CINXE.COM

Search results for: field of view (FOV)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: field of view (FOV)</title> <meta name="description" content="Search results for: field of view (FOV)"> <meta name="keywords" content="field of view (FOV)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="field of view (FOV)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="field of view (FOV)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10916</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: field of view (FOV)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10916</span> Virtual Reality Application for Neurorehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Vargas-Herrera">Daniel Vargas-Herrera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivette%20Caldelas"> Ivette Caldelas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Brambila-Paz"> Fernando Brambila-Paz</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Montufar-Chaveznava"> Rodrigo Montufar-Chaveznava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a virtual reality application for neurorehabilitation. This application was developed using the Unity SDK integrating the Oculus Rift and Leap Motion devices. Essentially, it consists of three stages according to the kind of rehabilitation to carry on: ocular rehabilitation, head/neck rehabilitation, and eye-hand coordination. We build three scenes for each task; for ocular and head/neck rehabilitation, there are different objects moving in the field of view and extended field of view of the user according to some patterns relative to the therapy. In the third stage the user must try to touch with the hand some objects guided by its view. We report the primer results of the use of the application with healthy people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title="virtual reality">virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=interactive%20technologies" title=" interactive technologies"> interactive technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20games" title=" video games"> video games</a>, <a href="https://publications.waset.org/abstracts/search?q=neurorehabilitation" title=" neurorehabilitation"> neurorehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/55918/virtual-reality-application-for-neurorehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10915</span> Exploring the Impacts of Field of View on 3D Game Experiences and Task Performances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiunde%20Lee">Jiunde Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Yu%20Wun"> Meng-Yu Wun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study attempted to explore how the range differences of ‘Geometric Field of Vision’ (GFOV) and differences in camera control in 3D simulation games, OMSI—The Bus Simulator of the 2013 PC version, affected players’ cognitive load, anxiety, and task performances. The study employed a between-subjects factorial experimental design. A total of 80 subjects completed experiment whose data were eligible for further analysis. The results of this study showed that in the difference of field of view, players had better task performances in a spacious view. Although cognitive resources consumed more of the players’ ‘mental demand,’ ‘physical demand’, and ‘temporal demand’, they had better performances in the experiment, and their anxiety was effectively reduced. On the other hand, in the narrow GFOV, players thought they spent more cognitive resources on ‘effort’ and ‘frustration degree,’ and had worse task performances, but it was not significant enough to reduce their anxiety. In terms of difference of camera control, players had worse performances since the fixed lens restricted their dexterous control. However, there was no significant difference in the players’ subjective cognitive resources or anxiety. The results further illustrated that task performances were affected by the interaction of GFOV and camera control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20field%20of%20view" title="geometric field of view">geometric field of view</a>, <a href="https://publications.waset.org/abstracts/search?q=camera%20lens" title=" camera lens"> camera lens</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20load" title=" cognitive load"> cognitive load</a>, <a href="https://publications.waset.org/abstracts/search?q=anxiety" title=" anxiety"> anxiety</a> </p> <a href="https://publications.waset.org/abstracts/97183/exploring-the-impacts-of-field-of-view-on-3d-game-experiences-and-task-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10914</span> A Simple User Administration View of Computing Clusters </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeria%20M.%20Bastos">Valeria M. Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=Myrian%20A.%20Costa"> Myrian A. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Matheus%20Ambrozio"> Matheus Ambrozio</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20F.%20F.%20Ebecken"> Nelson F. F. Ebecken</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a very simple and effective user administration view of computing clusters systems is implemented in order of friendly provide the configuration and monitoring of distributed application executions. The user view, the administrator view, and an internal control module create an illusionary management environment for better system usability. The architecture, properties, performance, and the comparison with others software for cluster management are briefly commented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=computing%20clusters" title=" computing clusters"> computing clusters</a>, <a href="https://publications.waset.org/abstracts/search?q=administration%20view" title=" administration view"> administration view</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20view" title=" user view"> user view</a> </p> <a href="https://publications.waset.org/abstracts/37926/a-simple-user-administration-view-of-computing-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10913</span> The Use of the Flat Field Panel for the On-Ground Calibration of Metis Coronagraph on Board of Solar Orbiter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Casini">C. Casini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Da%20Deppo"> V. Da Deppo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Zuppella"> P. Zuppella</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Chioetto"> P. Chioetto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Slemer"> A. Slemer</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Frassetto"> F. Frassetto</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Romoli"> M. Romoli</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Landini"> F. Landini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pancrazzi"> M. Pancrazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Andretta"> V. Andretta</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Antonucci"> E. Antonucci</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bemporad"> A. Bemporad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Casti"> M. Casti</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20De%20Leo"> Y. De Leo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fabi"> M. Fabi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Fineschi"> S. Fineschi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Frassati"> F. Frassati</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Grimani"> C. Grimani</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Jerse"> G. Jerse</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Heinzel"> P. Heinzel</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Heerlein"> K. Heerlein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Liberatore"> A. Liberatore</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Magli"> E. Magli</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Naletto"> G. Naletto</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Nicolini"> G. Nicolini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.G.