CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 866 results for author: <span class="mathjax">Zhang, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Zhang%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhang, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhang%2C+C&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhang, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.02376">arXiv:2503.02376</a> <span> [<a href="https://arxiv.org/pdf/2503.02376">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Polymerization of environmentally stable 1D-NF chain with high-energy density </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guo Chen</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+L">Ling Lin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengfeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xianlong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.02376v1-abstract-short" style="display: inline;"> Based on first-principles calculations and ab initio molecular dynamics methods, the energies density, suitable precursor, and synthesis conditions of Cmca-type NF compound with 1D chain feature are investigated. We find that if using Al as reducing agent, it possesses an gravimetric energy density of 13.55 kJ/g higher than that of cg-N (9.70 kJ/g), since it has both polymerized nitrogen and stron… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02376v1-abstract-full').style.display = 'inline'; document.getElementById('2503.02376v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.02376v1-abstract-full" style="display: none;"> Based on first-principles calculations and ab initio molecular dynamics methods, the energies density, suitable precursor, and synthesis conditions of Cmca-type NF compound with 1D chain feature are investigated. We find that if using Al as reducing agent, it possesses an gravimetric energy density of 13.55 kJ/g higher than that of cg-N (9.70 kJ/g), since it has both polymerized nitrogen and strong oxidizing F atoms. The cis N2F2 molecules is a suitable precursor, and they can polymerize to cis NF chains above 90 GPa. Furthermore, the phase diagram of Cmca-type NF compound is established at conditions of 0-3000 K and 0-200 GPa. Importantly, NF chains polymerized under high temperature and pressure can be quenched to ambient conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.02376v1-abstract-full').style.display = 'none'; document.getElementById('2503.02376v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">High-energy-density material, First-principles calculation, Ab initio molecular dynamics, NF compound</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.01554">arXiv:2503.01554</a> <span> [<a href="https://arxiv.org/pdf/2503.01554">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Programmable Electric Tweezers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yuang Chen</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+H">Haojing Tan</a>, <a href="/search/physics?searchtype=author&query=Zhuang%2C+J">Jiahua Zhuang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yang Xu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+J">Jiandong Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.01554v1-abstract-short" style="display: inline;"> The interaction mechanism between a single microscopic object like a cell, a particle, a molecule, or an atom and its interacting electromagnetic field is fundamental in single-object manipulation such as optical trap and magnetic trap. Function-on-demand, single-object manipulation relies on a high degree of freedom control of electromagnetic field at localized scales, which remains challenging.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.01554v1-abstract-full').style.display = 'inline'; document.getElementById('2503.01554v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.01554v1-abstract-full" style="display: none;"> The interaction mechanism between a single microscopic object like a cell, a particle, a molecule, or an atom and its interacting electromagnetic field is fundamental in single-object manipulation such as optical trap and magnetic trap. Function-on-demand, single-object manipulation relies on a high degree of freedom control of electromagnetic field at localized scales, which remains challenging. Here we propose a manipulation concept: programmable single-object manipulation, based on programming the electromagnetic field in a multi-bit electrode system. This concept is materialized on a Programmable Electric Tweezer (PET) with four individually addressed electrodes, marking a transition from function-fixed single-object manipulation to function-programmable single-object manipulation. By programming the localized electric field, our PET can provide various manipulation functions for achieving precise trapping, movement and rotation of multiscale single microscopic objects, including single proteins, nucleic acids, microparticles and bacteria. Implementing these functions, we are able not only to manipulate the object of interest on demand but also quantitatively measure the charge to mass ratio of a single microparticle via the Paul trap and the electrical properties of an individual bacterial cell by the rotation analysis. Finally, with superposed single-particle trapping and rotation, we demonstrate the spontaneous relaxation of DNA supercoiling and observe an unexpected pause phenomenon in the relaxation process, highlighting the versatility and the potential of PET in uncovering stochastic biophysical phenomena at the single-molecule level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.01554v1-abstract-full').style.display = 'none'; document.getElementById('2503.01554v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19729">arXiv:2502.19729</a> <span> [<a