CINXE.COM
Logical conjunction - Wikipedia
<!DOCTYPE html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Logical conjunction - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"dbaaf5e0-ad57-4dac-8600-067ddc488290","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Logical_conjunction","wgTitle":"Logical conjunction","wgCurRevisionId":1257123423,"wgRevisionId":1257123423,"wgArticleId": 18152,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Logical_conjunction","wgRelevantArticleId":18152,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym": "अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo","autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy" ,"autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym": "Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym": "گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն" ,"dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{ "lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"ltg", "autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang": "mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym": "occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym": "armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so", "autonym":"Soomaaliga","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to", "autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{ "lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh", "cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn", "si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q191081","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true, "categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","jquery.tablesorter.styles":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.tablesorter", "skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.tablesorter.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/1200px-Venn0001.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="875"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/800px-Venn0001.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="583"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/640px-Venn0001.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="467"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Logical conjunction - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Logical_conjunction&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Logical_conjunction"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Logical_conjunction rootpage-Logical_conjunction stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"><div id="mw-mf-viewport"> <div id="mw-mf-page-center"> <a class="mw-mf-page-center__mask" href="#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"> <input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--home" href="/wiki/Main_Page" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--random" href="/wiki/Special:Random" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a> </li> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--nearby" href="/wiki/Special:Nearby" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a> </li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--login" href="/w/index.php?title=Special:UserLogin&returnto=Logical+conjunction" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a> </li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"> <a class="toggle-list-item__anchor menu__item--settings" href="/w/index.php?title=Special:MobileOptions&returnto=Logical+conjunction" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a> </li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--donate" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en&utm_key=minerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a> </li> </ul> <ul class="hlist"> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--about" href="/wiki/Wikipedia:About" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a> </li> <li class="toggle-list-item "> <a class="toggle-list-item__anchor menu__item--disclaimers" href="/wiki/Wikipedia:General_disclaimer" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a> </li> </ul> </div> <label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"> <a href="/wiki/Main_Page"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"> <input type="hidden" name="title" value="Special:Search"/> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div> <button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Logical conjunction</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"> <a class="minerva__tab-text" href="/wiki/Logical_conjunction" rel="" data-event-name="tabs.subject">Article</a> </li> <li class="minerva__tab "> <a class="minerva__tab-text" href="/wiki/Talk:Logical_conjunction" rel="discussion" data-event-name="tabs.talk">Talk</a> </li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"> <a role="button" href="#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a> </li> <li id="page-actions-watch" class="page-actions-menu__list-item"> <a role="button" id="ca-watch" href="/w/index.php?title=Special:UserLogin&returnto=Logical+conjunction" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a> </li> <li id="page-actions-edit" class="page-actions-menu__list-item"> <a role="button" id="ca-edit" href="/w/index.php?title=Logical_conjunction&action=edit" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a> </li> </ul> </nav> <!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"><script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Caret" title="Caret">Circumflex Agent (^)</a>, <a href="/wiki/Lambda" title="Lambda">Capital Lambda (Λ)</a>, <a href="/wiki/Turned_v" title="Turned v">Turned V (Λ)</a>, or <a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior Product (∧)</a>.</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><p>In <a href="/wiki/Logic" title="Logic">logic</a>, <a href="/wiki/Mathematics" title="Mathematics">mathematics</a> and <a href="/wiki/Linguistics" title="Linguistics">linguistics</a>, <i>and</i> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span>) is the <a href="/wiki/Truth_function" title="Truth function">truth-functional</a> operator of <b>conjunction</b> or <b>logical conjunction</b>. The <a href="/wiki/Logical_connective" title="Logical connective">logical connective</a> of this operator is typically represented as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span><sup id="cite_ref-:2_1-0" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \&}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&<!-- & --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \&}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7e8142574f96000e13827167bdfdd69e38076f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \&}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> (prefix) or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>×<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.019ex; margin-bottom: -0.19ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \times }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span><sup id="cite_ref-:1_2-0" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> in which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></span> is the most modern and widely used. </p><table class="infobox"><caption class="infobox-title" style="background:navy; color:white;">Logical conjunction</caption><tbody><tr><th colspan="2" class="infobox-above">AND</th></tr><tr><td colspan="2" class="infobox-image"><span typeof="mw:File"><a href="/wiki/File:Venn0001.svg" class="mw-file-description" title="Venn diagram of Logical conjunction"><img alt="Venn diagram of Logical conjunction" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/150px-Venn0001.svg.png" decoding="async" width="150" height="109" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/225px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/300px-Venn0001.svg.png 2x" data-file-width="410" data-file-height="299"></a></span></td></tr><tr><th scope="row" class="infobox-label">Definition</th><td class="infobox-data"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Truth_table" title="Truth table">Truth table</a></th><td class="infobox-data"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1000)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1000</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1000)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecf7c4e0fa1a9b5eb52422144ee5ae0f79d039fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.459ex; height:2.843ex;" alt="{\displaystyle (1000)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Logic_gate" title="Logic gate">Logic gate</a></th><td class="infobox-data"><span typeof="mw:File"><a href="/wiki/File:AND_ANSI.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/AND_ANSI.svg/70px-AND_ANSI.svg.png" decoding="async" width="70" height="35" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/AND_ANSI.svg/105px-AND_ANSI.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/AND_ANSI.svg/140px-AND_ANSI.svg.png 2x" data-file-width="100" data-file-height="50"></a></span></td></tr><tr><th colspan="2" class="infobox-header" style="background:navy; color:white;">Normal forms</th></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Disjunctive_normal_form" title="Disjunctive normal form">Disjunctive</a></th><td class="infobox-data"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Conjunctive_normal_form" title="Conjunctive normal form">Conjunctive</a></th><td class="infobox-data"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Zhegalkin_polynomial" title="Zhegalkin polynomial">Zhegalkin polynomial</a></th><td class="infobox-data"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c72eb345e496513fb8b2fa4aa8c4d89b855f9a01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.485ex; height:2.009ex;" alt="{\displaystyle xy}"></span></td></tr><tr><th colspan="2" class="infobox-header" style="background:navy; color:white;"><a href="/wiki/Post%27s_lattice" title="Post's lattice"><span style="color:white;">Post's lattices</span></a></th></tr><tr><th scope="row" class="infobox-label">0-preserving</th><td class="infobox-data">yes</td></tr><tr><th scope="row" class="infobox-label">1-preserving</th><td class="infobox-data">yes</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Monotonic_function" title="Monotonic function">Monotone</a></th><td class="infobox-data">no</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Affine_transformation" title="Affine transformation">Affine</a></th><td class="infobox-data">no</td></tr><tr><th scope="row" class="infobox-label">Self-dual</th><td class="infobox-data">no</td></tr><tr><td colspan="2" class="infobox-navbar"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Infobox_logical_connective" title="Template:Infobox logical connective"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Infobox_logical_connective" title="Template talk:Infobox logical connective"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Infobox_logical_connective" title="Special:EditPage/Template:Infobox logical connective"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Venn_0000_0001.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/220px-Venn_0000_0001.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/330px-Venn_0000_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/440px-Venn_0000_0001.svg.png 2x" data-file-width="200" data-file-height="200"></a><figcaption><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\wedge B\land C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\wedge B\land C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3565b79459dcf8d4555f23660a1811669f1131c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.439ex; height:2.176ex;" alt="{\displaystyle A\wedge B\land C}"></span></figcaption></figure> <p>The <i>and</i> of a set of operands is true if and only if <i>all</i> of its operands are true, i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span> is true if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is true and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> is true. </p><p>An operand of a conjunction is a <b>conjunct</b>.