolorgray FK(7.2)p 0 TeXcolorgray 1840 4564 a SDict begin H.R end 1840 4564 a 1840 4622 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.7.2) cvn H.B /ANN pdfmark end 1840 4622 a FK(\).)57 b(This)34 b(repro)m(v)m(es)i(the)g (existing)e(calculations)h(in)125 4730 y(the)25 b(literature)f(of)h (these)h(motiv)m(es)f(in)f([)1450 4730 y SDict begin H.S end 1450 4730 a 0 TeXcolorgray FK(27)p 0 TeXcolorgray 1541 4671 a SDict begin H.R end 1541 4671 a 1541 4730 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Munoz) cvn H.B /ANN pdfmark end 1541 4730 a FK(])i(and)e([)1788 4730 y SDict begin H.S end 1788 4730 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 1879 4671 a SDict begin H.R end 1879 4671 a 1879 4730 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 1879 4730 a FK(],)j(resp)s(ectiv)m(ely) -8 b(.)39 b(F)-8 b(or)25 b(that)h(purp)s(ose,)f(w)m(e)g(pro)m(vide)125 4838 y(a)35 b(detailed)g(description)e(of)i(the)h(p)s(ossible)d(t)m(yp) s(es)i(and)g(con\014gurations)f(of)i(eigen)m(v)-5 b(alues)35 b(that)h(ma)m(y)125 4946 y(o)s(ccur.)224 5089 y(The)g(aim)f(of)h (Section)1032 5089 y SDict begin H.S end 1032 5089 a 0 TeXcolorgray FK(8)p 0 TeXcolorgray 1077 5031 a SDict begin H.R end 1077 5031 a 1077 5089 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.8) cvn H.B /ANN pdfmark end 1077 5089 a 36 w FK(is)f(to)i(address)e(the)h(computation)g(of)g(the)g(c)m (haracter)i(v)-5 b(ariet)m(y)36 b(of)g(irre-)125 5197 y(ducible)25 b(represen)m(tations)i(in)f(the)h(case)i FD(G)c FK(=)g(SL)1808 5211 y FJ(4)1847 5197 y FK(\()p FD(k)s FK(\),)k FB(M)2116 5164 y FJ(irr)2195 5197 y FK(\(\000)p FD(;)15 b FK(SL)2435 5211 y FJ(4)2475 5197 y FK(\()p FD(k)s FK(\)\),)29 b(whic)m(h)d(is)g(the)i(main)e(no)m(v)m(el)125 5305 y(con)m(tribution)37 b(of)j(this)e(pap)s(er.)66 b(This)38 b(rank)h(is)f(the)h(\014rst)g(case)h(in)e(whic)m(h)g(w)m(e)i (need)f(to)h(deal)f(with)125 5413 y(represen)m(tations)28 b(with)f(isot)m(ypic)i(comp)s(onen)m(ts)f(of)h(dimension)d(2)j(and)f(m) m(ultiplicit)m(y)e(higher)h(than)i(1.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 4 4 TeXDict begin HPSdict begin 4 3 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.4) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(4)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(F)-8 b(or)33 b(this)f(reason,)i(w)m(e)g(divide)d(the)i(analysis)e (in)m(to)i(t)m(w)m(o)i(parts.)48 b(In)32 b(the)i(\014rst)e(case,)j (studied)c(in)h(Sec-)125 374 y(tion)311 374 y SDict begin H.S end 311 374 a 0 TeXcolorgray FK(8.1)p 0 TeXcolorgray 427 315 a SDict begin H.R end 427 315 a 427 374 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.8.1) cvn H.B /ANN pdfmark end 427 374 a FK(,)e(w)m(e)f(consider)g(the)h(sev)m(en)g (eigen)m(v)-5 b(alue)29 b(con\014gurations)g(in)f(whic)m(h)g(suc)m(h)h (high)f(m)m(ultiplicit)m(y)125 482 y(comp)s(onen)m(ts)37 b(cannot)g(happ)s(en.)59 b(The)37 b(coun)m(ting)g(in)e(this)h(case)i (is)e(completely)h(analogous)g(to)h(the)125 589 y(rank)29 b(2)i(and)f(3)h(cases.)224 733 y(On)g(the)h(other)h(hand,)e(in)g (Section)1457 733 y SDict begin H.S end 1457 733 a 0 TeXcolorgray FK(8.2)p 0 TeXcolorgray 1573 674 a SDict begin H.R end 1573 674 a 1573 733 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.8.2) cvn H.B /ANN pdfmark end 1573 733 a 32 w FK(w)m(e)h(deal)g(with)f(the)h(three)g(eigen)m(v)-5 b(alue)32 b(con\014gurations)f FD(\024)125 841 y FK(that)e(admit)g(rep) s(eated)g(isot)m(ypic)g(comp)s(onen)m(ts.)41 b(In)28 b(this)h(case,)h(the)g(calculation)e(of)i FC(M)3152 855 y Fx(\034)3224 841 y FK(for)g(a)f(t)m(yp)s(e)125 949 y FD(\034)41 b FC(2)31 b FD(\024)j FK(is)f(tric)m(kier)h(than)f(in)g (Section)1444 949 y SDict begin H.S end 1444 949 a 0 TeXcolorgray FK(8.1)p 0 TeXcolorgray 1560 890 a SDict begin H.R end 1560 890 a 1560 949 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.8.1) cvn H.B /ANN pdfmark end 1560 949 a 34 w FK(since,)i(roughly)d(sp)s(eaking,)i FC(M)2694 963 y Fx(\034)2772 949 y FK(is)f(the)h(complemen)m(t)g(of)125 1057 y(some)c(Sc)m(h)m(ub)s(ert)f(cells)h(as)g(describ)s(ed)e(in)h (Section)1868 1057 y SDict begin H.S end 1868 1057 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 1913 998 a SDict begin H.R end 1913 998 a 1913 1057 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.4) cvn H.B /ANN pdfmark end 1913 1057 a FK(.)41 b(Nonetheless,)30 b(this)f(more)i(in)m(v)m(olv)m(ed)e (situation)125 1165 y(can)40 b(b)s(e)g(analyzed)g(with)f(the)i(to)s (ols)f(in)m(tro)s(duced)e(in)h(Section)2344 1165 y SDict begin H.S end 2344 1165 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 2389 1106 a SDict begin H.R end 2389 1106 a 2389 1165 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.5) cvn H.B /ANN pdfmark end 2389 1165 a FK(.)70 b(Due)41 b(to)g(the)g(h)m(uge)f(n)m(um)m(b)s(er)f(of)125 1272 y(p)s(ossible)32 b(t)m(yp)s(es)j(that)h(w)m(e)g(need)e(to)i(consider)e (\(more)i(than)f(350)h(in)e(comparison)g(with)g(2)h(for)g FD(G)f FK(=)125 1380 y(SL)232 1394 y FJ(2)271 1380 y FK(\()p FD(k)s FK(\))e(and)e(23)h(for)f FD(G)c FK(=)f(SL)1161 1394 y FJ(3)1200 1380 y FK(\()p FD(k)s FK(\)\),)32 b(w)m(e)f(do)g(not)f (pro)m(vide)g(an)g(exhaustiv)m(e)h(en)m(umeration)f(of)h(all)e(the)125 1488 y(p)s(ossibilities.)38 b(Nev)m(ertheless,)33 b(the)e(description)e (of)j(Sections)2284 1488 y SDict begin H.S end 2284 1488 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 2330 1430 a SDict begin H.R end 2330 1430 a 2330 1488 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.4) cvn H.B /ANN pdfmark end 2330 1488 a 31 w FK(and)2539 1488 y SDict begin H.S end 2539 1488 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 2584 1430 a SDict begin H.R end 2584 1430 a 2584 1488 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.5) cvn H.B /ANN pdfmark end 2584 1488 a 31 w FK(is)e(explicit)g(enough)h(to)h(giv)m(e)125 1596 y(rise)f(to)i(a)g(precise)f(algorithm)g(that)h(can)g(b)s(e)e (implemen)m(ted)g(in)h(a)h(computer)f(algebra)g(system.)48 b(An)125 1704 y(implemen)m(tation)32 b(in)h(SageMath)j([)1343 1704 y SDict begin H.S end 1343 1704 a 0 TeXcolorgray FK(30)p 0 TeXcolorgray 1434 1646 a SDict begin H.R end 1434 1646 a 1434 1704 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.SageMath) cvn H.B /ANN pdfmark end 1434 1704 a FK(])e(created)i(b)m(y) e(the)g(authors)g(can)h(b)s(e)e(c)m(hec)m(k)m(ed)j(in)d([)3209 1704 y SDict begin H.S end 3209 1704 a 0 TeXcolorgray FK(11)p 0 TeXcolorgray 3300 1646 a SDict begin H.R end 3300 1646 a 3300 1704 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.GPMScript) cvn H.B /ANN pdfmark end 3300 1704 a FK(].)53 b(F)-8 b(rom)125 1812 y(this)29 b(computation,)h(w)m(e)h(obtain)f(the)h (main)e(result)g(of)i(this)e(pap)s(er.)125 1974 y SDict begin H.S end 125 1974 a 125 1974 a SDict begin 13 H.A end 125 1974 a 125 1974 a SDict begin [/View [/XYZ H.V]/Dest (theorem.1.1) cvn /DEST pdfmark end 125 1974 a 0 TeXcolorgray FL(Theorem)k(1.1.)p 0 TeXcolorgray 42 w Fp(The)f(motive)h(of)f(the)h(irr)-5 b(e)g(ducible)33 b FK(SL)2057 1988 y FJ(4)2097 1974 y FK(\()p FD(k)s FK(\))p Fp(-char)-5 b(acter)34 b(variety)f(of)g(the)f(gr)-5 b(oup)34 b FK(\000)25 b(=)125 2082 y(\000)182 2096 y Fx(n;m)343 2082 y Fp(of)33 b(the)g FK(\()p FD(n;)15 b(m)p FK(\))p Fp(-torus)33 b(knot)g(is)g(given)f(by)125 2238 y FK([)p FB(M)245 2200 y FJ(irr)324 2238 y FK(\(\000)p FD(;)15 b FK(SL)564 2252 y FJ(4)603 2238 y FK(\()p FD(k)s FK(\)\)])-5 b(=)905 2202 y FJ(4)p 871 2217 106 4 v 871 2269 a Fx(nm)986 2164 y Ft(\000)1027 2198 y Fx(n)1031 2269 y FJ(4)1070 2164 y Ft(\001\000)1154 2198 y Fx(m)1167 2269 y FJ(4)1216 2164 y Ft(\001\000)1299 2238 y FD(q)1343 2200 y FJ(9)1403 2238 y FK(+)20 b(6)p FD(q)1583 2200 y FJ(8)1643 2238 y FK(+)g(20)p FD(q)1868 2200 y FJ(7)1928 2238 y FK(+)g(17)p FD(q)2153 2200 y FJ(6)2213 2238 y FC(\000)g FK(98)p FD(q)2438 2200 y FJ(5)2499 2238 y FC(\000)f FK(26)p FD(q)2723 2200 y FJ(4)2784 2238 y FK(+)h(38)p FD(q)3009 2200 y FJ(3)3069 2238 y FK(+)g(126)p FD(q)3339 2200 y FJ(2)3400 2238 y FC(\000)g FK(144)3626 2164 y Ft(\001)380 2414 y FK(+)515 2378 y FJ(4)p 480 2393 V 480 2446 a Fx(nm)596 2313 y Ft(\020)650 2341 y(\000)692 2374 y Fx(n)695 2446 y FJ(4)734 2341 y Ft(\001\000)832 2374 y Fx(m)818 2446 y FJ(2)p Fx(;)p FJ(1)908 2341 y Ft(\001)970 2414 y FK(+)1061 2341 y Ft(\000)1126 2374 y Fx(n)1102 2446 y FJ(2)p Fx(;)p FJ(1)1192 2341 y Ft(\001\000)1276 2374 y Fx(m)1289 2446 y FJ(4)1338 2341 y Ft(\001)1380 2313 y(\021)1434 2341 y(\000)1476 2414 y FD(q)1520 2377 y FJ(7)1579 2414 y FK(+)g(5)p FD(q)1759 2377 y FJ(6)1819 2414 y FK(+)g(7)p FD(q)1999 2377 y FJ(5)2059 2414 y FC(\000)g FK(34)p FD(q)2284 2377 y FJ(4)2344 2414 y FK(+)g(34)p FD(q)2569 2377 y FJ(2)2630 2414 y FK(+)g(18)p FD(q)k FC(\000)19 b FK(48)3056 2341 y Ft(\001)380 2613 y FK(+)515 2577 y FJ(4)p 480 2592 V 480 2645 a Fx(nm)596 2512 y Ft(\020)650 2540 y(\000)692 2573 y Fx(n)695 2645 y FJ(4)734 2540 y Ft(\001\000)818 2573 y Fx(m)831 2645 y FJ(2)880 2540 y Ft(\001)942 2613 y FK(+)1033 2540 y Ft(\000)1075 2573 y Fx(n)1078 2645 y FJ(2)1117 2540 y Ft(\001\000)1201 2573 y Fx(m)1214 2645 y FJ(4)1263 2540 y Ft(\001)1305 2512 y(\021)1359 2540 y(\000)1401 2613 y FD(q)1445 2576 y FJ(5)1504 2613 y FK(+)h(4)p FD(q)1684 2576 y FJ(4)1744 2613 y FC(\000)g FK(11)p FD(q)1969 2576 y FJ(3)2029 2613 y FK(+)g FD(q)2164 2576 y FJ(2)2224 2613 y FK(+)g(18)p FD(q)k FC(\000)c FK(18)2651 2540 y Ft(\001)380 2812 y FK(+)515 2776 y FJ(4)p 480 2791 V 480 2843 a Fx(nm)596 2711 y Ft(\020)650 2738 y(\000)692 2772 y Fx(n)695 2843 y FJ(4)734 2738 y Ft(\001\000)832 2772 y Fx(m)818 2843 y FJ(1)p Fx(;)p FJ(1)908 2738 y Ft(\001)970 2812 y FK(+)1061 2738 y Ft(\000)1126 2772 y Fx(n)1102 2843 y FJ(1)p Fx(;)p FJ(1)1192 2738 y Ft(\001\000)1276 2772 y Fx(m)1289 2843 y FJ(4)1338 2738 y Ft(\001)1380 2711 y(\021)1434 2738 y(\000)1476 2812 y FD(q)1520 2775 y FJ(3)1579 2812 y FC(\000)g FK(4)p FD(q)1759 2775 y FJ(2)1819 2812 y FK(+)g(6)p FD(q)k FC(\000)c FK(4)2156 2738 y Ft(\001)380 3011 y FK(+)515 2975 y FJ(4)p 480 2990 V 480 3042 a Fx(nm)596 2910 y Ft(\020)650 2937 y(\000)715 2971 y Fx(n)692 3042 y FJ(2)p Fx(;)p FJ(1)782 2937 y Ft(\001)o(\000)865 2971 y Fx(m)879 3042 y FJ(2)927 2937 y Ft(\001)989 3011 y FK(+)1080 2937 y Ft(\000)1122 2971 y Fx(n)1126 3042 y FJ(2)1165 2937 y Ft(\001)o(\000)1262 2971 y Fx(m)1248 3042 y FJ(2)p Fx(;)p FJ(1)1338 2937 y Ft(\001)1380 2910 y(\021)1434 2937 y(\000)1476 3011 y FD(q)1520 2973 y FJ(3)1579 3011 y FC(\000)g FK(3)p FD(q)1759 2973 y FJ(2)1819 3011 y FK(+)g(5)p FD(q)k FC(\000)c FK(4)2156 2937 y Ft(\001)380 3186 y FK(+)515 3150 y FJ(4)p 480 3165 V 480 3217 a Fx(nm)596 3112 y Ft(\000)661 3145 y Fx(n)637 3217 y FJ(2)p Fx(;)p FJ(1)727 3112 y Ft(\001\000)825 3145 y Fx(m)811 3217 y FJ(2)p Fx(;)p FJ(1)901 3112 y Ft(\001\000)984 3186 y FD(q)1028 3148 y FJ(5)1088 3186 y FK(+)g(2)p FD(q)1268 3148 y FJ(4)1328 3186 y FC(\000)f FK(10)p FD(q)1552 3148 y FJ(3)1613 3186 y FK(+)h(7)p FD(q)1793 3148 y FJ(2)1853 3186 y FK(+)g(11)p FD(q)k FC(\000)c FK(17)2280 3112 y Ft(\001)2322 3186 y FD(;)125 3345 y Fp(wher)-5 b(e)37 b FD(q)f FK(=)c([)p FD(k)s FK(])i FC(2)e FD(K)7 b FK(\()p FC(V)g FD(ar)1063 3360 y Fx(k)1106 3345 y FK(\))37 b Fp(is)f(the)h(motive)h(of)f(the)g(a\016ne)g(line)f (and)i(the)f(multinomial)i(numb)-5 b(ers)125 3453 y(ar)g(e)33 b(de\014ne)-5 b(d)34 b(in)e(Cor)-5 b(ol)5 b(lary)1101 3471 y SDict begin H.S end 1101 3471 a 0 TeXcolorgray -18 x Fp(6.7)p 0 TeXcolorgray 1222 3394 a SDict begin H.R end 1222 3394 a 1222 3453 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.7) cvn H.B /ANN pdfmark end 1222 3453 a Fp(.)224 3651 y FK(In)36 b(Section)669 3651 y SDict begin H.S end 669 3651 a 0 TeXcolorgray FK(9)p 0 TeXcolorgray 715 3592 a SDict begin H.R end 715 3592 a 715 3651 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.9) cvn H.B /ANN pdfmark end 715 3651 a FK(,)j(w)m(e)e(mo)m(v)m(e)i(from)d(the)h(motiv)m(e)h(of)f (the)g(mo)s(duli)d(space)k(of)f(irreducible)d(represen-)125 3759 y(tations,)e FB(M)550 3726 y FJ(irr)630 3759 y FK(\(\000)p FD(;)15 b FK(SL)869 3773 y FJ(4)909 3759 y FK(\()p FD(k)s FK(\)\),)34 b(to)f(the)f(motiv)m(e)h(of)f(the)g(total)h(c)m(haracter)g (v)-5 b(ariet)m(y)33 b FB(M)p FK(\(\000)p FD(;)15 b FK(SL)3212 3773 y FJ(4)3252 3759 y FK(\()p FD(k)s FK(\)\).)47 b(F)-8 b(or)125 3867 y(that)33 b(purp)s(ose,)g(w)m(e)g(use)g(the)g(w)m (ell-kno)m(wn)f(fact)i(that)g FB(M)p FK(\(\000)p FD(;)15 b FK(SL)2342 3881 y FJ(4)2382 3867 y FK(\()p FD(k)s FK(\)\))34 b(parametrizes)f(isomorphism)125 3975 y(classes)g(of)h(semi-simple)d (represen)m(tations)j(and,)g(therefore,)h(the)f(calculation)f(can)h(b)s (e)f(reduced)g(to)125 4082 y(com)m(binations)27 b(of)i(the)g(previous)e (results)h(for)g(the)h(c)m(haracter)h(v)-5 b(arieties)28 b(of)h(irreducible)d(represen)m(ta-)125 4190 y(tions)j(for)h(all)g(the) g(ranks)g(1)c FC(\024)f FD(r)i FC(\024)e FK(4.)224 4334 y(W)-8 b(e)40 b(end)d(this)g(section)i(with)d(some)j(\014nal)e(w)m (ords)g(ab)s(out)h(the)h(higher)e(rank)g(case)j FD(r)g(>)e FK(4.)65 b(The)125 4442 y(results)35 b(pro)m(v)m(ed)h(in)f(this)g(pap)s (er)g(ab)s(out)h(the)h(structure)e(of)i(the)f(irreducible)d(represen)m (tations)j(and)125 4550 y(their)g(strati\014cation)i(according)g(to)g (the)h(t)m(yp)s(e)f(of)g(their)f(semi-simple)e(\014ltration)h(are)j (completely)125 4658 y(general)f(and)f(ma)m(y)i(b)s(e)f(used)f(in)g (higher)g(rank.)64 b(Ho)m(w)m(ev)m(er,)42 b(t)m(w)m(o)e(issues)d(prev)m (en)m(t)i(the)f(metho)s(d)g(to)125 4765 y(directly)21 b(generalize)i(to)h(these)f(cases.)39 b(The)23 b(\014rst)f(one)h(is)f (purely)f(computational,)j(since)f(the)g(n)m(um)m(b)s(er)125 4873 y(of)30 b(t)m(yp)s(es)h(to)h(b)s(e)e(analyzed)h(gro)m(ws)g(exp)s (onen)m(tially)e(with)h(rank,)g(so)h(to)h(consider)d(higher)h(rank)g (there)125 4981 y(is)25 b(an)h(extrinsic)e(limitation)g(imp)s(osed)h(b) m(y)h(the)g(a)m(v)-5 b(ailable)25 b(computational)h(p)s(o)m(w)m(er.)39 b(The)26 b(second)g(one)125 5089 y(is)32 b(m)m(uc)m(h)i(subtler)f(and)g (is)g(hidden)e(in)i(Section)1781 5089 y SDict begin H.S end 1781 5089 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 1826 5031 a SDict begin H.R end 1826 5031 a 1826 5089 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.4) cvn H.B /ANN pdfmark end 1826 5089 a 34 w FK(and)g(Prop)s(osition)2533 5089 y SDict begin H.S end 2533 5089 a 0 TeXcolorgray FK(4.5)p 0 TeXcolorgray 2649 5031 a SDict begin H.R end 2649 5031 a 2649 5089 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.5) cvn H.B /ANN pdfmark end 2649 5089 a FK(.)52 b(The)33 b(k)m(ey)i(p)s(oin)m(t)e(is)g(that,)125 5197 y(more)24 b(precisely)-8 b(,)25 b(in)f(general)g(the)h(\014bration)e (\()1688 5197 y SDict begin H.S end 1688 5197 a 0 TeXcolorgray FK(2)p 0 TeXcolorgray 1734 5139 a SDict begin H.R end 1734 5139 a 1734 5197 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.1.2) cvn H.B /ANN pdfmark end 1734 5197 a FK(\))i(is)e(not)i(lo)s (cally)e(trivial)g(in)g(the)i(Zariski)e(top)s(ology)-8 b(.)39 b(In)125 5305 y(the)32 b(general)h(case,)h(this)d(\014bration)g (presen)m(ts)i(non-trivial)d(mono)s(drom)m(y)i(coming)g(from)g(the)h (action)125 5413 y(on)j FB(M)352 5427 y Fx(\034)432 5413 y FK(b)m(y)g(p)s(erm)m(uting)e(isomorphic)h(irreducible)e(represen)m (tations.)58 b(In)36 b(ranks)g FD(r)h FC(\024)e FK(4,)k(the)d(only)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 5 5 TeXDict begin HPSdict begin 5 4 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.5) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)560 b(5)p 0 TeXcolorgray 125 266 a FK(rep)s(eated)27 b(irreducible)c(represen)m(tations)28 b(that)f(ma)m(y)h(o)s(ccur)f(in)f FB(M)2394 280 y Fx(\034)2464 266 y FK(are)i(1-dimensional)d(\(w)m(e)j(get)g(rid)125 374 y(of)c(the)g(case)h(of)f(t)m(w)m(o)i(2-dimensional)21 b(represen)m(tations)j(in)f(Prop)s(osition)2597 374 y SDict begin H.S end 2597 374 a 0 TeXcolorgray FK(8.1)p 0 TeXcolorgray 2713 315 a SDict begin H.R end 2713 315 a 2713 374 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.8.1) cvn H.B /ANN pdfmark end 2713 374 a FK(\))i(and,)g(since)e(the)h(mo) s(duli)125 482 y(space)30 b(of)h(suc)m(h)f(represen)m(tations)g(is)g (just)g(a)g(p)s(oin)m(t,)g(the)h(action)f(b)m(y)h(p)s(erm)m(utations)e (is)g(trivial.)224 625 y(Despite)j(these)g(di\016culties,)e(the)i (approac)m(h)g(dev)m(elop)s(ed)f(in)f(this)g(pap)s(er)h(can)h(b)s(e)f (used)g(to)h(tac)m(kle)125 733 y(the)43 b(general)g(rank)g(case.)79 b(A)44 b(more)f(in)m(v)m(olv)m(ed)g(analysis)e(of)j(this)e(p)s(erm)m (utation)g(action)h(ma)m(y)h(b)s(e)125 841 y(p)s(erformed)28 b(in)h(order)h(to)h(understand)d(the)i(mono)s(drom)m(y)g(action,)h(and) e(from)h(it)g(the)g(motiv)m(e)h(of)f(the)125 949 y(total)39 b(space)g(ma)m(y)g(b)s(e)e(computed)h(as)h(in)e([)1623 949 y SDict begin H.S end 1623 949 a 0 TeXcolorgray FK(22)p 0 TeXcolorgray 1714 890 a SDict begin H.R end 1714 890 a 1714 949 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.lomune) cvn H.B /ANN pdfmark end 1714 949 a FK(].)65 b(T)-8 b(o)39 b(this)e(extend,)k(our)d(approac)m(h)g(is)g(suitable)f (for)125 1057 y(studying)28 b(the)j(higher)e(rank)h(case.)224 1200 y(The)h(results)e(of)i(this)f(pap)s(er)g(also)g(hold)g(for)h(an)f (algebraically)g(closed)h(\014eld)e(of)i(p)s(ositiv)m(e)f(c)m(harac-) 125 1308 y(teristic)h FD(p)d(>)f FK(0,)33 b(as)g(long)e(as)h FD(n;)15 b(m;)g(r)35 b FK(are)e(coprime)e(with)g FD(p)p FK(.)45 b(The)31 b(relev)-5 b(an)m(t)33 b(p)s(oin)m(t)e(is)g(that)h(w)m (e)h(tak)m(e)125 1416 y(ro)s(ots)d(of)h(unit)m(y)e(and)h(w)m(e)h(coun)m (t)g(them.)125 1559 y FL(Ac)m(kno)m(wledgemen)m(ts.)39 b FK(The)27 b(authors)h(w)m(an)m(t)g(to)h(thank)e(Eduardo)g(F)-8 b(ern\023)-45 b(andez-F)-8 b(uertes)29 b(and)e(Ma-)125 1667 y(rina)21 b(Logares)j(for)f(v)m(ery)g(useful)e(con)m(v)m (ersations)j(around)d(the)j(metho)s(ds)e(of)h(this)e(pap)s(er.)38 b(W)-8 b(e)24 b(sp)s(ecially)125 1775 y(thank)h(Carlos)h(Floren)m(tino) f(and)h(Sean)g(La)m(wton)g(for)g(p)s(oin)m(ting)f(out)h(some)g(errors)g (in)f(a)h(previous)f(v)m(er-)125 1883 y(sion)30 b(of)i(this)f(man)m (uscript)g(and)g(for)g(references.)46 b(The)31 b(second)h(author)g(is)f (partially)f(supp)s(orted)f(b)m(y)125 1991 y(Pro)5 b(ject)31 b(MINECO)f(\(Spain\))f(PGC2018-095448-B-I00.)125 2107 y SDict begin H.S end 125 2107 a 125 2107 a SDict begin 13 H.A end 125 2107 a 125 2107 a SDict begin [/View [/XYZ H.V]/Dest (section.2) cvn /DEST pdfmark end 125 2107 a 600 2228 a FK(2.)46 b FE(Moduli)33 b(of)h(represent)-6 b(a)g(tions)31 b(and)j(chara)n(cter)e(v)-8 b(arieties)224 2425 y FK(Fix)30 b(an)g(algebraically)e(closed)i(\014eld)f FD(k)k FK(of)d(zero)h(c)m(haracteristic.)41 b(Let)31 b(\000)e(b)s(e)h(a)g(\014nitely)e(generated)125 2533 y(group,)j(and)f(let)h FD(G)h FK(b)s(e)f(a)g(reductiv)m(e)g(algebraic)g (group)g(o)m(v)m(er)h FD(k)s FK(.)44 b(A)31 b Fp(r)-5 b(epr)g(esentation)41 b FK(of)31 b(\000)g(in)f FD(G)i FK(is)e(a)125 2641 y(homomorphism)23 b FD(\032)j FK(:)f(\000)g FC(!)g FD(G)p FK(.)40 b(Consider)24 b(a)j(presen)m(tation)f(\000)f(=)g FC(h)p FD(\015)2440 2655 y FJ(1)2480 2641 y FD(;)15 b(:)g(:)g(:)h(;)f (\015)2728 2656 y Fx(k)2771 2641 y FC(jf)p FD(r)2882 2656 y Fx(\025)2928 2641 y FC(g)2973 2656 y Fx(\025)p Fs(2)p FJ(\003)3115 2641 y FC(i)p FK(,)28 b(where)d(\003)h(is)125 2749 y(the)h(\(p)s(ossibly)e(in\014nite\))h(indexing)f(set)j(of)f (relations)g(of)h(\000.)39 b(Then)26 b FD(\032)i FK(is)e(completely)h (determined)f(b)m(y)125 2857 y(the)20 b FD(k)s FK(-tuple)g(\()p FD(A)677 2871 y FJ(1)717 2857 y FD(;)15 b(:)g(:)g(:)h(;)f(A)986 2872 y Fx(k)1030 2857 y FK(\))25 b(=)g(\()p FD(\032)p FK(\()p FD(\015)1350 2871 y FJ(1)1390 2857 y FK(\))p FD(;)15 b(:)g(:)g(:)i(;)e(\032)p FK(\()p FD(\015)1756 2872 y Fx(k)1800 2857 y FK(\)\))21 b(sub)5 b(ject)20 b(to)h(the)g(relations)e FD(r)2845 2872 y Fx(\025)2890 2857 y FK(\()p FD(A)2993 2871 y FJ(1)3033 2857 y FD(;)c(:)g(:)g(:)i(;)e (A)3303 2872 y Fx(k)3346 2857 y FK(\))26 b(=)f(Id)o(,)125 2965 y(for)30 b(all)f FD(\025)c FC(2)g FK(\003.)41 b(The)30 b(space)h(of)f(represen)m(tations)h(is)635 3117 y FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))84 b(=)f(Hom\(\000)p FD(;)15 b(G)p FK(\))1027 3258 y(=)83 b FC(f)p FK(\()p FD(A)1329 3272 y FJ(1)1369 3258 y FD(;)15 b(:)g(:)g(:)i(;)e(A)1639 3273 y Fx(k)1682 3258 y FK(\))25 b FC(2)g FD(G)1899 3221 y Fx(k)1958 3258 y FC(j)15 b FD(r)2039 3273 y Fx(\025)2084 3258 y FK(\()p FD(A)2187 3272 y FJ(1)2227 3258 y FD(;)g(:)g(:)g(:)i(;)e (A)2497 3273 y Fx(k)2540 3258 y FK(\))26 b(=)f(Id)o FC(g)h(\032)f FD(G)3018 3221 y Fx(k)3076 3258 y FD(:)125 3411 y FK(Therefore)30 b FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))31 b(is)f(an)g(a\016ne)g (algebraic)g(set.)125 3576 y SDict begin H.S end 125 3576 a 125 3576 a SDict begin 13 H.A end 125 3576 a 125 3576 a SDict begin [/View [/XYZ H.V]/Dest (theorem.2.1) cvn /DEST pdfmark end 125 3576 a 0 TeXcolorgray FL(Remark)50 b(2.1.)p 0 TeXcolorgray 50 w FK(Ev)m(en)44 b(though)g(\003)h(ma)m(y)g (b)s(e)f(an)g(in\014nite)e(set,)49 b(without)43 b(loss)h(of)g (generalit)m(y)h(w)m(e)125 3684 y(can)38 b(supp)s(ose)f(that)i FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))40 b(is)d(de\014ned)g(b)m(y)i (\014nitely)d(man)m(y)j(equations.)64 b(Indeed,)40 b(consider)d(the)125 3792 y(collection)21 b(of)g(ideals)f(generated)i(b)m(y)f(\014nitely)f (man)m(y)h(of)h(these)g(relations,)g(partially)d(ordered)i(through)125 3900 y(inclusion.)36 b(Since)25 b(the)h(co)s(ordinate)h(ring)e(of)h FD(G)1720 3867 y Fx(k)1789 3900 y FK(is)g(No)s(etherian,)g(suc)m(h)g(a) h(collection)f(has)g(a)h(maximal)125 4008 y(elemen)m(t,)c(sa)m(y)-8 b(,)25 b(the)c(ideal)f(generated)i(b)m(y)f(the)h(relations)e FD(r)2072 4023 y Fx(\025)2113 4032 y FG(1)2153 4008 y FC(\000)r FK(Id)o FD(;)15 b(:)g(:)g(:)i(;)e(r)2552 4023 y Fx(\025)2593 4031 y Fq(s)2633 4008 y FC(\000)r FK(Id)o(.)37 b(This)19 b(ideal)h(coincides)125 4116 y(with)29 b(the)h(ideal)f (generated)i(b)m(y)g(the)f(whole)g(set)g(of)h(relations)e(since,)h (otherwise,)g(w)m(e)h(could)e(enlarge)125 4224 y(the)h(set)h FD(r)464 4239 y Fx(\025)505 4248 y FG(1)564 4224 y FC(\000)20 b FK(Id)o FD(;)15 b(:)g(:)g(:)i(;)e(r)981 4239 y Fx(\025)1022 4247 y Fq(s)1080 4224 y FC(\000)20 b FK(Id)o(,)31 b(con)m(tradicting)f (the)h(maximalit)m(y)-8 b(.)224 4425 y(W)g(e)28 b(sa)m(y)f(that)f(t)m (w)m(o)i(represen)m(tations)e FD(\032)g FK(and)g FD(\032)1809 4392 y Fs(0)1859 4425 y FK(are)g(equiv)-5 b(alen)m(t)26 b(if)f(there)i(exists)e FD(g)k FC(2)c FD(G)i FK(suc)m(h)f(that)125 4532 y FD(\032)172 4499 y Fs(0)195 4532 y FK(\()p FD(\015)5 b FK(\))33 b(=)f FD(g)499 4499 y Fs(\000)p FJ(1)594 4532 y FD(\032)p FK(\()p FD(\015)5 b FK(\))p FD(g)s FK(,)37 b(for)d(ev)m(ery)i FD(\015)h FC(2)32 b FK(\000.)53 b(This)32 b(pro)s(duces)i(a)h(natural)e(action)i(of)g FD(G)g FK(in)e FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))35 b(b)m(y)125 4640 y(conjugation.)40 b(The)30 b(mo)s(duli)e(space)j(of)f(represen)m (tations)h(is)e(the)h(GIT)h(quotien)m(t)1379 4792 y FB(M)p FK(\(\000)p FD(;)15 b(G)p FK(\))27 b(=)e FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))21 b FA(\014)f FD(G)15 b(:)125 4944 y FK(Recall)38 b(that)i(b)m(y)g(de\014nition)d(of)i(GIT)g(quotien)m(t)h (for)f(an)g(a\016ne)g(v)-5 b(ariet)m(y)d(,)43 b(if)38 b(w)m(e)i(write)e FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))42 b(=)125 5054 y(Sp)s(ec)14 b FD(A)p FK(,)29 b(then)f FB(M)p FK(\(\000)p FD(;)15 b(G)p FK(\))27 b(=)e(Sp)s(ec)14 b FD(A)1374 5021 y Fx(G)1433 5054 y FK(,)29 b(where)e FD(A)1815 5021 y Fx(G)1903 5054 y FK(is)g(the)h(\014nitely)e(generated)j FD(k)s FK(-algebra)g(of)f(in)m(v)-5 b(ari-)125 5162 y(an)m(ts)30 b(elemen)m(ts)h(of)g FD(A)f FK(under)f(the)i(induced)d(action)j(of)f FD(G)p FK(.)224 5305 y(F)-8 b(rom)27 b(no)m(w)f(on,)i(let)e(us)g(fo)s (cus)g(on)g(the)g(groups)g FD(G)g FK(=)f(GL)2147 5319 y Fx(r)2185 5305 y FK(\()p FD(k)s FK(\))i(or)f FD(G)g FK(=)f(SL)2739 5319 y Fx(r)2777 5305 y FK(\()p FD(k)s FK(\).)41 b(In)25 b(this)g(setting,)j(a)125 5413 y(represen)m(tation)c FD(\032)g FK(is)f(said)g(to)h(b)s(e)g Fp(r)-5 b(e)g(ducible)31 b FK(if)23 b(there)h(exists)g(some)g(prop)s(er)f(linear)f(subspace)i FD(W)37 b FC(\032)25 b FD(V)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 6 6 TeXDict begin HPSdict begin 6 5 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.6) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(6)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(suc)m(h)37 b(that)h(for)g(all)e FD(\015)43 b FC(2)37 b FK(\000)h(w)m(e)g(ha)m(v)m(e)h FD(\032)p FK(\()p FD(\015)5 b FK(\)\()p FD(W)13 b FK(\))38 b FC(\032)g FD(W)13 b FK(;)41 b(otherwise)c FD(\032)h FK(is)e Fp(irr)-5 b(e)g(ducible)p FK(.)64 b(This)36 b(giv)m(es)125 374 y(subsets)1233 517 y FD(R)1303 479 y FJ(red)1405 517 y FK(\(\000)p FD(;)15 b(G)p FK(\))p FD(;)g(R)1753 479 y FJ(irr)1833 517 y FK(\(\000)p FD(;)g(G)p FK(\))27 b FC(\032)e FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))125 679 y(of)37 b(reducible)d(and)j(irreducible)c(represen) m(tations,)39 b(that)f(are)f(closed)g(and)f(op)s(en)g(sub)m(v)-5 b(arieties,)38 b(re-)125 787 y(sp)s(ectiv)m(ely)-8 b(.)47 b(The)33 b(action)g(of)g FD(G)g FK(on)g(the)g(whole)f FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))34 b(migh)m(t)e(b)s(e)h(quite)f (in)m(v)m(olv)m(ed.)48 b(Ho)m(w)m(ev)m(er,)35 b(if)125 895 y FD(Z)7 b FK(\()p FD(G)p FK(\))33 b(denotes)g(the)g(cen)m(ter)g (of)g FD(G)p FK(,)h(whic)m(h)e(acts)h(trivially)d(on)j FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\),)34 b(then)f(the)f(induced)f (action)125 1004 y(of)f FD(G=)-5 b(Z)7 b FK(\()p FD(G)p FK(\))27 b(=)e(PGL)862 1018 y Fx(r)900 1004 y FK(\()p FD(k)s FK(\))31 b(on)f FD(R)1247 971 y FJ(irr)1326 1004 y FK(\(\000)p FD(;)15 b(G)p FK(\))32 b(is)d(free)h(b)m(y)h(Sc)m(h)m(ur) e(lemma.)224 1147 y(Note)i(that)g(if)d FD(\032)i FK(is)f(reducible,)f (then)i(let)f FD(W)38 b FC(\032)25 b FD(V)50 b FK(b)s(e)29 b(an)h(in)m(v)-5 b(arian)m(t)29 b(subspace)g(\(of)i(some)f(dimen-)125 1255 y(sion)23 b FD(s)p FK(\),)i(and)f(consider)f(a)h(complemen)m(t)h FD(V)45 b FK(=)25 b FD(W)20 b FC(\010)8 b FD(W)2002 1222 y Fs(0)2025 1255 y FK(.)38 b(Let)25 b FD(\032)2292 1269 y FJ(1)2357 1255 y FK(=)g FD(\032)p FC(j)2525 1269 y Fx(W)2629 1255 y FK(and)f(let)g FD(\032)2972 1269 y FJ(2)3036 1255 y FK(b)s(e)f(the)h(induced)125 1418 y(represen)m(tation)33 b(on)g FD(W)950 1385 y Fs(0)972 1418 y FK(.)49 b(Then)32 b(w)m(e)i(can)f(write)g FD(\032)c FK(=)2005 1290 y Ft(\022)2072 1363 y FD(\032)2119 1377 y FJ(1)2257 1363 y FD(f)2092 1471 y FK(0)104 b FD(\032)2288 1485 y FJ(2)2328 1290 y Ft(\023)2395 1418 y FK(,)33 b(where)g FD(f)39 b FK(:)30 b(\000)g FC(!)f FK(Hom)q(\()p FD(W)3389 1385 y Fs(0)3412 1418 y FD(;)15 b(W)e FK(\).)125 1644 y(T)-8 b(ak)m(e)32 b FD(P)403 1658 y Fx(t)460 1644 y FK(=)558 1516 y Ft(\022)625 1589 y FD(t)658 1556 y Fx(s)p Fs(\000)p Fx(r)799 1589 y FK(Id)143 b(0)731 1697 y(0)189 b FD(t)998 1664 y Fx(s)1050 1697 y FK(Id)1133 1516 y Ft(\023)1200 1644 y FK(.)44 b(Then)30 b FD(P)1578 1606 y Fs(\000)p FJ(1)1565 1668 y Fx(t)1673 1644 y FD(\032P)1778 1658 y Fx(t)1835 1644 y FK(=)1932 1516 y Ft(\022)1999 1589 y FD(\032)2046 1603 y FJ(1)2169 1589 y FD(t)2202 1556 y Fx(r)2240 1589 y FD(f)2020 1697 y FK(0)123 b FD(\032)2235 1711 y FJ(2)2294 1516 y Ft(\023)2388 1644 y FC(!)35 b FK(^)-53 b FD(\032)27 b FK(=)2678 1516 y Ft(\022)2745 1589 y FD(\032)2792 1603 y FJ(1)2935 1589 y FK(0)2765 1697 y(0)104 b FD(\032)2961 1711 y FJ(2)3001 1516 y Ft(\023)3067 1644 y FK(,)32 b(when)f FD(t)c FC(!)g FK(0.)125 1807 y(Therefore)36 b FD(\032)g FK(and)44 b(^)-53 b FD(\032)36 b FK(de\014ne)g(the)h(same)f(p)s(oin)m (t)g(in)f(the)h(quotien)m(t)h FB(M)p FK(\(\000)p FD(;)15 b(G)p FK(\).)61 b(Rep)s(eating)36 b(this,)h(w)m(e)125 1915 y(can)44 b(substitute)f(an)m(y)i(represen)m(tation)f FD(\032)g FK(b)m(y)g(some)53 b(^)-53 b FD(\032)49 b FK(=)2226 1847 y Ft(L)2342 1915 y FD(\032)2389 1929 y Fx(i)2417 1915 y FK(,)f(where)c(all)f FD(\032)2954 1929 y Fx(i)3026 1915 y FK(are)i(irreducible)125 2023 y(represen)m(tations.)56 b(W)-8 b(e)36 b(call)f(this)f(pro)s(cess)h Fp(semi-simpli\014c)-5 b(ation)p FK(,)39 b(and)44 b(^)-54 b FD(\032)36 b FK(is)e(called)h(a)h (semi-simple)125 2131 y(represen)m(tation;)41 b(also)c FD(\032)h FK(and)45 b(^)-54 b FD(\032)38 b FK(are)g(called)e(S-equiv)-5 b(alen)m(t.)61 b(The)37 b(space)h FB(M)p FK(\(\000)p FD(;)15 b(G)p FK(\))39 b(parametrizes)125 2239 y(semi-simple)24 b(represen)m(tations)i([)1263 2239 y SDict begin H.S end 1263 2239 a 0 TeXcolorgray FK(23)p 0 TeXcolorgray 1354 2180 a SDict begin H.R end 1354 2180 a 1354 2239 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.LuMa) cvn H.B /ANN pdfmark end 1354 2239 a FK(,)i(Thm.)e(1.28].)41 b(Analogously)-8 b(,)27 b(w)m(e)g(can)g(also)g(consider)e(the)i(mo)s(d-)125 2347 y(uli)h(space)j(of)f(irreducible)d(represen)m(tations)k FB(M)1778 2314 y FJ(irr)1857 2347 y FK(\(\000)p FD(;)15 b(G)p FK(\))26 b(=)f FD(R)2287 2314 y FJ(irr)2366 2347 y FK(\(\000)p FD(;)15 b(G)p FK(\))21 b FA(\014)f FD(G)p FK(.)224 2491 y(Supp)s(ose)32 b(no)m(w)h(that)h FD(k)g FK(=)c Fz(C)17 b FK(.)56 b(Giv)m(en)33 b(a)h(represen)m(tation)f FD(\032)e FK(:)f(\000)g FC(!)g FD(G)p FK(,)35 b(w)m(e)f(de\014ne)f(its) f Fp(char)-5 b(acter)125 2599 y FK(as)30 b(the)g(map)g FD(\037)651 2613 y Fx(\032)717 2599 y FK(:)25 b(\000)g FC(!)g Fz(C)18 b FK(,)36 b FD(\037)1143 2613 y Fx(\032)1184 2599 y FK(\()p FD(g)s FK(\))26 b(=)f(tr)15 b FD(\032)p FK(\()p FD(g)s FK(\).)42 b(Note)32 b(that)f(t)m(w)m(o)g(equiv)-5 b(alen)m(t)30 b(represen)m(tations)g FD(\032)g FK(and)125 2712 y FD(\032)172 2679 y Fs(0)225 2712 y FK(ha)m(v)m(e)i(the)e(same)h (c)m(haracter.)42 b(There)30 b(is)f(a)i(c)m(haracter)h(map)e FD(\037)25 b FK(:)h FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))26 b FC(!)f Fz(C)2923 2679 y FJ(\000)2977 2712 y FK(,)30 b FD(\032)c FC(7!)f FD(\037)3278 2726 y Fx(\032)3318 2712 y FK(,)31 b(whose)125 2820 y(image)1437 2963 y FB(X)p FK(\(\000)p FD(;)15 b(G)p FK(\))27 b(=)e FD(\037)p FK(\()p FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\)\))125 3125 y(is)36 b(called)h(the)g Fp(char)-5 b(acter)41 b(variety)f(of)f FK(\000.)62 b(Let)38 b(us)e(giv)m(e)i FB(X)p FK(\(\000)p FD(;)15 b(G)p FK(\))39 b(the)f(structure)f(of)g(an)h(algebraic)125 3235 y(v)-5 b(ariet)m(y)d(.)56 b(The)35 b(traces)h FD(\037)985 3249 y Fx(\032)1060 3235 y FK(span)f(a)h(subring)c FD(B)38 b FC(\032)c FD(A)p FK(.)55 b(Clearly)34 b FD(B)k FC(\032)33 b FD(A)2647 3202 y Fx(G)2707 3235 y FK(,)j(and)f(it)g(can)g(b)s(e)g (pro)m(v)m(en)125 3343 y(that)k FD(B)k FK(is)38 b(actually)h(a)g (\014nitely)e(generated)j Fz(C)18 b FK(-a)q(lgebra)44 b([)2166 3343 y SDict begin H.S end 2166 3343 a 0 TeXcolorgray FK(23)p 0 TeXcolorgray 2257 3284 a SDict begin H.R end 2257 3284 a 2257 3343 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.LuMa) cvn H.B /ANN pdfmark end 2257 3343 a FK(].)67 b(Hence)40 b(there)f(exists)f(a)i(collection)125 3451 y FD(\015)172 3465 y FJ(1)211 3451 y FD(;)15 b(:)g(:)g(:)i(;)e (\015)460 3465 y Fx(a)543 3451 y FK(of)41 b(elemen)m(ts)h(of)f(\000)g (suc)m(h)f(that)i FD(\037)1732 3465 y Fx(\032)1813 3451 y FK(is)e(determined)g(b)m(y)h FD(\037)2595 3465 y Fx(\032)2635 3451 y FK(\()p FD(\015)2717 3465 y FJ(1)2757 3451 y FK(\))p FD(;)15 b(:)g(:)g(:)i(;)e(\037)3051 3465 y Fx(\032)3092 3451 y FK(\()p FD(\015)3174 3465 y Fx(a)3216 3451 y FK(\),)44 b(for)d(an)m(y)125 3559 y FD(\032)p FK(.)61 b(Suc)m(h)36 b(a)i(collection)f(giv)m(es)g(a)h(map)47 b(\026)-55 b FD(\037)36 b FK(:)h FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\))38 b FC(!)e Fz(C)2187 3526 y Fx(a)2235 3559 y FK(,)49 b(\026)-55 b FD(\037)p FK(\()p FD(\032)p FK(\))37 b(=)f(\()p FD(\037)2709 3573 y Fx(\032)2750 3559 y FK(\()p FD(\015)2832 3573 y FJ(1)2872 3559 y FK(\))p FD(;)15 b(:)g(:)g(:)i(;)e(\037)3166 3573 y Fx(\032)3206 3559 y FK(\()p FD(\015)3288 3573 y Fx(a)3330 3559 y FK(\)\),)40 b(and)125 3666 y FB(X)p FK(\(\000)p FD(;)15 b(G)p FK(\))459 3641 y FC(\030)459 3671 y FK(=)571 3666 y(\026)-56 b FD(\037)p FK(\()p FD(R)q FK(\(\000)p FD(;)15 b(G)p FK(\)\).)51 b(This)32 b(endo)m(ws)h FB(X)p FK(\(\000)p FD(;)15 b(G)p FK(\))35 b(with)d(the)h(structure)g (of)g(an)g(algebraic)g(v)-5 b(ariet)m(y)d(,)125 3774 y(whic)m(h)29 b(is)g(indep)s(enden)m(t)f(of)j(the)f(c)m(hosen)h (collection.)41 b(The)29 b(natural)h(algebraic)g(map)1477 3956 y FB(M)p FK(\(\000)p FD(;)15 b(G)p FK(\))28 b FC(!)d FB(X)p FK(\(\000)p FD(;)15 b(G)p FK(\))125 4137 y(is)30 b(an)i(isomorphism)d(for)i FD(G)d FK(=)g(SL)1323 4151 y Fx(r)1361 4137 y FK(\()p Fz(C)18 b FK(\),)39 b(see)32 b([)1728 4137 y SDict begin H.S end 1728 4137 a 0 TeXcolorgray FK(23)p 0 TeXcolorgray 1819 4078 a SDict begin H.R end 1819 4078 a 1819 4137 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.LuMa) cvn H.B /ANN pdfmark end 1819 4137 a FK(,)g(Chapter)g(1].)45 b(This)30 b(is)h(the)h(same)g(as)g(to)g (sa)m(y)h(that)125 4246 y FD(B)c FK(=)c FD(A)387 4213 y Fx(G)447 4246 y FK(,)30 b(that)h(is,)f(the)g(ring)f(of)i(in)m(v)-5 b(arian)m(t)29 b(p)s(olynomials)f(is)h(generated)j(b)m(y)e(c)m (haracters.)42 b(Ho)m(w)m(ev)m(er,)125 4354 y(for)30 b(other)i(reductiv)m(e)e(groups)h(this)f(map)g(ma)m(y)i(not)f(b)s(e)f (an)h(isomorphism,)e(as)i(for)g FD(G)c FK(=)f(SO)3309 4368 y FJ(2)3348 4354 y FK(\()p Fz(C)18 b FK(\))37 b([)3540 4354 y SDict begin H.S end 3540 4354 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 3586 4295 a SDict begin H.R end 3586 4295 a 3586 4354 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Florentino-Lawton:2012) cvn H.B /ANN pdfmark end 3586 4354 a FK(,)125 4462 y(App)s(endix)27 b(A].)k(F)-8 b(or)31 b(a)g(general)f(discussion)e (on)i(this)g(issue,)f(see)i([)2387 4462 y SDict begin H.S end 2387 4462 a 0 TeXcolorgray FK(21)p 0 TeXcolorgray 2478 4403 a SDict begin H.R end 2478 4403 a 2478 4462 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Lawton-Sikora:2019) cvn H.B /ANN pdfmark end 2478 4462 a FK(].)125 4609 y SDict begin H.S end 125 4609 a 125 4609 a SDict begin 13 H.A end 125 4609 a 125 4609 a SDict begin [/View [/XYZ H.V]/Dest (subsection.2.1) cvn /DEST pdfmark end 125 4609 a 121 x FK(2.1.)46 b FL(The)32 b(semi-simple)e(\014ltration.)45 b FK(Throughout)26 b(this)h(section,)h(w)m(e)g(will)d(\014x)i FD(G)e FK(=)g(SL)3291 4744 y Fx(r)3329 4730 y FK(\()p FD(k)s FK(\),)k(for)125 4838 y(a)35 b(\014xed)f FD(r)g(>)e FK(0)k(and)e FD(k)j FK(an)e(algebraically)e(closed)i(\014eld)e(of)i(zero)g(c)m (haracteristic,)i(and)d(\000)g(a)h(\014nitely)125 4946 y(generated)e(group.)45 b(The)32 b(conjugacy)g(action)h(of)f(SL)1941 4960 y Fx(r)1978 4946 y FK(\()p FD(k)s FK(\))h(on)f FD(R)q FK(\(\000)p FD(;)15 b FK(SL)2569 4960 y Fx(r)2607 4946 y FK(\()p FD(k)s FK(\)\))33 b(extends)f(to)h(an)f(action)125 5054 y(of)41 b(GL)368 5068 y Fx(r)406 5054 y FK(\()p FD(k)s FK(\).)75 b(Moreo)m(v)m(er,)47 b(in)41 b(order)g(to)i(shorten)e (the)h(notation,)j(when)c(the)h(underlying)d(\014eld)h(is)125 5162 y(understo)s(o)s(d)28 b(w)m(e)j(will)d(denote)j(SL)1306 5176 y Fx(r)1369 5162 y FK(=)25 b(SL)1572 5176 y Fx(r)1610 5162 y FK(\()p FD(k)s FK(\))31 b(and)f(GL)2066 5176 y Fx(r)2130 5162 y FK(=)25 b(GL)2354 5176 y Fx(r)2392 5162 y FK(\()p FD(k)s FK(\).)224 5305 y(A)h(v)m(ery)f(imp)s(ortan)m(t)g (feature)g(of)h(represen)m(tations)f(\(indeed,)g(of)h(ob)5 b(jects)26 b(of)f(an)g(ab)s(elian)f(category\))125 5413 y(is)29 b(that)i(they)f(ha)m(v)m(e)i(attac)m(hed)g(a)f(canonical)f (\014ltration,)f(called)h(the)g(semi-simple)e(\014ltration.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 7 7 TeXDict begin HPSdict begin 7 6 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.7) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)560 b(7)p 0 TeXcolorgray 125 266 a SDict begin H.S end 125 266 a 125 266 a SDict begin 13 H.A end 125 266 a 125 266 a SDict begin [/View [/XYZ H.V]/Dest (theorem.2.2) cvn /DEST pdfmark end 125 266 a 0 TeXcolorgray FL(Prop)s(osition)40 b(2.2.)p 0 TeXcolorgray 45 w Fp(L)-5 b(et)36 b FD(V)57 b Fp(b)-5 b(e)36 b(a)h(r)-5 b(epr)g(esentation)39 b(of)d FK(\000)p Fp(.)53 b(Ther)-5 b(e)37 b(exists)f(an)h(unique)f(\014ltr)-5 b(ation)38 b(of)125 374 y FK(\000)p Fp(-mo)-5 b(dules)1095 501 y FK(0)26 b(=)f FD(V)1315 515 y FJ(0)1380 501 y FC(\032)g FD(V)1529 515 y FJ(1)1593 501 y FC(\032)g FD(:)15 b(:)g(:)27 b FC(\032)e FD(V)1970 515 y Fx(i)2023 501 y FC(\032)g FD(:)15 b(:)g(:)26 b FC(\032)f FD(V)2399 515 y Fx(s)2461 501 y FK(=)g FD(V)5 b(;)125 648 y Fp(such)32 b(that)i FK(Gr)624 662 y Fx(i)652 648 y FK(\()p FD(V)740 662 y Fs(\017)780 648 y FK(\))26 b(=)f FD(V)990 662 y Fx(i)1018 648 y FD(=V)1116 662 y Fx(i)p Fs(\000)p FJ(1)1267 648 y Fp(is)33 b(a)g(maximal)h(semi-simple)f(subr)-5 b(epr)g(esentation)36 b(of)c FD(V)10 b(=V)3296 662 y Fx(i)p Fs(\000)p FJ(1)3415 648 y Fp(.)p 0 TeXcolorgray 125 867 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(The)36 b(existence)g(is)f(trivial,)g(just)h(tak) m(e)h FD(V)1830 881 y FJ(1)1904 867 y FC(\032)d FD(V)56 b FK(to)36 b(b)s(e)g(a)g(maximal)e(semi-simple)g(subrep-)125 975 y(resen)m(tation)j(and)f(rep)s(eat)h(inductiv)m(ely)d(on)j FD(V)10 b(=V)1836 989 y FJ(1)1876 975 y FK(.)60 b(F)-8 b(or)37 b(the)g(uniqueness,)f(supp)s(ose)g(that)h FD(V)3389 989 y Fs(\017)3465 975 y FK(and)125 1083 y FD(V)198 1050 y Fs(0)178 1105 y(\017)257 1083 y FK(are)e(t)m(w)m(o)i(suc)m(h)e (\014ltrations.)55 b(Then,)36 b(w)m(e)g(m)m(ust)g(ha)m(v)m(e)g FD(V)2172 1097 y FJ(1)2246 1083 y FK(=)d FD(V)2423 1050 y Fs(0)2403 1107 y FJ(1)2482 1083 y FK(and)i(w)m(orking)g(inductiv)m (ely)e(the)125 1191 y(result)27 b(follo)m(ws.)39 b(Indeed,)27 b(write)h FD(V)1311 1205 y FJ(1)1375 1191 y FK(=)d FD(W)1557 1205 y FJ(1)1612 1191 y FC(\010)16 b FD(:)f(:)g(:)h FC(\010)f FD(W)1992 1205 y Fx(s)2057 1191 y FK(and)28 b FD(V)2305 1158 y Fs(0)2285 1215 y FJ(1)2353 1191 y FK(=)d FD(W)2548 1158 y Fs(0)2535 1215 y FJ(1)2590 1191 y FC(\010)15 b FD(:)g(:)g(:)i FC(\010)e FD(W)2983 1158 y Fs(0)2970 1219 y Fx(s)3003 1200 y Fr(0)3029 1191 y FK(.)40 b(Reordering)27 b(if)125 1299 y(necessary)-8 b(,)30 b(supp)s(ose)e(that)h FD(W)1166 1313 y Fx(j)1228 1299 y FK(=)c FD(W)1423 1266 y Fs(0)1410 1324 y Fx(j)1475 1299 y FK(for)k FD(j)i FK(=)25 b(1)p FD(;)15 b FK(2)p FD(;)g(:)g(:)g(:)j(;)d(t)p FK(,)30 b(and)f FD(V)2427 1313 y FJ(1)2484 1299 y FC(\\)17 b FD(V)2635 1266 y Fs(0)2615 1323 y FJ(1)2684 1299 y FK(=)25 b FD(W)2866 1313 y FJ(1)2923 1299 y FC(\010)17 b FD(:)e(:)g(:)k FC(\010)f FD(W)3310 1313 y Fx(t)3339 1299 y FK(.)40 b(Then)125 1415 y FD(W)211 1429 y FJ(1)263 1415 y FC(\010)13 b FD(:)i(:)g(:)f FC(\010)f FD(W)636 1429 y Fx(t)678 1415 y FC(\010)g FD(W)848 1429 y Fx(t)p FJ(+1)980 1415 y FC(\010)g FD(:)i(:)g(:)f FC(\010)f FD(W)1353 1429 y Fx(s)1403 1415 y FC(\010)g FD(W)1586 1382 y Fs(0)1573 1440 y Fx(t)p FJ(+1)1705 1415 y FC(\010)g FD(:)i(:)g(:)f FC(\010)f FD(W)2091 1382 y Fs(0)2078 1443 y Fx(s)2111 1424 y Fr(0)2163 1415 y FK(is)26 b(a)h(semi-simple)e(subrepresen)m(tation)g(of)125 1525 y FD(V)52 b FK(\(the)32 b(sum)f(is)g(direct\))h(con)m(taining)g FD(V)1502 1539 y FJ(1)1541 1525 y FK(.)46 b(By)32 b(maximalit)m(y)-8 b(,)32 b(it)g(is)f(equal)h(to)g FD(V)2846 1539 y FJ(1)2886 1525 y FK(,)h(hence)f FD(s)27 b FK(=)h FD(s)3410 1492 y Fs(0)3465 1525 y FK(and)125 1633 y FD(V)178 1647 y FJ(1)242 1633 y FK(=)d FD(V)411 1600 y Fs(0)391 1657 y FJ(1)435 1633 y FK(.)3081 b Fo(\003)224 1852 y FK(No)m(w,)37 b(let)e FD(V)55 b FK(b)s(e)34 b(a)i(\000-represen)m(tation)f(and)f(let) h FD(V)1971 1866 y Fs(\017)2045 1852 y FK(b)s(e)f(its)h(semi-simple)d (\014ltration.)53 b(W)-8 b(rite)35 b(the)125 1960 y(graded)30 b(pieces)g(in)m(to)g(its)g(isot)m(ypic)g(comp)s(onen)m(ts)125 2197 y(\(3\))1435 2197 y SDict begin H.S end 1435 2197 a 1435 2197 a SDict begin 13 H.A end 1435 2197 a 1435 2197 a SDict begin [/View [/XYZ H.V]/Dest (equation.2.3) cvn /DEST pdfmark end 1435 2197 a 15 w FK(Gr)1557 2211 y Fx(i)1585 2197 y FK(\()p FD(V)1673 2211 y Fs(\017)1713 2197 y FK(\))1774 2172 y FC(\030)1774 2201 y FK(=)1909 2081 y Fx(s)1942 2091 y Fq(i)1870 2110 y Ft(M)1877 2306 y Fx(j)t FJ(=1)2022 2197 y FD(W)2121 2145 y Fx(m)2183 2155 y Fq(i;j)2108 2224 y Fx(i;j)2276 2197 y FD(;)125 2457 y FK(with)38 b FD(W)427 2471 y Fx(i;)p FJ(1)510 2457 y FD(;)15 b(:)g(:)g(:)i(;)e(W)798 2471 y Fx(i;s)875 2481 y Fq(i)945 2457 y FK(non-isomorphic)38 b(represen)m(tations.)70 b(These)40 b(are)h(called)e Fp(isotypic)k(c)-5 b(omp)g(o-)125 2564 y(nents)38 b FK(and)30 b FD(m)631 2578 y Fx(i;j)742 2564 y FK(is)f(their)h(m)m(ultiplicities.)38 b(F)-8 b(rom)31 b(this)f(information,)f(w)m(e)i(can)g(de\014ne)f(the)h Fp(shap)-5 b(e)39 b FK(of)125 2672 y(the)30 b(represen)m(tation)h(as)f (the)h(tuple)840 2860 y FD(\030)e FK(=)1005 2760 y Ft(\020)1075 2860 y FC(f)p FK(\(dim)14 b FD(W)1408 2874 y FJ(1)p Fx(;)p FJ(1)1502 2860 y FD(;)h(m)1622 2874 y FJ(1)p Fx(;)p FJ(1)1717 2860 y FK(\))p FD(;)g(:)g(:)g(:)i(;)e FK(\(dim)f FD(W)2242 2874 y FJ(1)p Fx(;r)2329 2883 y FG(1)2368 2860 y FD(;)h(m)2488 2874 y FJ(1)p Fx(;r)2575 2883 y FG(1)2613 2860 y FK(\))p FC(g)h FD(;)f(:)g(:)g(:)i(;)1081 3059 y FC(f)p FK(\(dim)d FD(W)1414 3073 y Fx(s;)p FJ(1)1506 3059 y FD(;)h(m)1626 3073 y Fx(s;)p FJ(1)1718 3059 y FK(\))p FD(;)g(:)g(:)g(:)i(;)e FK(\(dim)f FD(W)2243 3073 y Fx(s;r)2328 3081 y Fq(s)2365 3059 y FD(;)h(m)2485 3073 y Fx(s;r)2570 3081 y Fq(s)2606 3059 y FK(\)\))p FC(g)2738 2958 y Ft(\021)2792 3059 y FD(:)125 3247 y FK(Moreo)m(v)m(er,)34 b(w)m(e)e(can)g(add)f(sp)s (ectral)g(information)f(to)j(the)e(shap)s(e.)44 b(F)-8 b(or)33 b(eac)m(h)g FD(\015)f FC(2)27 b FK(\000,)32 b(w)m(e)g(denote)g (b)m(y)125 3355 y FD(\033)177 3369 y Fx(i;j)257 3355 y FK(\()p FD(\015)5 b FK(\))26 b(=)501 3282 y Ft(\010)554 3355 y FD(\017)591 3315 y Fx(n)634 3324 y FG(1)591 3382 y Fx(i;j;)p FJ(1)722 3355 y FD(;)15 b(:)g(:)g(:)h(;)f(\017)960 3312 y Fx(n)1003 3324 y Fq(l)960 3385 y Fx(i;j;l)1078 3282 y Ft(\011)1160 3355 y FK(the)28 b Fp(c)-5 b(ol)5 b(le)-5 b(ction)33 b(of)e(eigenvalues)k FK(\(as)29 b(a)g(m)m(ultiset)f (with)f(m)m(ultiplicities,)125 3474 y(where)33 b(the)h(exp)s(onen)m(t)g (means)f(the)h(n)m(um)m(b)s(er)f(of)h(times)f(that)h(the)g(eigen)m(v)-5 b(alue)34 b(is)f(rep)s(eated\))h(of)g(the)125 3582 y(action)c(of)h FD(\015)k FK(on)30 b FD(W)795 3596 y Fx(i;j)875 3582 y FK(.)41 b(This)29 b(giv)m(es)1549 3710 y FD(\033)g FK(=)c(\()p FD(\033)1813 3724 y Fx(i;j)1893 3710 y FK(\()p FD(\015)5 b FK(\)\))2050 3724 y Fx(\015)t Fs(2)p FJ(\000)125 3856 y FK(and)29 b(the)i(pair)1677 3984 y FD(\034)36 b FK(=)24 b(\()p FD(\030)t(;)15 b(\033)s FK(\))125 4130 y(will)27 b(b)s(e)j(called)g(the)g Fp(typ)-5 b(e)38 b FK(of)31 b(the)f(represen)m(tation.)224 4274 y(In)e(suc)m(h)f(manner,)h (the)h(t)m(yp)s(es)f(of)g(the)h(represen)m(tations)f(induce)f(a)h (decomp)s(osition)f(of)h(the)h(repre-)125 4382 y(sen)m(tation)h(v)-5 b(ariet)m(y)31 b(as)125 4561 y(\(4\))1450 4561 y SDict begin H.S end 1450 4561 a 1450 4561 a SDict begin 13 H.A end 1450 4561 a 1450 4561 a SDict begin [/View [/XYZ H.V]/Dest (equation.2.4) cvn /DEST pdfmark end 1450 4561 a FD(R)q FK(\(\000)p FD(;)15 b FK(SL)1760 4575 y Fx(r)1798 4561 y FK(\))25 b(=)1954 4474 y Ft(G)1985 4665 y Fx(\034)2070 4561 y FD(R)q FK(\()p FD(\034)10 b FK(\))p FD(;)125 4808 y FK(where)28 b FD(R)q FK(\()p FD(\034)10 b FK(\))30 b(is)e(the)i(set)f(of)h(\000-represen)m(tations)f(of)h(t)m(yp)s(e)f FD(\034)10 b FK(.)40 b(Observ)m(e)29 b(that)h(this)e(decomp)s(osition)g (is)125 4916 y(compatible)h(with)g(the)i(action)g(of)f(GL)1457 4930 y Fx(r)1525 4916 y FK(b)m(y)h(conjugation.)125 5089 y SDict begin H.S end 125 5089 a 125 5089 a SDict begin 13 H.A end 125 5089 a 125 5089 a SDict begin [/View [/XYZ H.V]/Dest (theorem.2.3) cvn /DEST pdfmark end 125 5089 a 0 TeXcolorgray FL(Remark)38 b(2.3.)p 0 TeXcolorgray 44 w FK(The)33 b(semi-simple)f(represen)m(tations)i(are)g(the)g (represen)m(tations)g(whose)g(t)m(yp)s(e)g(has)125 5197 y(a)42 b(single)f(step,)k(i.e.)d FD(s)j FK(=)f(1.)77 b(F)-8 b(urthermore,)45 b(the)d(irreducible)d(represen)m(tations)j (corresp)s(ond)f(to)125 5305 y(the)g(shap)s(e)g FD(\030)47 b FK(=)d(\()p FC(f)q FK(\()p FD(r)m(;)15 b FK(1\))p FC(g)r FK(\),)45 b(that)d(is)e(those)i(whose)g(only)e(graded)h(piece)h(has)f (a)h(single)e(isot)m(ypic)125 5413 y(comp)s(onen)m(t)30 b(of)h(m)m(ultiplicit)m(y)c(1.