%20Pelizzo"> M.G. Pelizzo</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Romano"> P. Romano</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sasso"> C. Sasso</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Spadaro"> D. Spadaro</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Stangalini"> M. Stangalini</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Straus"> T. Straus</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Susino"> R. Susino</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Teriaca"> L. Teriaca</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Uslenghi"> M. Uslenghi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Volpicelli"> A. Volpicelli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar Orbiter, launched on February 9<sup>th</sup> 2020, is an ESA/NASA mission conceived to study the Sun. The payload is composed of 10 instruments, among which there is the Metis coronagraph. A coronagraph aims at taking images of the solar corona: the occulter element simulates a total solar eclipse. This work presents some of the results obtained in the visible light band (580-640 nm) using a flat field panel source. The flat field panel gives a uniform illumination; consequently, it has been used during the on-ground calibration for several purposes: evaluating the response of each pixel of the detector (linearity); and characterizing the Field of View of the coronagraph. As a conclusion, a major result is the verification that the requirement for the Field of View (FoV) of Metis is fulfilled. Some investigations are in progress in order to verify that the performance measured on-ground did not change after launch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20orbiter" title="solar orbiter">solar orbiter</a>, <a href="https://publications.waset.org/abstracts/search?q=Metis" title=" Metis"> Metis</a>, <a href="https://publications.waset.org/abstracts/search?q=coronagraph" title=" coronagraph"> coronagraph</a>, <a href="https://publications.waset.org/abstracts/search?q=flat%20field%20panel" title=" flat field panel"> flat field panel</a>, <a href="https://publications.waset.org/abstracts/search?q=calibration" title=" calibration"> calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=on-ground" title=" on-ground"> on-ground</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/131441/the-use-of-the-flat-field-panel-for-the-on-ground-calibration-of-metis-coronagraph-on-board-of-solar-orbiter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10912</span> Hybrid Temporal Correlation Based on Gaussian Mixture Model Framework for View Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deng%20Zengming">Deng Zengming</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Mingjiang"> Wang Mingjiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As 3D video is explored as a hot research topic in the last few decades, free-viewpoint TV (FTV) is no doubt a promising field for its better visual experience and incomparable interactivity. View synthesis is obviously a crucial technology for FTV; it enables to render images in unlimited numbers of virtual viewpoints with the information from limited numbers of reference view. In this paper, a novel hybrid synthesis framework is proposed and blending priority is explored. In contrast to the commonly used View Synthesis Reference Software (VSRS), the presented synthesis process is driven in consideration of the temporal correlation of image sequences. The temporal correlations will be exploited to produce fine synthesis results even near the foreground boundaries. As for the blending priority, this scheme proposed that one of the two reference views is selected to be the main reference view based on the distance between the reference views and virtual view, another view is chosen as the auxiliary viewpoint, just assist to fill the hole pixel with the help of background information. Significant improvement of the proposed approach over the state-of &ndash;the-art pixel-based virtual view synthesis method is presented, the results of the experiments show that subjective gains can be observed, and objective PSNR average gains range from 0.5 to 1.3 dB, while SSIM average gains range from 0.01 to 0.05. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusion%20method" title="fusion method">fusion method</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20mixture%20model" title=" Gaussian mixture model"> Gaussian mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20framework" title=" hybrid framework"> hybrid framework</a>, <a href="https://publications.waset.org/abstracts/search?q=view%20synthesis" title=" view synthesis"> view synthesis</a> </p> <a href="https://publications.waset.org/abstracts/62728/hybrid-temporal-correlation-based-on-gaussian-mixture-model-framework-for-view-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10911</span> Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bo%20Wang">Bo Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20retrieve" title="remote sensing retrieve">remote sensing retrieve</a>, <a href="https://publications.waset.org/abstracts/search?q=PM%202.5" title=" PM 2.5"> PM 2.5</a>, <a href="https://publications.waset.org/abstracts/search?q=GF-1" title=" GF-1"> GF-1</a>, <a href="https://publications.waset.org/abstracts/search?q=aerosol%20optical%20depth" title=" aerosol optical depth"> aerosol optical depth</a> </p> <a href="https://publications.waset.org/abstracts/78405/retrieval-of-aerosol-optical-depth-and-correlation-analysis-of-pm25-based-on-gf-1-wide-field-of-view-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10910</span> The Effect of Varying Cone Beam Computed Tomography Image Resolution and Field-of-View Centralization on the Effective Radiation Dose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20M.%20Jadu">Fatima M. Jadu</a>, <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20A.%20Alzahrani"> Asmaa A. Alzahrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20A.%20Almutairi"> Maha A. Almutairi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20O.%20Al-Amoudi"> Salma O. Al-Amoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mawya%20A.%20Khafaji"> Mawya A. Khafaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Estimating the potential radiation risk for a widely used imaging technique such as cone beam CT (CBCT) is crucial. The aim of this study was to examine the effect of varying two CBCT technical factors, the voxel size (VOX) and the Field-of-View (FOV) centralization, on the radiation dose. Methodology: The head and neck slices of a RANDO® man phantom (Alderson Research Laboratories) were used with nanoDot™ OSLD dosimeters to measure the absorbed radiation dose at 25 predetermined sites. Imaging was done using the i-CAT® (Imaging Science International, Hatfield, PA, USA) CBCT unit. The VOX was changed for every three cycles of exposures from 0.2mm to 0.3mm and then 0.4mm. Then the FOV was centered on the maxilla and mandible alternatively while holding all other factors constant. Finally, the effective radiation dose was calculated for each view and voxel setting. Results: The effective radiation dose was greatest when the smallest VOX was chosen. When the FOV was centered on the maxilla, the highest radiation doses were recorded in the eyes and parotid glands. While on the mandible, the highest radiation doses were recorded in the sublingual