href="https://arxiv.org/pdf/2502.19729">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Realizing stable zig-zag polymeric nitrogen chains in P-N compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=zhang%2C+C">Chengfeng zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Guo Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yanfeng Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+J">Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xianlong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19729v1-abstract-short" style="display: inline;"> The zig-zag Nitrogen (N) chain similar to the Ch-N structure has long been considered a potential high energy density structure. However, all previously predicted zig-zag N chain structures similar to Ch-N exhibit imaginary frequencies in their phonon spectra at 0 GPa. Here, we conducted a systematic investigation of P-N compounds using first-principles calculations, uncovering a series of structu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19729v1-abstract-full').style.display = 'inline'; document.getElementById('2502.19729v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19729v1-abstract-full" style="display: none;"> The zig-zag Nitrogen (N) chain similar to the Ch-N structure has long been considered a potential high energy density structure. However, all previously predicted zig-zag N chain structures similar to Ch-N exhibit imaginary frequencies in their phonon spectra at 0 GPa. Here, we conducted a systematic investigation of P-N compounds using first-principles calculations, uncovering a series of structurally similar stable phases, C2/m-PNx (x = 6, 8, 10, 12, 14), in which N forms zig-zag N chains similar to those in Ch-N. In P-N compounds, the longest zig-zag N chain that can theoretically remain stable under ambient pressure is the N chain composed of 14 N atoms in C2/m-PN14. If the N chain continues to grow, inter-chain vibrational imaginary frequencies will arise in the system. Notably, N chains with an even number of atoms are more likely to be energetically favorable. The five C2/m-PNx phases and one metastable phase (R-PN6) exhibit both remarkable stability and excellent detonability at ambient pressure, positioning them as promising candidates for high-energy-density materials. In addition, the R-PN6 is the first structure to stabilize the N6 ring through covalent bonding, with the covalent network contributing to its high hardness (47.59 GPa). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19729v1-abstract-full').style.display = 'none'; document.getElementById('2502.19729v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.19161">arXiv:2502.19161</a> <span> [<a href="https://arxiv.org/pdf/2502.19161">pdf</a>, <a href="https://arxiv.org/format/2502.19161">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zeng%2C+J">Jinzhe Zeng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">Duo Zhang</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+A">Anyang Peng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiangyu Zhang</a>, <a href="/search/physics?searchtype=author&query=He%2C+S">Sensen He</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+X">Xinzijian Liu</a>, <a href="/search/physics?searchtype=author&query=Bi%2C+H">Hangrui Bi</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yifan Li</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">Chun Cai</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengqian Zhang</a>, <a href="/search/physics?searchtype=author&query=Du%2C+Y">Yiming Du</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+J">Jia-Xin Zhu</a>, <a href="/search/physics?searchtype=author&query=Mo%2C+P">Pinghui Mo</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Z">Zhengtao Huang</a>, <a href="/search/physics?searchtype=author&query=Zeng%2C+Q">Qiyu Zeng</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+S">Shaochen Shi</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+X">Xuejian Qin</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Z">Zhaoxi Yu</a>, <a href="/search/physics?searchtype=author&query=Luo%2C+C">Chenxing Luo</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+Y">Ye Ding</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yun-Pei Liu</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+R">Ruosong Shi</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/physics?searchtype=author&query=Bore%2C+S+L">Sigbj酶rn L酶land Bore</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.19161v2-abstract-short" style="display: inline;"> In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations and related applications. These packages, typically built on specific machine learning frameworks such as TensorFlow, PyTorch, or JAX, face integration challenges when advanced applicat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19161v2-abstract-full').style.display = 'inline'; document.getElementById('2502.19161v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.19161v2-abstract-full" style="display: none;"> In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations and related applications. These packages, typically built on specific machine learning frameworks such as TensorFlow, PyTorch, or JAX, face integration challenges when advanced applications demand communication across different frameworks. The previous TensorFlow-based implementation of DeePMD-kit exemplified these limitations. In this work, we introduce DeePMD-kit version 3, a significant update featuring a multi-backend framework that supports TensorFlow, PyTorch, JAX, and PaddlePaddle backends, and demonstrate the versatility of this architecture through the integration of other