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 8 8 TeXDict begin HPSdict begin 8 7 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.8) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(8)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 183 a SDict begin H.S end 125 183 a 125 183 a SDict begin 13 H.A end 125 183 a 125 183 a SDict begin [/View [/XYZ H.V]/Dest (subsection.2.2) cvn /DEST pdfmark end 125 183 a 83 x FK(2.2.)46 b FL(Grothendiec)m(k)i(ring)e(of)h(v)-6 b(arieties.)45 b FK(Let)c FC(V)7 b FD(ar)2111 281 y Fx(k)2194 266 y FK(b)s(e)40 b(the)h(category)h(of)e(quasi-pro)5 b(jectiv)m(e)125 374 y(v)-5 b(arieties)39 b(o)m(v)m(er)i FD(k)s FK(.)70 b(W)-8 b(e)41 b(denote)g(b)m(y)f FD(K)7 b FK(\()p FC(V)g FD(ar)1716 389 y Fx(k)1759 374 y FK(\))40 b(the)g Fp(Gr)-5 b(othendie)g(ck)44 b(ring)k FK(of)40 b FC(V)7 b FD(ar)3029 389 y Fx(k)3072 374 y FK(.)70 b(This)38 b(is)h(the)125 482 y(ab)s(elian)c(group)i(generated)i(b)m(y)e(elemen)m (ts)h([)p FD(Z)7 b FK(],)40 b(for)d FD(Z)44 b FC(2)36 b(V)7 b FD(ar)2331 497 y Fx(k)2374 482 y FK(,)40 b(sub)5 b(ject)37 b(to)h(the)g(relation)f([)p FD(Z)7 b FK(])37 b(=)125 589 y([)p FD(Z)212 603 y FJ(1)251 589 y FK(])22 b(+)f([)p FD(Z)477 603 y FJ(2)517 589 y FK(])33 b(whenev)m(er)f FD(Z)39 b FK(can)33 b(b)s(e)f(decomp)s(osed)g(as)h(a)g(disjoin)m(t)d (union)h FD(Z)k FK(=)29 b FD(Z)2913 603 y FJ(1)2974 589 y FC(t)21 b FD(Z)3118 603 y FJ(2)3190 589 y FK(of)33 b(a)g(closed)125 697 y(and)28 b(a)i(Zariski)d(op)s(en)i(subset.)39 b(The)29 b(elemen)m(t)h([)p FD(Z)7 b FK(])29 b(in)f FC(V)7 b FD(ar)2133 712 y Fx(k)2205 697 y FK(asso)s(ciated)30 b(to)g(a)g(v)-5 b(ariet)m(y)29 b FD(Z)36 b FK(is)29 b(called)f(a)125 805 y Fp(motive)p FK(.)224 949 y(There)34 b(is)f(a)i(naturally)e (de\014ned)g(pro)s(duct)g(in)g FD(K)7 b FK(\()p FC(V)g FD(ar)2105 964 y Fx(k)2148 949 y FK(\))34 b(giv)m(en)g(b)m(y)h([)p FD(Y)20 b FK(])j FC(\001)g FK([)p FD(Z)7 b FK(])32 b(=)f([)p FD(Y)43 b FC(\002)23 b FD(Z)7 b FK(].)52 b(Note)125 1057 y(that)28 b(if)g FD(\031)g FK(:)e FD(Z)31 b FC(!)25 b FD(Y)49 b FK(is)27 b(an)h(algebraic)g(\014b)s(er)f(bundle)f(with)h (\014b)s(er)g FD(F)13 b FK(,)29 b(whic)m(h)e(is)g(lo)s(cally)g(trivial) f(in)h(the)125 1165 y(Zariski)h(top)s(ology)-8 b(,)31 b(then)f([)p FD(Z)7 b FK(])26 b(=)f([)p FD(F)13 b FK(])20 b FC(\001)h FK([)p FD(Y)f FK(].)224 1308 y(W)-8 b(e)37 b(denote)e(b)m(y)g FD(q)h FK(=)d([)p FD(k)s FK(])j(the)g Fp(L)-5 b(efschetz)37 b(motive)43 b FK(in)34 b FD(K)7 b FK(\()p FC(V)g FD(ar)2373 1323 y Fx(k)2415 1308 y FK(\).)56 b(W)-8 b(e)36 b(ha)m(v)m(e)h(cases)f(that)g(will)c(b)s(e)125 1416 y(used)d(later)h(on:)p 0 TeXcolorgray 340 1593 a FC(\017)p 0 TeXcolorgray 42 w FK([)p FD(k)502 1560 y Fx(r)541 1593 y FK(])25 b(=)g FD(q)731 1560 y Fx(r)769 1593 y FK(,)p 0 TeXcolorgray 340 1701 a FC(\017)p 0 TeXcolorgray 42 w FK([GL)581 1715 y Fx(r)619 1701 y FK(])g(=)g(\()p FD(q)844 1668 y Fx(r)902 1701 y FC(\000)20 b FK(1\)\()p FD(q)1152 1668 y Fx(r)1212 1701 y FC(\000)f FD(q)s FK(\))c FC(\001)g(\001)g(\001)i FK(\()p FD(q)1597 1668 y Fx(r)1655 1701 y FC(\000)j FD(q)1790 1668 y Fx(r)r Fs(\000)p FJ(1)1918 1701 y FK(\),)p 0 TeXcolorgray 340 1809 a FC(\017)p 0 TeXcolorgray 42 w FK([SL)560 1823 y Fx(r)598 1809 y FK(])25 b(=)g([PGL)960 1823 y Fx(r)998 1809 y FK(])g(=)g(\()p FD(q)1223 1776 y Fx(r)1281 1809 y FC(\000)20 b FK(1\)\()p FD(q)1531 1776 y Fx(r)1590 1809 y FC(\000)g FD(q)s FK(\))15 b FC(\001)g(\001)g(\001)i FK(\()p FD(q)1976 1776 y Fx(r)2034 1809 y FC(\000)j FD(q)2169 1776 y Fx(r)r Fs(\000)p FJ(2)2297 1809 y FK(\))p FD(q)2376 1776 y Fx(r)r Fs(\000)p FJ(1)2504 1809 y FK(.)125 1990 y SDict begin H.S end 125 1990 a 125 1990 a SDict begin 13 H.A end 125 1990 a 125 1990 a SDict begin [/View [/XYZ H.V]/Dest (section.3) cvn /DEST pdfmark end 125 1990 a 859 2111 a FK(3.)46 b FE(Represent)-6 b(a)g(tion)31 b(v)-8 b(arieties)34 b(of)f(tor)n(us)g(knots)224 2308 y FK(Let)f FD(T)454 2275 y FJ(2)519 2308 y FK(=)26 b FD(S)677 2275 y FJ(1)738 2308 y FC(\002)20 b FD(S)890 2275 y FJ(1)960 2308 y FK(b)s(e)31 b(the)g(2-torus)h(and)e(consider)g (the)h(standard)g(em)m(b)s(edding)e FD(T)3148 2275 y FJ(2)3214 2308 y FC(\032)d FD(S)3372 2275 y FJ(3)3411 2308 y FK(.)43 b(Let)125 2416 y FD(n;)15 b(m)29 b FK(b)s(e)g(a)h(pair)e (of)i(coprime)f(p)s(ositiv)m(e)f(in)m(tegers.)41 b(Iden)m(tifying)28 b FD(T)2391 2383 y FJ(2)2460 2416 y FK(with)g(the)i(quotien)m(t)g Fz(R)3239 2383 y FJ(2)3285 2416 y FD(=)p Fz(Z)3395 2383 y FJ(2)3430 2416 y FK(,)g(the)125 2524 y(image)h(of)g(the)g(straigh)m (t)g(line)e FD(y)g FK(=)1349 2488 y Fx(n)p 1339 2503 63 4 v 1339 2555 a(m)1412 2524 y FD(x)h FK(in)g FD(T)1667 2491 y FJ(2)1737 2524 y FK(de\014nes)g(the)h Fp(torus)j(knot)40 b FK(of)31 b(t)m(yp)s(e)h(\()p FD(n;)15 b(m)p FK(\),)31 b(whic)m(h)f(w)m(e)125 2639 y(shall)24 b(denote)j(as)g FD(K)807 2653 y Fx(n;m)961 2639 y FC(\032)e FD(S)1118 2606 y FJ(3)1184 2639 y FK(\(see)i([)1387 2639 y SDict begin H.S end 1387 2639 a 0 TeXcolorgray FK(29)p 0 TeXcolorgray 1479 2581 a SDict begin H.R end 1479 2581 a 1479 2639 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Rolfsen) cvn H.B /ANN pdfmark end 1479 2639 a FK(,)g(Chapter)f(3]\).)40 b(It)27 b(is)e(kno)m(wn)h(that)h(the)g(fundamen)m(tal)e(group)125 2747 y(of)30 b(the)h(exterior)f(of)h(the)f(torus)g(knot)h(is)125 2922 y(\(5\))1036 2922 y SDict begin H.S end 1036 2922 a 1036 2922 a SDict begin 13 H.A end 1036 2922 a 1036 2922 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.5) cvn /DEST pdfmark end 1036 2922 a FK(\000)1093 2936 y Fx(n;m)1247 2922 y FK(=)25 b FD(\031)1395 2936 y FJ(1)1434 2922 y FK(\()p FD(S)1530 2885 y FJ(3)1590 2922 y FC(\000)20 b FD(K)1758 2936 y Fx(n;m)1887 2922 y FK(\))1948 2897 y FC(\030)1948 2926 y FK(=)2044 2922 y FC(h)p FD(x;)15 b(y)j FC(j)d FD(x)2326 2885 y Fx(n)2399 2922 y FK(=)25 b FD(y)2543 2885 y Fx(m)2624 2922 y FC(i)15 b FD(:)224 3133 y FK(The)30 b(aim)g(of)h(this)f(pap)s(er)f(is)h(to)h(describ)s(e)e (the)i(represen)m(tation)g(v)-5 b(ariet)m(y)31 b FD(R)q FK(\(\000)2895 3147 y Fx(m;n)3024 3133 y FD(;)15 b FK(SL)3172 3147 y Fx(r)3210 3133 y FK(\()p FD(k)s FK(\)\),)32 b(for)e FD(k)125 3241 y FK(an)g(algebraically)f(closed)h(\014eld)f(of)i(zero)g (c)m(haracteristic.)41 b(W)-8 b(e)32 b(in)m(tro)s(duce)d(the)i (notation)125 3415 y(\(6\))1481 3415 y SDict begin H.S end 1481 3415 a 1481 3415 a SDict begin 13 H.A end 1481 3415 a 1481 3415 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.6) cvn /DEST pdfmark end 1481 3415 a FC(R)1558 3429 y Fx(r)1622 3415 y FK(=)25 b FD(R)q FK(\(\000)1880 3429 y Fx(n;m)2008 3415 y FD(;)15 b FK(SL)2156 3429 y Fx(r)2194 3415 y FK(\))p FD(;)125 3590 y FK(dropping)22 b(the)k(reference)f(to)h FD(n;)15 b(m)p FK(.)39 b(Clearly)23 b FC(R)1763 3604 y FJ(1)1828 3590 y FK(consists)h(of)h(one)h(p)s(oin)m (t.)38 b(W)-8 b(e)26 b(will)c(denote)k(the)f(irre-)125 3698 y(ducible)h(and)j(reducible)e(sub)m(v)-5 b(arieties)27 b(of)j(represen)m(tations)f(b)m(y)f FC(R)2422 3665 y FJ(irr)2422 3721 y Fx(r)2530 3698 y FK(and)h FC(R)2783 3665 y FJ(red)2783 3721 y Fx(r)2885 3698 y FK(.)40 b(A)29 b(represen)m(tation)125 3806 y FD(\032)c FK(:)g(\000)304 3820 y Fx(m;n)458 3806 y FC(!)h FK(SL)682 3820 y Fx(r)750 3806 y FK(is)k(completely)g(determined)f(b)m(y)h(a)h(pair)e(of)h (matrices)h(\()p FD(A;)15 b(B)5 b FK(\))26 b(=)f(\()p FD(\032)p FK(\()p FD(x)p FK(\))p FD(;)15 b(\032)p FK(\()p FD(y)s FK(\)\).)125 3989 y SDict begin H.S end 125 3989 a 125 3989 a SDict begin 13 H.A end 125 3989 a 125 3989 a SDict begin [/View [/XYZ H.V]/Dest (theorem.3.1) cvn /DEST pdfmark end 125 3989 a 0 TeXcolorgray FL(Lemma)35 b(3.1.)p 0 TeXcolorgray 44 w Fp(Supp)-5 b(ose)37 b(that)f FD(\032)30 b FK(=)f(\()p FD(A;)15 b(B)5 b FK(\))31 b FC(2)e(R)1868 3956 y FJ(irr)1868 4012 y Fx(r)1947 3989 y Fp(.)49 b(Then)35 b FD(A)2331 3956 y Fx(n)2408 3989 y FK(=)30 b FD(B)2583 3956 y Fx(m)2678 3989 y FK(=)g FD($)18 b FK(Id)o Fp(,)36 b(for)f(some)h FD($)i Fp(an)125 4097 y FD(r)s Fp(-th)32 b(r)-5 b(o)g(ot)34 b(of)f(unit.)p 0 TeXcolorgray 125 4329 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Set)38 b FD(P)50 b FK(=)36 b FD(A)852 4296 y Fx(n)936 4329 y FK(=)g FD(B)1117 4296 y Fx(m)1183 4329 y FK(.)61 b(W)-8 b(e)39 b(ha)m(v)m(e)f(that)g FD(P)13 b(A)37 b FK(=)f FD(AP)51 b FK(and)36 b FD(P)13 b(B)41 b FK(=)c FD(B)5 b(P)13 b FK(,)38 b(so)g FD(P)3183 4296 y Fs(\000)p FJ(1)3277 4329 y FD(\032P)50 b FK(=)36 b FD(\032)p FK(.)125 4437 y(Th)m(us,)44 b FD(P)55 b FK(is)41 b(a)i(\000-equiv)-5 b(arian)m(t)41 b(automorphism)g(of)h FD(\032)g FK(whic)m(h,)j(b)m(y)d(Sc)m(h)m(ur)f(lemma,)k(implies)40 b(that)125 4545 y FD(P)e FK(=)25 b FD($)18 b FK(Id)29 b(for)h(some)h FD($)d FC(2)d FD(k)1129 4512 y Fs(\003)1169 4545 y FK(.)40 b(If)30 b(\()p FD(A;)15 b(B)5 b FK(\))26 b FC(2)f(R)1766 4559 y Fx(r)1804 4545 y FK(,)31 b(w)m(e)g(m)m(ust)f(ha) m(v)m(e)i FD($)2507 4512 y Fx(r)2570 4545 y FK(=)25 b(det\()p FD($)18 b FK(Id)o(\))26 b(=)f(1.)311 b Fo(\003)224 4776 y FK(W)-8 b(e)32 b(denote)f(b)m(y)f FD(\026)855 4790 y Fx(r)923 4776 y FK(the)h(set)f(of)h FD(r)s FK(-th)f(ro)s(ots)h(of)f (unit)m(y)-8 b(.)40 b(Giv)m(en)30 b FD($)f FC(2)24 b FD(\026)2621 4790 y Fx(r)2659 4776 y FK(,)31 b(denote)1013 4951 y FC(R)1090 4965 y Fx(r)1128 4951 y FK(\()p FD($)s FK(\))26 b(=)f FC(f)p FK(\()p FD(A;)15 b(B)5 b FK(\))27 b FC(2)d(R)1884 4965 y Fx(r)1938 4951 y FC(j)15 b FD(A)2046 4914 y Fx(n)2118 4951 y FK(=)25 b FD(B)2288 4914 y Fx(m)2380 4951 y FK(=)g FD($)18 b FK(Id)o FC(g)p FD(:)125 5126 y FK(Lemma)449 5126 y SDict begin H.S end 449 5126 a 0 TeXcolorgray FK(3.1)p 0 TeXcolorgray 565 5068 a SDict begin H.R end 565 5068 a 565 5126 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.1) cvn H.B /ANN pdfmark end 565 5126 a 30 w FK(implies)28 b(that)j(there)g(is)e(a)i(strati\014cation)f(\(in) m(to)h(disjoin)m(t)d(subsets\))125 5320 y(\(7\))1506 5320 y SDict begin H.S end 1506 5320 a 1506 5320 a SDict begin 13 H.A end 1506 5320 a 1506 5320 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.7) cvn /DEST pdfmark end 1506 5320 a FC(R)1583 5334 y Fx(r)1646 5320 y FK(=)1784 5233 y Ft(G)1742 5424 y Fx($)r Fs(2)p Fx(\026)1892 5432 y Fq(r)1942 5320 y FC(R)2019 5334 y Fx(r)2057 5320 y FK(\()p FD($)s FK(\))p FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 9 9 TeXDict begin HPSdict begin 9 8 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.9) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)560 b(9)p 0 TeXcolorgray 224 266 a FK(W)-8 b(e)30 b(also)e(in)m(tro)s(duce)f(the)h(group)g Fz(Z)1436 280 y Fx(n)1494 266 y FD(?)17 b Fz(Z)1621 280 y Fx(m)1683 266 y FK(,)29 b(its)e(represen)m(tation)i(v)-5 b(ariet)m(y)28 b FD(R)q FK(\()p Fz(Z)2922 280 y Fx(n)2981 266 y FD(?)16 b Fz(Z)3107 280 y Fx(m)3169 266 y FD(;)f FK(GL)3338 280 y Fx(r)3376 266 y FK(\),)29 b(and)125 374 y(the)h(sets)527 521 y FD(R)596 535 y Fx(r)659 521 y FK(=)25 b FD(R)825 483 y FJ(\()p Fx(\030)883 492 y FG(1)918 483 y Fx(;\030)969 492 y FG(2)1003 483 y FJ(\))824 543 y Fx(r)1060 521 y FK(=)g FC(f)p FK(\()p FD(A;)15 b(B)5 b FK(\))26 b FC(2)f FD(R)q FK(\()p Fz(Z)1735 535 y Fx(n)1798 521 y FD(?)20 b Fz(Z)1928 535 y Fx(m)1991 521 y FD(;)15 b FK(GL)2159 535 y Fx(r)2197 521 y FK(\))p FC(j)g FK(det)h FD(A)26 b FK(=)f FD(\030)2644 535 y FJ(1)2683 521 y FD(;)15 b FK(det)h FD(B)30 b FK(=)24 b FD(\030)3099 535 y FJ(2)3139 521 y FC(g)p FD(;)125 668 y FK(for)g FD(\030)298 682 y FJ(1)337 668 y FD(;)15 b(\030)417 682 y FJ(2)482 668 y FC(2)25 b FD(k)618 635 y Fs(\003)683 668 y FK(\(w)m(e)g(usually)e(drop)h FD(\030)1399 682 y FJ(1)1438 668 y FD(;)15 b(\030)1518 682 y FJ(2)1583 668 y FK(from)24 b(the)h(notation\).)40 b(If)24 b(w)m(e)i(c)m(hange)g FD(\030)2925 682 y FJ(1)2964 668 y FD(;)15 b(\030)3044 682 y FJ(2)3108 668 y FK(to)26 b FD(\030)3258 635 y Fs(0)3254 693 y FJ(1)3319 668 y FK(=)f FD(\025)3468 682 y FJ(1)3507 668 y FD(\030)3547 682 y FJ(1)3586 668 y FK(,)125 799 y FD(\030)169 766 y Fs(0)165 823 y FJ(2)229 799 y FK(=)g FD(\025)378 813 y FJ(2)417 799 y FD(\030)457 813 y FJ(2)497 799 y FK(,)30 b(where)g FD(\025)868 751 y FJ(1)p Fx(=r)868 825 y FJ(1)1002 799 y FC(2)25 b FD(\026)1143 813 y Fx(n)1189 799 y FK(,)31 b FD(\025)1298 751 y FJ(1)p Fx(=r)1298 825 y FJ(2)1432 799 y FC(2)25 b FD(\026)1573 813 y Fx(m)1639 799 y FK(,)31 b(the)f(v)-5 b(ariet)m(y)31 b FD(R)2221 813 y Fx(r)2289 799 y FK(remains)e(the)i(same)g(\(isomorphic\).)125 962 y SDict begin H.S end 125 962 a 125 962 a SDict begin 13 H.A end 125 962 a 125 962 a SDict begin [/View [/XYZ H.V]/Dest (theorem.3.2) cvn /DEST pdfmark end 125 962 a 0 TeXcolorgray FL(Prop)s(osition)36 b(3.2.)p 0 TeXcolorgray 42 w Fp(Ther)-5 b(e)33 b(is)g(an)g(isomorphism)1360 1114 y FC(R)1437 1077 y FJ(irr)1437 1137 y Fx(r)1516 1114 y FK(\()p FD($)s FK(\))1690 1089 y FC(\030)1690 1119 y FK(=)1786 1114 y FD(R)1856 1077 y FJ(irr)1855 1137 y Fx(r)1960 1114 y FC(\032)25 b FD(R)2126 1077 y FJ(\()p Fx(\030)2184 1086 y FG(1)2218 1077 y Fx(;\030)2269 1086 y FG(2)2304 1077 y FJ(\))2125 1137 y Fx(r)2350 1114 y FD(;)125 1268 y Fp(for)33 b FD(\030)310 1282 y FJ(1)374 1268 y FK(=)25 b FD($)548 1235 y Fs(\000)p Fx(r)r(=n)719 1268 y Fp(,)32 b FD(\030)819 1282 y FJ(2)884 1268 y FK(=)25 b FD($)1058 1235 y Fs(\000)p Fx(r)r(=m)1248 1268 y Fp(.)p 0 TeXcolorgray 125 1463 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Since)30 b FD(A)711 1430 y Fx(n)783 1463 y FK(=)25 b FD(B)953 1430 y Fx(m)1044 1463 y FK(=)g FD($)18 b FK(Id)o(,)31 b(if)e(w)m(e)h(\014x)g FD(n)p FK(-th)g(and)f FD(m)p FK(-th)h(ro)s(ots)h (of)f FD($)2732 1430 y Fs(\000)p FJ(1)2826 1463 y FK(,)g(denoted)g(b)m (y)g FD(\021)3395 1477 y FJ(1)3465 1463 y FK(and)125 1571 y FD(\021)170 1585 y FJ(2)244 1571 y FK(resp)s(ectiv)m(ely)-8 b(,)37 b(then)e(w)m(e)g(ha)m(v)m(e)i(that)f(\()p FD(\021)1611 1585 y FJ(1)1650 1571 y FD(A)p FK(\))1753 1538 y Fx(n)1834 1571 y FK(=)d(\()p FD(\021)2018 1585 y FJ(2)2058 1571 y FD(B)5 b FK(\))2167 1538 y Fx(m)2267 1571 y FK(=)33 b(Id)o(.)56 b(Hence,)37 b(the)f(pair)d(\()p FD(\021)3269 1585 y FJ(1)3309 1571 y FD(A;)15 b(\021)3462 1585 y FJ(2)3503 1571 y FD(B)5 b FK(\))125 1679 y(de\014nes)29 b(a)h(represen)m(tation)g (of)g FD(R)q FK(\()p Fz(Z)1365 1693 y Fx(n)1427 1679 y FD(?)19 b Fz(Z)1556 1693 y Fx(m)1619 1679 y FD(;)c FK(GL)1787 1693 y Fx(r)1825 1679 y FK(\).)41 b(No)m(w,)31 b(observ)m(e)f(that)h(det\()p FD(\021)2884 1693 y FJ(1)2924 1679 y FD(A)p FK(\))26 b(=)f FD(\021)3197 1646 y Fx(r)3194 1703 y FJ(1)3250 1679 y FK(det)q(\()p FD(A)p FK(\))h(=)125 1809 y FD(\021)173 1776 y Fx(r)170 1834 y FJ(1)251 1809 y FK(=)40 b FD(\030)402 1823 y FJ(1)441 1809 y FK(,)i(and)d(similarly)d (det\()p FD(\021)1281 1823 y FJ(2)1321 1809 y FD(B)5 b FK(\))40 b(=)g FD(\030)1621 1823 y FJ(2)1660 1809 y FK(,)i(so)e(the)f(pair)f(\()p FD(\021)2289 1823 y FJ(1)2329 1809 y FD(A;)15 b(\021)2482 1823 y FJ(2)2522 1809 y FD(B)5 b FK(\))40 b(actually)f(lies)f(in)g FD(R)3377 1761 y FJ(\()p Fx(\030)3435 1770 y FG(1)3469 1761 y Fx(;\030)3520 1770 y FG(2)3555 1761 y FJ(\))3376 1821 y Fx(r)3586 1809 y FK(.)125 1917 y(Clearly)-8 b(,)32 b(the)i(image)f(of)g(this)f (assignmen)m(t)h(\()p FD(A;)15 b(B)5 b FK(\))30 b FC(7!)g FK(\()p FD(\021)2126 1931 y FJ(1)2166 1917 y FD(A;)15 b(\021)2319 1931 y FJ(2)2359 1917 y FD(B)5 b FK(\))33 b(coincides)f(with)g(the)h(subset)f(of)125 2025 y(irreducible)27 b(represen)m(tations.)3541 2169 y Fo(\003)125 2331 y SDict begin H.S end 125 2331 a 125 2331 a SDict begin 13 H.A end 125 2331 a 125 2331 a SDict begin [/View [/XYZ H.V]/Dest (theorem.3.3) cvn /DEST pdfmark end 125 2331 a 0 TeXcolorgray FL(Corollary)36 b(3.3.)p 0 TeXcolorgray 42 w Fp(If)d FD(\032)25 b FK(=)g(\()p FD(A;)15 b(B)5 b FK(\))26 b FC(2)f(R)1500 2298 y FJ(irr)1500 2354 y Fx(r)1579 2331 y Fp(,)32 b(then)h FD(A)g Fp(and)g FD(B)k Fp(ar)-5 b(e)34 b(diagonalizable.)p 0 TeXcolorgray 125 2527 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(An)m(y)35 b(represen)m(tation)f(of)g(a)g(\014nite)g(group)f(is)g(completely)h (reducible)e(and,)i(if)g(the)g(group)f(is)125 2635 y(ab)s(elian,)28 b(the)j(irreducible)c(represen)m(tations)j(are)h(1-dimensional.)1114 b Fo(\003)125 2798 y SDict begin H.S end 125 2798 a 125 2798 a SDict begin 13 H.A end 125 2798 a 125 2798 a SDict begin [/View [/XYZ H.V]/Dest (theorem.3.4) cvn /DEST pdfmark end 125 2798 a 0 TeXcolorgray FL(Remark)25 b(3.4.)p 0 TeXcolorgray 36 w FD(A)e FK(and)f FD(B)27 b FK(are)c(diagonalizable,) g(but)f(they)h(cannot)g(b)s(e)f(diagonalizable)g(in)f(the)i(same)125 2905 y(basis.)38 b(Indeed,)26 b(they)h(cannot)g(share)g(ev)m(en)g(an)f (eigen)m(v)m(ector)j(since,)e(otherwise,)g(the)f(represen)m(tation)125 3013 y FD(\032)k FK(w)m(ould)f(b)s(e)h(reducible.)224 3212 y(By)e(Prop)s(osition)850 3212 y SDict begin H.S end 850 3212 a 0 TeXcolorgray FK(3.2)p 0 TeXcolorgray 966 3153 a SDict begin H.R end 966 3153 a 966 3212 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.2) cvn H.B /ANN pdfmark end 966 3212 a FK(,)g(w)m(e)g(fo)s(cus)e(on)h FD(R)1571 3226 y Fx(r)1609 3212 y FK(.)40 b(Observ)m(e)27 b(that)g(the)h(p)s (ossible)d(eigen)m(v)-5 b(alues)26 b(of)i(\()p FD(A;)15 b(B)5 b FK(\))26 b FC(2)125 3320 y FD(R)194 3334 y Fx(r)267 3320 y FK(form)35 b(a)h(discrete)g(set,)h(since)e FD(A)1377 3287 y Fx(n)1458 3320 y FK(=)f(Id)h(implies)e(that)j(the)g(eigen)m(v)-5 b(alues)35 b(of)h FD(A)g FK(are)g FD(n)p FK(-th)f(ro)s(ots)125 3428 y(of)g(unit)m(y)-8 b(,)35 b(and)f(similarly)e(for)i FD(B)5 b FK(.)54 b(This)33 b(allo)m(ws)h(a)h(re\014nemen)m(t)g(of)g (the)g(strati\014cation)g(of)g(\()3319 3428 y SDict begin H.S end 3319 3428 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 3364 3369 a SDict begin H.R end 3364 3369 a 3364 3428 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.2.4) cvn H.B /ANN pdfmark end 3364 3428 a FK(\).)55 b(Let)125 3554 y FD(\032)37 b FK(=)f(\()p FD(A;)15 b(B)5 b FK(\))38 b FC(2)f FD(R)773 3568 y Fx(r)848 3554 y FK(and)g(let)g Fn(\017)g FK(=)1359 3480 y Ft(\010)1412 3554 y FD(\017)1449 3513 y Fx(a)1486 3522 y FG(1)1449 3580 y FJ(1)1525 3554 y FD(;)15 b(:)g(:)g(:)i(;)e(\017)1764 3505 y Fx(a)1801 3513 y Fq(p)1764 3566 y Fx(p)1842 3480 y Ft(\011)1932 3554 y FK(and)37 b Fn(")g FK(=)2309 3480 y Ft(\010)2362 3554 y FD(")2404 3513 y Fx(b)2434 3522 y FG(1)2404 3580 y FJ(1)2474 3554 y FD(;)15 b(:)g(:)g(:)h(;)f(")2717 3505 y Fx(b)2747 3513 y Fq(q)2717 3566 y Fx(q)2787 3480 y Ft(\011)2877 3554 y FK(b)s(e)37 b(the)h(eigen)m(v)-5 b(alues)125 3662 y(of)41 b FD(A)g FK(and)g FD(B)46 b FK(resp)s(ectiv)m(ely)40 b(\(as)i(m)m(ultisets)e(with)g(rep)s (etitions\),)j(that)f(will)d(b)s(e)i(collected)g(in)f(the)125 3770 y Fp(c)-5 b(on\014gur)g(ation)34 b(of)f(eigenvalues)125 3918 y FK(\(8\))1667 3918 y SDict begin H.S end 1667 3918 a 1667 3918 a SDict begin 13 H.A end 1667 3918 a 1667 3918 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.8) cvn /DEST pdfmark end 1667 3918 a FD(\024)26 b FK(=)f(\()p Fn(\017)p FD(;)15 b Fn(")p FK(\))p FD(:)125 4065 y FK(This)28 b(implies)g(that)j FD(R)907 4079 y Fx(r)975 4065 y FK(can)g(b)s(e)e (decomp)s(osed)h(as)h(a)g(\014nite)e(disjoin)m(t)g(union)125 4226 y(\(9\))1111 4226 y SDict begin H.S end 1111 4226 a 1111 4226 a SDict begin 13 H.A end 1111 4226 a 1111 4226 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.9) cvn /DEST pdfmark end 1111 4226 a FD(R)1180 4240 y Fx(r)1243 4226 y FK(=)1339 4140 y Ft(G)1369 4330 y Fx(\024)1455 4226 y FD(R)1524 4240 y Fx(\024)1569 4226 y FD(;)107 b FK(where)60 b FD(R)2063 4240 y Fx(\024)2133 4226 y FK(=)2261 4140 y Ft(G)2229 4336 y Fx(\034)8 b Fs(2T)2354 4344 y Fq(\024)2409 4226 y FD(R)q FK(\()p FD(\034)i FK(\))p FD(:)125 4470 y FK(Here)34 b FD(R)q FK(\()p FD(\034)10 b FK(\))31 b FC(\032)f FD(R)734 4484 y Fx(r)805 4470 y FK(is,)k(as)g(in)e(\()1185 4470 y SDict begin H.S end 1185 4470 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 1231 4411 a SDict begin H.R end 1231 4411 a 1231 4470 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.2.4) cvn H.B /ANN pdfmark end 1231 4470 a FK(\),)j(the)e(collection)g(of)h(represen)m(tations)g(of) f FD(R)2808 4484 y Fx(r)2880 4470 y FK(of)g(t)m(yp)s(e)h FD(\034)41 b FK(=)30 b(\()p FD(\030)t(;)15 b(\033)s FK(\),)125 4578 y(and)29 b FC(T)351 4592 y Fx(\024)426 4578 y FK(is)g(the)i (collection)f(of)g(t)m(yp)s(es)h(whose)f(con\014guration)g(of)g(eigen)m (v)-5 b(alues)31 b FD(\033)i FK(is)c(tak)m(en)j(from)e FD(\024)p FK(.)224 4721 y(F)-8 b(rom)34 b(this)f(decomp)s(osition,)g(w) m(e)h(can)g(understand)d(the)j(virtual)e(class)h(of)h FC(R)2919 4688 y FJ(irr)2919 4744 y Fx(r)2998 4721 y FK(\()p FD($)s FK(\))d FC(\032)f FD(R)3347 4735 y Fx(r)3385 4721 y FK(.)50 b(Ob-)125 4829 y(serv)m(e)33 b(that,)g(if)f FC(T)737 4796 y Fs(\003)715 4851 y Fx(\024)806 4829 y FC(\032)c(T)955 4843 y Fx(\024)1032 4829 y FK(are)k(the)h(t)m(yp)s(es)f (whose)h(shap)s(e)e(do)s(es)h(not)h(corresp)s(ond)e(to)i(an)g (irreducible)125 4939 y(represen)m(tation,)41 b(then)d FD(R)1040 4906 y FJ(red)1039 4961 y Fx(\024)1181 4939 y FK(=)1342 4871 y Ft(F)1291 5022 y Fx(\034)8 b Fs(2T)1433 5003 y Fr(\003)1416 5039 y Fq(\024)1484 4939 y FD(R)q FK(\()p FD(\034)i FK(\))39 b(is)f(the)h(collection)f(of)h(reducible)e (represen)m(tations)h(of)125 5135 y FD(R)194 5149 y Fx(\024)238 5135 y FK(,)31 b(and)f(the)g(irreducible)d(represen)m(tations)k(are)f FD(R)1929 5102 y FJ(irr)1928 5158 y Fx(\024)2033 5135 y FK(=)25 b FD(R)2198 5149 y Fx(\024)2263 5135 y FC(\000)20 b FD(R)2424 5102 y FJ(red)2423 5158 y Fx(\024)2526 5135 y FK(.)41 b(Hence,)31 b(w)m(e)g(ha)m(v)m(e)g(that)125 5310 y(\(10\))527 5310 y SDict begin H.S end 527 5310 a 527 5310 a SDict begin 13 H.A end 527 5310 a 527 5310 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.10) cvn /DEST pdfmark end 527 5310 a FC(R)604 5272 y FJ(irr)604 5332 y Fx(r)682 5310 y FK(\()p FD($)s FK(\))26 b(=)f FD(R)1022 5272 y FJ(irr)1021 5332 y Fx(r)1126 5310 y FK(=)1222 5224 y Ft(G)1252 5415 y Fx(\024)1338 5310 y FD(R)1408 5272 y FJ(irr)1407 5332 y Fx(\024)1512 5310 y FK(=)1608 5224 y Ft(G)1638 5415 y Fx(\024)1724 5209 y Ft(\020)1778 5310 y FD(R)1847 5324 y Fx(\024)1912 5310 y FC(\000)20 b FD(R)2073 5272 y FJ(red)2072 5332 y Fx(\024)2175 5209 y Ft(\021)2255 5310 y FK(=)2351 5224 y Ft(G)2381 5415 y Fx(\024)2467 5209 y Ft(\020)2521 5310 y FD(R)2590 5324 y Fx(\024)2655 5310 y FC(\000)2785 5224 y Ft(G)2746 5421 y Fx(\034)8 b Fs(2T)2888 5402 y Fr(\003)2871 5437 y Fq(\024)2939 5310 y FD(R)q FK(\()p FD(\034)i FK(\))3129 5209 y Ft(\021)3184 5310 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 10 10 TeXDict begin HPSdict begin 10 9 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.10) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(10)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 224 266 a FK(The)30 b(virtual)f(class)h([)p FD(R)1014 280 y Fx(\024)1059 266 y FK(])h(is)e(v)m(ery)i(easy)g(to)g(compute.)41 b(W)-8 b(e)31 b(ha)m(v)m(e)h(that)1292 423 y FD(R)1361 437 y Fx(\024)1431 423 y FK(=)25 b(\()q(GL)1691 437 y Fx(r)1744 423 y FC(\001)p FK(\006)1835 437 y Fm(\017)1873 423 y FK(\))20 b FC(\002)g FK(\()q(GL)2183 437 y Fx(r)2236 423 y FC(\001)p FK(\006)2327 437 y Fm(")2368 423 y FK(\))c FD(;)125 580 y FK(where)35 b(\006)459 594 y Fm(\017)533 580 y FK(is)h(the)g(diagonal)g(matrix)f(with)g(eigen)m(v)-5 b(alues)37 b Fn(\017)f FK(and)f(GL)2545 594 y Fx(r)2598 580 y FC(\001)p FK(\006)2689 594 y Fm(\017)2763 580 y FK(is)g(its)h(orbit)f(under)g(the)125 688 y(GL)253 702 y Fx(r)291 688 y FK(-action)g(b)m(y)f(conjugation,)h(and)f(analogously) g(for)g Fn(")p FK(.)52 b(The)34 b(stabilizers)f(of)h(\006)2990 702 y Fm(\017)3062 688 y FK(and)g(\006)3309 702 y Fm(")3384 688 y FK(under)125 796 y(this)23 b(action)i(are)g(GL)837 810 y Fx(a)874 819 y FG(1)928 796 y FC(\002)15 b FD(:)g(:)g(:)10 b FC(\002)f FK(GL)1337 810 y Fx(a)1374 818 y Fq(p)1439 796 y FK(and)24 b(GL)1738 811 y Fx(b)1768 820 y FG(1)1822 796 y FC(\002)15 b FD(:)g(:)g(:)10 b FC(\002)f FK(GL)2230 811 y Fx(b)2260 819 y Fq(q)2299 796 y FK(,)26 b(resp)s(ectiv)m(ely)-8 b(.)38 b(Therefore,)26 b(w)m(e)f(ha)m(v)m(e)125 904 y(that)125 1091 y(\(11\))1013 1091 y SDict begin H.S end 1013 1091 a 1013 1091 a SDict begin 13 H.A end 1013 1091 a 1013 1091 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.11) cvn /DEST pdfmark end 1013 1091 a 15 w FK([)p FD(R)1122 1105 y Fx(\024)1167 1091 y FK(])g(=)1539 1029 y([GL)1692 1043 y Fx(r)1730 1029 y FK(])p 1323 1070 648 4 v 1323 1153 a([GL)1477 1167 y Fx(a)1514 1176 y FG(1)1553 1153 y FK(])15 b FC(\001)g(\001)g(\001)i FK([GL)1868 1167 y Fx(a)1905 1175 y Fq(p)1946 1153 y FK(])2001 1091 y FC(\001)2264 1029 y FK([GL)2417 1043 y Fx(r)2455 1029 y FK(])p 2057 1070 632 4 v 2057 1153 a([GL)2210 1168 y Fx(b)2240 1177 y FG(1)2279 1153 y FK(])e FC(\001)g(\001)g(\001)i FK([GL)2594 1168 y Fx(b)2624 1176 y Fq(q)2663 1153 y FK(])2698 1091 y FD(:)224 1356 y FK(Using)29 b(\()514 1356 y SDict begin H.S end 514 1356 a 0 TeXcolorgray FK(10)p 0 TeXcolorgray 605 1298 a SDict begin H.R end 605 1298 a 605 1356 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.10) cvn H.B /ANN pdfmark end 605 1356 a FK(\),)i(w)m(e)f(get)h (that,)f(in)f(order)g(to)h(compute)g(the)g(virtual)e(class)i(of)f FC(R)2865 1323 y FJ(irr)2865 1379 y Fx(r)2944 1356 y FK(\()p FD($)s FK(\),)i(it)e(is)g(enough)125 1464 y(to)37 b(compute)h(the)f(virtual)f(classes)h(of)h FD(R)q FK(\()p FD(\034)10 b FK(\),)39 b(for)e(all)f FD(\024)i FK(and)e FD(\034)47 b FC(2)36 b(T)2554 1431 y Fs(\003)2531 1487 y Fx(\024)2594 1464 y FK(.)61 b(As)37 b(w)m(e)h(will)c(sho)m(w)j(in)f (the)125 1573 y(follo)m(wing)19 b(section,)k(this)c(amoun)m(ts)i(to)g (a)h(com)m(binatorial)d(problem)g(and)h(the)h(kno)m(wledge)g(of)g([)p FC(R)3359 1540 y FJ(irr)3359 1595 y Fx(s)3438 1573 y FK(\()p FD($)s FK(\)])125 1681 y(for)30 b FD(s)25 b(<)f(r)s FK(,)31 b(so)f(the)h(computation)f(can)h(b)s(e)e(p)s(erformed)g (recursiv)m(ely)-8 b(.)224 1824 y(F)g(rom)34 b(this)e(computation,)i (one)g(can)g(also)f(compute)h(the)f(virtual)f(class)h(of)g FB(M)2977 1791 y FJ(irr)2977 1847 y Fx(r)3087 1824 y FK(=)d FD(R)3258 1791 y FJ(irr)3257 1847 y Fx(r)3358 1824 y FA(\014)22 b FK(SL)3548 1838 y Fx(r)3586 1824 y FK(.)125 1932 y(Indeed,)j(the)h(action)f(of)h(PGL)1149 1946 y Fx(r)1212 1932 y FK(=)f(SL)1415 1946 y Fx(r)1468 1932 y FD(=)-5 b(Z)7 b FK(\(SL)1720 1946 y Fx(r)1758 1932 y FK(\))25 b(is)g(free)g(and)g(has)g(closed)g(orbits)f(on)h(the)h (irreducible)125 2040 y(represen)m(tations.)40 b(Hence,)30 b(w)m(orking)d(analogously)h(to)i(Prop)s(osition)c(7.3)k(of)f([)2785 2040 y SDict begin H.S end 2785 2040 a 0 TeXcolorgray FK(8)p 0 TeXcolorgray 2830 1982 a SDict begin H.R end 2830 1982 a 2830 2040 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.GP:2018) cvn H.B /ANN pdfmark end 2830 2040 a FK(])g(for)f(arbitrary) g(rank,)125 2148 y(w)m(e)i(get)i(that)1533 2324 y([)p FB(M)1653 2287 y FJ(irr)1653 2347 y Fx(r)1733 2324 y FK(])25 b(=)1929 2263 y([)p FD(R)2024 2230 y FJ(irr)2023 2285 y Fx(r)2103 2263 y FK(])p 1889 2304 279 4 v 1889 2387 a([PGL)2104 2401 y Fx(r)2142 2387 y FK(])2178 2324 y FD(:)125 2526 y FK(This)j(action)j(resp)s(ects)f(the)h (strati\014cation)f(\()1680 2526 y SDict begin H.S end 1680 2526 a 0 TeXcolorgray FK(9)p 0 TeXcolorgray 1726 2467 a SDict begin H.R end 1726 2467 a 1726 2526 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.9) cvn H.B /ANN pdfmark end 1726 2526 a FK(\))g(so)h(de\014ning)d FB(M)2341 2493 y FJ(irr)2341 2548 y Fx(\024)2446 2526 y FK(=)d FD(R)2612 2493 y FJ(irr)2611 2548 y Fx(\024)2710 2526 y FA(\014)20 b FK(SL)2898 2540 y Fx(r)2967 2526 y FK(w)m(e)31 b(ha)m(v)m(e)125 2745 y(\(12\))1221 2745 y SDict begin H.S end 1221 2745 a 1221 2745 a SDict begin 13 H.A end 1221 2745 a 1221 2745 a SDict begin [/View [/XYZ H.V]/Dest (equation.3.12) cvn /DEST pdfmark end 1221 2745 a FK([)p FB(M)1341 2707 y FJ(irr)1341 2767 y Fx(r)1421 2745 y FK(])25 b(=)1567 2659 y Ft(X)1613 2849 y Fx(\024)1699 2745 y FK([)p FB(M)1819 2707 y FJ(irr)1819 2767 y Fx(\024)1898 2745 y FK(])h(=)2044 2659 y Ft(X)2090 2849 y Fx(\024)2241 2683 y FK([)p FD(R)2336 2650 y FJ(irr)2335 2706 y Fx(\024)2414 2683 y FK(])p 2201 2724 279 4 v 2201 2807 a([PGL)2416 2821 y Fx(r)2454 2807 y FK(])2489 2745 y FD(:)125 2996 y SDict begin H.S end 125 2996 a 125 2996 a SDict begin 13 H.A end 125 2996 a 125 2996 a SDict begin [/View [/XYZ H.V]/Dest (theorem.3.5) cvn /DEST pdfmark end 125 2996 a 0 TeXcolorgray FL(Remark)40 b(3.5.)p 0 TeXcolorgray 45 w FK(Consider)34 b(a)j(con\014guration)e(of)h(eigen)m(v)-5 b(alues)36 b FD(\024)f FK(=)f(\()p Fn(\017)p FD(;)15 b Fn(")p FK(\))37 b(with)d(m)m(ultiplicities)e FD(a)3583 3010 y Fx(i)125 3104 y FK(and)37 b FD(b)348 3118 y Fx(j)423 3104 y FK(resp)s(ectiv)m (ely)-8 b(.)65 b(If)39 b(there)f(exists)g FD(i;)15 b(j)45 b FK(suc)m(h)39 b(that)g FD(a)2190 3118 y Fx(i)2244 3104 y FK(+)25 b FD(b)2379 3118 y Fx(j)2454 3104 y FD(>)39 b(r)s FK(,)h(then)e FD(R)2958 3071 y FJ(irr)2957 3127 y Fx(\024)3076 3104 y FK(=)g FC(;)p FK(.)66 b(Indeed,)125 3212 y(if)36 b FD(\032)h FK(=)f(\()p FD(A;)15 b(B)5 b FK(\))38 b FC(2)f FD(R)863 3226 y Fx(\024)908 3212 y FK(,)i(then)e FD(A)h FK(has)f(an)g(eigenspace)h FD(V)57 b FK(of)38 b(dimension)d FD(a)2752 3226 y Fx(i)2780 3212 y FK(,)k(and)e FD(B)42 b FK(has)37 b(another)125 3320 y(eigenspace)32 b FD(W)44 b FK(of)31 b(dimension)e FD(b)1275 3334 y Fx(j)1312 3320 y FK(.)44 b(But)31 b(since)g FD(a)1834 3334 y Fx(i)1884 3320 y FK(+)20 b FD(b)2014 3334 y Fx(j)2078 3320 y FD(>)27 b(r)s FK(,)k FD(V)41 b FC(\\)21 b FD(W)40 b FC(6)p FK(=)27 b(0)k(and)g(th)m(us,)h(there)g(exists)125 3428 y(at)f(least)h(a)f(common)h(eigen)m(v)m(ector)h(to)f FD(A)f FK(and)g FD(B)36 b FK(so)31 b(they)g(are)h(reducible.)41 b(Hence)32 b(w)m(e)f(can)h(discard)125 3536 y(suc)m(h)e FD(\024)g FK(in)f(the)i(form)m(ula)e(\()1043 3536 y SDict begin H.S end 1043 3536 a 0 TeXcolorgray FK(10)p 0 TeXcolorgray 1135 3477 a SDict begin H.R end 1135 3477 a 1135 3536 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.10) cvn H.B /ANN pdfmark end 1135 3536 a FK(\).)125 3667 y SDict begin H.S end 125 3667 a 125 3667 a SDict begin 13 H.A end 125 3667 a 125 3667 a SDict begin [/View [/XYZ H.V]/Dest (section.4) cvn /DEST pdfmark end 125 3667 a 1099 3787 a FK(4.)46 b FE(Represent)-6 b(a)g(tions)31 b(of)j(fixed)g(type)224 3985 y FK(Throughout)22 b(this)g(section,)j(w)m (e)f(will)c(\014x)j(a)h(con\014guration)e(of)h(eigen)m(v)-5 b(alues)23 b FD(\024)j FK(=)f(\()p Fn(\017)p FD(;)15 b Fn(")p FK(\))24 b(and)f(a)g(t)m(yp)s(e)125 4093 y FD(\034)43 b FC(2)33 b(T)352 4107 y Fx(\024)396 4093 y FK(,)k(and)d(w)m(e)i(will)d (study)h(the)h(collection)g(of)h Fz(Z)1954 4107 y Fx(n)2020 4093 y FD(?)24 b Fz(Z)2154 4107 y Fx(m)2216 4093 y FK(-represen)m (tations)35 b FD(R)q FK(\()p FD(\034)10 b FK(\).)56 b(Compatible)125 4200 y(with)22 b(the)j(description)d(of)i(the)h(torus)f(knot)g(\()1648 4200 y SDict begin H.S end 1648 4200 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 1694 4142 a SDict begin H.R end 1694 4142 a 1694 4200 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.5) cvn H.B /ANN pdfmark end 1694 4200 a FK(\),)i(w)m(e)e(will)e (denote)j(b)m(y)f FD(x;)15 b(y)28 b FC(2)d Fz(Z)2796 4214 y Fx(n)2846 4200 y FD(?)8 b Fz(Z)2964 4214 y Fx(m)3051 4200 y FK(the)24 b(generators)125 4308 y(of)30 b(the)h Fz(Z)450 4322 y Fx(n)523 4308 y FK(and)e Fz(Z)764 4322 y Fx(m)857 4308 y FK(parts,)h(resp)s(ectiv)m(ely)-8 b(.)224 4452 y(F)g(ollo)m(wing)30 b(the)h(notation)g(of)g(\()1292 4452 y SDict begin H.S end 1292 4452 a 0 TeXcolorgray FK(3)p 0 TeXcolorgray 1338 4393 a SDict begin H.R end 1338 4393 a 1338 4452 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.2.3) cvn H.B /ANN pdfmark end 1338 4452 a FK(\),)g(let)f FD(m)1640 4466 y Fx(i;j)1751 4452 y FK(b)s(e)g(the)h(m)m(ultiplicit)m (y)c(of)k(the)g(isot)m(ypic)f(piece)h FD(W)3428 4466 y Fx(i;j)3538 4452 y FK(of)125 4560 y(the)k(semi-simple)e(\014ltration) h(of)h(the)h(t)m(yp)s(e)f FD(\034)10 b FK(.)56 b(The)35 b(corresp)s(onding)e(eigen)m(v)-5 b(alues)35 b(of)h(these)g(pieces)125 4668 y(are)30 b(denoted)h FD(\024)672 4682 y Fx(i;j)778 4668 y FK(=)24 b(\()p FD(\033)960 4682 y Fx(i;j)1041 4668 y FK(\()p FD(x)p FK(\))p FD(;)15 b(\033)1255 4682 y Fx(i;j)1336 4668 y FK(\()p FD(y)s FK(\)\).)42 b(Then)29 b(w)m(e)i(tak)m(e)125 4905 y(\(13\))1251 4905 y SDict begin H.S end 1251 4905 a 1251 4905 a SDict begin 13 H.A end 1251 4905 a 1251 4905 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.13) cvn /DEST pdfmark end 1251 4905 a FC(I)7 b FK(\()p FD(\034)j FK(\))26 b(=)1591 4791 y Fx(s)1550 4819 y Ft(Y)1551 5014 y Fx(i)p FJ(=1)1713 4789 y Fx(s)1746 4799 y Fq(i)1684 4819 y Ft(Y)1681 5014 y Fx(j)t FJ(=1)1819 4905 y FK(Sym)1993 4867 y Fx(m)2055 4877 y Fq(i;j)2148 4804 y Ft(\020)2202 4905 y FD(R)2272 4867 y FJ(irr)2271 4927 y Fx(\024)2312 4937 y Fq(i;j)2390 4804 y Ft(\021)2459 4905 y FD(:)224 5197 y FK(W)-8 b(e)35 b(ha)m(v)m(e)h(a)e(map)g(Gr)990 5211 y Fs(\017)1060 5197 y FK(:)e FD(R)q FK(\()p FD(\034)10 b FK(\))32 b FC(!)f(I)7 b FK(\()p FD(\034)j FK(\))34 b(giv)m(en)g(b)m(y)g FD(\032)d FC(7!)g FK(\()q(Gr)2386 5211 y Fx(i)2414 5197 y FK(\()p FD(\032)p FK(\)\))2567 5224 y Fx(i)2595 5197 y FK(,)k(where)f(the)g (isot)m(ypic)g(com-)125 5305 y(p)s(onen)m(ts)27 b(of)i(the)f(graded)h (represen)m(tations)f(are)h(group)s(ed)e(together)j(in)m(to)e(the)h (symmetric)e(pro)s(duct.)125 5413 y(W)-8 b(e)31 b(will)d(call)h(this)h (map)g(the)g Fp(semi-simpli\014c)-5 b(ation)p FK(.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 11 11 TeXDict begin HPSdict begin 11 10 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.11) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(11)p 0 TeXcolorgray 224 266 a FK(The)28 b(\014b)s(er)f(of)h(the)g(semi-simpli\014cation)d(is)i (giv)m(en)h(b)m(y)g(the)h(w)m(a)m(ys)g(in)e(whic)m(h)g(this)g (irreducible)e(part)125 374 y(can)j(b)s(e)g(completed)h(with)e (o\013-diagonal)h(maps.)40 b(Decomp)s(ose)29 b(the)g(graded)f(pieces)h (of)f(the)h(t)m(yp)s(e)f(in)m(to)125 482 y(its)h(irreducible)e(comp)s (onen)m(ts)k(as)1262 651 y(Gr)1369 665 y Fx(i)1397 651 y FK(\()p FD(V)1485 665 y Fs(\017)1525 651 y FK(\))26 b(=)f FD(U)1744 665 y Fx(\027)1779 675 y Fq(i)p Fr(\000)p FG(1)1883 665 y FJ(+1)1998 651 y FC(\010)20 b FD(:)15 b(:)g(:)21 b FC(\010)f FD(U)2368 665 y Fx(\027)2403 675 y Fq(i)2448 651 y FD(;)125 821 y FK(for)32 b(an)g(increasing)e (sequence)j(0)c(=)f FD(\027)1417 835 y FJ(0)1484 821 y FD(<)g FC(\001)15 b(\001)g(\001)30 b FD(<)e(\027)1862 835 y Fx(i)p Fs(\000)p FJ(1)2008 821 y FD(<)g(\027)2152 835 y Fx(i)2209 821 y FD(<)g FC(\001)15 b(\001)g(\001)48 b FK(This)31 b(means)h(that)h(the)f(isot)m(ypic)125 928 y(comp)s(onen)m(ts)26 b FD(W)707 942 y Fx(i;j)813 928 y FK(will)e(b)s(e)i(isomorphic)e(to)j FD(m)1744 942 y Fx(i;j)1850 928 y FK(of)g(the)g(pieces)f FD(U)2424 942 y Fx(\013)2473 928 y FK(,)i(for)e FD(\027)2706 942 y Fx(i)p Fs(\000)p FJ(1)2849 928 y FD(<)f(\013)h FC(\024)f FD(\027)3170 942 y Fx(i)3198 928 y FK(.)39 b(Consider)125 1036 y FD(\045)k FK(=)330 968 y Ft(L)446 1036 y FD(\045)493 1050 y Fx(\013)587 1036 y FC(2)g(I)7 b FK(\()p FD(\034)j FK(\),)45 b(with)40 b FD(\045)1203 1050 y Fx(\013)1294 1036 y FK(the)i(irreducible)c(action)k(on)f FD(U)2406 1050 y Fx(\013)2456 1036 y FK(.)74 b(When)41 b(restricted)g(to)i Fz(Z)3435 1050 y Fx(m)3541 1036 y FC(\032)125 1144 y Fz(Z)190 1158 y Fx(n)257 1144 y FD(?)25 b Fz(Z)392 1158 y Fx(m)454 1144 y FK(,)38 b(the)f Fz(Z)745 1158 y Fx(m)808 1144 y FK(-mo)s(dule)e FD(U)1227 1158 y Fx(\013)1313 1144 y FK(is)h(semi-simple)e(with)i(1-dimensional)f(irreducible)e (pieces.)60 b(Let)125 1252 y FD(u)177 1266 y Fx(\013;)p FJ(1)281 1252 y FD(;)15 b(:)g(:)g(:)i(;)e(u)535 1267 y Fx(\013;d)636 1275 y Fq(\013)712 1252 y FK(b)s(e)27 b(a)g(basis)f(of)i FD(U)1288 1266 y Fx(\013)1337 1252 y FK(,)h(suc)m(h)e(that)g FC(h)p FD(u)1873 1267 y Fx(\013;l)1965 1252 y FC(i)g FK(is)g(an)g(irreducible)d Fz(Z)2751 1266 y Fx(m)2813 1252 y FK(-represen)m(tation)k(with)125 1360 y(c)m(haracter)k FD(")564 1375 y Fx(\013;l)655 1360 y FK(.)224 1504 y(No)m(w,)f(consider)f(the)g(v)m(ector)i(space)1359 1687 y FC(M)1468 1701 y FJ(0)1533 1687 y FK(=)1632 1600 y Ft(M)1629 1798 y Fx(\013<\014)1787 1687 y FK(Hom)1977 1702 y Fx(k)2020 1687 y FK(\()p FD(U)2117 1702 y Fx(\014)2164 1687 y FD(;)15 b(U)2266 1701 y Fx(\013)2316 1687 y FK(\))p FD(:)125 1953 y FK(Giv)m(en)28 b FD(M)35 b FC(2)25 b(M)704 1967 y FJ(0)744 1953 y FK(,)j(in)f(the)i(previous)e(basis)g(it)h(can)g (b)s(e)g(seen)g(as)h(a)f(collection)g(of)h(maps)f FD(M)3218 1968 y Fx(\013\014)3336 1953 y FK(:)d FD(U)3448 1968 y Fx(\014)3521 1953 y FC(!)125 2061 y FD(U)187 2075 y Fx(\013)236 2061 y FK(.)41 b(Let)31 b(us)e(consider)h(the)g(induced)f (represen)m(tation)h FD(\045)2072 2075 y Fx(M)2176 2061 y FK(:)c Fz(Z)16 b FD(?)k Fz(Z)h FC(!)k FK(GL)2703 2075 y Fx(r)2772 2061 y FK(b)m(y)528 2244 y FD(\045)575 2258 y Fx(M)654 2244 y FK(\()p FD(x)p FK(\)\()p FD(u)863 2259 y Fx(\014)s(;l)953 2244 y FK(\))h(=)e FD(\045)1156 2259 y Fx(\014)1204 2244 y FK(\()p FD(x)p FK(\)\()p FD(u)1413 2259 y Fx(\014)s(;l)1502 2244 y FK(\))p FD(;)107 b(\045)1716 2258 y Fx(M)1795 2244 y FK(\()p FD(y)s FK(\)\()p FD(u)2000 2259 y Fx(\014)s(;l)2090 2244 y FK(\))25 b(=)g FD(")2288 2259 y Fx(\014)s(;l)2392 2244 y FD(u)2444 2259 y Fx(\014)s(;l)2553 2244 y FK(+)2644 2157 y Ft(X)2687 2348 y Fx(\013)2790 2244 y FD(M)2878 2259 y Fx(\013\014)2971 2244 y FK(\()p FD(u)3058 2259 y Fx(\014)s(;l)3147 2244 y FK(\))p FD(:)125 2495 y FK(Here)f FD(x)f FK(and)g FD(y)j FK(denote)e(the)g(generators)g (of)g(eac)m(h)g(of)g(the)g(factors)g(of)g Fz(Z)6 b FD(?)g Fz(Z)n FK(.)32 b(Observ)m(e)24 b(that)g FD(\045)3267 2509 y Fx(M)3346 2495 y FK(\()p FD(x)p FK(\))3468 2462 y Fx(n)3541 2495 y FK(=)125 2535 y Ft(L)226 2630 y Fx(\014)288 2603 y FD(\045)335 2618 y Fx(\014)382 2603 y FK(\()p FD(x)p FK(\))504 2570 y Fx(n)577 2603 y FK(=)h(Id)o(,)30 b(but)e FD(\045)1023 2617 y Fx(M)1102 2603 y FK(\()p FD(y)s FK(\))1220 2570 y Fx(m)1316 2603 y FK(ma)m(y)i(not)f(b)s(e)g (the)g(iden)m(tit)m(y)g(map.)40 b(Hence,)30 b FD(\045)2863 2617 y Fx(M)2971 2603 y FK(can)g(b)s(e)e(seen)i(as)f(a)125 2714 y(represen)m(tation)h FD(\045)766 2728 y Fx(M)870 2714 y FK(:)c Fz(Z)986 2728 y Fx(n)1049 2714 y FD(?)20 b Fz(Z)h FC(!)k FK(GL)1444 2728 y Fx(r)1482 2714 y FK(.)224 2857 y(In)i(other)i(w)m(ords,)f(in)e(a)j(matrix)e(notation)h(in)f(the)h (basis)f(ab)s(o)m(v)m(e,)i(the)g(represen)m(tation)f(is)f(giv)m(en)g(b) m(y)125 2965 y(a)36 b(matrix)g FD(A)g FK(with)f(diagonal)h(blo)s(c)m (ks)g FD(\045)1524 2980 y Fx(\014)1571 2965 y FK(\()p FD(x)p FK(\),)i(and)e(b)m(y)g(a)h(matrix)f FD(B)41 b FK(whose)36 b(diagonal)f(blo)s(c)m(ks)h(are)125 3073 y(diagonal)e(matrices)h FD(B)931 3088 y Fx(\014)1011 3073 y FK(=)e(diag\()p FD(")1359 3088 y Fx(\014)s(;)p FJ(1)1462 3073 y FD(;)15 b(:)g(:)g(:)i(;)e(")1706 3088 y Fx(\014)s(;d)1805 3100 y Fq(\014)1851 3073 y FK(\))36 b(and)e(there)h(are)h(upp)s(er-diagonal)c(blo)s(c)m(ks)j FD(M)3494 3088 y Fx(\013\014)3586 3073 y FK(,)125 3181 y FD(\013)25 b(<)g(\014)5 b FK(.)224 3325 y(T)-8 b(o)34 b(address)f(the)g(problem)f(that)i FD(\045)1452 3339 y Fx(M)1565 3325 y FK(is)e(not)i(a)g(represen)m(tation)f(of)h Fz(Z)2672 3339 y Fx(n)2737 3325 y FD(?)22 b Fz(Z)2869 3339 y Fx(m)2931 3325 y FK(,)35 b(w)m(e)f(consider)e(the)125 3433 y(subset)1203 3564 y FC(M)1312 3578 y FJ(1)1377 3564 y FK(=)25 b FC(f)p FD(M)36 b FC(2)24 b(M)1836 3578 y FJ(0)1891 3564 y FC(j)15 b FD(\045)1978 3578 y Fx(M)2058 3564 y FK(\()p FD(y)s FK(\))2176 3527 y Fx(m)2268 3564 y FK(=)25 b(Id)o FC(g)16 b FD(:)125 3715 y FK(This)23 b(de\014nes)i(a)h(closed)g(sub)m(v)-5 b(ariet)m(y)25 b FC(M)1495 3729 y FJ(1)1560 3715 y FC(\032)g(M)1765 3729 y FJ(0)1830 3715 y FK(of)h(admissible)d(o\013-diagonal)i(maps,)i (i.e.)f FD(M)35 b FC(2)25 b(M)3572 3729 y FJ(0)125 3823 y FK(suc)m(h)30 b(that)h FD(\045)574 3837 y Fx(M)683 3823 y FK(is)e(a)i Fz(Z)915 3837 y Fx(n)978 3823 y FD(?)20 b Fz(Z)1108 3837 y Fx(m)1171 3823 y FK(-represen)m(tation.)224 3966 y(This)31 b(space)i(is)f(actually)g(a)h(linear)e(subspace)h(that)h (can)g(b)s(e)f(easily)f(c)m(haracterized.)49 b(F)-8 b(or)33 b FD(\013)c(<)g(\014)5 b FK(,)125 4074 y(write)29 b(in)m(to)h(its)g (comp)s(onen)m(ts)1509 4228 y FD(M)1597 4243 y Fx(\013\014)1715 4228 y FK(=)1811 4127 y Ft(\020)1865 4228 y FD(m)1945 4184 y Fx(ij)1945 4258 y(\013\014)2037 4127 y Ft(\021)2092 4292 y Fx(i;j)2202 4228 y FD(:)125 4419 y FK(W)-8 b(e)31 b(ha)m(v)m(e)h(the)e(follo)m(wing)f(c)m(haracterization.)125 4594 y SDict begin H.S end 125 4594 a 125 4594 a SDict begin 13 H.A end 125 4594 a 125 4594 a SDict begin [/View [/XYZ H.V]/Dest (theorem.4.1) cvn /DEST pdfmark end 125 4594 a 0 TeXcolorgray FL(Prop)s(osition)39 b(4.1.)p 0 TeXcolorgray 43 w Fp(If)c(the)h(matrix)g FD(M)k FC(2)29 b(M)1771 4608 y FJ(1)1846 4594 y Fp(then)36 b(for)f FD(\013)c(<)e(\014) 40 b Fp(and)c FD(i;)15 b(j)42 b Fp(such)35 b(that)h FD(")3246 4608 y Fx(\013;i)3369 4594 y FK(=)30 b FD(")3512 4609 y Fx(\014)s(;j)125 4718 y Fp(then)i FD(m)406 4674 y Fx(ij)406 4748 y(\013\014)524 4718 y FK(=)25 b FD(c)659 4674 y Fx(ij)659 4748 y(\013\014)751 4718 y Fp(,)32 b(a)h(sp)-5 b(e)g(ci\014c)32 b(value)g(dep)-5 b(ending)34 b(on)e FD(M)10 b Fp(.)42 b(Otherwise)32 b FD(m)2659 4674 y Fx(ij)2659 4748 y(\013\014)2784 4718 y Fp(is)f(fr)-5 b(e)g(e.)43 b(The)32 b(c)-5 b(onverse)125 4832 y(also)33 b(holds.)p 0 TeXcolorgray 125 5057 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(When)25 b(w)m(e)g(tak)m(e)h(the)f(p)s(o)m(w)m(er)f FD(B)1468 5024 y Fx(m)1559 5057 y FK(=)h(Id,)h(w)m(e)f(lo)s(ok)f(at)h (the)g(upp)s(er-diagonal)d(blo)s(c)m(k)i(for)g FD(\013)i(<)f(\014)5 b FK(.)125 5165 y(This)28 b(is)i(equal)f(to)1255 5223 y Ft(X)1015 5421 y Fx(\013)p Fs(\024)p Fx(\015)1151 5430 y FG(1)1186 5421 y Fs(\024)p Fx(:::)o Fs(\024)p Fx(\015)1391 5430 y Fq(m)p Fr(\000)p FG(1)1528 5421 y Fs(\024)p Fx(\014)1641 5310 y FD(M)1729 5324 y Fx(\013\015)1810 5333 y FG(1)1850 5310 y FD(M)1938 5324 y Fx(\015)1974 5333 y FG(1)2009 5324 y Fx(\015)2045 5333 y FG(2)2099 5310 y FC(\001)15 b(\001)g(\001)h FD(M)2308 5325 y Fx(\015)2344 5334 y Fq(m)p Fr(\000)p FG(1)2482 5325 y Fx(\014)2554 5310 y FK(=)25 b(0)p FD(;)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 12 12 TeXDict begin HPSdict begin 12 11 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.12) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(12)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(where)29 b(w)m(e)i(write)f FD(M)842 281 y Fx(\014)s(\014)957 266 y FK(=)25 b FD(B)1122 281 y Fx(\014)1170 266 y FK(.)40 b(Lo)s(oking)30 b(at)h(the)g(terms)f(con)m(taining)g FD(M)2636 281 y Fx(\013\014)2728 266 y FK(,)h(w)m(e)g(ha)m(v)m(e)125 496 y(\(14\))1356 496 y SDict begin H.S end 1356 496 a 1356 496 a SDict begin 13 H.A end 1356 496 a 1356 496 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.14) cvn /DEST pdfmark end 1356 496 a 1406 382 a Fx(m)1371 410 y Ft(X)1379 604 y Fx(t)p FJ(=1)1518 496 y FD(B)1592 459 y Fx(t)p Fs(\000)p FJ(1)1587 519 y Fx(\013)1711 496 y FD(M)1799 511 y Fx(\013\014)1892 496 y FD(B)1966 458 y Fx(m)p Fs(\000)p Fx(t)1961 525 y(\014)2137 496 y FK(=)25 b FD(M)2331 459 y Fs(0)2355 496 y FD(;)125 734 y FK(where)41 b FD(M)497 701 y Fs(0)561 734 y FK(is)g(a)h(\014xed)f(matrix)f(dep)s(ending)f(on)j (the)f(matrices)h FD(M)2505 750 y Fx(\015)t(\015)2585 731 y Fr(0)2654 734 y FK(with)e(smaller)g(\\distance")125 842 y(b)s(et)m(w)m(een)31 b FD(\015)5 b(;)15 b(\015)620 809 y Fs(0)643 842 y FK(.)41 b(The)30 b(co)s(e\016cien)m(ts)h(of)g(the) f(left)g(hand)g(matrix)f(are)627 988 y Fx(m)592 1015 y Ft(X)600 1210 y Fx(t)p FJ(=1)739 1102 y FD(m)819 1057 y Fx(ij)819 1131 y(\013\014)911 1102 y FD(")953 1063 y Fx(t)p Fs(\000)p FJ(1)953 1129 y Fx(\013;i)1073 1102 y FD(")1115 1063 y Fx(m)p Fs(\000)p Fx(t)1115 1131 y(\014)s(;j)1288 1102 y FK(=)1384 915 y Ft(8)1384 997 y(<)1384 1161 y(:)1506 1017 y FD(m)1586 973 y Fx(ij)1586 1047 y(\013\014)1688 956 y(")1721 933 y Fq(m)1721 978 y(\013;i)1806 956 y Fs(\000)p Fx(")1894 933 y Fq(m)1894 979 y(\014)s(;j)p 1688 996 295 4 v 1688 1049 a Fx(")1721 1059 y Fq(\013;i)1806 1049 y Fs(\000)p Fx(")1894 1061 y Fq(\014)s(;j)2018 1017 y FK(=)c(0)452 b(if)29 b FD(")2736 1031 y Fx(\013;i)2855 1017 y FC(6)p FK(=)c FD(")2993 1032 y Fx(\014)s(;j)1506 1204 y FD(m)1586 1160 y Fx(ij)1586 1233 y(\013\014)1678 1204 y FD(m)15 b(")1815 1166 y Fx(m)p Fs(\000)p FJ(1)1815 1231 y Fx(\013;i)1998 1204 y FK(=)25 b FD(m)2174 1160 y Fx(ij)2174 1233 y(\013\014)2266 1204 y FD(m)15 b(")2403 1166 y Fs(\000)p FJ(1)2403 1231 y Fx(\013;i)2611 1204 y FK(if)29 b FD(")2736 1218 y Fx(\013;i)2855 1204 y FK(=)c FD(")2993 1219 y Fx(\014)s(;j)125 1361 y FK(hence)30 b(the)h(result.)2758 b Fo(\003)125 1526 y SDict begin H.S end 125 1526 a 125 1526 a SDict begin 13 H.A end 125 1526 a 125 1526 a SDict begin [/View [/XYZ H.V]/Dest (theorem.4.2) cvn /DEST pdfmark end 125 1526 a 0 TeXcolorgray FL(Remark)37 b(4.2.)p 0 TeXcolorgray 44 w FK(When)c FD(\027)1044 1540 y Fx(i)p Fs(\000)p FJ(1)1193 1526 y FD(<)d(\013)h FC(\024)f FD(\027)1529 1540 y Fx(i)1590 1526 y FK(and)j FD(\027)1815 1540 y Fx(i)1874 1526 y FD(<)d(\014)35 b FC(\024)30 b FD(\027)2207 1540 y Fx(i)p FJ(+1)2359 1526 y FK(\(that)k(is,)g(when)e(the)i(mo)s(dules)e FD(U)3537 1540 y Fx(\013)3586 1526 y FK(,)125 1634 y FD(U)187 1649 y Fx(\014)259 1634 y FK(app)s(ear)24 b(in)g(consecutiv)m(e)h(steps)g (in)f(the)h(semi-simple)d(\014ltration\),)k(w)m(e)f(ha)m(v)m(e)h(that)g (the)f(righ)m(t)f(hand)125 1758 y(side)29 b(of)h(\()445 1758 y SDict begin H.S end 445 1758 a 0 TeXcolorgray FK(14)p 0 TeXcolorgray 537 1699 a SDict begin H.R end 537 1699 a 537 1758 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.14) cvn H.B /ANN pdfmark end 537 1758 a FK(\))g(v)-5 b(anishes.)40 b(Then)29 b FD(m)1312 1714 y Fx(ij)1312 1787 y(\013\014)1430 1758 y FK(=)c(0)30 b(when)g FD(")1881 1772 y Fx(\013;i)2000 1758 y FK(=)24 b FD(")2137 1773 y Fx(\014)s(;j)2237 1758 y FK(.)125 1934 y SDict begin H.S end 125 1934 a 125 1934 a SDict begin 13 H.A end 125 1934 a 125 1934 a SDict begin [/View [/XYZ H.V]/Dest (theorem.4.3) cvn /DEST pdfmark end 125 1934 a 0 TeXcolorgray FL(Lemma)f(4.3.)p 0 TeXcolorgray 36 w Fp(A)n(ny)i(r)-5 b(epr)g(esentation)28 b FD(\032)d FC(2)g FD(R)q FK(\()p FD(\034)10 b FK(\))26 b Fp(is)f(isomorphic)j(to)e(one)f(of)h(the)g (form)g FD(\032)f FK(=)g(Gr)3375 1948 y Fs(\017)3415 1934 y FK(\()p FD(\032)p FK(\))3532 1948 y Fx(M)125 2042 y Fp(for)33 b(some)g FD(M)i FC(2)25 b(M)820 2056 y FJ(1)860 2042 y Fp(.)p 0 TeXcolorgray 125 2242 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Consider)34 b(the)h(semi-simple)e(\014ltration)h (for)h FD(\032)f FK(=)f(\()p FD(A;)15 b(B)5 b FK(\))36 b(with)e(irreducible)e(pieces)j FD(U)3445 2256 y Fx(\013)3530 2242 y FK(as)125 2350 y(ab)s(o)m(v)m(e.)55 b(First,)36 b(as)f Fz(Z)865 2364 y Fx(n)908 2350 y FK(-represen)m(tation,)h FD(A)f FK(is)f(completely)h(reducible)e(so)i(w)m(e)g(can)h(\014nd)d(a)i (basis)f(of)125 2458 y FD(V)48 b FK(=)28 b FD(k)375 2425 y Fx(r)446 2458 y FK(of)k FD(A)p FK(-eigen)m(v)m(ectors)j(v)m(ectors)40 b(^)-51 b FD(u)1523 2473 y Fx(\013;l)1646 2458 y FK(suc)m(h)32 b(that)39 b(^)-51 b FD(u)2104 2472 y Fx(\013;)p FJ(1)2208 2458 y FD(;)15 b(:)g(:)g(:)i(;)k FK(^)-51 b FD(u)2462 2473 y Fx(\013;d)2563 2481 y Fq(\013)2644 2458 y FK(is)31 b(a)i(basis)e(of)i FD(U)3208 2472 y Fx(\013)3257 2458 y FK(.)47 b(Mo)s(dify)130 2566 y(^)-50 b FD(u)177 2580 y Fx(\013;)p FJ(1)281 2566 y FD(;)15 b(:)g(:)g(:)i(;)k FK(^)-51 b FD(u)535 2581 y Fx(\013;d)636 2589 y Fq(\013)723 2566 y FK(to)39 b(another)f(basis)f FD(u)1466 2580 y Fx(\013;)p FJ(1)1570 2566 y FD(;)15 b(:)g(:)g(:)i(;)e(u)1824 2581 y Fx(\013;d)1925 2589 y Fq(\013)2012 2566 y FK(of)39 b FD(U)2186 2580 y Fx(\013)2273 2566 y FK(in)e(whic)m(h)g FD(B)43 b FK(is)37 b(blo)s(c)m(k-diagonal.)63 b(In)125 2673 y(this)40 b(basis)g(\()p FD(A;)15 b(B)5 b FK(\))44 b(=)f(Gr)1064 2687 y Fs(\017)1103 2673 y FK(\()p FD(\032)p FK(\))1220 2687 y Fx(M)1341 2673 y FK(for)e FD(M)54 b FC(2)43 b(M)1846 2687 y FJ(0)1886 2673 y FK(,)h(and)c(the)i (restriction)e(that)i FD(B)3038 2640 y Fx(m)3147 2673 y FK(=)h(Id)e(forces)125 2781 y FD(M)35 b FC(2)25 b(M)443 2795 y FJ(1)482 2781 y FK(.)3034 b Fo(\003)224 2982 y FK(This)36 b(sho)m(ws)h(that)i(if)d(Gr)1109 2996 y Fs(\017)1186 2982 y FK(:)i FD(R)q FK(\()p FD(\034)10 b FK(\))38 b FC(!)f(I)7 b FK(\()p FD(\034)j FK(\))38 b(is)f(the)h (semi-simpli\014cation)c(map)j(and)g FD(\045)g FC(2)h(I)7 b FK(\()p FD(\034)j FK(\))125 3091 y(then)29 b(the)h(\014b)s(er)f(Gr) 804 3055 y Fs(\000)p FJ(1)804 3114 y Fs(\017)898 3091 y FK(\()p FD(\045)p FK(\))i(is)e(con)m(tained)h(in)f FC(M)1763 3105 y FJ(1)1803 3091 y FK(.)40 b(Ho)m(w)m(ev)m(er,)33 b(this)28 b(\014bre)h(ma)m(y)i(not)f(b)s(e)g(the)g(whole)f(of)125 3199 y FC(M)234 3213 y FJ(1)273 3199 y FK(,)34 b(since)f(an)g(elemen)m (t)h FD(M)40 b FC(2)30 b(M)1354 3213 y FJ(1)1427 3199 y FK(ma)m(y)k(not)g(preserv)m(e)f(the)h(non-splitting)c(conditions)i (imp)s(osed)125 3307 y(b)m(y)k(the)h(semi-simple)d(\014ltration.)58 b(F)-8 b(or)37 b(instance,)h(if)d FD(M)2083 3322 y Fx(\013\014)2211 3307 y FK(=)h(0)h(for)f(a)h(\014xed)f FD(\027)2898 3321 y Fx(i)2961 3307 y FD(<)f(\014)41 b FC(\024)35 b FD(\027)3310 3321 y Fx(i)p FJ(+1)3465 3307 y FK(and)125 3415 y(for)30 b(all)g FD(\027)436 3429 y Fx(i)p Fs(\000)p FJ(1)581 3415 y FD(<)c(\013)h FC(\024)f FD(\027)905 3429 y Fx(i)964 3415 y FK(then)31 b FD(i)p FK(-th)g(step)g(of)g(the)h(semi-simple)c (\014ltration)i(is)g(not)h(maximal,)f(since)h(it)125 3523 y(can)k(b)s(e)f(extended)h(with)e FD(U)1088 3538 y Fx(\014)1135 3523 y FK(.)54 b(Hence,)37 b(the)e(c)m(haracterization)h (of)f(this)f(\014b)s(er)f(will)f(require)i(further)125 3631 y(analysis.)224 3774 y(Fix)c FD(\034)35 b FC(2)25 b(T)598 3788 y Fx(\024)673 3774 y FK(with)k FD(\024)d FK(=)e(\()p Fn(\017)p FD(;)15 b Fn(")p FK(\).)42 b(Consider)29 b(the)h(`unsymmetrized')f(v)m(ersions)h(of)h(\()3027 3774 y SDict begin H.S end 3027 3774 a 0 TeXcolorgray FK(13)p 0 TeXcolorgray 3118 3716 a SDict begin H.R end 3118 3716 a 3118 3774 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.13) cvn H.B /ANN pdfmark end 3118 3774 a FK(\))g(giv)m(en)f(b)m (y)1354 3979 y(^)1346 4002 y FC(I)6 b FK(\()p FD(\034)k FK(\))26 b(=)1686 3888 y Fx(s)1644 3915 y Ft(Y)1645 4111 y Fx(i)p FJ(=1)1807 3886 y Fx(s)1840 3896 y Fq(i)1779 3915 y Ft(Y)1776 4111 y Fx(j)t FJ(=1)1913 3901 y Ft(\020)1968 4002 y FD(R)2038 3964 y FJ(irr)2037 4024 y Fx(\024)2078 4034 y Fq(i;j)2155 3901 y Ft(\021)2209 3923 y Fx(m)2271 3933 y Fq(i;j)2365 4002 y FD(:)125 4270 y FK(There)j(is)h(a)h(quotien)m (t)f(map)1123 4247 y(^)1115 4270 y FC(I)6 b FK(\()p FD(\034)k FK(\))26 b FC(!)g(I)7 b FK(\()p FD(\034)j FK(\).)40 b(Consider)29 b(the)h(pullbac)m(k)f(diagram)125 4457 y(\(15\))1470 4457 y SDict begin H.S end 1470 4457 a 1470 4457 a SDict begin 13 H.A end 1470 4457 a 1470 4457 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.15) cvn /DEST pdfmark end 1470 4457 a 1568 4434 a FK(^)1548 4457 y FD(R)q FK(\()p FD(\034)10 b FK(\))1971 4435 y Fw(/)p Fv(/)p 1765 4436 206 4 v 1521 4626 a FJ(^)1497 4643 y(Gr)1580 4651 y Fr(\017)1643 4706 y Fw(\017)p Fv(\017)p 1642 4706 4 200 v 1998 4457 a FD(R)q FK(\()p FD(\034)g FK(\))2120 4634 y FJ(Gr)2203 4643 y Fr(\017)2093 4724 y Fw(\017)p Fv(\017)p 2091 4724 4 218 v 1563 4796 a FK(^)1555 4819 y FC(I)c FK(\()p FD(\034)k FK(\))1965 4797 y Fw(/)p Fv(/)p 1759 4798 207 4 v 1992 4819 a FC(I)d FK(\()p FD(\034)j FK(\))p FD(:)224 5042 y FK(No)m(w)30 b(w)m(e)g(shall)e(study)1044 5019 y(^)1025 5042 y FD(R)p FK(\()p FD(\034)10 b FK(\))31 b(in)d(detail.)39 b(F)-8 b(or)31 b(that)f(purp)s(ose,)e(let)h(us)g(consider)g(the)g(map) 3326 5019 y(^)3318 5042 y FC(I)7 b FK(\()p FD(\034)j