CINXE.COM
{"title":"Towards Real-Time Classification of Finger Movement Direction Using Encephalography Independent Components","authors":"Mohamed Mounir Tellache, Hiroyuki Kambara, Yasuharu Koike, Makoto Miyakoshi, Natsue Yoshimura","volume":169,"journal":"International Journal of Biomedical and Biological Engineering","pagesStart":70,"pagesEnd":80,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10011746","abstract":"This study explores the practicality of using electroencephalographic (EEG) independent components to predict eight-direction finger movements in pseudo-real-time. Six healthy participants with individual-head MRI images performed finger movements in eight directions with two different arm configurations. The analysis was performed in two stages. The first stage consisted of using independent component analysis (ICA) to separate the signals representing brain activity from non-brain activity signals and to obtain the unmixing matrix. The resulting independent components (ICs) were checked, and those reflecting brain-activity were selected. Finally, the time series of the selected ICs were used to predict eight finger-movement directions using Sparse Logistic Regression (SLR). The second stage consisted of using the previously obtained unmixing matrix, the selected ICs, and the model obtained by applying SLR to classify a different EEG dataset. This method was applied to two different settings, namely the single-participant level and the group-level. For the single-participant level, the EEG dataset used in the first stage and the EEG dataset used in the second stage originated from the same participant. For the group-level, the EEG datasets used in the first stage were constructed by temporally concatenating each combination without repetition of the EEG datasets of five participants out of six, whereas the EEG dataset used in the second stage originated from the remaining participants. The average test classification results across datasets (mean ± S.D.) were 38.62 ± 8.36% for the single-participant, which was significantly higher than the chance level (12.50 ± 0.01%), and 27.26 ± 4.39% for the group-level which was also significantly higher than the chance level (12.49% ± 0.01%). The classification accuracy within [–45°, 45°] of the true direction is 70.03 ± 8.14% for single-participant and 62.63 ± 6.07% for group-level which may be promising for some real-life applications. Clustering and contribution analyses further revealed the brain regions involved in finger movement and the temporal aspect of their contribution to the classification. These results showed the possibility of using the ICA-based method in combination with other methods to build a real-time system to control prostheses.","references":"[1]\tJ. J. Shih, D. J. Krusienski, and J. R. Wolpaw, \u201cBrain-computer interfaces in medicine,\u201d Mayo Clin. Proc., vol. 87, no. 3, pp. 268\u2013279, 2012, doi: 10.1016\/j.mayocp.2011.12.008.\r\n[2]\tP. P. Vu et al., \u201cA regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees,\u201d Sci. Transl. Med., vol. 12, no. 533, pp. 1\u201312, 2020, doi: 10.1126\/scitranslmed.aay2857.\r\n[3]\tD. J. McFarland, W. A. Sarnacki, and J. R. Wolpaw, \u201cElectroencephalographic (EEG) control of three-dimensional movement,\u201d J. Neural Eng., vol. 7, no. 3, p. 36007, Jun. 2010, doi: 10.1088\/1741-2560\/7\/3\/036007.\r\n[4]\tT.-P. Jung, S. Makeig, A. J. Bell, and T. J. Sejnowski, \u201cIndependent Component Analysis of Electroencephalographic and Event-Related Potential Data,\u201d in Central Auditory Processing and Neural Modeling, P. W. F. Poon and J. F. Brugge, Eds. Boston, MA: Springer US, 1998, pp. 189\u2013197.