MLPs packages and of Differentiable Molecular Force Field. This architecture allows seamless backend switching with minimal modifications, enabling users and developers to integrate DeePMD-kit with other packages using different machine learning frameworks. This innovation facilitates the development of more complex and interoperable workflows, paving the way for broader applications of MLPs in scientific research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.19161v2-abstract-full').style.display = 'none'; document.getElementById('2502.19161v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18498">arXiv:2502.18498</a> <span> [<a href="https://arxiv.org/pdf/2502.18498">pdf</a>, <a href="https://arxiv.org/format/2502.18498">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Physics Prospects with MeV Neutrino-Argon Charged Current Interactions using Enhanced Photon Detection in Future LArTPCs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+W">Wei Shi</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+X">Xuyang Ning</a>, <a href="/search/physics?searchtype=author&query=Pershey%2C+D">Daniel Pershey</a>, <a href="/search/physics?searchtype=author&query=Marinho%2C+F">Franciole Marinho</a>, <a href="/search/physics?searchtype=author&query=Riccio%2C+C">Ciro Riccio</a>, <a href="/search/physics?searchtype=author&query=Jo%2C+J+H">Jay Hyun Jo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Cavanna%2C+F">Flavio Cavanna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18498v1-abstract-short" style="display: inline;"> We investigate MeV-scale electron neutrino charged current interactions in a liquid argon time projection chamber equipped with an enhanced photon detection system. Using simulations of deposited energy in charge and light calorimetry, we explore the potential for dual calorimetric neutrino energy reconstruction. We found energy reconstruction based on light-only calorimetry has a better resolutio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18498v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18498v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18498v1-abstract-full" style="display: none;"> We investigate MeV-scale electron neutrino charged current interactions in a liquid argon time projection chamber equipped with an enhanced photon detection system. Using simulations of deposited energy in charge and light calorimetry, we explore the potential for dual calorimetric neutrino energy reconstruction. We found energy reconstruction based on light-only calorimetry has a better resolution than combined charge and light calorimetry when hadrons are produced in these events. Meanwhile, enhanced light detection offers improved nanosecond timing resolution and broad optical coverage, enabling neutron tagging and identification of delayed low-energy gamma emissions. These advancements open new avenues in low-energy neutrino physics in next-generation LArTPCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18498v1-abstract-full').style.display = 'none'; document.getElementById('2502.18498v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.18134">arXiv:2502.18134</a> <span> [<a href="https://arxiv.org/pdf/2502.18134">pdf</a>, <a href="https://arxiv.org/format/2502.18134">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Quasi-normal modes empowered coherent control of electromagnetic interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jingwei Wang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P">Pengxiang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chaofan Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yuntian Chen</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+W">Wei Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.18134v1-abstract-short" style="display: inline;"> Quasi-normal modes (QNMs) and coherent control of light-matter interactions (through synchronized multiple coherent incident waves) are profound and pervasive concepts in and beyond photonics, making accessible photonic manipulations with extreme precision and efficiency. Though each has been playing essential roles in its own, these two sweeping concepts remain largely segregated with little inte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18134v1-abstract-full').style.display = 'inline'; document.getElementById('2502.18134v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.18134v1-abstract-full" style="display: none;"> Quasi-normal modes (QNMs) and coherent control of light-matter interactions (through synchronized multiple coherent incident waves) are profound and pervasive concepts in and beyond photonics, making accessible photonic manipulations with extreme precision and efficiency. Though each has been playing essential roles in its own, these two sweeping concepts remain largely segregated with little interactions, blocking vast opportunities of cross-fertilization to explore. Here we unify both concepts into a novel framework of coherent control for light interacting with open photonic systems. From the QNM perspective, scattered waves are superimposed radiations from all QNMs excited, and thus coherent controls can be mapped into another problem of QNM excitation manipulations. Within our framework, all incident properties (amplitudes, phases and polarizations) of waves from different directions can be exploited simultaneously in a synchronous manner, facilitating independent manipulations of each QNM and thus unlocking enormous flexibilities for coherent controls of both scattering intensity and polarization: (i) A visible structure under a single incident wave can be made invisible through shining extra waves; (ii) Along a direction where QNMs' radiation polarizations are identical, scattering