FK(\))26 b FC(!)125 5150 y FK(GL)253 5164 y Fx(r)330 5150 y FK(giv)m(en)39 b(b)m(y)g FD(\045)g FK(=)h(\()p FD(A;)15 b(B)5 b FK(\))40 b FC(7!)g FD(B)5 b FK(.)66 b(The)39 b(\014b)s(er)e(o)m(v)m(er)j(\006)2179 5164 y Fm(")2260 5150 y FC(2)f FK(GL)2488 5164 y Fx(r)2526 5150 y FK(,)j(the)d(diagonal)f(matrix)h(with)125 5258 y(eigen)m(v)-5 b(alues)30 b Fn(")p FK(,)g(will)e(b)s(e)i(denoted)g(b)m(y)125 5413 y(\(16\))1266 5413 y SDict begin H.S end 1266 5413 a 1266 5413 a SDict begin 13 H.A end 1266 5413 a 1266 5413 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.16) cvn /DEST pdfmark end 1266 5413 a 1274 5390 a FK(^)1266 5413 y FC(I)1316 5427 y FJ(0)1355 5413 y FK(\()p FD(\034)10 b FK(\))26 b(=)1597 5339 y Ft(\010)1650 5413 y FD(\045)f FK(=)g(\()p FD(A;)15 b FK(\006)2027 5427 y Fm(")2069 5413 y FK(\))25 b FC(2)2223 5390 y FK(^)2215 5413 y FC(I)6 b FK(\()p FD(\034)k FK(\))2391 5339 y Ft(\011)2445 5413 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 13 13 TeXDict begin HPSdict begin 13 12 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.13) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(13)p 0 TeXcolorgray 125 266 a FK(These)32 b(are)g(semi-simple)e(represen)m(tations)j(whose)f (matrix)g FD(B)k FK(is)c(diagonal)f(\(not)i(just)f(diagonaliz-)125 374 y(able\).)224 526 y(Fix)e FD(\045)25 b FC(2)553 503 y FK(^)545 526 y FC(I)595 540 y FJ(0)634 526 y FK(\()p FD(\034)10 b FK(\).)41 b(Let)125 685 y(\(17\))1247 685 y SDict begin H.S end 1247 685 a 1247 685 a SDict begin 13 H.A end 1247 685 a 1247 685 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.17) cvn /DEST pdfmark end 1247 685 a FC(M)1356 699 y Fx(\045)1421 685 y FK(=)1517 612 y Ft(\010)1570 685 y FD(M)36 b FC(2)24 b(M)1888 699 y FJ(1)1943 685 y FC(j)15 b FD(\045)2030 699 y Fx(M)2135 685 y FC(2)2240 662 y FK(^)2221 685 y FD(R)p FK(\()p FD(\034)10 b FK(\))2410 612 y Ft(\011)2464 685 y FD(;)125 835 y FK(that)38 b(is,)g(the)g(set)g (of)g(admissible)d(upp)s(er-triangular)f(completions)j(of)g FD(\045)p FK(.)62 b(W)-8 b(e)39 b(also)f(consider)e(the)125 943 y(gauge)31 b(group)f(of)g FC(M)852 957 y Fx(\045)923 943 y FK(de\014ned)f(as)125 1101 y(\(18\))515 1101 y SDict begin H.S end 515 1101 a 515 1101 a SDict begin 13 H.A end 515 1101 a 515 1101 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.18) cvn /DEST pdfmark end 515 1101 a FC(G)569 1115 y Fx(\045)635 1101 y FK(=)c FC(f)p FD(P)39 b FC(2)25 b FK(GL)1087 1115 y Fx(r)1155 1101 y FC(j)15 b FK(for)31 b(all)e FD(M)35 b FC(2)25 b(M)1779 1115 y Fx(\045)1820 1101 y FD(;)15 b(P)e(\045)1978 1115 y Fx(M)2057 1101 y FD(P)2128 1063 y Fs(\000)p FJ(1)2247 1101 y FK(=)25 b FD(\045)2390 1116 y Fx(M)2465 1097 y Fr(0)2492 1101 y FD(;)46 b FK(for)30 b(some)g FD(M)3027 1063 y Fs(0)3076 1101 y FC(2)25 b(M)3271 1115 y Fx(\045)3311 1101 y FC(g)p FD(:)125 1265 y SDict begin H.S end 125 1265 a 125 1265 a SDict begin 13 H.A end 125 1265 a 125 1265 a SDict begin [/View [/XYZ H.V]/Dest (theorem.4.4) cvn /DEST pdfmark end 125 1265 a 0 TeXcolorgray FL(Theorem)48 b(4.4.)p 0 TeXcolorgray 50 w FC(M)904 1279 y Fx(\045)989 1265 y Fp(is)c(an)h(algebr)-5 b(aic)46 b(variety)f(and)h FC(G)2188 1279 y Fx(\045)2273 1265 y Fp(is)e(an)h(algebr)-5 b(aic)46 b(sub)-5 b(gr)g(oup)46 b(of)e FK(GL)3546 1279 y Fx(r)3584 1265 y Fp(.)125 1373 y(Mor)-5 b(e)g(over,)35 b(they)f(ar)-5 b(e)35 b(indep)-5 b(endent)35 b(of)f(the)g(r)-5 b(epr)g(esentation,)37 b(in)c(the)h(sense)g(that)h FC(M)3096 1387 y Fx(\045)3164 1348 y FC(\030)3164 1377 y FK(=)3262 1373 y FC(M)3371 1388 y Fx(\045)3407 1369 y Fr(0)3467 1373 y Fp(and)125 1495 y FC(G)179 1509 y Fx(\045)244 1470 y FC(\030)244 1500 y FK(=)340 1495 y FC(G)394 1511 y Fx(\045)430 1492 y Fr(0)489 1495 y Fp(for)f(any)f FD(\045;)15 b(\045)943 1462 y Fs(0)992 1495 y FC(2)1086 1472 y FK(^)1078 1495 y FC(I)1128 1509 y FJ(0)1167 1495 y FK(\()p FD(\034)10 b FK(\))p Fp(.)p 0 TeXcolorgray 125 1694 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Once)23 b(w)m(e)f(kno)m(w)g(that)h FC(M)1282 1708 y Fx(\045)1344 1694 y FK(is)f(an)g(algebraic)f(v)-5 b(ariet)m(y)d(,)25 b(then)d(the)g(fact)h(that)g FC(G)2994 1708 y Fx(\045)3057 1694 y FK(is)e(an)h(algebraic)125 1802 y(subgroup)28 b(follo)m(ws)i(easily)-8 b(.)40 b(Indeed,)30 b(consider)f(the)i(cartesian)f(square)1494 1959 y FD(Z)1829 1937 y Fw(/)p Fv(/)p 1589 1938 240 4 v 1528 2212 a Fw(\017)p Fv(\017)p 1526 2212 4 226 v 1856 1959 a FC(M)1965 1973 y Fx(\045)2026 1959 y FC(\002)20 b FK(GL)2245 1973 y Fx(r)2069 2212 y Fw(\017)p Fv(\017)p 2068 2212 4 200 v 1453 2301 a FC(M)1562 2315 y Fx(\045)1948 2279 y Fw(/)p Fv(/)p 1630 2280 319 4 v 1975 2301 a FC(M)2084 2315 y FJ(1)2139 2301 y FD(;)125 2473 y FK(where)32 b(the)h(b)s(ottom)h (morphism)d(is)h(the)h(inclusion)d(and)j(the)g(righ)m(tmost)g(map)g(is) f(\()p FD(P)s(;)15 b(\045)3172 2487 y Fx(M)3252 2473 y FK(\))30 b FC(7!)g(M)3547 2487 y FJ(1)3586 2473 y FK(.)125 2581 y(The)f(pullbac)m(k)g(v)-5 b(ariet)m(y)31 b(is)e(th)m(us)969 2731 y FD(Z)j FK(=)1159 2658 y Ft(\010)1212 2731 y FK(\()p FD(P)s(;)15 b(M)10 b FK(\))26 b FC(2)f FK(GL)1722 2745 y Fx(r)1775 2731 y FC(\002M)1955 2745 y Fx(\045)2010 2731 y FC(j)15 b FD(P)e(\045)2168 2745 y Fx(M)2247 2731 y FD(P)2318 2694 y Fs(\000)p FJ(1)2438 2731 y FC(2)25 b(M)2633 2745 y Fx(\045)2673 2658 y Ft(\011)2741 2731 y FD(:)125 2882 y FK(By)37 b(de\014nition,)g FC(G)766 2896 y Fx(\045)844 2882 y FK(=)g FD(\031)s FK(\()p FD(Z)7 b FK(\))37 b(where)g FD(\031)j FK(:)e(GL)1736 2896 y Fx(r)1789 2882 y FC(\002M)1969 2896 y Fx(\045)2046 2882 y FC(!)f FK(GL)2302 2896 y Fx(r)2378 2882 y FK(is)f(the)i(pro)5 b(jection)37 b(on)m(to)h(the)g(\014rst)125 2990 y(comp)s(onen)m(t.)h (The)26 b(pro)5 b(jection)25 b(of)h(an)g(algebraic)g(v)-5 b(ariet)m(y)26 b(is)f(a)i(constructible)e(set)h(\(a)h(disjoin)m(t)d (union)125 3098 y(of)j(lo)s(cally)g(closed)g(subsets)g(in)g(the)h (Zariski)e(top)s(ology\).)40 b(As)28 b FC(G)2274 3112 y Fx(\045)2342 3098 y FK(is)f(a)h(group,)g(it)f(is)g(an)h(homogeneous) 125 3205 y(space.)38 b(Hence)23 b(taking)f(a)h(smo)s(oth)f(p)s(oin)m(t) f(whic)m(h)g(has)i(an)f(op)s(en)f(neigh)m(b)s(ourho)s(o)s(d)f(where)h FC(G)3202 3219 y Fx(\045)3265 3205 y FK(is)g(closed,)125 3313 y(w)m(e)31 b(see)h(that)g(this)e(happ)s(ens)g(at)i(ev)m(ery)g(p)s (oin)m(t.)43 b(Therefore)31 b FC(G)2237 3327 y Fx(\045)2308 3313 y FK(is)g(quasi-pro)5 b(jectiv)m(e,)31 b(and)g(hence)g(an)125 3421 y(algebraic)f(v)-5 b(ariet)m(y)d(.)224 3565 y(With)36 b(resp)s(ect)g(to)h FC(M)1008 3579 y Fx(\045)1049 3565 y FK(,)h(tak)m(e)g FD(M)45 b FK(=)35 b FC(\010)15 b FD(M)1728 3580 y Fx(\013\014)1855 3565 y FC(2)35 b(M)2060 3579 y FJ(1)2100 3565 y FK(.)58 b(In)36 b(order)f(to)i(lie)e(in)g FC(M)3011 3579 y Fx(\045)3052 3565 y FK(,)j(the)e(matrices)125 3673 y FD(M)213 3688 y Fx(\013\014)337 3673 y FK(m)m(ust)c(satisfy)g(t) m(w)m(o)i(conditions.)44 b(In)32 b(the)g(\014rst)f(place,)i(if)e FD(\027)2352 3687 y Fx(i)p Fs(\000)p FJ(1)2499 3673 y FD(<)d(\013)g(<)g(\014)34 b FC(\024)28 b FD(\027)3012 3687 y Fx(i)3072 3673 y FK(then)k(w)m(e)h(m)m(ust)125 3781 y(ha)m(v)m(e)e FD(M)422 3796 y Fx(\013\014)540 3781 y FK(=)25 b(0.)41 b(Th)m(us)29 b(w)m(e)i(set)g(the)g(linear)e(subspace) 448 3936 y FC(H)d FK(=)647 3862 y Ft(\010)700 3936 y FD(M)35 b FK(=)25 b FC(\010)15 b FD(M)1093 3951 y Fx(\013\014)1201 3936 y FC(j)g FD(M)1329 3951 y Fx(\013\014)1447 3936 y FK(=)25 b(0)p FD(;)46 b FK(if)29 b FD(\027)1787 3950 y Fx(i)p Fs(\000)p FJ(1)1931 3936 y FD(<)c(\013)h(<)f(\014)30 b FC(\024)25 b FD(\027)2429 3950 y Fx(i)2457 3936 y FD(;)15 b(i)26 b FK(=)f(2)p FD(;)15 b(:)g(:)g(:)i(;)e(s)2940 3862 y Ft(\011)3018 3936 y FC(\032)25 b(M)3223 3950 y FJ(1)3263 3936 y FD(:)224 4121 y FK(Second,)34 b(if)f FD(\027)693 4135 y Fx(i)p Fs(\000)p FJ(1)842 4121 y FD(<)d(\013)h FC(\024)f FD(\027)1178 4135 y Fx(i)1239 4121 y FK(and)j FD(\027)1464 4135 y Fx(i)1523 4121 y FD(<)d(\014)35 b FC(\024)c FD(\027)1857 4135 y Fx(i)p FJ(+1)1975 4121 y FK(,)j(then)f(the)h(maximalit)m(y)f(of)g(the)h(semi-simple)125 4229 y(sub-represen)m(tations)29 b(implies)f(that)j(w)m(e)f(cannot)h (ha)m(v)m(e)h(a)f(larger)f(decomp)s(osition)125 4379 y(\(19\))1326 4379 y SDict begin H.S end 1326 4379 a 1326 4379 a SDict begin 13 H.A end 1326 4379 a 1326 4379 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.19) cvn /DEST pdfmark end 1326 4379 a 15 w FK(Gr)1448 4393 y Fx(i)p Fs(\000)p FJ(1)1566 4379 y FK(\()p FD(\045)1648 4393 y Fx(M)1728 4379 y FK(\))20 b FC(\010)g FD(U)1936 4394 y Fx(\014)2009 4379 y FC(\032)25 b FD(V)10 b(=V)2266 4393 y Fx(i)p Fs(\000)p FJ(1)2385 4379 y FD(:)125 4529 y FK(W)-8 b(e)37 b(ha)m(v)m(e)g(a)f(decomp)s(osition)f(\()1223 4529 y SDict begin H.S end 1223 4529 a 0 TeXcolorgray FK(19)p 0 TeXcolorgray 1314 4471 a SDict begin H.R end 1314 4471 a 1314 4529 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.19) cvn H.B /ANN pdfmark end 1314 4529 a FK(\))h(when)f(there)h (is)f(a)h(c)m(hange)h(of)f(basis)f(suc)m(h)h(that)g FD(M)3189 4544 y Fx(\013\014)3316 4529 y FK(=)e(0)j(for)125 4637 y(all)29 b FD(\013)d FK(=)g FD(\027)477 4651 y Fx(i)p Fs(\000)p FJ(1)616 4637 y FK(+)20 b(1)p FD(;)15 b(:)g(:)g(:)i(;)e(\027) 999 4651 y Fx(i)1027 4637 y FK(.)42 b(Let)31 b(us)f(\014x)g FD(\013;)15 b(\014)37 b FK(and)30 b(let)h(us)f(only)f(fo)s(cus)i(on)f (these)h(blo)s(c)m(ks.)41 b(There,)31 b(w)m(e)125 4745 y(ha)m(v)m(e)g(that)g FD(\045)25 b FK(=)g(\()p FD(A;)15 b(B)5 b FK(\))31 b(and)f FD(\045)1206 4759 y Fx(M)1310 4745 y FK(=)25 b(\()p FD(A;)15 b(B)1618 4759 y Fx(M)1698 4745 y FK(\),)31 b(where)666 4950 y FD(A)25 b FK(=)855 4822 y Ft(\022)922 4895 y FD(A)990 4909 y Fx(\013)1158 4895 y FK(0)958 5003 y(0)120 b FD(A)1191 5018 y Fx(\014)1238 4822 y Ft(\023)1320 4950 y FD(;)107 b(B)30 b FK(=)1647 4822 y Ft(\022)1713 4895 y FD(B)1782 4909 y Fx(\013)1950 4895 y FK(0)1750 5003 y(0)120 b FD(B)1984 5018 y Fx(\014)2031 4822 y Ft(\023)2113 4950 y FD(;)106 b(B)2313 4964 y Fx(M)2418 4950 y FK(=)2514 4822 y Ft(\022)2580 4895 y FD(B)2649 4909 y Fx(\013)2782 4895 y FD(M)2870 4910 y Fx(\013\014)2617 5003 y FK(0)152 b FD(B)2883 5018 y Fx(\014)2963 4822 y Ft(\023)3045 4950 y FD(;)125 5150 y FK(where)28 b(the)g(matrices)h FD(B)972 5164 y Fx(\013)1021 5150 y FD(;)15 b(B)1130 5165 y Fx(\014)1206 5150 y FK(are)29 b(diagonal.)40 b(Th)m(us)27 b(a)i(c)m(hange)h(of)f(basis)e FD(P)42 b FK(has)28 b(to)h(b)s(e)f(of)h (the)g(form)1537 5360 y FD(P)38 b FK(=)1729 5232 y Ft(\022)1796 5305 y FD(P)1854 5319 y Fx(\013)2009 5305 y FD(S)1827 5413 y FK(0)115 b FD(P)2045 5428 y Fx(\014)2092 5232 y Ft(\023)2174 5360 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 14 14 TeXDict begin HPSdict begin 14 13 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.14) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(14)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(Since)43 b FD(P)13 b(\045)494 280 y Fx(M)573 266 y FD(P)644 233 y Fs(\000)p FJ(1)783 266 y FK(has)45 b(to)g(lie)f(in)f FC(M)1450 280 y Fx(\045)1491 266 y FK(,)48 b(w)m(e)e(m)m(ust)e(ha)m(v)m (e)i FD(P)13 b(AP)2386 233 y Fs(\000)p FJ(1)2530 266 y FK(=)49 b FD(A)p FK(,)g(and)44 b(this)g(forces)h(that)125 374 y FD(P)183 388 y Fx(\013)261 374 y FK(=)28 b FD(\025)413 388 y Fx(\013)463 374 y FK(Id)o(,)33 b FD(P)662 389 y Fx(\014)738 374 y FK(=)28 b FD(\025)890 389 y Fx(\014)938 374 y FK(Id)j(for)h(some)h FD(\025)1477 388 y Fx(\013)1527 374 y FD(;)15 b(\025)1620 389 y Fx(\014)1696 374 y FC(2)28 b FD(k)1835 341 y Fs(\003)1874 374 y FK(.)47 b(No)m(w,)34 b(w)m(e)f(consider)e(a)i(c)m(hange)g(of)g(co)s(ordinates)125 482 y(of)d(the)h(form)125 663 y(\(20\))1523 663 y SDict begin H.S end 1523 663 a 1523 663 a SDict begin 13 H.A end 1523 663 a 1523 663 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.20) cvn /DEST pdfmark end 1523 663 a FD(Q)25 b FK(=)1716 535 y Ft(\022)1783 608 y FD(Q)1855 622 y Fx(\013)2024 608 y FK(0)1821 716 y(0)121 b FD(Q)2059 731 y Fx(\014)2106 535 y Ft(\023)2188 663 y FD(;)125 863 y FK(suc)m(h)30 b(that)761 1008 y FD(QAQ)973 970 y Fs(\000)p FJ(1)1092 1008 y FK(=)1188 879 y Ft(\022)1255 951 y FK(diag)q(\()p FD(\017)1495 965 y Fx(\013;)p FJ(1)1600 951 y FD(;)15 b(:)g(:)g(:)h(;)f(\017)1838 966 y Fx(\013;d)1939 974 y Fq(\013)1988 951 y FK(\))442 b(0)1617 1058 y(0)j(diag)q(\()p FD(\017)2347 1073 y Fx(\014)s(;)p FJ(1)2449 1058 y FD(;)15 b(:)g(:)g(:)i(;)e(\017)2688 1073 y Fx(\014)s(;d)2787 1085 y Fq(\014)2832 1058 y FK(\))2868 879 y Ft(\023)2950 1008 y FD(:)125 1207 y FK(It)23 b(is)f(straigh)m(tforw)m(ard)h(to)h(c)m (hec)m(k)h(that)f FD(S)30 b FK(=)25 b FD(Q)1719 1221 y Fx(\013)1768 1207 y FK(\002)p FD(Q)1911 1169 y Fs(\000)p FJ(1)1911 1236 y Fx(\014)2005 1207 y FK(,)g(where)e(\002)i(=)g(\()p FD(\022)2581 1221 y Fx(ij)2642 1207 y FK(\))e(is)f(a)i(matrix)f(with)f FD(\022)3385 1221 y Fx(ij)3470 1207 y FK(=)j(0)125 1320 y(if)k FD(\017)245 1334 y Fx(\013;i)363 1320 y FC(6)p FK(=)c FD(\017)496 1335 y Fx(\014)s(;j)595 1320 y FK(.)41 b(In)29 b(this)h(fashion,)f(the)i(action)f(of)h FD(P)43 b FK(is)30 b(giv)m(en)g(b)m(y)701 1479 y FD(M)789 1494 y Fx(\013\014)907 1479 y FC(7!)15 b FD(\025)1066 1493 y Fx(\013)1116 1479 y FD(\025)1169 1441 y Fs(\000)p FJ(1)1169 1509 y Fx(\014)1263 1479 y FD(M)1351 1494 y Fx(\013\014)1464 1479 y FK(+)20 b FD(\025)1608 1441 y Fs(\000)p FJ(1)1608 1509 y Fx(\014)1717 1479 y FK(\()q FD(S)5 b(B)1883 1494 y Fx(\014)1950 1479 y FC(\000)20 b FD(B)2110 1493 y Fx(\013)2159 1479 y FD(S)5 b FK(\))1023 1661 y(=)25 b FD(\025)1172 1675 y Fx(\013)1222 1661 y FD(\025)1275 1623 y Fs(\000)p FJ(1)1275 1691 y Fx(\014)1369 1661 y FD(M)1457 1676 y Fx(\013\014)1570 1661 y FK(+)20 b FD(\025)1714 1623 y Fs(\000)p FJ(1)1714 1691 y Fx(\014)1824 1560 y Ft(\020)1878 1661 y FD(Q)1950 1675 y Fx(\013)1999 1661 y FK(\002)p FD(Q)2142 1623 y Fs(\000)p FJ(1)2142 1691 y Fx(\014)2236 1661 y FD(B)2305 1676 y Fx(\014)2372 1661 y FC(\000)g FD(B)2532 1675 y Fx(\013)2582 1661 y FD(Q)2654 1675 y Fx(\013)2703 1661 y FK(\002)p FD(Q)2846 1623 y Fs(\000)p FJ(1)2846 1691 y Fx(\014)2940 1560 y Ft(\021)3009 1661 y FD(:)125 1833 y FK(Observ)m(e)37 b(that)h(this)e(action)h(preserv)m (es)h(the)f(conditions)f(of)i(Prop)s(osition)2758 1833 y SDict begin H.S end 2758 1833 a 0 TeXcolorgray FK(4.1)p 0 TeXcolorgray 2874 1775 a SDict begin H.R end 2874 1775 a 2874 1833 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.1) cvn H.B /ANN pdfmark end 2874 1833 a FK(.)61 b(W)-8 b(e)39 b(consider)d(the)125 1941 y(linear)30 b(space)j FD(`)662 1956 y Fx(\013\014)783 1941 y FK(=)28 b FC(h)p FD(Q)989 1955 y Fx(\013)1039 1941 y FK(\002)p FD(Q)1182 1903 y Fs(\000)p FJ(1)1182 1971 y Fx(\014)1276 1941 y FD(B)1345 1956 y Fx(\014)1413 1941 y FC(\000)22 b FD(B)1575 1955 y Fx(\013)1624 1941 y FD(Q)1696 1955 y Fx(\013)1745 1941 y FK(\002)p FD(Q)1888 1903 y Fs(\000)p FJ(1)1888 1971 y Fx(\014)1982 1941 y FC(i)p FK(.)47 b(Observ)m(e)32 b(that)h FD(`)2677 1956 y Fx(\013\014)2802 1941 y FK(only)e(dep)s(ends) g(on)h(the)125 2055 y(base)e(represen)m(tation)h FD(\045)p FK(.)224 2198 y(In)37 b(this)g(w)m(a)m(y)-8 b(,)42 b(the)c(condition)e (that,)41 b(after)d(a)h(c)m(hange)g(of)f(v)-5 b(ariables,)38 b(the)h(blo)s(c)m(ks)e FD(M)3216 2213 y Fx(\013\014)3346 2198 y FK(do)h(not)125 2306 y(v)-5 b(anish)30 b(for)i(all)f FD(\027)721 2320 y Fx(i)p Fs(\000)p FJ(1)867 2306 y FD(<)d(\013)h FC(\024)f FD(\027)1197 2320 y Fx(i)1225 2306 y FK(,)33 b(is)e(that)h(it)g(cannot)h(happ)s(en)d(that)j FD(M)2576 2321 y Fx(\013\014)2697 2306 y FC(2)28 b FD(`)2824 2321 y Fx(\013\014)2948 2306 y FK(for)k(all)f FD(\013)p FK(.)46 b(Hence,)125 2414 y(w)m(e)30 b(tak)m(e)481 2564 y FD(L)543 2579 y Fx(\014)615 2564 y FK(=)820 2478 y Ft(M)711 2673 y Fx(\027)746 2683 y Fq(i)p Fr(\000)p FG(1)850 2673 y Fx(<\013)p Fs(\024)p Fx(\027)1040 2683 y Fq(i)1082 2564 y FD(`)1120 2579 y Fx(\013\014)1237 2564 y FC(\032)1442 2478 y Ft(M)1333 2673 y Fx(\027)1368 2683 y Fq(i)p Fr(\000)p FG(1)1473 2673 y Fx(<\013)p Fs(\024)p Fx(\027)1663 2683 y Fq(i)1704 2564 y FK(Hom)1893 2579 y Fx(k)1951 2564 y FK(\()q FD(U)2049 2579 y Fx(\014)2096 2564 y FD(;)15 b(U)2198 2578 y Fx(\013)2248 2564 y FK(\))25 b(=)g(Hom)2594 2579 y Fx(k)2652 2564 y FK(\()p FD(U)2749 2579 y Fx(\014)2796 2564 y FD(;)15 b FK(Gr)2943 2578 y Fx(i)p Fs(\000)p FJ(1)3062 2564 y FK(\()p FD(\045)p FK(\)\))h FD(:)224 2853 y FK(In)32 b(the)h(case)h(that)f(all)f(the)h(isot)m(ypic)f(comp)s(onen)m(ts)h(of)g (Gr)2233 2867 y Fx(i)2261 2853 y FK(\()p FD(\045)2343 2867 y Fx(M)2422 2853 y FK(\))h(are)f(of)g(m)m(ultiplicit)m(y)c(one)k (\(that)125 2961 y(is,)27 b FD(m)319 2975 y Fx(i;j)424 2961 y FK(=)e(1)j(for)f(all)f FD(j)5 b FK(\),)29 b(then)e(the)h(only)e (p)s(ossible)f(decomp)s(ositions)h(\()2543 2961 y SDict begin H.S end 2543 2961 a 0 TeXcolorgray FK(19)p 0 TeXcolorgray 2634 2903 a SDict begin H.R end 2634 2903 a 2634 2961 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.19) cvn H.B /ANN pdfmark end 2634 2961 a FK(\))h(m)m(ust)h(in)m(v)m(olv)m (e)f(one)h(of)f(the)125 3069 y FD(U)187 3084 y Fx(\014)234 3069 y FK(.)40 b(Therefore)31 b(the)f(condition)f(means)h(that)1246 3219 y(p)1297 3234 y Fx(\014)1344 3219 y FK(\()p FD(M)10 b FK(\))26 b(=)f(\()p FD(M)1757 3234 y Fx(\013\014)1850 3219 y FK(\))1885 3233 y Fx(\027)1920 3243 y Fq(i)p Fr(\000)p FG(1)2024 3233 y Fx(<\013)p Fs(\024)p Fx(\027)2214 3243 y Fq(i)2280 3219 y FD(=)-55 b FC(2)25 b FD(L)2418 3234 y Fx(\014)2465 3219 y FD(;)125 3368 y FK(for)30 b(all)f FD(\027)435 3382 y Fx(i)488 3368 y FD(<)c(\014)31 b FC(\024)25 b FD(\027)807 3382 y Fx(i)p FJ(+1)925 3368 y FK(.)41 b(So)30 b(setting)441 3518 y FC(L)25 b FK(=)625 3444 y Ft(\010)678 3518 y FD(M)35 b FK(=)25 b FC(\010)15 b FD(M)1071 3533 y Fx(\013\014)1179 3518 y FC(j)g FK(p)1270 3533 y Fx(\014)1317 3518 y FK(\()p FD(M)10 b FK(\))36 b FD(=)-55 b FC(2)25 b FD(L)1659 3533 y Fx(\014)1706 3518 y FD(;)46 b FK(for)30 b(all)f FD(\027)2087 3532 y Fx(i)2140 3518 y FD(<)c(\014)31 b FC(\024)25 b FD(\027)2459 3532 y Fx(i)p FJ(+1)2577 3518 y FD(;)15 b(i)26 b FK(=)f(1)p FD(;)15 b(:)g(:)g(:)i(;)e(s)20 b FC(\000)g FK(1)3216 3444 y Ft(\011)3270 3518 y FD(;)125 3686 y FK(w)m(e)25 b(ha)m(v)m(e)i(that)e FC(M)758 3700 y Fx(\045)824 3686 y FK(=)g FC(H)11 b(\\)f(L)p FK(.)37 b(Observ)m(e)25 b(that)h FC(H)g FK(is)e(indep)s(enden)m(t)f(of)i FD(\045)g FK(and,)h(for)f(an)m (y)h FD(\045;)15 b(\045)3242 3653 y Fs(0)3291 3686 y FC(2)3384 3663 y FK(^)3377 3686 y FC(I)3427 3700 y FJ(0)3465 3686 y FK(\()p FD(\034)10 b FK(\),)125 3794 y(w)m(e)30 b(ha)m(v)m(e)i(that)f FC(L)753 3769 y(\030)753 3798 y FK(=)849 3794 y FC(L)912 3761 y Fs(0)935 3794 y FK(.)41 b(Hence,)31 b(w)m(e)g(ha)m(v)m(e)g(that)g FC(M)1945 3808 y Fx(\045)2011 3769 y FC(\030)2011 3798 y FK(=)2107 3794 y FC(M)2216 3809 y Fx(\045)2252 3790 y Fr(0)2279 3794 y FK(.)224 3937 y(In)47 b(the)g(general)g(case,)53 b(the)47 b(isot)m(ypic)g(comp)s(onen)m(ts)g(can)h(ha)m(v)m(e)g(m)m(ultiplicit)m (y)c FD(m)3132 3951 y Fx(i;j)3265 3937 y FD(>)53 b FK(1.)92 b(If)125 4045 y FD(U)187 4060 y Fx(\014)227 4069 y FG(1)265 4045 y FD(;)15 b(:)g(:)g(:)i(;)e(U)529 4060 y Fx(\014)569 4072 y Fq(k)641 4045 y FK(are)31 b(the)g(isomorphic)d(comp)s(onen)m (ts,)j(then)f(the)g(condition)f(means)i(that)1212 4194 y FC(h)p FK(p)1298 4209 y Fx(\014)1338 4218 y FG(1)1376 4194 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b(:)g(:)g(:)i(;)e FK(p)1797 4209 y Fx(\014)1837 4221 y Fq(k)1879 4194 y FK(\()p FD(M)10 b FK(\))p FC(i)2082 4208 y Fs(\003)2143 4194 y FC(\\)20 b FD(L)2286 4209 y Fx(\014)2358 4194 y FC(6)p FK(=)25 b FC(;)p FD(:)125 4344 y FK(Here)40 b FD(L)411 4359 y Fx(\014)498 4344 y FK(is)f(an)m(y)h(of)g(the)h FD(L)1122 4359 y Fx(\014)1162 4369 y Fq(j)1198 4344 y FK(,)h(since)e(all)f FD(Q)1706 4359 y Fx(\014)1746 4369 y Fq(j)1822 4344 y FK(are)h(the)g(same,)j(and)d FC(h)p FD(v)2680 4358 y FJ(1)2719 4344 y FD(;)15 b(:)g(:)g(:)i(;)e(v)2965 4358 y Fx(m)3032 4344 y FC(i)3067 4358 y Fs(\003)3147 4344 y FK(denotes)40 b(the)125 4452 y(collection)29 b(of)h(non-trivial) e(linear)h(com)m(binations)g(of)h FD(v)2031 4466 y FJ(1)2070 4452 y FD(;)15 b(:)g(:)g(:)i(;)e(v)2316 4466 y Fx(m)2383 4452 y FK(,)30 b(that)h(is)e(of)h(com)m(binations)f(of)h(the)125 4560 y(form)f FD(\025)392 4574 y FJ(1)432 4560 y FD(v)476 4574 y FJ(1)536 4560 y FK(+)20 b FD(:)15 b(:)g(:)21 b FK(+)f FD(\025)897 4574 y Fx(m)963 4560 y FD(v)1007 4574 y Fx(m)1104 4560 y FK(with)29 b(\()p FD(\025)1399 4574 y FJ(1)1439 4560 y FD(;)15 b(:)g(:)g(:)i(;)e(\025)1694 4574 y Fx(m)1761 4560 y FK(\))25 b FC(6)p FK(=)g(\(0)p FD(;)15 b(:)g(:)g(:)j(;)d FK(0\).)42 b(W)-8 b(e)31 b(de\014ne)f(an)g (algebraic)g(set)125 4787 y(\(21\))574 4787 y SDict begin H.S end 574 4787 a 574 4787 a SDict begin 13 H.A end 574 4787 a 574 4787 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.21) cvn /DEST pdfmark end 574 4787 a -77 x FC(L)25 b FK(=)758 4636 y Ft(\010)811 4710 y FD(M)g FC(j)15 b(h)p FK(p)1050 4725 y Fx(\014)1090 4734 y FG(1)1129 4710 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b(:)g(:)g(:)i(;)e FK(p)1550 4725 y Fx(\014)1590 4737 y Fq(k)1632 4710 y FK(\()p FD(M)10 b FK(\))p FC(i)1835 4724 y Fs(\003)1896 4710 y FC(\\)19 b FD(L)2038 4725 y Fx(\014)2111 4710 y FC(6)p FK(=)25 b FC(;)p FD(;)979 4859 y FK(for)31 b(all)e FD(\027)1290 4873 y Fx(i)1343 4859 y FD(<)c(\014)1490 4873 y FJ(1)1530 4859 y FD(;)15 b(:)g(:)g(:)i(;)e(\014)1783 4874 y Fx(k)1851 4859 y FC(\024)25 b FD(\027)1992 4873 y Fx(i)p FJ(+1)2141 4859 y FK(isot)m(ypic)o FD(;)15 b(i)26 b FK(=)f(1)p FD(;)15 b(:)g(:)g(:)i(;)e(s)21 b FC(\000)f FK(1)3084 4785 y Ft(\011)3137 4859 y FD(:)125 5009 y FK(The)29 b(algebraicit)m(y)i(of)f(this)f (condition)g(is)h(equiv)-5 b(alen)m(t)30 b(to)h(the)f(non-v)-5 b(anishing)28 b(of)j(the)f(elemen)m(t)755 5192 y(p)806 5207 y Fx(\014)846 5216 y FG(1)884 5192 y FK(\()p FD(M)10 b FK(\))21 b FC(^)f FD(:)15 b(:)g(:)21 b FC(^)f FK(p)1412 5207 y Fx(\014)1452 5219 y Fq(k)1493 5192 y FK(\()p FD(M)10 b FK(\))26 b FC(2)1773 5105 y Ft(^)1874 5122 y Fx(k)1932 5192 y FK(\(Hom)16 b(\()p FD(U)2269 5207 y Fx(\014)2317 5192 y FD(;)f FK(Gr)2464 5206 y Fx(i)p Fs(\000)p FJ(1)2582 5192 y FK(\()p FD(\045)p FK(\)\))h FD(=L)2857 5207 y Fx(\014)2905 5192 y FK(\))f FD(:)224 5413 y FK(As)31 b(b)s(efore)e FC(M)740 5427 y Fx(\045)806 5413 y FK(=)c FC(H)c(\\)f(L)p FK(,)30 b(and)g FC(M)1485 5427 y Fx(\045)1551 5388 y FC(\030)1551 5417 y FK(=)1647 5413 y FC(M)1756 5428 y Fx(\045)1792 5409 y Fr(0)1849 5413 y FK(for)g(an)m(y)h FD(\045;)15 b(\045)2294 5380 y Fs(0)2342 5413 y FC(2)2436 5390 y FK(^)2428 5413 y FC(I)2478 5427 y FJ(0)2517 5413 y FK(\()p FD(\034)10 b FK(\).)879 b Fo(\003)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 15 15 TeXDict begin HPSdict begin 15 14 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.15) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(15)p 0 TeXcolorgray 224 266 a FK(With)30 b(this)f(result)h(at)h(hand,)e(w)m(e)i(get)h(the)e (follo)m(wing.)125 431 y SDict begin H.S end 125 431 a 125 431 a SDict begin 13 H.A end 125 431 a 125 431 a SDict begin [/View [/XYZ H.V]/Dest (theorem.4.5) cvn /DEST pdfmark end 125 431 a 0 TeXcolorgray FL(Prop)s(osition)36 b(4.5.)p 0 TeXcolorgray 42 w Fp(Fix)d FD(\024)g Fp(and)g(a)g(typ)-5 b(e)34 b FD(\034)h FC(2)25 b(T)1798 445 y Fx(\024)1842 431 y Fp(.)42 b(The)33 b(map)1533 564 y FK(^)1503 587 y(Gr)1609 601 y Fs(\017)1674 587 y FK(:)1744 564 y(^)1725 587 y FD(R)p FK(\()p FD(\034)10 b FK(\))26 b FC(!)2064 564 y FK(^)2057 587 y FC(I)6 b FK(\()p FD(\034)k FK(\))125 739 y Fp(is)36 b(lo)-5 b(c)g(al)5 b(ly)38 b(trivial)f(in)f(the)g (Zariski)h(top)-5 b(olo)g(gy.)55 b(Mor)-5 b(e)g(over,)38 b(the)e(\014b)-5 b(er)37 b(of)f(this)h(map)h(is)e(the)g(quotient)125 846 y FK(\(\()p FC(M)304 860 y Fx(\045)365 846 y FC(\002)20 b FK(GL)584 860 y Fx(r)622 846 y FK(\))15 b FD(=)p FC(G)771 860 y Fx(\045)812 846 y FK(\))h FD(=)p FK(\()943 778 y Ft(Q)1029 873 y Fx(\013)1094 846 y FK(PGL)1284 861 y Fx(d)1320 869 y Fq(\013)1369 846 y FK(\))p Fp(,)33 b(wher)-5 b(e)33 b FD(d)1768 860 y Fx(\013)1843 846 y FK(=)25 b(dim)14 b FD(U)2168 860 y Fx(\013)2217 846 y Fp(.)p 0 TeXcolorgray 125 1061 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Let)34 b(us)d(lo)s(ok)i(at)g(the)g(\014b)s(er)e (of)h(the)h(map)1872 1038 y(^)1841 1061 y(Gr)1948 1075 y Fs(\017)1988 1061 y FK(.)47 b(Fix)32 b FD(\045)d FC(2)2398 1038 y FK(^)2390 1061 y FC(I)7 b FK(\()p FD(\034)j FK(\))33 b(and)f(let)g FD(\045)2959 1075 y FJ(0)3028 1061 y FC(2)3125 1038 y FK(^)3117 1061 y FC(I)3167 1075 y FJ(0)3206 1061 y FK(\()p FD(\034)10 b FK(\))33 b(b)s(e)f(the)125 1169 y(diagonal)d(elemen)m(t)i(conjugated)g(to)g FD(\045)p FK(.)41 b(W)-8 b(e)31 b(ha)m(v)m(e)h(a)f(natural)e(map)841 1325 y(\011)c(:)h FC(M)1097 1339 y Fx(\045)1133 1348 y FG(0)1192 1325 y FC(\002)20 b FK(GL)1411 1339 y Fx(r)1474 1325 y FC(!)1610 1302 y FK(^)1590 1325 y FD(R)q FK(\()p FD(\034)10 b FK(\))p FD(;)107 b FK(\011\()p FD(M)5 b(;)15 b(Q)p FK(\))26 b(=)f FD(Q)p FK(\()p FD(\045)2534 1339 y FJ(0)2574 1325 y FK(\))2609 1339 y Fx(M)2688 1325 y FD(Q)2760 1287 y Fs(\000)p FJ(1)2869 1325 y FD(:)125 1479 y FK(Moreo)m(v)m(er,)40 b(\011\()p FD(M)5 b(;)15 b(Q)p FK(\))37 b(=)e(\011\()p FD(M)1250 1446 y Fs(0)1274 1479 y FD(;)15 b(Q)1386 1446 y Fs(0)1410 1479 y FK(\))37 b(if)e(and)h(only)g(if)g FD(Q)2122 1446 y Fs(0\000)p FJ(1)2235 1479 y FD(Q)p FK(\()p FD(\045)2389 1493 y FJ(0)2429 1479 y FK(\))2464 1493 y Fx(M)2543 1479 y FD(Q)2615 1446 y Fs(\000)p FJ(1)2710 1479 y FD(Q)2782 1446 y Fs(0)2841 1479 y FK(=)f(\()p FD(\045)3029 1493 y FJ(0)3069 1479 y FK(\))3104 1494 y Fx(M)3179 1476 y Fr(0)3206 1479 y FK(,)j(whic)m(h)e(in)125 1587 y(particular)28 b(means)j(that)f FD(Q)1091 1554 y Fs(0\000)p FJ(1)1205 1587 y FD(Q)25 b FC(2)g(G)1442 1601 y Fx(\045)1478 1610 y FG(0)1517 1587 y FK(.)224 1730 y(Hence,)36 b(if)d(w)m(e)h(quotien)m(t)g(b)m(y)g (the)g(natural)f(action)h(of)g(the)g(gauge)h(group)e(w)m(e)h(get)h (that)g(the)f(map)137 1836 y(~)125 1859 y(\011)g(:)h(\()p FC(M)434 1873 y Fx(\045)470 1882 y FG(0)529 1859 y FC(\002)20 b FK(GL)749 1873 y Fx(r)786 1859 y FK(\))c FD(=)p FC(G)936 1873 y Fx(\045)972 1882 y FG(0)1046 1859 y FC(!)1191 1836 y FK(^)1172 1859 y FD(R)p FK(\()p FD(\034)10 b FK(\))37 b(is)e(injectiv)m(e.)58 b(Its)36 b(image)g(is)2445 1836 y(^)2414 1859 y(Gr)2521 1799 y Fs(\000)p FJ(1)2521 1882 y Fs(\017)2615 1859 y FK(\()p FD(\045)2697 1873 y FJ(0)2737 1859 y FK(\))24 b FC(\002)2891 1791 y Ft(Q)2977 1886 y Fx(\013)3042 1859 y FK(PGL)3232 1874 y Fx(d)3268 1882 y Fq(\013)3316 1859 y FK(,)38 b(where)125 1967 y(the)29 b(second)g(factor)g(accoun)m(ts)i(for)d(mo)m(ving)h FD(\045)1702 1981 y FJ(0)1770 1967 y FK(in)f(its)g(isomorphism)e(class)j(\(recall)f (that)i(the)f(action)125 2075 y(of)h(PGL)418 2090 y Fx(d)454 2098 y Fq(\013)532 2075 y FK(on)g(eac)m(h)h(irreducible)26 b(piece)k(is)f(free\).)41 b(Quotien)m(ting)29 b(b)m(y)g(this)g(factor)i (the)f(iden)m(ti\014cation)125 2209 y(of)g(the)h(\014b)s(er)625 2186 y(^)594 2209 y(Gr)701 2149 y Fs(\000)p FJ(1)701 2231 y Fs(\017)796 2209 y FK(\()p FD(\045)878 2223 y FJ(0)917 2209 y FK(\))g(follo)m(ws.)40 b(The)30 b(Zariski)e(lo)s(cally) h(trivialit)m(y)f(comes)k(from)d(the)i(fact)g(that)g(the)125 2317 y(matrix)c(\()453 2317 y SDict begin H.S end 453 2317 a 0 TeXcolorgray FK(20)p 0 TeXcolorgray 544 2258 a SDict begin H.R end 544 2258 a 544 2317 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.20) cvn H.B /ANN pdfmark end 544 2317 a FK(\))h(can)g(b)s(e)f(de\014ned)g(in)f(a)j(Zariski)c(op)s (en)i(set,)j(whic)m(h)c(amoun)m(ts)i(to)h(diagonalizing)d FD(A)i FK(with)125 2425 y(a)i(basis)g(in)f(a)h(Zariski)f(neigh)m(b)s (orho)s(o)s(d.)2066 b Fo(\003)224 2626 y FK(Due)31 b(to)h(the)e (previous)g(result,)g(w)m(e)h(will)d(lo)s(osely)i(write)f(the)i (isomorphism)d(t)m(yp)s(e)j(of)g FC(M)3269 2640 y Fx(\045)3340 2626 y FK(and)f FC(G)3571 2640 y Fx(\045)125 2734 y FK(b)m(y)g FC(M)360 2748 y Fx(\034)433 2734 y FK(and)g FC(G)664 2748 y Fx(\034)707 2734 y FK(,)h(resp)s(ectiv)m(ely)-8 b(.)40 b(With)30 b(this)g(notation,)g(w)m(e)h(ha)m(v)m(e)h(that)125 2899 y SDict begin H.S end 125 2899 a 125 2899 a SDict begin 13 H.A end 125 2899 a 125 2899 a SDict begin [/View [/XYZ H.V]/Dest (theorem.4.6) cvn /DEST pdfmark end 125 2899 a 0 TeXcolorgray FL(Corollary)k(4.6.)p 0 TeXcolorgray 42 w Fp(F)-7 b(or)34 b(any)f(typ)-5 b(e)34 b FD(\034)h FC(2)25 b(T)1541 2913 y Fx(\024)1618 2899 y Fp(we)32 b(get)h(that)1141 3116 y FK([)1186 3094 y(^)1166 3116 y FD(R)q FK(\()p FD(\034)10 b FK(\)])26 b(=)1630 3055 y([)1663 3032 y(^)1655 3055 y FC(I)6 b FK(\()p FD(\034)k FK(\)])p 1513 3096 461 4 v 1513 3111 a Ft(Q)1599 3206 y Fx(\013)1649 3179 y FK([PGL)1864 3194 y Fx(d)1900 3202 y Fq(\013)1949 3179 y FK(])2004 3116 y FC(\001)2059 3055 y FK([)p FC(M)2193 3069 y Fx(\034)2237 3055 y FK(])20 b FC(\001)h FK([GL)2481 3069 y Fx(r)2519 3055 y FK(])p 2059 3096 486 4 v 2228 3179 a([)p FC(G)2307 3193 y Fx(\034)2351 3179 y FK(])2570 3116 y FD(:)p 0 TeXcolorgray 125 3370 a Fp(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(The)25 b(form)m(ula)f(follo)m(ws)h(directly)e(from)i(Prop)s(osition)2228 3370 y SDict begin H.S end 2228 3370 a 0 TeXcolorgray FK(4.5)p 0 TeXcolorgray 2344 3312 a SDict begin H.R end 2344 3312 a 2344 3370 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.5) cvn H.B /ANN pdfmark end 2344 3370 a 26 w FK(taking)g(in)m(to)g(accoun)m(t)h(that)g(virtual)125 3478 y(classes)k(are)h(m)m(ultiplicativ)m(e)d(for)i(Zariski)e(lo)s (cally)h(trivial)g(\014brations.)1002 b Fo(\003)224 3679 y FK(Observ)m(e)38 b(that,)j(writing)36 b(do)m(wn)i(the)g(m)m (ultiplicities)c(of)k(the)h(isot)m(ypic)e(comp)s(onen)m(ts)h(in)f(\() 3371 3679 y SDict begin H.S end 3371 3679 a 0 TeXcolorgray FK(13)p 0 TeXcolorgray 3462 3621 a SDict begin H.R end 3462 3621 a 3462 3679 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.13) cvn H.B /ANN pdfmark end 3462 3679 a FK(\))i(in)125 3787 y(terms)30 b(of)g(the)h(pieces)f FD(U)963 3801 y Fx(\013)1013 3787 y FK(,)g(w)m(e)h(ha)m(v)m(e)1224 3943 y([)1257 3920 y(^)1249 3943 y FC(I)7 b FK(\()p FD(\034)j FK(\)])p 1108 3984 461 4 v 1108 3999 a Ft(Q)1194 4094 y Fx(\013)1243 4067 y FK([PGL)1458 4082 y Fx(d)1494 4090 y Fq(\013)1543 4067 y FK(])1604 4005 y(=)1699 3918 y Ft(Y)1735 4109 y Fx(\013)1886 3864 y Ft(\002)1924 3937 y FD(R)1994 3904 y FJ(irr)1993 3960 y Fx(\024)2034 3968 y Fq(\013)2082 3864 y Ft(\003)p 1841 3984 326 4 v 1841 4067 a FK([PGL)2056 4082 y Fx(d)2092 4090 y Fq(\013)2141 4067 y FK(])2201 4005 y(=)2297 3918 y Ft(Y)2333 4109 y Fx(\013)2428 4005 y FB(M)2523 3967 y FJ(irr)2523 4027 y Fx(\024)2564 4035 y Fq(\013)2613 4005 y FD(;)125 4233 y FK(where)33 b FD(\024)443 4247 y Fx(\013)527 4233 y FK(denotes)i(the)g(con\014guration)e(of)i(eigen)m(v)-5 b(alues)34 b(of)g(the)h FD(\013)p FK(-blo)s(c)m(k.)52 b(W)-8 b(e)36 b(will)c(shorten)h(this)125 4341 y(last)d(factor)h(as)g FB(M)764 4308 y FJ(irr)764 4364 y Fx(\034)868 4341 y FK(=)964 4273 y Ft(Q)1050 4368 y Fx(\013)1115 4341 y FB(M)1210 4308 y FJ(irr)1210 4364 y Fx(\024)1251 4372 y Fq(\013)1299 4341 y FK(.)125 4507 y SDict begin H.S end 125 4507 a 125 4507 a SDict begin 13 H.A end 125 4507 a 125 4507 a SDict begin [/View [/XYZ H.V]/Dest (theorem.4.7) cvn /DEST pdfmark end 125 4507 a 0 TeXcolorgray FL(Corollary)g(4.7.)p 0 TeXcolorgray 39 w Fp(With)f(the)f(notation)i (of)e(\()1658 4507 y SDict begin H.S end 1658 4507 a 0 TeXcolorgray Fp(13)p 0 TeXcolorgray 1751 4448 a SDict begin H.R end 1751 4448 a 1751 4507 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.13) cvn H.B /ANN pdfmark end 1751 4507 a Fp(\),)h(if)e(for)i(every)f FD(m)2389 4521 y Fx(i;j)2494 4507 y FD(>)c FK(1)k Fp(we)g(have)h(that)g FK(dim)13 b FD(W)3435 4521 y Fx(i;j)3541 4507 y FK(=)125 4628 y(1)p Fp(,)32 b(i.e.)f(if)g(al)5 b(l)33 b(the)f(r)-5 b(ep)g(e)g(ate)g(d)34 b(irr)-5 b(e)g(ducible)33 b(r)-5 b(epr)g(esentations)35 b(ar)-5 b(e)32 b FK(1)p Fp(-dimensional,)i(then)e FC(I)7 b FK(\()p FD(\034)j FK(\))26 b(=)3442 4605 y(^)3435 4628 y FC(I)6 b FK(\()p FD(\034)k FK(\))125 4736 y Fp(and)33 b(the)g(map)1614 4850 y FD(R)q FK(\()p FD(\034)10 b FK(\))25 b FC(!)g(I)7 b FK(\()p FD(\034)j FK(\))125 4982 y Fp(is)32 b(lo)-5 b(c)g(al)5 b(ly)35 b(trivial)e(in)f(the)h(Zariski)g(top)-5 b(olo)g(gy)36 b(with)d(\014b)-5 b(er)33 b FK(\()q(\()p FC(M)2264 4996 y Fx(\045)2325 4982 y FC(\002)19 b FK(GL)2544 4996 y Fx(r)2582 4982 y FK(\))c FD(=)p FC(G)2731 4996 y Fx(\045)2772 4982 y FK(\))g FD(=)p FK(\()2902 4914 y Ft(Q)2989 5009 y Fx(\013)3054 4982 y FK(PGL)3244 4997 y Fx(d)3280 5005 y Fq(\013)3328 4982 y FK(\))p Fp(.)p 0 TeXcolorgray 125 5188 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(W)d(e)35 b(kno)m(w)f(that)g FD(R)1076 5155 y FJ(irr)1075 5211 y Fx(\024)1188 5188 y FK(is)f(a)h(single)e(p)s(oin)m (t)h(for)g(1-dimensional)f(represen)m(tations,)i(so)g(in)e(this)125 5305 y(case)h(the)f(action)h(of)f(the)h(symmetric)e(group)h FD(S)1776 5319 y Fx(m)1838 5329 y Fq(i;j)1948 5305 y FK(on)g(\()p FD(R)2181 5272 y FJ(irr)2180 5328 y Fx(\024)2260 5305 y FK(\))2295 5272 y Fx(m)2357 5282 y Fq(i;j)2468 5305 y FK(is)f(trivial.)44 b(Th)m(us,)3138 5282 y(^)3130 5305 y FC(I)6 b FK(\()p FD(\034)k FK(\))29 b(=)g FC(I)7 b FK(\()p FD(\034)j FK(\))125 5413 y(and)29 b(the)i(result)e(follo)m (ws)h(from)g(Prop)s(osition)1714 5413 y SDict begin H.S end 1714 5413 a 0 TeXcolorgray FK(4.5)p 0 TeXcolorgray 1830 5354 a SDict begin H.R end 1830 5354 a 1830 5413 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.5) cvn H.B /ANN pdfmark end 1830 5413 a FK(.)1686 b Fo(\003)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 16 16 TeXDict begin HPSdict begin 16 15 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.16) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(16)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 224 266 a FK(Therefore,)38 b(under)d(the)i(h)m(yp)s(othesis)e(of)h(Corollary)2068 266 y SDict begin H.S end 2068 266 a 0 TeXcolorgray FK(4.7)p 0 TeXcolorgray 2184 207 a SDict begin H.R end 2184 207 a 2184 266 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.7) cvn H.B /ANN pdfmark end 2184 266 a FK(,)i(w)m(e)f(ha)m(v)m(e)h (the)e(analogous)h(form)m(ula)f(to)125 374 y(Corollary)527 374 y SDict begin H.S end 527 374 a 0 TeXcolorgray FK(4.6)p 0 TeXcolorgray 643 315 a SDict begin H.R end 643 315 a 643 374 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.6) cvn H.B /ANN pdfmark end 643 374 a 125 598 a FK(\(22\))1277 598 y SDict begin H.S end 1277 598 a 1277 598 a SDict begin 13 H.A end 1277 598 a 1277 598 a SDict begin [/View [/XYZ H.V]/Dest (equation.4.22) cvn /DEST pdfmark end 1277 598 a FK([)p FD(R)q FK(\()p FD(\034)10 b FK(\)])26 b(=)f([)p FB(M)1759 561 y FJ(irr)1759 621 y Fx(\034)1838 598 y FK(])c FC(\001)1939 537 y FK([)p FC(M)2073 551 y Fx(\034)2117 537 y FK(])f FC(\001)h FK([GL)2361 551 y Fx(r)2399 537 y FK(])p 1939 577 486 4 v 2108 661 a([)p FC(G)2187 675 y Fx(\034)2230 661 y FK(])2434 598 y FD(:)224 859 y FK(In)27 b(particular,)g(for)h(rank)f FD(r)h FC(\024)d FK(4,)k(the)f(condition)f (of)h(Corollary)2437 859 y SDict begin H.S end 2437 859 a 0 TeXcolorgray FK(4.7)p 0 TeXcolorgray 2554 801 a SDict begin H.R end 2554 801 a 2554 859 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.7) cvn H.B /ANN pdfmark end 2554 859 a 27 w FK(holds.)39 b(The)27 b(only)g(exception)125 967 y(is)h FD(r)g FK(=)d(4,)30 b FD(s)25 b FK(=)g(1,)30 b FD(m)824 981 y FJ(1)p Fx(;)p FJ(1)944 967 y FK(=)25 b(2,)30 b(dim)14 b FD(W)1393 981 y FJ(1)p Fx(;)p FJ(1)1512 967 y FK(=)25 b(2,)30 b(but)f(in)f(this)g(case)j(all)d(represen)m (tations)i(are)g(reducible)125 1080 y(\(see)h(Section)625 1080 y SDict begin H.S end 625 1080 a 0 TeXcolorgray FK(8.2)p 0 TeXcolorgray 741 1021 a SDict begin H.R end 741 1021 a 741 1080 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.8.2) cvn H.B /ANN pdfmark end 741 1080 a FK(\),)g(so)g(it)f(do)s(es) g(not)g(con)m(tribute)g(to)i FD(R)2020 1047 y FJ(irr)2019 1102 y Fx(r)2098 1080 y FK(.)125 1268 y SDict begin H.S end 125 1268 a 125 1268 a SDict begin 13 H.A end 125 1268 a 125 1268 a SDict begin [/View [/XYZ H.V]/Dest (section.5) cvn /DEST pdfmark end 125 1268 a 996 1388 a FK(5.)46 b FE(Explicit)35 b(f)n(ormulas)d(f)n(or)h(some)h(stra)-6 b(t)g(a)224 1585 y FK(T)e(o)29 b(compute)f(the)h(motiv)m(e)g(of)f([)p FC(R)1376 1552 y FJ(irr)1455 1585 y FK(\()p FD($)s FK(\)])h(w)m(e)g (need)f(to)h(join)e(the)i(equations)f(\()2880 1585 y SDict begin H.S end 2880 1585 a 0 TeXcolorgray FK(10)p 0 TeXcolorgray 2971 1527 a SDict begin H.R end 2971 1527 a 2971 1585 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.10) cvn H.B /ANN pdfmark end 2971 1585 a FK(\),)h(\()3095 1585 y SDict begin H.S end 3095 1585 a 0 TeXcolorgray FK(11)p 0 TeXcolorgray 3186 1527 a SDict begin H.R end 3186 1527 a 3186 1585 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.11) cvn H.B /ANN pdfmark end 3186 1585 a FK(\))g(and)f(\()3460 1585 y SDict begin H.S end 3460 1585 a 0 TeXcolorgray FK(22)p 0 TeXcolorgray 3551 1527 a SDict begin H.R end 3551 1527 a 3551 1585 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.22) cvn H.B /ANN pdfmark end 3551 1585 a FK(\),)125 1693 y(where)h FC(I)437 1707 y FJ(0)476 1693 y FK(\()p FD(\034)10 b FK(\),)32 b FC(M)762 1707 y Fx(\034)835 1693 y FK(and)e FC(G)1066 1707 y Fx(\034)1140 1693 y FK(are)g(giv)m(en)h(in)e(\()1670 1693 y SDict begin H.S end 1670 1693 a 0 TeXcolorgray FK(16)p 0 TeXcolorgray 1761 1635 a SDict begin H.R end 1761 1635 a 1761 1693 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.16) cvn H.B /ANN pdfmark end 1761 1693 a FK(\),)i(\()1887 1693 y SDict begin H.S end 1887 1693 a 0 TeXcolorgray FK(17)p 0 TeXcolorgray 1978 1635 a SDict begin H.R end 1978 1635 a 1978 1693 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.17) cvn H.B /ANN pdfmark end 1978 1693 a FK(\))g(and)f(\()2256 1693 y SDict begin H.S end 2256 1693 a 0 TeXcolorgray FK(18)p 0 TeXcolorgray 2347 1635 a SDict begin H.R end 2347 1635 a 2347 1693 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.18) cvn H.B /ANN pdfmark end 2347 1693 a FK(\).)224 1837 y(The)24 b(pro)s(of)g(of)h(Theorem)1113 1837 y SDict begin H.S end 1113 1837 a 0 TeXcolorgray FK(4.4)p 0 TeXcolorgray 1229 1778 a SDict begin H.R end 1229 1778 a 1229 1837 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.4) cvn H.B /ANN pdfmark end 1229 1837 a 25 w FK(is)f(constructiv)m(e)h (and)f(giv)m(es)h(explicit)e(descriptions)f(of)j FC(M)3250 1851 y Fx(\034)3318 1837 y FK(and)f FC(G)3543 1851 y Fx(\034)3586 1837 y FK(.)125 1945 y(Fix)34 b(t)m(w)m(o)i(v)-5 b(alues)34 b FD(\013;)15 b(\014)40 b FK(in)34 b(di\013eren)m(t)g(steps) h(of)f(the)h(semi-simple)d(\014ltration.)53 b(Let)35 b FD(\017)3034 1959 y FJ(1)3073 1945 y FD(;)15 b(:)g(:)g(:)i(;)e(\017) 3312 1959 y Fx(a)3388 1945 y FK(\(resp.)125 2066 y FD(")167 2080 y FJ(1)206 2066 y FD(;)g(:)g(:)g(:)i(;)e(")450 2081 y Fx(b)485 2066 y FK(\))32 b(b)s(e)e(the)i(eigen)m(v)-5 b(alues)31 b(of)g FD(A)1477 2080 y Fx(\013)1558 2066 y FK(and)g FD(A)1804 2081 y Fx(\014)1882 2066 y FK(\(resp.)g FD(B)2205 2080 y Fx(\013)2286 2066 y FK(and)f FD(B)2532 2081 y Fx(\014)2579 2066 y FK(\))i(and)f(let)g FD(a)3004 2033 y Fx(\013)3004 2094 y(k)3084 2066 y FK(and)g FD(a)3310 2022 y Fx(\014)3310 2095 y(k)3388 2066 y FK(\(resp.)125 2194 y FD(b)164 2161 y Fx(\013)164 2222 y(k)247 2194 y FK(and)i FD(b)466 2150 y Fx(\014)466 2223 y(k)513 2194 y FK(\))h(b)s(e)g(the)g(m)m(ultiplicities)29 b(of)34 b FD(\017)1560 2209 y Fx(k)1637 2194 y FK(in)e FD(A)1814 2208 y Fx(\013)1898 2194 y FK(and)h FD(A)2146 2209 y Fx(\014)2227 2194 y FK(\(resp.)h(of)g FD(")2633 2209 y Fx(k)2710 2194 y FK(in)e FD(B)2888 2208 y Fx(\013)2971 2194 y FK(and)i FD(B)3221 2209 y Fx(\014)3268 2194 y FK(\).)51 b(Then,)125 2322 y FD(b)164 2289 y Fx(\013)164 2350 y(k)213 2322 y FD(b)252 2278 y Fx(\014)252 2351 y(k)337 2322 y FK(is)36 b(the)i(n)m(um)m(b)s(er)e(of)i(times)f(that)h FD(")1544 2337 y Fx(k)1624 2322 y FK(is)f(a)h(rep)s(eated)g(eigen)m(v) -5 b(alue)37 b(in)f FD(B)2808 2336 y Fx(\013)2895 2322 y FK(and)h FD(B)3148 2337 y Fx(\014)3233 2322 y FK(and)g(th)m(us,)125 2450 y(according)c(to)h(Prop)s(osition)1144 2450 y SDict begin H.S end 1144 2450 a 0 TeXcolorgray FK(4.1)p 0 TeXcolorgray 1260 2392 a SDict begin H.R end 1260 2392 a 1260 2450 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.1) cvn H.B /ANN pdfmark end 1260 2450 a FK(,)g(the)g(elemen)m(ts)g(of)f FC(M)2069 2464 y FJ(1)2142 2450 y FK(ha)m(v)m(e)2355 2382 y Ft(P)2451 2477 y Fx(k)2509 2450 y FD(b)2548 2417 y Fx(\013)2548 2478 y(k)2597 2450 y FD(b)2636 2406 y Fx(\014)2636 2479 y(k)2717 2450 y FK(\014xed)g(elemen)m(ts.)50 b(So)33 b(the)125 2558 y(con)m(tribution)28 b(to)k(the)e(dimension)e (of)i FC(M)1552 2572 y FJ(1)1622 2558 y FK(of)h(the)f(pair)g FD(\013;)15 b(\014)36 b FK(is)1113 2749 y FD(C)7 b FK(\()p FD(\013;)15 b(\014)5 b FK(\))26 b(=)f(dim)14 b FD(U)1760 2763 y Fx(\013)1829 2749 y FC(\001)21 b FK(dim)14 b FD(U)2104 2764 y Fx(\014)2171 2749 y FC(\000)2262 2662 y Ft(X)2308 2860 y Fx(k)2408 2749 y FD(b)2447 2711 y Fx(\013)2447 2772 y(k)2497 2749 y FD(b)2536 2704 y Fx(\014)2536 2778 y(k)2598 2749 y FD(:)224 3050 y FK(De\014ne)30 b FD(d)p FK(\()p FD(\013)p FK(\))d(=)e FD(i)p FK(,)31 b(if)e FD(U)1035 3064 y Fx(\013)1114 3050 y FK(b)s(elongs)g(to)i(the)g FD(i)p FK(-th)f(step)g(of)g(the)h(semi-simple)c(\014ltration)i(i.e.)h FD(\027)3397 3064 y Fx(i)p Fs(\000)p FJ(1)3541 3050 y FD(<)125 3158 y(\013)j FC(\024)g FD(\027)365 3172 y Fx(i)393 3158 y FK(.)56 b(In)34 b(the)i(same)f(v)m(ein,)h(de\014ne)f FD(c)1516 3172 y Fx(i)1544 3158 y FK(\()p FD(\014)5 b FK(\))35 b(=)e FD(j)5 b FK(,)37 b(if)d FD(U)2063 3173 y Fx(\014)2146 3158 y FK(b)s(elongs)g(to)i(the)f FD(i)p FK(-th)h(step)f(of)g(the)h(semi-)125 3266 y(simple)24 b(\014ltration)i(and)h(it)f(is)g(a)h(comp)s(onen)m(t)h(of)f(the)g FD(j)5 b FK(-th)28 b(isot)m(ypic)e(factor)i FD(W)2775 3280 y Fx(i;j)2855 3266 y FK(,)g(that)g(is)e FD(U)3252 3281 y Fx(\014)3324 3241 y FC(\030)3324 3270 y FK(=)3420 3266 y FD(W)3506 3280 y Fx(i;j)3586 3266 y FK(.)125 3374 y(In)40 b(this)f(w)m(a)m(y)-8 b(,)45 b(the)c(con)m(tribution)f(to)h FC(M)1577 3388 y FJ(1)1658 3374 y FK(of)g(the)g(blo)s(c)m(ks)f(corresp) s(onding)f(to)i(the)g FD(j)5 b FK(-th)42 b(isot)m(ypic)125 3482 y(comp)s(onen)m(t)30 b(is)g(a)g(v)m(ector)i(space)f(of)g (dimension)1276 3672 y FD(C)1341 3686 y Fx(i;j)1446 3672 y FK(=)1584 3586 y Ft(X)1542 3787 y Fx(d)p FJ(\()p Fx(\013)p FJ(\)=)p Fx(i)1897 3586 y Ft(X)1803 3787 y Fx(c)1834 3797 y Fq(i)p FG(+1)1937 3787 y FJ(\()p Fx(\014)s FJ(\)=)p Fx(j)2137 3672 y FD(C)7 b FK(\()p FD(\013;)15 b(\014)5 b FK(\))p FD(:)224 3989 y FK(T)-8 b(o)30 b(this)d(con)m(tribution,)h(w) m(e)i(ha)m(v)m(e)g(to)g(subtract)f(the)g(elemen)m(ts)g(in)f FC(M)2622 4003 y FJ(1)2679 3989 y FC(\000)17 b(M)2876 4003 y Fx(\034)2948 3989 y FK(corresp)s(onding)27 b(to)125 4097 y(the)j(forbidden)e(con\014gurations.)40 b(These)30 b(are)h(giv)m(en)f(b)m(y)g(the)h(\\Sc)m(h)m(ub)s(ert)f(cells")g(\()2950 4097 y SDict begin H.S end 2950 4097 a 0 TeXcolorgray FK(21)p 0 TeXcolorgray 3041 4039 a SDict begin H.R end 3041 4039 a 3041 4097 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.21) cvn H.B /ANN pdfmark end 3041 4097 a FK(\),)418 4275 y FC(D)488 4289 y Fx(i;j)593 4275 y FK(=)689 4201 y Ft(\010)742 4275 y FC(h)p FK(p)828 4290 y Fx(\014)868 4299 y FG(1)907 4275 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b(:)g(:)g(:)i(;)e FK(p)1328 4290 y Fx(\014)1368 4302 y Fq(k)1410 4275 y FK(\()p FD(M)10 b FK(\))p FC(i)1613 4289 y Fs(\003)1674 4275 y FC(\\)19 b FD(L)1816 4290 y Fx(\014)1889 4275 y FC(6)p FK(=)25 b FC(;)15 b(j)g FD(c)2124 4289 y Fx(i)p FJ(+1)2243 4275 y FK(\()p FD(\014)2329 4289 y FJ(1)2370 4275 y FK(\))25 b(=)g FD(:)15 b(:)g(:)26 b FK(=)f FD(c)2792 4289 y Fx(i)p FJ(+1)2911 4275 y FK(\()p FD(\014)2997 4290 y Fx(k)3041 4275 y FK(\))g(=)g FD(j)3239 4201 y Ft(\011)3293 4275 y FD(:)125 4452 y FK(Hence,)31 b(the)g(con)m(tribution)d(of)j(the)g(blo)s(c)m(ks)e(in)g(consecutiv)m (e)j(steps)e(is)1494 4586 y Fx(s)1452 4614 y Ft(Y)1453 4809 y Fx(i)p FJ(=1)1615 4584 y Fx(s)1648 4594 y Fq(i)1586 4614 y Ft(Y)1583 4809 y Fx(j)t FJ(=1)1721 4626 y Ft(\000)1762 4700 y FD(k)1812 4663 y Fx(C)1862 4673 y Fq(i;j)1961 4700 y FC(\000)20 b(D)2122 4714 y Fx(i;j)2202 4626 y Ft(\001)2259 4700 y FD(:)224 5007 y FK(On)34 b(the)h(other)g(hand,)g (the)g(con)m(tribution)e(of)i(the)g(non-consecutiv)m(e)h(blo)s(c)m(ks)e FD(\013;)15 b(\014)40 b FK(is)34 b(just)g(giv)m(en)125 5115 y(b)m(y)c(a)h(v)m(ector)h(space)e(of)h(dimension)1395 5306 y FD(C)h FK(=)1730 5219 y Ft(X)1588 5421 y Fx(d)p FJ(\()p Fx(\014)s FJ(\))p Fs(\000)p Fx(d)p FJ(\()p Fx(\013)p FJ(\))p Fx(>)p FJ(1)2019 5306 y FD(C)7 b FK(\()p FD(\013;)15 b(\014)5 b FK(\))p FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 17 17 TeXDict begin HPSdict begin 17 16 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.17) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(17)p 0 TeXcolorgray 125 266 a FK(Therefore,)30 b(the)g(motiv)m(e)h(of)g FC(M)1229 280 y Fx(\034)1303 266 y FK(is)e(giv)m(en)h(b)m(y)125 483 y(\(23\))643 483 y SDict begin H.S end 643 483 a 643 483 a SDict begin 13 H.A end 643 483 a 643 483 a SDict begin [/View [/XYZ H.V]/Dest (equation.5.23) cvn /DEST pdfmark end 643 483 a FK([)p FC(M)777 497 y Fx(\034)821 483 y FK(])25 b(=)g([)p FD(k)1042 445 y Fx(C)1102 483 y FK(])20 b FC(\001)1234 369 y Fx(s)1193 396 y Ft(Y)1194 592 y Fx(i)p FJ(=1)1356 367 y Fx(s)1389 377 y Fq(i)1327 396 y Ft(Y)1324 592 y Fx(j)t FJ(=1)1462 409 y Ft(\002)1499 483 y FD(k)1549 445 y Fx(C)1599 455 y Fq(i;j)1698 483 y FC(\000)g(D)1859 497 y Fx(i;j)1939 409 y Ft(\003)2002 483 y FK(=)25 b FD(q)2142 445 y Fx(C)2258 369 y(s)2216 396 y Ft(Y)2217 592 y Fx(i)p FJ(=1)2379 367 y Fx(s)2412 377 y Fq(i)2351 396 y Ft(Y)2348 592 y Fx(j)t FJ(=1)2485 409 y Ft(\000)2527 483 y FD(q)2571 445 y Fx(C)2621 455 y Fq(i;j)2719 483 y FC(\000)20 b FK([)p FC(D)2905 497 y Fx(i;j)2986 483 y FK(])3011 409 y Ft(\001)3068 483 y FD(:)224 764 y FK(No)m(w,)31 b(let)g(us)e(giv)m(e)i(form)m(ulas)f (for)g([)p FC(D)1495 778 y Fx(i;j)1575 764 y FK(])h(in)e(some)i (particular)e(cases.)125 844 y SDict begin H.S end 125 844 a 125 844 a SDict begin 13 H.A end 125 844 a 125 844 a SDict begin [/View [/XYZ H.V]/Dest (Item.1) cvn /DEST pdfmark end 125 844 a 0 TeXcolorgray 270 926 a FK(\(1\))p 0 TeXcolorgray 42 w(If)c FD(m)593 940 y Fx(i)p FJ(+1)p Fx(;j)789 926 y FK(=)g(1,)i(that)f(is)e(the)i(isot)m(ypic)f(comp)s (onen)m(t)h FD(W)2287 940 y Fx(i)p FJ(+1)p Fx(;j)2482 926 y FK(has)g(of)f(m)m(ultiplicit)m(y)e(1,)k(observ)m(e)427 1034 y(that)k(the)g(Sc)m(h)m(ub)s(ert)e(cell)h(is)f(just)689 1193 y FC(D)759 1207 y Fx(i;j)865 1193 y FK(=)c FD(L)1023 1208 y Fx(\014)1095 1193 y FK(=)1230 1107 y Ft(M)1191 1308 y Fx(d)p FJ(\()p Fx(\013)p FJ(\)=)p Fx(i)1422 1193 y FD(`)1460 1208 y Fx(\013\014)1577 1193 y FK(=)1712 1107 y Ft(M)1673 1308 y Fx(d)p FJ(\()p Fx(\013)p FJ(\)=)p Fx(i)1889 1193 y FC(h)p FD(Q)1996 1207 y Fx(\013)2045 1193 y FK(\002)p FD(Q)2188 1155 y Fs(\000)p FJ(1)2188 1222 y Fx(\014)2282 1193 y FD(B)2351 1208 y Fx(\014)2419 1193 y FC(\000)19 b FD(B)2578 1207 y Fx(\013)2628 1193 y FD(Q)2700 1207 y Fx(\013)2749 1193 y FK(\002)p FD(Q)2892 1155 y Fs(\000)p FJ(1)2892 1222 y Fx(\014)2986 1193 y FC(i)p FD(;)427 1448 y FK(where)k FD(\014)29 b FK(is)22 b(the)i(only)e(index)g(with)g FD(c)1666 1462 y Fx(i)p FJ(+1)1785 1448 y FK(\()p FD(\014)5 b FK(\))26 b(=)f FD(j)5 b FK(.)39 b(The)23 b(matrix)f(\002)h(mo)m(v)m(es)i(in)d(a)i(v)m (ector)h(space)427 1569 y(of)34 b(dimension)967 1501 y Ft(P)1063 1596 y Fx(k)1121 1569 y FD(a)1169 1536 y Fx(\013)1169 1597 y(k)1218 1569 y FD(a)1266 1525 y Fx(\014)1266 1599 y(k)1314 1569 y FK(.)50 b(The)33 b(k)m(ernel)g(of)h(the)g(map)f (\002)d FC(7!)h FD(Q)2617 1583 y Fx(\013)2666 1569 y FK(\002)p FD(Q)2809 1531 y Fs(\000)p FJ(1)2809 1599 y Fx(\014)2903 1569 y FD(B)2972 1584 y Fx(\014)3042 1569 y FC(\000)22 b FD(B)3204 1583 y Fx(\013)3253 1569 y FD(Q)3325 1583 y Fx(\013)3375 1569 y FK(\002)p FD(Q)3518 1531 y Fs(\000)p FJ(1)3518 1599 y Fx(\014)427 