<sup id="cite_ref-:21_3-0" class="reference"><a href="#cite_note-:21-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Beyond logic, the term "conjunction" also refers to similar concepts in other fields: </p> <ul><li>In <a href="/wiki/Natural_language" title="Natural language">natural language</a>, the <a href="/wiki/Denotation" title="Denotation">denotation</a> of expressions such as <a href="/wiki/English_language" title="English language">English</a> "<a href="/wiki/Conjunction_(grammar)" title="Conjunction (grammar)">and</a>";</li> <li>In <a href="/wiki/Programming_language" title="Programming language">programming languages</a>, the <a href="/wiki/Short-circuit_evaluation" title="Short-circuit evaluation">short-circuit and</a> <a href="/wiki/Control_flow" title="Control flow">control structure</a>;</li> <li>In <a href="/wiki/Set_theory" title="Set theory">set theory</a>, <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a>.</li> <li>In <a href="/wiki/Lattice_(order)" title="Lattice (order)">lattice theory</a>, logical conjunction (<a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">greatest lower bound</a>).</li></ul> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Notation"><span class="tocnumber">1</span> <span class="toctext">Notation</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Definition"><span class="tocnumber">2</span> <span class="toctext">Definition</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Truth_table"><span class="tocnumber">2.1</span> <span class="toctext">Truth table</span></a></li> <li class="toclevel-2 tocsection-4"><a href="#Defined_by_other_operators"><span class="tocnumber">2.2</span> <span class="toctext">Defined by other operators</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-5"><a href="#Introduction_and_elimination_rules"><span class="tocnumber">3</span> <span class="toctext">Introduction and elimination rules</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Negation"><span class="tocnumber">4</span> <span class="toctext">Negation</span></a> <ul> <li class="toclevel-2 tocsection-7"><a href="#Definition_2"><span class="tocnumber">4.1</span> <span class="toctext">Definition</span></a></li> <li class="toclevel-2 tocsection-8"><a href="#Other_proof_strategies"><span class="tocnumber">4.2</span> <span class="toctext">Other proof strategies</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-9"><a href="#Properties"><span class="tocnumber">5</span> <span class="toctext">Properties</span></a></li> <li class="toclevel-1 tocsection-10"><a href="#Applications_in_computer_engineering"><span class="tocnumber">6</span> <span class="toctext">Applications in computer engineering</span></a></li> <li class="toclevel-1 tocsection-11"><a href="#Set-theoretic_correspondence"><span class="tocnumber">7</span> <span class="toctext">Set-theoretic correspondence</span></a></li> <li class="toclevel-1 tocsection-12"><a href="#Natural_language"><span class="tocnumber">8</span> <span class="toctext">Natural language</span></a></li> <li class="toclevel-1 tocsection-13"><a href="#See_also"><span class="tocnumber">9</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-14"><a href="#References"><span class="tocnumber">10</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#External_links"><span class="tocnumber">11</span> <span class="toctext">External links</span></a></li> </ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Notation">Notation</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=1" title="Edit section: Notation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-1 collapsible-block" id="mf-section-1"> <p><b>And</b> is usually denoted by an infix operator: in mathematics and logic, it is denoted by a "wedge" <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \wedge }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1caa4004cb216ef2930bb12fe805a76870caed94" data-alt="{\displaystyle \wedge }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (Unicode <span class="nowrap"><style data-mw-deduplicate="TemplateStyles:r886049734">.mw-parser-output .monospaced{font-family:monospace,monospace}</style><span class="monospaced">U+2227</span> </span><span style="font-size:125%;line-height:1em">∧</span> <span style="font-variant: small-caps; text-transform: lowercase;">LOGICAL AND</span>),<sup id="cite_ref-:2_1-1" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \&}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&<!-- & --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \&}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7e8142574f96000e13827167bdfdd69e38076f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \&}"></noscript><span class="lazy-image-placeholder" style="width: 1.808ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf7e8142574f96000e13827167bdfdd69e38076f" data-alt="{\displaystyle \&}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \times }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>×<!-- × --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \times }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.019ex; margin-bottom: -0.19ex; width:1.808ex; height:1.509ex;" alt="{\displaystyle \times }"></noscript><span class="lazy-image-placeholder" style="width: 1.808ex;height: 1.509ex;vertical-align: 0.019ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ffafff1ad26cbe49045f19a67ce532116a32703" data-alt="{\displaystyle \times }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>; in electronics, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⋅<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></noscript><span class="lazy-image-placeholder" style="width: 0.647ex;height: 1.176ex;vertical-align: 0.439ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" data-alt="{\displaystyle \cdot }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>; and in programming languages, <b><code>&</code></b>, <b><code>&&</code></b>, or <b><code>and</code></b>. In <a href="/wiki/Jan_%C5%81ukasiewicz" title="Jan Łukasiewicz">Jan Łukasiewicz</a>'s <a href="/wiki/Polish_notation#Polish_notation_for_logic" title="Polish notation">prefix notation for logic</a>, the operator is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></noscript><span class="lazy-image-placeholder" style="width: 2.066ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" data-alt="{\displaystyle K}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, for Polish <i>koniunkcja</i>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p><p>In mathematics, the conjunction of an arbitrary number of elements <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{1},\ldots ,a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{1},\ldots ,a_{n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/451345cc97e2ed923dd4656fcc400c3f37119cca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.911ex; height:2.009ex;" alt="{\displaystyle a_{1},\ldots ,a_{n}}"></noscript><span class="lazy-image-placeholder" style="width: 9.911ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/451345cc97e2ed923dd4656fcc400c3f37119cca" data-alt="{\displaystyle a_{1},\ldots ,a_{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> can be denoted as an <a href="/wiki/Iterated_binary_operation" title="Iterated binary operation">iterated binary operation</a> using a "big wedge" ⋀ (Unicode <span class="nowrap"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886049734"><span class="monospaced">U+22C0</span> </span><span style="font-size:125%;line-height:1em">⋀</span> <span style="font-variant: small-caps; text-transform: lowercase;">N-ARY LOGICAL AND</span>):<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigwedge _{i=1}^{n}a_{i}=a_{1}\wedge a_{2}\wedge \ldots a_{n-1}\wedge a_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>⋀<!-- ⋀ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <mo>…<!-- … --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>∧<!-- ∧ --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigwedge _{i=1}^{n}a_{i}=a_{1}\wedge a_{2}\wedge \ldots a_{n-1}\wedge a_{n}}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1feb79ba86ee76f756f9571b753a42793633dd71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.606ex; height:6.843ex;" alt="{\displaystyle \bigwedge _{i=1}^{n}a_{i}=a_{1}\wedge a_{2}\wedge \ldots a_{n-1}\wedge a_{n}}"></noscript><span class="lazy-image-placeholder" style="width: 30.606ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1feb79ba86ee76f756f9571b753a42793633dd71" data-alt="{\displaystyle \bigwedge _{i=1}^{n}a_{i}=a_{1}\wedge a_{2}\wedge \ldots a_{n-1}\wedge a_{n}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Definition">Definition</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=2" title="Edit section: Definition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>In <a href="/wiki/Classical_logic" title="Classical logic">classical logic</a>, <b>logical conjunction</b> is an <a href="/wiki/Logical_operation" class="mw-redirect" title="Logical operation">operation</a> on two <a href="/wiki/Logical_value" class="mw-redirect" title="Logical value">logical values</a>, typically the values of two <a href="/wiki/Proposition" title="Proposition">propositions</a>, that produces a value of <i>true</i> <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> (also known as iff) both of its operands are true.<sup id="cite_ref-:1_2-1" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:2_1-2" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>The conjunctive <a href="/wiki/Identity_element" title="Identity element">identity</a> is true, which is to say that AND-ing an expression with true will never change the value of the expression. In keeping with the concept of <a href="/wiki/Vacuous_truth" title="Vacuous truth">vacuous truth</a>, when conjunction is defined as an operator or function of arbitrary <a href="/wiki/Arity" title="Arity">arity</a>, the empty conjunction (AND-ing over an empty set of operands) is often defined as having the result true. </p> <div class="mw-heading mw-heading3"><h3 id="Truth_table">Truth table</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=3" title="Edit section: Truth table" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Variadic_logical_AND.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Variadic_logical_AND.svg/220px-Variadic_logical_AND.svg.png" decoding="async" width="220" height="177" class="mw-file-element" data-file-width="1807" data-file-height="1452"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 177px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Variadic_logical_AND.svg/220px-Variadic_logical_AND.svg.png" data-width="220" data-height="177" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Variadic_logical_AND.svg/330px-Variadic_logical_AND.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/Variadic_logical_AND.svg/440px-Variadic_logical_AND.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>Conjunctions of the arguments on the left — The <a href="/wiki/Truth_value" title="Truth value">true</a> <a href="/wiki/Bit" title="Bit">bit</a>s form a <a href="/wiki/Sierpinski_triangle" class="mw-redirect" title="Sierpinski triangle">Sierpinski triangle</a>.