and submandibular glands. Conclusion: Minor variations in the CBCT exposure factors significantly affect the effective radiation dose and thus the radiation risk to the patient. Therefore, extreme care must be taken when choosing these parameters especially for vulnerable patients such as children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBCT" title="CBCT">CBCT</a>, <a href="https://publications.waset.org/abstracts/search?q=cone%20beam%20CT" title=" cone beam CT"> cone beam CT</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20dose" title=" effective dose"> effective dose</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20of%20view" title=" field of view"> field of view</a>, <a href="https://publications.waset.org/abstracts/search?q=mandible" title=" mandible"> mandible</a>, <a href="https://publications.waset.org/abstracts/search?q=maxilla" title=" maxilla"> maxilla</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=voxel" title=" voxel"> voxel</a> </p> <a href="https://publications.waset.org/abstracts/78167/the-effect-of-varying-cone-beam-computed-tomography-image-resolution-and-field-of-view-centralization-on-the-effective-radiation-dose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10909</span> Integral Domains and Their Algebras: Topological Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shai%20Sarussi">Shai Sarussi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R&cap;F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. Thus, the algebraic structure of W can be viewed from the point of view of topology. It is shown that every nonempty open subset of W has a maximal element in it, which is also a maximal element of W. Moreover, a supremum of an irreducible subset of W always exists. As a notable connection with valuation theory, one considers the case in which S is a valuation domain and A is an algebraic field extension of F; if S is indecomposed in A, then W is an irreducible topological space, and W contains a greatest element. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20domains" title="integral domains">integral domains</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandroff%20topology" title=" Alexandroff topology"> Alexandroff topology</a>, <a href="https://publications.waset.org/abstracts/search?q=prime%20spectrum%20of%20a%20ring" title=" prime spectrum of a ring"> prime spectrum of a ring</a>, <a href="https://publications.waset.org/abstracts/search?q=valuation%20domains" title=" valuation domains"> valuation domains</a> </p> <a href="https://publications.waset.org/abstracts/130312/integral-domains-and-their-algebras-topological-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10908</span> A Wide View Scheme for Automobile&#039;s Black Box</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaemyoung%20Lee">Jaemyoung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a wide view camera scheme for automobile's black box. The proposed scheme uses the commercially available camera lenses of which view angles are about 120°}^{\circ}°. In the proposed scheme, we extend the view angle to approximately 200° ^{\circ}° using two cameras at the front side instead of three lenses with conventional black boxes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera" title="camera">camera</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20box" title=" black box"> black box</a>, <a href="https://publications.waset.org/abstracts/search?q=view%20angle" title=" view angle"> view angle</a>, <a href="https://publications.waset.org/abstracts/search?q=automobile" title=" automobile"> automobile</a> </p> <a href="https://publications.waset.org/abstracts/2582/a-wide-view-scheme-for-automobiles-black-box" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10907</span> Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Giraudet">L. Giraudet</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Simonetti"> O. Simonetti</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20de%20Tournadre"> G. de Tournadre</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dumeli%C3%A9"> N. Dumelié</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Clarenc"> B. Clarenc</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Reisdorffer"> F. Reisdorffer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobility%20field%20activation" title="mobility field activation">mobility field activation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=OTFT" title=" OTFT"> OTFT</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20failure" title=" saturation failure "> saturation failure </a> </p> <a href="https://publications.waset.org/abstracts/19411/saturation-misbehavior-and-field-activation-of-the-mobility-in-polymer-based-otfts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10906</span> Behavior of an Elevated Liquid Storage Tank under Near-Fault Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koushik%20Roy">Koushik Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sourav%20Gur"> Sourav Gur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudib%20K.%20Mishra"> Sudib K. Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evidence of pulse type features in near-fault ground motions has raised serious concern to the structural engineering community, in view of their possible implications on the behavior of structures located on the fault regions. Studies in the recent past explore the effects of pulse type ground motion on the special structures, such as transmission towers in view of their high flexibility. Identically, long period sloshing of liquid in the storage tanks under dynamic loading might increase their failure vulnerability under near-fault pulses. Therefore, the behavior of the elevated liquid storage tank is taken up in this study. Simple lumped mass model is considered, with the bilinear force-deformation hysteresis behavior. Set of near-fault seismic ground acceleration time histories are adopted for this purpose, along with the far-field records for comparison. It has been demonstrated that pulse type motions lead to significant increase of the responses; in particular, sloshing of the fluid mass could be as high as 5 times, then the far field counterpart. For identical storage capacity, slender tanks are found to be more vulnerable than the broad ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=far-field%20motion" title="far-field motion">far-field motion</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20storage%20tank" title=" liquid storage tank"> liquid storage tank</a>, <a href="https://publications.waset.org/abstracts/search?q=near%20fault%20earthquake" title=" near fault earthquake"> near fault earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=sloshing" title=" sloshing"> sloshing</a> </p> <a href="https://publications.waset.org/abstracts/63452/behavior-of-an-elevated-liquid-storage-tank-under-near-fault-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10905</span> Compass Bar: A Visualization Technique for Out-of-View-Objects in Head-Mounted Displays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Evangelista">Alessandro Evangelista</a>, <a href="https://publications.waset.org/abstracts/search?q=Vito%20M.