1688 y FK(is)41 b(giv)m(en)g(b)m(y)g(the)h(homomorphisms)d(as)i(represen)m(tations,)k (Hom)2753 1702 y FJ(\000)2801 1688 y FK(\()p FD(U)2898 1703 y Fx(\014)2946 1688 y FD(;)15 b(U)3048 1702 y Fx(\013)3098 1688 y FK(\),)45 b(since)40 b FD(S)49 b FK(=)427 1805 y FD(Q)499 1819 y Fx(\013)549 1805 y FK(\002)p FD(Q)692 1767 y Fs(\000)p FJ(1)692 1834 y Fx(\014)822 1805 y FK(is)35 b(a)i(homomorphism)d(of)i(represen)m(tations)h(if)e(and)g(only)h(if)f FD(S)5 b(B)3091 1820 y Fx(\014)3173 1805 y FK(=)35 b FD(B)3348 1819 y Fx(\013)3398 1805 y FD(S)41 b FK(\(as)427 1924 y FD(S)5 b(A)556 1939 y Fx(\014)630 1924 y FK(=)25 b FD(A)794 1938 y Fx(\013)844 1924 y FD(S)36 b FK(holds)29 b(b)m(y)i(the)g(condition)e(on)i(\002\).)42 b(Adding)29 b(up)h(o)m(v)m(er)i FD(\013)p FK(,)f(w)m(e)h(ha)m(v)m(e)g(that)f FC(D)3531 1938 y Fx(i;j)427 2032 y FK(is)f(subspace)f(of)i(dimension) 508 2191 y FD(D)583 2205 y Fx(i;j)688 2191 y FK(=)25 b(dim)14 b FD(L)1013 2206 y Fx(\014)1085 2191 y FK(=)1223 2105 y Ft(X)1181 2306 y Fx(d)p FJ(\()p Fx(\013)p FJ(\)=)p Fx(i)1412 2191 y FK(dim)f FD(`)1616 2206 y Fx(\013\014)1734 2191 y FK(=)1830 2105 y Ft(X)1876 2302 y Fx(k)1976 2191 y FD(a)2024 2153 y Fx(\013)2024 2214 y(k)2074 2191 y FD(a)2122 2147 y Fx(\014)2122 2220 y(k)2189 2191 y FC(\000)20 b FK(dim)14 b(Hom)2636 2205 y FJ(\000)2685 2191 y FK(\()p FD(U)2782 2206 y Fx(\014)2829 2191 y FD(;)h FK(Gr)2976 2205 y Fx(i)3005 2191 y FK(\()p FD(V)3093 2205 y Fs(\017)3132 2191 y FK(\)\))p FD(:)427 2446 y FK(Therefore,)31 b(the)f(form)m(ula)g (\()1390 2446 y SDict begin H.S end 1390 2446 a 0 TeXcolorgray FK(23)p 0 TeXcolorgray 1481 2387 a SDict begin H.R end 1481 2387 a 1481 2446 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.5.23) cvn H.B /ANN pdfmark end 1481 2446 a FK(\))h(can)f(b)s(e)g(written)g(as)125 2610 y(\(24\))742 2610 y SDict begin H.S end 742 2610 a 742 2610 a SDict begin 13 H.A end 742 2610 a 742 2610 a SDict begin [/View [/XYZ H.V]/Dest (equation.5.24) cvn /DEST pdfmark end 742 2610 a FK([)p FC(M)876 2624 y Fx(\034)920 2610 y FK(])25 b(=)g([)p FD(k)1141 2573 y Fx(C)1201 2610 y FK(])20 b FC(\001)1347 2524 y Ft(Y)1292 2718 y Fx(m)1354 2728 y Fq(i;j)1428 2718 y Fx(>)p FJ(1)1533 2536 y Ft(\000)1575 2610 y FD(q)1619 2573 y Fx(C)1669 2583 y Fq(i;j)1767 2610 y FC(\000)g FK([)p FC(D)1953 2624 y Fx(i;j)2033 2610 y FK(])2058 2536 y Ft(\001)2121 2610 y FC(\001)2221 2524 y Ft(Y)2166 2718 y Fx(m)2228 2728 y Fq(i;j)2302 2718 y FJ(=1)2407 2536 y Ft(\000)2449 2610 y FD(q)2493 2573 y Fx(C)2543 2583 y Fq(i;j)2641 2610 y FC(\000)g FD(q)2776 2573 y Fx(D)2834 2583 y Fq(i;j)2912 2536 y Ft(\001)2968 2610 y FD(:)125 2785 y SDict begin H.S end 125 2785 a 125 2785 a SDict begin 13 H.A end 125 2785 a 125 2785 a SDict begin [/View [/XYZ H.V]/Dest (Item.2) cvn /DEST pdfmark end 125 2785 a 0 TeXcolorgray 270 2861 a FK(\(2\))p 0 TeXcolorgray 42 w(Supp)s(ose)36 b(that)i(dim)13 b FD(W)1247 2875 y Fx(i)p FJ(+1)p Fx(;j)1455 2861 y FK(=)36 b(1)i(and)f FD(m)1909 2875 y Fx(i)p FJ(+1)p Fx(;j)2116 2861 y FK(=)f(2.)62 b(Denote)39 b(b)m(y)e FD(\014)2858 2875 y FJ(1)2898 2861 y FD(;)15 b(\014)2989 2875 y FJ(2)3067 2861 y FK(the)37 b(indices)f(in)427 2969 y(the)c(\()p FD(i)22 b FK(+)f(1\)-th)32 b(step)g(with)e FD(c)1434 2983 y Fx(i)p FJ(+1)1553 2969 y FK(\()p FD(\014)1639 2983 y FJ(1)1679 2969 y FK(\))e(=)f FD(c)1879 2983 y Fx(i)p FJ(+1)1997 2969 y FK(\()p FD(\014)2083 2983 y FJ(2)2124 2969 y FK(\))g(=)g FD(j)5 b FK(.)45 b(Supp)s(ose)30 b(also)i(that)g FD(s)3179 2983 y Fx(i)3234 2969 y FK(=)27 b(1,)33 b(with)427 3077 y FD(\013)42 b FK(=)e FD(\027)683 3091 y Fx(i)751 3077 y FK(the)g(only)e(index)h(in)f(the)i FD(i)p FK(-th)g(step.)69 b(In)39 b(that)h(case,)j(p)2713 3092 y Fx(\014)2753 3101 y FG(1)2791 3077 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b FK(p)3050 3092 y Fx(\014)3090 3101 y FG(2)3129 3077 y FK(\()p FD(M)10 b FK(\))42 b FC(2)e FD(k)j FK(so)427 3185 y(alw)m(a)m(ys)29 b(0)d FC(2)f(h)p FK(p)959 3200 y Fx(\014)999 3209 y FG(1)1037 3185 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b FK(p)1296 3200 y Fx(\014)1336 3209 y FG(2)1375 3185 y FK(\()p FD(M)10 b FK(\))p FC(i)1578 3199 y Fs(\003)1635 3185 y FC(\\)16 b FD(L)1774 3200 y Fx(\014)1821 3185 y FK(.)40 b(In)28 b(other)g(w)m(orks,)i(b)m(y)e(a)h (c)m(hange)g(of)g(basis,)f(on)g(the)427 3293 y(v)m(ector)34 b(\(p)788 3308 y Fx(\014)828 3317 y FG(1)866 3293 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b FK(p)1125 3308 y Fx(\014)1165 3317 y FG(2)1204 3293 y FK(\()p FD(M)10 b FK(\)\))33 b(w)m(e)g(can)f(alw)m(a)m(ys)g(arrange)h(that)f(a)h(comp)s(onen)m(t)f (is)f(zero.)46 b(This)427 3401 y(implies)28 b(that)j FD(D)1008 3415 y Fx(i;j)1114 3401 y FK(=)24 b FD(C)1274 3415 y Fx(i;j)1355 3401 y FK(,)30 b(and)g(hence)g([)p FC(M)1973 3415 y Fx(\034)2017 3401 y FK(])c(=)e(0.)42 b(So)30 b(this)f(case)j(cannot)f(happ)s(en.)125 3427 y SDict begin H.S end 125 3427 a 125 3427 a SDict begin 13 H.A end 125 3427 a 125 3427 a SDict begin [/View [/XYZ H.V]/Dest (Item.3) cvn /DEST pdfmark end 125 3427 a 0 TeXcolorgray 270 3509 a FK(\(3\))p 0 TeXcolorgray 42 w(Supp)s(ose)j(that)j(dim)14 b FD(W)1245 3523 y Fx(i)p FJ(+1)p Fx(;j)1449 3509 y FK(=)35 b(1)h(and)g FD(m)1899 3523 y Fx(i)p FJ(+1)p Fx(;j)2103 3509 y FK(=)f(2)h(but)f(no)m(w)h FD(s)2700 3523 y Fx(i)2763 3509 y FK(=)e(2,)k(with)d(t)m(w)m(o)i(blo)s (c)m(ks)427 3617 y FD(U)489 3631 y Fx(\013)534 3640 y FG(1)573 3617 y FD(;)15 b(U)675 3631 y Fx(\013)720 3640 y FG(2)781 3617 y FK(of)22 b(m)m(ultiplicit)m(y)d(1.)38 b(Denote)23 b(the)f(eigen)m(v)-5 b(alues)21 b(of)h FD(A)2538 3631 y Fx(\013)2583 3640 y FG(1)2622 3617 y FD(;)15 b(A)2730 3631 y Fx(\013)2775 3640 y FG(2)2836 3617 y FK(\(resp.)22 b FD(B)3150 3631 y Fx(\013)3195 3640 y FG(1)3255 3617 y FK(and)f FD(B)3492 3631 y Fx(\013)3537 3640 y FG(2)3576 3617 y FK(\))427 3725 y(b)m(y)35 b FD(\017)595 3739 y Fx(\013;)p FJ(1)699 3725 y FD(;)15 b(\017)776 3739 y Fx(\013;)p FJ(2)916 3725 y FK(\(resp.)34 b FD(")1215 3739 y Fx(\013;)p FJ(1)1320 3725 y FD(;)15 b(")1402 3739 y Fx(\013;)p FJ(2)1507 3725 y FK(\))35 b(and)f(let)h(the)g(eigen)m(v)m (ector)i(of)e FD(A)2708 3740 y Fx(\014)2748 3749 y FG(1)2819 3725 y FK(=)d FD(A)2990 3740 y Fx(\014)3030 3749 y FG(2)3103 3725 y FK(\(resp.)j FD(B)3430 3740 y Fx(\014)3470 3749 y FG(1)3541 3725 y FK(=)427 3833 y FD(B)496 3848 y Fx(\014)536 3857 y FG(2)575 3833 y FK(\))g(b)s(e)g FD(\017)811 3848 y Fx(\014)894 3833 y FK(\(resp.)g FD(")1194 3848 y Fx(\014)1241 3833 y FK(\).)57 b(Supp)s(ose)33 b(that)j FD(\017)1958 3847 y Fx(\013;)p FJ(1)2063 3833 y FD(;)15 b(\017)2140 3847 y Fx(\013;)p FJ(2)2278 3833 y FC(6)p FK(=)33 b FD(\017)2419 3848 y Fx(\014)2502 3833 y FK(and)i FD(")2726 3847 y Fx(\013;)p FJ(1)2830 3833 y FD(;)15 b(")2912 3847 y Fx(\013;)p FJ(2)3051 3833 y FC(6)p FK(=)34 b FD(")3198 3848 y Fx(\014)3245 3833 y FK(.)56 b(In)35 b(that)427 3941 y(case,)d(w)m(e)e(ha)m(v)m(e)i (that)f(\002)25 b(=)g(0)30 b(and)g(th)m(us)f FD(`)1866 3956 y Fx(\013)1911 3965 y FG(1)1946 3956 y Fx(\014)2019 3941 y FK(=)c FD(`)2153 3956 y Fx(\013)2198 3965 y FG(2)2232 3956 y Fx(\014)2305 3941 y FK(=)g(0.)41 b(This)28 b(implies)g(that)i FD(L)3286 3956 y Fx(\014)3359 3941 y FK(=)25 b(0)30 b(so)427 4048 y(the)23 b(Sc)m(h)m(ub)s(ert)f(cell)g(condition)f(is)h(that)i(0)h FC(2)g(h)p FK(p)2011 4063 y Fx(\014)2051 4072 y FG(1)2089 4048 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b FK(p)2348 4063 y Fx(\014)2388 4072 y FG(2)2427 4048 y FK(\()p FD(M)10 b FK(\))p FC(i)2630 4062 y Fs(\003)2671 4048 y FK(,)24 b(where)f(p)3027 4063 y Fx(\014)3067 4072 y FG(1)3105 4048 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b FK(p)3364 4063 y Fx(\014)3404 4072 y FG(2)3443 4048 y FK(\()p FD(M)10 b FK(\))427 4156 y(are)35 b(t)m(w)m(o)g(2-dimensional)d(v)m(ectors.)52 b(This)32 b(happ)s(ens)g(if)h(and)h(only)f(if)f(p)2871 4171 y Fx(\014)2911 4180 y FG(1)2949 4156 y FK(\()p FD(M)10 b FK(\))p FD(;)15 b FK(p)3208 4171 y Fx(\014)3248 4180 y FG(2)3287 4156 y FK(\()p FD(M)10 b FK(\))35 b(are)427 4264 y(linearly)d(dep)s(enden)m(t,)i(so)h(the)f(corresp)s(onding)e(Sc)m (h)m(ub)s(ert)h(cell)h(are)g(the)h(matrices)f(of)g(rank)427 4372 y FC(\024)25 b FK(1.)41 b(That)31 b(is,)e([)p FC(D)1073 4386 y Fx(i;j)1154 4372 y FK(])c(=)g FD(q)1344 4339 y FJ(4)1404 4372 y FC(\000)20 b FK([GL)1648 4386 y FJ(2)1688 4372 y FK(])25 b(=)g FD(q)1878 4339 y FJ(3)1937 4372 y FK(+)20 b FD(q)2072 4339 y FJ(2)2132 4372 y FC(\000)g FD(q)s FK(.)125 4530 y SDict begin H.S end 125 4530 a 125 4530 a SDict begin 13 H.A end 125 4530 a 125 4530 a SDict begin [/View [/XYZ H.V]/Dest (theorem.5.1) cvn /DEST pdfmark end 125 4530 a 0 TeXcolorgray FL(Remark)43 b(5.1.)p 0 TeXcolorgray 46 w FK(These)37 b(are)i(the)f(only)f(cases)i(that)f(w)m (e)g(will)e(\014nd)g(when)h(computing)g(irreducible)125 4638 y(represen)m(tations)30 b(for)g FD(r)e FK(=)d(4.)224 4781 y(Observ)m(e)j(that)h(the)g(cases)g FD(\017)1184 4795 y Fx(\013;)p FJ(1)1314 4781 y FK(=)c FD(\017)1447 4796 y Fx(\014)1522 4781 y FK(or)k FD(")1674 4795 y Fx(\013;)p FJ(1)1804 4781 y FK(=)c FD(")1942 4796 y Fx(\014)2018 4781 y FK(in)i(item)h(\()2362 4781 y SDict begin H.S end 2362 4781 a 0 TeXcolorgray FK(3)p 0 TeXcolorgray 2408 4723 a SDict begin H.R end 2408 4723 a 2408 4781 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (Item.3) cvn H.B /ANN pdfmark end 2408 4781 a FK(\))g(do)h(not)f(need)h(to)g(b)s(e)f(considered)125 4889 y(since)f(in)f(that)j(case)g(there)f(is)f(triple)f(eigen)m(v)m (ector)k(in)d(either)g FD(A)h FK(or)g FD(B)33 b FK(and)27 b(a)h(double)f(eigen)m(v)m(ector)j(in)125 4997 y(the)g(other)h(matrix,) f(so)g(all)g(the)g(represen)m(tations)g(are)h(reducible)d(\(c.f.)k (Remark)2932 4997 y SDict begin H.S end 2932 4997 a 0 TeXcolorgray FK(3.5)p 0 TeXcolorgray 3048 4939 a SDict begin H.R end 3048 4939 a 3048 4997 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.5) cvn H.B /ANN pdfmark end 3048 4997 a FK(\).)224 5191 y(A)h(form)m(ula)g(for)g FC(G)858 5205 y Fx(\034)934 5191 y FK(is)f(easier)h(to)h(obtain.)48 b(Recall)33 b(the)g(de\014nition)e(\()2602 5191 y SDict begin H.S end 2602 5191 a 0 TeXcolorgray FK(18)p 0 TeXcolorgray 2693 5132 a SDict begin H.R end 2693 5132 a 2693 5191 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.18) cvn H.B /ANN pdfmark end 2693 5191 a FK(\).)49 b(An)m(y)33 b FD(P)43 b FC(2)30 b(G)3245 5205 y Fx(\045)3318 5191 y FK(induces)125 5299 y(an)e(automorphism)f(of)h(Gr)1057 5313 y Fx(i)1086 5299 y FK(\()p FD(\045)p FK(\),)h(resp)s(ecting)f(the) h(comp)s(onen)m(ts.)40 b(By)29 b(Sc)m(h)m(ur)f(lemma,)g(it)g(acts)i(on) e(the)125 5406 y(isot)m(ypic)37 b(comp)s(onen)m(ts,)j(so)e(pro)s (ducing)1555 5338 y Ft(Q)1641 5365 y Fx(s)1641 5433 y(i)p FJ(=1)1774 5338 y Ft(Q)1860 5365 y Fx(s)1893 5375 y Fq(i)1860 5433 y Fx(j)t FJ(=1)2002 5406 y FK(GL)2130 5420 y Fx(m)2192 5430 y Fq(i;j)2270 5406 y FK(.)63 b(This)36 b(has)i(to)h(b)s(e)e (completed)h(with)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 18 18 TeXDict begin HPSdict begin 18 17 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.18) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(18)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(upp)s(er)39 b(diagonal)h(blo)s(c)m(ks.)73 b(The)40 b(matrix)h FD(P)54 b FK(m)m(ust)41 b(\014x)g(the)g(diagonal)g(matrix)f FD(A)p FK(,)45 b(so)c(the)g(upp)s(er)125 374 y(diagonal)33 b(blo)s(c)m(k)g(of)h FD(P)47 b FK(corresp)s(onding)32 b(to)i FD(\013;)15 b(\014)40 b FK(has)34 b(to)h(b)s(e)e FD(S)j FK(=)31 b FD(Q)2512 388 y Fx(\013)2561 374 y FK(\002)p FD(Q)2704 335 y Fs(\000)p FJ(1)2704 403 y Fx(\014)2798 374 y FK(,)k(as)f(in)e(Theorem)3470 374 y SDict begin H.S end 3470 374 a 0 TeXcolorgray FK(4.4)p 0 TeXcolorgray 3586 315 a SDict begin H.R end 3586 315 a 3586 374 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.4) cvn H.B /ANN pdfmark end 3586 374 a FK(.)125 515 y(The)25 b(matrix)g(\002)g (has)851 446 y Ft(P)947 541 y Fx(k)1005 515 y FD(a)1053 482 y Fx(\013)1053 542 y(k)1103 515 y FD(a)1151 470 y Fx(\014)1151 544 y(k)1224 515 y FK(free)g(en)m(tries,)i(so)f(adding)e (up)h(on)h(the)f(p)s(ossible)f(matrices,)j(the)e(upp)s(er)125 622 y(diagonal)k(parts)h(form)g(a)h(v)m(ector)h(space)f(of)f(dimension) 1408 802 y FD(D)e FK(=)1704 716 y Ft(X)1607 917 y Fx(d)p FJ(\()p Fx(\014)s FJ(\))p Fx(>d)p FJ(\()p Fx(\013)p FJ(\))1948 716 y Ft(X)1994 913 y Fx(k)2095 802 y FD(a)2143 765 y Fx(\013)2143 825 y(k)2192 802 y FD(a)2240 758 y Fx(\014)2240 831 y(k)2302 802 y FD(:)125 1071 y FK(Hence)125 1291 y(\(25\))1373 1291 y SDict begin H.S end 1373 1291 a 1373 1291 a SDict begin 13 H.A end 1373 1291 a 1373 1291 a SDict begin [/View [/XYZ H.V]/Dest (equation.5.25) cvn /DEST pdfmark end 1373 1291 a FK([)p FC(G)1452 1305 y Fx(\034)1496 1291 y FK(])d(=)g FD(q)1686 1254 y Fx(D)1807 1178 y(s)1765 1205 y Ft(Y)1766 1400 y Fx(i)p FJ(=1)1928 1176 y Fx(s)1961 1186 y Fq(i)1899 1205 y Ft(Y)1896 1400 y Fx(j)t FJ(=1)2019 1291 y FK([GL)2172 1305 y Fx(m)2234 1315 y Fq(i;j)2312 1291 y FK(])p FD(:)125 1630 y SDict begin H.S end 125 1630 a 125 1630 a SDict begin 13 H.A end 125 1630 a 125 1630 a SDict begin [/View [/XYZ H.V]/Dest (section*.1) cvn /DEST pdfmark end 125 1630 a FL(Multiplicit)m(y.)46 b FK(Recall)35 b(that,)i(giv)m(en)e(a)h(m)m(ultiset)f FD(X)41 b FK(=)33 b FC(f)p FD(x)2244 1590 y Fx(m)2306 1599 y FG(1)2244 1656 y FJ(1)2345 1630 y FD(;)15 b(:)g(:)g(:)i(;)e(x)2599 1597 y Fx(m)2661 1605 y Fq(n)2599 1653 y Fx(n)2708 1630 y FC(g)q FK(,)37 b(w)m(e)e(can)h(consider)e(the)125 1738 y(subgroup)26 b FD(S)573 1752 y Fx(X)665 1738 y FC(\032)f FD(S)817 1752 y Fx(n)892 1738 y FK(of)j(p)s(erm)m(utations)e FD(\031)31 b FK(that)e(preserv)m(e)f(the)g(m)m(ultiplicit)m(y)d(of)j (the)g(m)m(ultiset,)g(that)125 1846 y(is)h FD(m)296 1864 y Fx(\031)r FJ(\()p Fx(i)p FJ(\))447 1846 y FK(=)c FD(m)623 1860 y Fx(i)681 1846 y FK(for)30 b(all)g(1)25 b FC(\024)g FD(i)h FC(\024)f FD(n)p FK(.)224 1993 y(No)m(w,)31 b(consider)d(a)i (con\014guration)f(of)g(eigen)m(v)-5 b(alues)30 b FD(\024)25 b FK(=)g(\()p Fn(\017)p FD(;)15 b Fn(")p FK(\))31 b(and)e(let)g FD(S)2774 2007 y Fx(\024)2844 1993 y FK(=)c FD(S)2996 2007 y Fm(\017)3052 1993 y FC(\002)18 b FD(S)3197 2007 y Fm(")3238 1993 y FK(.)41 b(Giv)m(en)29 b(a)125 2101 y(t)m(yp)s(e)j FD(\034)37 b FK(=)28 b(\()p FD(\030)t(;)15 b(\033)s FK(\))29 b FC(2)e(T)883 2115 y Fx(\024)959 2101 y FK(and)32 b FD(\031)e FC(2)e FD(S)1365 2115 y Fx(\024)1441 2101 y FK(w)m(e)k(set)h FD(\031)24 b FC(\001)d FD(\034)38 b FK(=)28 b(\()p FD(\030)t(;)15 b(\031)25 b FC(\001)c FD(\033)s FK(\).)46 b(That)32 b(is,)f(the)h(new)g(t)m(yp)s(e)g(has)f (the)125 2209 y(same)c(shap)s(e)f FD(\030)31 b FK(but)c(the)g(new)g (eigen)m(v)-5 b(alues,)28 b FD(\031)16 b FC(\001)e FD(\033)s FK(,)28 b(are)g(the)f(ones)h(of)f FD(\033)j FK(p)s(erm)m(uted)c (according)h(to)h(the)125 2317 y(p)s(erm)m(utation)h FD(\031)s FK(.)41 b(This)28 b(induces)h(an)h(action)h(of)g FD(S)1856 2331 y Fx(\024)1930 2317 y FK(on)g FC(T)2107 2331 y Fx(\024)2151 2317 y FK(.)224 2460 y(Moreo)m(v)m(er,)j(b)m(y)d (the)h(computations)f(ab)s(o)m(v)m(e,)i(w)m(e)e(ha)m(v)m(e)i(that)f([)p FD(R)q FK(\()p FD(\034)10 b FK(\)])27 b(=)g([)p FD(R)q FK(\()p FD(\031)d FC(\001)d FD(\034)10 b FK(\)].)44 b(This)29 b(implies)125 2568 y(that,)38 b(if)c(w)m(e)j(denote)f(the)g(length)f (of)h(the)g(orbit)f(of)h FD(\034)46 b FK(b)m(y)36 b FD(m)2231 2582 y Fx(\024)2275 2568 y FK(\()p FD(\034)10 b FK(\),)38 b(called)d(the)h(m)m(ultiplicit)m(y)d(of)j(the)125 2676 y(t)m(yp)s(e)30 b FD(\034)10 b FK(,)31 b(w)m(e)g(can)f(write)1196 2731 y Ft(X)1179 2928 y Fx(\034)8 b Fs(2T)1304 2936 y Fq(\024)1345 2818 y FK([)p FD(R)q FK(\()p FD(\034)i FK(\)])26 b(=)1803 2731 y Ft(X)1707 2933 y FJ([)p Fx(\034)8 b FJ(])p Fs(2T)1872 2941 y Fq(\024)1911 2933 y Fx(=S)1989 2941 y Fq(\024)2045 2818 y FD(m)2125 2832 y Fx(\024)2170 2818 y FK(\()p FD(\034)i FK(\)[)p FD(R)q FK(\()p FD(\034)g FK(\)])p FD(:)125 3069 y FK(This)30 b(form)m(ula)h(reduces)g (drastically)f(the)i(n)m(um)m(b)s(er)f(of)h(t)m(yp)s(es)g(that)g(need)g (to)h(b)s(e)e(considered)g(and)g(it)125 3177 y(is)e(the)i(v)m(ersion)e (that)i(w)m(e)g(will)d(use)i(in)f(Sections)1801 3177 y SDict begin H.S end 1801 3177 a 0 TeXcolorgray FK(7.1)p 0 TeXcolorgray 1917 3119 a SDict begin H.R end 1917 3119 a 1917 3177 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.7.1) cvn H.B /ANN pdfmark end 1917 3177 a 31 w FK(and)2124 3177 y SDict begin H.S end 2124 3177 a 0 TeXcolorgray FK(8)p 0 TeXcolorgray 2170 3119 a SDict begin H.R end 2170 3119 a 2170 3177 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.8) cvn H.B /ANN pdfmark end 2170 3177 a FK(.)125 3311 y SDict begin H.S end 125 3311 a 125 3311 a SDict begin 13 H.A end 125 3311 a 125 3311 a SDict begin [/View [/XYZ H.V]/Dest (section.6) cvn /DEST pdfmark end 125 3311 a 1302 3455 a FK(6.)47 b FE(Count)33 b(of)h(components)224 3652 y FK(In)43 b(this)f(section,)47 b(w)m(e)d(are)g(going)f(to)h(coun)m(t)g(the)g(v)-5 b(alid)41 b(con\014gurations)i(of)g(eigen)m(v)-5 b(alues)43 b FD(\024)48 b FK(=)125 3760 y(\()p FD(\024)212 3774 y FJ(1)252 3760 y FD(;)15 b(\024)344 3774 y FJ(2)384 3760 y FK(\).)47 b(As)32 b(w)m(e)h(will)d(see,)k(w)m(e)e(need)h(to)g(consider)e (di\013eren)m(t)h(cases)h(according)f(to)i(the)e(n)m(um)m(b)s(er)f(of) 125 3868 y(rep)s(eated)e(eigen)m(v)-5 b(alues)29 b(in)f FD(\024)1121 3882 y FJ(1)1191 3868 y FK(and)g FD(\024)1418 3882 y FJ(2)1458 3868 y FK(.)41 b(W)-8 b(e)30 b(will)d(analyze)j (completely)f(the)h(patterns)f(that)h(app)s(ear)125 3976 y(for)g FD(r)d FK(=)e(4,)31 b(and)f(the)h(general)f(case)i(when)d FD(r)m(;)15 b(n;)g(m)31 b FK(are)g(coprime)e(is)h(studied)e(in)i (Section)3220 3976 y SDict begin H.S end 3220 3976 a 0 TeXcolorgray FK(6.5)p 0 TeXcolorgray 3336 3917 a SDict begin H.R end 3336 3917 a 3336 3976 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.6.5) cvn H.B /ANN pdfmark end 3336 3976 a FK(.)224 4119 y(W)-8 b(e)42 b(\014x)e FD(n;)15 b(m)41 b FK(and)f(the)h(torus)g(knot)g(group)f(\()1867 4119 y SDict begin H.S end 1867 4119 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 1913 4060 a SDict begin H.R end 1913 4060 a 1913 4119 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.5) cvn H.B /ANN pdfmark end 1913 4119 a FK(\).)73 b(Fix)40 b(also)h FD(r)k(>)e FK(0)e(and)f(recall)g(that)i(w)m(e)f(are) 125 4228 y(in)m(terested)33 b(in)f(the)h(v)-5 b(ariet)m(y)34 b(\()1152 4228 y SDict begin H.S end 1152 4228 a 0 TeXcolorgray FK(6)p 0 TeXcolorgray 1198 4169 a SDict begin H.R end 1198 4169 a 1198 4228 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.6) cvn H.B /ANN pdfmark end 1198 4228 a FK(\),)g(and)f(particularly)-8 b(,)32 b(w)m(e)i(w)m(an)m(t)g(to) g(compute)f FC(R)2910 4195 y FJ(irr)2910 4250 y Fx(r)3022 4228 y FK(using)f(\()3298 4228 y SDict begin H.S end 3298 4228 a 0 TeXcolorgray FK(10)p 0 TeXcolorgray 3389 4169 a SDict begin H.R end 3389 4169 a 3389 4228 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.10) cvn H.B /ANN pdfmark end 3389 4228 a FK(\).)50 b(By)125 4335 y(Lemma)453 4335 y SDict begin H.S end 453 4335 a 0 TeXcolorgray FK(3.1)p 0 TeXcolorgray 569 4277 a SDict begin H.R end 569 4277 a 569 4335 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.1) cvn H.B /ANN pdfmark end 569 4335 a 34 w FK(these)35 b(are)g(divided)c(according)j(to)h(a)g(ro)s(ot)g(of)f(unit)m(y)f FD($)i FC(2)c FD(\026)2732 4349 y Fx(r)2770 4335 y FK(.)52 b(If)34 b FD(\017)2979 4349 y FJ(1)3018 4335 y FD(;)15 b(:)g(:)g(:)i(;)e(\017)3257 4349 y Fx(r)3330 4335 y FK(are)34 b(the)125 4443 y(eigen)m(v)-5 b(alues)35 b(of)g FD(A)p FK(,)i(then)d FD(\017)1086 4410 y Fx(n)1086 4469 y(i)1167 4443 y FK(=)e FD($)38 b FK(for)d(all)f FD(i)p FK(,)j(and)e FD(\017)1970 4457 y FJ(1)2024 4443 y FC(\001)15 b(\001)g(\001)h FD(\017)2182 4457 y Fx(r)2254 4443 y FK(=)32 b(1.)56 b(T)-8 b(o)36 b(coun)m(t)f(the)h(distribution)31 b(of)125 4551 y(eigen)m(v)-5 b(alues,)30 b(w)m(e)h(in)m(tro)s(duce)e(the)i(set) 125 4722 y(\(26\))829 4722 y SDict begin H.S end 829 4722 a 829 4722 a SDict begin 13 H.A end 829 4722 a 829 4722 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.26) cvn /DEST pdfmark end 829 4722 a 855 4699 a FK(^)829 4722 y FD(N)902 4736 y Fx(n;r)1002 4722 y FK(\()p FD($)s FK(\))26 b(=)1272 4648 y Ft(\010)1325 4722 y FK(\()p FD(\017)1397 4736 y FJ(1)1437 4722 y FD(;)15 b(:)g(:)g(:)h(;)f(\017)1675 4736 y Fx(r)1714 4722 y FK(\))25 b FC(2)g FD(\026)1915 4684 y Fx(r)1915 4744 y(nr)2011 4722 y FC(j)15 b FD(\017)2088 4684 y Fx(n)2088 4744 y(i)2160 4722 y FK(=)25 b FD($)s(;)15 b(\017)2411 4736 y FJ(1)2466 4722 y FC(\001)g(\001)g(\001)h FD(\017)2624 4736 y Fx(r)2687 4722 y FK(=)25 b(1)2828 4648 y Ft(\011)2882 4722 y FD(:)125 4906 y FK(There)38 b(is)g(an)h(action)g(of)g(the)g(symmetric)f(group)g FD(S)1962 4920 y Fx(r)2039 4906 y FK(on)2200 4883 y(^)2174 4906 y FD(N)2247 4920 y Fx(n;r)2347 4906 y FK(\()p FD($)s FK(\))h(b)m(y)g(p)s(erm)m(utation)f(of)h(the)g(ele-)125 5027 y(men)m(ts)33 b FD(\017)430 5041 y Fx(i)459 5027 y FK(,)h(and)f(w)m(e)h(denote)h(b)m(y)e FD(N)1334 5041 y Fx(n;r)1434 5027 y FK(\()p FD($)s(;)15 b(\030)t FK(\))32 b(=)1826 5004 y(^)1799 5027 y FD(N)1872 5041 y Fx(n;r)1973 5027 y FK(\()p FD($)s FK(\))p FD(=S)2222 5041 y Fx(r)2294 5027 y FK(the)i(corresp)s(onding)e(unordered)g(set.)125 5135 y(Therefore,)e(the)g(p)s(ossible)e(con\014gurations)i(of)h(eigen)m (v)-5 b(alues)30 b(\()2256 5135 y SDict begin H.S end 2256 5135 a 0 TeXcolorgray FK(8)p 0 TeXcolorgray 2302 5076 a SDict begin H.R end 2302 5076 a 2302 5135 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.8) cvn H.B /ANN pdfmark end 2302 5135 a FK(\))g(are)h(pairs)883 5320 y FD(\024)25 b FK(=)g(\()p FD(\024)1143 5334 y FJ(1)1183 5320 y FD(;)15 b(\024)1275 5334 y FJ(2)1316 5320 y FK(\))25 b FC(2)g FD(M)1550 5334 y Fx(n;m;r)1758 5320 y FK(=)1896 5233 y Ft(G)1854 5424 y Fx($)r Fs(2)p Fx(\026)2004 5432 y Fq(r)2054 5320 y FD(N)2127 5334 y Fx(n;r)2227 5320 y FK(\()p FD($)s FK(\))c FC(\002)f FD(N)2560 5334 y Fx(m;r)2680 5320 y FK(\()p FD($)s FK(\))p FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 19 19 TeXDict begin HPSdict begin 19 18 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.19) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(19)p 0 TeXcolorgray 224 266 a FK(Moreo)m(v)m(er,)37 b(consider)c(a)i(partition)d FD(\031)j FK(=)c FC(f)p FK(1)1752 233 y Fx(e)1785 242 y FG(1)1824 266 y FD(;)15 b FK(2)1909 233 y Fx(e)1942 242 y FG(2)1982 266 y FD(;)g(:)g(:)g(:)h(;)f(r)2227 233 y Fx(e)2260 241 y Fq(r)2299 266 y FC(g)34 b FK(of)g FD(r)j FK(with)32 b FD(e)2815 280 y Fx(i)2875 266 y FC(\025)f FK(0)k(for)e(1)f FC(\024)f FD(i)h FC(\024)f FD(r)s FK(,)125 374 y(and)h FD(r)g FK(=)477 305 y Ft(P)573 400 y Fx(i)616 374 y FD(ie)689 388 y Fx(i)718 374 y FK(.)48 b(Let)34 b(us)e(denote)h FD(S)1427 388 y Fx(\031)1504 374 y FK(=)c(\()p FD(S)1695 388 y FJ(1)1734 374 y FK(\))1769 341 y Fx(e)1802 350 y FG(1)1863 374 y FC(\002)22 b FK(\()p FD(S)2047 388 y FJ(2)2086 374 y FK(\))2121 341 y Fx(e)2154 350 y FG(2)2215 374 y FC(\002)f FD(:)15 b(:)g(:)23 b FC(\002)f FK(\()p FD(S)2619 388 y Fx(r)2657 374 y FK(\))2692 341 y Fx(e)2725 349 y Fq(r)2797 374 y FK(as)33 b(a)g(subgroup)e(of)j FD(S)3549 388 y Fx(r)3586 374 y FK(.)125 495 y(W)-8 b(e)27 b(will)d(denote)j(b)m(y)883 472 y(^)856 495 y FD(N)939 462 y Fx(\031)929 517 y(n;r)1030 495 y FK(\()p FD($)s FK(\))g(the)f(set)h(of)g(p)s(oin)m(ts)e(of)1990 472 y(^)1964 495 y FD(N)2037 509 y Fx(n;r)2137 495 y FK(\()p FD($)s FK(\))i(whose)g(stabilizer)d(under)h(the)i(action)125 625 y(of)h FD(S)282 639 y Fx(r)349 625 y FK(is)f(\(conjugated)j(to\))g FD(S)1135 639 y Fx(\031)1181 625 y FK(.)41 b(In)27 b(other)i(w)m(ords,) 1905 602 y(^)1879 625 y FD(N)1962 592 y Fx(\031)1952 647 y(n;r)2052 625 y FK(\()p FD($)s FK(\))h(is)d(the)i(set)g(of)g (tuples)e(of)3111 602 y(^)3084 625 y FD(N)3157 639 y Fx(n;r)3258 625 y FK(\()p FD($)s FK(\))i(with)125 754 y FD(e)167 768 y Fx(i)228 754 y FK(collections)j(of)g FD(i)h FK(equal)f(elemen)m(ts,)i(for)f(1)c FC(\024)g FD(i)g FC(\024)g FD(r)s FK(.)47 b(Denote)34 b(also)e(b)m(y)h FD(N)2783 722 y Fx(\031)2773 777 y(n;r)2873 754 y FK(\()p FD($)s FK(\))d(=)3177 732 y(^)3150 754 y FD(N)3233 722 y Fx(\031)3223 777 y(n;r)3324 754 y FK(\()p FD($)s FK(\))p FD(=S)3573 768 y Fx(r)125 862 y FK(the)g(collection)g(of)h(unordered)d (tuples)i(and)f(set)125 1039 y(\(27\))1171 1039 y SDict begin H.S end 1171 1039 a 1171 1039 a SDict begin 13 H.A end 1171 1039 a 1171 1039 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.27) cvn /DEST pdfmark end 1171 1039 a FD(M)1269 1002 y Fx(\031)1310 1011 y FG(1)1345 1002 y Fx(;\031)1406 1011 y FG(2)1259 1062 y Fx(n;m;r)1469 1039 y FK(=)1607 953 y Ft(G)1565 1144 y Fx($)r Fs(2)p Fx(\026)1715 1152 y Fq(r)1765 1039 y FD(N)1848 1002 y Fx(\031)1889 1011 y FG(1)1838 1062 y Fx(n;r)1938 1039 y FK(\()p FD($)s FK(\))21 b FC(\002)f FD(N)2281 1002 y Fx(\031)2322 1011 y FG(2)2271 1062 y Fx(m;r)2391 1039 y FK(\()p FD($)s FK(\))p FD(:)224 1344 y FK(F)-8 b(or)44 b(giv)m(en)f(partitions)f FD(\031)1130 1358 y FJ(1)1169 1344 y FD(;)15 b(\031)1261 1358 y FJ(2)1300 1344 y FK(,)47 b(if)42 b FD(\024;)15 b(\024)1612 1311 y Fs(0)1683 1344 y FC(2)46 b FD(M)1888 1300 y Fx(\031)1929 1309 y FG(1)1963 1300 y Fx(;\031)2024 1309 y FG(2)1878 1356 y Fx(n;m;r)2105 1344 y FK(then)c(w)m(e)i(ha)m(v)m(e)g([)p FC(R)2795 1311 y FJ(red)2795 1366 y Fx(r)n(;\024)2898 1344 y FK(])i(=)g([)p FC(R)3188 1311 y FJ(red)3188 1372 y Fx(r)n(;\024)3279 1353 y Fr(0)3305 1344 y FK(].)79 b(This)125 1462 y(follo)m(ws)34 b(from)h(\()683 1462 y SDict begin H.S end 683 1462 a 0 TeXcolorgray FK(9)p 0 TeXcolorgray 729 1403 a SDict begin H.R end 729 1403 a 729 1462 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.9) cvn H.B /ANN pdfmark end 729 1462 a FK(\))g(thanks)g(to)i(the)e(form)m(ula)g(in)f(Corollary)2235 1462 y SDict begin H.S end 2235 1462 a 0 TeXcolorgray FK(4.6)p 0 TeXcolorgray 2351 1403 a SDict begin H.R end 2351 1403 a 2351 1462 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.6) cvn H.B /ANN pdfmark end 2351 1462 a FK(,)j(whic)m(h)d(sho)m (ws)h(that)h(the)g(motiv)m(es)125 1569 y(only)27 b(dep)s(end)g(on)h(ho) m(w)h(man)m(y)g(eigen)m(v)-5 b(alues)28 b(are)h(rep)s(eated)f(and)g (not)h(their)f(particular)e(v)-5 b(alues.)40 b(The)125 1677 y(form)m(ula)28 b(only)h(giv)m(es)h(the)f(motiv)m(es)h(under)e (the)i(assumptions)e(of)h(Corollary)2799 1677 y SDict begin H.S end 2799 1677 a 0 TeXcolorgray FK(4.7)p 0 TeXcolorgray 2915 1619 a SDict begin H.R end 2915 1619 a 2915 1677 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.4.7) cvn H.B /ANN pdfmark end 2915 1677 a FK(,)h(whic)m(h)e(is)g(all)h (that)125 1785 y(w)m(e)g(need.)41 b(Ho)m(w)m(ev)m(er,)31 b(w)m(orking)e(with)f(the)i(diagram)f(\()1988 1785 y SDict begin H.S end 1988 1785 a 0 TeXcolorgray FK(15)p 0 TeXcolorgray 2079 1727 a SDict begin H.R end 2079 1727 a 2079 1785 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.15) cvn H.B /ANN pdfmark end 2079 1785 a FK(\),)h(w)m(e)g(can)g (push-do)m(wn)d(to)j FC(I)7 b FK(\()p FD(\034)j FK(\))30 b(and)f(sho)m(w)125 1893 y(that)i(the)f(classes)g(are)h(equal)f(ev)m (en)h(if)f(w)m(e)g(do)h(not)f(ha)m(v)m(e)i(explicit)d(form)m(ulas.)224 2037 y(The)42 b(ab)s(o)m(v)m(e)i(means)e(that)h(it)f(is)f(enough)h(to)h (compute)g([)p FC(R)2329 2004 y FJ(red)2329 2059 y Fx(r)n(;\024)2431 2037 y FK(])g(for)f(one)h FD(\024)i FC(2)g FD(M)3130 1992 y Fx(\031)3171 2001 y FG(1)3205 1992 y Fx(;\031)3266 2001 y FG(2)3120 2048 y Fx(n;m;r)3346 2037 y FK(\(whic)m(h)125 2148 y(is)38 b(a)j(motiv)m(e)f(indep)s(enden)m(t)e(of)i FD(n)f FK(and)g FD(m)p FK(\))h(and)f(then)h(m)m(ultiply)d(the)j(result) f(b)m(y)h(the)g(n)m(um)m(b)s(er)e(of)125 2256 y(comp)s(onen)m(ts)29 b FC(j)p FD(M)747 2212 y Fx(\031)788 2221 y FG(1)822 2212 y Fx(;\031)883 2221 y FG(2)737 2268 y Fx(n;m;r)921 2256 y FC(j)g FK(\(a)h(com)m(binatorial)f(n)m(um)m(b)s(er)e(dep)s (enden)m(t)i(only)f(on)h FD(n;)15 b(m;)g(r)s FK(\).)40 b(That)29 b(is,)g(\()3485 2256 y SDict begin H.S end 3485 2256 a 0 TeXcolorgray FK(10)p 0 TeXcolorgray 3576 2198 a SDict begin H.R end 3576 2198 a 3576 2256 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.10) cvn H.B /ANN pdfmark end 3576 2256 a FK(\))125 2364 y(and)g(\()336 2364 y SDict begin H.S end 336 2364 a 0 TeXcolorgray FK(7)p 0 TeXcolorgray 382 2306 a SDict begin H.R end 382 2306 a 382 2364 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.7) cvn H.B /ANN pdfmark end 382 2364 a FK(\))i(read)f(as)1238 2508 y([)p FC(R)1340 2471 y FJ(irr)1340 2531 y Fx(r)1419 2508 y FK(])c(=)1585 2422 y Ft(X)1566 2613 y Fx(\031)1607 2622 y FG(1)1641 2613 y Fx(;\031)1702 2622 y FG(2)1751 2508 y FD(c)p FK(\()p FD(\031)1877 2522 y FJ(1)1917 2508 y FD(;)15 b(\031)2009 2522 y FJ(2)2048 2508 y FK(\)[)p FD(R)2178 2471 y FJ(irr)2177 2535 y Fx(\024)p FJ(\()p Fx(\031)2286 2544 y FG(1)2321 2535 y Fx(;\031)2382 2544 y FG(2)2416 2535 y FJ(\))2447 2508 y FK(])p FD(;)125 2753 y FK(where)29 b FD(c)p FK(\()p FD(\031)513 2767 y FJ(1)553 2753 y FD(;)15 b(\031)645 2767 y FJ(2)685 2753 y FK(\))26 b(=)f FC(j)p FD(M)965 2708 y Fx(\031)1006 2717 y FG(1)1040 2708 y Fx(;\031)1101 2717 y FG(2)955 2764 y Fx(n;m;r)1139 2753 y FC(j)p FK(,)31 b(and)f FD(\024)p FK(\()p FD(\031)1536 2767 y FJ(1)1575 2753 y FD(;)15 b(\031)1667 2767 y FJ(2)1707 2753 y FK(\))31 b(is)e(one)i(elemen)m(t)g (in)e FD(M)2571 2708 y Fx(\031)2612 2717 y FG(1)2646 2708 y Fx(;\031)2707 2717 y FG(2)2561 2764 y Fx(n;m;r)2745 2753 y FK(.)224 2896 y(No)m(w)h(w)m(e)g(compute)f(the)g(v)-5 b(alue)29 b(of)g FD(c)p FK(\()p FD(\031)1547 2910 y FJ(1)1587 2896 y FD(;)15 b(\031)1679 2910 y FJ(2)1719 2896 y FK(\))29 b(for)g(some)h(classes)f(of)g(partitions,)f(whic)m(h)g(will)f(co)m(v)m (er)125 3004 y(at)h(least)g(all)f(situation)g(for)g FD(r)h FK(=)d(4.)40 b(W)-8 b(e)29 b(tak)m(e)h FD(k)e FK(=)d Fz(C)51 b FK(in)27 b(the)h(computations)g(b)s(elo)m(w,)f(but)g(the)h (result)125 3112 y(holds)36 b(as)h(w)m(ell)g(for)g(an)g(algebraically)f (closed)i(\014eld)e(of)h(zero)i(c)m(haracteristic,)h(as)e(it)f(only)f (in)m(v)m(olv)m(es)125 3220 y(ro)s(ots)30 b(of)h(unit)m(y)-8 b(.)125 3327 y SDict begin H.S end 125 3327 a 125 3327 a SDict begin 13 H.A end 125 3327 a 125 3327 a SDict begin [/View [/XYZ H.V]/Dest (subsection.6.1) cvn /DEST pdfmark end 125 3327 a 126 x FK(6.1.)46 b FL(P)m(artition)36 b FD(\031)30 b FK(=)c FC(f)p FK(1)1028 3420 y Fx(r)1067 3453 y FC(g)p FL(.)46 b FK(W)-8 b(e)32 b(\014x)e FD(\013)1531 3467 y FJ(1)1571 3453 y FD(;)15 b(:)g(:)g(:)i(;)e(\013)1831 3467 y Fx(n)1909 3453 y FK(the)31 b FD(n)p FK(-th)g(ro)s(ots)g(of)g (unit)m(y)-8 b(,)31 b FD(\013)2917 3467 y Fx(j)2980 3453 y FK(=)c FD(e)3120 3420 y FJ(2)p Fx(\031)r(ij)t(=n)3337 3453 y FK(.)42 b(Since)125 3571 y FD($)37 b FC(2)d FD(\026)387 3585 y Fx(r)424 3571 y FK(,)k(w)m(e)e(can)g(write)f FD($)j FK(=)c FD( )1316 3538 y Fx(a)1394 3571 y FK(for)h(some)h FD(a)f FK(=)f(0)p FD(;)15 b(:)g(:)g(:)i(;)e(r)27 b FC(\000)c FK(1,)38 b(where)e FD( )i FK(=)c FD(e)2989 3538 y FJ(2)p Fx(\031)r(i=r)3164 3571 y FK(.)58 b(Recalling)125 3680 y(\()160 3680 y SDict begin H.S end 160 3680 a 0 TeXcolorgray FK(26)p 0 TeXcolorgray 251 3621 a SDict begin H.R end 251 3621 a 251 3680 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.26) cvn H.B /ANN pdfmark end 251 3680 a FK(\),)31 b(w)m(e)g(tak)m(e)h FD(\020)f FK(=)25 b FD(e)882 3647 y FJ(2)p Fx(\031)r(i=r)r(n)1131 3680 y FK(so)31 b(that)903 3843 y FD(\017)940 3857 y Fx(j)1002 3843 y FK(=)25 b FD(\020)1145 3805 y Fx(a)1186 3843 y FD(\013)1244 3857 y Fx(i)1268 3867 y Fq(j)1305 3843 y FD(;)106 b FK(1)26 b FC(\024)f FD(i)1634 3857 y FJ(1)1674 3843 y FD(;)15 b(:)g(:)g(:)h(;)f(i)1906 3857 y Fx(r)1970 3843 y FC(\024)25 b FD(n;)15 b(i)2192 3857 y Fx(j)2254 3843 y FC(6)p FK(=)25 b FD(i)2381 3858 y Fx(k)2454 3843 y FK(for)30 b FD(j)h FC(6)p FK(=)25 b FD(k)s(:)125 4008 y FK(W)-8 b(e)31 b(in)m(tro)s(duce)e (the)i(m)m(ulti-index)d FD(I)k FK(=)25 b FC(f)p FD(i)1571 4022 y FJ(1)1611 4008 y FD(;)15 b(:)g(:)g(:)i(;)e(i)1844 4022 y Fx(r)1883 4008 y FC(g)30 b FK(and)g(consider)f(the)i(sum)1104 4132 y Fx(n)1067 4160 y Ft(Y)1064 4355 y Fx(j)t FJ(=1)1186 4246 y FK(\(1)21 b(+)f FD(\020)1425 4208 y Fx(a)1466 4246 y FD(\013)1524 4260 y Fx(j)1561 4246 y FD(t)p FK(\))26 b(=)1751 4160 y Ft(X)1754 4355 y Fx(r)r Fs(\025)p FJ(0)1913 4160 y Ft(X)1897 4361 y Fs(j)p Fx(I)5 b Fs(j)p FJ(=)p Fx(r)2076 4246 y FD(\020)2123 4208 y Fx(ar)2198 4246 y FD(\013)2256 4260 y Fx(i)2280 4269 y FG(1)2334 4246 y FC(\001)15 b(\001)g(\001)h FD(\013)2513 4260 y Fx(i)2537 4268 y Fq(r)2576 4246 y FD(t)2609 4208 y Fx(r)2647 4246 y FD(:)125 4513 y FK(W)-8 b(e)34 b(w)m(an)m(t)h(to)f(coun)m(t)h(those)f (pro)s(ducts)e FD(\020)1546 4480 y Fx(ar)1621 4513 y FD(\013)1679 4527 y Fx(i)1703 4536 y FG(1)1757 4513 y FC(\001)15 b(\001)g(\001)h FD(\013)1936 4527 y Fx(i)1960 4535 y Fq(r)2030 4513 y FK(=)30 b(1.)51 b(F)-8 b(or)35 b(this)d(w)m(e)i(mak)m(e)h(use)e(of)h(the)g(\\pro-)125 4621 y(jection")c(op)s(erator)1321 4717 y Fx(n)p Fs(\000)p FJ(1)1322 4744 y Ft(X)1323 4942 y Fx(k)r FJ(=0)1469 4830 y FD(\013)1527 4793 y Fx(k)1595 4830 y FK(=)1691 4702 y Ft(\032)1801 4775 y FD(n;)83 b FK(if)29 b FD(\013)d FK(=)f(1)p FD(;)1801 4883 y FK(0)p FD(;)93 b FK(otherwise)o FD(;)125 5059 y FK(for)30 b FD(\013)25 b FC(2)g FD(\026)488 5073 y Fx(n)535 5059 y FK(.)41 b(Hence)428 5192 y Fx(n)p Fs(\000)p FJ(1)429 5219 y Ft(X)431 5417 y Fx(k)r FJ(=0)616 5192 y Fx(n)580 5219 y Ft(Y)577 5415 y Fx(j)t FJ(=1)699 5306 y FK(\(1)21 b(+)f FD(\020)938 5268 y Fx(ak)1018 5306 y FD(\013)1076 5268 y Fx(k)1076 5328 y(j)1119 5306 y FD(t)p FK(\))25 b(=)1308 5219 y Ft(X)1312 5415 y Fx(r)r Fs(\025)p FJ(0)1471 5219 y Ft(X)1455 5421 y Fs(j)p Fx(I)5 b Fs(j)p FJ(=)p Fx(r)1633 5192 y(n)p Fs(\000)p FJ(1)1634 5219 y Ft(X)1636 5417 y Fx(k)r FJ(=0)1782 5306 y FD(\020)1829 5268 y Fx(ak)r(r)1942 5306 y FK(\()p FD(\013)2035 5320 y Fx(i)2059 5329 y FG(1)2114 5306 y FC(\001)15 b(\001)g(\001)h FD(\013)2293 5320 y Fx(i)2317 5328 y Fq(r)2356 5306 y FK(\))2391 5268 y Fx(k)2434 5306 y FD(t)2467 5268 y Fx(r)2530 5306 y FK(=)2626 5219 y Ft(X)2629 5415 y Fx(r)r Fs(\025)p FJ(0)2772 5306 y FD(n)f FC(j)p FD(N)2950 5268 y Fx(\031)2940 5328 y(n;r)3041 5306 y FK(\()p FD(!)s FK(\))p FC(j)g FD(t)3244 5268 y Fx(r)3282 5306 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 20 20 TeXDict begin HPSdict begin 20 19 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.20) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(20)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(No)m(w)31 b(w)m(e)f(redo)h(the)f(sum)g(as)922 424 y Ft(X)926 620 y Fx(r)r Fs(\025)p FJ(0)1069 511 y FD(n)15 b FC(j)p FD(N)1247 473 y Fx(\034)1237 533 y(n;r)1337 511 y FK(\()p FD(!)s FK(\))p FC(j)p FD(t)1525 473 y Fx(r)1589 511 y FK(=)1685 424 y Ft(X)1701 626 y Fx(d)p Fs(j)p Fx(n)1846 424 y Ft(X)1832 622 y Fx(s)p Fs(2)p Fl(Z)1962 603 y Fr(\003)1962 638 y Fq(e)2046 397 y Fx(n)2010 424 y Ft(Y)2007 620 y Fx(j)t FJ(=1)2144 410 y Ft(\020)2199 511 y FK(1)20 b(+)g(\()p FD(\020)2437 473 y Fx(ad)2515 511 y FD(\013)2573 473 y Fx(d)2573 533 y(j)2614 511 y FK(\))2649 473 y Fx(s)2686 511 y FD(t)2719 410 y Ft(\021)2788 511 y FD(;)125 814 y FK(where)26 b FD(d)p FC(j)p FD(n)p FK(,)i FD(e)d FK(=)g FD(n=d)i FK(and)f Fz(Z)1139 781 y Fs(\003)1139 836 y Fx(e)1201 814 y FK(are)h(the)g(units)f(of)h Fz(Z)1892 828 y Fx(e)1924 814 y FK(,)h(in)m(terpreting)d(that)j Fz(Z)2730 781 y Fs(\003)2730 838 y FJ(1)2790 814 y FK(=)d FC(f)p FK(0)p FC(g)p FK(.)41 b(The)26 b(elemen)m(ts)125 925 y FD(\013)183 892 y Fx(d)183 951 y(j)253 925 y FK(are)j(the)h FD(e)p FK(-th)f(ro)s(ots)h(of)f(unit)m(y)-8 b(,)29 b(rep)s(eated)g FD(d)h FK(times.)40 b(W)-8 b(e)30 b(sub)s(divide)25 b(them)30 b(in)m(to)f(groups.)39 b(Let)30 b(us)125 1051 y(consider)f(the)h (\014rst)g(group)g FD(\013)1139 1018 y Fx(d)1139 1075 y FJ(1)1180 1051 y FD(;)15 b(:)g(:)g(:)h(;)f(\013)1439 1018 y Fx(d)1439 1074 y(e)1481 1051 y FK(.)40 b(The)30 b(p)s(olynomial)125 1321 y(\(28\))1030 1321 y SDict begin H.S end 1030 1321 a 1030 1321 a SDict begin 13 H.A end 1030 1321 a 1030 1321 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.28) cvn /DEST pdfmark end 1030 1321 a 1090 1207 a Fx(e)1048 1234 y Ft(Y)1045 1430 y Fx(j)t FJ(=1)1183 1220 y Ft(\020)1237 1321 y FK(1)21 b(+)f(\()p FD(\020)1476 1283 y Fx(ad)1554 1321 y FD(\013)1612 1283 y Fx(d)1612 1343 y(j)1653 1321 y FK(\))1688 1283 y Fx(s)1725 1321 y FD(t)1758 1220 y Ft(\021)1837 1321 y FK(=)25 b(\(1)c(+)f(\()p FC(\000)p FK(1\))2311 1283 y Fx(e)p FJ(+1)2439 1321 y FD( )2501 1283 y Fx(as)2576 1321 y FD(t)2609 1283 y Fx(e)2645 1321 y FK(\))p FD(;)125 1625 y FK(since)40 b(the)i FD(e)f FK(complex)g(n)m(um)m(b)s(ers)f FC(\000)p FK(\()p FD(\020)1507 1592 y Fx(ad)1584 1625 y FD(\013)1642 1592 y Fx(d)1642 1649 y FJ(1)1683 1625 y FK(\))1718 1592 y Fx(s)1755 1625 y FD(;)15 b(:)g(:)g(:)i(;)e FC(\000)p FK(\()p FD(\020)2110 1592 y Fx(ad)2188 1625 y FD(\013)2246 1592 y Fx(d)2246 1647 y(n)2293 1625 y FK(\))2328 1592 y Fx(s)2406 1625 y FK(are)42 b(exactly)g(those)f FD(z)46 b FK(suc)m(h)41 b(that)125 1736 y FD(z)171 1703 y Fx(e)233 1736 y FK(=)25 b(\()p FC(\000)p FK(1\))515 1703 y Fx(e)553 1736 y FD(\020)600 1703 y Fx(adse)768 1736 y FK(=)g(\()p FC(\000)p FK(1\))1050 1703 y Fx(e)1087 1736 y FD(\020)1134 1703 y Fx(asn)1276 1736 y FK(=)g(\()p FC(\000)p FK(1\))1558 1703 y Fx(e)1596 1736 y FD( )1658 1703 y Fx(as)1733 1736 y FK(.)40 b(The)27 b(other)i(groups)e(giv)m(e)i(the)f(same)h(answ)m(er,)g(so)f(w)m(e)125 1844 y(ha)m(v)m(e)j(to)g(tak)m(e)h(the)f FD(d)p FK(-th)g(p)s(o)m(w)m (er)f(of)g(\()1396 1844 y SDict begin H.S end 1396 1844 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 1488 1786 a SDict begin H.R end 1488 1786 a 1488 1844 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.28) cvn H.B /ANN pdfmark end 1488 1844 a FK(\).)41 b(Putting)29 b(all)h(together,)881 1970 y Ft(X)884 2166 y Fx(r)r Fs(\025)p FJ(0)1027 2056 y FD(n)15 b FC(j)p FD(N)1205 2019 y Fx(\031)1195 2079 y(n;r)1295 2056 y FK(\()p FD($)s FK(\))p FC(j)p FD(t)1501 2019 y Fx(r)1565 2056 y FK(=)1661 1970 y Ft(X)1679 2171 y Fx(e)p Fs(j)p Fx(n)1822 1970 y Ft(X)1808 2167 y Fx(s)p Fs(2)p Fl(Z)1938 2148 y Fr(\003)1938 2184 y Fq(e)1968 2056 y FK(\(1)21 b(+)e(\()p FC(\000)p FK(1\))2345 2019 y Fx(e)p FJ(+1)2473 2056 y FD( )2535 2019 y Fx(as)2610 2056 y FD(t)2643 2019 y Fx(e)2680 2056 y FK(\))2715 2019 y Fx(n=e)2830 2056 y FD(;)125 2354 y FK(and)29 b(taking)i(the)f(term)h FD(t)989 2321 y Fx(r)1026 2354 y FK(,)125 2597 y(\(29\))920 2597 y SDict begin H.S end 920 2597 a 920 2597 a SDict begin 13 H.A end 920 2597 a 920 2597 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.29) cvn /DEST pdfmark end 920 2597 a FC(j)p FD(N)1028 2560 y Fx(\031)1018 2620 y(n;r)1119 2597 y FK(\()p FD($)s FK(\))p FC(j)26 b FK(=)1428 2536 y(1)p 1424 2576 55 4 v 1424 2660 a FD(n)1538 2511 y Ft(X)1503 2712 y Fx(e)p Fs(j)p Fx(n;e)p Fs(j)p Fx(r)1734 2511 y Ft(X)1719 2708 y Fx(s)p Fs(2)p Fl(Z)1849 2689 y Fr(\003)1849 2725 y Fq(e)1879 2597 y FK(\()p FC(\000)p FK(1\))2065 2560 y Fx(r)r FJ(+)p Fx(r)r(=e)2261 2469 y Ft(\022)2328 2536 y FD(n=e)2333 2660 y(r)s(=e)2470 2469 y Ft(\023)2537 2597 y FD( )2599 2560 y Fx(asr)r(=e)2791 2597 y FD(:)125 2915 y FK(Here)35 b FD( )406 2882 y Fx(r)r(=e)548 2915 y FK(is)f(a)h(primitiv)m(e)e FD(e)p FK(-ro)s(ot)j(of)g(unit)m(y)-8 b(,)36 b(and)e FD( )2003 2882 y Fx(sr)r(=e)2177 2915 y FK(runs)g(o)m(v)m(er)i(all)e(primitiv)m(e)f FD(e)p FK(-th)j(ro)s(ots)f(of)125 3022 y(unit)m(y)29 b FD(\026)417 2989 y Fs(\003)417 3045 y Fx(e)456 3022 y FK(.)41 b(The)30 b(\014nal)f(form)m(ula)g(is:)125 3283 y(\(30\))1011 3283 y SDict begin H.S end 1011 3283 a 1011 3283 a SDict begin 13 H.A end 1011 3283 a 1011 3283 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.30) cvn /DEST pdfmark end 1011 3283 a FC(j)p FD(N)1119 3246 y Fx(\031)1109 3306 y(n;r)1209 3283 y FK(\()p FD($)s FK(\))p FC(j)d FK(=)1539 3197 y Ft(X)1504 3398 y Fx(e)p Fs(j)p Fx(n;e)p Fs(j)p Fx(r)1730 3222 y FK(\()p FC(\000)p FK(1\))1916 3189 y Fx(r)r FJ(+)p Fx(r)r(=e)p 1730 3262 382 4 v 1894 3345 a FD(n)2122 3155 y Ft(\022)2189 3222 y FD(n=e)2194 3345 y(r)s(=e)2331 3155 y Ft(\023)2430 3197 y(X)2413 3390 y Fx(\027)t Fs(2)p Fx(\026)2541 3371 y Fr(\003)2541 3407 y Fq(e)2593 3283 y FD(\027)2644 3246 y Fx(a)2700 3283 y FD(:)125 3576 y SDict begin H.S end 125 3576 a 125 3576 a SDict begin 13 H.A end 125 3576 a 125 3576 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.1) cvn /DEST pdfmark end 125 3576 a 0 TeXcolorgray FL(Remark)34 b(6.1.)p 0 TeXcolorgray 42 w FK(The)c(last)g(term)h(is)e(can)i(b)s(e)e(computed)i(via)f(the)g (M\177)-45 b(obius)29 b(in)m(v)m(ersion)g(form)m(ula:)1314 3697 y Ft(X)1298 3891 y Fx(\027)t Fs(2)p Fx(\026)1426 3872 y Fr(\003)1426 3907 y Fq(e)1477 3783 y FD(\027)1528 3746 y Fx(a)1595 3783 y FK(=)1691 3697 y Ft(X)1712 3898 y Fx(y)r Fs(j)p Fx(e)1837 3783 y FD(\026)p FK(\()p FD(y)s FK(\))15 b(SR\()p FD(e=y)s FK(;)g FD(a)p FK(\))125 4086 y(where)31 b FD(\026)p FK(\()p FD(y)s FK(\))h(is)e(the)i(M\177)-45 b(obius)31 b(function,)g(and)g(SR)o(\()p FD(e)p FK(;)15 b FD(a)p FK(\))29 b(=)2172 4018 y Ft(P)2268 4113 y Fx(\027)t Fs(2)p Fx(\026)2396 4121 y Fq(e)2449 4086 y FD(\027)2500 4053 y Fx(a)2542 4086 y FK(.)44 b(So)32 b(SR)o(\()p FD(e)p FK(;)15 b FD(a)p FK(\))29 b(=)e FD(e)32 b FK(when)f FD(e)p FC(j)p FD(a)125 4197 y FK(and)e(0)i(otherwise.)125 4279 y SDict begin H.S end 125 4279 a 125 4279 a SDict begin 13 H.A end 125 4279 a 125 4279 a SDict begin [/View [/XYZ H.V]/Dest (subsection.6.2) cvn /DEST pdfmark end 125 4279 a 143 x FK(6.2.)46 b FL(P)m(artition)35 b FD(\031)813 4389 y Fs(0)862 4422 y FK(=)958 4348 y Ft(\010)1011 4422 y FK(1)1056 4389 y Fx(r)r Fs(\000)p FJ(2)1185 4422 y FD(;)15 b FK(2)1270 4389 y FJ(1)1310 4348 y Ft(\011)1363 4422 y FL(.)45 b FK(W)-8 b(e)32 b(start)f(with)e(the)i(the)f(sum)784 4585 y Fx(n)739 4613 y Ft(X)742 4807 y Fx(p)p FJ(=1)886 4699 y FD(\020)933 4661 y FJ(2)p Fx(a)1009 4699 y FD(\013)1067 4661 y FJ(2)1067 4721 y Fx(p)1107 4699 y FD(t)1140 4661 y FJ(2)1198 4613 y Ft(Y)1195 4810 y Fx(j)t Fs(6)p FJ(=)p Fx(p)1317 4699 y FK(\(1)21 b(+)f FD(\020)1556 4661 y Fx(a)1597 4699 y FD(\013)1655 4713 y Fx(j)1692 4699 y FD(t)p FK(\))25 b(=)1881 4613 y Ft(X)1885 4808 y Fx(r)r Fs(\025)p FJ(0)2084 4613 y Ft(X)2038 4801 y Fr(j)p Fq(I)t Fr(j)p FG(=)p Fq(r)r Fr(\000)p FG(2)2098 4860 y Fq(p)7 b(=)-39 b Fr(2)o Fq(I)2287 4699 y FD(\020)2334 4661 y Fx(ar)2409 4699 y FD(\013)2467 4661 y FJ(2)2467 4721 y Fx(p)2507 4699 y FD(\013)2565 4713 y Fx(i)2589 4722 y FG(3)2643 4699 y FD(:)15 b(:)g(:)i(\013)2823 4713 y Fx(i)2847 4721 y Fq(r)2885 4699 y FD(t)2918 4661 y Fx(r)2971 4699 y FD(:)125 5036 y FK(T)-8 b(aking)30 b(the)g(pro)5 b(jection)30 b(op)s(erator)h(as)f(b)s(efore,)812 5199 y Fx(n)p Fs(\000)p FJ(1)813 5227 y Ft(X)814 5424 y Fx(k)r FJ(=0)1004 5199 y Fx(n)960 5227 y Ft(X)963 5421 y Fx(p)p FJ(=1)1107 5313 y FD(\020)1154 5275 y FJ(2)p Fx(ak)1268 5313 y FD(\013)1326 5275 y FJ(2)p Fx(k)1326 5335 y(p)1405 5313 y FD(t)1438 5275 y FJ(2)1496 5227 y Ft(Y)1492 5424 y Fx(j)t Fs(6)p FJ(=)p Fx(p)1615 5313 y FK(\(1)21 b(+)f FD(\020)1854 5275 y Fx(ak)1934 5313 y FD(\013)1992 5275 y Fx(k)1992 5335 y(j)2035 5313 y FD(t)p FK(\))25 b(=)2224 5227 y Ft(X)2228 5423 y Fx(r)r Fs(\025)p FJ(0)2371 5313 y FD(n)15 b FC(j)p FD(N)2549 5275 y Fx(\031)2592 5252 y Fr(0)2539 5335 y Fx(n;r)2639 5313 y FK(\()p FD($)s FK(\))p FC(j)g FD(t)2860 5275 y Fx(r)2899 5313 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 21 21 TeXDict begin HPSdict begin 21 20 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.21) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(21)p 0 TeXcolorgray 125 266 a FK(No)m(w)31 b(w)m(e)f(redo)h(the)f(sum,)g(using)f(that)i(\(1)21 b(+)f FD(\020)1716 233 y Fx(ak)1795 266 y FD(\013)1853 233 y Fx(k)1853 288 y(p)1897 266 y FD(t)p FK(\))1965 233 y Fs(\000)p FJ(1)2084 266 y FK(=)2188 197 y Ft(P)2180 350 y Fx(l)q Fs(\025)p FJ(0)2292 266 y FK(\()p FC(\000)p FK(1\))2478 233 y Fx(l)2505 266 y FD(\020)2552 233 y Fx(l)q(ak)2654 266 y FD(\013)2712 233 y Fx(l)q(k)2712 288 y(p)2777 266 y FD(t)2810 233 y Fx(l)2835 266 y FK(,)125 1117 y(\(31\))472 1117 y SDict begin H.S end 472 1117 a 472 1117 a SDict begin 13 H.A end 472 1117 a 472 1117 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.31) cvn /DEST pdfmark end 472 1117 a -619 x Ft(X)476 694 y Fx(r)r Fs(\025)p FJ(0)619 584 y FD(n)15 b FC(j)p FD(N)797 546 y Fx(\031)840 523 y Fr(0)787 606 y Fx(n;r)887 584 y FK(\()p FD($)s FK(\))p FC(j)g FD(t)1108 546 y Fx(r)1172 584 y FK(=)1268 470 y Fx(n)p Fs(\000)p FJ(1)1269 498 y Ft(X)1270 695 y Fx(k)r FJ(=0)1460 470 y Fx(n)1416 498 y Ft(X)1419 692 y Fx(p)p FJ(=1)1593 470 y Fs(1)1563 498 y Ft(X)1572 695 y Fx(l)q FJ(=2)1694 584 y FK(\()p FC(\000)p FK(1\))1880 546 y Fx(l)1907 584 y FD(\020)1954 546 y Fx(l)q(ak)2055 584 y FD(\013)2113 546 y Fx(l)q(k)2113 606 y(p)2178 584 y FD(t)2211 546 y Fx(l)2292 470 y(n)2255 498 y Ft(Y)2252 693 y Fx(j)t FJ(=1)2375 584 y FK(\(1)21 b(+)f FD(\020)2614 546 y Fx(ak)2693 584 y FD(\013)2751 546 y Fx(k)2751 606 y(j)2795 584 y FD(t)p FK(\))912 902 y(=)1053 788 y Fx(n)1008 815 y Ft(X)1011 1010 y Fx(p)p FJ(=1)1185 788 y Fs(1)1155 815 y Ft(X)1164 1013 y Fx(l)q FJ(=2)1301 815 y Ft(X)1318 1017 y Fx(d)p Fs(j)p Fx(n)1462 815 y Ft(X)1448 1013 y Fx(s)p Fs(2)p Fl(Z)1578 994 y Fr(\003)1578 1029 y Fq(e)1608 902 y FK(\()p FC(\000)p FK(1\))1794 864 y Fx(l)1821 902 y FD(\020)1868 864 y Fx(l)q(ads)1999 902 y FD(\013)2057 864 y Fx(l)q(ds)2057 924 y(p)2153 902 y FD(t)2186 864 y Fx(l)2267 788 y(n)2230 815 y Ft(Y)2227 1011 y Fx(j)t FJ(=1)2349 902 y FK(\(1)h(+)f(\()p FD(\020)2623 864 y Fx(ad)2701 902 y FD(\013)2759 864 y Fx(d)2759 924 y(j)2800 902 y FK(\))2835 864 y Fx(s)2872 902 y FD(t)p FK(\))912 1264 y(=)1039 1150 y Fs(1)1008 1178 y Ft(X)1018 1375 y Fx(l)q FJ(=2)1155 1178 y Ft(X)1173 1379 y Fx(e)p Fs(j)p Fx(n)1316 1178 y Ft(X)1301 1375 y Fx(s)p Fs(2)p Fl(Z)1431 1356 y Fr(\003)1431 1391 y Fq(e)1461 1264 y FK(\()p FC(\000)p FK(1\))1647 1226 y Fx(l)1674 1264 y FD(\020)1721 1226 y Fx(l)q(ads)1868 1081 y Ft(0)1868 1245 y(@)1992 1150 y Fx(n)1948 1178 y Ft(X)1950 1372 y Fx(p)p FJ(=1)2094 1264 y FD(\013)2152 1226 y Fx(l)q(ds)2152 1286 y(p)2248 1081 y Ft(1)2248 1245 y(A)2342 1264 y FD(t)2375 1226 y Fx(l)2401 1264 y FK(\(1)h(+)f(\()p FC(\000)p FK(1\))2779 1226 y Fx(e)p FJ(+1)2907 1264 y FD( )2969 1226 y Fx(as)3044 1264 y FD(t)3077 1226 y Fx(e)3113 1264 y FK(\))3148 1226 y Fx(n=e)912 1591 y FK(=)25 b FD(n)1078 1505 y Ft(X)1096 1706 y Fx(e)p Fs(j)p Fx(n)1239 1505 y Ft(X)1224 1702 y Fx(s)p Fs(2)p Fl(Z)1354 1683 y Fr(\003)1354 1719 y Fq(e)1443 1478 y Fs(1)1413 1505 y Ft(X)1430 1692 y Fq(l)p Fr(\025)p FG(2)1410 1748 y Fq(n)p Fr(j)p Fq(lds)1558 1591 y FK(\()p FC(\000)p FK(1\))1744 1554 y Fx(l)1771 1591 y FD(\020)1818 1554 y Fx(l)q(ads)1950 1591 y FD(t)1983 1554 y Fx(l)2008 1591 y FK(\(1)d(+)d(\()p FC(\000)p FK(1\))2386 1554 y Fx(e)p FJ(+1)2514 1591 y FD( )2576 1554 y Fx(as)2651 1591 y FD(t)2684 1554 y Fx(e)2721 1591 y FK(\))2756 1554 y Fx(n=e)2871 1591 y FD(:)125 1886 y FK(Here)30 b FD(n)p FC(j)p FD(l)r(ds)g FK(is)g(equiv)-5 b(alen)m(t)30 b(to)h FD(e)p FC(j)p FD(l)r FK(.)41 b(The)30 b(term)g(with)f FD(e)d FK(=)f(1)31 b(is)827 2053 y FD(n)897 1967 y Ft(X)907 2164 y Fx(l)q Fs(\025)p FJ(2)1028 2053 y FK(\()p FC(\000)p FK(1\))1214 2015 y Fx(l)1241 2053 y FD(\020)1288 2015 y Fx(l)q(ans)1427 2053 y FD(t)1460 2015 y Fx(l)1486 2053 y FK(\(1)21 b(+)e FD( )1739 2015 y Fx(as)1814 2053 y FD(t)p FK(\))1882 2015 y Fx(n)1955 2053 y FK(=)25 b FD(n )2168 2015 y FJ(2)p Fx(as)2277 2053 y FD(t)2310 2015 y FJ(2)2349 2053 y FK(\(1)c(+)f FD( )2603 2015 y Fx(as)2678 2053 y FD(t)p FK(\))2746 2015 y Fx(n)p Fs(\000)p FJ(1)2883 2053 y FD(:)125 2296 y FK(The)29 b(term)i(with)e FD(e)c FC(\025)g FK(2)31 b(reduces)f(to)727 2452 y FD(n)797 2366 y Ft(X)815 2567 y Fx(e)p Fs(j)p Fx(n)958 2366 y Ft(X)943 2563 y Fx(s)p Fs(2)p Fl(Z)1073 2544 y Fr(\003)1073 2580 y Fq(e)1118 2366 y Ft(X)1147 2567 y Fx(e)p Fs(j)p Fx(l)1250 2452 y FK(\()p