</figcaption></figure> <p>The <a href="/wiki/Truth_table" title="Truth table">truth table</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>:<sup id="cite_ref-:2_1-3" class="reference"><a href="#cite_note-:2-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_2-2" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <style data-mw-deduplicate="TemplateStyles:r1211505603">.mw-parser-output table.two-ary-tt th{font-weight:normal}.mw-parser-output table.two-ary-tt td.bold{font-weight:bold;color:#444}.mw-parser-output table.two-ary-tt td{text-align:center;padding-left:14px;padding-right:14px}.mw-parser-output table.two-ary-tt td.f{background-color:#fff}.mw-parser-output table.two-ary-tt td.t{background-color:#fcc}.mw-parser-output td.border,.mw-parser-output th.border{border-left:2px solid #777}</style><table class="wikitable sortable two-ary-tt"><tbody><tr><th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable border"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th></tr><tr><td class="bold f">F</td><td class="bold f">F</td><td class="border f">F</td></tr><tr><td class="bold f">F</td><td class="bold t">T</td><td class="border f">F</td></tr><tr><td class="bold t">T</td><td class="bold f">F</td><td class="border f">F</td></tr><tr><td class="bold t">T</td><td class="bold t">T</td><td class="border t">T</td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Defined_by_other_operators">Defined by other operators</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=4" title="Edit section: Defined by other operators" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In systems where logical conjunction is not a primitive, it may be defined as<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B=\neg (A\to \neg B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B=\neg (A\to \neg B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/173fa875cd41f46afd356d88f54ebc4ec982bed1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.219ex; height:2.843ex;" alt="{\displaystyle A\land B=\neg (A\to \neg B)}"></noscript><span class="lazy-image-placeholder" style="width: 21.219ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/173fa875cd41f46afd356d88f54ebc4ec982bed1" data-alt="{\displaystyle A\land B=\neg (A\to \neg B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>It can be checked by the following truth table (compare the last two columns): </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1211505603"><table class="wikitable sortable two-ary-tt"><tbody><tr><th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable border"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.314ex; height:2.176ex;" alt="{\displaystyle \neg B}"></noscript><span class="lazy-image-placeholder" style="width: 3.314ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" data-alt="{\displaystyle \neg B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable border"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\rightarrow \neg B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\rightarrow \neg B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa4203fc2ac31a8d56717a6d81924606a4127382" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.672ex; height:2.176ex;" alt="{\displaystyle A\rightarrow \neg B}"></noscript><span class="lazy-image-placeholder" style="width: 8.672ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa4203fc2ac31a8d56717a6d81924606a4127382" data-alt="{\displaystyle A\rightarrow \neg B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg (A\rightarrow \neg B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg (A\rightarrow \neg B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb075b6d78dece6f3df0ca841397915db287984" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.031ex; height:2.843ex;" alt="{\displaystyle \neg (A\rightarrow \neg B)}"></noscript><span class="lazy-image-placeholder" style="width: 12.031ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ecb075b6d78dece6f3df0ca841397915db287984" data-alt="{\displaystyle \neg (A\rightarrow \neg B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th></tr><tr><td class="bold f">F</td><td class="bold f">F</td><td class="border t">T</td><td class="border t">T</td><td class="f">F</td><td class="f">F</td></tr><tr><td class="bold f">F</td><td class="bold t">T</td><td class="border f">F</td><td class="border t">T</td><td class="f">F</td><td class="f">F</td></tr><tr><td class="bold t">T</td><td class="bold f">F</td><td class="border t">T</td><td class="border t">T</td><td class="f">F</td><td class="f">F</td></tr><tr><td class="bold t">T</td><td class="bold t">T</td><td class="border f">F</td><td class="border f">F</td><td class="t">T</td><td class="t">T</td></tr></tbody></table> <p>or </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B=\neg (\neg A\lor \neg B).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo>=</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>A</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B=\neg (\neg A\lor \neg B).}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05eb197c28ea0aed77613688b475b36f092c063a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.385ex; height:2.843ex;" alt="{\displaystyle A\land B=\neg (\neg A\lor \neg B).}"></noscript><span class="lazy-image-placeholder" style="width: 22.385ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05eb197c28ea0aed77613688b475b36f092c063a" data-alt="{\displaystyle A\land B=\neg (\neg A\lor \neg B).}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>It can be checked by the following truth table (compare the last two columns): </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1211505603"><table class="wikitable sortable two-ary-tt"><tbody><tr><th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable border"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195aae731102b36b14a902a091d04ac5c6a5af49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.293ex; height:2.176ex;" alt="{\displaystyle \neg A}"></noscript><span class="lazy-image-placeholder" style="width: 3.293ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195aae731102b36b14a902a091d04ac5c6a5af49" data-alt="{\displaystyle \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.314ex; height:2.176ex;" alt="{\displaystyle \neg B}"></noscript><span class="lazy-image-placeholder" style="width: 3.314ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" data-alt="{\displaystyle \neg B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable border"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg A\lor \neg B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>A</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg A\lor \neg B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1020d4923bd093b4d10a73c88d3db0b3211b4ec0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.19ex; height:2.176ex;" alt="{\displaystyle \neg A\lor \neg B}"></noscript><span class="lazy-image-placeholder" style="width: 9.19ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1020d4923bd093b4d10a73c88d3db0b3211b4ec0" data-alt="{\displaystyle \neg A\lor \neg B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg (\neg A\lor \neg B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>A</mi> <mo>∨<!-- ∨ --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg (\neg A\lor \neg B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdffb25cda99ba7533af46896d8471612e831b53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.55ex; height:2.843ex;" alt="{\displaystyle \neg (\neg A\lor \neg B)}"></noscript><span class="lazy-image-placeholder" style="width: 12.55ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdffb25cda99ba7533af46896d8471612e831b53" data-alt="{\displaystyle \neg (\neg A\lor \neg B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th><th class="unsortable"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></th></tr><tr><td class="bold f">F</td><td class="bold f">F</td><td class="border t">T</td><td class="t">T</td><td class="border t">T</td><td class="f">F</td><td class="f">F</td></tr><tr><td class="bold f">F</td><td class="bold t">T</td><td class="border t">T</td><td class="f">F</td><td class="border t">T</td><td class="f">F</td><td class="f">F</td></tr><tr><td class="bold t">T</td><td class="bold f">F</td><td class="border f">F</td><td class="t">T</td><td class="border t">T</td><td class="f">F</td><td class="f">F</td></tr><tr><td class="bold t">T</td><td class="bold t">T</td><td class="border f">F</td><td class="f">F</td><td class="border f">F</td><td class="t">T</td><td class="t">T</td></tr></tbody></table> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Introduction_and_elimination_rules">Introduction and elimination rules</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=5" title="Edit section: Introduction and elimination rules" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>As a rule of inference, <a href="/wiki/Conjunction_introduction" title="Conjunction introduction">conjunction introduction</a> is a classically <a href="/wiki/Validity_(logic)" title="Validity (logic)">valid</a>, simple <a href="/wiki/Argument_form" class="mw-redirect" title="Argument form">argument form</a>. The argument form has two premises, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Intuitively, it permits the inference of their conjunction. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>,</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</dd> <dd>Therefore, <i>A</i> and <i>B</i>.</dd></dl> <p>or in <a href="/wiki/Logical_operator" class="mw-redirect" title="Logical operator">logical operator</a> notation, where \vdash expresses provability: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash A,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> <mi>A</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash A,}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35b684f523e5fd8c0dfb07cfb6a5696132e21cad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.455ex; height:2.509ex;" alt="{\displaystyle \vdash A,}"></noscript><span class="lazy-image-placeholder" style="width: 4.455ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35b684f523e5fd8c0dfb07cfb6a5696132e21cad" data-alt="{\displaystyle \vdash A,}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa02acb341837055be929c605bd7a9edf73b6de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.829ex; height:2.176ex;" alt="{\displaystyle \vdash B}"></noscript><span class="lazy-image-placeholder" style="width: 3.829ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa02acb341837055be929c605bd7a9edf73b6de" data-alt="{\displaystyle \vdash B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d536ef29846f62a11cb72d74bcfcba2fce901b7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.155ex; height:2.176ex;" alt="{\displaystyle \vdash A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 8.155ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d536ef29846f62a11cb72d74bcfcba2fce901b7f" data-alt="{\displaystyle \vdash A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>Here is an example of an argument that fits the form <i><a href="/wiki/Conjunction_introduction" title="Conjunction introduction">conjunction introduction</a></i>: </p> <dl><dd>Bob likes apples.</dd> <dd>Bob likes oranges.</dd> <dd>Therefore, Bob likes apples and Bob likes oranges.</dd></dl> <p><a href="/wiki/Conjunction_elimination" title="Conjunction elimination">Conjunction elimination</a> is another classically <a href="/wiki/Validity_(logic)" title="Validity (logic)">valid</a>, simple <a href="/wiki/Argument_form" class="mw-redirect" title="Argument form">argument form</a>. Intuitively, it permits the inference from any conjunction of either element of that conjunction. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</dd> <dd>Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</dd></dl> <p>...or alternatively, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</dd> <dd>Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></noscript><span class="lazy-image-placeholder" style="width: 1.764ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" data-alt="{\displaystyle B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>.</dd></dl> <p>In <a href="/wiki/Logical_operator" class="mw-redirect" title="Logical operator">logical operator</a> notation: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d536ef29846f62a11cb72d74bcfcba2fce901b7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.155ex; height:2.176ex;" alt="{\displaystyle \vdash A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 8.155ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d536ef29846f62a11cb72d74bcfcba2fce901b7f" data-alt="{\displaystyle \vdash A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b145d194f0785ff840b76ace797a7e077a18f544" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.809ex; height:2.176ex;" alt="{\displaystyle \vdash A}"></noscript><span class="lazy-image-placeholder" style="width: 3.809ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b145d194f0785ff840b76ace797a7e077a18f544" data-alt="{\displaystyle \vdash A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>...or alternatively, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d536ef29846f62a11cb72d74bcfcba2fce901b7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.155ex; height:2.176ex;" alt="{\displaystyle \vdash A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 8.155ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d536ef29846f62a11cb72d74bcfcba2fce901b7f" data-alt="{\displaystyle \vdash A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdash B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊢<!