%20Manghisi"> Vito M. Manghisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Gattullo"> Michele Gattullo</a>, <a href="https://publications.waset.org/abstracts/search?q=Enricoandrea%20Laviola"> Enricoandrea Laviola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we propose a custom visualization technique for Out-Of-View-Objects in Virtual and Augmented Reality applications using Head Mounted Displays. In the last two decades, Augmented Reality (AR) and Virtual Reality (VR) technologies experienced a remarkable growth of applications for navigation, interaction, and collaboration in different types of environments, real or virtual. Both environments can be potentially very complex, as they can include many virtual objects located in different places. Given the natural limitation of the human Field of View (about 210° horizontal and 150° vertical), humans cannot perceive objects outside this angular range. Moreover, despite recent technological advances in AR e VR Head-Mounted Displays (HMDs), these devices still suffer from a limited Field of View, especially regarding Optical See-Through displays, thus greatly amplifying the challenge of visualizing out-of-view objects. This problem is not negligible when the user needs to be aware of the number and the position of the out-of-view objects in the environment. For instance, during a maintenance operation on a construction site where virtual objects serve to improve the dangers' awareness. Providing such information can enhance the comprehension of the scene, enable fast navigation and focused search, and improve users' safety. In our research, we investigated how to represent out-of-view-objects in HMD User Interfaces (UI). Inspired by commercial video games such as Call of Duty Modern Warfare, we designed a customized Compass. By exploiting the Unity 3D graphics engine, we implemented our custom solution that can be used both in AR and VR environments. The Compass Bar consists of a graduated bar (in degrees) at the top center of the UI. The values of the bar range from -180 (far left) to +180 (far right), the zero is placed in front of the user. Two vertical lines on the bar show the amplitude of the user's field of view. Every virtual object within the scene is represented onto the compass bar as a specific color-coded proxy icon (a circular ring with a colored dot at its center). To provide the user with information about the distance, we implemented a specific algorithm that increases the size of the inner dot as the user approaches the virtual object (i.e., when the user reaches the object, the dot fills the ring). This visualization technique for out-of-view objects has some advantages. It allows users to be quickly aware of the number and the position of the virtual objects in the environment. For instance, if the compass bar displays the proxy icon at about +90, users will immediately know that the virtual object is to their right and so on. Furthermore, by having qualitative information about the distance, users can optimize their speed, thus gaining effectiveness in their work. Given the small size and position of the Compass Bar, our solution also helps lessening the occlusion problem thus increasing user acceptance and engagement. As soon as the lockdown measures will allow, we will carry out user-tests comparing this solution with other state-of-the-art existing ones such as 3D Radar, SidebARs and EyeSee360. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title="augmented reality">augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=situation%20awareness" title=" situation awareness"> situation awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization%20design" title=" visualization design"> visualization design</a> </p> <a href="https://publications.waset.org/abstracts/128619/compass-bar-a-visualization-technique-for-out-of-view-objects-in-head-mounted-displays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10904</span> Influence of Different Rhizome Sizes and Operational Speed on the Field Capacity and Efficiency of a Three–Row Turmeric Rhizome Planter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muogbo%20Chukwudi%20Peter">Muogbo Chukwudi Peter</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbabo%20Agidi"> Gbabo Agidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Influence of different turmeric rhizome sizes and machine operational speed on the field capacity and efficiency of a developed prototype tractor-drawn turmeric planter was studied. This was done with a view to ascertaining how the field capacity and field efficiency were affected by the turmeric rhizome lengths and tractor operational speed. The turmeric rhizome planter consists of trapezoidal hopper, grooved cylindrical metering devise, rectangular frame, ground wheels made of mild steel, furrow opener, chain/sprocket drive system, three linkage point seed delivery tube and press wheel. The experiment was randomized in a factorial design of three levels of rhizome lengths (30, 45 and 60 mm) and operational speeds of 8, 10, and 12 kmh-1. About 3 kg cleaned turmeric rhizomes were introduced into each hopper of the planter and were planted 30 m2 of experimental plot. During the field evaluation of the planter, the effective field capacity, field efficiency, missing index, multiple index and percentage rhizome bruise were evaluated. 30.08% was recorded for maximum percentage bruise on the rhizome. The mean effective field capacity ranged between 0.63 – 0.96hah-1 at operational speeds of 8 and 12kmh-1 respectively and 45 mm rhizome length. The result also shows that the mean efficiency was obtained to be 65.8%. The percentage rhizome bruise decreases with increase in operational speed. The highest and lowest percentage turmeric rhizome miss index of 35% were recorded for turmeric rhizome length of 30 mm at a speed of 10 kmhr-1 and 8 kmhr-1, respectively. The potential implications of the experimental result is to determine the optimal machine process conditions for higher field capacity and gross reduction in mechanical injury (bruise) of planted turmeric rhizomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizome%20sizes" title="rhizome sizes">rhizome sizes</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20speed" title=" operational speed"> operational speed</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20capacity.%20field%20efficiency" title=" field capacity. field efficiency"> field capacity. field efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric%20rhizome" title=" turmeric rhizome"> turmeric rhizome</a>, <a href="https://publications.waset.org/abstracts/search?q=planter" title=" planter"> planter</a> </p> <a href="https://publications.waset.org/abstracts/184389/influence-of-different-rhizome-sizes-and-operational-speed-on-the-field-capacity-and-efficiency-of-a-three-row-turmeric-rhizome-planter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10903</span> Parametric Template-Based 3D Reconstruction of the Human Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu">Jiahe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyang%20Yu"> Hongyang Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Qian"> Feng Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Linhang%20Zhu"> Linhang Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposed a 3D human body reconstruction method, which integrates multi-view joint information into a set of joints and processes it with a parametric human body template. Firstly, we obtained human body image information captured from multiple perspectives. The multi-view information can avoid self-occlusion and occlusion problems during the reconstruction process. Then, we used the MvP algorithm to integrate multi-view joint information into a set of joints. Next, we used the parametric human body template SMPL-X to obtain more accurate three-dimensional human body reconstruction results. Compared with the traditional single-view parametric human body template reconstruction, this method significantly improved the accuracy and stability of the reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parametric%20human%20body%20templates" title="parametric human body templates">parametric human body templates</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction%20of%20the%20human%20body" title=" reconstruction of the human body"> reconstruction of the human body</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-view" title=" multi-view"> multi-view</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint"> joint</a> </p> <a href="https://publications.waset.org/abstracts/173775/parametric-template-based-3d-reconstruction-of-the-human-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10902</span> Spectroscopic Study of a Eu-Complex Containing Hybrid Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20R.