along this direction can be fully eliminated, thus generalizing Kerker effects from a distinct QNM perspective; (iii) Along a direction of distinct QNM radiation polarizations, arbitrary scattering polarizations can be obtained. Given the ubiquity and profundity of QNMs and coherent control in almost all branches of wave physics, our framework and its underlying principles will inspire further fundamental explorations and practical applications beyond photonics, opening new opportunities for various forms of wave-matter interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.18134v1-abstract-full').style.display = 'none'; document.getElementById('2502.18134v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 figures and 8 pages for the main article; 5 figures and 3 pages for the SI Appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.16558">arXiv:2502.16558</a> <span> [<a href="https://arxiv.org/pdf/2502.16558">pdf</a>, <a href="https://arxiv.org/format/2502.16558">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of High-Temperature Superconducting Ternary Hydrides via Deep Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengqian Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenyu Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hanyu Liu</a>, <a href="/search/physics?searchtype=author&query=Lv%2C+J">Jian Lv</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Han Wang</a>, <a href="/search/physics?searchtype=author&query=E%2C+W">Weinan E</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yanming Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.16558v1-abstract-short" style="display: inline;"> The discovery of novel high-temperature superconductor materials holds transformative potential for a wide array of technological applications. However, the combinatorially vast chemical and configurational search space poses a significant bottleneck for both experimental and theoretical investigations. In this study, we employ the design of high-temperature ternary superhydride superconductors as… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16558v1-abstract-full').style.display = 'inline'; document.getElementById('2502.16558v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.16558v1-abstract-full" style="display: none;"> The discovery of novel high-temperature superconductor materials holds transformative potential for a wide array of technological applications. However, the combinatorially vast chemical and configurational search space poses a significant bottleneck for both experimental and theoretical investigations. In this study, we employ the design of high-temperature ternary superhydride superconductors as a representative case to demonstrate how this challenge can be well addressed through a deep-learning-driven theoretical framework. This framework integrates high-throughput crystal structure exploration, physics-informed screening, and accurate prediction of superconducting critical temperatures. Our approach enabled the exploration of approximately 36 million ternary hydride structures across a chemical space of 29 elements, leading to the identification of 144 potential high-Tc superconductors with predicted Tc > 200 K and superior thermodynamic stability at 200 GPa. Among these, 129 compounds spanning 27 novel structural prototypes are reported for the first time, representing a significant expansion of the known structural landscape for hydride superconductors. This work not only greatly expands the known repertoire of high-Tc hydride superconductors but also establishes a scalable and efficient methodology for navigating the complex landscape of multinary hydrides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.16558v1-abstract-full').style.display = 'none'; document.getElementById('2502.16558v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.15433">arXiv:2502.15433</a> <span> [<a href="https://arxiv.org/pdf/2502.15433">pdf</a>, <a href="https://arxiv.org/format/2502.15433">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing strong-field QED to second-order in the highly correlated atomic system berylliumlike Pb78+ by electron-ion recombination spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schippers%2C+S">S. Schippers</a>, <a href="/search/physics?searchtype=author&query=Brandau%2C+C">C. Brandau</a>, <a href="/search/physics?searchtype=author&query=Fuchs%2C+S">S. Fuchs</a>, <a href="/search/physics?searchtype=author&query=Lestinsky%2C+M">M. Lestinsky</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S+X">S. X. Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C+Y">C. Y. Zhang</a>, <a href="/search/physics?searchtype=author&query=Badnell%2C+N+R">N. R. Badnell</a>, <a href="/search/physics?searchtype=author&query=Borovik%2C+A">A. Borovik Jr.</a>, <a href="/search/physics?searchtype=author&query=Fogle%2C+M">M. Fogle</a>, <a href="/search/physics?searchtype=author&query=Hannen%2C+V">V. Hannen</a>, <a href="/search/physics?searchtype=author&query=Harman%2C+Z">Z. Harman</a>, <a href="/search/physics?searchtype=author&query=Hillenbrand%2C+P+-">P. -M. Hillenbrand</a>, <a href="/search/physics?searchtype=author&query=Menz%2C+E+B">E. B. Menz</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Y. Zhang</a>, <a href="/search/physics?searchtype=author&query=Andelkovic%2C+Z">Z. Andelkovic</a>, <a href="/search/physics?searchtype=author&query=Herfurth%2C+F">F. Herfurth</a>, <a href="/search/physics?searchtype=author&query=He%C3%9F%2C+R">R. He脽</a>, <a href="/search/physics?searchtype=author&query=Kalinin%2C+A">A. Kalinin</a>, <a href="/search/physics?searchtype=author&query=Kozhuharov%2C+C">C. Kozhuharov</a>, <a href="/search/physics?searchtype=author&query=Krantz%2C+C">C. Krantz</a>, <a