FC(\000)p FK(1\))1436 2415 y Fx(l)1463 2452 y FD(\020)1510 2415 y Fx(l)q(ads)1641 2452 y FD(t)1674 2415 y Fx(l)1700 2452 y FK(\(1)21 b(+)f(\()p FC(\000)p FK(1\))2078 2415 y Fx(e)p FJ(+1)2206 2452 y FD( )2268 2415 y Fx(as)2343 2452 y FD(t)2376 2415 y Fx(e)2413 2452 y FK(\))2448 2415 y Fx(n=e)1128 2724 y FK(=)25 b FD(n)1294 2637 y Ft(X)1312 2839 y Fx(e)p Fs(j)p Fx(n)1455 2637 y Ft(X)1441 2835 y Fx(s)p Fs(2)p Fl(Z)1571 2816 y Fr(\003)1571 2851 y Fq(e)1601 2724 y FK(\()p FC(\000)p FK(1\))1787 2686 y Fx(e)1824 2724 y FD( )1886 2686 y Fx(as)1961 2724 y FD(t)1994 2686 y Fx(e)2031 2724 y FK(\(1)c(+)f(\()p FC(\000)p FK(1\))2409 2686 y Fx(e)p FJ(+1)2537 2724 y FD( )2599 2686 y Fx(as)2673 2724 y FD(t)2706 2686 y Fx(e)2743 2724 y FK(\))2778 2686 y Fx(n=e)p Fs(\000)p FJ(1)2984 2724 y FD(:)125 2981 y FK(T)-8 b(aking)30 b(the)g(term)h FD(t)835 2948 y Fx(r)903 2981 y FK(in)e(\()1044 2981 y SDict begin H.S end 1044 2981 a 0 TeXcolorgray FK(31)p 0 TeXcolorgray 1135 2923 a SDict begin H.R end 1135 2923 a 1135 2981 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.31) cvn H.B /ANN pdfmark end 1135 2981 a FK(\),)i(and)f(recalling)f (that)i FD( )2026 2948 y Fx(r)2089 2981 y FK(=)25 b(1,)31 b(w)m(e)g(ha)m(v)m(e)125 3184 y(\(32\))664 3184 y SDict begin H.S end 664 3184 a 664 3184 a SDict begin 13 H.A end 664 3184 a 664 3184 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.32) cvn /DEST pdfmark end 664 3184 a FC(j)p FD(N)772 3147 y Fx(\031)815 3123 y Fr(0)762 3207 y Fx(n;r)863 3184 y FK(\()p FD($)s FK(\))p FC(j)26 b FK(=)1158 3056 y Ft(\022)1225 3123 y FD(n)20 b FC(\000)g FK(1)1231 3247 y FD(r)i FC(\000)e FK(2)1436 3056 y Ft(\023)1523 3184 y FC(\000)1651 3098 y Ft(X)1624 3287 y Fq(e)p Fr(j)p Fq(n;e)p Fr(j)p Fq(r)1662 3343 y(e)p Fr(\025)p FG(2)1848 3098 y Ft(X)1833 3295 y Fx(s)p Fs(2)p Fl(Z)1963 3276 y Fr(\003)1963 3312 y Fq(e)1993 3184 y FK(\()p FC(\000)p FK(1\))2179 3147 y Fx(r)r FJ(+)p Fx(r)r(=e)2375 3056 y Ft(\022)2442 3123 y FD(n=e)g FC(\000)g FK(1)2447 3247 y FD(r)s(=e)h FC(\000)f FK(1)2741 3056 y Ft(\023)2808 3184 y FD( )2870 3147 y Fx(asr)r(=e)3046 3184 y FD(:)125 3494 y SDict begin H.S end 125 3494 a 125 3494 a SDict begin 13 H.A end 125 3494 a 125 3494 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.2) cvn /DEST pdfmark end 125 3494 a 0 TeXcolorgray FL(Remark)41 b(6.2.)p 0 TeXcolorgray 46 w FK(There)36 b(is)f(an)i(alternativ)m(e)g(w)m(a)m(y)g(of)g(pro)m (ving)f(the)g(expression)g(\()2974 3494 y SDict begin H.S end 2974 3494 a 0 TeXcolorgray FK(32)p 0 TeXcolorgray 3065 3436 a SDict begin H.R end 3065 3436 a 3065 3494 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.32) cvn H.B /ANN pdfmark end 3065 3494 a FK(\).)59 b(W)-8 b(rite)37 b FD(L)f FK(=)125 3609 y FC(j)p FD(N)233 3576 y Fx(\031)223 3632 y(n;r)323 3609 y FK(\()p FD($)s FK(\))p FC(j)31 b FK(and)f FD(L)766 3576 y Fs(0)814 3609 y FK(=)25 b FC(j)p FD(N)1018 3576 y Fx(\031)1061 3553 y Fr(0)1008 3632 y Fx(n;r)1109 3609 y FK(\()p FD($)s FK(\))p FC(j)p FK(.)42 b(W)-8 b(e)31 b(start)g(with)e(the)i(expression)1291 3731 y Fx(n)1246 3758 y Ft(X)1249 3952 y Fx(p)p FJ(=1)1378 3844 y FK(\(1)21 b FC(\000)f FD(\020)1617 3807 y FJ(2)p Fx(a)1693 3844 y FD(\013)1751 3807 y FJ(2)1751 3867 y Fx(p)1791 3844 y FD(t)1824 3807 y FJ(2)1863 3844 y FK(\))1913 3758 y Ft(Y)1915 3956 y Fx(i)p Fs(6)p FJ(=)p Fx(p)2030 3844 y FK(\(1)h(+)f FD(\020)2269 3807 y Fx(a)2310 3844 y FD(\013)2368 3858 y Fx(i)2396 3844 y FD(t)p FK(\))p FD(:)125 4102 y FK(The)32 b(terms)h(with)f FD(\013)838 4069 y FJ(2)838 4125 y Fx(p)910 4102 y FK(con)m(tribute)h FC(\000)p FD(L)1483 4069 y Fs(0)1521 4102 y FD(t)1554 4069 y Fx(r)1592 4102 y FK(,)h(but)e(there)h(are)g(terms)2465 4034 y Ft(P)2561 4060 y Fx(n)2561 4129 y(p)p FJ(=1)2706 4034 y Ft(Q)2792 4129 y Fx(i)p Fs(6)p FJ(=)p Fx(p)2911 4102 y FK(\(1)22 b(+)g FD(\020)3153 4069 y Fx(a)3194 4102 y FD(\013)3252 4116 y Fx(i)3281 4102 y FD(t)p FK(\))33 b(whic)m(h)125 4218 y(con)m(tribute)j(with)g(\()p FD(n)25 b FC(\000)f FD(r)s FK(\))p FD(L)15 b(t)1181 4185 y Fx(r)1219 4218 y FK(.)60 b(The)37 b(co)s(e\016cien)m(t)h FD(n)24 b FC(\000)g FD(r)40 b FK(comes)e(from)e(the)i(fact)g(that)f FD(\013)3291 4232 y Fx(i)3315 4241 y FG(1)3369 4218 y FC(\001)15 b(\001)g(\001)h FD(\013)3548 4232 y Fx(i)3572 4240 y Fq(r)125 4326 y FK(app)s(ears)31 b(in)g(the)h FD(n)21 b FC(\000)g FD(r)34 b FK(summands)c(for)i FD(p)c FC(2)g(f)p FK(1)p FD(;)15 b(:)g(:)g(:)i(;)e(n)p FC(g)22 b(\000)f(f)p FD(i)2310 4340 y FJ(1)2350 4326 y FD(;)15 b(:)g(:)g(:)i(;)e(i)2583 4340 y Fx(r)2622 4326 y FC(g)p FK(.)46 b(No)m(w)33 b(w)m(e)f(pro)5 b(ject)33 b(as)f(w)m(e)125 4434 y(ha)m(v)m(e)f(done)f(b)s(efore,)h(so)f(that)h FD(n)p FK(\()p FC(\000)p FD(L)1381 4401 y Fs(0)1424 4434 y FK(+)20 b(\()p FD(n)g FC(\000)g FD(r)s FK(\))p FD(L)p FK(\))30 b(equals)g(the)h FD(t)2388 4401 y Fx(r)2426 4434 y FK(-co)s(e\016cien)m (t)g(of)399 4543 y Fx(n)355 4570 y Ft(X)356 4768 y Fx(k)r FJ(=1)546 4543 y Fx(n)501 4570 y Ft(X)504 4765 y Fx(p)p FJ(=1)633 4657 y FK(\(1)21 b FC(\000)f FD(\020)872 4619 y FJ(2)p Fx(ak)987 4657 y FD(\013)1045 4619 y FJ(2)p Fx(k)1045 4679 y(p)1123 4657 y FD(t)1156 4619 y FJ(2)1195 4657 y FK(\))1245 4570 y Ft(Y)1247 4768 y Fx(i)p Fs(6)p FJ(=)p Fx(p)1362 4657 y FK(\(1)h(+)f FD(\020)1601 4619 y Fx(ak)1680 4657 y FD(\013)1738 4619 y Fx(k)1738 4679 y(i)1782 4657 y FD(t)p FK(\))25 b(=)2015 4543 y Fx(n)1971 4570 y Ft(X)1972 4768 y Fx(k)r FJ(=1)2162 4543 y Fx(n)2117 4570 y Ft(X)2120 4765 y Fx(p)p FJ(=1)2249 4657 y FK(\(1)c FC(\000)f FD(\020)2488 4619 y Fx(ak)2567 4657 y FD(\013)2625 4619 y Fx(k)2625 4679 y(p)2668 4657 y FD(t)p FK(\))2788 4543 y Fx(n)2752 4570 y Ft(Y)2753 4766 y Fx(i)p FJ(=1)2868 4657 y FK(\(1)h(+)f FD(\020)3107 4619 y Fx(ak)3187 4657 y FD(\013)3245 4619 y Fx(k)3245 4679 y(i)3288 4657 y FD(t)p FK(\))p FD(:)125 4921 y FK(The)43 b(\014rst)f(summand)g(giv)m (es)i(the)g(con)m(tribution)e FD(n)1945 4888 y FJ(2)1999 4853 y Ft(P)2095 4948 y Fx(e)p Fs(j)p Fx(n)2209 4853 y Ft(P)2305 4948 y Fx(s)p Fs(2)p Fl(Z)2435 4929 y Fr(\003)2435 4965 y Fq(e)2470 4921 y FK(\(1)29 b(+)g(\()p FC(\000)p FK(1\))2865 4888 y Fx(e)2903 4921 y FD( )2965 4888 y Fx(as)3039 4921 y FD(t)3072 4888 y Fx(e)p FJ(+1)3199 4921 y FK(\))3234 4888 y Fx(n=e)3350 4921 y FK(.)80 b(The)125 5049 y(co)s(e\016cien)m(t)32 b(of)g FD(t)688 5016 y Fx(r)757 5049 y FK(is)e(again)i FD(n)1148 5016 y FJ(2)1187 5049 y FD(L)p FK(.)44 b(The)30 b(second)i(summand)e(only)g(con)m(tributes)h (for)h FD(k)e FK(=)d FD(n)k FK(\(that)h(is,)125 5157 y(when)d FD(e)c FK(=)g(1\),)32 b(and)e(so)g(pro)s(duces)f FC(\000)p FD( )1465 5124 y Fx(a)1507 5157 y FD(nt)p FK(\(1)20 b(+)g FD( )1848 5124 y Fx(a)1891 5157 y FD(t)p FK(\))1959 5124 y Fx(n)2006 5157 y FK(.)40 b(Altogether)32 b(this)d(giv)m(es)i (the)f(equalit)m(y)1039 5360 y FC(\000)p FD(nL)1227 5322 y Fs(0)1270 5360 y FK(+)20 b FD(n)p FK(\()p FD(n)f FC(\000)h FD(r)s FK(\))p FD(L)25 b FK(=)g FD(n)1933 5322 y FJ(2)1972 5360 y FD(L)20 b FC(\000)g FD(n )2262 5322 y Fx(ar)2338 5232 y Ft(\022)2477 5298 y FD(n)2405 5422 y(r)i FC(\000)e FK(1)2605 5232 y Ft(\023)2672 5360 y FD(;)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 22 22 TeXDict begin HPSdict begin 22 21 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.22) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(22)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(whic)m(h)29 b(is)g(rewritten,)h(using)f(that)i FD( )1393 233 y Fx(r)1456 266 y FK(=)25 b(1,)31 b(as)125 464 y(\(33\))1442 464 y SDict begin H.S end 1442 464 a 1442 464 a SDict begin 13 H.A end 1442 464 a 1442 464 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.33) cvn /DEST pdfmark end 1442 464 a FD(L)1504 427 y Fs(0)1552 464 y FK(=)25 b FC(\000)p FD(r)s(L)19 b FK(+)1935 336 y Ft(\022)2075 403 y FD(n)2002 527 y(r)k FC(\000)d FK(1)2202 336 y Ft(\023)2269 464 y FD(:)125 668 y FK(Finally)28 b(w)m(e)j(use)f(the)g(expression)f(of)i FD(L)f FK(in)f(\()1656 668 y SDict begin H.S end 1656 668 a 0 TeXcolorgray FK(29)p 0 TeXcolorgray 1748 609 a SDict begin H.R end 1748 609 a 1748 668 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.29) cvn H.B /ANN pdfmark end 1748 668 a FK(\),)1095 884 y FD(L)c FK(=)1313 798 y Ft(X)1278 999 y Fx(e)p Fs(j)p Fx(n;e)p Fs(j)p Fx(r)1504 823 y FK(\()p FC(\000)p FK(1\))1690 790 y Fx(r)r FJ(+)p Fx(r)r(=e)p 1504 863 382 4 v 1668 947 a FD(n)1896 756 y Ft(\022)1963 823 y FD(n=e)1968 947 y(r)s(=e)2105 756 y Ft(\023)2201 798 y(X)2187 995 y Fx(s)p Fs(2)p Fl(Z)2317 976 y Fr(\003)2317 1012 y Fq(e)2362 884 y FD( )2424 847 y Fx(asr)r(=e)2616 884 y FD(:)125 1142 y FK(The)k(co)s(e\016cien)m(t)j (corresp)s(onding)c(to)j FD(e)26 b FK(=)f(1)30 b(in)f(\()1811 1142 y SDict begin H.S end 1811 1142 a 0 TeXcolorgray FK(33)p 0 TeXcolorgray 1903 1084 a SDict begin H.R end 1903 1084 a 1903 1142 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.33) cvn H.B /ANN pdfmark end 1903 1142 a FK(\))h(is)1233 1346 y FC(\000)1319 1285 y FD(r)p 1314 1325 55 4 v 1314 1408 a(n)1378 1218 y Ft(\022)1445 1285 y FD(n)1451 1408 y(r)1500 1218 y Ft(\023)1587 1346 y FK(+)1678 1218 y Ft(\022)1817 1285 y FD(n)1745 1408 y(r)22 b FC(\000)e FK(1)1945 1218 y Ft(\023)2037 1346 y FK(=)2133 1218 y Ft(\022)2200 1285 y FD(n)g FC(\000)f FK(1)2205 1408 y FD(r)k FC(\000)d FK(2)2411 1218 y Ft(\023)2478 1346 y FD(:)125 1544 y FK(Hence)801 1687 y FD(L)863 1649 y Fs(0)911 1687 y FK(=)1007 1559 y Ft(\022)1074 1625 y FD(n)g FC(\000)f FK(1)1079 1749 y FD(r)k FC(\000)d FK(2)1285 1559 y Ft(\023)1372 1687 y FC(\000)1499 1601 y Ft(X)1473 1789 y Fq(e)p Fr(j)p Fq(n;e)p Fr(j)p Fq(r)1511 1846 y(e)p Fr(\025)p FG(2)1667 1687 y FK(\()p FC(\000)p FK(1\))1853 1649 y Fx(r)r FJ(+)p Fx(r)r(=e)2049 1559 y Ft(\022)2116 1625 y FD(n=e)g FC(\000)g FK(1)2121 1749 y FD(r)s(=e)h FC(\000)f FK(1)2415 1559 y Ft(\023)2511 1601 y(X)2497 1798 y Fx(s)p Fs(2)p Fl(Z)2627 1779 y Fr(\003)2627 1814 y Fq(e)2672 1687 y FD( )2734 1649 y Fx(asr)r(=e)2910 1687 y FD(;)125 1988 y FK(using)28 b(that)559 1915 y Ft(\000)601 1945 y Fx(n=e)606 2022 y(r)r(=e)712 1915 y Ft(\001)779 1988 y FK(=)885 1952 y Fx(n)p 885 1967 43 4 v 890 2020 a(r)938 1915 y Ft(\000)979 1945 y Fx(n=e)p Fs(\000)p FJ(1)984 2022 y Fx(r)r(=e)p Fs(\000)p FJ(1)1180 1915 y Ft(\001)1222 1988 y FK(.)125 2095 y SDict begin H.S end 125 2095 a 125 2095 a SDict begin 13 H.A end 125 2095 a 125 2095 a SDict begin [/View [/XYZ H.V]/Dest (subsection.6.3) cvn /DEST pdfmark end 125 2095 a 128 x FK(6.3.)46 b FL(P)m(artition)g FD(\031)824 2190 y Fs(00)908 2223 y FK(=)1020 2149 y Ft(\010)1073 2223 y FK(1)1118 2190 y Fx(r)r Fs(\000)p FJ(3)1246 2223 y FD(;)15 b FK(3)1331 2190 y FJ(1)1372 2149 y Ft(\011)1425 2223 y FL(.)45 b FK(W)-8 b(orking)40 b(as)g(in)f(Remark)2463 2223 y SDict begin H.S end 2463 2223 a 0 TeXcolorgray FK(6.2)p 0 TeXcolorgray 2580 2164 a SDict begin H.R end 2580 2164 a 2580 2223 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.2) cvn H.B /ANN pdfmark end 2580 2223 a 39 w FK(for)h FD(L)2830 2190 y Fs(00)2913 2223 y FK(=)h FC(j)p FD(N)3133 2190 y Fx(\031)3176 2166 y Fr(00)3123 2245 y Fx(n;r)3224 2223 y FK(\()p FD($)s FK(\))p FC(j)p FK(,)i(and)125 2331 y(starting)30 b(with)1291 2397 y Fx(n)1246 2425 y Ft(X)1249 2619 y Fx(p)p FJ(=1)1378 2511 y FK(\(1)21 b(+)f FD(\020)1617 2473 y FJ(3)p Fx(a)1693 2511 y FD(\013)1751 2473 y FJ(3)1751 2533 y Fx(p)1791 2511 y FD(t)1824 2473 y FJ(3)1863 2511 y FK(\))1913 2425 y Ft(Y)1915 2622 y Fx(i)p Fs(6)p FJ(=)p Fx(p)2030 2511 y FK(\(1)h(+)f FD(\020)2269 2473 y Fx(a)2310 2511 y FD(\013)2368 2525 y Fx(i)2396 2511 y FD(t)p FK(\))p FD(;)125 2752 y FK(w)m(e)32 b(reac)m(h)g(the)g (equation)f FD(L)1093 2719 y Fs(00)1157 2752 y FK(+)21 b(\()p FD(n)g FC(\000)f FD(r)s FK(\))p FD(L)27 b FK(=)h FD(nL)20 b FC(\000)1947 2678 y Ft(\000)2029 2711 y Fx(n)1989 2783 y(r)r Fs(\000)p FJ(1)2113 2678 y Ft(\001)2154 2752 y FK(+)31 b(the)h FD(t)2447 2719 y Fx(r)2485 2752 y FK(-co)s(e\016cien) m(t)h(of)f(the)g(expression)139 2887 y FJ(1)p 135 2902 43 4 v 135 2954 a Fx(n)245 2836 y(n)219 2854 y Ft(P)202 3006 y Fx(k)r FJ(=1)388 2836 y Fx(n)361 2854 y Ft(P)346 3003 y Fx(p)p FJ(=1)487 2922 y FD(\020)534 2889 y FJ(2)p Fx(ak)649 2922 y FD(\013)707 2889 y FJ(2)p Fx(k)707 2945 y(p)785 2922 y FD(t)818 2889 y FJ(2)909 2836 y Fx(n)887 2854 y Ft(Q)873 3004 y Fx(i)p FJ(=1)987 2922 y FK(\(1)21 b(+)f FD(\020)1226 2889 y Fx(ak)1306 2922 y FD(\013)1364 2889 y Fx(k)1364 2948 y(i)1407 2922 y FD(t)p FK(\).)41 b(This)28 b(co)s(e\016cien)m(t)j(is)1020 3078 y Ft(\022)1160 3145 y FD(n)1087 3268 y(r)23 b FC(\000)d FK(2)1287 3078 y Ft(\023)1375 3206 y FK(+)1503 3120 y Ft(X)1465 3321 y FJ(2)p Fs(j)p Fx(n;)p FJ(2)p Fs(j)p Fx(r)1671 3206 y FK(\()p FC(\000)p FK(1\))1857 3169 y Fx(r)r(=)p FJ(2)p Fs(\000)p FJ(1)2057 3078 y Ft(\022)2197 3145 y FD(n=)p FK(2)2124 3268 y FD(r)s(=)p FK(2)h FC(\000)e FK(1)2415 3078 y Ft(\023)2482 3206 y FD( )2544 3169 y Fx(ar)r(=)p FJ(2)2690 3206 y FD(;)125 3464 y FK(where)31 b(the)h(sum)f(means)h (that)g(there)g(is)f(only)g(one)h(term)g(that)h(app)s(ears)e(when)g(2)p FC(j)p FD(n)h FK(and)f(2)p FC(j)p FD(r)s FK(.)46 b(Sub-)125 3572 y(stituting)29 b(the)h(v)-5 b(alue)30 b(of)h FD(L)f FK(and)g(simplifying,)c(w)m(e)31 b(get)125 3970 y(\(34\))562 3970 y SDict begin H.S end 562 3970 a 562 3970 a SDict begin 13 H.A end 562 3970 a 562 3970 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.34) cvn /DEST pdfmark end 562 3970 a -199 x FC(j)p FD(N)670 3733 y Fx(\031)713 3710 y Fr(00)660 3793 y Fx(n;r)760 3771 y FK(\()p FD($)s FK(\))p FC(j)26 b FK(=)f FD(L)1117 3733 y Fs(00)1185 3771 y FK(=)1271 3643 y Ft(\022)1338 3709 y FD(n)20 b FC(\000)f FK(1)1343 3833 y FD(r)k FC(\000)d FK(3)1549 3643 y Ft(\023)1636 3771 y FK(+)1763 3684 y Ft(X)1737 3873 y Fq(e)p Fr(j)p Fq(n;e)p Fr(j)p Fq(r)1775 3930 y(e)p Fr(\025)p FG(3)1931 3771 y FK(\()p FC(\000)p FK(1\))2117 3733 y Fx(r)r FJ(+)p Fx(r)r(=e)2313 3643 y Ft(\022)2380 3709 y FD(n=e)g FC(\000)g FK(1)2385 3833 y FD(r)s(=e)h FC(\000)f FK(1)2678 3643 y Ft(\023)2775 3684 y(X)2761 3882 y Fx(s)p Fs(2)p Fl(Z)2891 3863 y Fr(\003)2891 3898 y Fq(e)2936 3771 y FD( )2998 3733 y Fx(asr)r(=e)1276 4116 y FC(\000)1404 4030 y Ft(X)1367 4231 y FJ(2)p Fs(j)p Fx(n;)p FJ(2)p Fs(j)p Fx(r)1573 4116 y FK(\()p FC(\000)p FK(1\))1759 4078 y Fx(r)r(=)p FJ(2)1868 3988 y Ft(\022)1935 4054 y FD(n=)p FK(2)h FC(\000)f FK(1)1941 4178 y FD(r)s(=)p FK(2)g FC(\000)g FK(2)2237 3988 y Ft(\023)2304 4116 y FD( )2366 4078 y Fx(ar)r(=)p FJ(2)2528 4116 y FD(:)125 4317 y SDict begin H.S end 125 4317 a 125 4317 a SDict begin 13 H.A end 125 4317 a 125 4317 a SDict begin [/View [/XYZ H.V]/Dest (subsection.6.4) cvn /DEST pdfmark end 125 4317 a 107 x FK(6.4.)46 b FL(Computation)29 b(of)h(the)g(n)m(um)m(b)s(er)g(of)g(comp)s(onen)m (ts.)46 b FK(With)25 b(the)i(results)e(obtained)g(in)g(the)125 4532 y(sections)30 b(ab)s(o)m(v)m(e,)i(w)m(e)f(can)f(compute)h FD(c)p FK(\()p FD(\031)1542 4546 y FJ(1)1582 4532 y FD(;)15 b(\031)1674 4546 y FJ(2)1714 4532 y FK(\))25 b(=)g FC(j)p FD(M)1993 4487 y Fx(\031)2034 4496 y FG(1)2069 4487 y Fx(;\031)2130 4496 y FG(2)1983 4543 y Fx(n;m;r)2167 4532 y FC(j)p FK(,)31 b(for)f(gcd)q(\()p FD(n;)15 b(m)p FK(\))26 b(=)e(1.)224 4675 y(W)-8 b(e)32 b(start)f(with)e(the)h(case)i(\()p FD(\031)s(;)15 b(\031)s FK(\),)32 b(where)d(w)m(e)i(ha)m(v)m(e)557 4912 y FC(j)p FD(M)680 4875 y Fx(\031)r(;\031)670 4935 y(n;m;r)853 4912 y FC(j)25 b FK(=)1003 4799 y Fx(r)r Fs(\000)p FJ(1)999 4826 y Ft(X)1001 5020 y Fx(a)p FJ(=0)1146 4912 y FC(j)p FD(N)1254 4875 y Fx(\031)1244 4935 y(n;r)1344 4912 y FK(\()p FD( )1441 4875 y Fx(a)1484 4912 y FK(\))p FC(j)15 b(j)p FD(N)1667 4875 y Fx(\031)1657 4935 y(m;r)1778 4912 y FK(\()p FD( )1875 4875 y Fx(a)1917 4912 y FK(\))p FC(j)903 5230 y FK(=)1050 5144 y Ft(X)1023 5333 y Fq(e)p Fr(j)p Fq(n;e)p Fr(j)p Fq(r)1009 5391 y(f)6 b Fr(j)p Fq(m;f)g Fr(j)p Fq(r)1257 5169 y FK(\()p FC(\000)p FK(1\))1443 5136 y Fx(r)r(=e)p FJ(+)p Fx(r)r(=f)p 1257 5209 459 4 v 1419 5293 a FD(nm)1725 5102 y Ft(\022)1792 5169 y FD(n=e)1798 5293 y(r)s(=e)1934 5102 y Ft(\023\022)2068 5169 y FD(m=f)2086 5293 y(r)s(=f)2248 5102 y Ft(\023)2345 5144 y(X)2330 5341 y Fx(k)2367 5350 y FG(1)2401 5341 y Fx(;k)2458 5350 y FG(2)2511 5117 y Fx(r)r Fs(\000)p FJ(1)2507 5144 y Ft(X)2509 5338 y Fx(a)p FJ(=0)2654 5230 y FD(e)2696 5177 y FJ(2)p Fx(\031)r(ia)2835 5104 y Fk(\020)2888 5141 y Fq(k)2921 5156 y FG(1)p 2888 5162 68 3 v 2907 5203 a Fq(e)2965 5177 y FJ(+)3030 5141 y Fq(k)3063 5156 y FG(2)p 3030 5162 V 3046 5203 a Fq(f)3108 5104 y Fk(\021)3154 5230 y FD(;)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 23 23 TeXDict begin HPSdict begin 23 22 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.23) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(23)p 0 TeXcolorgray 125 312 a FK(where)19 b FD(k)424 326 y FJ(1)489 312 y FC(2)25 b Fz(Z)640 279 y Fs(\003)640 334 y Fx(e)675 312 y FK(,)e FD(k)770 326 y FJ(2)835 312 y FC(2)i Fz(Z)986 279 y Fs(\003)986 340 y Fx(f)1027 312 y FK(.)37 b(No)m(w)21 b FD(e)1328 259 y FJ(2)p Fx(\031)r(i)1430 186 y Fk(\020)1482 223 y Fq(k)1515 238 y FG(1)p 1482 244 68 3 v 1502 285 a Fq(e)1560 259 y FJ(+)1625 223 y Fq(k)1658 238 y FG(2)p 1625 244 V 1641 285 a Fq(f)1702 186 y Fk(\021)1774 312 y FK(=)k FD(e)1912 279 y FJ(2)p Fx(\031)r(i)p FJ(\()p Fx(k)2078 288 y FG(1)2113 279 y Fx(f)7 b FJ(+)p Fx(k)2246 288 y FG(2)2281 279 y Fx(e)p FJ(\))p Fx(=ef)2454 312 y FK(.)37 b(As)21 b FD(e)p FC(j)p FD(n;)15 b(f)10 b FC(j)p FD(m)20 b FK(and)f(gcd)q(\()p FD(n;)c(m)p FK(\))26 b(=)125 429 y(1,)35 b(w)m(e)f(ha)m(v)m(e)g(gcd)q(\()p FD(e;)15 b(f)10 b FK(\))31 b(=)f(1.)51 b(Hence)34 b Fz(Z)1514 396 y Fs(\003)1514 452 y Fx(e)1572 429 y FC(\002)22 b Fz(Z)1730 396 y Fs(\003)1730 457 y Fx(f)1801 404 y FC(\030)1801 433 y FK(=)1903 429 y Fz(Z)1968 396 y Fs(\003)1968 457 y Fx(ef)2041 429 y FK(,)35 b(via)e(the)h(map)f(\()p FD(k)2700 443 y FJ(1)2740 429 y FD(;)15 b(k)2827 443 y FJ(2)2867 429 y FK(\))31 b FC(7!)g FD(k)3102 443 y FJ(1)3142 429 y FD(f)g FK(+)22 b FD(k)3358 443 y FJ(2)3398 429 y FD(e)p FK(.)50 b(So)125 541 y(the)30 b(sum)g(only)f(con)m(tributes)h(for)g FD(e)c FK(=)f FD(f)34 b FK(=)25 b(1,)31 b(and)f(it)g(giv)m(es)125 749 y(\(35\))883 749 y SDict begin H.S end 883 749 a 883 749 a SDict begin 13 H.A end 883 749 a 883 749 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.35) cvn /DEST pdfmark end 883 749 a FC(j)p FD(M)1006 711 y Fx(\031)r(;\031)996 771 y(n;m;r)1179 749 y FC(j)c FK(=)1380 687 y(1)p 1336 728 135 4 v 1336 811 a FD(nm)1480 621 y Ft(\022)1547 687 y FD(n)1552 811 y(r)1601 621 y Ft(\023\022)1735 687 y FD(m)1753 811 y(r)1815 621 y Ft(\023)1882 749 y FD(r)i FK(=)2057 687 y(1)p 2057 728 46 4 v 2058 811 a FD(r)2112 621 y Ft(\022)2179 687 y FD(n)20 b FC(\000)g FK(1)2185 811 y FD(r)i FC(\000)e FK(1)2390 621 y Ft(\023\022)2524 687 y FD(m)g FC(\000)g FK(1)2542 811 y FD(r)j FC(\000)d FK(1)2760 621 y Ft(\023)2827 749 y FD(:)224 997 y FK(This)26 b(form)m(ula)i(agrees)h(with)d([)1261 997 y SDict begin H.S end 1261 997 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 1353 938 a SDict begin H.R end 1353 938 a 1353 997 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 1353 997 a FK(,)i(Thm.)f(6.1],)k(whic)m(h)26 b(sa)m(ys)j(that)f(the)h(c)m(haracter)g(v)-5 b(ariet)m(y)29 b FC(R)3414 1011 y Fx(r)3480 997 y FK(has)125 1105 y(dimension)d(\()p FD(r)21 b FC(\000)d FK(1\))819 1072 y FJ(2)860 1105 y FK(,)29 b(and)g(the)h(n)m(um)m(b)s(er)e(of)h(irreducible)d(comp)s(onen) m(ts)k(of)f(this)f(dimension)f(is)i(\()3460 1105 y SDict begin H.S end 3460 1105 a 0 TeXcolorgray FK(35)p 0 TeXcolorgray 3551 1046 a SDict begin H.R end 3551 1046 a 3551 1105 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.35) cvn H.B /ANN pdfmark end 3551 1105 a FK(\).)125 1273 y SDict begin H.S end 125 1273 a 125 1273 a SDict begin 13 H.A end 125 1273 a 125 1273 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.3) cvn /DEST pdfmark end 125 1273 a 0 TeXcolorgray FL(Remark)38 b(6.3.)p 0 TeXcolorgray 44 w FK(W)-8 b(e)35 b(can)f(get)h(a)f(form)m(ula)f(when)g(gcd)q(\()p FD(n;)15 b(m)p FK(\))31 b FD(>)g FK(1)j(as)g(w)m(ell.)50 b(W)-8 b(e)35 b(will)c(not)j(dev)m(elop)125 1381 y(this.)224 1586 y(F)-8 b(or)31 b(the)g(case)g(\()p FD(\031)s(;)15 b(\031)921 1553 y Fs(0)945 1586 y FK(\),)31 b(w)m(e)g(use)f(\()1362 1586 y SDict begin H.S end 1362 1586 a 0 TeXcolorgray FK(33)p 0 TeXcolorgray 1454 1527 a SDict begin H.R end 1454 1527 a 1454 1586 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.33) cvn H.B /ANN pdfmark end 1454 1586 a FK(\))g(whic)m(h)f(sa)m (ys)i(that)g FC(j)p FD(N)2277 1553 y Fx(\031)2320 1529 y Fr(0)2267 1608 y Fx(m;r)2388 1586 y FC(j)25 b FK(=)g FC(\000)p FD(r)s FC(j)p FD(N)2757 1553 y Fx(\031)2747 1608 y(m;r)2866 1586 y FC(j)c FK(+)3003 1512 y Ft(\000)3075 1545 y Fx(m)3045 1617 y(r)r Fs(\000)p FJ(1)3169 1512 y Ft(\001)3210 1586 y FK(,)31 b(hence)364 1847 y FC(j)p FD(M)487 1810 y Fx(\031)r(;\031)593 1787 y Fr(0)477 1870 y Fx(n;m;r)660 1847 y FC(j)25 b FK(=)810 1734 y Fx(r)r Fs(\000)p FJ(1)806 1761 y Ft(X)808 1955 y Fx(a)p FJ(=0)953 1847 y FC(j)p FD(N)1061 1810 y Fx(\031)1051 1870 y(n;r)1151 1847 y FK(\()p FD( )1248 1810 y Fx(a)1291 1847 y FK(\))p FC(j)15 b(j)p FD(N)1474 1810 y Fx(\031)1517 1787 y Fr(0)1464 1870 y Fx(m;r)1585 1847 y FK(\()p FD( )1682 1810 y Fx(a)1724 1847 y FK(\))p FC(j)26 b FK(=)f FC(\000)p FD(r)s FC(j)p FD(M)2144 1810 y Fx(\031)r(;\031)2134 1870 y(n;m;r)2316 1847 y FC(j)c FK(+)2453 1719 y Ft(\022)2580 1786 y FD(m)2519 1910 y(r)i FC(\000)d FK(1)2720 1719 y Ft(\023)2805 1734 y Fx(r)r Fs(\000)p FJ(1)2802 1761 y Ft(X)2803 1955 y Fx(a)p FJ(=0)2948 1847 y FC(j)p FD(N)3056 1810 y Fx(\031)3046 1870 y(n;r)3147 1847 y FK(\()p FD( )3244 1810 y Fx(a)3286 1847 y FK(\))p FC(j)p FD(:)125 2161 y FK(No)m(w)31 b(use)f(\()524 2161 y SDict begin H.S end 524 2161 a 0 TeXcolorgray FK(30)p 0 TeXcolorgray 615 2102 a SDict begin H.R end 615 2102 a 615 2161 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.30) cvn H.B /ANN pdfmark end 615 2161 a FK(\))h(and)859 2075 y Fx(r)r Fs(\000)p FJ(1)873 2093 y Ft(P)857 2242 y Fx(a)p FJ(=0)1034 2093 y Ft(P)1000 2241 y Fx(\027)t Fs(2)p Fx(\026)1128 2222 y Fr(\003)1128 2257 y Fq(e)1180 2161 y FD(\027)1231 2128 y Fx(a)1297 2161 y FK(=)1428 2093 y Ft(P)1393 2241 y Fx(\027)t Fs(2)p Fx(\026)1521 2222 y Fr(\003)1521 2257 y Fq(e)1575 2075 y Fx(r)r Fs(\000)p FJ(1)1589 2093 y Ft(P)1573 2242 y Fx(a)p FJ(=0)1716 2161 y FD(\027)1767 2128 y Fx(a)1833 2161 y FK(=)25 b(0)31 b(for)f FD(e)c(>)f FK(1.)41 b(Then)125 2456 y(\(36\))469 2456 y SDict begin H.S end 469 2456 a 469 2456 a SDict begin 13 H.A end 469 2456 a 469 2456 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.36) cvn /DEST pdfmark end 469 2456 a FC(j)p FD(M)592 2419 y Fx(\031)r(;\031)698 2396 y Fr(0)582 2479 y Fx(n;m;r)765 2456 y FC(j)25 b FK(=)g FC(\000)982 2328 y Ft(\022)1049 2395 y FD(n)20 b FC(\000)g FK(1)1055 2519 y FD(r)i FC(\000)e FK(1)1260 2328 y Ft(\023\022)1394 2395 y FD(m)g FC(\000)g FK(1)1412 2519 y FD(r)j FC(\000)d FK(1)1630 2328 y Ft(\023)1717 2456 y FK(+)1808 2328 y Ft(\022)1935 2395 y FD(m)1875 2519 y(r)j FC(\000)d FK(1)2075 2328 y Ft(\023)2158 2395 y FD(r)p 2152 2436 55 4 v 2152 2519 a(n)2217 2328 y Ft(\022)2284 2395 y FD(n)2289 2519 y(r)2338 2328 y Ft(\023)2431 2456 y FK(=)2526 2328 y Ft(\022)2593 2395 y FD(n)g FC(\000)g FK(1)2599 2519 y FD(r)j FC(\000)d FK(1)2805 2328 y Ft(\023)o(\022)2938 2395 y FD(m)g FC(\000)g FK(1)2956 2519 y FD(r)j FC(\000)d FK(2)3175 2328 y Ft(\023)3242 2456 y FD(:)224 2706 y FK(A)31 b(similar)c(argumen)m(t)k(sho)m(ws)f(the)h(case)g(\()p FD(\031)1728 2673 y Fs(0)1752 2706 y FD(;)15 b(\031)1847 2673 y Fs(0)1871 2706 y FK(\),)125 3046 y(\(37\))496 3046 y SDict begin H.S end 496 3046 a 496 3046 a SDict begin 13 H.A end 496 3046 a 496 3046 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.37) cvn /DEST pdfmark end 496 3046 a -127 x FC(j)p FD(M)619 2881 y Fx(\031)662 2858 y Fr(0)684 2881 y Fx(;\031)747 2858 y Fr(0)609 2941 y Fx(n;m;r)792 2919 y FC(j)25 b FK(=)15 b FD(r)972 2791 y Ft(\022)1038 2857 y FD(n)20 b FC(\000)g FK(1)1044 2981 y FD(r)j FC(\000)d FK(1)1250 2791 y Ft(\023\022)1383 2857 y FD(m)g FC(\000)g FK(1)1402 2981 y FD(r)i FC(\000)e FK(1)1620 2791 y Ft(\023)1707 2919 y FC(\000)g FD(r)1842 2791 y Ft(\022)1968 2857 y FD(m)1908 2981 y(r)j FC(\000)d FK(1)2108 2791 y Ft(\023)2191 2857 y FD(r)p 2185 2898 55 4 v 2185 2981 a(n)2250 2791 y Ft(\022)2317 2857 y FD(n)2322 2981 y(r)2371 2791 y Ft(\023)2458 2919 y FC(\000)g FD(r)2593 2791 y Ft(\022)2733 2857 y FD(n)2660 2981 y(r)j FC(\000)c FK(1)2860 2791 y Ft(\023)2955 2857 y FD(r)p 2937 2898 80 4 v 2937 2981 a(m)3027 2791 y Ft(\022)3093 2857 y FD(m)3112 2981 y(r)3173 2791 y Ft(\023)948 3172 y FK(+)h FD(r)1083 3044 y Ft(\022)1222 3111 y FD(n)1150 3235 y(r)i FC(\000)e FK(1)1350 3044 y Ft(\023\022)1544 3111 y FD(m)1484 3235 y(r)i FC(\000)e FK(1)1684 3044 y Ft(\023)1776 3172 y FK(=)25 b FD(r)1916 3044 y Ft(\022)1982 3111 y FD(n)20 b FC(\000)g FK(1)1988 3235 y FD(r)i FC(\000)e FK(2)2193 3044 y Ft(\023\022)2327 3111 y FD(m)g FC(\000)g FK(1)2345 3235 y FD(r)j FC(\000)d FK(2)2564 3044 y Ft(\023)2630 3172 y FD(:)224 3422 y FK(Regarding)33 b(the)g(partition)f FD(\031)1259 3389 y Fs(00)1301 3422 y FK(,)i(w)m(e)g(only)e(write)g (the)i(form)m(ula)e(for)h(\()p FD(\031)s(;)15 b(\031)2757 3389 y Fs(00)2800 3422 y FK(\),)34 b(as)g(this)e(is)g(the)h(only)125 3530 y(case)e(that)g(w)m(e)g(need)f(for)g FD(r)e FK(=)d(4.)41 b(Using)29 b(expression)h(\()2004 3530 y SDict begin H.S end 2004 3530 a 0 TeXcolorgray FK(34)p 0 TeXcolorgray 2095 3472 a SDict begin H.R end 2095 3472 a 2095 3530 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.34) cvn H.B /ANN pdfmark end 2095 3530 a FK(\))g(as)h(b)s(efore)f(w)m(e)h(get)125 3743 y(\(38\))1277 3743 y SDict begin H.S end 1277 3743 a 1277 3743 a SDict begin 13 H.A end 1277 3743 a 1277 3743 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.38) cvn /DEST pdfmark end 1277 3743 a FC(j)p FD(M)1400 3705 y Fx(\031)r(;\031)1506 3682 y Fr(00)1390 3765 y Fx(n;m;r)1572 3743 y FC(j)26 b FK(=)1719 3615 y Ft(\022)1786 3681 y FD(n)20 b FC(\000)g FK(1)1791 3805 y FD(r)j FC(\000)d FK(1)1997 3615 y Ft(\023\022)2131 3681 y FD(m)g FC(\000)g FK(1)2149 3805 y FD(r)j FC(\000)d FK(3)2367 3615 y Ft(\023)2434 3743 y FD(:)224 3998 y FK(F)-8 b(or)44 b(rank)e FD(r)48 b FK(=)d(4,)i(the)42 b(only)g(allo)m(w)m(able)g(partitions)f(are)i FD(\031)49 b FK(=)d FC(f)p FK(1)2629 3965 y FJ(4)2669 3998 y FC(g)p FK(,)g FD(\031)2840 3965 y Fs(0)2909 3998 y FK(=)g FC(f)p FK(1)3116 3965 y FJ(2)3156 3998 y FD(;)15 b FK(2)3241 3965 y FJ(1)3281 3998 y FC(g)p FK(,)47 b FD(\031)3453 3965 y Fs(00)3541 3998 y FK(=)125 4106 y FC(f)p FK(3)215 4073 y FJ(1)255 4106 y FD(;)15 b FK(1)340 4073 y FJ(1)380 4106 y FC(g)p FK(,)48 b FD(\031)553 4073 y Fs(000)662 4106 y FK(=)f FC(f)p FK(2)870 4073 y FJ(2)910 4106 y FC(g)p FK(.)81 b(All)43 b(cases)h(ha)m(v)m(e)h(b)s(een)e(giv)m (en)h(except)h FD(\031)2521 4073 y Fs(000)2630 4106 y FK(=)i FC(f)p FK(2)2838 4073 y FJ(2)2878 4106 y FC(g)p FK(.)81 b(F)-8 b(or)45 b(suc)m(h)e(case,)125 4214 y FD(\026)180 4228 y FJ(4)244 4214 y FK(=)25 b FC(f)p FK(1)p FD(;)15 b FC(\000)p FK(1)p FD(;)g(i;)g FC(\000)p FD(i)p FC(g)p FK(,)34 b(and)777 4399 y FD(N)860 4351 y Fs(f)p FJ(2)930 4327 y FG(2)965 4351 y Fs(g)850 4425 y Fx(n;)p FJ(4)1004 4399 y FK(\()p FD($)s FK(\))26 b(=)f FC(f)p FK(\()p FD(\017)1391 4413 y FJ(1)1431 4399 y FD(;)15 b(\017)1508 4413 y FJ(2)1548 4399 y FK(\))p FC(j)p FD(\017)1645 4413 y FJ(1)1710 4399 y FC(6)p FK(=)25 b FD(\017)1843 4413 y FJ(2)1882 4399 y FD(;)15 b(\017)1959 4361 y Fx(n)1959 4421 y FJ(1)2032 4399 y FK(=)25 b FD($)s(;)15 b(\017)2283 4361 y Fx(n)2283 4421 y FJ(2)2355 4399 y FK(=)25 b FD($)s(;)15 b(\017)2606 4361 y FJ(2)2606 4421 y(1)2646 4399 y FD(\017)2683 4361 y FJ(2)2683 4421 y(2)2747 4399 y FK(=)25 b(1)p FC(g)p FD(:)125 4571 y FK(The)k(map)h(\()p FD(\017)585 4585 y FJ(1)625 4571 y FD(;)15 b(\017)702 4585 y FJ(2)742 4571 y FK(\))25 b FC(7!)h FK(\()p FD(\017)991 4538 y FJ(2)991 4596 y(1)1030 4571 y FD(;)15 b(\017)1107 4538 y FJ(2)1107 4596 y(2)1147 4571 y FK(\))31 b(giv)m(es)f(that)1161 4757 y FC(j)p FD(N)1269 4709 y Fs(f)p FJ(2)1339 4686 y FG(2)1374 4709 y Fs(g)1259 4783 y Fx(n;)p FJ(4)1414 4757 y FK(\()p FD($)s FK(\))p FC(j)c FK(=)f FC(j)p FD(N)1817 4709 y Fs(f)p FJ(1)1887 4686 y FG(2)1922 4709 y Fs(g)1807 4783 y Fx(n;)p FJ(2)1962 4757 y FK(\()p FD($)2075 4720 y FJ(2)2114 4757 y FK(\))p FC(j)c FK(+)f FD(A)2354 4771 y Fx(n)2401 4757 y FK(\()p FD($)s FK(\))p FD(;)125 4930 y FK(where)25 b FD(A)451 4944 y Fx(n)499 4930 y FK(\()p FD($)s FK(\))h(coun)m(ts)h(the)g(n)m(um)m(b)s(er)e(of)h FD(\017)1571 4944 y FJ(1)1636 4930 y FC(6)p FK(=)f FD(\017)1769 4944 y FJ(2)1834 4930 y FK(with)g FD(\017)2074 4897 y FJ(2)2074 4955 y(1)2139 4930 y FK(=)g FD(\017)2272 4897 y FJ(2)2272 4955 y(2)2311 4930 y FK(,)j FD(\017)2401 4897 y Fx(n)2401 4955 y FJ(1)2473 4930 y FK(=)d FD(\017)2606 4897 y Fx(n)2606 4955 y FJ(2)2678 4930 y FK(=)g FD($)k FK(and)d FD(\017)3088 4897 y FJ(2)3088 4955 y(1)3127 4930 y FD(\017)3164 4897 y FJ(2)3164 4955 y(2)3228 4930 y FK(=)f(1.)40 b(This)125 5038 y(means)30 b(that)h(\()p FD(\017)672 5052 y FJ(1)711 5038 y FD(;)15 b(\017)788 5052 y FJ(2)828 5038 y FK(\))26 b(=)f(\(1)p FD(;)15 b FC(\000)p FK(1\))p FD(;)g FK(\()p FC(\000)p FK(1)p FD(;)g FK(1\))p FD(;)g FK(\()p FD(i;)g FC(\000)p FD(i)p FK(\))p FD(;)g FK(\()p FC(\000)p FD(i;)h(i)p FK(\).)47 b(Then)481 5305 y FD(A)549 5319 y Fx(n)596 5305 y FK(\()p FD($)s FK(\))26 b(=)866 5119 y Ft(8)866 5201 y(<)866 5364 y(:)988 5196 y FK(2)p FD(;)265 b(n)25 b FC(\021)g FK(2)92 b(\(mo)s(d)29 b(4\))p FD(;)j($)c FK(=)d FC(\006)p FK(1)988 5304 y(4)p FD(;)265 b(n)25 b FC(\021)g FK(0)92 b(\(mo)s(d)29 b(4\))p FD(;)j($)c FK(=)d(1)988 5412 y(0)p FD(;)265 b FK(otherwise)2368 5119 y Ft(9)2368 5201 y(=)2368 5364 y(;)2475 5305 y FK(=)2606 5219 y Ft(X)2571 5420 y Fx(e)p Fs(j)p Fx(n;e)p Fs(j)p FJ(4)2802 5219 y Ft(X)2788 5416 y Fx(s)p Fs(2)p Fl(Z)2918 5397 y Fr(\003)2918 5433 y Fq(e)2963 5305 y FD( )3025 5268 y Fx(as)12 b FJ(4)p Fx(=e)3230 5305 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 24 24 TeXDict begin HPSdict begin 24 23 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.24) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(24)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 224 278 a FK(W)-8 b(e)31 b(use)f(this)e(form)m(ula)h(to)i(compute)f FC(j)p FD(M)1648 234 y Fx(\031)1689 243 y FG(1)1723 234 y Fx(;\031)1786 210 y Fr(000)1638 304 y Fx(n;m;)p FJ(4)1849 278 y FC(j)p FK(,)g(for)f FD(\031)2119 292 y FJ(1)2184 278 y FK(=)c FD(\031)s(;)15 b(\031)2430 245 y Fs(0)2454 278 y FK(.)40 b(Note)31 b(that)g(the)f(case)g FD(\031)3334 292 y FJ(1)3399 278 y FK(=)25 b FD(\031)3550 245 y Fs(000)125 388 y FK(is)k(not)i(needed)f(due)f(to)i(Prop)s(osition)1453 388 y SDict begin H.S end 1453 388 a 0 TeXcolorgray FK(8.1)p 0 TeXcolorgray 1569 330 a SDict begin H.R end 1569 330 a 1569 388 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.8.1) cvn H.B /ANN pdfmark end 1569 388 a FK(.)41 b(After)30 b(some)h(manipulations,)125 714 y(\(39\))1266 714 y SDict begin H.S end 1266 714 a 1266 714 a SDict begin 13 H.A end 1266 714 a 1266 714 a SDict begin [/View [/XYZ H.V]/Dest (equation.6.39) cvn /DEST pdfmark end 1266 714 a 1283 587 a FC(j)p FD(M)1406 543 y Fx(\031)r(;\031)1512 520 y Fr(000)1396 613 y Fx(n;m;)p FJ(4)1580 587 y FC(j)26 b FK(=)1737 526 y(1)p 1737 566 46 4 v 1737 650 a(2)1792 459 y Ft(\022)1859 526 y FD(n)20 b FC(\000)g FK(1)1942 650 y(3)2070 459 y Ft(\023)2137 587 y FK(\()p FD(m)h FC(\000)f FK(1\))p FD(;)1266 841 y FC(j)p FD(M)1389 797 y Fx(\031)1432 773 y Fr(0)1455 797 y Fx(;\031)1518 773 y Fr(000)1379 867 y Fx(n;m;)p FJ(4)1580 841 y FC(j)26 b FK(=)f(2)1772 713 y Ft(\022)1839 779 y FD(n)20 b FC(\000)g FK(1)1922 903 y(2)2050 713 y Ft(\023)2117 841 y FK(\()p FD(m)h FC(\000)f FK(1\))p FD(:)125 988 y SDict begin H.S end 125 988 a 125 988 a SDict begin 13 H.A end 125 988 a 125 988 a SDict begin [/View [/XYZ H.V]/Dest (subsection.6.5) cvn /DEST pdfmark end 125 988 a 107 x FK(6.5.)46 b FL(Case)j(of)h(coprime)g(indices.)c FK(In)c(this)g(section)i(w)m(e)f (tak)m(e)i(a)e(di\013eren)m(t)g(approac)m(h)g(to)h(the)125 1203 y(computation)23 b(of)h(the)g(n)m(um)m(b)s(er)e(of)i(comp)s(onen)m (ts.)38 b(This)22 b(approac)m(h)i(will)d(b)s(e)i(v)-5 b(alid)22 b(for)h(an)m(y)h(partitions)125 1311 y FD(\031)177 1325 y FJ(1)216 1311 y FD(;)15 b(\031)308 1325 y FJ(2)381 1311 y FK(of)33 b FD(r)j FK(but,)d(on)g(the)h(other)f(hand,)g(it)g (will)d(only)j(w)m(ork)g(when)f(w)m(e)i(add)e(the)i(extra)g(h)m(yp)s (othesis)125 1419 y(gcd\()p FD(n;)15 b(r)s FK(\))25 b(=)g(gcd)q(\()p FD(m;)15 b(r)s FK(\))25 b(=)g(1.)224 1568 y(Consider)32 b(the)h(group)g(isomorphism)d Fz(Z)1626 1582 y Fx(s)1689 1568 y FC(!)g FD(\026)1865 1582 y Fx(s)1901 1568 y FK(,)35 b FD(k)e FC(7!)d FD(e)2204 1535 y FJ(2)p Fx(\031)r(ik)r(=s)2417 1568 y FK(.)49 b(Under)33 b(this)f(isomorphism,)f(let)125 1677 y FD($)d FK(=)d FD(e)366 1644 y FJ(2)p Fx(\031)r(ik)r(=r)610 1677 y FK(for)30 b(some)h FD(k)e FC(2)24 b Fz(Z)1203 1691 y Fx(r)1237 1677 y FK(.)41 b(In)m(tro)s(duce)29 b(the)i(sets)347 1803 y(~)321 1826 y FD(N)394 1840 y Fx(n;r)495 1826 y FK(\()p FD(k)s(;)15 b(l)r FK(\))26 b(=)f FC(f)p FK(\()p FD(x)938 1840 y FJ(1)978 1826 y FD(;)15 b(:)g(:)g(:)i(;)e(x)1232 1840 y Fx(r)1270 1826 y FK(\))26 b FC(2)f Fz(Z)1482 1788 y Fx(r)1482 1848 y(nr)1573 1826 y FC(j)15 b FD(nx)1720 1840 y Fx(i)1773 1826 y FC(\021)25 b FD(k)34 b FK(\(mo)s(d)c FD(r)s FK(\))p FD(;)15 b(x)2361 1840 y FJ(1)2421 1826 y FK(+)20 b FC(\001)15 b(\001)g(\001)21 b FK(+)f FD(x)2781 1840 y Fx(r)2844 1826 y FC(\021)25 b FD(l)32 b FK(\(mo)s(d)e FD(n)p FK(\))p FC(g)16 b FD(:)125 1988 y FK(Then)29 b(the)h(set)687 1965 y(^)660 1988 y FD(N)733 2002 y Fx(n;r)834 1988 y FK(\()p FD($)s FK(\))h(in)e(\()1154 1988 y SDict begin H.S end 1154 1988 a 0 TeXcolorgray FK(26)p 0 TeXcolorgray 1245 1929 a SDict begin H.R end 1245 1929 a 1245 1988 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.26) cvn H.B /ANN pdfmark end 1245 1988 a FK(\))i(has)f(the)g (same)h(cardinalit)m(y)e(as)2450 1965 y(~)2423 1988 y FD(N)2496 2002 y Fx(n;r)2597 1988 y FK(\()p FD(k)s(;)15 b FK(0\).)125 2152 y SDict begin H.S end 125 2152 a 125 2152 a SDict begin 13 H.A end 125 2152 a 125 2152 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.4) cvn /DEST pdfmark end 125 2152 a 0 TeXcolorgray FL(Prop)s(osition)36 b(6.4.)p 0 TeXcolorgray 42 w Fp(If)c FK(gcd)q(\()p FD(n;)15 b(r)s FK(\))25 b(=)g(1)33 b Fp(then)795 2308 y FC(j)847 2285 y FK(~)820 2308 y FD(N)893 2322 y Fx(n;r)994 2308 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FC(j)27 b FK(=)e FC(j)15 b(f)q FK(\()p FD(\013)1510 2322 y FJ(1)1550 2308 y FD(;)g(:)g(:)g(:)h(;)f(\013)1809 2322 y Fx(r)1848 2308 y FK(\))25 b FC(2)g Fz(Z)2059 2270 y Fx(r)2059 2330 y(n)2117 2308 y FC(j)15 b FD(\013)2215 2322 y FJ(1)2275 2308 y FK(+)20 b FC(\001)15 b(\001)g(\001)21 b FK(+)f FD(\013)2641 2322 y Fx(r)2705 2308 y FK(=)25 b FD(l)r FC(g)15 b(j)p FD(;)125 2457 y Fp(for)33 b(any)g FD(k)28 b FC(2)d Fz(Z)670 2471 y Fx(r)736 2457 y Fp(and)34 b FD(l)27 b FC(2)e Fz(Z)1118 2471 y Fx(n)1161 2457 y Fp(.)p 0 TeXcolorgray 125 2654 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Consider)30 b(the)i(homomorphism)d FD(')f FK(:)f Fz(Z)1791 2621 y Fx(r)1791 2677 y(nr)1895 2654 y FC(!)g Fz(Z)2078 2668 y Fx(n)2141 2654 y FC(\002)21 b Fz(Z)2298 2621 y Fx(r)2298 2677 y(r)2332 2654 y FK(,)32 b(giv)m(en)f(b)m(y)h FD(')p FK(\()p FD(x)2901 2668 y FJ(1)2941 2654 y FD(;)15 b(:)g(:)g(:)h(;)f(x) 3194 2668 y Fx(r)3233 2654 y FK(\))27 b(=)g(\()p FD(x)3480 2668 y FJ(1)3541 2654 y FK(+)125 2769 y FC(\001)15 b(\001)g(\001)24 b FK(+)f FD(x)400 2783 y Fx(r)469 2769 y FK(\(mo)s(d)29 b FD(n)p FK(\))p FD(;)15 b(nx)945 2783 y Fx(i)1004 2769 y FK(\(mo)s(d)30 b FD(r)s FK(\)\).)55 b(W)-8 b(e)37 b(ha)m(v)m(e)g (that)2043 2746 y(~)2017 2769 y FD(N)2090 2783 y Fx(n;r)2190 2769 y FK(\()p FD(k)s(;)15 b(l)r FK(\))35 b(=)e FD(')2577 2736 y Fs(\000)p FJ(1)2672 2769 y FK(\()p FD(l)r(;)15 b(k)s(;)g(k)s(;)g(:)g(:)g(:)j(;)d(k)s FK(\).)56 b(In)35 b(order)125 2877 y(to)c(iden)m(tify)d(this)i(map,)g(observ)m(e)h(that)g FD(')g FK(factors)g(as)1484 3080 y Fz(Z)1549 3047 y Fx(r)1549 3102 y(nr)1768 3017 y(\036)1810 2994 y Fq(r)1872 3057 y Fw(/)p Fv(/)p 1653 3059 220 4 v 1750 3282 a Fx(')1959 3329 y Fw($)p Fv($)1924 3306 y Fu(I)1890 3283 y(I)1856 3260 y(I)1822 3237 y(I)1789 3214 y(I)1755 3191 y(I)1721 3169 y(I)1687 3146 y(I)1653 3123 y(I)1899 3080 y Fz(Z)1964 3047 y Fx(r)1964 3102 y(n)2027 3080 y FC(\002)20 b Fz(Z)2183 3047 y Fx(r)2183 3102 y(r)2085 3243 y(f)7 b Fs(\002)p Fx(g)2217 3220 y Fq(r)2058 3329 y Fw(\017)p Fv(\017)p 2056 3329 4 200 v 1879 3418 a Fz(Z)1944 3432 y Fx(n)2007 3418 y FC(\002)20 b Fz(Z)2163 3385 y Fx(r)2163 3441 y(r)2211 3418 y FD(;)125 3580 y FK(where)41 b(the)i(horizon)m(tal)f(map)g(is)f (the)i(isomorphism)c FD(\036)45 b FK(:)h Fz(Z)2271 3594 y Fx(nr)2392 3555 y FC(\030)2392 3585 y FK(=)2508 3580 y Fz(Z)2573 3594 y Fx(n)2644 3580 y FC(\002)28 b Fz(Z)2808 3594 y Fx(r)2884 3580 y FK(giv)m(en)42 b(b)m(y)g(the)h(map)125 3688 y FD(x)d FC(7!)g FK(\()p FD(x)h FK(\(mo)s(d)30 b FD(n)p FK(\))p FD(;)15 b(x)41 b FK(\(mo)s(d)29 b FD(r)s FK(\)\).)69 b(F)-8 b(or)40 b(the)g(v)m(ertical)f(arro)m(w)h(w)m(e)g(ha) m(v)m(e)g FD(f)50 b FK(:)41 b Fz(Z)2908 3655 y Fx(r)2908 3711 y(n)2991 3688 y FC(!)f Fz(Z)3187 3702 y Fx(n)3269 3688 y FK(giv)m(en)f(b)m(y)125 3796 y FD(f)10 b FK(\()p FD(\013)273 3810 y FJ(1)312 3796 y FD(;)15 b(:)g(:)g(:)h(;)f(\013)571 3810 y Fx(r)610 3796 y FK(\))26 b(=)e FD(\013)824 3810 y FJ(1)884 3796 y FK(+)c FD(:)15 b(:)g(:)21 b FK(+)f FD(\013)1250 3810 y Fx(r)1288 3796 y FK(,)31 b(and)f FD(g)f FK(:)c Fz(Z)1708 3810 y Fx(r)1767 3796 y FC(!)g Fz(Z)1948 3810 y Fx(r)2012 3796 y FK(is)k FD(g)s FK(\()p FD(\014)5 b FK(\))27 b(=)e FD(n\014)5 b FK(.)41 b(Therefore,)159 3952 y FD(\036)213 3915 y Fx(r)251 3952 y FK(\()313 3929 y(~)286 3952 y FD(N)359 3966 y Fx(n;r)460 3952 y FK(\()p FD(k)s(;)15 b(l)r FK(\)\))27 b(=)e FC(f)p FK(\()p FD(\013)945 3966 y FJ(1)985 3952 y FD(;)15 b(:)g(:)g(:)i(;)e(\013)1245 3966 y Fx(r)1283 3952 y FK(\))26 b FC(2)f Fz(Z)1495 3915 y Fx(r)1495 3975 y(n)1553 3952 y FC(j)15 b FD(\013)1651 3966 y FJ(1)1711 3952 y FK(+)20 b FC(\001)15 b(\001)g(\001)21 b FK(+)f FD(\013)2077 3966 y Fx(r)2140 3952 y FK(=)25 b FD(l)r FC(g)c(\002)f(f)p FK(\()p FD(\014)2553 3966 y FJ(1)2593 3952 y FD(;)15 b(:)g(:)g(:)i(;)e(\014)2846 3966 y Fx(r)2885 3952 y FK(\))25 b FC(2)g Fz(Z)3096 3915 y Fx(r)3096 3975 y(r)3145 3952 y FC(j)15 b FD(n\014)3291 3966 y Fx(i)3345 3952 y FK(=)25 b FD(k)s FC(g)16 b FD(:)125 4101 y FK(Moreo)m(v)m(er,)32 b(since)e FD(n)g FK(is)f(in)m(v)m(ertible) g(in)g Fz(Z)1521 4115 y Fx(r)1555 4101 y FK(,)h(the)h(last)f(factor)h (is)f(just)g(a)g(p)s(oin)m(t.)40 b(Hence)446 4252 y FC(j)498 4229 y FK(~)471 4252 y FD(N)544 4266 y Fx(n;r)645 4252 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FC(j)27 b FK(=)e FC(j)p FD(\036)1061 4215 y Fx(r)1099 4252 y FK(\()1161 4229 y(~)1134 4252 y FD(N)1207 4266 y Fx(n;r)1308 4252 y FK(\()p FD(k)s(;)15 b(l)r FK(\)\))p FC(j)27 b FK(=)e FC(j)15 b(f)q FK(\()p FD(\013)1859 4266 y FJ(1)1899 4252 y FD(;)g(:)g(:)g(:)h(;)f(\013)2158 4266 y Fx(r)2197 4252 y FK(\))25 b FC(2)g Fz(Z)2408 4215 y Fx(r)2408 4275 y(n)2466 4252 y FC(j)15 b FD(\013)2564 4266 y FJ(1)2624 4252 y FK(+)20 b FC(\001)15 b(\001)g(\001)21 b FK(+)f FD(\013)2990 4266 y Fx(r)3054 4252 y FK(=)25 b FD(l)r FC(g)15 b(j)p FD(:)3541 4401 y Fo(\003)125 4565 y SDict begin H.S end 125 4565 a 125 4565 a SDict begin 13 H.A end 125 4565 a 125 4565 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.5) cvn /DEST pdfmark end 125 4565 a 0 TeXcolorgray FL(Corollary)36 b(6.5.)p 0 TeXcolorgray 42 w Fp(If)d FK(gcd\()p FD(n;)15 b(r)s FK(\))25 b(=)g(1)p Fp(,)33 b(then)g FC(j)1717 4542 y FK(~)1690 4565 y FD(N)1763 4579 y Fx(n;r)1864 4565 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FC(j)34 b Fp(is)f(indep)-5 b(endent)34 b(of)f FD(k)i Fp(and)f FD(l)r Fp(.)p 0 TeXcolorgray 125 4763 a(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(The)34 b(indep)s(endence)d(of)j FD(k)j FK(follo)m(ws)c(from)g(Prop)s(osition) 2366 4763 y SDict begin H.S end 2366 4763 a 0 TeXcolorgray FK(6.4)p 0 TeXcolorgray 2482 4704 a SDict begin H.R end 2482 4704 a 2482 4763 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.4) cvn H.B /ANN pdfmark end 2482 4763 a FK(.)51 b(F)-8 b(or)34 b(the)g(indep)s(endence)d(of)j FD(l)r FK(,)125 4871 y(observ)m(e)c(that)h(the)f(map)g(\()p FD(x)1090 4885 y FJ(1)1130 4871 y FD(;)15 b(:)g(:)g(:)i(;)e(x)1384 4885 y Fx(r)1422 4871 y FK(\))26 b FC(7!)f FK(\()p FD(x)1686 4885 y FJ(1)1745 4871 y FK(+)20 b FD(r)1880 4838 y Fs(\000)p FJ(1)1974 4871 y FK(\()p FD(l)2038 4838 y Fs(0)2081 4871 y FC(\000)g FD(l)r FK(\))p FD(;)15 b(:)g(:)g(:)i(;)e(x)2490 4885 y Fx(r)2548 4871 y FK(+)k FD(r)2682 4838 y Fs(\000)p FJ(1)2776 4871 y FK(\()p FD(l)2840 4838 y Fs(0)2883 4871 y FC(\000)h FD(l)r FK(\)\))31 b(is)e(a)i(bijection)125 4985 y(b)s(et)m(w)m(een)494 4962 y(~)468 4985 y FD(N)541 4999 y Fx(n;r)641 4985 y FK(\(0)p FD(;)15 b(l)r FK(\))24 b(and)1045 4962 y(~)1018 4985 y FD(N)1091 4999 y Fx(n;r)1192 4985 y FK(\(0)p FD(;)15 b(l)1341 4952 y Fs(0)1365 4985 y FK(\),)25 b(for)d(an)m(y)h FD(l)r(;)15 b(l)1843 4952 y Fs(0)1892 4985 y FC(2)25 b Fz(Z)2043 4999 y Fx(n)2086 4985 y FK(,)f(where)e FD(r)2434 4952 y Fs(\000)p FJ(1)2551 4985 y FK(is)f(the)i(in)m(v)m(erse)g(of)f FD(r)43 b FK(\(mo)s(d)30 b FD(n)p FK(\),)125 5093 y(and)f(lifted)g(to)i Fz(Z)712 5107 y Fx(nr)789 5093 y FK(.)2727 b Fo(\003)125 5257 y SDict begin H.S end 125 5257 a 125 5257 a SDict begin 13 H.A end 125 5257 a 125 5257 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.6) cvn /DEST pdfmark end 125 5257 a 0 TeXcolorgray FL(Corollary)36 b(6.6.)p 0 TeXcolorgray 42 w Fp(If)d FK(gcd\()p FD(n;)15 b(r)s FK(\))25 b(=)g(1)p Fp(,)33 b(then)1496 5413 y FC(j)1548 5390 y FK(~)1521 5413 y FD(N)1594 5427 y Fx(n;r)1695 5413 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FC(j)27 b FK(=)e FD(n)2087 5375 y Fx(r)r Fs(\000)p FJ(1)2214 5413 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 25 25 TeXDict begin HPSdict begin 25 24 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.25) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(25)p 0 TeXcolorgray 0 TeXcolorgray 125 321 a Fp(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Clearly)d(,)28 b Fz(Z)802 288 y Fx(r)802 343 y(n)870 321 y FK(=)966 235 y Fx(n)p Fs(\000)p FJ(1)995 253 y Ft(F)977 405 y Fx(l)q FJ(=0)1141 298 y FK(~)1114 321 y FD(N)1187 335 y Fx(n;r)1288 321 y FK(\(0)p FD(;)15 b(l)r FK(\).)41 b(Since)28 b(all)f(the)h(elemen)m(ts)h(in)e(the)i(decomp)s(osition)e (ha)m(v)m(e)i(the)125 561 y(same)h(cardinalit)m(y)-8 b(,)30 b(w)m(e)h(get)g(that)g FD(n)1362 528 y Fx(r)1425 561 y FK(=)25 b FC(j)p Fz(Z)1611 528 y Fx(r)1611 583 y(n)1654 561 y FC(j)g FK(=)1800 474 y Fx(n)p Fs(\000)p FJ(1)1819 492 y Ft(P)1811 645 y Fx(l)q FJ(=0)1975 538 y FK(~)1948 561 y FD(N)2021 575 y Fx(n;r)2122 561 y FK(\(0)p FD(;)15 b(l)r FK(\))26 b(=)f FD(n)p FC(j)2535 538 y FK(~)2508 561 y FD(N)2581 575 y Fx(n;r)2682 561 y FK(\(0)p FD(;)15 b(l)r FK(\))p FC(j)p FK(.)625 b Fo(\003)125 812 y SDict begin H.S end 125 812 a 125 812 a SDict begin 13 H.A end 125 812 a 125 812 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.7) cvn /DEST pdfmark end 125 812 a 0 TeXcolorgray FL(Corollary)40 b(6.7.)p 0 TeXcolorgray 44 w Fp(If)35 b FK(gcd\()p FD(n;)15 b(r)s FK(\))31 b(=)g(1)36 b Fp(then,)g(for)g(any) h(p)-5 b(artition)37 b FD(\031)d FK(=)c FC(f)q FK(1)2670 779 y Fx(e)2703 788 y FG(1)2742 812 y FD(;)15 b FK(2)2827 779 y Fx(e)2860 788 y FG(2)2899 812 y FD(;)g(:)g(:)g(:)i(;)e(r)3145 779 y Fx(e)3178 787 y Fq(r)3216 812 y FC(g)36 b Fp(we)g(have)125 920 y(that)558 1109 y FC(j)p FD(N)666 1071 y Fx(\031)656 1131 y(n;r)757 1109 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FC(j)27 b FK(=)1108 1047 y(1)p 1104 1088 55 4 v 1104 1171 a FD(n)1183 981 y Ft(\022)1466 1054 y FD(n)1250 1162 y(e)1292 1176 y FJ(1)1332 1162 y FD(;)15 b(e)1414 1176 y FJ(2)1454 1162 y FD(;)g(:)g(:)g(:)i(;)e(e)1698 1176 y Fx(r)1736 981 y Ft(\023)1829 1109 y FK(=)2385 1047 y(\()p FD(n)20 b FC(\000)g FK(1\)!)p 1935 1088 1208 4 v 1935 1171 a FD(e)1977 1185 y FJ(1)2016 1171 y FK(!)p FD(e)2083 1185 y FJ(2)2123 1171 y FK(!)15 b FC(\001)g(\001)g(\001)i FD(e)2327 1185 y Fx(r)2365 1171 y FK(!