%20Oliveira">Y. A. R. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Couto%20dos%20Santos"> M. A. Couto dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20B.%20C.%20J%C3%BAnior"> N. B. C. Júnior</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20L.%20Ribeiro"> S. J. L. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20D.%20Carlos"> L. D. Carlos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Eu(TTA)3(H2O)2 complex (TTA = thenoyltrifluoroacetone) pure (EuTTA) and incorporated in an organicinorganic hybrid material (EuTTA-hyb) are revisited, this time from the crystal field parameters (CFP) and Judd-Ofelt intensity parameters (Ωλ) point of view. A detailed analysis of the emission spectra revealed that the EuTTA phase still remains in the hybrid phase. Sparkle Model calculations of the EuTTA ground state geometry have been performed and satisfactorily compared to the X-ray structure. The observed weaker crystal field strength of the phase generated by the incorporation is promptly interpreted through the existing EXAFS results of the EuTTA-hyb structure. Satisfactory predictions of the CFP, of the 7F1 level splitting and of the Ωλ in all cases were obtained by using the charge factors and polarizabilities as degrees of freedom of non-parametric models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20field%20parameters" title="crystal field parameters">crystal field parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=europium%20complexes" title=" europium complexes"> europium complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=Judd-Ofelt%20intensity%20parameters" title=" Judd-Ofelt intensity parameters"> Judd-Ofelt intensity parameters</a> </p> <a href="https://publications.waset.org/abstracts/13357/spectroscopic-study-of-a-eu-complex-containing-hybrid-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10901</span> Human Posture Estimation Based on Multiple Viewpoints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiahe%20Liu">Jiahe Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=HongyangYu"> HongyangYu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Qian"> Feng Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%20Luo"> Miao Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-view" title="multi-view">multi-view</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20estimation" title=" pose estimation"> pose estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=ST-GCN" title=" ST-GCN"> ST-GCN</a>, <a href="https://publications.waset.org/abstracts/search?q=joint%20fusion" title=" joint fusion"> joint fusion</a> </p> <a href="https://publications.waset.org/abstracts/173781/human-posture-estimation-based-on-multiple-viewpoints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10900</span> The Truism of the True and Fair View of Auditor’s Report </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ofuan%20James%20Ilaboya">Ofuan James Ilaboya</a>, <a href="https://publications.waset.org/abstracts/search?q=Okhae%20J.%20Ibhadode"> Okhae J. Ibhadode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to theoretically examine the truism of the “true and fair view” in the context of financial reporting. The paper examines the concepts such as true, fair, true and fair view, problems of true and fair view, the origin/history of true and fair view, review of attributes and key issues relating to true and fair view. The methodological approach adopted in this paper is library-based research, focusing on the review of relevant and related extant literature. The findings based on the review of relevant and related literature is suggestive of the fact that the true and fair concept in financial reporting environment is contentious. The study concludes that given the circumstances as chronicled on this paper, it is evident that the truism of the true and fair view of the auditor’s opinion is under serious threat. The way forward may be for the auditor to certify the accuracy and the correctness of the financial statement. While this position being canvassed here may help to substantially bridge the age-long expectation gap, it may as well require an upward review of the current audit fee structure in order to be able to operationalize the onerous task of certifying the accuracy and correctness of the financial statement. This position is contentious and will require a robust consideration which is not within the purview of the present review. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiduciary%20duty" title="fiduciary duty">fiduciary duty</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20statement" title=" financial statement"> financial statement</a>, <a href="https://publications.waset.org/abstracts/search?q=true%20and%20correct" title=" true and correct"> true and correct</a>, <a href="https://publications.waset.org/abstracts/search?q=true%20and%20fair" title=" true and fair"> true and fair</a> </p> <a href="https://publications.waset.org/abstracts/122814/the-truism-of-the-true-and-fair-view-of-auditors-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10899</span> Narrative Point of View in Nature Documentary Films: A Study of The Cove (2009), Tale of a Forest (2012), and Before the Flood (2016)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakshi%20Yadav">Sakshi Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushila%20Shekhawat"> Sushila Shekhawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study addresses different types of points of view as seen in nature documentary films with the help of three eco documentaries, and it would be significant in understanding the role of the narrative point of view as a tool for showing and telling in documentaries. Narrative analysis of a film forms an essential aspect of the discourse of scholarship in film studies. Narration is the chain of events occurring in time and space. The notion of narrative provides the idea of coherence and wholeness to the story. There are various components that the narration carries, one of which is the perspective or point of view. The narrator plays the role of a mediator between the film and the audience; thus, his perspective influences the way the audience interprets the film. Feature films have been analyzed through narrative points of view; however, this research intends to conduct it from the angle of a nature documentary film. The study will examine narrative viewpoints unique to nature documentary films using three ecological documentary films-The Cove (2009), Tale of a forest (2012), and Before the flood (2016). This research will apply the framework of narrative theory and will investigate the impact of the different types of narrative points of view, as each portrays the human-nature relationship from a different standpoint, and it will also study the effect that the narrative point of view has on the mode of these eco documentaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecodocumentary" title="ecodocumentary">ecodocumentary</a>, <a href="https://publications.waset.org/abstracts/search?q=narrative" title=" narrative"> narrative</a>, <a href="https://publications.waset.org/abstracts/search?q=human-nature%20relationship" title=" human-nature relationship"> human-nature relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20of%20view" title=" point of view"> point of view</a> </p> <a href="https://publications.waset.org/abstracts/150091/narrative-point-of-view-in-nature-documentary-films-a-study-of-the-cove-2009-tale-of-a-forest-2012-and-before-the-flood-2016" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10898</span> Fast Return Path Planning for Agricultural Autonomous Terrestrial Robot in a Known Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlo%20Cernicchiaro">Carlo Cernicchiaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20D.