-- ⊢ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdash B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa02acb341837055be929c605bd7a9edf73b6de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.829ex; height:2.176ex;" alt="{\displaystyle \vdash B}"></noscript><span class="lazy-image-placeholder" style="width: 3.829ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aaa02acb341837055be929c605bd7a9edf73b6de" data-alt="{\displaystyle \vdash B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Negation">Negation</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=6" title="Edit section: Negation" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-4 collapsible-block" id="mf-section-4"> <div class="mw-heading mw-heading3"><h3 id="Definition_2">Definition</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=7" title="Edit section: Definition" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A conjunction <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is proven false by establishing either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195aae731102b36b14a902a091d04ac5c6a5af49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.293ex; height:2.176ex;" alt="{\displaystyle \neg A}"></noscript><span class="lazy-image-placeholder" style="width: 3.293ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195aae731102b36b14a902a091d04ac5c6a5af49" data-alt="{\displaystyle \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.314ex; height:2.176ex;" alt="{\displaystyle \neg B}"></noscript><span class="lazy-image-placeholder" style="width: 3.314ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" data-alt="{\displaystyle \neg B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. In terms of the object language, this reads </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg A\to \neg (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg A\to \neg (A\land B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6411846635732799332fb8b49f66ee081f476bae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.357ex; height:2.843ex;" alt="{\displaystyle \neg A\to \neg (A\land B)}"></noscript><span class="lazy-image-placeholder" style="width: 16.357ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6411846635732799332fb8b49f66ee081f476bae" data-alt="{\displaystyle \neg A\to \neg (A\land B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>This formula can be seen as a special case of </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\to C)\to ((A\land B)\to C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\to C)\to ((A\land B)\to C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6751af7d8bc26b530f7779c5317b128092b8c933" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.636ex; height:2.843ex;" alt="{\displaystyle (A\to C)\to ((A\land B)\to C)}"></noscript><span class="lazy-image-placeholder" style="width: 27.636ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6751af7d8bc26b530f7779c5317b128092b8c933" data-alt="{\displaystyle (A\to C)\to ((A\land B)\to C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></noscript><span class="lazy-image-placeholder" style="width: 1.766ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" data-alt="{\displaystyle C}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is a false proposition. </p> <div class="mw-heading mw-heading3"><h3 id="Other_proof_strategies">Other proof strategies</h3><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=8" title="Edit section: Other proof strategies" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.314ex; height:2.176ex;" alt="{\displaystyle \neg B}"></noscript><span class="lazy-image-placeholder" style="width: 3.314ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8cf55d88686624cd054232a7cf1a6b7e6e84210" data-alt="{\displaystyle \neg B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, then both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195aae731102b36b14a902a091d04ac5c6a5af49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.293ex; height:2.176ex;" alt="{\displaystyle \neg A}"></noscript><span class="lazy-image-placeholder" style="width: 3.293ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195aae731102b36b14a902a091d04ac5c6a5af49" data-alt="{\displaystyle \neg A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> as well as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></noscript><span class="lazy-image-placeholder" style="width: 1.743ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" data-alt="{\displaystyle A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> prove the conjunction false: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\to \neg {}B)\to \neg (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">¬<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\to \neg {}B)\to \neg (A\land B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5fe2ddde389bb41067e67cbadc4c62fcab7793c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.544ex; height:2.843ex;" alt="{\displaystyle (A\to \neg {}B)\to \neg (A\land B)}"></noscript><span class="lazy-image-placeholder" style="width: 23.544ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5fe2ddde389bb41067e67cbadc4c62fcab7793c" data-alt="{\displaystyle (A\to \neg {}B)\to \neg (A\land B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>In other words, a conjunction can actually be proven false just by knowing about the relation of its conjuncts, and not necessary about their truth values. </p><p>This formula can be seen as a special case of </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\to (B\to C))\to ((A\land B)\to C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">→<!-- → --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">→<!-- → --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\to (B\to C))\to ((A\land B)\to C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b1f2e7d1056f3be372e1e896484c1b1ac5fd29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.823ex; height:2.843ex;" alt="{\displaystyle (A\to (B\to C))\to ((A\land B)\to C)}"></noscript><span class="lazy-image-placeholder" style="width: 34.823ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85b1f2e7d1056f3be372e1e896484c1b1ac5fd29" data-alt="{\displaystyle (A\to (B\to C))\to ((A\land B)\to C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></dd></dl> <p>when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></noscript><span class="lazy-image-placeholder" style="width: 1.766ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" data-alt="{\displaystyle C}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is a false proposition. </p><p>Either of the above are constructively valid proofs by contradiction. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Properties">Properties</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=9" title="Edit section: Properties" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-5 collapsible-block" id="mf-section-5"> <p><b><a href="/wiki/Commutative_property" title="Commutative property">commutativity</a>: yes</b> </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B\land A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>∧<!-- ∧ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B\land A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5920298dbda4592b71e53822ce01829cd77f4190" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle B\land A}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5920298dbda4592b71e53822ce01829cd77f4190" data-alt="{\displaystyle B\land A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" decoding="async" width="50" height="36" class="mw-file-element" data-file-width="410" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 36px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" data-width="50" data-height="36" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/75px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/100px-Venn0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" decoding="async" width="50" height="36" class="mw-file-element" data-file-width="410" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 36px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" data-width="50" data-height="36" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/75px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/100px-Venn0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <p><b><a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associativity</a>: yes<sup id="cite_ref-:13_7-0" class="reference"><a href="#cite_note-:13-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></b> </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" data-alt="{\displaystyle ~A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mo>∧<!-- ∧ --></mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></noscript><span class="lazy-image-placeholder" style="width: 6.066ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" data-alt="{\displaystyle ~~~\land ~~~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.922ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" data-alt="{\displaystyle (B\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></noscript><span class="lazy-image-placeholder" style="width: 7.899ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" data-alt="{\displaystyle (A\land B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mo>∧<!-- ∧ --></mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></noscript><span class="lazy-image-placeholder" style="width: 6.066ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" data-alt="{\displaystyle ~~~\land ~~~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~C}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f52ed2496dc4077efa433abb4685684a158d7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.347ex; height:2.176ex;" alt="{\displaystyle ~C}"></noscript><span class="lazy-image-placeholder" style="width: 2.347ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f52ed2496dc4077efa433abb4685684a158d7e" data-alt="{\displaystyle ~C}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0101_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mo>∧<!-- ∧ --></mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></noscript><span class="lazy-image-placeholder" style="width: 6.066ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" data-alt="{\displaystyle ~~~\land ~~~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0011.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/75px-Venn_0000_0011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/100px-Venn_0000_0011.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/50px-Venn_0000_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/50px-Venn_0000_0001.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/75px-Venn_0000_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/100px-Venn_0000_0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~~~\land ~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> <mo>∧<!-- ∧ --></mo> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~~~\land ~~~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.066ex; height:2.009ex;" alt="{\displaystyle ~~~\land ~~~}"></noscript><span class="lazy-image-placeholder" style="width: 6.066ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/296d4bd5f22dac2701fa42f57e9c5b65d1dd63f9" data-alt="{\displaystyle ~~~\land ~~~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_1111.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Venn_0000_1111.svg/50px-Venn_0000_1111.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Venn_0000_1111.svg/50px-Venn_0000_1111.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Venn_0000_1111.svg/75px-Venn_0000_1111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/Venn_0000_1111.svg/100px-Venn_0000_1111.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <p><b><a href="/wiki/Distributivity" class="mw-redirect" title="Distributivity">distributivity</a>:</b> with various operations, especially with <i><a href="/wiki/Logical_disjunction" title="Logical disjunction">or</a></i> </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" data-alt="{\displaystyle ~A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\lor C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∨<!-- ∨ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\lor C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c18aad468eb6ae0354f697dd4035fb970946d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\lor C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.922ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0c18aad468eb6ae0354f697dd4035fb970946d2" data-alt="{\displaystyle (B\lor C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></noscript><span class="lazy-image-placeholder" style="width: 7.899ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" data-alt="{\displaystyle (A\land B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" data-alt="{\displaystyle \lor }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.901ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" data-alt="{\displaystyle (A\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0101_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0011_1111.