\r\n[5]\tY. Wang and S. Makeig, \u201cPredicting intended movement direction using EEG from human posterior parietal cortex,\u201d Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5638 LNAI, pp. 437\u2013446, 2009, doi: 10.1007\/978-3-642-02812-0_52.\r\n[6]\tK. L. Snyder, J. E. Kline, H. J. Huang, and D. P. Ferris, \u201cIndependent component analysis of gait-related movement artifact recorded using EEG electrodes during treadmill walking,\u201d Front. Hum. Neurosci., vol. 9, no. DEC, pp. 1\u201313, 2015, doi: 10.3389\/fnhum.2015.00639.\r\n[7]\tA. Delorme, J. Palmer, J. Onton, R. Oostenveld, and S. Makeig, \u201cIndependent EEG sources are dipolar,\u201d PLoS One, vol. 7, no. 2, 2012, doi: 10.1371\/journal.pone.0030135.\r\n[8]\tR. Grandchamp et al., \u201cStability of ICA decomposition across within-subject EEG datasets. To cite this version\u202f: HAL Id\u202f: hal-00797464 Stability of ICA decomposition across within-subject EEG datasets,\u201d 2013.\r\n[9]\tF. Cong et al., \u201cValidating rationale of group-level component analysis based on estimating number of sources in EEG through model order selection,\u201d J. Neurosci. Methods, vol. 212, no. 1, pp. 165\u2013172, 2013, doi: 10.1016\/j.jneumeth.2012.09.029.\r\n[10]\tR. J. Huster, S. M. Plis, and V. D. Calhoun, \u201cGroup-level component analyses of EEG: Validation and evaluation,\u201d Front. Neurosci., vol. 9, no. JUL, pp. 1\u201314, 2015, doi: 10.3389\/fnins.2015.00254.\r\n[11]\tS. Kakei, D. S. Hoffman, and P. L. Strick, \u201cSensorimotor transformations in cortical motor areas,\u201d Neurosci. Res., vol. 46, no. 1, pp. 1\u201310, 2003, doi: 10.1016\/S0168-0102(03)00031-2.\r\n[12]\tY. Fujiwara, J. Lee, T. Ishikawa, S. Kakei, and J. Izawa, \u201cDiverse coordinate frames on sensorimotor areas in visuomotor transformation,\u201d Sci. Rep., vol. 7, no. 1, p. 14950, 2017, doi: 10.1038\/s41598-017-14579-3.\r\n[13]\tN. Yoshimura, H. Tsuda, T. Kawase, H. Kambara, and Y. Koike, \u201cDecoding finger movement in humans using synergy of EEG cortical current signals,\u201d Sci. Rep., vol. 7, no. 1, pp. 1\u201311, 2017, doi: 10.1038\/s41598-017-09770-5.\r\n[14]\tJ. Palmer, K. Kreutz-Delgado, and S. Makeig, \u201cAMICA: An Adaptive Mixture of Independent Component Analyzers with Shared Components,\u201d San Diego, CA Tech. report, Swart. Cent. Comput. Neurosci., pp. 1\u201315, 2011, (Online). Available: http:\/\/sccn.ucsd.edu\/~jason\/amica_a.pdf%5Cnpapers2:\/\/publication\/uuid\/E6296FC1-7F6B-400C-85D0-3A292A27F710.\r\n[15]\tL. Pion-Tonachini, K. Kreutz-Delgado, and S. Makeig, \u201cICLabel: An automated electroencephalographic independent component classifier, dataset, and website,\u201d Neuroimage, vol. 198, no. April, pp. 181\u2013197, 2019, doi: 10.1016\/j.neuroimage.2019.05.026.\r\n[16]\tO. Yamashita, M. Sato, T. Yoshioka, F. Tong, and Y. Kamitani, \u201cSparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.,\u201d Neuroimage, vol. 42, no. 4, pp. 1414\u20131429, Oct. 2008, doi: 10.1016\/j.neuroimage.2008.05.050.\r\n[17]\tN. Yoshimura et al., \u201cDissociable neural representations of wrist motor coordinate frames in human motor cortices,\u201d Neuroimage, vol. 97, pp. 53\u201361, 2014, doi: 10.1016\/j.neuroimage.2014.04.046.\r\n[18]\tT. Nichols and A. Holmes, \u201cNonparametric Permutation Tests for Functional Neuroimaging,\u201d Hum. Brain Funct. Second Ed., vol. 25, no. August 1999, pp. 887\u2013910, 2003, doi: 10.1016\/B978-012264841-0\/50048-2.\r\n[19]\tJ. Onton and S. Makeig, \u201cInformation-based modeling of event-related brain dynamics,\u201d Prog. Brain Res., vol. 159, pp. 99\u2013120, 2006, doi: 10.1016\/S0079-6123(06)59007-7.\r\n[20]\tH. Tanaka, M. Miyakoshi, and S. Makeig, \u201cDynamics of directional tuning and reference frames in humans: A high-density EEG study,\u201d Sci. Rep., vol. 8, no. 1, pp. 1\u201318, 2018, doi: 10.1038\/s41598-018-26609-9.