href="/search/physics?searchtype=author&query=Litvinov%2C+S">S. Litvinov</a>, <a href="/search/physics?searchtype=author&query=Lorentz%2C+B">B. Lorentz</a>, <a href="/search/physics?searchtype=author&query=Spillmann%2C+U">U. Spillmann</a>, <a href="/search/physics?searchtype=author&query=Steck%2C+M">M. Steck</a>, <a href="/search/physics?searchtype=author&query=Vorobyev%2C+G">G. Vorobyev</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.15433v1-abstract-short" style="display: inline;"> A low-energy storage ring with an ultracold electron cooler has been coupled with a heavy-ion accelerator facilitating high-resolution electron-ion collision spectroscopy of the heaviest few-electron ions. In the present work resonant electron-ion recombination of berylliumlike Pb$^{78+}$ ions was measured in the collision-energy range 9.3-16.5eV and a value of 244.937(30) eV is derived for the Pb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15433v1-abstract-full').style.display = 'inline'; document.getElementById('2502.15433v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.15433v1-abstract-full" style="display: none;"> A low-energy storage ring with an ultracold electron cooler has been coupled with a heavy-ion accelerator facilitating high-resolution electron-ion collision spectroscopy of the heaviest few-electron ions. In the present work resonant electron-ion recombination of berylliumlike Pb$^{78+}$ ions was measured in the collision-energy range 9.3-16.5eV and a value of 244.937(30) eV is derived for the Pb$^{78+}$($2s^2\;^1S_0 - 2s\,2p\;^3P_1$) excitation energy. This result agrees with the most recent (less accurate) theoretical value of 244.942(52) eV [Malyshev et al., Physical Review A 110, 062824 (2024)], which has been calculated by applying strong-field QED rigorously up to the second order. The present investigation suggests that further technical improvements can potentially increase the experimental accuracy by an order of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.15433v1-abstract-full').style.display = 'none'; document.getElementById('2502.15433v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14973">arXiv:2502.14973</a> <span> [<a href="https://arxiv.org/pdf/2502.14973">pdf</a>, <a href="https://arxiv.org/format/2502.14973">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Expanding the reach of diffusing wave spectroscopy and tracer bead microrheology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Helfer%2C+M">Manuel Helfer</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Scheffold%2C+F">Frank Scheffold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14973v1-abstract-short" style="display: inline;"> Diffusing Wave Spectroscopy (DWS) is an extension of standard dynamic light scattering (DLS), applied to soft materials that are turbid or opaque. The propagation of light is modeled using light diffusion, characterized by a light diffusion coefficient that depends on the transport mean free path l* of the medium. DWS is highly sensitive to small particle displacements or other local fluctuations… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14973v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14973v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14973v1-abstract-full" style="display: none;"> Diffusing Wave Spectroscopy (DWS) is an extension of standard dynamic light scattering (DLS), applied to soft materials that are turbid or opaque. The propagation of light is modeled using light diffusion, characterized by a light diffusion coefficient that depends on the transport mean free path l* of the medium. DWS is highly sensitive to small particle displacements or other local fluctuations in the scattering properties and can probe subnanometer displacements. Analyzing the motion of beads in a viscoelastic matrix, known as one-bead microrheology, is one of the most common applications of DWS. Despite significant advancements since its invention in 1987, including two-cell and multi-speckle DWS, challenges such as merging single and multi-speckle data and limited accuracy for short correlation times persist. Here, we address these issues by improving the two-cell Echo DWS scheme. We propose a calibration-free method to blend and merge Echo and two-cell DWS data and demonstrate the use of regularized inversion algorithms to enhance data quality at very short times. Building on this, we introduce stable corrections for bead and fluid inertia, significantly improving the quality of microrheology data at high frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14973v1-abstract-full').style.display = 'none'; document.getElementById('2502.14973v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures, 4 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.10800">arXiv:2502.10800</a> <span> [<a href="https://arxiv.org/pdf/2502.10800">pdf</a>, <a href="https://arxiv.org/format/2502.10800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Coupled hydro-aero-turbo dynamics of liquid-tank system for wave energy harvesting: Numerical modellings and scaled prototype tests </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chongwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+X">Xunhao Zhu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+L">Luofeng Huang</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+D">Dezhi Ning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.10800v1-abstract-short" style="display: inline;"> An integrated numerical model is proposed for the first time to explore the coupled hydro-aero-turbo dynamics of wave-energy-harvesting (WEH) liquid tanks. A scaled prototype of the WEH liquid tank with an impulse air turbine system is made to experimentally validate the numerical model.Multi-layered