%20Gaspar"> Pedro D. Gaspar</a>, <a href="https://publications.waset.org/abstracts/search?q=Martim%20L.%20Aguiar"> Martim L. Aguiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The agricultural sector is becoming more critical than ever in view of the expected overpopulation of the Earth. The introduction of robotic solutions in this field is an increasingly researched topic to make the most of the Earth&#39;s resources, thus going to avoid the problems of wear and tear of the human body due to the harsh agricultural work, and open the possibility of a constant careful processing 24 hours a day. This project is realized for a terrestrial autonomous robot aimed to navigate in an orchard collecting fallen peaches below the trees. When it receives the signal indicating the low battery, it has to return to the docking station where it will replace its battery and then return to the last work point and resume its routine. Considering a preset path in orchards with tree rows with variable length by which the robot goes iteratively using the algorithm D*. In case of low battery, the D* algorithm is still used to determine the fastest return path to the docking station as well as to come back from the docking station to the last work point. MATLAB simulations were performed to analyze the flexibility and adaptability of the developed algorithm. The simulation results show an enormous potential for adaptability, particularly in view of the irregularity of orchard field, since it is not flat and undergoes modifications over time from fallen branch as well as from other obstacles and constraints. The D* algorithm determines the best route in spite of the irregularity of the terrain. Moreover, in this work, it will be shown a possible solution to improve the initial points tracking and reduce time between movements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=fastest%20return%20path" title=" fastest return path"> fastest return path</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20autonomous%20terrestrial%20robot" title=" agricultural autonomous terrestrial robot"> agricultural autonomous terrestrial robot</a>, <a href="https://publications.waset.org/abstracts/search?q=docking%20station" title=" docking station"> docking station</a> </p> <a href="https://publications.waset.org/abstracts/96930/fast-return-path-planning-for-agricultural-autonomous-terrestrial-robot-in-a-known-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10897</span> Fuzzy Inference-Assisted Saliency-Aware Convolution Neural Networks for Multi-View Summarization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Hussain">Tanveer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Khan%20Muhammad"> Khan Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amin%20Ullah"> Amin Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mi%20Young%20Lee"> Mi Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Wook%20Baik"> Sung Wook Baik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Big Data generated from distributed vision sensors installed on large scale in smart cities create hurdles in its efficient and beneficial exploration for browsing, retrieval, and indexing. This paper presents a three-folded framework for effective video summarization of such data and provide a compact and representative format of Big Video Data. In the first fold, the paper acquires input video data from the installed cameras and collect clues such as type and count of objects and clarity of the view from a chunk of pre-defined number of frames of each view. The decision of representative view selection for a particular interval is based on fuzzy inference system, acquiring a precise and human resembling decision, reinforced by the known clues as a part of the second fold. In the third fold, the paper forwards the selected view frames to the summary generation mechanism that is supported by a saliency-aware convolution neural network (CNN) model. The new trend of fuzzy rules for view selection followed by CNN architecture for saliency computation makes the multi-view video summarization (MVS) framework a suitable candidate for real-world practice in smart cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20video%20data%20analysis" title="big video data analysis">big video data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-view%20video%20summarization" title=" multi-view video summarization"> multi-view video summarization</a>, <a href="https://publications.waset.org/abstracts/search?q=saliency%20detection" title=" saliency detection"> saliency detection</a> </p> <a href="https://publications.waset.org/abstracts/135176/fuzzy-inference-assisted-saliency-aware-convolution-neural-networks-for-multi-view-summarization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10896</span> Video Processing of a Football Game: Detecting Features of a Football Match for Automated Calculation of Statistics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Beri">Rishabh Beri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Shah"> Sahil Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have applied a range of filters and processing in order to extract out the various features of the football game, like the field lines of a football field. Another important aspect was the detection of the players in the field and tagging them according to their teams distinguished by their jersey colours. This extracted information combined about the players and field helped us to create a virtual field that consists of the playing field and the players mapped to their locations in it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Detect" title="Detect">Detect</a>, <a href="https://publications.waset.org/abstracts/search?q=Football" title=" Football"> Football</a>, <a href="https://publications.waset.org/abstracts/search?q=Players" title=" Players"> Players</a>, <a href="https://publications.waset.org/abstracts/search?q=Virtual" title=" Virtual"> Virtual</a> </p> <a href="https://publications.waset.org/abstracts/73570/video-processing-of-a-football-game-detecting-features-of-a-football-match-for-automated-calculation-of-statistics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10895</span> Framework for the Modeling of the Supply Chain Collaborative Planning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P%C3%A9rez">D. Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20E.