\()p FD(n)k FC(\000)f FD(e)2634 1185 y FJ(1)2693 1171 y FC(\000)g FD(:)15 b(:)g(:)22 b FC(\000)e FD(e)3044 1185 y Fx(r)3082 1171 y FK(\)!)3152 1109 y FD(:)p 0 TeXcolorgray 125 1416 a Fp(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(First)24 b(of)h(all,)f(observ)m(e)h(that)g(the)g (isomorphism)c(of)k(the)f(pro)s(of)g(of)h(Prop)s(osition)3111 1416 y SDict begin H.S end 3111 1416 a 0 TeXcolorgray FK(6.4)p 0 TeXcolorgray 3227 1358 a SDict begin H.R end 3227 1358 a 3227 1416 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.4) cvn H.B /ANN pdfmark end 3227 1416 a 24 w FK(preserv)m(es)125 1526 y(the)k(strata)569 1503 y(~)543 1526 y FD(N)626 1493 y Fx(\031)616 1548 y(n;r)716 1526 y FK(\()p FD(k)s(;)15 b(l)r FK(\),)31 b(so)f FC(j)1124 1503 y FK(~)1097 1526 y FD(N)1180 1493 y Fx(\031)1170 1548 y(n;r)1271 1526 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FC(j)31 b FK(is)d(indep)s(enden)m(t)g(of)h FD(k)k FK(and)c FD(l)r FK(.)40 b(It)30 b(also)f(comm)m(utes)i(with)d(the)125 1653 y(action)i(of)h FD(S)557 1667 y Fx(r)625 1653 y FK(so)f FC(j)p FD(N)844 1620 y Fx(\031)834 1676 y(n;r)935 1653 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FC(j)27 b FK(=)e FC(j)1323 1630 y FK(~)1297 1653 y FD(N)1380 1620 y Fx(\031)1370 1676 y(n;r)1470 1653 y FK(\()p FD(k)s(;)15 b(l)r FK(\))p FD(=S)1760 1667 y Fx(r)1800 1653 y FC(j)30 b FK(is)g(also)g(indep)s (enden)m(t)e(of)j FD(k)i FK(and)d FD(l)r FK(.)224 1797 y(A)m(t)41 b(this)e(p)s(oin)m(t,)j(the)e(pro)s(of)f(is)g(analogous)i (to)f(the)h(one)f(of)g(Corollary)2759 1797 y SDict begin H.S end 2759 1797 a 0 TeXcolorgray FK(6.6)p 0 TeXcolorgray 2875 1738 a SDict begin H.R end 2875 1738 a 2875 1797 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.6) cvn H.B /ANN pdfmark end 2875 1797 a FK(,)i(but)e(no)m(w)g(observ)m(e) 125 1961 y(that)329 1875 y Fx(n)p Fs(\000)p FJ(1)357 1893 y Ft(F)339 2045 y Fx(l)q FJ(=0)477 1961 y FD(N)560 1928 y Fx(\031)550 1983 y(n;r)650 1961 y FK(\(0)p FD(;)15 b(l)r FK(\))39 b(is)e(the)h(collection)f(of)h(tuples)f(\()p FD(\013)2027 1975 y FJ(1)2067 1961 y FD(;)15 b(:)g(:)g(:)h(;)f(\013) 2326 1975 y Fx(r)2365 1961 y FK(\))38 b FC(2)f Fz(Z)2601 1928 y Fx(r)2601 1983 y(n)2643 1961 y FK(,)j(up)d(to)h(reordering,)h (with)125 2125 y FD(e)167 2139 y FJ(1)245 2125 y FK(collections)g(of)g (di\013eren)m(t)f(elemen)m(ts,)k FD(e)1623 2139 y FJ(2)1702 2125 y FK(collections)c(of)h(2)h(equal)e(elemen)m(ts)i(and,)g(in)e (general,)125 2233 y FD(e)167 2247 y Fx(i)233 2233 y FK(collections)g(of)h FD(i)f FK(equal)g(elemen)m(ts,)j(for)d(1)h FC(\024)g FD(i)f FC(\024)h FD(r)s FK(.)64 b(The)38 b(total)h(coun)m(t)g (of)f(these)h(sets)g(is)e(the)125 2391 y(m)m(ultinomial)27 b(n)m(um)m(b)s(er)963 2263 y Ft(\022)1246 2336 y FD(n)1030 2444 y(e)1072 2458 y FJ(1)1112 2444 y FD(;)15 b(e)1194 2458 y FJ(2)1234 2444 y FD(;)g(:)g(:)g(:)i(;)e(e)1478 2458 y Fx(r)1516 2263 y Ft(\023)1583 2391 y FK(,)31 b(and)f(the)g (result)f(follo)m(ws.)1022 b Fo(\003)224 2666 y FK(With)30 b(this)f(result,)h(w)m(e)h(are)f(ready)h(to)g(pro)m(vide)e(the)i (\014nal)e(coun)m(t.)125 2856 y SDict begin H.S end 125 2856 a 125 2856 a SDict begin 13 H.A end 125 2856 a 125 2856 a SDict begin [/View [/XYZ H.V]/Dest (theorem.6.8) cvn /DEST pdfmark end 125 2856 a 0 TeXcolorgray FL(Theorem)39 b(6.8.)p 0 TeXcolorgray 44 w Fp(If)e FK(gcd\()p FD(n;)15 b(r)s FK(\))33 b(=)f(gcd)q(\()p FD(m;)15 b(r)s FK(\))33 b(=)f(1)p Fp(,)38 b(then,)h(for)e(any)g FD(\031)f FK(=)2733 2782 y Ft(\010)2786 2856 y FK(1)2831 2823 y Fx(e)2864 2832 y FG(1)2903 2856 y FD(;)15 b FK(2)2988 2823 y Fx(e)3021 2832 y FG(2)3061 2856 y FD(;)g(:)g(:)g(:)h(;)f(r)3306 2823 y Fx(e)3339 2831 y Fq(r)3378 2782 y Ft(\011)3467 2856 y Fp(and)125 2980 y FD(\031)180 2947 y Fs(0)228 2980 y FK(=)324 2907 y Ft(\010)377 2980 y FK(1)422 2947 y Fx(e)455 2924 y Fr(0)455 2968 y FG(1)494 2980 y FD(;)g FK(2)579 2947 y Fx(e)612 2924 y Fr(0)612 2968 y FG(2)651 2980 y FD(;)g(:)g(:)g(:)i(;)e(r)897 2947 y Fx(e)930 2924 y Fr(0)930 2964 y Fq(r)969 2907 y Ft(\011)1022 2980 y Fp(,)32 b(we)h(have)914 3239 y FC(j)p FD(M)1037 3201 y Fx(\031)r(;\031)1143 3178 y Fr(0)1027 3261 y Fx(n;m;r)1210 3239 y FC(j)26 b FK(=)1412 3177 y FD(r)p 1367 3218 135 4 v 1367 3301 a(nm)1526 3111 y Ft(\022)1809 3184 y FD(n)1593 3292 y(e)1635 3306 y FJ(1)1675 3292 y FD(;)15 b(e)1757 3306 y FJ(2)1797 3292 y FD(;)g(:)g(:)g(:)h(;)f(e)2040 3306 y Fx(r)2079 3111 y Ft(\023)g(\022)2431 3184 y FD(m)2228 3292 y(e)2270 3259 y Fs(0)2270 3316 y FJ(1)2310 3292 y FD(;)g(e)2392 3259 y Fs(0)2392 3316 y FJ(2)2432 3292 y FD(;)g(:)g(:)g(:)i(;)e(e)2676 3259 y Fs(0)2676 3314 y Fx(r)2714 3111 y Ft(\023)2796 3239 y FD(:)p 0 TeXcolorgray 125 3578 a Fp(Pr)-5 b(o)g(of.)p 0 TeXcolorgray 42 w FK(Observ)m(e)38 b(that)g FC(j)p FD(M)1089 3534 y Fx(\031)r(;\031)1195 3511 y Fr(0)1079 3590 y Fx(n;m;r)1261 3578 y FC(j)f FK(=)1431 3510 y Ft(P)1527 3605 y Fx($)1607 3578 y FC(j)p FD(N)1715 3545 y Fx(\031)1705 3601 y(n;r)1805 3578 y FK(\()p FD($)s FK(\))p FC(j)15 b(j)p FD(N)2101 3545 y Fx(\031)2144 3522 y Fr(0)2091 3601 y Fx(m;r)2213 3578 y FK(\()p FD($)s FK(\))p FC(j)p FK(.)62 b(Hence,)40 b(adding)c(up)g(and)h(using)125 3690 y(that)31 b FC(j)p FD(N)430 3657 y Fx(\031)420 3713 y(n;r)520 3690 y FK(\()p FD($)s FK(\))p FC(j)26 b FK(=)f FC(j)p FD(N)923 3657 y Fx(\031)913 3713 y(n;r)1014 3690 y FK(\()p FD(k)s(;)15 b FK(0\))p FC(j)32 b FK(is)e(indep)s(enden)m(t)e (of)i FD($)s FK(,)h(w)m(e)f(get)564 3916 y FC(j)p FD(M)687 3878 y Fx(\031)r(;\031)793 3855 y Fr(0)677 3938 y Fx(n;m;r)859 3916 y FC(j)c FK(=)1033 3830 y Ft(X)1006 4020 y Fx($)r Fs(2)p Fx(\026)1156 4028 y Fq(r)1206 3916 y FC(j)p FD(N)1314 3878 y Fx(\031)1304 3938 y(n;r)1404 3916 y FK(\()p FD($)s FK(\))p FC(j)21 b(\001)g(j)p FD(N)1752 3878 y Fx(\031)1795 3855 y Fr(0)1742 3938 y Fx(m;r)1862 3916 y FK(\()p FD($)s FK(\))p FC(j)26 b FK(=)f FD(r)s FC(j)p FD(N)2309 3878 y Fx(\031)2299 3938 y(n;r)2399 3916 y FK(\()p FD(k)s(;)15 b FK(0\))p FC(j)22 b(\001)f(j)p FD(N)2805 3878 y Fx(\031)2848 3855 y Fr(0)2795 3938 y Fx(m;r)2915 3916 y FK(\()p FD(k)s(;)15 b FK(0\))p FC(j)p FD(:)125 4200 y FK(No)m(w)31 b(the)f(result)f(follo)m (ws)h(from)g(Corollary)1657 4200 y SDict begin H.S end 1657 4200 a 0 TeXcolorgray FK(6.7)p 0 TeXcolorgray 1773 4142 a SDict begin H.R end 1773 4142 a 1773 4200 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.7) cvn H.B /ANN pdfmark end 1773 4200 a FK(.)1743 b Fo(\003)224 4426 y FK(All)35 b(form)m(ulas)h(\()790 4426 y SDict begin H.S end 790 4426 a 0 TeXcolorgray FK(35)p 0 TeXcolorgray 881 4367 a SDict begin H.R end 881 4367 a 881 4426 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.35) cvn H.B /ANN pdfmark end 881 4426 a FK(\),)i(\()1014 4426 y SDict begin H.S end 1014 4426 a 0 TeXcolorgray FK(36)p 0 TeXcolorgray 1106 4367 a SDict begin H.R end 1106 4367 a 1106 4426 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.36) cvn H.B /ANN pdfmark end 1106 4426 a FK(\),)g(\()1239 4426 y SDict begin H.S end 1239 4426 a 0 TeXcolorgray FK(37)p 0 TeXcolorgray 1330 4367 a SDict begin H.R end 1330 4367 a 1330 4426 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.37) cvn H.B /ANN pdfmark end 1330 4426 a FK(\),)h(\()1464 4426 y SDict begin H.S end 1464 4426 a 0 TeXcolorgray FK(38)p 0 TeXcolorgray 1555 4367 a SDict begin H.R end 1555 4367 a 1555 4426 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.38) cvn H.B /ANN pdfmark end 1555 4426 a FK(\),)g(\()1689 4426 y SDict begin H.S end 1689 4426 a 0 TeXcolorgray FK(39)p 0 TeXcolorgray 1780 4367 a SDict begin H.R end 1780 4367 a 1780 4426 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.39) cvn H.B /ANN pdfmark end 1780 4426 a FK(\))e(matc)m(h)g(exactly)g(Theorem)2842 4426 y SDict begin H.S end 2842 4426 a 0 TeXcolorgray FK(6.8)p 0 TeXcolorgray 2958 4367 a SDict begin H.R end 2958 4367 a 2958 4426 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.8) cvn H.B /ANN pdfmark end 2958 4426 a FK(.)59 b(W)-8 b(e)38 b(conjecture)125 4534 y(that)31 b(the)g(form)m(ula)f(of)g (Theorem)1301 4534 y SDict begin H.S end 1301 4534 a 0 TeXcolorgray FK(6.8)p 0 TeXcolorgray 1417 4475 a SDict begin H.R end 1417 4475 a 1417 4534 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.8) cvn H.B /ANN pdfmark end 1417 4534 a 31 w FK(also)g(holds)g(true)g(for)h(general)f FD(n;)15 b(m)31 b FK(with)e(gcd\()p FD(n;)15 b(m)p FK(\))27 b(=)e(1.)42 b(It)125 4642 y(is)29 b(true)h(for)g FD(r)e FC(\024)d FK(4.)125 4869 y SDict begin H.S end 125 4869 a 125 4869 a SDict begin 13 H.A end 125 4869 a 125 4869 a SDict begin [/View [/XYZ H.V]/Dest (section.7) cvn /DEST pdfmark end 125 4869 a 678 5000 a FK(7.)46 b FE(Irreducible)32 b(chara)n(cter)g(v)-8 b(arieties)33 b(f)n(or)h FK(SL)2635 5014 y FJ(2)2709 5000 y FE(and)g FK(SL)3019 5014 y FJ(3)224 5197 y FK(In)g(this)g(section,)j(w)m(e)e(will)e(use)h(the)i(previous)d (framew)m(ork)i(for)g(computing)f(the)h(motiv)m(e)h(of)f(the)125 5305 y(c)m(haracter)i(v)-5 b(ariet)m(y)36 b(of)g(torus)g(knots)f(in)g (the)h(cases)h(of)f(rank)f(2)h(and)f(rank)g(3.)58 b(These)35 b(results)g(w)m(ere)125 5413 y(\014rst)29 b(obtained)h(in)f(the)i(pap)s (ers)e([)1265 5413 y SDict begin H.S end 1265 5413 a 0 TeXcolorgray FK(27)p 0 TeXcolorgray 1356 5354 a SDict begin H.R end 1356 5354 a 1356 5413 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Munoz) cvn H.B /ANN pdfmark end 1356 5413 a FK(])h(and)g([)1613 5413 y SDict begin H.S end 1613 5413 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 1704 5354 a SDict begin H.R end 1704 5354 a 1704 5413 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 1704 5413 a FK(],)h(resp)s(ectiv)m(ely)-8 b(.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 26 26 TeXDict begin HPSdict begin 26 25 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.26) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(26)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 183 a SDict begin H.S end 125 183 a 125 183 a SDict begin 13 H.A end 125 183 a 125 183 a SDict begin [/View [/XYZ H.V]/Dest (subsection.7.1) cvn /DEST pdfmark end 125 183 a 83 x FK(7.1.)46 b FL(Rank)g FK(2)p FL(.)g FK(By)40 b(Remark)1222 266 y SDict begin H.S end 1222 266 a 0 TeXcolorgray FK(3.5)p 0 TeXcolorgray 1338 207 a SDict begin H.R end 1338 207 a 1338 266 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.5) cvn H.B /ANN pdfmark end 1338 266 a FK(,)i(the)e(only)e (con\014guration)h(of)h(eigen)m(v)-5 b(alues)39 b(that)h(admits)e (irre-)125 374 y(ducible)31 b(represen)m(tations)j(is)f FD(\024)f FK(=)f(\()p FC(f)q FD(\017)1474 388 y FJ(1)1513 374 y FD(;)15 b(\017)1590 388 y FJ(2)1630 374 y FC(g)h FD(;)f FC(f)q FD(")1819 388 y FJ(1)1858 374 y FD(;)g(")1940 388 y FJ(2)1981 374 y FC(g)p FK(\))34 b(with)f FD(\017)2343 388 y FJ(1)2414 374 y FC(6)p FK(=)e FD(\017)2553 388 y FJ(2)2626 374 y FK(and)j FD(")2849 388 y FJ(1)2920 374 y FC(6)p FK(=)d FD(")3064 388 y FJ(2)3104 374 y FK(.)51 b(T)-8 b(o)35 b(shorten)125 511 y(the)c(notation,)h(for)f(a)h(t)m(yp)s (e)f FD(\034)37 b FK(=)26 b(\()p FD(\030)t(;)15 b(\033)s FK(\))32 b(with)e(shap)s(e)h FD(\030)f FK(=)2142 411 y Ft(\020)2196 511 y FC(f)q FK(\()p FD(d)2324 525 y Fx(i;j)2404 511 y FD(;)15 b(m)2524 525 y Fx(i;j)2605 511 y FK(\))p FC(g)2686 470 y Fx(s)2719 480 y Fq(i)2686 542 y Fx(j)t FJ(=1)2812 411 y Ft(\021)2867 433 y Fx(s)2867 575 y(i)p FJ(=1)2985 511 y FK(,)32 b(w)m(e)f(will)e(denote)125 646 y(b)m(y)40 b FD(\033)313 660 y Fx(A)410 646 y FK(and)f FD(\033)648 660 y Fx(B)749 646 y FK(the)h(con\014guration)g(of)g(eigen) m(v)-5 b(alues)40 b(of)h(eac)m(h)g(irreducible)c(piece)j(for)g FD(A)g FK(and)g FD(B)125 754 y FK(resp)s(ectiv)m(ely)-8 b(.)224 897 y(In)30 b(this)f(case,)j FC(T)783 911 y Fx(\024)827 897 y FD(=S)928 911 y Fx(\024)1003 897 y FK(con)m(tains)f(the)g(follo)m (wing)d(t)m(w)m(o)k(t)m(yp)s(es)e(of)h(the)g(form)e FD(\034)36 b FK(=)25 b(\()p FD(\030)t(;)15 b(\033)s FK(\).)p 0 TeXcolorgray 340 1116 a FC(\017)p 0 TeXcolorgray 42 w FD(\030)43 b FK(=)38 b(\()p FC(f)q FK(\(1)p FD(;)15 b FK(1\))p FD(;)g FK(\(1)p FD(;)g FK(1\))p FC(g)5 b FK(\))38 b(with)f(eigen)m(v)-5 b(alues)38 b(p)s(er)f(piece)i FD(\033)2411 1130 y Fx(A)2506 1116 y FK(=)f(\()p FC(f)q(f)p FD(\017)2778 1130 y FJ(1)2818 1116 y FC(g)15 b FD(;)g FC(f)q FD(\017)3001 1130 y FJ(2)3041 1116 y FC(gg)p FK(\))39 b(and)f FD(\033)3442 1130 y Fx(B)3541 1116 y FK(=)427 1223 y(\()p FC(f)q(f)q FD(")596 1237 y FJ(1)635 1223 y FC(g)16 b FD(;)f FC(f)q FD(")824 1237 y FJ(2)864 1223 y FC(gg)q FK(\).)41 b(F)-8 b(or)31 b(this)e(t)m(yp)s (e,)i(w)m(e)g(ha)m(v)m(e)782 1486 y FD(m)862 1500 y Fx(\024)907 1486 y FK(\()p FD(\034)10 b FK(\))26 b(=)f(2)p FD(;)107 b FK([)p FB(M)1446 1449 y FJ(irr)1446 1509 y Fx(\034)1525 1486 y FK(])26 b(=)e(1)p FD(;)107 b FK([)p FC(M)1982 1500 y Fx(\034)2026 1486 y FK(])25 b(=)g(1)p FD(;)107 b FK([)p FC(G)2428 1500 y Fx(\034)2471 1486 y FK(])26 b(=)f(\()p FD(q)e FC(\000)d FK(1\))2888 1449 y FJ(2)2929 1486 y FD(:)427 1767 y FK(Therefore)30 b([)p FD(R)q FK(\()p FD(\034)10 b FK(\)])27 b(=)e(2)1257 1722 y Fx(q)r FJ(\()p Fx(q)r FJ(+1\)\()p Fx(q)r Fs(\000)p FJ(1\))1647 1699 y FG(2)p 1257 1746 427 4 v 1363 1801 a FJ(\()p Fx(q)r Fs(\000)p FJ(1\))1541 1782 y FG(2)1719 1767 y FK(=)g(2)p FD(q)1904 1734 y FJ(2)1964 1767 y FK(+)19 b(2)p FD(q)s FK(.)p 0 TeXcolorgray 340 1894 a FC(\017)p 0 TeXcolorgray 42 w FD(\030)51 b FK(=)46 b(\()p FC(f)q FK(\(1)p FD(;)15 b FK(1\))p FC(g)j FD(;)d FC(f)q FK(\(1)p FD(;)g FK(1\))p FC(g)r FK(\))44 b(with)e(eigen)m(v)-5 b(alues)43 b(p)s(er)f(piece)h FD(\033)2558 1908 y Fx(A)2662 1894 y FK(=)j(\()p FC(f)q(f)p FD(\017)2942 1908 y FJ(1)2982 1894 y FC(gg)16 b FD(;)f FC(f)q(f)p FD(\017)3256 1908 y FJ(2)3296 1894 y FC(gg)p FK(\))44 b(and)427 2002 y FD(\033)479 2016 y Fx(B)565 2002 y FK(=)25 b(\()p FC(f)q(f)p FD(")829 2016 y FJ(1)869 2002 y FC(g)q(g)15 b FD(;)g FC(f)q(f)q FD(")1149 2016 y FJ(2)1188 2002 y FC(g)q(g)p FK(\).)41 b(In)30 b(this)f(case,)j(w)m(e) f(ha)m(v)m(e)705 2264 y FD(m)785 2278 y Fx(\024)829 2264 y FK(\()p FD(\034)10 b FK(\))26 b(=)f(4)p FD(;)107 b FK([)p FB(M)1368 2227 y FJ(irr)1368 2287 y Fx(\034)1448 2264 y FK(])25 b(=)g(1)p FD(;)107 b FK([)p FC(M)1905 2278 y Fx(\034)1948 2264 y FK(])26 b(=)f FD(q)e FC(\000)d FK(1)p FD(;)107 b FK([)p FC(G)2506 2278 y Fx(\034)2549 2264 y FK(])25 b(=)g(\()p FD(q)f FC(\000)c FK(1\))2966 2227 y FJ(2)3006 2264 y FD(:)427 2545 y FK(Therefore)30 b([)p FD(R)q FK(\()p FD(\034)10 b FK(\)])27 b(=)e(4\()p FD(q)e FC(\000)d FK(1\))1527 2500 y Fx(q)r FJ(\()p Fx(q)r FJ(+1\)\()p Fx(q)r Fs(\000)p FJ(1\))1917 2477 y FG(2)p 1528 2524 V 1635 2579 a FJ(\()p Fx(q)r Fs(\000)p FJ(1\))1813 2560 y FG(2)1990 2545 y FK(=)25 b(4)p FD(q)2175 2512 y FJ(3)2235 2545 y FC(\000)20 b FK(4)p FD(q)s FK(.)224 2793 y(Putting)39 b(this)f(all)h(together,)k(w)m(e)e(get)f(that)g([)p FD(R)1890 2760 y FJ(red)1889 2816 y Fx(\024)1993 2793 y FK(])g(=)h(4)p FD(q)2259 2760 y FJ(3)2325 2793 y FK(+)26 b(2)p FD(q)2511 2760 y FJ(2)2577 2793 y FC(\000)g FK(2)p FD(q)s FK(.)69 b(The)39 b(total)h(coun)m(t)g(of)125 2945 y(represen)m(tations)g(is)f([)p FD(R)960 2959 y Fx(\024)1006 2945 y FK(])j(=)1186 2844 y Ft(\020)1250 2900 y Fx(q)r FJ(\()p Fx(q)r Fs(\000)p FJ(1\)\()p Fx(q)r Fs(\000)p FJ(1\))1640 2877 y FG(2)p 1250 2924 V 1356 2979 a FJ(\()p Fx(q)r Fs(\000)p FJ(1\))1534 2960 y FG(2)1686 2844 y Ft(\021)1741 2867 y FJ(2)1822 2945 y FK(=)g FD(q)1979 2912 y FJ(4)2045 2945 y FK(+)27 b(2)p FD(q)2232 2912 y FJ(3)2298 2945 y FK(+)g FD(q)2440 2912 y FJ(2)2479 2945 y FK(.)71 b(Therefore,)43 b(the)e(irreducible)125 3092 y(represen)m(tations)35 b(are)h([)p FD(R)1012 3059 y FJ(irr)1011 3114 y Fx(\024)1091 3092 y FK(])e(=)g([)p FD(R)1349 3106 y Fx(\024)1394 3092 y FK(])24 b FC(\000)f FK([)p FD(R)1632 3059 y FJ(red)1631 3114 y Fx(\024)1734 3092 y FK(])34 b(=)g FD(q)1942 3059 y FJ(4)2005 3092 y FC(\000)23 b FK(2)p FD(q)2188 3059 y FJ(3)2252 3092 y FC(\000)g FD(q)2390 3059 y FJ(2)2453 3092 y FK(+)g(2)p FD(q)s FK(.)57 b(Moreo)m(v)m(er,)39 b(w)m(e)d(get)h(that)125 3200 y([)p FB(M)245 3167 y FJ(irr)245 3223 y Fx(\024)324 3200 y FK(])25 b(=)g([)p FD(R)565 3167 y FJ(irr)564 3223 y Fx(\024)644 3200 y FK(])p FD(=)p FK([PGL)930 3214 y FJ(2)970 3200 y FK(])g(=)g FD(q)e FC(\000)d FK(2.)224 3344 y(Finally)-8 b(,)32 b(b)m(y)h(\()718 3344 y SDict begin H.S end 718 3344 a 0 TeXcolorgray FK(35)p 0 TeXcolorgray 810 3285 a SDict begin H.R end 810 3285 a 810 3344 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.6.35) cvn H.B /ANN pdfmark end 810 3344 a FK(\))g(w)m(e)g(kno)m(w)h(ho)m(w)f (man)m(y)g(con\014gurations)f(of)h(eigen)m(v)-5 b(alues)33 b FD(\024)g FK(exist.)49 b(This)31 b(giv)m(es)125 3452 y(the)f(n)m(um)m(b)s(er)f(of)i(comp)s(onen)m(ts)f(of)h FB(M)1415 3419 y FJ(irr)1415 3477 y(2)1524 3452 y FK(of)g(the)f(form)g FB(M)2094 3419 y FJ(irr)2094 3475 y Fx(\024)2173 3452 y FK(,)h(so)g(follo)m(wing)d(\()2759 3452 y SDict begin H.S end 2759 3452 a 0 TeXcolorgray FK(12)p 0 TeXcolorgray 2851 3394 a SDict begin H.R end 2851 3394 a 2851 3452 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.3.12) cvn H.B /ANN pdfmark end 2851 3452 a FK(\))i(w)m(e)h(get)h(that)633 3766 y([)p FB(M)753 3729 y FJ(irr)753 3789 y(2)833 3766 y FK(])25 b(=)989 3705 y(1)p 989 3745 46 4 v 989 3828 a(2)1045 3638 y Ft(\022)1111 3705 y FD(n)20 b FC(\000)g FK(1)1116 3828 y(2)h FC(\000)f FK(1)1323 3638 y Ft(\023)o(\022)1456 3705 y FD(m)g FC(\000)g FK(1)1474 3828 y(2)g FC(\000)g FK(1)1693 3638 y Ft(\023)1760 3766 y FK(\()p FD(q)j FC(\000)d FK(2\))26 b(=)2162 3705 y(1)p 2162 3745 V 2162 3828 a(2)2217 3766 y(\()p FD(n)21 b FC(\000)e FK(1\)\()p FD(m)j FC(\000)e FK(1\)\()p FD(q)k FC(\000)c FK(2\))p FD(:)125 4130 y SDict begin H.S end 125 4130 a 125 4130 a SDict begin 13 H.A end 125 4130 a 125 4130 a SDict begin [/View [/XYZ H.V]/Dest (subsection.7.2) cvn /DEST pdfmark end 125 4130 a 107 x FK(7.2.)46 b FL(Rank)c FK(3)p FL(.)k FK(In)36 b(this)f(case,)k(there)e(are)f(three)h(di\013eren)m(t)e(t)m(yp)s(es)i (of)f(p)s(ossible)e(con\014gurations)h(of)125 4345 y(eigen)m(v)-5 b(alues,)49 b(according)c(to)h(their)f(m)m(ultiplicit)m(y)-8 b(.)83 b(Observ)m(e)46 b(that)g(there)f(cannot)h(b)s(e)f(a)h(double)125 4453 y(eigen)m(v)-5 b(alue)31 b(b)s(oth)f(in)g(the)i(matrices)f FD(A)g FK(and)g FD(B)36 b FK(since,)31 b(in)f(that)i(case,)g(the)g (represen)m(tation)f(is)f(auto-)125 4561 y(matically)25 b(reducible)e(b)m(y)j(Remark)1362 4561 y SDict begin H.S end 1362 4561 a 0 TeXcolorgray FK(3.5)p 0 TeXcolorgray 1478 4502 a SDict begin H.R end 1478 4502 a 1478 4561 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.5) cvn H.B /ANN pdfmark end 1478 4561 a FK(.)39 b(In)25 b(the)h(follo)m(wing,)g FD(\017)2246 4575 y FJ(1)2285 4561 y FD(;)15 b(\017)2362 4575 y FJ(2)2402 4561 y FD(;)g(\017)2479 4575 y FJ(3)2545 4561 y FK(\(resp.)26 b FD(")2836 4575 y FJ(1)2876 4561 y FD(;)15 b(")2958 4575 y FJ(2)2998 4561 y FD(;)g(")3080 4575 y FJ(3)3120 4561 y FK(\))26 b(will)e(denote)125 4668 y(three)30 b(di\013eren)m(t)g(eigen)m(v)-5 b(alues.)125 4964 y SDict begin H.S end 125 4964 a 125 4964 a SDict begin 13 H.A end 125 4964 a 125 4964 a SDict begin [/View [/XYZ H.V]/Dest (subsubsection.7.2.1) cvn /DEST pdfmark end 125 4964 a 125 x FK(7.2.1.)47 b FD(\024)434 5103 y FJ(1)499 5089 y FK(=)25 b(\(\()p FD(\017)702 5103 y FJ(1)742 5089 y FD(;)15 b(\017)819 5103 y FJ(2)859 5089 y FD(;)g(\017)936 5103 y FJ(3)976 5089 y FK(\))p FD(;)g FK(\()p FD(")1128 5103 y FJ(1)1169 5089 y FD(;)g(")1251 5103 y FJ(2)1291 5089 y FD(;)g(")1373 5103 y FJ(3)1413 5089 y FK(\)\))p Fp(.)46 b FK(In)25 b(this)f(case,)j(the)f(three)f(eigen)m(v)-5 b(alues)25 b(are)h(di\013eren)m(t.)38 b(This)125 5197 y(implies)24 b(that)j FC(G)677 5211 y Fx(\034)747 5197 y FK(is)g(a)g(torus)g(for)f(an)m(y)i(t)m(yp)s(e)f FD(\034)35 b FC(2)25 b(T)1854 5211 y Fx(\024)1895 5220 y FG(1)1960 5197 y FK(of)i(rank)f(equal)h(to)h(the)f(n)m(um)m(b)s(er)f(of)h (irreducible)125 5305 y(pieces.)38 b(In)23 b(suc)m(h)h(manner,)h(the)g (con)m(tributions)d(of)j(the)f(p)s(ossible)e(t)m(yp)s(es)i(are)h(sho)m (wn)f(in)e(the)j(follo)m(wing)125 5413 y(table.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 27 27 TeXDict begin HPSdict begin 27 26 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.27) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(27)p 0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray 550 186 2637 4 v 548 286 4 100 v 1170 256 a Fj(\034)p 1834 286 V 763 w Fi(M)2069 268 y Fh(\034)p 2241 286 V 2382 256 a Fi(G)2431 268 y Fh(\034)p 2609 286 V 2663 256 a Fg(M)2750 226 y Ff(irr)2750 276 y Fh(\034)p 2875 286 V 2919 256 a Fj(m)2992 268 y Fh(\024)3034 256 y Fe(\()p Fj(\034)9 b Fe(\))p 3185 286 V 550 289 2637 4 v 548 588 4 299 v 840 359 a Fj(\030)28 b Fe(=)22 b(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(2)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))779 458 y Fj(\033)826 470 y Fh(A)904 458 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1141 470 y Ff(1)1178 458 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1346 470 y Ff(2)1382 458 y Fj(;)g(\017)1453 470 y Ff(3)1490 458 y Fi(gg)o Fe(\))770 558 y Fj(\033)817 570 y Fh(B)898 558 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1140 570 y Ff(1)1177 558 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1350 570 y Ff(2)1387 558 y Fj(;)g(")1463 570 y Ff(3)1499 558 y Fi(gg)o Fe(\))p 1834 588 V 2018 459 a(1)p 2241 588 V 225 w(\()p Fj(q)21 b Fi(\000)d Fe(1\))2532 429 y Ff(2)p 2609 588 V 2653 459 a Fj(q)j Fi(\000)d Fe(2)p 2875 588 V 175 w(9)p 3185 588 V 550 591 2637 4 v 548 890 4 299 v 792 661 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(2)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))738 760 y Fj(\033)785 772 y Fh(A)862 760 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1099 772 y Ff(1)1136 760 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(\017)1387 772 y Ff(2)1424 760 y Fj(;)g(\017)1495 772 y Ff(3)1532 760 y Fi(g)o(g)p Fe(\))729 860 y Fj(\033)776 872 y Fh(B)856 860 y Fe(=)23 b(\()p Fi(ff)o Fj(")1098 872 y Ff(1)1135 860 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(")1391 872 y Ff(2)1428 860 y Fj(;)g(")1504 872 y Ff(3)1541 860 y Fi(g)o(g)p Fe(\))p 1834 890 V 1929 761 a Fj(q)1969 731 y Ff(2)2025 761 y Fi(\000)k Fe(1)p 2241 890 V 135 w(\()p Fj(q)j Fi(\000)d Fe(1\))2532 731 y Ff(2)p 2609 890 V 2653 761 a Fj(q)j Fi(\000)d Fe(2)p 2875 890 V 175 w(9)p 3185 890 V 550 893 2637 4 v 548 1192 4 299 v 792 963 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(2)p Fj(;)14 b Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))738 1063 y Fj(\033)785 1075 y Fh(A)862 1063 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1099 1075 y Ff(1)1136 1063 y Fj(;)14 b(\017)1207 1075 y Ff(2)1244 1063 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(\017)1495 1075 y Ff(3)1532 1063 y Fi(g)o(g)p Fe(\))729 1162 y Fj(\033)776 1174 y Fh(B)856 1162 y Fe(=)23 b(\()p Fi(ff)o Fj(")1098 1174 y Ff(1)1135 1162 y Fj(;)14 b(")1211 1174 y Ff(2)1248 1162 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(")1504 1174 y Ff(3)1541 1162 y Fi(g)o(g)p Fe(\))p 1834 1192 V 1929 1064 a Fj(q)1969 1033 y Ff(2)2025 1064 y Fi(\000)k Fe(1)p 2241 1192 V 135 w(\()p Fj(q)j Fi(\000)d Fe(1\))2532 1033 y Ff(2)p 2609 1192 V 2653 1064 a Fj(q)j Fi(\000)d Fe(2)p 2875 1192 V 175 w(9)p 3185 1192 V 550 1196 2637 4 v 548 1494 4 299 v 730 1265 a Fj(\030)27 b Fe(=)22 b(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))731 1365 y Fj(\033)778 1377 y Fh(A)855 1365 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1092 1377 y Ff(1)1129 1365 y Fi(g)14 b Fj(;)g Fi(f)o Fj(\017)1297 1377 y Ff(2)1334 1365 y Fi(g)f Fj(;)h Fi(f)p Fj(\017)1502 1377 y Ff(3)1539 1365 y Fi(g)o(g)p Fe(\))722 1465 y Fj(\033)769 1477 y Fh(B)849 1465 y Fe(=)23 b(\()p Fi(ff)o Fj(")1091 1477 y Ff(1)1128 1465 y Fi(g)14 b Fj(;)g Fi(f)o Fj(")1301 1477 y Ff(2)1338 1465 y Fi(g)f Fj(;)h Fi(f)p Fj(")1511 1477 y Ff(3)1548 1465 y Fi(g)o(g)p Fe(\))p 1834 1494 V 2018 1366 a(1)p 2241 1494 V 225 w(\()p Fj(q)21 b Fi(\000)d Fe(1\))2532 1336 y Ff(3)p 2609 1494 V 2723 1366 a Fe(1)p 2875 1494 V 246 w(6)p 3185 1494 V 550 1498 2637 4 v 548 1797 4 299 v 681 1567 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)e Fj(;)i Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))689 1667 y Fj(\033)736 1679 y Fh(A)814 1667 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1051 1679 y Ff(1)1088 1667 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1256 1679 y Ff(2)1293 1667 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(\017)1543 1679 y Ff(3)1580 1667 y Fi(gg)o Fe(\))680 1767 y Fj(\033)727 1779 y Fh(B)808 1767 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1050 1779 y Ff(1)1087 1767 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1260 1779 y Ff(2)1297 1767 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(")1552 1779 y Ff(3)1589 1767 y Fi(gg)o Fe(\))p 1834 1797 V 1929 1668 a Fj(q)1969 1638 y Ff(2)2025 1668 y Fi(\000)k Fe(1)p 2241 1797 V 135 w(\()p Fj(q)j Fi(\000)d Fe(1\))2532 1638 y Ff(3)p 2609 1797 V 2723 1668 a Fe(1)p 2875 1797 V 225 w(18)p 3185 1797 V 550 1800 2637 4 v 548 2099 4 299 v 681 1870 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)f Fj(;)h Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))689 1969 y Fj(\033)736 1981 y Fh(A)814 1969 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1051 1981 y Ff(1)1088 1969 y Fi(g)o(g)14 b Fj(;)g Fi(f)o(f)p Fj(\017)1339 1981 y Ff(2)1376 1969 y Fi(g)f Fj(;)h Fi(f)o Fj(\017)1543 1981 y Ff(3)1580 1969 y Fi(gg)o Fe(\))680 2069 y Fj(\033)727 2081 y Fh(B)808 2069 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1050 2081 y Ff(1)1087 2069 y Fi(g)o(g)14 b Fj(;)g Fi(f)o(f)p Fj(")1343 2081 y Ff(2)1380 2069 y Fi(g)f Fj(;)h Fi(f)o Fj(")1552 2081 y Ff(3)1589 2069 y Fi(gg)o Fe(\))p 1834 2099 V 1897 1970 a(\()p Fj(q)22 b Fi(\000)c Fe(1\))2145 1940 y Ff(2)p 2241 2099 V 2285 1970 a Fe(\()p Fj(q)j Fi(\000)d Fe(1\))2532 1940 y Ff(3)p 2609 2099 V 2723 1970 a Fe(1)p 2875 2099 V 225 w(18)p 3185 2099 V 550 2102 2637 4 v 548 2401 4 299 v 633 2172 a Fj(\030)27 b Fe(=)c(\()p Fi(f)o Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)f Fj(;)h Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)f Fj(;)h Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))648 2271 y Fj(\033)695 2283 y Fh(A)772 2271 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1009 2283 y Ff(1)1046 2271 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(\017)1297 2283 y Ff(2)1334 2271 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(\017)1585 2283 y Ff(3)1622 2271 y Fi(g)o(g)p Fe(\))639 2371 y Fj(\033)686 2383 y Fh(B)766 2371 y Fe(=)23 b(\()p Fi(ff)o Fj(")1008 2383 y Ff(1)1045 2371 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(")1301 2383 y Ff(2)1338 2371 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(")1594 2383 y Ff(3)1631 2371 y Fi(g)o(g)p Fe(\))p 1834 2401 V 1877 2272 a Fj(q)s Fe(\()p Fj(q)22 b Fi(\000)c Fe(1\))2165 2242 y Ff(2)p 2241 2401 V 2285 2272 a Fe(\()p Fj(q)j Fi(\000)d Fe(1\))2532 2242 y Ff(3)p 2609 2401 V 2723 2272 a Fe(1)p 2875 2401 V 225 w(36)p 3185 2401 V 550 2404 2637 4 v 224 2621 a FK(Adding)29 b(up)g(all)g(the)i(con)m (tributions)e(w)m(e)i(get)671 2949 y([)p FD(R)766 2912 y FJ(red)765 2972 y Fx(\024)806 2981 y FG(1)868 2949 y FK(])26 b(=)f(18)p FD(q)1149 2912 y FJ(10)1244 2949 y FK(+)20 b(18)p FD(q)1469 2912 y FJ(9)1530 2949 y FC(\000)g FK(9)p FD(q)1710 2912 y FJ(8)1770 2949 y FC(\000)g FK(9)p FD(q)1950 2912 y FJ(7)2009 2949 y FK(+)g(6)p FD(q)2189 2912 y FJ(6)2249 2949 y FK(+)g(21)p FD(q)2474 2912 y FJ(5)2535 2949 y FK(+)g(3)p FD(q)2715 2912 y FJ(4)2774 2949 y FC(\000)g FK(12)p FD(q)2999 2912 y FJ(3)3040 2949 y FD(:)125 3276 y FK(Moreo)m(v)m(er,)32 b(the)f(total)g(set)g(of)f (represen)m(tations)h(has)f(motiv)m(e)881 3603 y([)p FD(R)975 3617 y Fx(\024)1016 3626 y FG(1)1055 3603 y FK(])25 b(=)g FD(q)1245 3565 y FJ(12)1340 3603 y FK(+)20 b(4)p FD(q)1520 3565 y FJ(11)1615 3603 y FK(+)g(8)p FD(q)1795 3565 y FJ(10)1890 3603 y FK(+)g(10)p FD(q)2115 3565 y FJ(9)2176 3603 y FK(+)g(8)p FD(q)2356 3565 y FJ(8)2416 3603 y FK(+)f(4)p FD(q)2595 3565 y FJ(7)2655 3603 y FK(+)h FD(q)2790 3565 y FJ(6)2830 3603 y FD(;)125 3929 y FK(and)29 b(therefore,)i(w)m(e)g(get)421 4256 y([)p FD(R)516 4219 y FJ(irr)515 4279 y Fx(\024)556 4288 y FG(1)595 4256 y FK(])25 b(=)g FD(q)785 4219 y FJ(12)880 4256 y FK(+)20 b(4)p FD(q)1060 4219 y FJ(11)1155 4256 y FC(\000)g FK(10)p FD(q)1380 4219 y FJ(10)1476 4256 y FC(\000)g FK(8)p FD(q)1656 4219 y FJ(9)1715 4256 y FK(+)g(17)p FD(q)1940 4219 y FJ(8)2001 4256 y FK(+)g(13)p FD(q)2226 4219 y FJ(7)2286 4256 y FC(\000)g FK(5)p FD(q)2466 4219 y FJ(6)2526 4256 y FC(\000)g FK(21)p FD(q)2751 4219 y FJ(5)2811 4256 y FC(\000)g FK(3)p FD(q)2991 4219 y FJ(4)3051 4256 y FK(+)g(12)p FD(q)3276 4219 y FJ(3)3316 4256 y FD(;)395 4410 y FK([)p FB(M)515 4373 y FJ(irr)515 4433 y Fx(\024)556 4442 y FG(1)595 4410 y FK(])25 b(=)g([)p FD(R)836 4373 y FJ(irr)835 4433 y Fx(\024)876 4442 y FG(1)915 4410 y FK(])p FD(=)p FK([PGL)1201 4424 y FJ(3)1240 4410 y FK(])h(=)f FD(q)1431 4373 y FJ(4)1490 4410 y FK(+)20 b(4)p FD(q)1670 4373 y FJ(3)1730 4410 y FC(\000)g FK(9)p FD(q)1910 4373 y FJ(2)1970 4410 y FC(\000)g FK(3)p FD(q)j FK(+)d(12)p FD(:)125 4681 y SDict begin H.S end 125 4681 a 125 4681 a SDict begin 13 H.A end 125 4681 a 125 4681 a SDict begin [/View [/XYZ H.V]/Dest (theorem.7.1) cvn /DEST pdfmark end 125 4681 a 0 TeXcolorgray FL(Remark)32 b(7.1.)p 0 TeXcolorgray 41 w FK(This)27 b(corrects)j(the)f(form)m(ula)f(in)g (the)h(published)c(v)m(ersion)k(of)g([)2857 4681 y SDict begin H.S end 2857 4681 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 2948 4622 a SDict begin H.R end 2948 4622 a 2948 4681 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 2948 4681 a FK(,)g(Thm.)f(8.3].)42 b(The)125 4788 y(curren)m(t)30 b(arXiv)f(v)m(ersion)h(con)m(tains)h (the)f(corrected)i(form)m(ula,)e(whic)m(h)f(matc)m(hes)i(this)f(one.) 125 4964 y SDict begin H.S end 125 4964 a 125 4964 a SDict begin 13 H.A end 125 4964 a 125 4964 a SDict begin [/View [/XYZ H.V]/Dest (subsubsection.7.2.2) cvn /DEST pdfmark end 125 4964 a 125 x FK(7.2.2.)47 b FD(\024)434 5103 y FJ(2)513 5089 y FK(=)40 b(\(\()p FD(\017)731 5103 y FJ(1)771 5089 y FD(;)15 b(\017)848 5103 y FJ(2)887 5089 y FD(;)g(\017)964 5103 y FJ(3)1004 5089 y FK(\))p FD(;)g FK(\()p FD(")1156 5103 y FJ(1)1197 5089 y FD(;)g(")1279 5103 y FJ(1)1319 5089 y FD(;)g(")1401 5103 y FJ(2)1442 5089 y FK(\)\))p Fp(.)46 b FK(Again,)41 b(in)c(this)h(case)i(the)f(matrix)g FD(A)g FK(has)f(no)h(rep)s(eated)125 5197 y(eigen)m(v)-5 b(alues,)37 b(so)f(the)g(gauge)h(group)e FC(G)1486 5211 y Fx(\034)1565 5197 y FK(is)g(again)h(a)g(torus)g(for)f(all)g FD(\034)44 b FC(2)34 b(T)2735 5211 y Fx(\024)2776 5220 y FG(2)2814 5197 y FK(.)57 b(Nev)m(ertheless,)38 b(no)m(w)125 5305 y FC(M)234 5319 y Fx(\034)306 5305 y FK(ma)m(y)30 b(v)-5 b(ary)29 b(since)g(w)m(e)h(need)f(to)h(tak)m(e)h(in)m(to)e (accoun)m(t)i(the)e(rep)s(eated)h(eigen)m(v)-5 b(alues)29 b(of)h(the)f(matrix)125 5413 y FD(B)5 b FK(.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 28 28 TeXDict begin HPSdict begin 28 27 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.28) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(28)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray 570 186 2597 4 v 568 286 4 100 v 1190 256 a Fj(\034)p 1854 286 V 743 w Fi(M)2069 268 y Fh(\034)p 2221 286 V 2362 256 a Fi(G)2411 268 y Fh(\034)p 2589 286 V 2643 256 a Fg(M)2730 226 y Ff(irr)2730 276 y Fh(\034)p 2855 286 V 2899 256 a Fj(m)2972 268 y Fh(\024)3014 256 y Fe(\()p Fj(\034)9 b Fe(\))p 3165 286 V 570 289 2597 4 v 568 588 4 299 v 860 359 a Fj(\030)28 b Fe(=)22 b(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(2)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))799 458 y Fj(\033)846 470 y Fh(A)924 458 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1161 470 y Ff(1)1198 458 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1366 470 y Ff(2)1403 458 y Fj(;)g(\017)1474 470 y Ff(3)1510 458 y Fi(gg)o Fe(\))790 558 y Fj(\033)837 570 y Fh(B)918 558 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1160 570 y Ff(1)1197 558 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1370 570 y Ff(1)1407 558 y Fj(;)g(")1483 570 y Ff(2)1519 558 y Fi(gg)o Fe(\))p 1854 588 V 2018 459 a(1)p 2221 588 V 205 w(\()p Fj(q)21 b Fi(\000)d Fe(1\))2512 429 y Ff(2)p 2589 588 V 2632 459 a Fj(q)k Fi(\000)c Fe(2)p 2855 588 V 175 w(3)p 3165 588 V 570 591 2597 4 v 568 890 4 299 v 812 661 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(2)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))758 760 y Fj(\033)805 772 y Fh(A)882 760 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1119 772 y Ff(1)1156 760 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(\017)1407 772 y Ff(2)1444 760 y Fj(;)g(\017)1515 772 y Ff(3)1552 760 y Fi(g)o(g)p Fe(\))749 860 y Fj(\033)796 872 y Fh(B)876 860 y Fe(=)23 b(\()p Fi(ff)o Fj(")1118 872 y Ff(1)1155 860 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(")1411 872 y Ff(1)1448 860 y Fj(;)g(")1524 872 y Ff(2)1561 860 y Fi(g)o(g)p Fe(\))p 1854 890 V 1948 761 a Fj(q)21 b Fi(\000)d Fe(1)p 2221 890 V 134 w(\()p Fj(q)j Fi(\000)d Fe(1\))2512 731 y Ff(2)p 2589 890 V 2632 761 a Fj(q)k Fi(\000)c Fe(2)p 2855 890 V 175 w(3)p 3165 890 V 570 893 2597 4 v 568 1192 4 299 v 812 963 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(2)p Fj(;)14 b Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))758 1063 y Fj(\033)805 1075 y Fh(A)882 1063 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1119 1075 y Ff(1)1156 1063 y Fj(;)14 b(\017)1227 1075 y Ff(2)1264 1063 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(\017)1515 1075 y Ff(3)1552 1063 y Fi(g)o(g)p Fe(\))749 1162 y Fj(\033)796 1174 y Fh(B)876 1162 y Fe(=)23 b(\()p Fi(ff)o Fj(")1118 1174 y Ff(1)1155 1162 y Fj(;)14 b(")1231 1174 y Ff(2)1268 1162 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(")1524 1174 y Ff(1)1561 1162 y Fi(g)o(g)p Fe(\))p 1854 1192 V 1948 1064 a Fj(q)21 b Fi(\000)d Fe(1)p 2221 1192 V 134 w(\()p Fj(q)j Fi(\000)d Fe(1\))2512 1033 y Ff(2)p 2589 1192 V 2632 1064 a Fj(q)k Fi(\000)c Fe(2)p 2855 1192 V 175 w(3)p 3165 1192 V 570 1196 2597 4 v 568 1494 4 299 v 750 1265 a Fj(\030)27 b Fe(=)22 b(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))751 1365 y Fj(\033)798 1377 y Fh(A)876 1365 y Fe(=)22 b(\()p Fi(ff)o Fj(\017)1112 1377 y Ff(1)1149 1365 y Fi(g)14 b Fj(;)g Fi(f)o Fj(\017)1317 1377 y Ff(2)1354 1365 y Fi(g)f Fj(;)h Fi(f)p Fj(\017)1522 1377 y Ff(3)1559 1365 y Fi(g)o(g)p Fe(\))742 1465 y Fj(\033)789 1477 y Fh(B)870 1465 y Fe(=)22 b(\()p Fi(ff)o Fj(")1111 1477 y Ff(1)1148 1465 y Fi(g)14 b Fj(;)g Fi(f)o Fj(")1321 1477 y Ff(1)1358 1465 y Fi(g)f Fj(;)h Fi(f)p Fj(")1531 1477 y Ff(2)1568 1465 y Fi(g)o(g)p Fe(\))p 1854 1494 V 2018 1366 a(1)p 2221 1494 V 205 w(\()p Fj(q)21 b Fi(\000)d Fe(1\))2512 1336 y Ff(3)p 2589 1494 V 2703 1366 a Fe(1)p 2855 1494 V 246 w(3)p 3165 1494 V 570 1498 2597 4 v 568 1797 4 299 v 701 1567 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))709 1667 y Fj(\033)756 1679 y Fh(A)834 1667 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1071 1679 y Ff(1)1108 1667 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1276 1679 y Ff(2)1313 1667 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(\017)1563 1679 y Ff(3)1600 1667 y Fi(gg)o Fe(\))700 1767 y Fj(\033)747 1779 y Fh(B)828 1767 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1070 1779 y Ff(1)1107 1767 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1280 1779 y Ff(1)1317 1767 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(")1572 1779 y Ff(2)1609 1767 y Fi(gg)o Fe(\))p 1854 1797 V 1929 1668 a Fj(q)1969 1638 y Ff(2)2025 1668 y Fi(\000)k Fe(1)p 2221 1797 V 115 w(\()p Fj(q)j Fi(\000)d Fe(1\))2512 1638 y Ff(3)p 2589 1797 V 2703 1668 a Fe(1)p 2855 1797 V 246 w(3)p 3165 1797 V 570 1800 2597 4 v 568 2099 4 299 v 701 1870 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))709 1969 y Fj(\033)756 1981 y Fh(A)834 1969 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1071 1981 y Ff(1)1108 1969 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1276 1981 y Ff(2)1313 1969 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(\017)1563 1981 y Ff(3)1600 1969 y Fi(gg)o Fe(\))700 2069 y Fj(\033)747 2081 y Fh(B)828 2069 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1070 2081 y Ff(1)1107 2069 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1280 2081 y Ff(2)1317 2069 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(")1572 2081 y Ff(1)1609 2069 y Fi(gg)o Fe(\))p 1854 2099 V 1948 1970 a Fj(q)21 b Fi(\000)d Fe(1)p 2221 2099 V 134 w(\()p Fj(q)j Fi(\000)d Fe(1\))2512 1940 y Ff(3)p 2589 2099 V 2703 1970 a Fe(1)p 2855 2099 V 246 w(6)p 3165 2099 V 570 2102 2597 4 v 568 2401 4 299 v 701 2172 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)f Fj(;)h Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))709 2271 y Fj(\033)756 2283 y Fh(A)834 2271 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1071 2283 y Ff(1)1108 2271 y Fi(g)o(g)14 b Fj(;)g Fi(f)o(f)p Fj(\017)1359 2283 y Ff(2)1396 2271 y Fi(g)f Fj(;)h Fi(f)o Fj(\017)1563 2283 y Ff(3)1600 2271 y Fi(gg)o Fe(\))700 2371 y Fj(\033)747 2383 y Fh(B)828 2371 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1070 2383 y Ff(2)1107 2371 y Fi(g)o(g)14 b Fj(;)g Fi(f)o(f)p Fj(")1363 2383 y Ff(1)1400 2371 y Fi(g)f Fj(;)h Fi(f)o Fj(")1572 2383 y Ff(1)1609 2371 y Fi(gg)o Fe(\))p 1854 2401 V 1897 2272 a(\()p Fj(q)22 b Fi(\000)c Fe(1\))2145 2242 y Ff(2)p 2221 2401 V 2265 2272 a Fe(\()p Fj(q)j Fi(\000)d Fe(1\))2512 2242 y Ff(3)p 2589 2401 V 2703 2272 a Fe(1)p 2855 2401 V 246 w(3)p 3165 2401 V 570 2404 2597 4 v 568 2703 4 299 v 653 2474 a Fj(\030)27 b Fe(=)c(\()p Fi(f)o Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)f Fj(;)h Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)f Fj(;)h Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))668 2574 y Fj(\033)715 2586 y Fh(A)792 2574 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1029 2586 y Ff(1)1066 2574 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(\017)1317 2586 y Ff(2)1354 2574 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(\017)1605 2586 y Ff(3)1642 2574 y Fi(g)o(g)p Fe(\))659 2673 y Fj(\033)706 2685 y Fh(B)786 2673 y Fe(=)23 b(\()p Fi(ff)o Fj(")1028 2685 y Ff(1)1065 2673 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(")1321 2685 y Ff(2)1358 2673 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(")1614 2685 y Ff(1)1651 2673 y Fi(g)o(g)p Fe(\))p 1854 2703 V 1897 2575 a(\()p Fj(q)22 b Fi(\000)c Fe(1\))2145 2544 y Ff(2)p 2221 2703 V 2265 2575 a Fe(\()p Fj(q)j Fi(\000)d Fe(1\))2512 2544 y Ff(3)p 2589 2703 V 2703 2575 a Fe(1)p 2855 2703 V 246 w(6)p 3165 2703 V 570 2707 2597 4 v 224 2917 a FK(Adding)29 b(up)g(all)g(the)i(con)m(tributions)e(w)m(e)i(get) 900 3235 y([)p FD(R)995 3198 y FJ(red)994 3258 y Fx(\024)1035 3267 y FG(2)1097 3235 y FK(])25 b(=)g(6)p FD(q)1332 3198 y FJ(9)1392 3235 y FK(+)20 b(3)p FD(q)1572 3198 y FJ(8)1632 3235 y FK(+)g(3)p FD(q)1812 3198 y FJ(7)1872 3235 y FK(+)g(3)p FD(q)2052 3198 y FJ(6)2112 3235 y FK(+)g(3)p FD(q)2292 3198 y FJ(5)2352 3235 y FK(+)g(3)p FD(q)2532 3198 y FJ(4)2591 3235 y FC(\000)g FK(3)p FD(q)2771 3198 y FJ(3)2811 3235 y FD(:)125 3551 y FK(Moreo)m(v)m(er,)32 b(the)f(total)g(set)g(of)f (represen)m(tations)h(has)f(motiv)m(e)1059 3868 y([)p FD(R)1153 3882 y Fx(\024)1194 3891 y FG(2)1233 3868 y FK(])25 b(=)g FD(q)1423 3830 y FJ(10)1518 3868 y FK(+)20 b(3)p FD(q)1698 3830 y FJ(9)1758 3868 y FK(+)g(5)p FD(q)1938 3830 y FJ(8)1998 3868 y FK(+)g(5)p FD(q)2178 3830 y FJ(7)2238 3868 y FK(+)f(3)p FD(q)2417 3830 y FJ(6)2477 3868 y FK(+)h FD(q)2612 3830 y FJ(5)2652 3868 y FD(;)125 4184 y FK(and,)30 b(therefore,)h(w)m(e)f(get)930 4500 y([)p FD(R)1025 4462 y FJ(irr)1024 4522 y Fx(\024)1065 4531 y FG(2)1103 4500 y FK(])c(=)f FD(q)1294 4462 y FJ(10)1389 4500 y FC(\000)19 b FK(3)p FD(q)1568 4462 y FJ(9)1628 4500 y FK(+)h(2)p FD(q)1808 4462 y FJ(8)1868 4500 y FK(+)g(2)p FD(q)2048 4462 y FJ(7)2108 4500 y FC(\000)g FK(2)p FD(q)2288 4462 y FJ(5)2348 4500 y FC(\000)g FK(3)p FD(q)2528 4462 y FJ(4)2588 4500 y FK(+)g(3)p FD(q)2768 4462 y FJ(3)2807 4500 y FD(;)903 4654 y FK([)p FB(M)1023 4616 y FJ(irr)1023 4676 y Fx(\024)1064 4685 y FG(2)1103 4654 y FK(])26 b(=)f([)p FD(R)1345 4616 y FJ(irr)1344 4676 y Fx(\024)1385 4685 y FG(2)1424 4654 y FK(])p FD(=)p FK([PGL)1710 4668 y FJ(3)1749 4654 y FK(])g(=)g FD(q)1939 4616 y FJ(2)1999 4654 y FC(\000)20 b FK(3)p FD(q)j FK(+)d(3)p FD(:)125 5085 y SDict begin H.S end 125 5085 a 125 5085 a SDict begin 13 H.A end 125 5085 a 125 5085 a SDict begin [/View [/XYZ H.V]/Dest (subsubsection.7.2.3) cvn /DEST pdfmark end 125 5085 a 112 x FK(7.2.3.)47 b FD(\024)434 5211 y FJ(3)516 5197 y FK(=)c(\(\()p FD(\017)737 5211 y FJ(1)777 5197 y FD(;)15 b(\017)854 5211 y FJ(1)894 5197 y FD(;)g(\017)971 5211 y FJ(2)1010 5197 y FK(\))p FD(;)g FK(\()p FD(")1162 5211 y FJ(1)1203 5197 y FD(;)g(")1285 5211 y FJ(2)1325 5197 y FD(;)g(")1407 5211 y FJ(3)1448 5197 y FK(\)\))p Fp(.)46 b FK(In)40 b(this)f(case,)45 b(there)c(are)g(rep)s(eated)g (eigen)m(v)-5 b(alues)41 b(in)e FD(A)p FK(.)125 5305 y(This)e(implies)g(that)j(no)m(w)g(the)f(gauge)i(group)e(will)e(con)m (tain)i(lines)f(accoun)m(ting)i(for)g(the)f(rep)s(eated)125 5413 y(eigen)m(v)-5 b(alues)30 b(in)f FD(A)p FK(.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 29 29 TeXDict begin HPSdict begin 29 28 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.29) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(29)p 0 TeXcolorgray 0 TeXcolorgray 0 TeXcolorgray 530 186 2677 4 v 528 286 4 100 v 1150 256 a Fj(\034)p 1814 286 V 763 w Fi(M)2049 268 y Fh(\034)p 2221 286 V 2382 256 a Fi(G)2431 268 y Fh(\034)p 2629 286 V 2683 256 a Fg(M)2770 226 y Ff(irr)2770 276 y Fh(\034)p 2895 286 V 2939 256 a Fj(m)3012 268 y Fh(\024)3054 256 y Fe(\()p Fj(\034)9 b Fe(\))p 3205 286 V 530 289 2677 4 v 528 588 4 299 v 820 359 a Fj(\030)28 b Fe(=)22 b(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(2)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))759 458 y Fj(\033)806 470 y Fh(A)884 458 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1121 470 y Ff(1)1158 458 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1326 470 y Ff(1)1362 458 y Fj(;)g(\017)1433 470 y Ff(2)1470 458 y Fi(gg)o Fe(\))750 558 y Fj(\033)797 570 y Fh(B)878 558 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1120 570 y Ff(1)1157 558 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1330 570 y Ff(2)1367 558 y Fj(;)g(")1443 570 y Ff(3)1479 558 y Fi(gg)o Fe(\))p 1814 588 V 1998 459 a(1)p 2221 588 V 245 w(\()p Fj(q)21 b Fi(\000)d Fe(1\))2532 429 y Ff(2)p 2629 588 V 2673 459 a Fj(q)j Fi(\000)d Fe(2)p 2895 588 V 175 w(3)p 3205 588 V 530 591 2677 4 v 528 890 4 299 v 772 661 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(2)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))718 760 y Fj(\033)765 772 y Fh(A)842 760 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1079 772 y Ff(1)1116 760 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(\017)1367 772 y Ff(1)1404 760 y Fj(;)g(\017)1475 772 y Ff(2)1512 760 y Fi(g)o(g)p Fe(\))709 860 y Fj(\033)756 872 y Fh(B)836 860 y Fe(=)23 b(\()p Fi(ff)o Fj(")1078 872 y Ff(1)1115 860 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(")1371 872 y Ff(2)1408 860 y Fj(;)g(")1484 872 y Ff(3)1521 860 y Fi(g)o(g)p Fe(\))p 1814 890 V 1910 761 a Fj(q)1950 731 y Ff(2)2005 761 y Fi(\000)19 b Fj(q)p 2221 890 V 139 w(q)s Fe(\()p Fj(q)i Fi(\000)d Fe(1\))2552 731 y Ff(2)p 2629 890 V 2673 761 a Fj(q)j Fi(\000)d Fe(2)p 2895 890 V 175 w(3)p 3205 890 V 530 893 2677 4 v 528 1192 4 299 v 772 963 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(2)p Fj(;)14 b Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))718 1063 y Fj(\033)765 1075 y Fh(A)842 1063 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1079 1075 y Ff(1)1116 1063 y Fj(;)14 b(\017)1187 1075 y Ff(2)1224 1063 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(\017)1475 1075 y Ff(1)1512 1063 y Fi(g)o(g)p Fe(\))709 1162 y Fj(\033)756 1174 y Fh(B)836 1162 y Fe(=)23 b(\()p Fi(ff)o Fj(")1078 1174 y Ff(1)1115 1162 y Fj(;)14 b(")1191 1174 y Ff(2)1228 1162 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(")1484 1174 y Ff(3)1521 1162 y Fi(g)o(g)p Fe(\))p 1814 1192 V 1910 1064 a Fj(q)1950 1033 y Ff(2)2005 1064 y Fi(\000)19 b Fj(q)p 2221 1192 V 139 w(q)s Fe(\()p Fj(q)i Fi(\000)d Fe(1\))2552 1033 y Ff(2)p 2629 1192 V 2673 1064 a Fj(q)j Fi(\000)d Fe(2)p 2895 1192 V 175 w(3)p 3205 1192 V 530 1196 2677 4 v 528 1494 4 299 v 710 1265 a Fj(\030)27 b Fe(=)22 b(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))711 1365 y Fj(\033)758 1377 y Fh(A)835 1365 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)1072 1377 y Ff(1)1109 1365 y Fi(g)14 b Fj(;)g Fi(f)o Fj(\017)1277 1377 y Ff(1)1314 1365 y Fi(g)f Fj(;)h Fi(f)p Fj(\017)1482 1377 y Ff(2)1519 1365 y Fi(g)o(g)p Fe(\))702 1465 y Fj(\033)749 1477 y Fh(B)829 1465 y Fe(=)23 b(\()p Fi(ff)o Fj(")1071 1477 y Ff(1)1108 1465 y Fi(g)14 b Fj(;)g Fi(f)o Fj(")1281 1477 y Ff(2)1318 1465 y Fi(g)f Fj(;)h Fi(f)p Fj(")1491 1477 y Ff(3)1528 1465 y Fi(g)o(g)p Fe(\))p 1814 1494 V 1998 1366 a(1)p 2221 1494 V 245 w(\()p Fj(q)21 b Fi(\000)d Fe(1\))2532 1336 y Ff(3)p 2629 1494 V 2743 1366 a Fe(1)p 2895 1494 V 246 w(3)p 3205 1494 V 530 1498 2677 4 v 528 1797 4 299 v 661 1567 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)e Fj(;)i Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))669 1667 y Fj(\033)716 1679 y Fh(A)794 1667 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1031 1679 y Ff(1)1068 1667 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1236 1679 y Ff(1)1273 1667 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(\017)1523 1679 y Ff(2)1560 1667 y Fi(gg)o Fe(\))660 1767 y Fj(\033)707 1779 y Fh(B)788 1767 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1030 1779 y Ff(1)1067 1767 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1240 1779 y Ff(2)1277 1767 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(")1532 1779 y Ff(3)1569 1767 y Fi(gg)o Fe(\))p 1814 1797 V 1909 1668 a Fj(q)1949 1638 y Ff(2)2005 1668 y Fi(\000)k Fe(1)p 2221 1797 V 155 w(\()p Fj(q)j Fi(\000)d Fe(1\))2532 1638 y Ff(3)p 2629 1797 V 2743 1668 a Fe(1)p 2895 1797 V 246 w(3)p 3205 1797 V 530 1800 2677 4 v 528 2099 4 299 v 661 1870 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)e Fj(;)i Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))669 1969 y Fj(\033)716 1981 y Fh(A)794 1969 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1031 1981 y Ff(1)1068 1969 y Fi(g)13 b Fj(;)h Fi(f)p Fj(\017)1236 1981 y Ff(2)1273 1969 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(\017)1523 1981 y Ff(1)1560 1969 y Fi(gg)o Fe(\))660 2069 y Fj(\033)707 2081 y Fh(B)788 2069 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1030 2081 y Ff(1)1067 2069 y Fi(g)13 b Fj(;)h Fi(f)p Fj(")1240 2081 y Ff(2)1277 2069 y Fi(g)o(g)f Fj(;)h Fi(ff)o Fj(")1532 2081 y Ff(3)1569 2069 y Fi(gg)o Fe(\))p 1814 2099 V 1910 1970 a Fj(q)1950 1940 y Ff(2)2005 1970 y Fi(\000)19 b Fj(q)p 2221 2099 V 139 w(q)s Fe(\()p Fj(q)i Fi(\000)d Fe(1\))2552 1940 y Ff(3)p 2629 2099 V 2743 1970 a Fe(1)p 2895 2099 V 246 w(6)p 3205 2099 V 530 2102 2677 4 v 528 2401 4 299 v 661 2172 a Fj(\030)27 b Fe(=)c(\()p Fi(f)p Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)f Fj(;)h Fi(f)o Fe(\(1)p Fj(;)g Fe(1\))p Fj(;)g Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)n Fe(\))669 2271 y Fj(\033)716 2283 y Fh(A)794 2271 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(\017)1031 2283 y Ff(2)1068 2271 y Fi(g)o(g)14 b Fj(;)g Fi(f)o(f)p Fj(\017)1319 2283 y Ff(1)1356 2271 y Fi(g)f Fj(;)h Fi(f)o Fj(\017)1523 2283 y Ff(1)1560 2271 y Fi(gg)o Fe(\))660 2371 y Fj(\033)707 2383 y Fh(B)788 2371 y Fe(=)23 b(\()p Fi(f)o(f)p Fj(")1030 2383 y Ff(1)1067 2371 y Fi(g)o(g)14 b Fj(;)g Fi(f)o(f)p Fj(")1323 2383 y Ff(2)1360 2371 y Fi(g)f Fj(;)h Fi(f)o Fj(")1532 2383 y Ff(3)1569 2371 y Fi(gg)o Fe(\))p 1814 2401 V 1877 2272 a(\()p Fj(q)22 b Fi(\000)c Fe(1\))2125 2242 y Ff(2)p 2221 2401 V 2285 2272 a Fe(\()p Fj(q)j Fi(\000)d Fe(1\))2532 2242 y Ff(3)p 2629 2401 V 2743 2272 a Fe(1)p 2895 2401 V 246 w(3)p 3205 2401 V 530 2404 2677 4 v 528 2703 4 299 v 613 2474 a Fj(\030)27 b Fe(=)c(\()p Fi(f)o Fe(\(1)p Fj(;)14 b Fe(1\))p Fi(g)f Fj(;)h Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)e Fj(;)i Fi(f)p Fe(\(1)p Fj(;)g Fe(1\))p Fi(g)o Fe(\))628 2574 y Fj(\033)675 2586 y Fh(A)752 2574 y Fe(=)23 b(\()p Fi(ff)o Fj(\017)989 2586 y Ff(1)1026 2574 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(\017)1277 2586 y Ff(2)1314 2574 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(\017)1565 2586 y Ff(1)1602 2574 y Fi(g)o(g)p Fe(\))619 2673 y Fj(\033)666 2685 y Fh(B)746 2673 y Fe(=)23 b(\()p Fi(ff)o Fj(")988 2685 y Ff(1)1025 2673 y Fi(gg)13 b Fj(;)h Fi(ff)o Fj(")1281 2685 y Ff(2)1318 2673 y Fi(gg)f Fj(;)h Fi(f)o(f)p Fj(")1574 2685 y Ff(3)1611 2673 y Fi(g)o(g)p Fe(\))p 1814 2703 V 1857 2575 a Fj(q)s Fe(\()p Fj(q)22 b Fi(\000)c Fe(1\))2145 2544 y Ff(2)p 2221 2703 V 2265 2575 a Fj(q)s Fe(\()p Fj(q)j Fi(\000)d Fe(1\))2552 2544 y Ff(3)p 2629 2703 V 2743 2575 a Fe(1)p 2895 2703 V 246 w(6)p 3205 2703 V 530 2707 2677 4 v 224 2915 a FK(Adding)29 b(up)g(all)g(the)i(con)m (tributions)e(w)m(e)i(get)900 3228 y([)p FD(R)995 3190 y FJ(red)994 3250 y Fx(\024)1035 3259 y FG(3)1097 3228 y FK(])25 b(=)g(6)p FD(q)1332 3190 y FJ(9)1392 3228 y FK(+)20 b(3)p FD(q)1572 3190 y FJ(8)1632 3228 y FK(+)g(3)p FD(q)1812 3190 y FJ(7)1872 3228 y FK(+)g(3)p FD(q)2052 3190 y FJ(6)2112 3228 y FK(+)g(3)p FD(q)2292 3190 y FJ(5)2352 3228 y FK(+)g(3)p FD(q)2532 3190 y FJ(4)2591 3228 y FC(\000)g FK(3)p FD(q)2771 3190 y FJ(3)2811 3228 y FD(:)125 3539 y FK(Moreo)m(v)m(er,)32 b(the)f(total)g(set)g(of)f(represen)m(tations)h (has)f(motiv)m(e)1059 3849 y([)p FD(R)1153 3863 y Fx(\024)1194 3872 y FG(3)1233 3849 y FK(])25 b(=)g FD(q)1423 3812 y FJ(10)1518 3849 y FK(+)20 b(3)p FD(q)1698 3812 y FJ(9)1758 3849 y FK(+)g(5)p FD(q)1938 3812 y FJ(8)1998 3849 y FK(+)g(5)p FD(q)2178 3812 y FJ(7)2238 3849 y FK(+)f(3)p FD(q)2417 3812 y FJ(6)2477 3849 y FK(+)h FD(q)2612 3812 y FJ(5)2652 3849 y FD(;)125 4160 y FK(and,)30 b(therefore,)h(w)m(e)f(get)930 4472 y([)p FD(R)1025 4434 y FJ(irr)1024 4494 y Fx(\024)1065 4503 y FG(3)1103 4472 y FK(])c(=)f FD(q)1294 4434 y FJ(10)1389 4472 y FC(\000)19 b FK(3)p FD(q)1568 4434 y FJ(9)1628 4472 y FK(+)h(2)p FD(q)1808 4434 y FJ(8)1868 4472 y FK(+)g(2)p FD(q)2048 4434 y FJ(7)2108 4472 y FC(\000)g FK(2)p FD(q)2288 4434 y FJ(5)2348 4472 y FC(\000)g FK(3)p FD(q)2528 4434 y FJ(4)2588 4472 y FK(+)g(3)p FD(q)2768 4434 y FJ(3)2807 4472 y FD(;)903 4625 y FK([)p FB(M)1023 4588 y FJ(irr)1023 4648 y Fx(\024)1064 4657 y FG(3)1103 4625 y FK(])26 b(=)f([)p FD(R)1345 4588 y FJ(irr)1344 4648 y Fx(\024)1385 4657 y FG(3)1424 4625 y FK(])p FD(=)p FK([PGL)1710 4639 y FJ(3)1749 4625 y FK(])g(=)g FD(q)1939 4588 y FJ(2)1999 4625 y FC(\000)20 b FK(3)p FD(q)j FK(+)d(3)p FD(:)125 4936 y FK(Observ)m(e)31 b(that)h(this)f(result)f(agrees)j(with)d(the)i (one)g(of)g(Section)2339 4936 y SDict begin H.S end 2339 4936 a 0 TeXcolorgray FK(7.2.2)p 0 TeXcolorgray 2526 4878 a SDict begin H.R end 2526 4878 a 2526 4936 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsubsection.7.2.2) cvn H.B /ANN pdfmark end 2526 4936 a FK(.)44 b(This)30 b(is)h(not)h(a)g(coincidence,)125 5044 y(since)26 b(the)h(role)g(of)g FD(A)g FK(and)g FD(B)k FK(are)d(in)m(terc)m(hangeable)f(\()p FD(n)g FK(and)g FD(m)g FK(pla)m(y)f(no)h(role)g(in)f(the)h(computation\))125 5152 y(so)j(b)s(oth)g(cases)h(are)g(computing)e(the)i(same)g(comp)s (onen)m(t.)224 5296 y(In)39 b(order)f(to)i(put)f(all)f(the)h (computations)g(together,)k(let)d FD(\031)2352 5310 y FJ(0)2431 5296 y FK(=)2541 5222 y Ft(\010)2595 5296 y FK(1)2640 5263 y FJ(3)2679 5222 y Ft(\011)2772 5296 y FK(b)s(e)e(the)i(partition)d(in)m(to)125 5413 y(three)25 b(di\013eren)m(t)g(eigen)m(v)-5 b(alues)26 b(and)e FD(\031)1395 5427 y FJ(1)1460 5413 y FK(=)1556 5339 y Ft(\010)1609 5413 y FK(1)1654 5380 y FJ(1)1694 5413 y FD(;)15 b FK(2)1779 5380 y FJ(1)1819 5339 y Ft(\011)1898 5413 y FK(b)s(e)24 b(the)i(partition)e(with)g(t)m(w)m(o)j(equal)e(eigen)m(v)-5 b(alues.