impulse air turbine systems (MLATS) are creatively introduced into the liquid-tank system. The inh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10800v1-abstract-full').style.display = 'inline'; document.getElementById('2502.10800v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.10800v1-abstract-full" style="display: none;"> An integrated numerical model is proposed for the first time to explore the coupled hydro-aero-turbo dynamics of wave-energy-harvesting (WEH) liquid tanks. A scaled prototype of the WEH liquid tank with an impulse air turbine system is made to experimentally validate the numerical model.Multi-layered impulse air turbine systems (MLATS) are creatively introduced into the liquid-tank system. The inherent mechanisms of the coupled hydro-aero-turbo dynamics of the WEH liquid tank with different turbine properties are systematically investigated.Compared with the experimental data, the numerical model can accurately reproduce the rotor speed, liquid motion, and air pressure of the WEH liquid tank. Upon analysing mechanical parameters of the turbine rotor, it is found that the rotor's moment of inertia mainly affects the rotor speed's variation range, while the damping coefficient significantly influences the averaged rotor speed. The optimal power take-off damping for the WEH liquid tank is identified. Considering the efficiency performances of three MLATSs, improving Turbine-L1 to Turbine-L2 or Turbine-L3 can increase the averaged power output by about 25% or 40%, respectively.Increasing the tank breadth can effectively boost the power output in a nonlinear way.Under the considered excitation conditions, if the tank breadth is doubled, the maximum averaged power output can be increased by around four times. Through a series of failure tests, Turbine-L3 shows greater reliability in extreme conditions compared to a conventional single-rotor turbine. Even if the most important rotor of Turbine-L3 fails to work, the maximum loss of the averaged power output is only 44%. The present WEH liquid with Turbine - L3 shows improved efficiency and reliability compared to the conventional liquid-tank system with a single-rotor turbine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.10800v1-abstract-full').style.display = 'none'; document.getElementById('2502.10800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 26 figures 56 subfigures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 74F10 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.05477">arXiv:2502.05477</a> <span> [<a href="https://arxiv.org/pdf/2502.05477">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Scintillation response of Ga2O3 excited by laser accelerated ultra-high dose rate proton beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liang%2C+Y">Yulan Liang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+T">Tianqi Xu</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+S">Shirui Xu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qingfan Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chaoyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Haoran Chen</a>, <a href="/search/physics?searchtype=author&query=Han%2C+Q">Qihang Han</a>, <a href="/search/physics?searchtype=author&query=Hua%2C+C">Chenhao Hua</a>, <a href="/search/physics?searchtype=author&query=Xue%2C+J">Jianming Xue</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+H">Huili Tang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+W">Wenjun Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.05477v1-abstract-short" style="display: inline;"> The temporal and spectral profile of \b{eta}-Ga2O3 excited by ultra-high dose rate proton beam has been investigated. The unique short bright and broad spectra characteristics of laser-accelerated protons were utilized to investigate the scintillation response difference under different dose rate. Our results indicate that for sufficiently high dose rate delivered, the average decay time of \b{eta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05477v1-abstract-full').style.display = 'inline'; document.getElementById('2502.05477v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.05477v1-abstract-full" style="display: none;"> The temporal and spectral profile of \b{eta}-Ga2O3 excited by ultra-high dose rate proton beam has been investigated. The unique short bright and broad spectra characteristics of laser-accelerated protons were utilized to investigate the scintillation response difference under different dose rate. Our results indicate that for sufficiently high dose rate delivered, the average decay time of \b{eta}-Ga2O3 decreases by a factor of two. The overlap of carriers generated by high dose rate protons enhances the nonradiative recombination like Auger recombination and exciton-exciton annihilation which shortens the decay time significantly. The study opens up new avenues for investigating the luminescent properties of other scintillator materials using laser-accelerated high dose rate proton beams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.05477v1-abstract-full').style.display = 'none'; document.getElementById('2502.05477v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.10167">arXiv:2501.10167</a> <span> [<a href="https://arxiv.org/pdf/2501.10167">pdf</a>, <a href="https://arxiv.org/format/2501.10167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Improved phase field model for two-phase incompressible flows: Sharp interface limit, universal mobility and surface tension calculation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chen%2C+J">Jing-Wei Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chun-Yu Zhang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+H">Hao-Ran Liu</a>, <a