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Venn_0011_1111.svg/50px-Venn_0011_1111.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Venn_0011_1111.svg/50px-Venn_0011_1111.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/56/Venn_0011_1111.svg/75px-Venn_0011_1111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/56/Venn_0011_1111.svg/100px-Venn_0011_1111.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Venn_0001_0101.svg/50px-Venn_0001_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Venn_0001_0101.svg/50px-Venn_0001_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Venn_0001_0101.svg/75px-Venn_0001_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c3/Venn_0001_0101.svg/100px-Venn_0001_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lor }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∨<!-- ∨ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lor }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \lor }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab47f6b1f589aedcf14638df1d63049d233d851a" data-alt="{\displaystyle \lor }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <table class="collapsible collapsed" style="width: 100%; border: 1px solid #aaaaaa;"> <tbody><tr> <th bgcolor="#ccccff">others </th></tr> <tr> <td> <p>with <a href="/wiki/Exclusive_or" title="Exclusive or">exclusive or</a>: </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" data-alt="{\displaystyle ~A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\oplus C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>⊕<!-- ⊕ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\oplus C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8d4800638f9d7524cd268e8e9443f12bf67afac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.18ex; height:2.843ex;" alt="{\displaystyle (B\oplus C)}"></noscript><span class="lazy-image-placeholder" style="width: 8.18ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8d4800638f9d7524cd268e8e9443f12bf67afac" data-alt="{\displaystyle (B\oplus C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></noscript><span class="lazy-image-placeholder" style="width: 7.899ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" data-alt="{\displaystyle (A\land B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></noscript><span class="lazy-image-placeholder" style="width: 1.808ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" data-alt="{\displaystyle \oplus }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.901ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" data-alt="{\displaystyle (A\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0101_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0011_1100.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Venn_0011_1100.svg/50px-Venn_0011_1100.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Venn_0011_1100.svg/50px-Venn_0011_1100.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Venn_0011_1100.svg/75px-Venn_0011_1100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Venn_0011_1100.svg/100px-Venn_0011_1100.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0100.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Venn_0001_0100.svg/50px-Venn_0001_0100.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Venn_0001_0100.svg/50px-Venn_0001_0100.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Venn_0001_0100.svg/75px-Venn_0001_0100.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Venn_0001_0100.svg/100px-Venn_0001_0100.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>⊕<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></noscript><span class="lazy-image-placeholder" style="width: 1.808ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" data-alt="{\displaystyle \oplus }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <p>with <a href="/wiki/Material_nonimplication" title="Material nonimplication">material nonimplication</a>: </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" data-alt="{\displaystyle ~A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\nrightarrow C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>↛<!-- ↛ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\nrightarrow C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d881f71105d0587a2b95607cc353b2021b5b345" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.954ex; height:2.843ex;" alt="{\displaystyle (B\nrightarrow C)}"></noscript><span class="lazy-image-placeholder" style="width: 8.954ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d881f71105d0587a2b95607cc353b2021b5b345" data-alt="{\displaystyle (B\nrightarrow C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></noscript><span class="lazy-image-placeholder" style="width: 7.899ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" data-alt="{\displaystyle (A\land B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↛<!-- ↛ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c458d67617e028ed10948d2dbcfef80e9e060a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \nrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.509ex;vertical-align: 0.137ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c458d67617e028ed10948d2dbcfef80e9e060a2" data-alt="{\displaystyle \nrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.901ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" data-alt="{\displaystyle (A\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0101_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0011_0000.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Venn_0011_0000.svg/50px-Venn_0011_0000.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Venn_0011_0000.svg/50px-Venn_0011_0000.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Venn_0011_0000.svg/75px-Venn_0011_0000.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Venn_0011_0000.svg/100px-Venn_0011_0000.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0000.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Venn_0001_0000.svg/50px-Venn_0001_0000.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Venn_0001_0000.svg/50px-Venn_0001_0000.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Venn_0001_0000.svg/75px-Venn_0001_0000.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Venn_0001_0000.svg/100px-Venn_0001_0000.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>↛<!-- ↛ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c458d67617e028ed10948d2dbcfef80e9e060a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.137ex; margin-bottom: -0.308ex; width:2.324ex; height:1.509ex;" alt="{\displaystyle \nrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.509ex;vertical-align: 0.137ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c458d67617e028ed10948d2dbcfef80e9e060a2" data-alt="{\displaystyle \nrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <p>with itself: </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle ~A}"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17327d088840ce291c8db59b592489ef8e6e94bd" data-alt="{\displaystyle ~A}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.922ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" data-alt="{\displaystyle (B\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.899ex; height:2.843ex;" alt="{\displaystyle (A\land B)}"></noscript><span class="lazy-image-placeholder" style="width: 7.899ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdcd2d1d13bc1f915aa141415965509a4e2b4f1" data-alt="{\displaystyle (A\land B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.901ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" data-alt="{\displaystyle (A\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0101_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/50px-Venn_0101_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/75px-Venn_0101_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/Venn_0101_0101.svg/100px-Venn_0101_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0011.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/75px-Venn_0000_0011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/100px-Venn_0000_0011.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/50px-Venn_0000_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/50px-Venn_0000_0001.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/75px-Venn_0000_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Venn_0000_0001.svg/100px-Venn_0000_0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0001_0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/50px-Venn_0001_0001.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/75px-Venn_0001_0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bc/Venn_0001_0001.svg/100px-Venn_0001_0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>∧<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></noscript><span class="lazy-image-placeholder" style="width: 1.55ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" data-alt="{\displaystyle \land }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> </td></tr></tbody></table> <p><b><a href="/wiki/Idempotency" class="mw-redirect" title="Idempotency">idempotency</a>: yes</b><br> </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>A</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00229fc56bafa7e9b522aedb3bed5dca455bc561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.904ex; height:2.176ex;" alt="{\displaystyle ~A~}"></noscript><span class="lazy-image-placeholder" style="width: 2.904ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00229fc56bafa7e9b522aedb3bed5dca455bc561" data-alt="{\displaystyle ~A~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\land ~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mo>∧<!-- ∧ --></mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\land ~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78b7e7950527f71b3b15b62d8459c636df43065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.009ex;" alt="{\displaystyle ~\land ~}"></noscript><span class="lazy-image-placeholder" style="width: 3.744ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78b7e7950527f71b3b15b62d8459c636df43065" data-alt="{\displaystyle ~\land ~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~A~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mi>A</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~A~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00229fc56bafa7e9b522aedb3bed5dca455bc561" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.904ex; height:2.176ex;" alt="{\displaystyle ~A~}"></noscript><span class="lazy-image-placeholder" style="width: 2.904ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00229fc56bafa7e9b522aedb3bed5dca455bc561" data-alt="{\displaystyle ~A~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fc59051ffaf2eaace4f7b01f440b9067b722fb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:2.176ex;" alt="{\displaystyle A~}"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5fc59051ffaf2eaace4f7b01f440b9067b722fb0" data-alt="{\displaystyle A~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn01.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" decoding="async" width="36" height="36" class="mw-file-element" data-file-width="280" data-file-height="280"></noscript><span class="lazy-image-placeholder" style="width: 36px;height: 36px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" data-width="36" data-height="36" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/54px-Venn01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/72px-Venn01.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ~\land ~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext> </mtext> <mo>∧<!-- ∧ --></mo> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ~\land ~}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78b7e7950527f71b3b15b62d8459c636df43065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.009ex;" alt="{\displaystyle ~\land ~}"></noscript><span class="lazy-image-placeholder" style="width: 3.744ex;height: 2.009ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b78b7e7950527f71b3b15b62d8459c636df43065" data-alt="{\displaystyle ~\land ~}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn01.