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 30 30 TeXDict begin HPSdict begin 30 29 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.30) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(30)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 125 266 a FK(Then,)29 b(w)m(e)i(ha)m(v)m(e)h(that)578 418 y([)p FB(M)698 381 y FJ(irr)698 441 y(3)778 418 y FK(])25 b(=)g FC(j)p FD(M)1047 374 y Fx(\031)1088 383 y FG(0)1122 374 y Fx(;\031)1183 383 y FG(0)1037 445 y Fx(n;m;)p FJ(3)1221 418 y FC(j)p FK([)p FB(M)1366 381 y FJ(irr)1366 441 y Fx(\024)1407 450 y FG(1)1447 418 y FK(])20 b(+)g FC(j)p FD(M)1706 374 y Fx(\031)1747 383 y FG(0)1781 374 y Fx(;\031)1842 383 y FG(1)1696 445 y Fx(n;m;)p FJ(3)1880 418 y FC(j)p FK([)p FB(M)2025 381 y FJ(irr)2025 441 y Fx(\024)2066 450 y FG(2)2106 418 y FK(])g(+)g FC(j)p FD(M)2365 374 y Fx(\031)2406 383 y FG(1)2441 374 y Fx(;\031)2502 383 y FG(0)2355 445 y Fx(n;m;)p FJ(3)2539 418 y FC(j)p FK([)p FB(M)2684 381 y FJ(irr)2684 441 y Fx(\024)2725 450 y FG(3)2765 418 y FK(])828 625 y(=)978 563 y(3)p 934 604 135 4 v 934 687 a FD(nm)1093 496 y Ft(\022)1160 569 y FD(n)1165 677 y FK(3)1215 496 y Ft(\023)15 b(\022)1364 569 y FD(m)1381 677 y FK(3)1444 496 y Ft(\023)1526 625 y FK(\()p FD(q)1605 587 y FJ(4)1665 625 y FK(+)20 b(4)p FD(q)1845 587 y FJ(3)1904 625 y FC(\000)g FK(9)p FD(q)2084 587 y FJ(2)2144 625 y FC(\000)g FK(3)p FD(q)k FK(+)c(12\))1005 878 y(+)1150 816 y(3)p 1106 857 V 1106 940 a FD(nm)1265 750 y Ft(\022\022)1399 823 y FD(n)1404 931 y FK(3)1454 750 y Ft(\023)15 b(\022)1628 823 y FD(m)1603 931 y FK(1)p FD(;)g FK(1)1734 750 y Ft(\023)1821 878 y FK(+)1912 750 y Ft(\022)2017 823 y FD(n)1979 931 y FK(1)p FD(;)g FK(1)2110 750 y Ft(\023)g(\022)2259 823 y FD(m)2276 931 y FK(3)2339 750 y Ft(\023\023)2488 878 y FK(\()p FD(q)2567 840 y FJ(2)2627 878 y FC(\000)20 b FK(3)p FD(q)j FK(+)d(3\))828 1129 y(=)934 1068 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(n)h FC(\000)f FK(2\)\()p FD(m)h FC(\000)f FK(1\)\()p FD(m)h FC(\000)f FK(2\))p 934 1108 1178 4 v 1477 1192 a(12)2122 1129 y(\()p FD(q)2201 1092 y FJ(4)2261 1129 y FK(+)g(4)p FD(q)2441 1092 y FJ(3)2500 1129 y FC(\000)g FK(9)p FD(q)2680 1092 y FJ(2)2740 1129 y FC(\000)g FK(3)p FD(q)k FK(+)c(12\))1005 1357 y(+)1106 1295 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\)\()p FD(n)h FK(+)f FD(m)g FC(\000)g FK(4\))p 1106 1336 1062 4 v 1614 1419 a(2)2177 1357 y(\()p FD(q)2256 1319 y FJ(2)2316 1357 y FC(\000)g FK(3)p FD(q)k FK(+)19 b(3\))p FD(;)125 1545 y FK(using)28 b(the)j(form)m(ula)f(for)g(the)g(co)s(e\016cien)m (ts)h FC(j)p FD(M)1731 1501 y Fx(\031)1772 1510 y FG(1)1807 1501 y Fx(;\031)1868 1510 y FG(0)1721 1571 y Fx(n;m;)p FJ(3)1906 1545 y FC(j)p FD(;)15 b FC(j)p FD(M)2094 1501 y Fx(\031)2135 1510 y FG(1)2170 1501 y Fx(;\031)2231 1510 y FG(0)2084 1571 y Fx(n;m;)p FJ(3)2269 1545 y FC(j)30 b FK(and)g FC(j)p FD(M)2624 1501 y Fx(\031)2665 1510 y FG(0)2700 1501 y Fx(;\031)2761 1510 y FG(1)2614 1571 y Fx(n;m;)p FJ(3)2798 1545 y FC(j)h FK(in)e(Section)3278 1545 y SDict begin H.S end 3278 1545 a 0 TeXcolorgray FK(6.4)p 0 TeXcolorgray 3394 1486 a SDict begin H.R end 3394 1486 a 3394 1545 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.6.4) cvn H.B /ANN pdfmark end 3394 1545 a FK(.)125 1679 y SDict begin H.S end 125 1679 a 125 1679 a SDict begin 13 H.A end 125 1679 a 125 1679 a SDict begin [/View [/XYZ H.V]/Dest (section.8) cvn /DEST pdfmark end 125 1679 a 902 1785 a FK(8.)46 b FE(Irreducible)32 b(chara)n(cter)g(v)-8 b(ariety)33 b(f)n(or)h FK(SL)2795 1799 y FJ(4)224 1983 y FK(In)i(this)g(section,)j(w)m(e)f(compute)f(the)g(motiv)m(e)h(of)f (the)g(irreducible)d(SL)2686 1997 y FJ(4)2725 1983 y FK(-c)m(haracter)39 b(v)-5 b(ariet)m(y)d(.)61 b(As)125 2090 y(in)32 b(Section)556 2090 y SDict begin H.S end 556 2090 a 0 TeXcolorgray FK(7)p 0 TeXcolorgray 602 2032 a SDict begin H.R end 602 2032 a 602 2090 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.7) cvn H.B /ANN pdfmark end 602 2090 a FK(,)j(with)e(the)h(metho)s(ds)f(dev)m(elop)s(ed)h(in)f (this)g(pap)s(er)g(the)h(computation)g(reduces)g(to)g(an)125 2198 y(en)m(umerativ)m(e)d(problem.)39 b(First,)30 b(w)m(e)h(need)f(to) i(consider)d(the)i(p)s(ossible)d(eigen)m(v)-5 b(alues)30 b(con\014gurations)125 2306 y(that)40 b(ma)m(y)g(con)m(tain)f (irreducible)d(represen)m(tations,)42 b(in)d(the)g(sense)h(that)g(they) f(do)h(not)f(ful\014ll)d(the)125 2414 y(conditions)28 b(of)j(Remark)1005 2414 y SDict begin H.S end 1005 2414 a 0 TeXcolorgray FK(3.5)p 0 TeXcolorgray 1122 2356 a SDict begin H.R end 1122 2356 a 1122 2414 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.5) cvn H.B /ANN pdfmark end 1122 2414 a FK(.)40 b(As)31 b(w)m(e)f(will)e(see,)j(there)g(are) g(11)g(p)s(ossible)d(con\014gurations.)224 2558 y(Among)21 b(these,)i(there)d(is)g(a)g(sp)s(ecial)f(con\014guration,)j(namely)e FD(\024)25 b FK(=)g(\(\()p FD(\017)2589 2572 y FJ(1)2629 2558 y FD(;)15 b(\017)2706 2572 y FJ(1)2746 2558 y FD(;)g(\017)2823 2572 y FJ(2)2863 2558 y FD(;)g(\017)2940 2572 y FJ(2)2979 2558 y FK(\))p FD(;)g FK(\()p FD(")3131 2572 y FJ(1)3172 2558 y FD(;)g(")3254 2572 y FJ(1)3295 2558 y FD(;)g(")3377 2572 y FJ(2)3417 2558 y FD(;)g(")3499 2572 y FJ(2)3539 2558 y FK(\)\).)125 2666 y(This)22 b(con\014guration)i(is)f(the)h(only) g(one)g(that)h(con)m(tains)f(t)m(yp)s(es)h FD(\034)35 b FC(2)25 b(T)2447 2680 y Fx(\024)2515 2666 y FK(with)e(isot)m(ypic)h (comp)s(onen)m(ts)g(of)125 2773 y(dimension)19 b(greater)k(than)e(1)h (and)g(with)e(m)m(ultiplicit)m(y)f(greater)k(than)e(1,)k(namely)-8 b(,)23 b(the)f(t)m(yp)s(e)g FD(\034)35 b FK(=)25 b(\()p FD(\030)t(;)15 b(\033)s FK(\))125 2881 y(with)42 b(shap)s(e)g FD(\030)51 b FK(=)46 b(\()p FC(f)q FK(\(2)p FD(;)15 b FK(2\))p FC(g)s FK(\))43 b(and)g(eigen)m(v)-5 b(alues)43 b FD(\033)1953 2895 y Fx(A)2057 2881 y FK(=)j(\()p FC(f)q(f)p FD(\017)2337 2895 y FJ(1)2377 2881 y FD(;)15 b(\017)2454 2895 y FJ(2)2494 2881 y FC(gg)p FK(\))44 b(and)f FD(\033)2905 2895 y Fx(B)3012 2881 y FK(=)k(\()p FC(ff)q FD(")3298 2895 y FJ(1)3338 2881 y FD(;)15 b(")3420 2895 y FJ(2)3460 2881 y FC(gg)q FK(\).)125 2989 y(Hence,)30 b(this)f(is)f(the)i(only)f (con\014guration)g(for)g(whic)m(h)g(form)m(ula)f(\()2356 2989 y SDict begin H.S end 2356 2989 a 0 TeXcolorgray FK(22)p 0 TeXcolorgray 2448 2931 a SDict begin H.R end 2448 2931 a 2448 2989 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.4.22) cvn H.B /ANN pdfmark end 2448 2989 a FK(\))i(is)e(not)i(v)-5 b(alid)28 b(b)s(ecause)i(there)f(is)125 3098 y(an)34 b(action)i(of)f Fz(Z)706 3112 y FJ(2)776 3098 y FK(on)f FB(M)1001 3065 y FJ(irr)1001 3120 y Fx(\034)1081 3098 y FK(.)54 b(F)-8 b(ortunately)g(,)37 b(w)m(e)f(do)e(not)i(need)e(to)i (coun)m(t)g(this)d(stratum)i(thanks)g(to)125 3206 y(the)30 b(follo)m(wing)f(result.)125 3372 y SDict begin H.S end 125 3372 a 125 3372 a SDict begin 13 H.A end 125 3372 a 125 3372 a SDict begin [/View [/XYZ H.V]/Dest (theorem.8.1) cvn /DEST pdfmark end 125 3372 a 0 TeXcolorgray FL(Prop)s(osition)37 b(8.1.)p 0 TeXcolorgray 43 w Fp(L)-5 b(et)33 b FD(\024)28 b FK(=)e(\(\()p FD(\017)1337 3386 y FJ(1)1377 3372 y FD(;)15 b(\017)1454 3386 y FJ(1)1494 3372 y FD(;)g(\017)1571 3386 y FJ(2)1611 3372 y FD(;)g(\017)1688 3386 y FJ(2)1728 3372 y FK(\))p FD(;)g FK(\()p FD(")1880 3386 y FJ(1)1921 3372 y FD(;)g(")2003 3386 y FJ(1)2043 3372 y FD(;)g(")2125 3386 y FJ(2)2165 3372 y FD(;)g(")2247 3386 y FJ(2)2287 3372 y FK(\)\))p Fp(.)46 b(Then)33 b FD(R)2738 3339 y FJ(irr)2737 3394 y Fx(\024)2844 3372 y FK(=)27 b FC(;)p Fp(,)34 b(that)g(is,)g(al)5 b(l)34 b(the)125 3480 y(r)-5 b(epr)g(esentations)35 b(of)e FD(R)930 3494 y Fx(\024)1007 3480 y Fp(ar)-5 b(e)34 b(r)-5 b(e)g(ducible.)p 0 TeXcolorgray 125 3682 a(Pr)g(o)g(of.)p 0 TeXcolorgray 42 w FK(Let)43 b FD(\032)j FK(=)f(\()p FD(A;)15 b(B)5 b FK(\))46 b FC(2)f FD(R)1262 3696 y Fx(\024)1349 3682 y FK(and)d(let)g FD(V)1734 3696 y Fx(i)1762 3682 y FD(;)15 b(W)1888 3696 y Fx(i)1962 3682 y FC(\022)45 b FD(k)2128 3649 y FJ(4)2210 3682 y FK(b)s(e)d(the)h(eigenspaces)f(of)h FD(A)g FK(and)e FD(B)47 b FK(of)125 3790 y(eigen)m(v)-5 b(alues)42 b FD(\017)644 3804 y Fx(i)714 3790 y FK(and)g FD(")945 3804 y Fx(i)1016 3790 y FK(resp)s(ectiv)m(ely)-8 b(,)45 b(for)d FD(i)j FK(=)g(1)p FD(;)15 b FK(2.)78 b(W)-8 b(e)44 b(claim)d(that)i(there)f (exists)g FD(v)3303 3804 y FJ(1)3388 3790 y FC(2)j FD(V)3547 3804 y FJ(1)3586 3790 y FK(,)125 3898 y FD(v)169 3912 y FJ(2)233 3898 y FC(2)25 b FD(V)372 3912 y FJ(2)439 3898 y FK(and)j FD(\026)d FC(2)g FD(k)31 b FK(suc)m(h)c(that)i FD(v)1299 3912 y FJ(1)1354 3898 y FK(+)15 b FD(v)1484 3912 y FJ(2)1549 3898 y FC(2)24 b FD(W)1720 3912 y FJ(1)1788 3898 y FK(and)j FD(v)2006 3912 y FJ(1)2061 3898 y FK(+)15 b FD(\026v)2246 3912 y FJ(2)2310 3898 y FC(2)25 b FD(W)2482 3912 y FJ(2)2522 3898 y FK(.)39 b(In)28 b(that)g(case,)i(the)e (subspace)125 4006 y FD(H)42 b FK(=)36 b FC(h)p FD(v)429 4020 y FJ(1)469 4006 y FD(;)15 b(v)553 4020 y FJ(2)593 4006 y FC(i)36 b FK(=)f FC(h)p FD(v)849 4020 y FJ(1)913 4006 y FK(+)25 b FD(v)1053 4020 y FJ(2)1092 4006 y FD(;)15 b(v)1176 4020 y FJ(1)1240 4006 y FK(+)25 b FD(\026v)1435 4020 y FJ(2)1474 4006 y FC(i)37 b FK(is)f(an)g(in)m(v)-5 b(arian)m(t)36 b(subrepresen)m(tation,)i(pro)m(ving)d(that)j FD(\032)e FK(is)125 4114 y(reducible.)i(Observ)m(e)30 b(that)h(w)m(e)g(m)m(ust)f(ha)m(v)m(e)i FD(\026)25 b FC(6)p FK(=)g(1)31 b(since)e(otherwise)h FD(v)2587 4128 y FJ(1)2647 4114 y FK(+)20 b FD(v)2782 4128 y FJ(2)2847 4114 y FC(2)k FD(W)3018 4128 y FJ(1)3078 4114 y FC(\\)c FD(W)3245 4128 y FJ(2)3284 4114 y FK(.)224 4257 y(In)42 b(order)g(to)h(obtain)f(these)h(v)m(ectors,)k(let)42 b FD(L)1817 4271 y Fx(i)1891 4257 y FK(=)j FD(L)2069 4271 y Fx(i;)p FJ(1)2180 4257 y FK(+)28 b FD(L)2341 4271 y Fx(i;)p FJ(2)2469 4257 y FK(:)46 b FD(V)2593 4271 y FJ(1)2660 4257 y FC(\010)28 b FD(V)2812 4271 y FJ(2)2897 4257 y FC(!)45 b FD(k)3083 4224 y FJ(2)3165 4257 y FK(b)s(e)d(a)h (linear)125 4365 y(map)38 b(with)f FD(W)636 4379 y Fx(i)703 4365 y FK(=)h(k)m(er)16 b FD(L)1011 4379 y Fx(i)1077 4365 y FK(for)38 b FD(i)h FK(=)g(1)p FD(;)15 b FK(2.)66 b(Observ)m(e)38 b(that)h(w)m(e)g(can)g(supp)s(ose)e(that)i(the)f(maps)g FD(L)3531 4379 y Fx(i;j)125 4473 y FK(are)33 b(in)m(v)m(ertible)f (since)g(otherwise)h FD(W)1403 4487 y Fx(i)1453 4473 y FC(\\)21 b FD(V)1588 4487 y Fx(j)1655 4473 y FC(6)p FK(=)29 b(0.)50 b(The)32 b(v)m(ectors)j(w)m(e)f(are)f(lo)s(oking)f(for) h(m)m(ust)g(satisfy)125 4581 y FD(L)187 4595 y FJ(1)p Fx(;)p FJ(1)281 4581 y FK(\()p FD(v)360 4595 y FJ(1)400 4581 y FK(\))20 b(+)g FD(L)608 4595 y FJ(1)p Fx(;)p FJ(2)702 4581 y FK(\()p FD(v)781 4595 y FJ(2)821 4581 y FK(\))26 b(=)f(0)30 b(and)g FD(L)1292 4595 y FJ(2)p Fx(;)p FJ(1)1386 4581 y FK(\()p FD(v)1465 4595 y FJ(1)1505 4581 y FK(\))21 b(+)f FD(\026L)1769 4595 y FJ(2)p Fx(;)p FJ(2)1863 4581 y FK(\()p FD(v)1942 4595 y FJ(2)1982 4581 y FK(\))25 b(=)g(0.)41 b(F)-8 b(orm)31 b(the)g(matrix)1464 4792 y FD(L)25 b FK(=)1647 4664 y Ft(\022)1714 4737 y FD(L)1776 4751 y FJ(1)p Fx(;)p FJ(1)1981 4737 y FD(L)2043 4751 y FJ(1)p Fx(;)p FJ(2)1714 4845 y FD(L)1776 4859 y FJ(2)p Fx(;)p FJ(1)1953 4845 y FD(\026L)2070 4859 y FJ(2)p Fx(;)p FJ(2)2164 4664 y Ft(\023)2246 4792 y FD(:)125 4995 y FK(The)31 b(equation)g(det)16 b FD(L)27 b FK(=)g(0)32 b(giv)m(es)g(a)g(quadratic)f(equation)h(for)f FD(\026)p FK(.)45 b(Cho)s(osing)30 b(one)i(of)g(its)f(solutions,)125 5103 y(an)m(y)f FD(v)340 5117 y FJ(1)400 5103 y FC(\010)20 b FD(v)535 5117 y FJ(2)600 5103 y FC(2)k FK(k)m(er)16 b FD(L)30 b FK(pro)m(vides)g(the)g(desired)f(v)m(ectors.)1500 b Fo(\003)224 5305 y FK(With)27 b(this)f(result)h(at)h(hand,)f(it)g(is) f(enough)h(to)i(consider)d(the)i(remaining)d(10)j(p)s(ossible)d (con\014gura-)125 5413 y(tions)e(of)h(eigen)m(v)-5 b(alues.)38 b(As)24 b(w)m(e)g(will)d(see,)26 b(dep)s(ending)21 b(on)j(whether)f (they)h(admit)f(t)m(yp)s(es)g(with)g(isot)m(ypic)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 31 31 TeXDict begin HPSdict begin 31 30 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.31) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(31)p 0 TeXcolorgray 125 266 a FK(comp)s(onen)m(ts)26 b(of)h(higher)e(m)m(ultiplicit)m(y)f(or)i (not,)i(the)f(coun)m(ting)f(metho)s(d)g(is)f(sligh)m(tly)g(di\013eren)m (t,)i(so)g(w)m(e)125 374 y(will)g(analyze)k(them)f(in)f(separate)j (sections.)224 517 y(Observ)m(e)37 b(that,)i(as)e(suggested)g(for)g (the)g(computations)g(of)f(the)h(cases)h(of)f(rank)f(2)h(and)g(rank)f (3,)125 625 y(the)g(n)m(um)m(b)s(er)e(of)i(t)m(yp)s(es)g(to)h(b)s(e)e (analyzed)h(gro)m(ws)g(exp)s(onen)m(tially)e(with)h(the)h(rank.)56 b(In)36 b(the)g(rank)f(2)125 733 y(case,)30 b(w)m(e)e(needed)g(to)i (consider)d(2)i(classes)f(of)g(t)m(yp)s(es,)h(whereas)g(in)e(the)h (rank)g(3)h(case)g(w)m(e)g(had)f(to)h(deal)125 841 y(with)i(23)j (di\013eren)m(t)e(classes)h(of)f(t)m(yp)s(es.)48 b(In)32 b(the)h(rank)g(4)g(case,)h(there)f(are)g(more)g(than)g(350)h(t)m(yp)s (es)f(to)125 949 y(b)s(e)c(analyzed,)h(so)g(the)g(computation)g(m)m (ust)f(b)s(e)h(p)s(erformed)e(with)g(the)i(aid)f(of)h(a)h(computer)e (algebra)125 1057 y(system.)38 b(In)23 b(our)g(case,)j(w)m(e)e(use)g (SageMath)h(and)e(the)g(complete)i(script)d(p)s(erforming)f(the)j (calculating)125 1165 y(can)35 b(b)s(e)f(found)f(in)h([)819 1165 y SDict begin H.S end 819 1165 a 0 TeXcolorgray FK(11)p 0 TeXcolorgray 910 1106 a SDict begin H.R end 910 1106 a 910 1165 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.GPMScript) cvn H.B /ANN pdfmark end 910 1165 a FK(].)54 b(F)-8 b(or)36 b(this)d(reason,)k(in)c(order)h(to)i(k)m(eep)g(this)d (pap)s(er)h(at)h(a)h(reasonable)e(size,)125 1272 y(w)m(e)g(will)d(only) j(rep)s(ort)f(here)h(some)g(particular)f(cases)i(in)d(order)i(to)h (illustrate)d(the)i(metho)s(d.)51 b(F)-8 b(or)35 b(a)125 1380 y(complete)29 b(description)f(of)h(the)h(p)s(ossible)c(t)m(yp)s (es)k(and)e(their)h(coun)m(t,)h(please)f(refer)g(to)h(the)g(script)e([) 3495 1380 y SDict begin H.S end 3495 1380 a 0 TeXcolorgray FK(11)p 0 TeXcolorgray 3586 1322 a SDict begin H.R end 3586 1322 a 3586 1380 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.GPMScript) cvn H.B /ANN pdfmark end 3586 1380 a FK(])125 1488 y(and)h(the)i(output)f(therein.)125 1605 y SDict begin H.S end 125 1605 a 125 1605 a SDict begin 13 H.A end 125 1605 a 125 1605 a SDict begin [/View [/XYZ H.V]/Dest (subsection.8.1) cvn /DEST pdfmark end 125 1605 a 126 x FK(8.1.)46 b FL(Con\014gurations)25 b(with)e(all)h(the)f(isot)m(ypic)i(comp)s (onen)m(ts)f(of)g(m)m(ultiplicit)m(y)f FK(1)p FL(.)46 b FK(This)19 b(case)125 1839 y(is)k(completely)h(analogous)h(to)g(the)g (rank)f(3)g(case,)j(as)e(describ)s(ed)d(in)i(Section)2732 1839 y SDict begin H.S end 2732 1839 a 0 TeXcolorgray FK(7.2)p 0 TeXcolorgray 2848 1780 a SDict begin H.R end 2848 1780 a 2848 1839 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (subsection.7.2) cvn H.B /ANN pdfmark end 2848 1839 a FK(.)39 b(Since)23 b(there)i(are)f(no)125 1947 y(isot)m(ypic)e(comp)s(onen)m (ts)i(of)g(higher)e(m)m(ultiplicit)m(y)-8 b(,)22 b(the)i(motiv)m(e)g (of)f(the)h(v)-5 b(ariet)m(y)24 b FC(M)2902 1961 y Fx(\034)2968 1947 y FK(and)f(of)h(the)f(gauge)125 2055 y(group)29 b FC(G)436 2069 y Fx(\034)510 2055 y FK(can)i(b)s(e)f(directly)f (computed)h(using)f(\()1824 2055 y SDict begin H.S end 1824 2055 a 0 TeXcolorgray FK(24)p 0 TeXcolorgray 1916 1996 a SDict begin H.R end 1916 1996 a 1916 2055 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.5.24) cvn H.B /ANN pdfmark end 1916 2055 a FK(\))h(and)g(\()2193 2055 y SDict begin H.S end 2193 2055 a 0 TeXcolorgray FK(25)p 0 TeXcolorgray 2284 1996 a SDict begin H.R end 2284 1996 a 2284 2055 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.5.25) cvn H.B /ANN pdfmark end 2284 2055 a FK(\),)h(whic)m(h)f(are)h(purely)d(com)m (binatorial)125 2163 y(form)m(ulas)d(dep)s(ending)g(on)h(the)h (coincidence)f(of)h(eigen)m(v)-5 b(alues)27 b(on)f(the)h(di\013eren)m (t)g(blo)s(c)m(ks)f(of)h FD(A)g FK(and)f FD(B)5 b FK(.)224 2306 y(There)39 b(are)g(sev)m(en)g(con\014gurations)g(of)g(eigen)m(v)-5 b(alues)38 b(with)g(this)g(prop)s(ert)m(y)-8 b(,)41 b(whose)e(coun)m(t) g(is)f(as)125 2414 y(follo)m(ws.)h(Here)31 b(eigen)m(v)-5 b(alues)30 b(with)g(di\013eren)m(t)f(subindices)f(are)j(distinct)d(n)m (um)m(b)s(ers.)p 0 TeXcolorgray 340 2588 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)e FK(=)f(\(\()p FD(\017)708 2602 y FJ(1)748 2588 y FD(;)15 b(\017)825 2602 y FJ(1)865 2588 y FD(;)g(\017)942 2602 y FJ(1)981 2588 y FD(;)g(\017)1058 2602 y FJ(2)1098 2588 y FK(\))p FD(;)g FK(\()p FD(")1250 2602 y FJ(1)1291 2588 y FD(;)g(")1373 2602 y FJ(2)1413 2588 y FD(;)g(")1495 2602 y FJ(3)1536 2588 y FD(;)g(")1618 2602 y FJ(4)1658 2588 y FK(\)\),)920 2761 y([)p FD(R)1015 2724 y FJ(irr)1014 2784 y Fx(\024)1094 2761 y FK(])26 b(=)14 b FD(q)1274 2724 y FJ(18)1369 2761 y FC(\000)20 b FK(4)15 b FD(q)1564 2724 y FJ(17)1659 2761 y FK(+)20 b(5)15 b FD(q)1854 2724 y FJ(16)1950 2761 y FC(\000)20 b FD(q)2085 2724 y FJ(15)2179 2761 y FC(\000)g FK(3)15 b FD(q)2374 2724 y FJ(14)2470 2761 y FK(+)20 b(3)15 b FD(q)2665 2724 y FJ(13)1235 2913 y FC(\000)20 b FK(5)15 b FD(q)1430 2876 y FJ(12)1526 2913 y FK(+)20 b(7)15 b FD(q)1721 2876 y FJ(11)1816 2913 y FC(\000)20 b FK(2)15 b FD(q)2011 2876 y FJ(10)2106 2913 y FK(+)20 b FD(q)2241 2876 y FJ(9)2301 2913 y FC(\000)g FK(6)15 b FD(q)2496 2876 y FJ(7)2556 2913 y FK(+)20 b(4)15 b FD(q)2751 2876 y FJ(6)2790 2913 y FD(:)p 0 TeXcolorgray 340 3087 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 3101 y FJ(1)748 3087 y FD(;)15 b(\017)825 3101 y FJ(1)865 3087 y FD(;)g(\017)942 3101 y FJ(2)981 3087 y FD(;)g(\017)1058 3101 y FJ(2)1098 3087 y FK(\))p FD(;)g FK(\()p FD(")1250 3101 y FJ(1)1291 3087 y FD(;)g(")1373 3101 y FJ(2)1413 3087 y FD(;)g(")1495 3101 y FJ(3)1536 3087 y FD(;)g(")1618 3101 y FJ(4)1658 3087 y FK(\)\),)569 3261 y([)p FD(R)664 3223 y FJ(irr)663 3283 y Fx(\024)743 3261 y FK(])26 b(=)15 b FD(q)924 3223 y FJ(20)1018 3261 y FK(+)20 b(4)15 b FD(q)1213 3223 y FJ(19)1309 3261 y FC(\000)20 b FK(12)15 b FD(q)1549 3223 y FJ(18)1644 3261 y FC(\000)20 b FK(4)15 b FD(q)1839 3223 y FJ(17)1935 3261 y FK(+)20 b(24)15 b FD(q)2175 3223 y FJ(16)2270 3261 y FC(\000)20 b FK(11)15 b FD(q)2510 3223 y FJ(15)2606 3261 y FC(\000)20 b FK(3)15 b FD(q)2801 3223 y FJ(14)2896 3261 y FC(\000)20 b FK(7)15 b FD(q)3091 3223 y FJ(13)885 3413 y FC(\000)20 b FK(6)15 b FD(q)1080 3375 y FJ(12)1175 3413 y FK(+)20 b(25)15 b FD(q)1415 3375 y FJ(11)1511 3413 y FC(\000)20 b FK(3)15 b FD(q)1706 3375 y FJ(10)1801 3413 y FK(+)20 b(11)15 b FD(q)2041 3375 y FJ(9)2101 3413 y FC(\000)20 b FK(19)15 b FD(q)2341 3375 y FJ(8)2402 3413 y FC(\000)20 b FK(18)15 b FD(q)2642 3375 y FJ(7)2702 3413 y FK(+)20 b(18)15 b FD(q)2942 3375 y FJ(6)2983 3413 y FD(:)p 0 TeXcolorgray 340 3586 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 3600 y FJ(1)748 3586 y FD(;)15 b(\017)825 3600 y FJ(1)865 3586 y FD(;)g(\017)942 3600 y FJ(2)981 3586 y FD(;)g(\017)1058 3600 y FJ(3)1098 3586 y FK(\))p FD(;)g FK(\()p FD(")1250 3600 y FJ(1)1291 3586 y FD(;)g(")1373 3600 y FJ(2)1413 3586 y FD(;)g(")1495 3600 y FJ(3)1536 3586 y FD(;)g(")1618 3600 y FJ(4)1658 3586 y FK(\)\),)356 3760 y([)p FD(R)451 3722 y FJ(irr)450 3782 y Fx(\024)530 3760 y FK(])25 b(=)15 b FD(q)710 3722 y FJ(22)805 3760 y FK(+)20 b(5)15 b FD(q)1000 3722 y FJ(21)1095 3760 y FK(+)20 b(6)15 b FD(q)1290 3722 y FJ(20)1386 3760 y FC(\000)20 b FK(40)15 b FD(q)1626 3722 y FJ(19)1721 3760 y FC(\000)20 b FK(13)15 b FD(q)1961 3722 y FJ(18)2057 3760 y FK(+)20 b(57)15 b FD(q)2297 3722 y FJ(17)2393 3760 y FK(+)20 b(51)15 b FD(q)2633 3722 y FJ(16)2729 3760 y FC(\000)k FK(35)c FD(q)2968 3722 y FJ(15)3064 3760 y FC(\000)20 b FK(74)15 b FD(q)3304 3722 y FJ(14)671 3912 y FC(\000)20 b FK(32)15 b FD(q)911 3874 y FJ(13)1007 3912 y FK(+)20 b(25)15 b FD(q)1247 3874 y FJ(12)1343 3912 y FK(+)20 b(93)15 b FD(q)1583 3874 y FJ(11)1679 3912 y FK(+)k(38)c FD(q)1918 3874 y FJ(10)2014 3912 y FC(\000)20 b FK(30)15 b FD(q)2254 3874 y FJ(9)2315 3912 y FC(\000)20 b FK(82)15 b FD(q)2555 3874 y FJ(8)2615 3912 y FC(\000)20 b FK(18)15 b FD(q)2855 3874 y FJ(7)2916 3912 y FK(+)20 b(48)15 b FD(q)3156 3874 y FJ(6)3196 3912 y FD(:)p 0 TeXcolorgray 340 4085 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 4099 y FJ(1)748 4085 y FD(;)15 b(\017)825 4099 y FJ(2)865 4085 y FD(;)g(\017)942 4099 y FJ(3)981 4085 y FD(;)g(\017)1058 4099 y FJ(4)1098 4085 y FK(\))p FD(;)g FK(\()p FD(")1250 4099 y FJ(1)1291 4085 y FD(;)g(")1373 4099 y FJ(1)1413 4085 y FD(;)g(")1495 4099 y FJ(1)1536 4085 y FD(;)g(")1618 4099 y FJ(2)1658 4085 y FK(\)\),)775 4259 y([)p FD(R)870 4222 y FJ(irr)869 4282 y Fx(\024)949 4259 y FK(])25 b(=)15 b FD(q)1129 4222 y FJ(18)1224 4259 y FC(\000)20 b FK(4)15 b FD(q)1419 4222 y FJ(17)1514 4259 y FK(+)20 b(5)15 b FD(q)1709 4222 y FJ(16)1805 4259 y FC(\000)k FD(q)1939 4222 y FJ(15)2034 4259 y FC(\000)h FK(3)15 b FD(q)2229 4222 y FJ(14)1090 4411 y FK(+)20 b(3)15 b FD(q)1285 4374 y FJ(13)1381 4411 y FC(\000)k FK(5)c FD(q)1575 4374 y FJ(12)1671 4411 y FK(+)20 b(7)15 b FD(q)1866 4374 y FJ(11)1961 4411 y FC(\000)20 b FK(2)15 b FD(q)2156 4374 y FJ(10)2251 4411 y FK(+)20 b FD(q)2386 4374 y FJ(9)2446 4411 y FC(\000)g FK(6)15 b FD(q)2641 4374 y FJ(7)2701 4411 y FK(+)20 b(4)15 b FD(q)2896 4374 y FJ(6)2936 4411 y FD(:)p 0 TeXcolorgray 340 4585 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 4599 y FJ(1)748 4585 y FD(;)15 b(\017)825 4599 y FJ(2)865 4585 y FD(;)g(\017)942 4599 y FJ(3)981 4585 y FD(;)g(\017)1058 4599 y FJ(4)1098 4585 y FK(\))p FD(;)g FK(\()p FD(")1250 4599 y FJ(1)1291 4585 y FD(;)g(")1373 4599 y FJ(1)1413 4585 y FD(;)g(")1495 4599 y FJ(2)1536 4585 y FD(;)g(")1618 4599 y FJ(2)1658 4585 y FK(\)\),)569 4758 y([)p FD(R)664 4721 y FJ(irr)663 4781 y Fx(\024)743 4758 y FK(])26 b(=)15 b FD(q)924 4721 y FJ(20)1018 4758 y FK(+)20 b(4)15 b FD(q)1213 4721 y FJ(19)1309 4758 y FC(\000)20 b FK(12)15 b FD(q)1549 4721 y FJ(18)1644 4758 y FC(\000)20 b FK(4)15 b FD(q)1839 4721 y FJ(17)1935 4758 y FK(+)20 b(24)15 b FD(q)2175 4721 y FJ(16)2270 4758 y FC(\000)20 b FK(11)15 b FD(q)2510 4721 y FJ(15)2606 4758 y FC(\000)20 b FK(3)15 b FD(q)2801 4721 y FJ(14)2896 4758 y FC(\000)20 b FK(7)15 b FD(q)3091 4721 y FJ(13)885 4910 y FC(\000)20 b FK(6)15 b FD(q)1080 4873 y FJ(12)1175 4910 y FK(+)20 b(25)15 b FD(q)1415 4873 y FJ(11)1511 4910 y FC(\000)20 b FK(3)15 b FD(q)1706 4873 y FJ(10)1801 4910 y FK(+)20 b(11)15 b FD(q)2041 4873 y FJ(9)2101 4910 y FC(\000)20 b FK(19)15 b FD(q)2341 4873 y FJ(8)2402 4910 y FC(\000)20 b FK(18)15 b FD(q)2642 4873 y FJ(7)2702 4910 y FK(+)20 b(18)15 b FD(q)2942 4873 y FJ(6)2983 4910 y FD(:)p 0 TeXcolorgray 340 5084 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 5098 y FJ(1)748 5084 y FD(;)15 b(\017)825 5098 y FJ(2)865 5084 y FD(;)g(\017)942 5098 y FJ(3)981 5084 y FD(;)g(\017)1058 5098 y FJ(4)1098 5084 y FK(\))p FD(;)g FK(\()p FD(")1250 5098 y FJ(1)1291 5084 y FD(;)g(")1373 5098 y FJ(1)1413 5084 y FD(;)g(")1495 5098 y FJ(2)1536 5084 y FD(;)g(")1618 5098 y FJ(3)1658 5084 y FK(\)\),)356 5258 y([)p FD(R)451 5220 y FJ(irr)450 5280 y Fx(\024)530 5258 y FK(])25 b(=)15 b FD(q)710 5220 y FJ(22)805 5258 y FK(+)20 b(5)15 b FD(q)1000 5220 y FJ(21)1095 5258 y FK(+)20 b(6)15 b FD(q)1290 5220 y FJ(20)1386 5258 y FC(\000)20 b FK(40)15 b FD(q)1626 5220 y FJ(19)1721 5258 y FC(\000)20 b FK(13)15 b FD(q)1961 5220 y FJ(18)2057 5258 y FK(+)20 b(57)15 b FD(q)2297 5220 y FJ(17)2393 5258 y FK(+)20 b(51)15 b FD(q)2633 5220 y FJ(16)2729 5258 y FC(\000)k FK(35)c FD(q)2968 5220 y FJ(15)3064 5258 y FC(\000)20 b FK(74)15 b FD(q)3304 5220 y FJ(14)671 5410 y FC(\000)20 b FK(32)15 b FD(q)911 5372 y FJ(13)1007 5410 y FK(+)20 b(25)15 b FD(q)1247 5372 y FJ(12)1343 5410 y FK(+)20 b(93)15 b FD(q)1583 5372 y FJ(11)1679 5410 y FK(+)k(38)c FD(q)1918 5372 y FJ(10)2014 5410 y FC(\000)20 b FK(30)15 b FD(q)2254 5372 y FJ(9)2315 5410 y FC(\000)20 b FK(82)15 b FD(q)2555 5372 y FJ(8)2615 5410 y FC(\000)20 b FK(18)15 b FD(q)2855 5372 y FJ(7)2916 5410 y FK(+)20 b(48)15 b FD(q)3156 5372 y FJ(6)3196 5410 y FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 32 32 TeXDict begin HPSdict begin 32 31 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.32) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(32)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 0 TeXcolorgray 340 266 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)j FK(=)f(\(\()p FD(\017)708 280 y FJ(1)748 266 y FD(;)15 b(\017)825 280 y FJ(2)865 266 y FD(;)g(\017)942 280 y FJ(3)981 266 y FD(;)g(\017)1058 280 y FJ(4)1098 266 y FK(\))p FD(;)g FK(\()p FD(")1250 280 y FJ(1)1291 266 y FD(;)g(")1373 280 y FJ(2)1413 266 y FD(;)g(")1495 280 y FJ(3)1536 266 y FD(;)g(")1618 280 y FJ(4)1658 266 y FK(\)\),)600 465 y([)p FD(R)695 427 y FJ(irr)694 487 y Fx(\024)773 465 y FK(])26 b(=)15 b FD(q)954 427 y FJ(24)1049 465 y FK(+)k(6)c FD(q)1243 427 y FJ(23)1339 465 y FK(+)20 b(19)15 b FD(q)1579 427 y FJ(22)1675 465 y FK(+)k(10)c FD(q)1914 427 y FJ(21)2010 465 y FC(\000)20 b FK(125)15 b FD(q)2295 427 y FJ(20)2391 465 y FC(\000)20 b FK(68)15 b FD(q)2631 427 y FJ(19)2727 465 y FK(+)20 b(106)15 b FD(q)3012 427 y FJ(18)915 617 y FK(+)20 b(260)15 b FD(q)1200 579 y FJ(17)1296 617 y FK(+)20 b(129)15 b FD(q)1581 579 y FJ(16)1677 617 y FC(\000)20 b FK(344)15 b FD(q)1962 579 y FJ(15)2058 617 y FC(\000)20 b FK(277)15 b FD(q)2343 579 y FJ(14)2440 617 y FC(\000)k FK(88)c FD(q)2679 579 y FJ(13)2775 617 y FK(+)20 b(265)15 b FD(q)3060 579 y FJ(12)915 769 y FK(+)20 b(406)15 b FD(q)1200 731 y FJ(11)1296 769 y FK(+)20 b(8)15 b FD(q)1491 731 y FJ(10)1586 769 y FC(\000)20 b FK(182)15 b FD(q)1871 731 y FJ(9)1932 769 y FC(\000)20 b FK(270)15 b FD(q)2217 731 y FJ(8)2278 769 y FK(+)20 b(144)15 b FD(q)2563 731 y FJ(6)2604 769 y FD(:)125 955 y SDict begin H.S end 125 955 a 125 955 a SDict begin 13 H.A end 125 955 a 125 955 a SDict begin [/View [/XYZ H.V]/Dest (subsection.8.2) cvn /DEST pdfmark end 125 955 a 107 x FK(8.2.)46 b FL(Con\014gurations)51 b(with)e(isot)m(ypic)h(comp)s(onen)m(ts)g(of)g(higher)g(m)m(ultiplicit) m(y)-9 b(.)46 b FK(In)c(this)125 1170 y(case,)26 b(the)f (con\014gurations)e(of)i(eigen)m(v)-5 b(alues)24 b(admit)g(t)m(yp)s(es) g(with)f(isot)m(ypic)h(comp)s(onen)m(ts)g FD(W)3230 1184 y Fx(i;j)3335 1170 y FK(of)g(m)m(ul-)125 1278 y(tiplicit)m(y)c FD(m)535 1292 y Fx(i;j)641 1278 y FD(>)25 b FK(1.)38 b(Observ)m(e)23 b(that,)i(since)d(the)h(con\014guration)f FD(\024)k FK(=)f(\(\()p FD(\017)2591 1292 y FJ(1)2631 1278 y FD(;)15 b(\017)2708 1292 y FJ(1)2748 1278 y FD(;)g(\017)2825 1292 y FJ(2)2864 1278 y FD(;)g(\017)2941 1292 y FJ(2)2981 1278 y FK(\))p FD(;)g FK(\()p FD(")3133 1292 y FJ(1)3174 1278 y FD(;)g(")3256 1292 y FJ(1)3296 1278 y FD(;)g(")3378 1292 y FJ(2)3419 1278 y FD(;)g(")3501 1292 y FJ(2)3541 1278 y FK(\)\))125 1386 y(has)38 b(b)s(een)g(excluded,)i(the)e(only)g (p)s(ossibilit)m(y)d(that)k(ma)m(y)g(o)s(ccur)g(is)e(dim)14 b FD(W)2759 1400 y Fx(i;j)2878 1386 y FK(=)39 b(1.)65 b(Moreo)m(v)m(er,)43 b(if)125 1494 y FD(m)205 1508 y Fx(i;j)310 1494 y FD(>)25 b FK(2)30 b(then)h(there)f(w)m(ould)f(exist)h (a)h(common)g(eigen)m(v)m(ector)h(to)f FD(A)g FK(and)f FD(B)k FK(\(c.f.)e(Remark)3330 1494 y SDict begin H.S end 3330 1494 a 0 TeXcolorgray FK(3.5)p 0 TeXcolorgray 3446 1435 a SDict begin H.R end 3446 1435 a 3446 1494 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.3.5) cvn H.B /ANN pdfmark end 3446 1494 a FK(\).)224 1637 y(Therefore,)i(these)g(higher)f(m)m (ultiplicit)m(y)d(blo)s(c)m(ks)j(m)m(ust)g(ha)m(v)m(e)i(dim)14 b FD(W)2646 1651 y Fx(i;j)2756 1637 y FK(=)30 b(1)k(and)f FD(m)3196 1651 y Fx(i;j)3306 1637 y FK(=)e(2.)50 b(In)125 1745 y(this)25 b(w)m(a)m(y)-8 b(,)29 b(the)e(motiv)m(e)g(of)f(the)h (asso)s(ciated)g(v)-5 b(ariet)m(y)27 b([)p FC(M)2056 1759 y Fx(\034)2100 1745 y FK(])f(can)h(b)s(e)f(computed)g(using)f (items)h(\()3357 1745 y SDict begin H.S end 3357 1745 a 0 TeXcolorgray FK(1)p 0 TeXcolorgray 3403 1687 a SDict begin H.R end 3403 1687 a 3403 1745 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (Item.1) cvn H.B /ANN pdfmark end 3403 1745 a FK(\))h(and)125 1853 y(\()160 1853 y SDict begin H.S end 160 1853 a 0 TeXcolorgray FK(3)p 0 TeXcolorgray 205 1794 a SDict begin H.R end 205 1794 a 205 1853 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (Item.3) cvn H.B /ANN pdfmark end 205 1853 a FK(\))e(of)g(Section)676 1853 y SDict begin H.S end 676 1853 a 0 TeXcolorgray FK(5)p 0 TeXcolorgray 722 1794 a SDict begin H.R end 722 1794 a 722 1853 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.5) cvn H.B /ANN pdfmark end 722 1853 a FK(.)38 b(As)25 b(alw)m(a)m(ys,)i(the)e(calculation)f(of)h(the)g(motiv)m(e)h(of)f(the)g (gauge)h(group,)f([)p FC(G)3231 1867 y Fx(\034)3275 1853 y FK(],)h(as)f(w)m(ell)125 1961 y(as)36 b(the)h(m)m(ultiplicities)c FD(m)1035 1975 y Fx(\024)1079 1961 y FK(\()p FD(\034)10 b FK(\))37 b(are)g(a)g(purely)e(com)m(binatorial)g(matter.)60 b(Finally)-8 b(,)37 b(the)g(irreducible)125 2070 y(part)30 b([)p FB(M)442 2037 y FJ(irr)442 2092 y Fx(\034)521 2070 y FK(])h(can)f(b)s(e)g(obtained)g(from)g(the)g(results)f(of)i(Section) 2323 2070 y SDict begin H.S end 2323 2070 a 0 TeXcolorgray FK(7)p 0 TeXcolorgray 2369 2011 a SDict begin H.R end 2369 2011 a 2369 2070 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (section.7) cvn H.B /ANN pdfmark end 2369 2070 a FK(.)224 2213 y(Therefore,)23 b(w)m(e)f(get)g(three)g(con\014guration)f(of)g (eigen)m(v)-5 b(alues,)23 b(whose)e(con)m(tributions)f(are)i(as)f (follo)m(ws:)p 0 TeXcolorgray 340 2399 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 2413 y FJ(1)748 2399 y FD(;)15 b(\017)825 2413 y FJ(1)865 2399 y FD(;)g(\017)942 2413 y FJ(2)981 2399 y FD(;)g(\017)1058 2413 y FJ(2)1098 2399 y FK(\))p FD(;)g FK(\()p FD(")1250 2413 y FJ(1)1291 2399 y FD(;)g(")1373 2413 y FJ(1)1413 2399 y FD(;)g(")1495 2413 y FJ(2)1536 2399 y FD(;)g(")1618 2413 y FJ(3)1658 2399 y FK(\)\),)920 2598 y([)p FD(R)1015 2560 y FJ(irr)1014 2620 y Fx(\024)1094 2598 y FK(])26 b(=)14 b FD(q)1274 2560 y FJ(18)1369 2598 y FC(\000)20 b FK(3)15 b FD(q)1564 2560 y FJ(17)1659 2598 y FK(+)20 b(4)15 b FD(q)1854 2560 y FJ(16)1950 2598 y FC(\000)20 b FK(2)15 b FD(q)2145 2560 y FJ(15)2240 2598 y FC(\000)20 b FK(3)15 b FD(q)2435 2560 y FJ(14)2530 2598 y FK(+)20 b(3)15 b FD(q)2725 2560 y FJ(13)1235 2750 y FC(\000)20 b FK(3)15 b FD(q)1430 2713 y FJ(12)1526 2750 y FK(+)20 b(7)15 b FD(q)1721 2713 y FJ(11)1816 2750 y FC(\000)20 b FK(2)15 b FD(q)2011 2713 y FJ(10)2106 2750 y FC(\000)20 b FD(q)2241 2713 y FJ(8)2301 2750 y FC(\000)g FK(5)15 b FD(q)2496 2713 y FJ(7)2556 2750 y FK(+)20 b(4)15 b FD(q)2751 2713 y FJ(6)2790 2750 y FD(:)p 0 TeXcolorgray 340 2949 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 2963 y FJ(1)748 2949 y FD(;)15 b(\017)825 2963 y FJ(1)865 2949 y FD(;)g(\017)942 2963 y FJ(2)981 2949 y FD(;)g(\017)1058 2963 y FJ(3)1098 2949 y FK(\))31 b(\()p FD(")1241 2963 y FJ(1)1281 2949 y FD(;)15 b(")1363 2963 y FJ(1)1403 2949 y FD(;)g(")1485 2963 y FJ(2)1525 2949 y FD(;)g(")1607 2963 y FJ(2)1648 2949 y FK(\)\),)920 3148 y([)p FD(R)1015 3110 y FJ(irr)1014 3170 y Fx(\024)1094 3148 y FK(])26 b(=)14 b FD(q)1274 3110 y FJ(18)1369 3148 y FC(\000)20 b FK(3)15 b FD(q)1564 3110 y FJ(17)1659 3148 y FK(+)20 b(4)15 b FD(q)1854 3110 y FJ(16)1950 3148 y FC(\000)20 b FK(2)15 b FD(q)2145 3110 y FJ(15)2240 3148 y FC(\000)20 b FK(3)15 b FD(q)2435 3110 y FJ(14)2530 3148 y FK(+)20 b(3)15 b FD(q)2725 3110 y FJ(13)1235 3300 y FC(\000)20 b FK(3)15 b FD(q)1430 3262 y FJ(12)1526 3300 y FK(+)20 b(7)15 b FD(q)1721 3262 y FJ(11)1816 3300 y FC(\000)20 b FK(2)15 b FD(q)2011 3262 y FJ(10)2106 3300 y FC(\000)20 b FD(q)2241 3262 y FJ(8)2301 3300 y FC(\000)g FK(5)15 b FD(q)2496 3262 y FJ(7)2556 3300 y FK(+)20 b(4)15 b FD(q)2751 3262 y FJ(6)2790 3300 y FD(:)p 0 TeXcolorgray 340 3499 a FC(\017)p 0 TeXcolorgray 42 w FD(\024)26 b FK(=)f(\(\()p FD(\017)708 3513 y FJ(1)748 3499 y FD(;)15 b(\017)825 3513 y FJ(1)865 3499 y FD(;)g(\017)942 3513 y FJ(2)981 3499 y FD(;)g(\017)1058 3513 y FJ(3)1098 3499 y FK(\))p FD(;)g FK(\()p FD(")1250 3513 y FJ(1)1291 3499 y FD(;)g(")1373 3513 y FJ(1)1413 3499 y FD(;)g(")1495 3513 y FJ(2)1536 3499 y FD(;)g(")1618 3513 y FJ(3)1658 3499 y FK(\)\),)569 3698 y([)p FD(R)664 3660 y FJ(irr)663 3720 y Fx(\024)743 3698 y FK(])26 b(=)15 b FD(q)924 3660 y FJ(20)1018 3698 y FK(+)20 b(2)15 b FD(q)1213 3660 y FJ(19)1309 3698 y FC(\000)20 b FK(11)15 b FD(q)1549 3660 y FJ(18)1644 3698 y FK(+)20 b(4)15 b FD(q)1839 3660 y FJ(17)1935 3698 y FK(+)20 b(18)15 b FD(q)2175 3660 y FJ(16)2270 3698 y FC(\000)20 b FK(15)15 b FD(q)2510 3660 y FJ(15)2606 3698 y FC(\000)20 b FK(5)15 b FD(q)2801 3660 y FJ(14)2896 3698 y FC(\000)20 b FK(8)15 b FD(q)3091 3660 y FJ(13)885 3850 y FK(+)20 b(5)15 b FD(q)1080 3812 y FJ(12)1175 3850 y FK(+)20 b(24)15 b FD(q)1415 3812 y FJ(11)1511 3850 y FC(\000)20 b FD(q)1646 3812 y FJ(10)1740 3850 y FK(+)g(4)15 b FD(q)1935 3812 y FJ(9)1995 3850 y FC(\000)20 b FK(24)15 b FD(q)2235 3812 y FJ(8)2296 3850 y FC(\000)20 b FK(11)15 b FD(q)2536 3812 y FJ(7)2596 3850 y FK(+)20 b(17)15 b FD(q)2836 3812 y FJ(6)2876 3850 y FD(:)224 4036 y FK(With)27 b(these)g(results,)g(w)m (e)h(can)g(\014nally)d(compute)i(the)g(c)m(haracter)i(v)-5 b(ariet)m(y)28 b(of)f(irreducible)d(comp)s(o-)125 4144 y(nen)m(ts)h(of)g(torus)g(knots)g(in)f(SL)1134 4158 y FJ(4)1174 4144 y FK(.)39 b(Consider)23 b(the)i(partitions)f FD(\031)2225 4158 y FJ(0)2290 4144 y FK(=)2386 4070 y Ft(\010)2439 4144 y FK(1)2484 4111 y FJ(4)2524 4070 y Ft(\011)2577 4144 y FK(,)i FD(\031)2680 4158 y FJ(1)2744 4144 y FK(=)2840 4070 y Ft(\010)2893 4144 y FK(1)2938 4111 y FJ(2)2978 4144 y FD(;)15 b FK(2)3063 4111 y FJ(1)3104 4070 y Ft(\011)3157 4144 y FK(,)26 b FD(\031)3260 4158 y FJ(2)3325 4144 y FK(=)3421 4070 y Ft(\010)3474 4144 y FK(2)3519 4111 y FJ(2)3558 4070 y Ft(\011)125 4279 y FK(and)j FD(\031)353 4293 y FJ(3)417 4279 y FK(=)513 4206 y Ft(\010)566 4279 y FK(1)611 4246 y FJ(1)651 4279 y FD(;)15 b FK(3)736 4246 y FJ(1)776 4206 y Ft(\011)859 4279 y FK(and,)30 b(giv)m(en)g(t)m(w)m(o)h(of)f(suc)m(h)f(partitions,)g (shorten)g FD(C)2604 4295 y Fx(\031)r(;\031)2710 4276 y Fr(0)2761 4279 y FK(=)c FC(j)p FD(M)2980 4235 y Fx(\031)r(;\031)3086 4212 y Fr(0)2970 4305 y Fx(n;m;)p FJ(4)3155 4279 y FC(j)19 b FK(+)g FC(j)p FD(M)3412 4235 y Fx(\031)3455 4212 y Fr(0)3478 4235 y Fx(;\031)3402 4305 y(n;m;)p FJ(4)3586 4279 y FC(j)125 4399 y FK(if)29 b FD(\031)f FC(6)p FK(=)d FD(\031)439 4366 y Fs(0)493 4399 y FK(and)30 b FD(C)735 4413 y Fx(\031)r(;\031)869 4399 y FK(=)25 b FC(j)p FD(M)1088 4355 y Fx(\031)r(;\031)1078 4425 y(n;m;)p FJ(4)1263 4399 y FC(j)p FK(.)41 b(With)29 b(this)h(notation,)h(the)f(\014nal)f(result) g(is)125 4843 y(\(40\))354 4843 y SDict begin H.S end 354 4843 a 354 4843 a SDict begin 13 H.A end 354 4843 a 354 4843 a SDict begin [/View [/XYZ H.V]/Dest (equation.8.40) cvn /DEST pdfmark end 354 4843 a -229 x FK([)p FB(M)474 4577 y FJ(irr)474 4637 y(4)554 4614 y FK(])c(=)15 b FD(C)755 4628 y Fx(\031)796 4637 y FG(0)830 4628 y Fx(;\031)891 4637 y FG(0)929 4541 y Ft(\000)971 4614 y FD(q)1015 4577 y FJ(9)1074 4614 y FK(+)20 b(6)p FD(q)1254 4577 y FJ(8)1314 4614 y FK(+)g(20)p FD(q)1539 4577 y FJ(7)1599 4614 y FK(+)g(17)p FD(q)1824 4577 y FJ(6)1885 4614 y FC(\000)g FK(98)p FD(q)2110 4577 y FJ(5)2170 4614 y FC(\000)g FK(26)p FD(q)2395 4577 y FJ(4)2455 4614 y FK(+)g(38)p FD(q)2680 4577 y FJ(3)2741 4614 y FK(+)f(126)p FD(q)3010 4577 y FJ(2)3071 4614 y FC(\000)h FK(144)3297 4541 y Ft(\001)695 4767 y FK(+)g FD(C)851 4781 y Fx(\031)892 4790 y FG(0)926 4781 y Fx(;\031)987 4790 y FG(1)1025 4693 y Ft(\000)1067 4767 y FD(q)1111 4729 y FJ(7)1170 4767 y FK(+)g(5)p FD(q)1350 4729 y FJ(6)1410 4767 y FK(+)g(7)p FD(q)1590 4729 y FJ(5)1650 4767 y FC(\000)g FK(34)p FD(q)1875 4729 y FJ(4)1935 4767 y FK(+)g(34)p FD(q)2160 4729 y FJ(2)2220 4767 y FK(+)g(18)p FD(q)k FC(\000)c FK(48)2647 4693 y Ft(\001)695 4919 y FK(+)g FD(C)851 4933 y Fx(\031)892 4942 y FG(0)926 4933 y Fx(;\031)987 4942 y FG(2)1025 4845 y Ft(\000)1067 4919 y FD(q)1111 4881 y FJ(5)1170 4919 y FK(+)g(4)p FD(q)1350 4881 y FJ(4)1410 4919 y FC(\000)g FK(11)p FD(q)1635 4881 y FJ(3)1695 4919 y FK(+)g FD(q)1830 4881 y FJ(2)1890 4919 y FK(+)g(18)p FD(q)k FC(\000)19 b FK(18)2316 4845 y Ft(\001)2379 4919 y FK(+)h FD(C)2535 4933 y Fx(\031)2576 4942 y FG(0)2610 4933 y Fx(;\031)2671 4942 y FG(3)2709 4845 y Ft(\000)2751 4919 y FD(q)2795 4881 y FJ(3)2854 4919 y FC(\000)g FK(4)p FD(q)3034 4881 y FJ(2)3094 4919 y FK(+)g(6)p FD(q)k FC(\000)19 b FK(4)3430 4845 y Ft(\001)695 5071 y FK(+)h FD(C)851 5085 y Fx(\031)892 5094 y FG(1)926 5085 y Fx(;\031)987 5094 y FG(2)1025 4997 y Ft(\000)1067 5071 y FD(q)1111 5033 y FJ(3)1170 5071 y FC(\000)g FK(3)p FD(q)1350 5033 y FJ(2)1410 5071 y FK(+)g(5)p FD(q)j FC(\000)d FK(4)1746 4997 y Ft(\001)1809 5071 y FK(+)g FD(C)1965 5085 y Fx(\031)2006 5094 y FG(1)2040 5085 y Fx(;\031)2101 5094 y FG(1)2139 4997 y Ft(\000)2180 5071 y FD(q)2224 5033 y FJ(5)2284 5071 y FK(+)g(2)p FD(q)2464 5033 y FJ(4)2524 5071 y FC(\000)f FK(10)p FD(q)2748 5033 y FJ(3)2809 5071 y FK(+)h(7)p FD(q)2989 5033 y FJ(2)3049 5071 y FK(+)g(11)p FD(q)k FC(\000)19 b FK(17)3475 4997 y Ft(\001)3518 5071 y FD(:)224 5305 y FK(The)41 b(form)m(ulas)f(for)h FD(C)1017 5319 y Fx(\031)1058 5328 y FG(1)1092 5319 y Fx(;\031)1153 5328 y FG(2)1232 5305 y FK(app)s(ear)g(in)f(Theorem)2056 5305 y SDict begin H.S end 2056 5305 a 0 TeXcolorgray FK(6.8)p 0 TeXcolorgray 2172 5247 a SDict begin H.R end 2172 5247 a 2172 5305 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.6.8) cvn H.B /ANN pdfmark end 2172 5305 a 41 w FK(\(and)h(the)h(commen)m(t)g(follo)m(wing)e(it)h(for)125 5413 y FD(r)27 b FK(=)e(4\).)42 b(This)28 b(completes)j(the)g(pro)s(of) e(of)i(Theorem)1945 5413 y SDict begin H.S end 1945 5413 a 0 TeXcolorgray FK(1.1)p 0 TeXcolorgray 2061 5354 a SDict begin H.R end 2061 5354 a 2061 5413 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.1.1) cvn H.B /ANN pdfmark end 2061 5413 a FK(.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 33 33 TeXDict begin HPSdict begin 33 32 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.33) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(33)p 0 TeXcolorgray 125 183 a SDict begin H.S end 125 183 a 125 183 a SDict begin 13 H.A end 125 183 a 125 183 a SDict begin [/View [/XYZ H.V]/Dest (section.9) cvn /DEST pdfmark end 125 183 a 992 266 a FK(9.)46 b FE(Motive)34 b(of)g(the)f(chara)n(cter)f(v)-8 b(arieties)224 463 y FK(T)g(o)31 b(\014nish)d(this)h(w)m(ork,)i(let)f (us)g(compute)h(the)f(motiv)m(e)h(of)g(the)f(c)m(haracter)i(v)-5 b(arieties)1489 624 y FB(X)1554 638 y Fx(r)1618 624 y FK(=)25 b FB(X)p FK(\(\000)1871 638 y Fx(n;m)2000 624 y FD(;)15 b FK(SL)2148 638 y Fx(r)2186 624 y FK(\))p FD(;)125 784 y FK(or)23 b(equiv)-5 b(alen)m(tly)d(,)24 b(of)g(the)g(mo)s(duli)d(spaces)j(of)g(represen)m(tations)f FB(M)2379 798 y Fx(r)2443 784 y FK(=)i FB(M)p FK(\(\000)2726 798 y Fx(n;m)2855 784 y FD(;)15 b FK(SL)3003 798 y Fx(r)3041 784 y FK(\),)25 b(for)f(the)g(torus)125 892 y(knots)29 b(\000)426 906 y Fx(n;;m)605 892 y FK(and)g FD(r)f FK(=)d(4.)41 b(W)-8 b(e)31 b(recall)e(that,)i(for)e(lo)m(w)m(er)h(rank,)g(the)g (motiv)m(e)g(of)g([)p FB(X)2933 906 y FJ(2)2973 892 y FK(])g(app)s(ears)g(in)e([)3495 892 y SDict begin H.S end 3495 892 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 3586 834 a SDict begin H.R end 3586 834 a 3586 892 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 3586 892 a FK(,)125 1000 y(Prop.)i(7.1])h(and)f(the)h(motiv)m(e)g(of) f([)p FB(X)1370 1014 y FJ(3)1410 1000 y FK(])h(is)e(computed)h(in)f([) 2107 1000 y SDict begin H.S end 2107 1000 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 2199 942 a SDict begin H.R end 2199 942 a 2199 1000 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 2199 1000 a FK(,)h(Thm.)g(8.3].)224 1144 y(Recall)g(that)g(the)g(space)g FB(X)1157 1158 y Fx(r)1225 1144 y FK(parametrizes)g(\(isomorphism)d(classes)j(of)7 b(\))31 b(semi-simple)c(represen-)125 1252 y(tations.)40 b(Let)29 b(\005)692 1266 y Fx(r)759 1252 y FK(b)s(e)g(the)g(set)h(of)f (all)f(partitions)f(of)i FD(r)j FK(and)c(let)h(us)f(denote)i(b)m(y)f FD(\031)f FK(=)d FC(f)p FD(r)3095 1211 y Fx(a)3132 1220 y FG(1)3092 1278 y FJ(1)3171 1252 y FD(;)15 b(:)g(:)g(:)i(;)e(r)3417 1219 y Fx(a)3454 1227 y Fq(s)3414 1274 y Fx(s)3492 1252 y FC(g)29 b FK(a)125 1359 y(partition)g(of)h FD(r)s FK(.)40 b(Then)30 b(there)g(is)g(a)g(decomp)s(osition)f(of)i(the)g(c)m (haracter)g(v)-5 b(ariet)m(y)1583 1534 y FB(X)1648 1548 y Fx(r)1712 1534 y FK(=)1846 1447 y Ft(G)1808 1644 y Fx(\031)r Fs(2)p FJ(\005)1951 1652 y Fq(r)2000 1534 y FB(X)2065 1496 y Fx(\031)2065 1556 y(r)2128 1534 y FD(;)125 1786 y FK(where)561 1998 y FB(X)626 1961 y Fx(\031)626 2021 y(r)699 1998 y FK(=)795 1897 y Ft(n)855 1998 y FD(\032)26 b FK(=)1065 1927 y Fx(s)1046 1998 y FC(\010)1024 2064 y Fx(t)p FJ(=1)1154 1870 y Ft(\024)1226 1927 y Fx(a)1263 1935 y Fq(t)1223 1998 y FC(\010)1202 2067 y Fx(l)q FJ(=1)1330 1998 y FD(\032)1377 2013 y Fx(t;l)1448 1870 y Ft(\025)1526 1894 y(\014)1526 1948 y(\014)1526 2003 y(\014)1571 1998 y FD(\032)1618 2013 y Fx(t;l)1715 1998 y FC(2)1811 1974 y FK(~)1801 1998 y FB(X)1866 1961 y FJ(irr)1866 2021 y Fx(r)1898 2029 y Fq(t)1945 1998 y FD(;)15 b FK(det)g FD(\032)26 b FK(=)f(1)2365 1897 y Ft(o)2451 1998 y FC(\032)2589 1885 y Fx(s)2547 1912 y Ft(Y)2547 2106 y Fx(t)p FJ(=1)2678 1998 y FK(Sym)2853 1961 y Fx(a)2890 1969 y Fq(t)2922 1925 y Ft(\000)2974 1974 y FK(~)2964 1998 y FB(X)3029 1961 y FJ(irr)3029 2021 y Fx(r)3061 2029 y Fq(t)3108 1925 y Ft(\001)3150 1998 y FD(:)125 2261 y FK(Here,)32 b(w)m(e)f(set)653 2237 y(~)643 2261 y FB(X)708 2228 y FJ(irr)708 2283 y Fx(r)814 2261 y FK(=)26 b FB(X)976 2228 y FJ(irr)1055 2261 y FK(\(\000)1147 2275 y Fx(n;m)1277 2261 y FD(;)15 b FK(GL)1445 2275 y Fx(r)1483 2261 y FK(\))32 b(and)1737 2237 y(\026)1727 2261 y FB(X)1792 2228 y FJ(irr)1792 2283 y Fx(r)1898 2261 y FK(=)26 b FB(X)2060 2228 y FJ(irr)2139 2261 y FK(\(\000)2231 2275 y Fx(n;m)2361 2261 y FD(;)15 b FK(PGL)2591 2275 y Fx(r)2629 2261 y FK(\),)32 b(as)f(in)f([)2965 2261 y SDict begin H.S end 2965 2261 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 3056 2202 a SDict begin H.R end 3056 2202 a 3056 2261 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 3056 2261 a FK(].)44 b(W)-8 b(e)32 b(also)f(de-)125 2427 y(note)h(b)m(y)456 2299 y Ft(\024)527 2356 y Fx(a)564 2364 y Fq(t)525 2427 y FC(\010)504 2496 y Fx(l)q FJ(=1)631 2427 y FD(\032)678 2442 y Fx(t;l)749 2299 y Ft(\025)829 2427 y FK(the)h(class)e(of)i(the)f (represen)m(tation)g(in)f(the)h(symmetric)f(pro)s(duct)g(Sym)3289 2392 y Fx(a)3326 2400 y Fq(t)3359 2354 y Ft(\000)3410 2404 y FK(~)3400 2427 y FB(X)3465 2394 y FJ(irr)3465 2450 y Fx(r)3497 2458 y Fq(t)3545 2354 y Ft(\001)3586 2427 y FK(.)125 2620 y(Note)24 b(that)h FB(X)593 2572 y Fs(f)p Fx(r)r Fs(g)593 2632 y Fx(r)727 2620 y FK(=)g FB(X)888 2587 y FJ(irr)888 2642 y Fx(r)990 2620 y FK(is)e(the)h(set)g (of)g(irreducible)c(represen)m(tations,)25 b(and)e FB(X)2785 2572 y Fs(f)p FJ(1)2855 2548 y Fq(r)2890 2572 y Fs(g)2785 2632 y Fx(r)2953 2620 y FK(is)g(the)h(set)g(of)g(com-)125 2728 y(pletely)k(reducible)g(represen)m(tations,)i(that)g(is,)f(those)h (whic)m(h)f(are)h(direct)f(sum)g(of)h(one-dimensional)125 2836 y(represen)m(tations.)224 2979 y(In)g(particular,)f(for)h(our)g (rank)g(4)g(case,)i(w)m(e)f(ha)m(v)m(e)125 3161 y(\(41\))780 3161 y SDict begin H.S end 780 3161 a 780 3161 a SDict begin 13 H.A end 780 3161 a 780 3161 a SDict begin [/View [/XYZ H.V]/Dest (equation.9.41) cvn /DEST pdfmark end 780 3161 a FK([)p FB(X)870 3175 y FJ(4)910 3161 y FK(])26 b(=)f([)p FB(X)1147 3124 y Fx(ir)r(r)1147 3184 y FJ(4)1243 3161 y FK(])20 b(+)1379 3088 y Ft(\002)1417 3161 y FB(X)1482 3113 y Fs(f)p FJ(3)p Fx(;)p FJ(1)p Fs(g)1482 3187 y FJ(4)1647 3088 y Ft(\003)1706 3161 y FK(+)1796 3088 y Ft(\002)1834 3161 y FB(X)1899 3113 y Fs(f)p FJ(2)1969 3090 y FG(2)2005 3113 y Fs(g)1899 3187 y FJ(4)2044 3088 y Ft(\003)2102 3161 y FK(+)2193 3088 y Ft(\002)2231 3161 y FB(X)2296 3113 y Fs(f)p FJ(2)p Fx(;)p FJ(1)2421 3090 y FG(2)2457 3113 y Fs(g)2296 3187 y FJ(4)2496 3088 y Ft(\003)2554 3161 y FK(+)2645 3088 y Ft(\002)2683 3161 y FB(X)2748 3113 y Fs(f)p FJ(1)2818 3090 y FG(4)2853 3113 y Fs(g)2748 3187 y FJ(4)2893 3088 y Ft(\003)2931 3161 y FD(:)224 3410 y FK(In)30 b(order)g(to)h(study)e(eac)m(h)j(of)e(the)h(previous)e (strata,)i(w)m(e)g(consider)f(the)g(auxiliary)e(v)-5 b(arieties)934 3616 y(~)924 3640 y FB(X)989 3603 y Fx(\031)989 3663 y(r)1062 3640 y FK(=)1158 3567 y Ft(\010)1211 3640 y FD(\032)25 b FK(=)1421 3569 y Fx(s)1402 3640 y FC(\010)1379 3706 y Fx(t)p FJ(=1)1510 3512 y Ft(\024)1581 3569 y Fx(a)1618 3577 y Fq(t)1579 3640 y FC(\010)1558 3709 y Fx(l)q FJ(=1)1685 3640 y FD(\032)1732 3655 y Fx(t;l)1803 3512 y Ft(\025)1881 3536 y(\014)1881 3590 y(\014)1881 3645 y(\014)1927 3640 y FD(\032)1974 3655 y Fx(t;l)2070 3640 y FC(2)2166 3616 y FK(~)2156 3640 y FB(X)2221 3603 y FJ(irr)2221 3663 y Fx(r)2253 3671 y Fq(t)2325 3567 y Ft(\011)2404 3640 y FK(=)2541 3527 y Fx(s)2500 3554 y Ft(Y)2500 3748 y Fx(t)p FJ(=1)2631 3640 y FK(Sym)2805 3603 y Fx(a)2842 3611 y Fq(t)2875 3567 y Ft(\000)2926 3616 y FK(~)2916 3640 y FB(X)2981 3603 y FJ(irr)2981 3663 y Fx(r)3013 3671 y Fq(t)3060 3567 y Ft(\001)593 3924 y FK(Sym)768 3887 y Fx(a)768 3947 y FJ(0)809 3851 y Ft(\000)861 3901 y FK(~)851 3924 y FB(X)916 3887 y FJ(irr)916 3947 y Fx(r)995 3851 y Ft(\001)1062 3924 y FK(=)1158 3851 y Ft(\010)1211 3924 y FD(\032)g FK(=)1379 3796 y Ft(\024)1464 3853 y Fx(a)1448 3924 y FC(\010)1427 3993 y Fx(l)q FJ(=1)1554 3924 y FD(\032)1601 3939 y Fx(l)1627 3796 y Ft(\025)1706 3820 y(\014)1706 3874 y(\014)1706 3929 y(\014)1751 3924 y FD(\032)1798 3939 y Fx(l)1849 3924 y FC(2)1945 3901 y FK(~)1935 3924 y FB(X)2000 3887 y FJ(irr)2000 3947 y Fx(r)2032 3955 y Fq(t)2079 3924 y FD(;)15 b FK(det)h FD(\032)25 b FK(=)g(1)2474 3851 y Ft(\011)2553 3924 y FC(\032)g FK(Sym)2823 3887 y Fx(a)2865 3851 y Ft(\000)2916 3901 y FK(~)2907 3924 y FB(X)2972 3887 y FJ(irr)2972 3947 y Fx(r)3076 3851 y Ft(\001)3117 3924 y FD(:)224 4184 y FK(If)32 b(w)m(e)h(decomp)s(ose)g(a)f(partition)f FD(\031)h FK(=)1554 4111 y Ft(\010)1607 4184 y FD(r)1651 4144 y Fx(a)1688 4153 y FG(1)1648 4210 y FJ(1)1727 4184 y FD(;)15 b(:)g(:)g(:)i(;)e(r)1973 4151 y Fx(a)2010 4159 y Fq(s)1970 4207 y Fx(s)2048 4111 y Ft(\011)2133 4184 y FK(in)m(to)32 b(the)h(partition)e FD(\031)2914 4151 y Fs(0)2966 4184 y FK(=)3065 4111 y Ft(\010)3118 4184 y FD(r)3162 4144 y Fx(a)3199 4153 y FG(2)3159 4210 y FJ(2)3238 4184 y FD(;)15 b(:)g(:)g(:)i(;)e(r)3484 4151 y Fx(a)3521 4159 y Fq(s)3481 4207 y Fx(s)3558 4111 y Ft(\011)125 4349 y FK(of)37 b FD(r)279 4316 y Fs(0)338 4349 y FK(=)486 4262 y Fx(s)454 4280 y Ft(P)445 4430 y Fx(i)p FJ(=2)575 4349 y FD(a)623 4363 y Fx(i)651 4349 y FD(r)692 4363 y Fx(i)757 4349 y FK(and)941 4275 y Ft(\010)994 4349 y FD(r)1038 4308 y Fx(a)1075 4317 y FG(1)1035 4375 y FJ(1)1113 4275 y Ft(\011)1166 