\r\n[21]\tE. T. Rolls, C.-C. Huang, C.-P. Lin, J. Feng, and M. Joliot, \u201cAutomated anatomical labelling atlas 3.,\u201d Neuroimage, vol. 206, p. 116189, Feb. 2020, doi: 10.1016\/j.neuroimage.2019.116189.\r\n[22]\tN. Robinson, C. Guan, A. P. Vinod, K. Keng Ang, and K. Peng Tee, \u201cMulti-class EEG classification of voluntary hand movement directions,\u201d J. Neural Eng., vol. 10, no. 5, 2013, doi: 10.1088\/1741-2560\/10\/5\/056018.\r\n[23]\tK. Anam, M. Nuh, and A. Al-Jumaily, \u201cComparison of EEG pattern recognition of motor imagery for finger movement classification,\u201d Int. Conf. Electr. Eng. Comput. Sci. Informatics, pp. 24\u201327, 2019, doi: 10.23919\/EECSI48112.2019.8977037.\r\n[24]\tK. Liao, R. Xiao, J. Gonzalez, and L. Ding, \u201cDecoding individual finger movements from one hand using human EEG signals,\u201d PLoS One, vol. 9, no. 1, pp. 1\u201312, 2014, doi: 10.1371\/journal.pone.0085192.\r\n[25]\tT. Jia et al., \u201cSmall-Dimension Feature Matrix Construction Method for Decoding Repetitive Finger Movements from Electroencephalogram Signals,\u201d IEEE Access, vol. 8, pp. 56060\u201356071, 2020, doi: 10.1109\/ACCESS.2020.2982210.\r\n[26]\tR. Alazrai, H. Alwanni, and M. I. Daoud, \u201cEEG-based BCI system for decoding finger movements within the same hand,\u201d Neurosci. Lett., vol. 698, pp. 113\u2013120, 2019, doi: https:\/\/doi.org\/10.1016\/j.neulet.2018.12.045.\r\n[27]\tT. Milekovic et al., \u201cAn online brain-machine interface using decoding of movement direction from the human electrocorticogram,\u201d J. Neural Eng., vol. 9, no. 4, 2012, doi: 10.1088\/1741-2560\/9\/4\/046003.\r\n[28]\tJ. Lehtonen, P. Jyl\u00e4nki, L. Kauhanen, and M. Sams, \u201cOnline classification of single EEG trials during finger movements,\u201d IEEE Trans. Biomed. Eng., vol. 55, no. 2, pp. 713\u2013720, 2008, doi: 10.1109\/TBME.2007.912653.\r\n[29]\tS. Bhattacharyya, M. Pal, A. Konar, and D. N. Tibarewala, \u201cAn interval type-2 fuzzy approach for real-time EEG-based control of wrist and finger movement,\u201d Biomed. Signal Process. Control, vol. 21, pp. 90\u201398, 2015, doi: 10.1016\/j.bspc.2015.05.004.\r\n[30]\tK. Whittingstall, M. Bernier, J. C. Houde, D. Fortin, and M. Descoteaux, \u201cStructural network underlying visuospatial imagery in humans,\u201d Cortex, vol. 56, pp. 85\u201398, 2014, doi: 10.1016\/j.cortex.2013.02.004.\r\n[31]\tN. Wenderoth, F. Debaere, S. Sunaert, and S. P. Swinnen, \u201cThe role of anterior cingulate cortex and precuneus in the coordination of motor behaviour,\u201d Eur. J. Neurosci., vol. 22, no. 1, pp. 235\u2013246, 2005, doi: 10.1111\/j.1460-9568.2005.04176.x.\r\n[32]\tN. Robinson, C. Guan, A. P. Vinod, K. Keng Ang, and K. Peng Tee, \u201cMulti-class EEG classification of voluntary hand movement directions,\u201d J. Neural Eng., vol. 10, no. 5, 2013, doi: 10.1088\/1741-2560\/10\/5\/056018.\r\n[33]\tK. Liao, R. Xiao, J. Gonzalez, and L. Ding, \u201cDecoding individual finger movements from one hand using human EEG signals,\u201d PLoS One, vol. 9, no. 1, pp. 1\u201312, 2014, doi: 10.1371\/journal.pone.0085192.\r\n[34]\tE. Y. L. Lew, R. Chavarriaga, S. Silvoni, and J. del R. Mill\u00e1n, \u201cSingle trial prediction of self-paced reaching directions from EEG signals,\u201d Front. Neurosci., vol. 8, no. AUG, pp. 1\u201313, 2014, doi: 10.3389\/fnins.2014.00222.\r\n[35]\tJ. Cho, J. Jeong, K. Shim, D. Kim, and S. Lee, \u201cClassification of Hand Motions within EEG Signals for Non-Invasive BCI-Based Robot Hand Control,\u201d in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2018, pp. 515\u2013518, doi: 10.1109\/SMC.2018.00097.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 169, 2021"}