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" decoding="async" width="36" height="36" class="mw-file-element" data-file-width="280" data-file-height="280"></noscript><span class="lazy-image-placeholder" style="width: 36px;height: 36px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" data-width="36" data-height="36" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/54px-Venn01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/72px-Venn01.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn01.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" decoding="async" width="36" height="36" class="mw-file-element" data-file-width="280" data-file-height="280"></noscript><span class="lazy-image-placeholder" style="width: 36px;height: 36px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/36px-Venn01.svg.png" data-width="36" data-height="36" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/54px-Venn01.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/06/Venn01.svg/72px-Venn01.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <p><b><a href="/wiki/Monotonic_function#In_Boolean_functions" title="Monotonic function">monotonicity</a>: yes</b> </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\rightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">→<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\rightarrow B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23efef033def56a67de7ded823f14626de26d174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\rightarrow B}"></noscript><span class="lazy-image-placeholder" style="width: 7.121ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23efef033def56a67de7ded823f14626de26d174" data-alt="{\displaystyle A\rightarrow B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇒<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" data-alt="{\displaystyle \Rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> </td> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.901ex; height:2.843ex;" alt="{\displaystyle (A\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.901ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/887cc87745fae3b8e066d3d41dce3e430063844e" data-alt="{\displaystyle (A\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">→<!-- → --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" data-alt="{\displaystyle \rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B\land C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∧<!-- ∧ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B\land C)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.922ex; height:2.843ex;" alt="{\displaystyle (B\land C)}"></noscript><span class="lazy-image-placeholder" style="width: 7.922ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78cc0188b905ef850ed33a9a4068e49794712b8d" data-alt="{\displaystyle (B\land C)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn_1011_1011.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Venn_1011_1011.svg/50px-Venn_1011_1011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Venn_1011_1011.svg/50px-Venn_1011_1011.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/61/Venn_1011_1011.svg/75px-Venn_1011_1011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/61/Venn_1011_1011.svg/100px-Venn_1011_1011.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇒<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" data-alt="{\displaystyle \Rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_1111_1011.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Venn_1111_1011.svg/50px-Venn_1111_1011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Venn_1111_1011.svg/50px-Venn_1111_1011.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Venn_1111_1011.svg/75px-Venn_1111_1011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Venn_1111_1011.svg/100px-Venn_1111_1011.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Leftrightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇔<!-- ⇔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Leftrightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Leftrightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64812e13399c20cf3ce94e049d3bb2d85f26abcf" data-alt="{\displaystyle \Leftrightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0101.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/50px-Venn_0000_0101.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/75px-Venn_0000_0101.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Venn_0000_0101.svg/100px-Venn_0000_0101.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">→<!-- → --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53e574cc3aa5b4bf5f3f5906caf121a378eef08b" data-alt="{\displaystyle \rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn_0000_0011.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" decoding="async" width="50" height="50" class="mw-file-element" data-file-width="200" data-file-height="200"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 50px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/50px-Venn_0000_0011.svg.png" data-width="50" data-height="50" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/75px-Venn_0000_0011.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Venn_0000_0011.svg/100px-Venn_0000_0011.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr></tbody></table> <p><b>truth-preserving: yes</b><br>When all inputs are true, the output is true. </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇒<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" data-alt="{\displaystyle \Rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" decoding="async" width="50" height="36" class="mw-file-element" data-file-width="410" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 36px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/50px-Venn0001.svg.png" data-width="50" data-height="36" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/75px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/100px-Venn0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇒<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" data-alt="{\displaystyle \Rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/60px-Venn0001.svg.png" decoding="async" width="60" height="44" class="mw-file-element" data-file-width="410" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 60px;height: 44px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/60px-Venn0001.svg.png" data-width="60" data-height="44" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/90px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/120px-Venn0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr> <tr> <td> </td> <td> </td> <td><span style="font-size:85%;">(to be tested)</span> </td></tr></tbody></table> <p><b>falsehood-preserving: yes</b><br>When all inputs are false, the output is false. </p> <table style="text-align: center; border: 1px solid darkgray;"> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∧<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" data-alt="{\displaystyle A\land B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇒<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" data-alt="{\displaystyle \Rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\lor B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>∨<!-- ∨ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\lor B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b9c9c90857c12727201dd9e47a4e7c8658fdbc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\lor B}"></noscript><span class="lazy-image-placeholder" style="width: 6.09ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b9c9c90857c12727201dd9e47a4e7c8658fdbc5" data-alt="{\displaystyle A\lor B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td></tr> <tr> <td><span typeof="mw:File"><a href="/wiki/File:Venn0001.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/60px-Venn0001.svg.png" decoding="async" width="60" height="44" class="mw-file-element" data-file-width="410" data-file-height="299"></noscript><span class="lazy-image-placeholder" style="width: 60px;height: 44px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/60px-Venn0001.svg.png" data-width="60" data-height="44" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/90px-Venn0001.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Venn0001.svg/120px-Venn0001.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td> <td> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Rightarrow }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">⇒<!-- ⇒ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Rightarrow }</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.843ex;" alt="{\displaystyle \Rightarrow }"></noscript><span class="lazy-image-placeholder" style="width: 2.324ex;height: 1.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/469b737d167b9b28a74e27c7f5e35b5ea9256100" data-alt="{\displaystyle \Rightarrow }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> </td> <td><span typeof="mw:File"><a href="/wiki/File:Venn0111.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/50px-Venn0111.svg.png" decoding="async" width="50" height="37" class="mw-file-element" data-file-width="380" data-file-height="280"></noscript><span class="lazy-image-placeholder" style="width: 50px;height: 37px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/50px-Venn0111.svg.png" data-width="50" data-height="37" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/75px-Venn0111.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/30/Venn0111.svg/100px-Venn0111.svg.png 2x" data-class="mw-file-element"> </span></a></span> </td></tr> <tr> <td><span style="font-size:85%;">(to be tested)</span> </td> <td> </td> <td> </td></tr></tbody></table> <p><b><a href="/wiki/Hadamard_transform" title="Hadamard transform">Walsh spectrum</a>: (1,-1,-1,1)</b> </p><p><b>Non<a href="/wiki/Linear#Boolean_functions" class="mw-redirect" title="Linear">linearity</a>: 1</b> (the function is <a href="/wiki/Bent_function" title="Bent function">bent</a>) </p><p>If using <a href="/wiki/Binary_numeral_system" class="mw-redirect" title="Binary numeral system">binary</a> values for true (1) and false (0), then <i>logical conjunction</i> works exactly like normal arithmetic <a href="/wiki/Multiplication" title="Multiplication">multiplication</a>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Applications_in_computer_engineering">Applications in computer engineering<span class="anchor" id="software_AND"></span></h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=10" title="Edit section: Applications in computer engineering" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-6 collapsible-block" id="mf-section-6"> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:AND_Gate_diagram.svg" class="mw-file-description"><noscript><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/AND_Gate_diagram.svg/220px-AND_Gate_diagram.svg.png" decoding="async" width="220" height="71" class="mw-file-element" data-file-width="721" data-file-height="232"></noscript><span class="lazy-image-placeholder" style="width: 220px;height: 71px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/AND_Gate_diagram.svg/220px-AND_Gate_diagram.svg.png" data-width="220" data-height="71" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/41/AND_Gate_diagram.svg/330px-AND_Gate_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/41/AND_Gate_diagram.svg/440px-AND_Gate_diagram.svg.png 2x" data-class="mw-file-element"> </span></a><figcaption>AND <a href="/wiki/Logic_gate" title="Logic gate">logic gate</a></figcaption></figure> <p>In high-level computer programming and <a href="/wiki/Digital_electronics" title="Digital electronics">digital electronics</a>, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "<code>AND</code>", an algebraic multiplication, or the ampersand symbol <code>&</code> (sometimes doubled as in <code>&&</code>). Many languages also provide <a href="/wiki/Short-circuit_evaluation" title="Short-circuit evaluation">short-circuit</a> control structures corresponding to logical conjunction. </p><p>Logical conjunction is often used for bitwise operations, where <code>0</code> corresponds to false and <code>1</code> to true: </p> <ul><li><code>0 AND 0</code> = <code>0</code>,</li> <li><code>0 AND 1</code> = <code>0</code>,</li> <li><code>1 AND 0</code> = <code>0</code>,</li> <li><code>1 AND 1</code> = <code>1</code>.