4349 y FK(,)i(w)m(e)f(ha)m(v)m(e)g(a)g (Zariski)d(lo)s(cally)h(trivial)f(\014bration)g FB(X)2990 4316 y Fx(\031)2990 4371 y(r)3074 4349 y FC(!)3212 4325 y FK(~)3202 4349 y FB(X)3267 4316 y Fx(\031)3310 4292 y Fr(0)3267 4377 y Fx(r)3301 4358 y Fr(0)3374 4349 y FK(whose)125 4532 y(\014b)s(er)28 b(is)i(Sym)600 4492 y Fx(a)637 4501 y FG(1)600 4558 y FJ(0)676 4459 y Ft(\000)728 4509 y FK(~)718 4532 y FB(X)783 4499 y FJ(irr)783 4555 y Fx(r)815 4564 y FG(1)862 4459 y Ft(\001)904 4532 y FK(.)40 b(Therefore,)31 b(w)m(e)g(get)g(that)660 4776 y([)p FB(X)750 4739 y Fx(\031)750 4799 y(r)797 4776 y FK(])26 b(=)944 4703 y Ft(\002)982 4776 y FK(Sym)1156 4736 y Fx(a)1193 4745 y FG(1)1156 4802 y FJ(0)1232 4703 y Ft(\000)1284 4753 y FK(~)1274 4776 y FB(X)1339 4739 y FJ(irr)1339 4799 y Fx(r)1371 4808 y FG(1)1418 4703 y Ft(\001\003)1497 4776 y FK([)1532 4753 y(~)1522 4776 y FB(X)1587 4739 y Fx(\031)1630 4715 y Fr(0)1587 4800 y Fx(r)1621 4781 y Fr(0)1658 4776 y FK(])f(=)1804 4703 y Ft(\002)1842 4776 y FK(Sym)2016 4736 y Fx(a)2053 4745 y FG(1)2016 4802 y FJ(0)2092 4703 y Ft(\000)2144 4753 y FK(~)2134 4776 y FB(X)2199 4739 y FJ(irr)2199 4799 y Fx(r)2231 4808 y FG(1)2278 4703 y Ft(\001\003)2415 4663 y Fx(s)2373 4690 y Ft(Y)2373 4884 y Fx(t)p FJ(=2)2504 4703 y Ft(\002)2542 4776 y FK(Sym)2716 4739 y Fx(a)2753 4747 y Fq(t)2786 4703 y Ft(\000)2837 4753 y FK(~)2827 4776 y FB(X)2892 4739 y FJ(irr)2892 4799 y Fx(r)2924 4807 y Fq(t)2972 4703 y Ft(\001)o(\003)3051 4776 y FD(:)125 5027 y SDict begin H.S end 125 5027 a 125 5027 a SDict begin 13 H.A end 125 5027 a 125 5027 a SDict begin [/View [/XYZ H.V]/Dest (theorem.9.1) cvn /DEST pdfmark end 125 5027 a 0 TeXcolorgray FL(Remark)34 b(9.1.)p 0 TeXcolorgray 42 w FK(In)c(man)m(y)g(cases,)i(the)e(previous)f(factors)j(can)e(b)s(e) g(easily)g(computed)g(using)f(kno)m(wn)125 5135 y(results:)p 0 TeXcolorgray 341 5305 a FC(\017)p 0 TeXcolorgray 41 w FK(The)22 b(motiv)m(e)i(of)e(the)h(symmetric)f(pro)s(duct)g(Sym)2084 5269 y Fx(a)2126 5305 y FK(\()p FD(X)7 b FK(\))23 b(can)g(b)s(e)f (computed)h(from)f(the)h(motiv)m(e)427 5413 y(of)f FD(X)28 b FK(b)m(y)21 b(means)h(of)f(the)g(pleth)m(ystic)g(exp)s(onen)m(tial,)h (PExp)f([)2433 5413 y SDict begin H.S end 2433 5413 a 0 TeXcolorgray FK(4)p 0 TeXcolorgray 2478 5354 a SDict begin H.R end 2478 5354 a 2478 5413 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Feng) cvn H.B /ANN pdfmark end 2478 5413 a FK(].)38 b(T)-8 b(o)22 b(b)s(e)e(precise,)j(if)d(the)i(motiv)m (e)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 34 34 TeXDict begin HPSdict begin 34 33 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.34) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(34)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 427 266 a FK(of)30 b FD(X)37 b FK(is)29 b(generated)i(b)m(y)e(the)h(Lefsc)m(hetz) h(motiv)m(e,)g(w)m(e)f(ha)m(v)m(e)h(the)f(follo)m(wing)e([)3052 266 y SDict begin H.S end 3052 266 a 0 TeXcolorgray FK(7)p 0 TeXcolorgray 3097 207 a SDict begin H.R end 3097 207 a 3097 266 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.Florentino-Nozad-Zamora:2019a) cvn H.B /ANN pdfmark end 3097 266 a FK(,)i(Prop)s(osition)427 374 y(4.6])1236 531 y Fs(1)1205 558 y Ft(X)1207 752 y Fx(a)p FJ(=0)1352 571 y Ft(\002)1390 644 y FK(Sym)1564 607 y Fx(a)1605 644 y FK(\()p FD(X)7 b FK(\))1757 571 y Ft(\003)1796 644 y FD(z)1842 607 y Fx(a)1910 644 y FK(=)25 b(PExp)2243 571 y Ft(\000)2285 644 y FK([)p FD(X)7 b FK(])p FD(z)2463 571 y Ft(\001)2506 644 y FD(;)427 860 y FK(where,)30 b(at)i(the)e(righ)m(t)g(hand)f(side,)h(w)m(e)h(see)g ([)p FD(X)7 b FK(])p FD(z)35 b FK(as)c(a)g(p)s(olynomial)c(in)i Fz(Z)p FK([)p FD(q)s(;)15 b(z)t FK(].)p 0 TeXcolorgray 341 975 a FC(\017)p 0 TeXcolorgray 41 w FK(If)36 b FD(r)565 989 y FJ(1)639 975 y FK(=)f(1,)j(w)m(e)f(ha)m(v)m(e)h(that)e(Sym)1586 939 y Fx(a)1586 998 y FJ(0)1627 901 y Ft(\000)1679 951 y FK(~)1669 975 y FB(X)1734 942 y FJ(irr)1734 999 y(1)1813 901 y Ft(\001)1891 975 y FK(are)g(the)h(totally)f(reducible)e(represen) m(tations)i(of)427 1100 y(rank)29 b FD(a)p FK(.)40 b(By)29 b([)915 1100 y SDict begin H.S end 915 1100 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 1006 1041 a SDict begin H.R end 1006 1041 a 1006 1100 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 1006 1100 a FK(,)g(Prop.)g(5.2],)i (their)c(motiv)m(es)j(are)f FD(q)2246 1067 y Fx(a)p Fs(\000)p FJ(1)2378 1100 y FK(.)40 b(In)28 b(particular,)2999 1026 y Ft(\002)3036 1100 y FK(Sym)3211 1064 y FJ(1)3211 1122 y(0)3250 1026 y Ft(\000)3302 1076 y FK(~)3292 1100 y FB(X)3357 1067 y FJ(irr)3357 1124 y(1)3436 1026 y Ft(\001\003)3541 1100 y FK(=)427 1144 y Ft(\002)465 1217 y FB(X)530 1184 y FJ(irr)530 1242 y(1)609 1144 y Ft(\003)672 1217 y FK(=)d(1.)224 1417 y(With)34 b(these)g(observ)-5 b(ations)34 b(at)h(hand,)f(w)m(e)h (list)d(the)j(motiv)m(es)f(of)g(eac)m(h)i(of)e(the)g(strata)h(of)g(\() 3378 1417 y SDict begin H.S end 3378 1417 a 0 TeXcolorgray FK(41)p 0 TeXcolorgray 3469 1358 a SDict begin H.R end 3469 1358 a 3469 1417 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.9.41) cvn H.B /ANN pdfmark end 3469 1417 a FK(\))f(of)125 1525 y(the)c(rank)g(4)h(case:)p 0 TeXcolorgray 340 1688 a FC(\017)p 0 TeXcolorgray 42 w FK([)p FB(X)517 1655 y FJ(irr)517 1713 y(4)597 1688 y FK(])25 b(=)g([)p FB(M)863 1655 y FJ(irr)863 1713 y(4)943 1688 y FK(])30 b(is)g(computed)g(in)f (\()1650 1688 y SDict begin H.S end 1650 1688 a 0 TeXcolorgray FK(40)p 0 TeXcolorgray 1741 1630 a SDict begin H.R end 1741 1630 a 1741 1688 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (equation.8.40) cvn H.B /ANN pdfmark end 1741 1688 a FK(\).)p 0 TeXcolorgray 340 1819 a FC(\017)p 0 TeXcolorgray 42 w FK(F)-8 b(or)33 b(the)f(partition)f FC(f)p FK(3)p FD(;)15 b FK(1)p FC(g)p FK(,)35 b(b)m(y)d(the)g(commen)m (ts)h(ab)s(o)m(v)m(e,)g(w)m(e)g(ha)m(v)m(e)2757 1745 y Ft(\002)2795 1819 y FB(X)2860 1771 y Fs(f)p FJ(3)p Fx(;)p FJ(1)p Fs(g)2860 1845 y FJ(4)3025 1745 y Ft(\003)3091 1819 y FK(=)28 b([)3225 1795 y(~)3215 1819 y FB(X)3280 1786 y FJ(irr)3280 1843 y(3)3359 1819 y FK(].)46 b(The)427 1927 y(motiv)m(e)37 b(of)f(this)f(space)h(is)f(giv)m(en)h(in)f([)1748 1927 y SDict begin H.S end 1748 1927 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 1839 1868 a SDict begin H.R end 1839 1868 a 1839 1927 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 1839 1927 a FK(,)j(Cor.)e(10.3])i (\([)2393 1927 y SDict begin H.S end 2393 1927 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 2484 1868 a SDict begin H.R end 2484 1868 a 2484 1927 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 2484 1927 a FK(,)g(Prop.)d(10.1])j(sp)s(eci\014es)d(whic)m(h)427 2035 y(strata)j(corresp)s(ond)d(to)h(irreducible)d(represen)m(tations,) 38 b(hence)f(the)f(p)s(olynomials)d(therein)427 2143 y FD(P)485 2157 y FJ(0)525 2143 y FD(;)15 b(P)623 2157 y FJ(5)663 2143 y FD(;)g(P)761 2157 y FJ(6)826 2143 y FK(should)22 b(b)s(e)i(omitted\).)39 b(Let)26 b(us)d(denote)i(for)g (simplicit)m(y)c FD(P)2788 2157 y FJ(1)2854 2143 y FK(=)j(\()p FD(q)12 b FC(\000)c FK(1\)\()p FD(q)3275 2110 y FJ(4)3324 2143 y FK(+)g(4)p FD(q)3492 2110 y FJ(3)3541 2143 y FC(\000)427 2251 y FK(3)p FD(q)516 2218 y FJ(2)576 2251 y FC(\000)20 b FK(15)p FD(q)k FK(+)c(12\),)32 b FD(P)1153 2265 y FJ(2)1218 2251 y FK(=)25 b(\()p FD(q)e FC(\000)d FK(1\)\()p FD(q)1663 2218 y FJ(4)1724 2251 y FK(+)f(2)p FD(q)1903 2218 y FJ(3)1963 2251 y FC(\000)h FK(3)p FD(q)2143 2218 y FJ(2)2203 2251 y FC(\000)g FD(q)j FK(+)d(4\),)31 b FD(P)2643 2265 y FJ(3)2708 2251 y FK(=)25 b(\()p FD(q)f FC(\000)c FK(1\)\()p FD(q)3154 2218 y FJ(2)3214 2251 y FC(\000)g FK(3)p FD(q)k FK(+)19 b(3\),)427 2359 y FD(P)485 2373 y FJ(4)550 2359 y FK(=)25 b(\()p FD(q)f FC(\000)c FK(1\)\()p FD(q)996 2326 y FJ(2)1056 2359 y FC(\000)g FD(q)j FK(+)d(1\).)42 b(Then,)29 b(w)m(e)i(ha)m(v)m(e)h(the)e(follo)m(wing:)p 0 TeXcolorgray 521 2467 a FL({)p 0 TeXcolorgray 42 w FK(If)g FD(n;)15 b(m)25 b FC(\021)g FK(1)p FD(;)15 b FK(5)42 b(\(mo)s(d)30 b(6\),)h(then)1017 2659 y([)1052 2635 y(~)1042 2659 y FB(X)1107 2621 y FJ(irr)1107 2681 y(3)1186 2659 y FK(])26 b(=)1365 2597 y(1)p 1343 2638 91 4 v 1343 2721 a(36)1444 2659 y(\()p FD(m)20 b FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(2\)\()p FD(n)h FC(\000)f FK(1\)\()p FD(n)h FC(\000)f FK(2\))p FD(P)2679 2673 y FJ(1)1323 2876 y FK(+)1423 2815 y(1)p 1423 2855 46 4 v 1423 2939 a(6)1479 2876 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\)\()p FD(n)h FK(+)f FD(m)g FC(\000)g FK(4\))p FD(P)2598 2890 y FJ(3)2638 2876 y FD(:)p 0 TeXcolorgray 521 3056 a FL({)p 0 TeXcolorgray 42 w FK(If)30 b FD(n)25 b FC(\021)g FK(2)p FD(;)15 b FK(4)42 b(\(mo)s(d)30 b(6\))h(and)e FD(m)d FC(\021)e FK(1)p FD(;)15 b FK(5)42 b(\(mo)s(d)30 b(6\),)h(then)1017 3248 y([)1052 3224 y(~)1042 3248 y FB(X)1107 3210 y FJ(irr)1107 3270 y(3)1186 3248 y FK(])26 b(=)1365 3186 y(1)p 1343 3227 91 4 v 1343 3310 a(36)1444 3248 y(\()p FD(m)20 b FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(2\)\()p FD(n)h FC(\000)f FK(1\)\()p FD(n)h FC(\000)f FK(2\))p FD(P)2679 3262 y FJ(1)1323 3466 y FK(+)1423 3404 y(1)p 1423 3445 46 4 v 1423 3528 a(6)1479 3466 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\)\()p FD(n)h FK(+)f FD(m)g FC(\000)g FK(4\))p FD(P)2598 3480 y FJ(3)2638 3466 y FD(:)p 0 TeXcolorgray 521 3645 a FL({)p 0 TeXcolorgray 42 w FK(If)30 b FD(n)25 b FC(\021)g FK(3)41 b(\(mo)s(d)30 b(6\))h(and)f FD(m)25 b FC(\021)g FK(1)p FD(;)15 b FK(5)41 b(\(mo)s(d)30 b(6\),)i(then)679 3837 y([)714 3813 y(~)704 3837 y FB(X)769 3800 y FJ(irr)769 3860 y(3)849 3837 y FK(])25 b(=)1028 3776 y(1)p 1005 3816 91 4 v 1005 3899 a(36)1106 3837 y(\()p FD(m)c FC(\000)e FK(1\)\()p FD(m)j FC(\000)e FK(2\))p FD(n)p FK(\()p FD(n)g FC(\000)g FK(3\))p FD(P)2114 3851 y FJ(1)2175 3837 y FK(+)2276 3776 y(1)p 2276 3816 46 4 v 2276 3899 a(6)2331 3837 y(\()p FD(m)g FC(\000)g FK(1\)\()p FD(m)i FC(\000)d FK(2\))p FD(P)3002 3851 y FJ(2)985 4055 y FK(+)1086 3993 y(1)p 1086 4034 V 1086 4117 a(6)1142 4055 y(\()p FD(m)h FC(\000)g FK(1\)\()p FD(mn)h FK(+)e FD(n)1784 4017 y FJ(2)1844 4055 y FC(\000)h FK(5)p FD(n)g FC(\000)g FD(m)g FC(\000)g FK(2\))p FD(P)2475 4069 y FJ(3)2535 4055 y FK(+)g(\()p FD(m)h FC(\000)f FK(1\))p FD(P)2991 4069 y FJ(4)3031 4055 y FD(:)p 0 TeXcolorgray 521 4235 a FL({)p 0 TeXcolorgray 42 w FK(If)30 b FD(n)25 b FC(\021)g FK(0)41 b(\(mo)s(d)30 b(6\))h(and)f FD(m)25 b FC(\021)g FK(1)p FD(;)15 b FK(5)41 b(\(mo)s(d)30 b(6\),)i(then)679 4426 y([)714 4403 y(~)704 4426 y FB(X)769 4389 y FJ(irr)769 4449 y(3)849 4426 y FK(])25 b(=)1028 4365 y(1)p 1005 4405 91 4 v 1005 4489 a(36)1106 4426 y(\()p FD(m)c FC(\000)e FK(1\)\()p FD(m)j FC(\000)e FK(2\))p FD(n)p FK(\()p FD(n)g FC(\000)g FK(3\))p FD(P)2114 4440 y FJ(1)2175 4426 y FK(+)2276 4365 y(1)p 2276 4405 46 4 v 2276 4489 a(6)2331 4426 y(\()p FD(m)g FC(\000)g FK(1\)\()p FD(m)i FC(\000)d FK(2\))p FD(P)3002 4440 y FJ(2)985 4644 y FK(+)1086 4583 y(1)p 1086 4623 V 1086 4706 a(6)1142 4644 y(\()p FD(m)h FC(\000)g FK(1\)\()p FD(mn)h FK(+)e FD(n)1784 4607 y FJ(2)1844 4644 y FC(\000)h FK(5)p FD(n)g FC(\000)g FD(m)g FC(\000)g FK(2\))p FD(P)2475 4658 y FJ(3)2535 4644 y FK(+)g(\()p FD(m)h FC(\000)f FK(1\))p FD(P)2991 4658 y FJ(4)3031 4644 y FD(:)p 0 TeXcolorgray 521 4824 a FL({)p 0 TeXcolorgray 42 w FK(If)30 b FD(n)25 b FC(\021)g FK(2)p FD(;)15 b FK(4)42 b(\(mo)s(d)30 b(6\))h(and)e FD(m)d FC(\021)e FK(3)41 b(\(mo)s(d)30 b(6\),)i(then)692 5016 y([)727 4992 y(~)717 5016 y FB(X)782 4978 y FJ(irr)782 5038 y(3)862 5016 y FK(])25 b(=)1041 4954 y(1)p 1018 4995 91 4 v 1018 5078 a(36)1119 5016 y FD(m)p FK(\()p FD(m)20 b FC(\000)g FK(3\)\()p FD(n)h FC(\000)f FK(1\)\()p FD(n)h FC(\000)f FK(2\))p FD(P)2127 5030 y FJ(1)2187 5016 y FK(+)2288 4954 y(1)p 2288 4995 46 4 v 2288 5078 a(6)2344 5016 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(n)h FC(\000)f FK(2\))p FD(P)2965 5030 y FJ(2)998 5233 y FK(+)1099 5172 y(1)p 1099 5212 V 1099 5296 a(6)1154 5233 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(mn)h FK(+)f FD(m)1797 5196 y FJ(2)1856 5233 y FC(\000)g FD(n)g FC(\000)g FK(5)p FD(m)g FC(\000)g FK(2\))p FD(P)2487 5247 y FJ(3)2548 5233 y FK(+)g(\()p FD(n)g FC(\000)g FK(1\))p FD(P)2978 5247 y FJ(4)3019 5233 y FD(:)427 5413 y FK(Here)31 b(note)g(that)g(gcd) q(\()p FD(n;)15 b(m)p FK(\))25 b(=)g(1,)31 b(and)f(that)h(w)m(e)g(can)g (in)m(terc)m(hange)g FD(n;)15 b(m)30 b FK(if)f(necessary)-8 b(.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 35 35 TeXDict begin HPSdict begin 35 34 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.35) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(35)p 0 TeXcolorgray 0 TeXcolorgray 340 266 a FC(\017)p 0 TeXcolorgray 42 w FK(The)27 b(partition)f FC(f)p FK(2)1077 233 y FJ(2)1117 266 y FC(g)i FK(corresp)s(onds)e(to)i (represen)m(tations)f(of)g(the)h(form)e FD(\032)g FK(=)e FD(\032)3101 280 y FJ(1)3155 266 y FC(\010)14 b FD(\032)3287 280 y FJ(2)3326 266 y FK(,)28 b(where)427 374 y FD(\032)474 388 y FJ(1)514 374 y FD(;)15 b(\032)601 388 y FJ(2)672 374 y FK(are)31 b(irreducible)d(represen)m(tations)j(of)g(rank)g(2)g (and)g(det)15 b FD(\032)2663 388 y FJ(2)2729 374 y FK(=)26 b(\(det)16 b FD(\032)3050 388 y FJ(1)3089 374 y FK(\))3124 341 y Fs(\000)p FJ(1)3219 374 y FK(.)43 b(There)30 b(is)427 489 y(a)h(lo)s(cally)e(trivial)f(\014bration)h Fz(C)1490 456 y Fs(\003)1561 489 y FC(!)1687 465 y FK(~)1677 489 y FB(X)1742 456 y FJ(irr)1742 513 y(2)1846 489 y FC(!)1972 465 y FK(\026)1962 489 y FB(X)2027 456 y FJ(irr)2027 513 y(2)2107 489 y FK(.)40 b(It)31 b(giv)m(es)f(a)h(\014bration)1390 676 y Fz(C)1450 638 y Fs(\003)1520 676 y FC(!)26 b FB(X)1702 628 y Fs(f)p FJ(2)1772 604 y FG(2)1807 628 y Fs(g)1702 702 y FJ(4)1872 676 y FC(!)f FK(Sym)2162 638 y FJ(2)2212 652 y FK(\026)2202 676 y FB(X)2267 638 y FJ(irr)2267 698 y(2)427 834 y FK(via)20 b(the)h(map)f FD(\032)25 b FC(7!)g FK(\([)p FD(\032)1200 848 y FJ(1)1240 834 y FK(])p FD(;)15 b FK([)p FD(\032)1377 848 y FJ(2)1417 834 y FK(]\).)38 b(The)20 b(\014b)s(er)f(is)g(isomorphic)f(to)j Fz(C)2609 801 y Fs(\003)2675 834 y FK(through)e(the)i(parametriza-)427 942 y(tion)k FD(\025)g FC(7!)g FK(\()p FD(\025\032)938 956 y FJ(1)978 942 y FD(;)15 b(\025)1071 909 y Fs(\000)p FJ(1)1166 942 y FD(\032)1213 956 y FJ(2)1252 942 y FK(\).)39 b(Notice)26 b(that)g(the)f(symmetric)f(pro)s(duct)g(is)f(tak)m(en)j (via)f(the)g(action)427 1051 y(of)31 b Fz(Z)596 1065 y FJ(2)661 1051 y FK(on)g(\()833 1027 y(\026)823 1051 y FB(X)888 1018 y FJ(irr)888 1075 y(2)967 1051 y FK(\))1002 1018 y FJ(2)1073 1051 y FK(b)m(y)f(\()p FD(\032)1281 1065 y FJ(1)1321 1051 y FD(;)15 b(\032)1408 1065 y FJ(2)1448 1051 y FK(\))25 b FC(7!)h FK(\()p FD(\032)1707 1065 y FJ(2)1747 1051 y FD(;)15 b(\032)1834 1065 y FJ(1)1874 1051 y FK(\).)41 b(This)29 b(acts)i(on)g(the)f(\014b)s(er)f(of)i(the)g (\014bration)e(via)427 1159 y FD(\025)d FC(7!)f FD(\025)675 1126 y Fs(\000)p FJ(1)769 1159 y FK(.)41 b(Therefore,)30 b(b)m(y)g(the)h(form)m(ula)f([)1914 1159 y SDict begin H.S end 1914 1159 a 0 TeXcolorgray FK(22)p 0 TeXcolorgray 2005 1100 a SDict begin H.R end 2005 1100 a 2005 1159 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.lomune) cvn H.B /ANN pdfmark end 2005 1159 a FK(,)g(Prop.)g(2.6],)i(w)m(e)f(ha)m(v)m (e)945 1270 y Ft(\002)983 1344 y FB(X)1048 1296 y Fs(f)p FJ(2)1118 1273 y FG(2)1153 1296 y Fs(g)1048 1370 y FJ(4)1193 1270 y Ft(\003)1256 1344 y FK(=)25 b([)p Fz(C)1437 1307 y Fs(\003)1482 1344 y FK(])1507 1307 y FJ(+)1586 1344 y FC(\001)c FK([\()1702 1320 y(\026)1692 1344 y FB(X)1757 1307 y FJ(irr)1757 1367 y(2)1837 1344 y FK(\))1872 1307 y FJ(2)1911 1344 y FK(])1936 1307 y FJ(+)2016 1344 y FK(+)f([)p Fz(C)2192 1307 y Fs(\003)2237 1344 y FK(])2262 1307 y Fs(\000)2342 1344 y FC(\001)g FK([\()2457 1320 y(\026)2447 1344 y FB(X)2512 1307 y FJ(irr)2512 1367 y(2)2592 1344 y FK(\))2627 1307 y FJ(2)2667 1344 y FK(])2692 1307 y Fs(\000)2766 1344 y FD(:)427 1508 y FK(Here,)30 b(for)f FD(X)36 b FK(an)29 b(algebraic)f(v)-5 b(ariet)m(y)30 b(with)d(a)i Fz(Z)2066 1522 y FJ(2)2101 1508 y FK(-action,)h(w)m(e)g (denote)f([)p FD(X)7 b FK(])2984 1475 y FJ(+)3069 1508 y FK(=)25 b([)p FD(X=)p Fz(Z)3375 1522 y FJ(2)3411 1508 y FK(])k(and)427 1616 y([)p FD(X)7 b FK(])559 1583 y Fs(\000)645 1616 y FK(=)24 b([)p FD(X)7 b FK(])22 b FC(\000)e FK([)p FD(X)7 b FK(])1117 1583 y FJ(+)1177 1616 y FK(.)40 b(By)31 b([)1410 1616 y SDict begin H.S end 1410 1616 a 0 TeXcolorgray FK(22)p 0 TeXcolorgray 1501 1557 a SDict begin H.R end 1501 1557 a 1501 1616 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.lomune) cvn H.B /ANN pdfmark end 1501 1616 a FK(,)g(Eqn.)f(\(1\)],)h(w)m(e)g(ha)m(v)m(e)h([)p Fz(C)2398 1583 y Fs(\003)2443 1616 y FK(])2468 1583 y FJ(+)2553 1616 y FK(=)25 b FD(q)33 b FK(and)d([)p Fz(C)2985 1583 y Fs(\003)3030 1616 y FK(])3055 1583 y Fs(\000)3140 1616 y FK(=)25 b FC(\000)p FK(1.)527 1724 y(The)30 b(motiv)m(e)h(of) 1125 1701 y(\026)1115 1724 y FB(X)1180 1691 y FJ(irr)1180 1749 y(2)1290 1724 y FK(is)e(pro)m(vided)g(in)g([)1886 1724 y SDict begin H.S end 1886 1724 a 0 TeXcolorgray FK(28)p 0 TeXcolorgray 1977 1666 a SDict begin H.R end 1977 1666 a 1977 1724 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.MP) cvn H.B /ANN pdfmark end 1977 1724 a FK(,)i(Prop.)f(7.2])i (and)d(it)h(is)g(giv)m(en)g(b)m(y)734 1967 y([)769 1943 y(\026)759 1967 y FB(X)824 1929 y FJ(irr)824 1989 y(2)903 1967 y FK(])25 b(=)1049 1811 y Ft(\()1174 1867 y FJ(\()p Fx(n)p Fs(\000)p FJ(1\)\()p Fx(m)p Fs(\000)p FJ(1\))p 1174 1891 396 4 v 1354 1943 a(4)1579 1911 y FK(\()p FD(q)f FC(\000)c FK(2\))638 b(if)30 b FD(n;)15 b(m)30 b FK(o)s(dd,)1174 1994 y FJ(\()p Fx(n)p Fs(\000)p FJ(2\)\()p Fx(m)p Fs(\000)p FJ(1\))p 1174 2018 V 1354 2070 a(4)1579 2038 y FK(\()p FD(q)24 b FC(\000)c FK(2\))h(+)1972 2003 y Fx(m)p Fs(\000)p FJ(1)p 1972 2018 153 4 v 2030 2070 a(2)2134 2038 y FK(\()p FD(q)j FC(\000)19 b FK(1\))84 b(if)30 b FD(n)g FK(ev)m(en.)527 2207 y(By)h([)695 2207 y SDict begin H.S end 695 2207 a 0 TeXcolorgray FK(12)p 0 TeXcolorgray 786 2149 a SDict begin H.R end 786 2149 a 786 2207 a SDict begin [/Color [0 1 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (cite.GLM) cvn H.B /ANN pdfmark end 786 2207 a FK(],)g(the)f(symmetric)g(pro)s(duct)f(is)h(an)g(op)s(eration)g(on)g (the)h(Grothendiec)m(k)f(ring.)40 b(By)427 2315 y(Remark)773 2315 y SDict begin H.S end 773 2315 a 0 TeXcolorgray FK(9.1)p 0 TeXcolorgray 889 2257 a SDict begin H.R end 889 2257 a 889 2315 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.9.1) cvn H.B /ANN pdfmark end 889 2315 a FK(,)34 b(if)e(w)m(e)i(see) g([)p FD(X)7 b FK(])34 b(as)f(a)h(p)s(olynomial)d(in)h FD(q)k FK(denoted)d(b)m(y)g([)p FD(X)7 b FK(])16 b(\()p FD(q)s FK(\),)35 b(w)m(e)f(ha)m(v)m(e)g(the)427 2423 y(form)m(ula)1083 2564 y(Sym)1257 2527 y FJ(2)1297 2564 y FK(\([)p FD(X)7 b FK(])16 b(\()p FD(q)s FK(\)\))26 b(=)1761 2503 y(1)p 1761 2543 46 4 v 1761 2627 a(2)1832 2564 y([)p FD(X)7 b FK(])16 b(\()p FD(q)2059 2527 y FJ(2)2099 2564 y FK(\))k(+)2255 2503 y(1)p 2255 2543 V 2255 2627 a(2)2326 2564 y([)p FD(X)7 b FK(])16 b(\()p FD(q)s FK(\))2588 2527 y FJ(2)2628 2564 y FD(;)427 2730 y FK(Hence)31 b(for)g FD(n;)15 b(m)30 b FK(o)s(dd)f(w)m(e)i(ha)m(v)m(e)268 2870 y Ft(\002)306 2943 y FK(\()351 2920 y(\026)341 2943 y FB(X)406 2906 y FJ(irr)406 2966 y(2)486 2943 y FK(\))521 2906 y FJ(2)561 2870 y Ft(\003)599 2892 y FJ(+)683 2943 y FK(=)779 2870 y Ft(\002)817 2943 y FK(Sym)991 2906 y FJ(2)1030 2943 y FK(\()1075 2920 y(\026)1065 2943 y FB(X)1130 2906 y FJ(irr)1130 2966 y(2)1210 2943 y FK(\))1245 2870 y Ft(\003)1308 2943 y FK(=)1414 2882 y(\()p FD(m)21 b FC(\000)f FK(1\))1721 2849 y FJ(2)1761 2882 y FK(\()p FD(n)g FC(\000)g FK(1\))2042 2849 y FJ(2)p 1414 2922 668 4 v 1703 3006 a FK(32)2092 2943 y(\()p FD(q)j FC(\000)d FK(2\))2362 2906 y FJ(2)2423 2943 y FK(+)2524 2882 y(\()p FD(m)g FC(\000)g FK(1\)\()p FD(n)h FC(\000)f FK(1\))p 2524 2922 589 4 v 2795 3006 a(8)3123 2943 y(\()p FD(q)3202 2906 y FJ(2)3261 2943 y FC(\000)g FK(2\))p FD(;)268 3058 y Ft(\002)306 3132 y FK(\()351 3108 y(\026)341 3132 y FB(X)406 3095 y FJ(irr)406 3155 y(2)486 3132 y FK(\))521 3095 y FJ(2)561 3058 y Ft(\003)599 3081 y Fs(\000)683 3132 y FK(=)779 3058 y Ft(\002)817 3132 y FK(\()862 3108 y(\026)852 3132 y FB(X)917 3095 y FJ(irr)917 3155 y(2)996 3132 y FK(\))1031 3095 y FJ(2)1071 3058 y Ft(\003)1129 3132 y FC(\000)1220 3058 y Ft(\002)1258 3132 y FK(\()1303 3108 y(\026)1293 3132 y FB(X)1358 3095 y FJ(irr)1358 3155 y(2)1437 3132 y FK(\))1472 3095 y FJ(2)1512 3058 y Ft(\003)1550 3081 y FJ(+)683 3341 y FK(=)25 b FC(\000)860 3280 y FK(\()p FD(n)20 b FC(\000)f FK(1\))1140 3247 y FJ(2)1181 3280 y FK(\()p FD(m)h FC(\000)g FK(1\))1487 3247 y FJ(2)p 860 3320 668 4 v 1148 3404 a FK(32)1537 3341 y(\()p FD(q)k FC(\000)c FK(2\))1808 3304 y FJ(2)1868 3341 y FK(+)1969 3280 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\))p 1969 3320 589 4 v 2241 3404 a(8)2568 3341 y(\()p FC(\000)p FD(q)2718 3304 y FJ(2)2777 3341 y FK(+)g(2)p FD(q)k FC(\000)c FK(2\))p FD(;)372 3503 y Ft(\002)410 3576 y FB(X)475 3528 y Fs(f)p FJ(2)545 3505 y FG(2)580 3528 y Fs(g)475 3602 y FJ(4)620 3503 y Ft(\003)683 3576 y FK(=)789 3515 y(\()p FD(m)g FC(\000)g FK(1\))1095 3482 y FJ(2)1135 3515 y FK(\()p FD(n)g FC(\000)g FK(1\))1416 3482 y FJ(2)p 789 3555 668 4 v 1077 3639 a FK(32)1467 3576 y(\()p FD(q)1546 3539 y FJ(3)1605 3576 y FC(\000)g FK(3)p FD(q)1785 3539 y FJ(2)1845 3576 y FK(+)g(4\))h(+)2138 3515 y(\()p FD(m)f FC(\000)g FK(1\)\()p FD(n)h FC(\000)f FK(1\))p 2138 3555 589 4 v 2410 3639 a(8)2737 3576 y(\()p FD(q)2816 3539 y FJ(3)2876 3576 y FK(+)g FD(q)3011 3539 y FJ(2)3070 3576 y FC(\000)g FK(4)p FD(q)k FK(+)19 b(2\))p FD(;)427 3760 y FK(and)30 b(for)g FD(n)g FK(ev)m(en)h(and)f FD(m)g FK(o)s(dd,)245 3901 y Ft(\002)282 3974 y FK(\()327 3951 y(\026)317 3974 y FB(X)382 3937 y FJ(irr)382 3997 y(2)462 3974 y FK(\))497 3937 y FJ(2)537 3901 y Ft(\003)575 3923 y FJ(+)659 3974 y FK(=)745 3901 y Ft(\002)783 3974 y FK(Sym)957 3937 y FJ(2)996 3974 y FK(\()1041 3951 y(\026)1031 3974 y FB(X)1096 3937 y FJ(irr)1096 3997 y(2)1176 3974 y FK(\))1211 3901 y Ft(\003)1274 3974 y FK(=)1380 3913 y(\()p FD(m)21 b FC(\000)f FK(1\))1687 3880 y FJ(2)1727 3913 y FK(\()p FD(n)g FC(\000)g FK(1\))2008 3880 y FJ(2)p 1380 3953 668 4 v 1669 4037 a FK(32)2058 3974 y(\()p FD(q)j FC(\000)d FK(2\))2328 3937 y FJ(2)2389 3974 y FK(+)2490 3913 y(\()p FD(m)g FC(\000)g FK(1\)\()p FD(n)h FC(\000)f FK(1\))p 2490 3953 589 4 v 2761 4037 a(8)3089 3974 y(\()p FD(q)3168 3937 y FJ(2)3227 3974 y FC(\000)g FK(2\))750 4209 y(+)851 4148 y(\()p FD(m)g FC(\000)g FK(1\))1157 4115 y FJ(2)p 851 4188 347 4 v 1001 4272 a FK(8)1207 4209 y(\()p FD(q)k FC(\000)c FK(1\))1478 4172 y FJ(2)1538 4209 y FK(+)1639 4148 y FD(m)g FC(\000)g FK(1)p 1639 4188 237 4 v 1734 4272 a(4)1885 4209 y(\()p FD(q)1964 4172 y FJ(2)2024 4209 y FC(\000)g FK(1\))h(+)2317 4148 y(\()p FD(n)f FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\))2905 4115 y FJ(2)p 2317 4188 629 4 v 2608 4272 a FK(8)2955 4209 y(\()p FD(q)3034 4172 y FJ(2)3094 4209 y FC(\000)g FK(3)p FD(q)j FK(+)d(2\))p FD(;)245 4371 y Ft(\002)282 4444 y FK(\()327 4420 y(\026)317 4444 y FB(X)382 4407 y FJ(irr)382 4467 y(2)462 4444 y FK(\))497 4407 y FJ(2)537 4371 y Ft(\003)575 4393 y Fs(\000)659 4444 y FK(=)g FC(\000)851 4383 y FK(\()p FD(n)g FC(\000)g FK(1\))1132 4350 y FJ(2)1172 4383 y FK(\()p FD(m)g FC(\000)g FK(1\))1478 4350 y FJ(2)p 851 4423 668 4 v 1139 4506 a FK(32)1528 4444 y(\()p FD(q)k FC(\000)c FK(2\))1799 4407 y FJ(2)1859 4444 y FK(+)1960 4383 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\))p 1960 4423 589 4 v 2232 4506 a(8)2559 4444 y(\()p FC(\000)p FD(q)2709 4407 y FJ(2)2769 4444 y FK(+)f(2)p FD(q)24 b FC(\000)c FK(2\))750 4679 y FC(\000)851 4618 y FK(\()p FD(m)g FC(\000)g FK(1\))1157 4585 y FJ(2)p 851 4658 347 4 v 1001 4741 a FK(8)1207 4679 y(\()p FD(q)k FC(\000)c FK(1\))1478 4642 y FJ(2)1538 4679 y FC(\000)1639 4618 y FD(m)g FC(\000)g FK(1)p 1639 4658 237 4 v 1734 4741 a(4)1885 4679 y(\()p FD(q)k FC(\000)c FK(1\))2156 4642 y FJ(2)2216 4679 y FC(\000)2317 4618 y FK(\()p FD(n)g FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\))2905 4585 y FJ(2)p 2317 4658 629 4 v 2608 4741 a FK(8)2955 4679 y(\()p FD(q)3034 4642 y FJ(2)3094 4679 y FC(\000)g FK(3)p FD(q)j FK(+)d(2\))p FD(;)348 4840 y Ft(\002)386 4914 y FB(X)451 4866 y Fs(f)p FJ(2)521 4843 y FG(2)556 4866 y Fs(g)451 4940 y FJ(4)596 4840 y Ft(\003)659 4914 y FK(=)755 4853 y(\()p FD(m)g FC(\000)g FK(1\))1061 4820 y FJ(2)1101 4853 y FK(\()p FD(n)g FC(\000)g FK(1\))1382 4820 y FJ(2)p 755 4893 668 4 v 1043 4976 a FK(32)1433 4914 y(\()p FD(q)1512 4876 y FJ(3)1571 4914 y FC(\000)g FK(3)p FD(q)1751 4876 y FJ(2)1811 4914 y FK(+)g(4\))h(+)2104 4853 y(\()p FD(m)f FC(\000)g FK(1\)\()p FD(n)h FC(\000)f FK(1\))p 2104 4893 589 4 v 2376 4976 a(8)2703 4914 y(\()p FD(q)2782 4876 y FJ(3)2842 4914 y FK(+)g FD(q)2977 4876 y FJ(2)3036 4914 y FC(\000)g FK(4)p FD(q)k FK(+)19 b(2\))750 5149 y(+)851 5087 y(\()p FD(m)h FC(\000)g FK(1\))1157 5054 y FJ(2)p 851 5128 347 4 v 1001 5211 a FK(8)1207 5149 y(\()p FD(q)1286 5111 y FJ(3)1346 5149 y FC(\000)g FD(q)1481 5111 y FJ(2)1540 5149 y FC(\000)g FD(q)j FK(+)d(1\))h(+)1988 5087 y FD(m)f FC(\000)g FK(1)p 1988 5128 237 4 v 2084 5211 a(4)2235 5149 y(\()p FD(q)2314 5111 y FJ(3)2373 5149 y FK(+)g FD(q)2508 5111 y FJ(2)2568 5149 y FC(\000)g FK(3)p FD(q)j FK(+)d(1\))750 5384 y(+)851 5322 y(\()p FD(n)g FC(\000)g FK(1\)\()p FD(m)h FC(\000)f FK(1\))1439 5289 y FJ(2)p 851 5363 629 4 v 1142 5446 a FK(8)1489 5384 y(\()p FD(q)1568 5346 y FJ(3)1628 5384 y FC(\000)g FK(2)p FD(q)1808 5346 y FJ(2)1868 5384 y FC(\000)g FD(q)j FK(+)d(2\))p FD(:)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 36 36 TeXDict begin HPSdict begin 36 35 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.36) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 125 66 a FJ(36)1195 50 y(\023)1186 66 y(A.)23 b(GONZ)1497 50 y(\023)1488 66 y(ALEZ-PRIETO)h(AND)f(V.)g(MU) 2409 50 y(~)2400 66 y(NOZ)p 0 TeXcolorgray 0 TeXcolorgray 340 266 a FC(\017)p 0 TeXcolorgray 42 w FK(F)-8 b(or)31 b(the)g(partition)1126 192 y Ft(\010)1179 266 y FK(2)p FD(;)15 b FK(1)1309 233 y FJ(2)1350 192 y Ft(\011)1403 266 y FK(,)30 b(w)m(e)h(ha)m(v)m(e)h(that)1121 385 y Ft(\002)1158 459 y FB(X)1223 411 y Fs(f)p FJ(2)p Fx(;)p FJ(1)1348 388 y FG(2)1384 411 y Fs(g)1223 485 y FJ(4)1423 385 y Ft(\003)1486 459 y FK(=)1582 385 y Ft(\002)1620 459 y FK(Sym)1795 421 y FJ(2)1795 481 y(0)1834 385 y Ft(\000)1886 435 y FK(~)1876 459 y FB(X)1941 421 y FJ(irr)1941 481 y(1)2020 385 y Ft(\001)o(\003)2114 459 y FK([)2149 435 y(~)2139 459 y FB(X)2204 473 y FJ(2)2245 459 y FK(])25 b(=)g FD(q)s FK([)2470 435 y(~)2460 459 y FB(X)2525 473 y FJ(2)2565 459 y FK(])p FD(:)p 0 TeXcolorgray 340 626 a FC(\017)p 0 TeXcolorgray 42 w FK(The)30 b(partition)993 552 y Ft(\010)1046 626 y FK(1)1091 593 y FJ(4)1131 552 y Ft(\011)1184 626 y FK(,)h(w)m(e)g(directly)e(ha)m(v)m(e)i(that)1610 746 y Ft(\002)1648 819 y FB(X)1713 772 y Fs(f)p FJ(1)1783 748 y FG(4)1819 772 y Fs(g)1713 845 y FJ(4)1858 746 y Ft(\003)1921 819 y FK(=)25 b FD(q)2061 782 y FJ(3)2100 819 y FD(:)224 988 y FK(Putting)30 b(all)f(these)i(con)m(tribution)e (together,)j(this)d(completes)i(the)f(pro)s(of)g(of)h(Theorem)3299 988 y SDict begin H.S end 3299 988 a 0 TeXcolorgray FK(1.1)p 0 TeXcolorgray 3415 929 a SDict begin H.R end 3415 929 a 3415 988 a SDict begin [/Color [1 0 0]/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Subtype /Link/Dest (theorem.1.1) cvn H.B /ANN pdfmark end 3415 988 a FK(.)1603 1241 y SDict begin H.S end 1603 1241 a 1603 1241 a SDict begin 13 H.A end 1603 1241 a 1603 1241 a SDict begin [/View [/XYZ H.V]/Dest (section*.2) cvn /DEST pdfmark end 1603 1241 a FE(References)125 1295 y SDict begin H.S end 125 1295 a 125 1295 a SDict begin 11 H.A end 125 1295 a 125 1295 a SDict begin [/View [/XYZ H.V]/Dest (cite.Corlette:1988) cvn /DEST pdfmark end 125 1295 a 0 TeXcolorgray 163 1386 a FI([1])p 0 TeXcolorgray 39 w(K.)26 b(Corlette,)h Fy(Flat)h FF(G)p Fy(-bund)t(les)h(with)f(c)l(anonic)l(al)g(metrics)p FI(,)f(J.)f(Di\013.)g(Geom.)g Fd(28)g FI(\(1988\))h(361{382.)125 1405 y SDict begin H.S end 125 1405 a 125 1405 a SDict begin 11 H.A end 125 1405 a 125 1405 a SDict begin [/View [/XYZ H.V]/Dest (cite.CS) cvn /DEST pdfmark end 125 1405 a 0 TeXcolorgray 163 1477 a FI([2])p 0 TeXcolorgray 39 w(M.)35 b(Culler)h(and)e(P)-6 b(.)34 b(Shalen,)j Fy(V)-6 b(arieties)37 b(of)e(gr)l(oup)i(r)l(epr)l(esentations)i(and)d (splitting)g(of)f FI(3)p Fy(-manifolds)p FI(,)j(Annals)282 1569 y(Math.)27 b(\(2\))e Fd(117)i FI(\(1983\))f(109{146.)125 1587 y SDict begin H.S end 125 1587 a 125 1587 a SDict begin 11 H.A end 125 1587 a 125 1587 a SDict begin [/View [/XYZ H.V]/Dest (cite.Falbel:2014) cvn /DEST pdfmark end 125 1587 a 0 TeXcolorgray 163 1660 a FI([3])p 0 TeXcolorgray 39 w(E.)31 b(F)-6 b(alb)r(el,)33 b(A.)d(Guilloux,)j(P)-6 b(.-V.)30 b(Kosele\013,)i(F.)f(Rouillier)h(and)e(M.)h(Thistleth)n(w)n (aite,)i Fy(Char)l(acter)h(varieties)f(for)282 1751 y FI(SL\(3)p FF(;)13 b Fc(C)g FI(\))p Fy(:)41 b(The)28 b(\014gur)l(e)h(eight)f(knot)p FI(,)f(Exp)r(erimen)n(tal)e(Mathematics) h(\(2\),)g Fd(25)g FI(\(2016\))h(17.)125 1770 y SDict begin H.S end 125 1770 a 125 1770 a SDict begin 11 H.A end 125 1770 a 125 1770 a SDict begin [/View [/XYZ H.V]/Dest (cite.Feng) cvn /DEST pdfmark end 125 1770 a 0 TeXcolorgray 163 1843 a FI([4])p 0 TeXcolorgray 39 w(B.)20 b(F)-6 b(eng,)20 b(A.)e(Hanan)n(y)f(and)i(Y.-H.)e(He,)j Fy(Counting)i(gauge)g (invariants:)33 b(the)22 b(plethystic)g(pr)l(o)l(gr)l(am)p FI(,)g(J.)d(High)f(Energy)282 1934 y(Ph)n(ys.,)26 b(JHEP03)h(\(2007\))g (090.)125 1953 y SDict begin H.S end 125 1953 a 125 1953 a SDict begin 11 H.A end 125 1953 a 125 1953 a SDict begin [/View [/XYZ H.V]/Dest (cite.Florentino-Lawton:2012) cvn /DEST pdfmark end 125 1953 a 0 TeXcolorgray 163 2025 a FI([5])p 0 TeXcolorgray 39 w(C.)h(Floren)n(tino)g(and)f(S.)g(La)n(wton,)h Fy(Singularities)h(of)g(fr)l(e)l(e)g(gr)l(oup)h(char)l(acter)h (varieties)p FI(,)e(P)n(ac.)f(J.)g(Math.)g(\(1\))f Fd(260)282 2117 y FI(\(2012\))g(149{179.)125 2135 y SDict begin H.S end 125 2135 a 125 2135 a SDict begin 11 H.A end 125 2135 a 125 2135 a SDict begin [/View [/XYZ H.V]/Dest (cite.Florentino-Nozad-Zamora:2019) cvn /DEST pdfmark end 125 2135 a 0 TeXcolorgray 163 2208 a FI([6])p 0 TeXcolorgray 39 w(C.)32 b(Floren)n(tino,)g(A.)f (Nozad)f(and)g(A.)h(Zamora,)h FF(E)t Fy(-p)l(olynomials)g(of)g FI(SL)2408 2216 y Fq(n)2451 2208 y Fy(-)g(and)h FI(PGL)2824 2216 y Fq(n)2867 2208 y Fy(-char)l(acter)i(varieties)e(of)282 2299 y(fr)l(e)l(e)28 b(gr)l(oups)p FI(,)g(J.)e(Geom.)g(Ph)n(ys.)g Fd(161)g FI(\(2021\).)125 2318 y SDict begin H.S end 125 2318 a 125 2318 a SDict begin 11 H.A end 125 2318 a 125 2318 a SDict begin [/View [/XYZ H.V]/Dest (cite.Florentino-Nozad-Zamora:2019a) cvn /DEST pdfmark end 125 2318 a 0 TeXcolorgray 163 2391 a FI([7])p 0 TeXcolorgray 39 w(C.)38 b(Floren)n(tino,)j(A.)c (Nozad)g(and)f(A.)h(Zamora,)j Fy(Gener)l(ating)g(series)f(for)f(the)h FF(E)t Fy(-p)l(olynomials)f(of)g FI(GL\()p FF(n;)13 b Fc(C)g FI(\))p Fy(-)282 2482 y(char)l(acter)31 b(varieties)p FI(,)c(to)f(app)r(ear)g(in)f(Math.)i(Nac)n(hr.,)1882 2482 y SDict begin H.S end 1882 2482 a 0 TeXcolorgray FI(arXiv:1912.05852)p 0 TeXcolorgray 2459 2431 a SDict begin H.R end 2459 2431 a 2459 2482 a SDict begin [/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Color [0 1 1]/Action <</Subtype/URI/URI(http://arxiv.org/abs/1912.05852)>>/Subtype /Link H.B /ANN pdfmark end 2459 2482 a FI(.)125 2497 y SDict begin H.S end 125 2497 a 125 2497 a SDict begin 11 H.A end 125 2497 a 125 2497 a SDict begin [/View [/XYZ H.V]/Dest (cite.GP:2018) cvn /DEST pdfmark end 125 2497 a 0 TeXcolorgray 163 2576 a FI([8])p 0 TeXcolorgray 292 2557 a(\023)282 2576 y(A.)18 b(Gonz\023)-38 b(alez-Prieto,)22 b Fy(Pseudo-quotients)i(of)c(algebr)l(aic)h(actions)h (and)f(their)g(applic)l(ation)g(to)g(char)l(acter)i(varieties)p FI(,)282 2667 y SDict begin H.S end 282 2667 a 0 TeXcolorgray FI(arXiv:1807.08540)p 0 TeXcolorgray 859 2616 a SDict begin H.R end 859 2616 a 859 2667 a SDict begin [/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Color [0 1 1]/Action <</Subtype/URI/URI(http://arxiv.org/abs/1807.08540)>>/Subtype /Link H.B /ANN pdfmark end 859 2667 a FI(.)125 2667 y SDict begin H.S end 125 2667 a 125 2667 a SDict begin 11 H.A end 125 2667 a 125 2667 a SDict begin [/View [/XYZ H.V]/Dest (cite.GP-2019) cvn /DEST pdfmark end 125 2667 a 0 TeXcolorgray 163 2758 a FI([9])p 0 TeXcolorgray 292 2739 a(\023)282 2758 y(A.)j(Gonz\023)-38 b(alez-Prieto,)28 b Fy(Virtual)f(classes)i(of)e(p)l(ar)l(ab)l(olic)h FI(SL)1984 2766 y FG(2)2018 2758 y FI(\()p Fc(C)13 b FI(\))p Fy(-)q(char)m(act)q(er)34 b(varieties)p FI(,)27 b(Adv.)d(Math.)i Fd(368)g FI(\(2020\))282 2850 y(107{148.)125 2850 y SDict begin H.S end 125 2850 a 125 2850 a SDict begin 11 H.A end 125 2850 a 125 2850 a SDict begin [/View [/XYZ H.V]/Dest (cite.GPLM-2017) cvn /DEST pdfmark end 125 2850 a 0 TeXcolorgray 91 x FI([10])p 0 TeXcolorgray 292 2922 a(\023)282 2941 y(A.)g(Gonz\023)-38 b(alez-Prieto,)29 b(M.)e(Logares)g(and)f(V.)g(Mu)r(~)-41 b(noz,)28 b Fy(A)f(lax)h (monoidal)g(Top)l(olo)l(gic)l(al)g(Quantum)h(Field)e(The)l(ory)282 3032 y(for)h(r)l(epr)l(esentation)j(varieties)p FI(,)c(Bulletin)f (Sciences)g(Math.)h Fd(161)f FI(\(2020\),)h(102871.)125 3051 y SDict begin H.S end 125 3051 a 125 3051 a SDict begin 11 H.A end 125 3051 a 125 3051 a SDict begin [/View [/XYZ H.V]/Dest (cite.GPMScript) cvn /DEST pdfmark end 125 3051 a 0 TeXcolorgray 79 x FI([11])p 0 TeXcolorgray 292 3111 a(\023)282 3130 y(A.)f(Gonz\023)-38 b(alez-Prieto)28 b(and)d(V.)g(Mu)r(~)-41 b(noz,)28 b(SL)1567 3138 y FG(4)1602 3130 y Fy(-torus)h(knots)g(c)l(ounter)p FI(,)f(2020.)g(Av)l(ailable)e (online:)282 3240 y SDict begin H.S end 282 3240 a 0 TeXcolorgray -19 x FI(h)n (ttp://agt.cie.uma.es/)1029 3216 y Fr(\030)1080 3221 y FI(vicen)n(te.m)n(unoz/T)-6 b(orusKnotsCoun)n(ter.zip)p 0 TeXcolorgray 2376 3165 a SDict begin H.R end 2376 3165 a 2376 3221 a SDict begin [/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Color [0 1 1]/Action <</Subtype/URI/URI(http://agt.cie.uma.es/~vicente.munoz/TorusKnotsCounter.ipynb)>>/Subtype /Link H.B /ANN pdfmark end 2376 3221 a 25 w FI(\(soft)n(w)n(are\))282 3331 y SDict begin H.S end 282 3331 a 0 TeXcolorgray -18 x FI(h)n(ttps://gith)n (ub.com/AngelGonzalezPrieto/T)g(orusKnotsCoun)n(ter.git)p 0 TeXcolorgray 2481 3257 a SDict begin H.R end 2481 3257 a 2481 3313 a SDict begin [/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Color [0 1 1]/Action <</Subtype/URI/URI(https://github.com/AngelGonzalezPrieto/TorusKnotsCounter.git)>>/Subtype /Link H.B /ANN pdfmark end 2481 3313 a 26 w FI(\(GitHub)24 b(rep)r(ository\))282 3423 y SDict begin H.S end 282 3423 a 0 TeXcolorgray -19 x FI(h)n(ttp://agt.cie.uma.es/)1029 3399 y Fr(\030)1080 3404 y FI(vicen)n(te.m)n(unoz/T)-6 b(orusKnotsStrataRank4.p)r(df)p 0 TeXcolorgray 2543 3348 a SDict begin H.R end 2543 3348 a 2543 3404 a SDict begin [/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Color [0 1 1]/Action <</Subtype/URI/URI(http://agt.cie.uma.es/~vicente.munoz/TorusKnotsStrataRank4.pdf)>>/Subtype /Link H.B /ANN pdfmark end 2543 3404 a 26 w FI(\(output\).)125 3423 y SDict begin H.S end 125 3423 a 125 3423 a SDict begin 11 H.A end 125 3423 a 125 3423 a SDict begin [/View [/XYZ H.V]/Dest (cite.GLM) cvn /DEST pdfmark end 125 3423 a 0 TeXcolorgray 72 x FI([12])p 0 TeXcolorgray 39 w(S.M.)20 b(Gusein-Zade,)g(I.)f(Luengo)g(and)g(A.)f(Melle-Hern\023)-38 b(andez,)21 b Fb(On)d(the)h(p)r(o)n(w)n(er)g(structure)g(o)n(v)n(er)f (the)h(Grothendiec)n(k)282 3587 y(ring)26 b(of)h(v)l(arieties)f(and)g (its)g(applications)p FI(,)h(Pro)r(c.)g(Steklo)n(v)e(Institute)g(Math.) h Fd(258)g FI(\(2007\))h(53{64.)125 3605 y SDict begin H.S end 125 3605 a 125 3605 a SDict begin 11 H.A end 125 3605 a 125 3605 a SDict begin [/View [/XYZ H.V]/Dest (cite.hausel-thaddeus) cvn /DEST pdfmark end 125 3605 a 0 TeXcolorgray 73 x FI([13])p 0 TeXcolorgray 39 w(T.)38 b(Hausel)f(and)f(M.)h (Thaddeus,)j Fy(Mirr)l(or)e(symmetry,)j(L)l(anglands)e(duality)f(and)g (Hitchin)f(systems)p FI(,)42 b(In)n(v)n(en)n(t.)282 3769 y(Math.)27 b Fd(153)f FI(\(2003\))h(197{229.)125 3788 y SDict begin H.S end 125 3788 a 125 3788 a SDict begin 11 H.A end 125 3788 a 125 3788 a SDict begin [/View [/XYZ H.V]/Dest (cite.Hausel-Letellier-Villegas:2013) cvn /DEST pdfmark end 125 3788 a 0 TeXcolorgray 73 x FI([14])p 0 TeXcolorgray 39 w(T.)k(Hausel,)g(E.)f (Letellier)g(and)g(F.)f(Ro)r(dr)-9 b(\023)-30 b(\020guez-Villegas,)34 b Fy(A)n(rithmetic)e(harmonic)f(analysis)h(on)f(char)l(acter)j(and)282 3952 y(quiver)29 b(varieties)f(II)p FI(,)e(Adv.)e(Math.)i Fd(234)h FI(\(2013\))g(85{128.)125 3971 y SDict begin H.S end 125 3971 a 125 3971 a SDict begin 11 H.A end 125 3971 a 125 3971 a SDict begin [/View [/XYZ H.V]/Dest (cite.Hausel-Rodriguez-Villegas:2008) cvn /DEST pdfmark end 125 3971 a 0 TeXcolorgray 72 x FI([15])p 0 TeXcolorgray 39 w(T.)39 b(Hausel)g(and)f(F.)h(Ro)r(dr) -9 b(\023)-30 b(\020guez-Villegas,)44 b Fy(Mixe)l(d)c(Ho)l(dge)g(p)l (olynomials)f(of)g(char)l(acter)i(varieties.)f(With)f(an)282 4134 y(app)l(endix)29 b(by)f(Nicholas)g(M.)f(Katz)p FI(,)g(In)n(v)n(en) n(t.)d(Math.)i Fd(174)g FI(\(2008\))h(555{624.)125 4153 y SDict begin H.S end 125 4153 a 125 4153 a SDict begin 11 H.A end 125 4153 a 125 4153 a SDict begin [/View [/XYZ H.V]/Dest (cite.HMP) cvn /DEST pdfmark end 125 4153 a 0 TeXcolorgray 73 x FI([16])p 0 TeXcolorgray 39 w(M.)d(Heusener,)g (V.)f(Mu)r(~)-41 b(noz)24 b(and)f(J.)h(P)n(orti,)h Fy(The)g FI(SL\(3)p FF(;)13 b Fc(C)g FI(\))p Fy(-c)q(har)l(a)q(cte)q(r)31 b(variety)c(of)e(the)h(\014gur)l(e)g(eight)g(knot)p FI(,)f(Illinois)282 4317 y(Jour.)i(Math.)f Fd(60)g FI(\(2017\))h(55{98.)h(Sp)r(ecial)e (issue)h("Collection)h(of)e(Articles)h(in)e(Honor)h(of)g(W)-6 b(olfgang)27 b(Hak)n(en".)125 4336 y SDict begin H.S end 125 4336 a 125 4336 a SDict begin 11 H.A end 125 4336 a 125 4336 a SDict begin [/View [/XYZ H.V]/Dest (cite.hitchin) cvn /DEST pdfmark end 125 4336 a 0 TeXcolorgray 72 x FI([17])p 0 TeXcolorgray 39 w(N.J.)35 b(Hitc)n(hin,)g Fy(The)g(self-duality)h(e)l(quations)g(on)f(a)g(R)n(iemann)g(surfac)l (e)p FI(,)i(Pro)r(c.)e(London)f(Math.)g(So)r(c.)g(\(3\))g Fd(55)282 4500 y FI(\(1987\))27 b(59{126.)125 4518 y SDict begin H.S end 125 4518 a 125 4518 a SDict begin 11 H.A end 125 4518 a 125 4518 a SDict begin [/View [/XYZ H.V]/Dest (cite.KM) cvn /DEST pdfmark end 125 4518 a 0 TeXcolorgray 73 x FI([18])p 0 TeXcolorgray 39 w(T.)j(Kitano)g(and)e (T.)i(Morifuji,)j Fy(Twiste)l(d)e(A)n(lexander)h(p)l(olynomials)f(for)g (irr)l(e)l(ducible)g FI(SL\(2)p FF(;)13 b Fc(C)g FI(\))p Fy(-)q(r)l(ep)q(r)l(es)q(ent)q(ations)282 4682 y(of)28 b(torus)h(knots)p FI(,)e(Ann.)e(Sc.)h(Norm.)e(Sup)r(er.)i(Pisa)h(Cl.)f (Sci.)g(\(5\))g Fd(11)g FI(\(2012\))h(395{406.)125 4701 y SDict begin H.S end 125 4701 a 125 4701 a SDict begin 11 H.A end 125 4701 a 125 4701 a SDict begin [/View [/XYZ H.V]/Dest (cite.Lawton) cvn /DEST pdfmark end 125 4701 a 0 TeXcolorgray 73 x FI([19])p 0 TeXcolorgray 39 w(S.)21 b(La)n(wton,)i Fy(Minimal)f(a\016ne)h(c)l(o)l(or)l(dinates)j(for)d FI(SL\(3)p FF(;)13 b Fc(C)g FI(\))p Fy(-)q(char)m(act)q(er)29 b(varieties)c(of)e(fr)l(e)l(e)h(gr)l(oups)p FI(,)g(J.)d(Algebra)h Fd(320)282 4865 y FI(\(2008\))27 b(3773{3810.)125 4884 y SDict begin H.S end 125 4884 a 125 4884 a SDict begin 11 H.A end 125 4884 a 125 4884 a SDict begin [/View [/XYZ H.V]/Dest (cite.LM) cvn /DEST pdfmark end 125 4884 a 0 TeXcolorgray 72 x FI([20])p 0 TeXcolorgray 39 w(S.)35 b(La)n(wton)g(and)g(V.)f(Mu)r(~)-41 b(noz,)39 b Fy(E-p)l(olynomial)c (of)h(the)h FI(SL)o(\(3)p FF(;)14 b Fc(C)f FI(\))p Fy(-cha)q(r)l(ac)q (ter)42 b(variety)37 b(of)f(fr)l(e)l(e)g(gr)l(oups)p FI(,)j(P)n(ac.)d(J.)282 5048 y(Math.)27 b Fd(282)f FI(\(2016\))h (173{202.)125 5066 y SDict begin H.S end 125 5066 a 125 5066 a SDict begin 11 H.A end 125 5066 a 125 5066 a SDict begin [/View [/XYZ H.V]/Dest (cite.Lawton-Sikora:2019) cvn /DEST pdfmark end 125 5066 a 0 TeXcolorgray 73 x FI([21])p 0 TeXcolorgray 39 w(S.)i(La)n(wton)g(and)f(A.)h(Sik)n(ora,)h Fy(V)-6 b(arieties)31 b(of)f(char)l(acters)p FI(,)j(Algebr.)c(Represen) n(t.)f(Theory)h(\(5\),)h Fd(20)f FI(\(2017\))g(1133{)282 5230 y(1141.)125 5230 y SDict begin H.S end 125 5230 a 125 5230 a SDict begin 11 H.A end 125 5230 a 125 5230 a SDict begin [/View [/XYZ H.V]/Dest (cite.lomune) cvn /DEST pdfmark end 125 5230 a 0 TeXcolorgray 92 x FI([22])p 0 TeXcolorgray 39 w(M.)k(Logares,)j(V.)d(Mu)r(~)-41 b(noz)33 b(and)f(P)-6 b(.E.)33 b(Newstead,)i Fy(Ho)l(dge)g(p)l(olynomials)f(of)f FI(SL)o(\(2)p FF(;)14 b Fc(C)f FI(\))p Fy(-ch)q(ar)l(ac)q(te)q(r)39 b(varieties)c(for)282 5413 y(curves)30 b(of)d(smal)t(l)g(genus)p FI(,)g(Rev.)e(Mat.)h(Complut.)g Fd(26)g FI(\(2013\))h(635{703.)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Page: 37 37 TeXDict begin HPSdict begin 37 36 bop 0 TeXcolorgray 0 0 a SDict begin /product where{pop product(Distiller)search{pop pop pop version(.)search{exch pop exch pop(3011)eq{gsave newpath 0 0 moveto closepath clip/Courier findfont 10 scalefont setfont 72 72 moveto(.)show grestore}if}{pop}ifelse}{pop}ifelse}if end 0 0 a 116 -8 a SDict begin H.S end 116 -8 a 116 -8 a SDict begin H.R end 116 -8 a 116 -8 a SDict begin [/View [/XYZ H.V]/Dest (page.37) cvn /DEST pdfmark end 116 -8 a 0 TeXcolorgray 721 66 a FJ(MOTIVE)30 b(OF)g(THE)h(SL)1445 75 y FG(4)1480 66 y FJ(-CHARA)n(CTER)e(V)-8 b(ARIETY)31 b(OF)f(TOR)n(US)h(KNOTS)525 b(37)p 0 TeXcolorgray 125 183 a SDict begin H.S end 125 183 a 125 183 a SDict begin 11 H.A end 125 183 a 125 183 a SDict begin [/View [/XYZ H.V]/Dest (cite.LuMa) cvn /DEST pdfmark end 125 183 a 0 TeXcolorgray 83 x FI([23])p 0 TeXcolorgray 39 w(A.)29 b(Lub)r(otzky)f(and)h(A.)f(Magid,)k Fb(V)-6 b(arieties)29 b(of)h(represen)n(tations)g(of)f(\014nitely)g(generated)g(groups)p FI(,)i(Mem.)d(Amer.)282 357 y(Math.)f(So)r(c.)f Fd(58)g FI(\(1985\).)125 376 y SDict begin H.S end 125 376 a 125 376 a SDict begin 11 H.A end 125 376 a 125 376 a SDict begin [/View [/XYZ H.V]/Dest (cite.Martin-Oller) cvn /DEST pdfmark end 125 376 a 0 TeXcolorgray 72 x FI([24])p 0 TeXcolorgray 39 w(J.)j(Mart)-9 b(\023)-30 b(\020n-Morales)30 b(and)e(A-M.)f (Oller-Marc)n(\023)-36 b(en,)29 b Fy(On)g(the)h(varieties)h(of)e(r)l (epr)l(esentations)j(and)e(char)l(acters)i(of)d(a)282 540 y(family)e(of)g(one-r)l(elator)j(sub)l(gr)l(oups)p FI(,)e(T)-6 b(op)r(ol.)27 b(Appl.)e Fd(156)i FI(\(2009\))g(2376{2389.) 125 558 y SDict begin H.S end 125 558 a 125 558 a SDict begin 11 H.A end 125 558 a 125 558 a SDict begin [/View [/XYZ H.V]/Dest (cite.Martinez-Munoz:2015) cvn /DEST pdfmark end 125 558 a 0 TeXcolorgray 73 x FI([25])p 0 TeXcolorgray 39 w(J.)e(Mart)-9 b(\023)-30 b(\020nez)26 b(and)d(V.)h(Mu)r(~)-41 b(noz,)25 b Fy(The)i FI(SU)o(\(2\))p Fy(-char)l(acter)i(varieties)e(of) e(torus)j(knots)p FI(,)d(Ro)r(c)n(ky)e(Moun)n(tain)h(J.)h(Math.)282 722 y(\(2\))h Fd(45)g FI(\(2015\))h(583{600.)125 741 y SDict begin H.S end 125 741 a 125 741 a SDict begin 11 H.A end 125 741 a 125 741 a SDict begin [/View [/XYZ H.V]/Dest (cite.MM) cvn /DEST pdfmark end 125 741 a 0 TeXcolorgray 73 x FI([26])p 0 TeXcolorgray 39 w(J.)38 b(Mart)-9 b(\023)-30 b(\020nez)39 b(and)e(V.)g(Mu)r(~)-41 b(noz,)42 b Fy(E-p)l(olynomials)c(of)g(the)h FI(SL\(2)p FF(;)13 b Fc(C)g FI(\))p Fy(-c)q(har)m(acte)q(r)44 b(varieties)39 b(of)f(surfac)l(e)h(gr)l(oups)p FI(,)282 905 y(In)n(ternat.)26 b(Math.)g(Researc)n(h)g(Notices)g Fd(2016)g FI(\(2016\))h(926{961.)125 924 y SDict begin H.S end 125 924 a 125 924 a SDict begin 11 H.A end 125 924 a 125 924 a SDict begin [/View [/XYZ H.V]/Dest (cite.Munoz) cvn /DEST pdfmark end 125 924 a 0 TeXcolorgray 72 x FI([27])p 0 TeXcolorgray 39 w(V.)e(Mu)r(~)-41 b(noz,)27 b Fb(The)e FI(SL\(2)p FF(;)13 b Fc(C)g FI(\))p Fb(-c)n(haracter)31 b(v)l(arieties)26 b(of)g(torus)f(knots)p FI(,)g(Rev.)f(Mat.)i(Complut.)f Fd(22)g FI(\(2009\))h(489{497.)125 1015 y SDict begin H.S end 125 1015 a 125 1015 a SDict begin 11 H.A end 125 1015 a 125 1015 a SDict begin [/View [/XYZ H.V]/Dest (cite.MP) cvn /DEST pdfmark end 125 1015 a 0 TeXcolorgray 73 x FI([28])p 0 TeXcolorgray 39 w(V.)i(Mu)r(~)-41 b(noz)30 b(and)d(J.)i(P)n(orti,)h Fb(Geometry)d(of)i (the)f FI(SL)o(\(3)p FF(;)14 b Fc(C)f FI(\))p Fb(-c)n(haracter)34 b(v)l(ariet)n(y)27 b(of)i(torus)f(knots)p FI(,)h(Algebraic)g(Geo-)282 1179 y(metric)d(T)-6 b(op)r(ology)27 b Fd(16)g FI(\(2016\))f(397{426.)j (\(also)1710 1179 y SDict begin H.S end 1710 1179 a 0 TeXcolorgray FI(arXiv:1409.4784)p 0 TeXcolorgray 2248 1128 a SDict begin H.R end 2248 1128 a 2248 1179 a SDict begin [/H /I/Border [0 0 1]BorderArrayPatch/BS <</S/S/W 1>>/Color [0 1 1]/Action <</Subtype/URI/URI(http://arxiv.org/abs/1409.4784)>>/Subtype /Link H.B /ANN pdfmark end 2248 1179 a FI(\).)125 1198 y SDict begin H.S end 125 1198 a 125 1198 a SDict begin 11 H.A end 125 1198 a 125 1198 a SDict begin [/View [/XYZ H.V]/Dest (cite.Rolfsen) cvn /DEST pdfmark end 125 1198 a 0 TeXcolorgray 72 x FI([29])p 0 TeXcolorgray 39 w(D.)d(Rolfsen,)h Fb(Knots)e(and)h(links)p FI(,)g(Publish)f(or)i(P)n(erish,)f(Houston)g(1990.)125 1289 y SDict begin H.S end 125 1289 a 125 1289 a SDict begin 11 H.A end 125 1289 a 125 1289 a SDict begin [/View [/XYZ H.V]/Dest (cite.SageMath) cvn /DEST pdfmark end 125 1289 a 0 TeXcolorgray 73 x FI([30])p 0 TeXcolorgray 39 w(SageMath,)44 b(the)39 b(Sage)h(Mathematics)f(Soft)n(w)n(are)i(System) c(\(V)-6 b(ersion)39 b(9.0\),)44 b(The)c(Sage)f(Dev)n(elop)r(ers)h (\(2020\),)282 1453 y(h)n(ttps://www.sagemath.org.)125 1472 y SDict begin H.S end 125 1472 a 125 1472 a SDict begin 11 H.A end 125 1472 a 125 1472 a SDict begin [/View [/XYZ H.V]/Dest (cite.SimpsonI) cvn /DEST pdfmark end 125 1472 a 0 TeXcolorgray 72 x FI([31])p 0 TeXcolorgray 39 w(C.T.)26 b(Simpson,)e Fy(Mo)l(duli)i(of)h(r)l(epr)l(esentations)j(of)c (the)h(fundamental)g(gr)l(oup)h(of)e(a)h(smo)l(oth)g(pr)l(oje)l(ctive)h (variety.)g(I)p FI(,)282 1642 y(Inst.)e(Hautes)725 1623 y(\023)718 1642 y(Etudes)g(Sci.)g(Publ.)g(Math.)g Fd(79)g FI(\(1994\))h(47{129.)125 1661 y SDict begin H.S end 125 1661 a 125 1661 a SDict begin 11 H.A end 125 1661 a 125 1661 a SDict begin [/View [/XYZ H.V]/Dest (cite.SimpsonII) cvn /DEST pdfmark end 125 1661 a 0 TeXcolorgray 72 x FI([32])p 0 TeXcolorgray 39 w(C.T.)33 b(Simpson,)e Fy(Mo)l(duli)h(of)g(r)l(epr)l(esentations)k(of)c(the)h(fundamental)g (gr)l(oup)g(of)f(a)g(smo)l(oth)i(pr)l(oje)l(ctive)g(variety.)282 1831 y(II)p FI(,)25 b(Inst.)h(Hautes)831 1812 y(\023)824 1831 y(Etudes)g(Sci.)g(Publ.)g(Math.)g Fd(80)g FI(\(1995\))h(5{79.)224 2044 y FH(Dep)-5 b(ar)g(t)g(amento)20 b(de)909 2025 y(\023)899 2044 y(Algebra,)i(Geometr)1599 2038 y(\023)1608 2044 y(\020a)d(y)i(Topolog)2082 2038 y(\023)2091 2044 y(\020a,)h(Universid)n (ad)c(Complutense)i(de)g(Madrid,)125 2135 y(Plaza)28 b(Ciencias)f(3,)h(28040)i(Madrid,)c(Sp)-5 b(ain)224 2326 y(Instituto)26 b(de)f(Ciencias)f(Ma)-5 b(tem)1322 2320 y(\023)1320 2326 y(aticas)25 b(\(CSIC-UAM-UCM-UC3M\),)f(C/)h(Nicol)2939 2320 y(\023)2937 2326 y(as)h(Cabrera)f(13-15,)125 2417 y(28049)k(Madrid,)e(Sp)-5 b(ain)224 2544 y Fy(Email)27 b(addr)l(ess)6 b FI(:)36 b Fa(angelgonzalezprieto@ucm.es)224 2739 y FH(Dep)-5 b(ar)g(t)g(amento)33 b(de)935 2720 y(\023)925 2739 y(Algebra,)i(Geometr)1638 2733 y(\023)1647 2739 y(\020a)d(y)h(Topolog)2146 2733 y(\023)2155 2739 y(\020a,)i(F)-9 b(a)n(cul)k(t)g(ad)34 b(de)e(Ciencias,)h(Universid)n(ad)125 2831 y(de)27 b(M)317 2825 y(\023)315 2831 y(ala)n(ga,)h(Campus)f(de)h (Tea)-5 b(tinos)28 b(s/n,)g(29071)i(M)1864 2825 y(\023)1862 2831 y(ala)n(ga,)e(Sp)-5 b(ain)224 2957 y Fy(Email)27 b(addr)l(ess)6 b FI(:)36 b Fa(vicente.munoz@uma.es)p 0 TeXcolorgray 0 TeXcolorgray eop end end %%Trailer end userdict /end-hook known{end-hook}if %%EOF