%20Alemany"> M. M. E. Alemany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work a Framework to model the Supply Chain (SC) Collaborative Planning (CP) Process is proposed, and particularly its Decisional view. The main Framework contributions with regards to previous related works are the following, 1) the consideration of not only the Decision view, the most important one due to the Process type, but other additional three views which are the Physical, Organisation and Information ones, closely related and complementing the Decision View, 2) the joint consideration of two interdependence types, the Temporal (among Decision Centres belonging to different Decision Levels) and Spatial (among Decision Centres belonging to the same Decision Level) to support the distributed Decision-Making process in SC where several decision Centres interact among them in a collaborative manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collaborative%20planning" title="collaborative planning">collaborative planning</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20view" title=" decision view"> decision view</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20decision-making" title=" distributed decision-making"> distributed decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a> </p> <a href="https://publications.waset.org/abstracts/32456/framework-for-the-modeling-of-the-supply-chain-collaborative-planning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10894</span> Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Gupta">Manoj Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmendra%20Singh%20Bhadauria"> Nirmendra Singh Bhadauria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20fusion" title="image fusion">image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=DWT" title=" DWT"> DWT</a>, <a href="https://publications.waset.org/abstracts/search?q=DT-CWT" title=" DT-CWT"> DT-CWT</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20image%20fusion" title=" average image fusion"> average image fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20image%20fusion" title=" hybrid image fusion"> hybrid image fusion</a> </p> <a href="https://publications.waset.org/abstracts/19207/performance-of-hybrid-image-fusion-implementation-of-dual-tree-complex-wavelet-transform-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">606</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10893</span> Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Pour%20Yazdanpanah">Ali Pour Yazdanpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Farideh%20Foroozandeh%20Shahraki"> Farideh Foroozandeh Shahraki</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20Regentova"> Emma Regentova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 &minus; L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title="computed tomography">computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=non-convex" title=" non-convex"> non-convex</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse-view%20reconstruction" title=" sparse-view reconstruction"> sparse-view reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=L1-L2%20minimization" title=" L1-L2 minimization"> L1-L2 minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20of%20convex%20functions" title=" difference of convex functions"> difference of convex functions</a> </p> <a href="https://publications.waset.org/abstracts/70473/sparse-view-ct-reconstruction-based-on-nonconvex-l1-l2-regularizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10892</span> A Resource Based View: Perspective on Acquired Human Resource towards Competitive Advantage </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monia%20Hassan%20Abdulrahman">Monia Hassan Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resource-based view is built on many theories in addition to diverse perspectives, we extend this view placing emphasis on human resources addressing the tools required to sustain competitive advantage. Highlighting on several theories and judgments, assumptions were established to clearly reach if resource possession alone suffices for the sustainability of competitive advantage, or necessary accommodation are required for better performance. New practices were indicated in terms of resources used in firms, these practices were implemented on the human resources in particular, and results were developed in compliance to the mentioned assumptions. Such results drew attention to the significance of practices that provide enhancement of human resources that have a core responsibility of maintaining resource-based view for an organization to lead the way to gaining competitive advantage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competitive%20advantage" title="competitive advantage">competitive advantage</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20based%20value" title=" resource based value"> resource based value</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20resources" title=" human resources"> human resources</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20management" title=" strategic management"> strategic management</a> </p> <a href="https://publications.waset.org/abstracts/1950/a-resource-based-view-perspective-on-acquired-human-resource-towards-competitive-advantage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10891</span> Issues and Challenges in Social Work Field Education: The Field Coordinator&#039;s Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tracy%20B.E.%20Omorogiuwa">Tracy B.E. Omorogiuwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the role of social work in improving societal well-being cannot be separated from the place of field education, which is an integral aspect of social work education. Field learning provides students with knowledge and opportunities to experience solving issues in the field and giving them a clue of the practice situation. Despite being a crucial component in social work curriculum, field education occupies a large space in learning outcome, given the issues and challenges pertaining to its purpose and significance in the society. The drive of this paper is to provide insight on the specific ways in which field education has been conceived, realized and valued in the society. Emphasis is on the significance of field instruction; the link with classroom learning; and the structure of field experience in social work education. Given documented analysis and experience, this study intends to contribute to the development of social work curriculum, by analyzing the pattern, issues and challenges fronting the social work field education in the University of Benin, Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=challenges" title="challenges">challenges</a>, <a href="https://publications.waset.org/abstracts/search?q=curriculum" title=" curriculum"> curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20education" title=" field education"> field education</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20work%20education" title=" social work education"> social work education</a> </p> <a href="https://publications.waset.org/abstracts/76258/issues-and-challenges-in-social-work-field-education-the-field-coordinators-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10890</span> Engineering the Topological Insulator Structures for Terahertz Detectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Marchewka">M. Marchewka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20insulator" title="topological insulator">topological insulator</a>, <a href="https://publications.waset.org/abstracts/search?q=THz%20spectroscopy" title=" THz spectroscopy"> THz spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=KP%20model" title=" KP model"> KP model</a>, <a href="https://publications.waset.org/abstracts/search?q=II-VI%20compounds" title=" II-VI compounds"> II-VI compounds</a> </p> <a href="https://publications.waset.org/abstracts/133465/engineering-the-topological-insulator-structures-for-terahertz-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10889</span> Localising Gauss’s Law and the Electric Charge Induction on a Conducting Sphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirapat%20Lookrak">Sirapat Lookrak</a>, <a href="https://publications.waset.org/abstracts/search?q=Anol%20Paisal"> Anol Paisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space debris has numerous manifestations, including ferro-metalize and non-ferrous. The electric field will induce negative charges to split from positive charges inside the space debris. In this research, we focus only on conducting materials. The assumption is that the electric charge density of a conducting surface is proportional to the electric field on that surface due to Gauss's Law. We are trying to find the induced charge density from an external electric field perpendicular to a conducting spherical surface. An object is a sphere on which the external electric field is not uniform. The electric field is, therefore, considered locally. The localised spherical surface is a tangent plane, so the Gaussian surface is a very small cylinder, and every point on a spherical surface has its own cylinder. The electric field from a circular electrode has been calculated in near-field and far-field approximation and shown Explanation Touchless maneuvering space debris orbit properties. The electric charge density calculation from a near-field and far-field approximation is done. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-field%20approximation" title="near-field approximation">near-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=far-field%20approximation" title=" far-field approximation"> far-field approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20Gauss%E2%80%99s%20law" title=" localized Gauss’s law"> localized Gauss’s law</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20charge%20density" title=" electric charge density"> electric charge density</a> </p> <a href="https://publications.waset.org/abstracts/150159/localising-gausss-law-and-the-electric-charge-induction-on-a-conducting-sphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10888</span> Concepts of Creation and Destruction as Cognitive Instruments in World View Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perizat%20Balkhimbekova">Perizat Balkhimbekova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evolutionary changes in cognitive world view taking place in the last decades are followed by changes in perception of the key concepts which are related to the certain lingua-cultural sphere. Also, such concepts reflect the person’s attitude to essential processes in the sphere of concepts, e.g. the opposite operations like creation and destruction. These changes in people’s life and thinking are displayed in a language world view. In order to open the maintenance of mental structures and concepts we should use language means as observable results of people’s cognitive activity. Semantics of words, free phrases and idioms should be considered as an authoritative source of information concerning concepts. The regularized set of concepts in people consciousness forms the sphere of concepts. Cognitive linguistics widely discusses the sphere of concepts as its crucial category defining it as the field of knowledge which is made of concepts. It is considered that a sphere of concepts comprises the various types of association and forms conceptual fields. As a material for the given research, the data from Russian National Corpus and British National Corpus were used. In is necessary to point out that data provided by computational studies, are intrinsic and verifiable; so that we have used them in order to get the reliable results. The procedure of study was based on such techniques as extracting of the context containing concepts of creation|destruction from the Russian National Corpus (RNC), and British National Corpus (BNC); analyzing and interpreting of those context on the basis of cognitive approach; finding of correspondence between the given concepts in the Russian and English world view. The key problem of our study is to find the correspondence between the elements of world view represented by opposite concepts such as creation and destruction. Findings: The concept of "destruction" indicates a process which leads to full or partial destruction of an object. In other words, it is a loss of the object primary essence: structures, properties, distinctive signs and its initial integrity. The concept of "creation", on the contrary, comprises positive characteristics, represents the activity aimed at improvement of the certain object, at the creation of ideal models of the world. On the other hand, destruction is represented much more widely in RNC than creation (1254 cases of the first concept by comparison to 192 cases for the second one). Our hypothesis consists in the antinomy represented by the aforementioned concepts. Being opposite both in respect of semantics and pragmatics, and from the point of view of axiology, they are at the same time complementary and interrelated concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creation" title="creation">creation</a>, <a href="https://publications.waset.org/abstracts/search?q=destruction" title=" destruction"> destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=concept" title=" concept"> concept</a>, <a href="https://publications.waset.org/abstracts/search?q=world%20view" title=" world view"> world view</a> </p> <a href="https://publications.waset.org/abstracts/28082/concepts-of-creation-and-destruction-as-cognitive-instruments-in-world-view-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10887</span> Accuracy of Small Field of View CBCT in Determining Endodontic Working Length</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20L.%20S.%20Ahmad">N. L. S. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Thong"> Y. L. Thong</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Nambiar"> P. Nambiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An <em>in vitro</em> study was carried out to evaluate the feasibility of small field of view (FOV) cone beam computed tomography (CBCT) in determining endodontic working length. The objectives were to determine the accuracy of CBCT in measuring the estimated preoperative working lengths (EPWL), endodontic working lengths (EWL) and file lengths. Access cavities were prepared in 27 molars. For each root canal, the baseline electronic working length was determined using an EAL (Raypex 5). The teeth were then divided into overextended, non-modified and underextended groups and the lengths were adjusted accordingly. Imaging and measurements were made using the respective software of the RVG (Kodak RVG 6100) and CBCT units (Kodak 9000 3D). Root apices were then shaved and the apical constrictions viewed under magnification to measure the control working lengths. The paired t-test showed a statistically significant difference between CBCT EPWL and control length but the difference was too small to be clinically significant. From the Bland Altman analysis, the CBCT method had the widest range of 95% limits of agreement, reflecting its greater potential of error. In measuring file lengths, RVG had a bigger window of 95% limits of agreement compared to CBCT. Conclusions: (1) The clinically insignificant underestimation of the preoperative working length using small FOV CBCT showed that it is acceptable for use in the estimation of preoperative working length. (2) Small FOV CBCT may be used in working length determination but it is not as accurate as the currently practiced method of using the EAL. (3) It is also more accurate than RVG in measuring file lengths. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=CBCT" title=" CBCT"> CBCT</a>, <a href="https://publications.waset.org/abstracts/search?q=endodontics" title=" endodontics"> endodontics</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/42708/accuracy-of-small-field-of-view-cbct-in-determining-endodontic-working-length" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=363">363</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=364">364</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10