</li></ul> <p>The operation can also be applied to two binary <a href="/wiki/Words" class="mw-redirect" title="Words">words</a> viewed as <a href="/wiki/Bitstring" class="mw-redirect" title="Bitstring">bitstrings</a> of equal length, by taking the bitwise AND of each pair of bits at corresponding positions. For example: </p> <ul><li><code>11000110 AND 10100011</code> = <code>10000010</code>.</li></ul> <p>This can be used to select part of a bitstring using a <a href="/wiki/Mask_(computing)" title="Mask (computing)">bit mask</a>. For example, <code>1001<b>1</b>101 AND 0000<b>1</b>000</code> = <code>0000<b>1</b>000</code> extracts the fourth bit of an 8-bit bitstring. </p><p>In <a href="/wiki/Computer_networking" class="mw-redirect" title="Computer networking">computer networking</a>, bit masks are used to derive the network address of a <a href="/wiki/Subnetwork" class="mw-redirect" title="Subnetwork">subnet</a> within an existing network from a given <a href="/wiki/IP_address" title="IP address">IP address</a>, by ANDing the IP address and the <a href="/wiki/Subnetwork#Binary_subnet_masks" class="mw-redirect" title="Subnetwork">subnet mask</a>. </p><p>Logical conjunction "<code>AND</code>" is also used in <a href="/wiki/SQL" title="SQL">SQL</a> operations to form <a href="/wiki/Database" title="Database">database</a> queries. </p><p>The <a href="/wiki/Curry%E2%80%93Howard_correspondence" title="Curry–Howard correspondence">Curry–Howard correspondence</a> relates logical conjunction to <a href="/wiki/Product_type" title="Product type">product types</a>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Set-theoretic_correspondence">Set-theoretic correspondence</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=11" title="Edit section: Set-theoretic correspondence" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-7 collapsible-block" id="mf-section-7"> <p>The membership of an element of an <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection set</a> in <a href="/wiki/Set_theory" title="Set theory">set theory</a> is defined in terms of a logical conjunction: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in A\cap B}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0259b3f4a3d584762f9b950f4ad35ce2a4077e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.26ex; height:2.176ex;" alt="{\displaystyle x\in A\cap B}"></noscript><span class="lazy-image-placeholder" style="width: 10.26ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0259b3f4a3d584762f9b950f4ad35ce2a4077e" data-alt="{\displaystyle x\in A\cap B}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> if and only if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (x\in A)\wedge (x\in B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (x\in A)\wedge (x\in B)}</annotation> </semantics> </math></span><noscript><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac6a265521ed874b36d1d46ad8eaef0cafcea20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.049ex; height:2.843ex;" alt="{\displaystyle (x\in A)\wedge (x\in B)}"></noscript><span class="lazy-image-placeholder" style="width: 18.049ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac6a265521ed874b36d1d46ad8eaef0cafcea20" data-alt="{\displaystyle (x\in A)\wedge (x\in B)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>. Through this correspondence, set-theoretic intersection shares several properties with logical conjunction, such as <a href="/wiki/Associativity" class="mw-redirect" title="Associativity">associativity</a>, <a href="/wiki/Commutativity" class="mw-redirect" title="Commutativity">commutativity</a> and <a href="/wiki/Idempotence" title="Idempotence">idempotence</a>. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="Natural_language">Natural language</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=12" title="Edit section: Natural language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-8 collapsible-block" id="mf-section-8"> <p>As with other notions formalized in mathematical logic, the logical conjunction <i>and</i> is related to, but not the same as, the <a href="/wiki/Grammatical_conjunction" class="mw-redirect" title="Grammatical conjunction">grammatical conjunction</a> <i>and</i> in natural languages. </p><p>English "and" has properties not captured by logical conjunction. For example, "and" sometimes implies order having the sense of "then". For example, "They got married and had a child" in common discourse means that the marriage came before the child. </p><p>The word "and" can also imply a partition of a thing into parts, as "The American flag is red, white, and blue." Here, it is not meant that the flag is <i>at once</i> red, white, and blue, but rather that it has a part of each color. </p> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(9)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="See_also">See also</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=13" title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-9 collapsible-block" id="mf-section-9"> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/And-inverter_graph" title="And-inverter graph">And-inverter graph</a></li> <li><a href="/wiki/AND_gate" title="AND gate">AND gate</a></li> <li><a href="/wiki/Bitwise_AND" class="mw-redirect" title="Bitwise AND">Bitwise AND</a></li> <li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Boolean_conjunctive_query" title="Boolean conjunctive query">Boolean conjunctive query</a></li> <li><a href="/wiki/Boolean_domain" title="Boolean domain">Boolean domain</a></li> <li><a href="/wiki/Boolean_function" title="Boolean function">Boolean function</a></li> <li><a href="/wiki/Boolean-valued_function" title="Boolean-valued function">Boolean-valued function</a></li> <li><a href="/wiki/Conjunction/disjunction_duality" title="Conjunction/disjunction duality">Conjunction/disjunction duality</a></li> <li><a href="/wiki/Conjunction_elimination" title="Conjunction elimination">Conjunction elimination</a></li> <li><a href="/wiki/Conjunction_(grammar)" title="Conjunction (grammar)">Conjunction (grammar)</a></li> <li><a href="/wiki/De_Morgan%27s_laws" title="De Morgan's laws">De Morgan's laws</a></li> <li><a href="/wiki/First-order_logic" title="First-order logic">First-order logic</a></li> <li><a href="/wiki/Fr%C3%A9chet_inequalities" title="Fréchet inequalities">Fréchet inequalities</a></li> <li><a href="/wiki/Homogeneity_(linguistics)" class="mw-redirect" title="Homogeneity (linguistics)">Homogeneity (linguistics)</a></li> <li><a href="/wiki/List_of_Boolean_algebra_topics" title="List of Boolean algebra topics">List of Boolean algebra topics</a></li> <li><a href="/wiki/Logical_disjunction" title="Logical disjunction">Logical disjunction</a></li> <li><a href="/wiki/Logical_graph" class="mw-redirect" title="Logical graph">Logical graph</a></li> <li><a href="/wiki/Negation" title="Negation">Negation</a></li> <li><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operation</a></li> <li><a href="/wiki/Peano%E2%80%93Russell_notation" title="Peano–Russell notation">Peano–Russell notation</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li></ul> </div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(10)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=14" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-10 collapsible-block" id="mf-section-10"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-:2-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_1-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.libretexts.org/Courses/Monroe_Community_College/MTH_220_Discrete_Math/2%3A_Logic/2.2%3A_Conjunctions_and_Disjunctions">"2.2: Conjunctions and Disjunctions"</a>. <i>Mathematics LibreTexts</i>. 2019-08-13<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Mathematics+LibreTexts&rft.atitle=2.2%3A+Conjunctions+and+Disjunctions&rft.date=2019-08-13&rft_id=https%3A%2F%2Fmath.libretexts.org%2FCourses%2FMonroe_Community_College%2FMTH_220_Discrete_Math%2F2%253A_Logic%2F2.2%253A_Conjunctions_and_Disjunctions&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></span> </li> <li id="cite_note-:1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_2-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://philosophy.lander.edu/logic/conjunct.html">"Conjunction, Negation, and Disjunction"</a>. <i>philosophy.lander.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=philosophy.lander.edu&rft.atitle=Conjunction%2C+Negation%2C+and+Disjunction&rft_id=https%3A%2F%2Fphilosophy.lander.edu%2Flogic%2Fconjunct.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></span> </li> <li id="cite_note-:21-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-:21_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBeall2010" class="citation book cs1">Beall, Jeffrey C. (2010). <i>Logic: the basics</i>. The basics (1. publ ed.). London: Routledge. p. 17. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-203-85155-5" title="Special:BookSources/978-0-203-85155-5"><bdi>978-0-203-85155-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Logic%3A+the+basics&rft.place=London&rft.series=The+basics&rft.pages=17&rft.edition=1.+publ&rft.pub=Routledge&rft.date=2010&rft.isbn=978-0-203-85155-5&rft.aulast=Beall&rft.aufirst=Jeffrey+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="/wiki/J%C3%B3zef_Maria_Boche%C5%84ski" title="Józef Maria Bocheński">Józef Maria Bocheński</a> (1959), <i>A Précis of Mathematical Logic</i>, translated by Otto Bird from the French and German editions, Dordrecht, South Holland: D. Reidel, passim.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/Conjunction.html">"Conjunction"</a>. <i>MathWorld--A Wolfram Web Resource</i><span class="reference-accessdate">. Retrieved <span class="nowrap">24 September</span> 2024</span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld--A+Wolfram+Web+Resource&rft.atitle=Conjunction&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FConjunction.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith" class="citation web cs1">Smith, Peter. <a rel="nofollow" class="external text" href="http://www.logicmatters.net/resources/pdfs/ProofSystems.pdf">"Types of proof system"</a> <span class="cs1-format">(PDF)</span>. p. 4.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Types+of+proof+system&rft.pages=4&rft.aulast=Smith&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.logicmatters.net%2Fresources%2Fpdfs%2FProofSystems.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></span> </li> <li id="cite_note-:13-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-:13_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHowson1997" class="citation book cs1">Howson, Colin (1997). <i>Logic with trees: an introduction to symbolic logic</i>. London; New York: Routledge. p. 38. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-415-13342-5" title="Special:BookSources/978-0-415-13342-5"><bdi>978-0-415-13342-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Logic+with+trees%3A+an+introduction+to+symbolic+logic&rft.place=London%3B+New+York&rft.pages=38&rft.pub=Routledge&rft.date=1997&rft.isbn=978-0-415-13342-5&rft.aulast=Howson&rft.aufirst=Colin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></span> </li> </ol></div></div> </section><div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(11)"><span class="indicator mf-icon mf-icon-expand mf-icon--small"></span><h2 id="External_links">External links</h2><span class="mw-editsection"> <a role="button" href="/w/index.php?title=Logical_conjunction&action=edit&section=15" title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div><section class="mf-section-11 collapsible-block" id="mf-section-11"> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><noscript><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" data-file-width="1024" data-file-height="1376"></noscript><span class="lazy-image-placeholder" style="width: 30px;height: 40px;" data-src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" data-alt="" data-width="30" data-height="40" data-srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-class="mw-file-element"> </span></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Logical_conjunction" class="extiw" title="commons:Category:Logical conjunction">Logical conjunction</a></span>.</div></div> </div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Conjunction">"Conjunction"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Conjunction&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DConjunction&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Conjunction.html">Wolfram MathWorld: Conjunction</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20170506173821/http://www.math.hawaii.edu/~ramsey/Logic/And.html">"Property and truth table of AND propositions"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.math.hawaii.edu/~ramsey/Logic/And.html">the original</a> on May 6, 2017.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Property+and+truth+table+of+AND+propositions&rft_id=http%3A%2F%2Fwww.math.hawaii.edu%2F~ramsey%2FLogic%2FAnd.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ALogical+conjunction" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div> <!-- NewPP limit report Parsed by mw‐web.codfw.canary‐84779d6bf6‐mbxg5 Cached time: 20241122144559 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.752 seconds Real time usage: 1.073 seconds Preprocessor visited node count: 3847/1000000 Post‐expand include size: 153051/2097152 bytes Template argument size: 3059/2097152 bytes Highest expansion depth: 23/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 87062/5000000 bytes Lua time usage: 0.322/10.000 seconds Lua memory usage: 7613194/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 621.810 1 -total 17.85% 110.982 1 Template:Reflist 14.44% 89.812 5 Template:Cite_web 12.23% 76.045 1 Template:Short_description 12.00% 74.600 1 Template:Infobox_logical_connective 11.68% 72.629 1 Template:Infobox 9.86% 61.313 1 Template:Logical_connectives_sidebar 9.52% 59.226 1 Template:Sidebar 9.48% 58.974 5 Template:Navbox 8.31% 51.662 2 Template:Unichar --> <!-- Saved in parser cache with key enwiki:pcache:idhash:18152-0!canonical and timestamp 20241122144559 and revision id 1257123423. Rendering was triggered because: page-view --> </section></div> <!-- MobileFormatter took 0.071 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Logical_conjunction&oldid=1257123423">https://en.wikipedia.org/w/index.php?title=Logical_conjunction&oldid=1257123423</a>"</div></div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"> <a class="last-modified-bar" href="/w/index.php?title=Logical_conjunction&action=history"> <div class="post-content last-modified-bar__content"> <span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="85.76.36.159" data-user-gender="unknown" data-timestamp="1731493781"> <span>Last edited on 13 November 2024, at 10:29</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div> </a> <div class="post-content footer-content"> <div id='mw-data-after-content'> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"><li class="interlanguage-link interwiki-ar badge-Q70894304 mw-list-item" title=""><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%B7%D9%81_%D9%85%D9%86%D8%B7%D9%82%D9%8A" title="عطف منطقي – Arabic" lang="ar" hreflang="ar" data-title="عطف منطقي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конюнкция – Bulgarian" lang="bg" hreflang="bg" data-title="Конюнкция" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Konjunkcija_sudova" title="Konjunkcija sudova – Bosnian" lang="bs" hreflang="bs" data-title="Konjunkcija sudova" data-language-autonym="Bosanski" data-language-local-name="Bosnian" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Conjunci%C3%B3_l%C3%B2gica" title="Conjunció lògica – Catalan" lang="ca" hreflang="ca" data-title="Conjunció lògica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Konjunkce_(logika)" title="Konjunkce (logika) – Czech" lang="cs" hreflang="cs" data-title="Konjunkce (logika)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Konjunktion_(logik)" title="Konjunktion (logik) – Danish" lang="da" hreflang="da" data-title="Konjunktion (logik)" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Konjunktion_(Logik)" title="Konjunktion (Logik) – German" lang="de" hreflang="de" data-title="Konjunktion (Logik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Konjunktsioon" title="Konjunktsioon – Estonian" lang="et" hreflang="et" data-title="Konjunktsioon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9B%CE%BF%CE%B3%CE%B9%CE%BA%CE%AE_%CF%83%CF%8D%CE%B6%CE%B5%CF%85%CE%BE%CE%B7" title="Λογική σύζευξη – Greek" lang="el" hreflang="el" data-title="Λογική σύζευξη" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/Congiunsi%C3%B2un_l%C3%B2gica" title="Congiunsiòun lògica – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Congiunsiòun lògica" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Conjunci%C3%B3n_l%C3%B3gica" title="Conjunción lógica – Spanish" lang="es" hreflang="es" data-title="Conjunción lógica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Konjunkcio_(logiko)" title="Konjunkcio (logiko) – Esperanto" lang="eo" hreflang="eo" data-title="Konjunkcio (logiko)" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Konjuntzio_logiko" title="Konjuntzio logiko – Basque" lang="eu" hreflang="eu" data-title="Konjuntzio logiko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%B7%D9%81_%D9%85%D9%86%D8%B7%D9%82%DB%8C" title="عطف منطقی – Persian" lang="fa" hreflang="fa" data-title="عطف منطقی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Conjonction_logique" title="Conjonction logique – French" lang="fr" hreflang="fr" data-title="Conjonction logique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%85%BC%EB%A6%AC%EA%B3%B1" title="논리곱 – Korean" lang="ko" hreflang="ko" data-title="논리곱" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%BF%D5%B8%D5%B6%D5%B5%D5%B8%D6%82%D5%B6%D5%AF%D6%81%D5%AB%D5%A1" title="Կոնյունկցիա – Armenian" lang="hy" hreflang="hy" data-title="Կոնյունկցիա" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Logika_konjungsi" title="Logika konjungsi – Indonesian" lang="id" hreflang="id" data-title="Logika konjungsi" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Congiunzione_logica" title="Congiunzione logica – Italian" lang="it" hreflang="it" data-title="Congiunzione logica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%95%D7%92%D7%9D_(%D7%9C%D7%95%D7%92%D7%99%D7%A7%D7%94)" title="וגם (לוגיקה) – Hebrew" lang="he" hreflang="he" data-title="וגם (לוגיקה)" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конъюнкция – Kazakh" lang="kk" hreflang="kk" data-title="Конъюнкция" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конъюнкция – Kyrgyz" lang="ky" hreflang="ky" data-title="Конъюнкция" data-language-autonym="Кыргызча" data-language-local-name="Kyrgyz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Konjunkcija_(logika)" title="Konjunkcija (logika) – Lithuanian" lang="lt" hreflang="lt" data-title="Konjunkcija (logika)" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Dobi" title="Dobi – Lombard" lang="lmo" hreflang="lmo" data-title="Dobi" data-language-autonym="Lombard" data-language-local-name="Lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Konjunkci%C3%B3_(logika)" title="Konjunkció (logika) – Hungarian" lang="hu" hreflang="hu" data-title="Konjunkció (logika)" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%BA%D0%B0_%D0%BA%D0%BE%D0%BD%D1%98%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Логичка конјункција – Macedonian" lang="mk" hreflang="mk" data-title="Логичка конјункција" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Logische_conjunctie" title="Logische conjunctie – Dutch" lang="nl" hreflang="nl" data-title="Logische conjunctie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%AB%96%E7%90%86%E7%A9%8D" title="論理積 – Japanese" lang="ja" hreflang="ja" data-title="論理積" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Konjunksjon_(logikk)" title="Konjunksjon (logikk) – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Konjunksjon (logikk)" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Congionsion" title="Congionsion – Piedmontese" lang="pms" hreflang="pms" data-title="Congionsion" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Koniunkcja_(logika)" title="Koniunkcja (logika) – Polish" lang="pl" hreflang="pl" data-title="Koniunkcja (logika)" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Conjun%C3%A7%C3%A3o_l%C3%B3gica" title="Conjunção lógica – Portuguese" lang="pt" hreflang="pt" data-title="Conjunção lógica" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%BD%D0%BA%D1%86%D0%B8%D1%8F" title="Конъюнкция – Russian" lang="ru" hreflang="ru" data-title="Конъюнкция" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Konjuksioni" title="Konjuksioni – Albanian" lang="sq" hreflang="sq" data-title="Konjuksioni" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Logical_conjunction" title="Logical conjunction – Simple English" lang="en-simple" hreflang="en-simple" data-title="Logical conjunction" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Konjunkcia_(logika)" title="Konjunkcia (logika) – Slovak" lang="sk" hreflang="sk" data-title="Konjunkcia (logika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Konjunkcija_(logika)" title="Konjunkcija (logika) – Slovenian" lang="sl" hreflang="sl" data-title="Konjunkcija (logika)" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%87%D0%BA%D0%B0_%D0%BA%D0%BE%D0%BD%D1%98%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%98%D0%B0" title="Логичка конјункција – Serbian" lang="sr" hreflang="sr" data-title="Логичка конјункција" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Logi%C4%8Dka_konjunkcija" title="Logička konjunkcija – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Logička konjunkcija" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Konjunktio_(logiikka)" title="Konjunktio (logiikka) – Finnish" lang="fi" hreflang="fi" data-title="Konjunktio (logiikka)" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Konjunktion_(logik)" title="Konjunktion (logik) – Swedish" lang="sv" hreflang="sv" data-title="Konjunktion (logik)" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%8A%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%A1%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B8%95%E0%B8%A3%E0%B8%A3%E0%B8%81%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C" title="การเชื่อมเชิงตรรกศาสตร์ – Thai" lang="th" hreflang="th" data-title="การเชื่อมเชิงตรรกศาสตร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%BD%27%D1%8E%D0%BD%D0%BA%D1%86%D1%96%D1%8F" title="Кон'юнкція – Ukrainian" lang="uk" hreflang="uk" data-title="Кон'юнкція" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E9%82%8F%E8%BC%AF%E8%88%87" title="邏輯與 – Cantonese" lang="yue" hreflang="yue" data-title="邏輯與" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%80%BB%E8%BE%91%E4%B8%8E" title="逻辑与 – Chinese" lang="zh" hreflang="zh" data-title="逻辑与" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li></ul> </section> </div> <div class="minerva-footer-logo"><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"/> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod"> This page was last edited on 13 November 2024, at 10:29<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="//en.wikipedia.org/w/index.php?title=Logical_conjunction&mobileaction=toggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div> <!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-bjwd6","wgBackendResponseTime":304,"wgPageParseReport":{"limitreport":{"cputime":"0.752","walltime":"1.073","ppvisitednodes":{"value":3847,"limit":1000000},"postexpandincludesize":{"value":153051,"limit":2097152},"templateargumentsize":{"value":3059,"limit":2097152},"expansiondepth":{"value":23,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":87062,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 621.810 1 -total"," 17.85% 110.982 1 Template:Reflist"," 14.44% 89.812 5 Template:Cite_web"," 12.23% 76.045 1 Template:Short_description"," 12.00% 74.600 1 Template:Infobox_logical_connective"," 11.68% 72.629 1 Template:Infobox"," 9.86% 61.313 1 Template:Logical_connectives_sidebar"," 9.52% 59.226 1 Template:Sidebar"," 9.48% 58.974 5 Template:Navbox"," 8.31% 51.662 2 Template:Unichar"]},"scribunto":{"limitreport-timeusage":{"value":"0.322","limit":"10.000"},"limitreport-memusage":{"value":7613194,"limit":52428800},"limitreport-logs":"table#1 {\n}\ntable#1 {\n}\ntable#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.canary-84779d6bf6-mbxg5","timestamp":"20241122144559","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Logical conjunction","url":"https:\/\/en.wikipedia.org\/wiki\/Logical_conjunction","sameAs":"http:\/\/www.wikidata.org\/entity\/Q191081","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q191081","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-26T04:13:17Z","dateModified":"2024-11-13T10:29:41Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/99\/Venn0001.svg","headline":"logical connective AND"}</script><script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> </body> </html>