href="/search/physics?searchtype=author&query=Ding%2C+H">Hang Ding</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.10167v1-abstract-short" style="display: inline;"> In this paper, we propose an improved phase field model for interface capturing in simulating two-phase incompressible flows. The model incorporates a second-order diffusion term, which utilizes a nonlinear coefficient to assess the degree of deviation of interface profile from its equilibrium state. In particular, we analyze the scale of the mobility in the model, to ensure that the model asympto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10167v1-abstract-full').style.display = 'inline'; document.getElementById('2501.10167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.10167v1-abstract-full" style="display: none;"> In this paper, we propose an improved phase field model for interface capturing in simulating two-phase incompressible flows. The model incorporates a second-order diffusion term, which utilizes a nonlinear coefficient to assess the degree of deviation of interface profile from its equilibrium state. In particular, we analyze the scale of the mobility in the model, to ensure that the model asymptotically approaches the sharp interface limit as the interface thickness approaches zero. For accurate calculations of surface tension, we introduce a generalized form of smoothed Dirac delta functions that can adjust the thickness of the tension layer, while strictly maintaining that its integral equals one, even when the interface profile is not in equilibrium. Furthermore, we theoretically demonstrate that the spontaneous shrinkage of under-resolved interface structures encountered in the Cahn-Hilliard phase field method does not occur in the improved phase field model. Through various numerical experiments, we determine the range of the optimal mobility, confirm the theoretical analysis of the improved phase field model, verify its convergence, and examine the performance of different surface tension models. The numerical experiments include Rayleigh-Taylor instability, axisymmetric rising bubbles, droplet migration due to the Marangoni effect, partial coalescence of a droplet into a pool, and deformation of three-dimensional droplet in shear flow. In all these cases, numerical results are validated against experimental data and/or theoretical predictions. Moreover, the recommended range of dimensionless mobility has been shown to be universal, as it can be effectively applied to the simulations of a wide range of two-phase flows and exhibits excellent performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.10167v1-abstract-full').style.display = 'none'; document.getElementById('2501.10167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06306">arXiv:2501.06306</a> <span> [<a href="https://arxiv.org/pdf/2501.06306">pdf</a>, <a href="https://arxiv.org/format/2501.06306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yechen Li</a>, <a href="/search/physics?searchtype=author&query=Arora%2C+N">Neha Arora</a>, <a href="/search/physics?searchtype=author&query=Osorio%2C+C">Carolina Osorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06306v1-abstract-short" style="display: inline;"> Being widely adopted by the transportation and planning practitioners, the fundamental diagram (FD) is the primary tool used to relate the key macroscopic traffic variables of speed, flow, and density. We empirically analyze the relation between vehicular space-mean speeds and flows given different signal settings and postulate a parsimonious parametric function form of the traditional FD where it… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06306v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06306v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06306v1-abstract-full" style="display: none;"> Being widely adopted by the transportation and planning practitioners, the fundamental diagram (FD) is the primary tool used to relate the key macroscopic traffic variables of speed, flow, and density. We empirically analyze the relation between vehicular space-mean speeds and flows given different signal settings and postulate a parsimonious parametric function form of the traditional FD where its function parameters are explicitly modeled as a function of the signal plan factors. We validate the proposed formulation using data from signalized urban road segments in Salt Lake City, Utah, USA. The proposed formulation builds our understanding of how changes to signal settings impact the FDs, and more generally the congestion patterns, of signalized urban segments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06306v1-abstract-full').style.display = 'none'; document.getElementById('2501.06306v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in the 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.05282">arXiv:2501.05282</a> <span> [<a href="https://arxiv.org/pdf/2501.05282">pdf</a>, <a href="https://arxiv.org/format/2501.05282">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Multiscale discrete Maxwell boundary condition for the discrete unified gas kinetic scheme for all Knudsen number flows </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xin%2C+Z">Ziyang Xin</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yue Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chuang Zhang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zhaoli Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.05282v1-abstract-short" style="display: inline;"> In this paper, a multiscale boundary condition for the discrete unified gas kinetic scheme (DUGKS) is developed for gas flows in all flow regimes. Based on the discrete Maxwell boundary condition (DMBC), this study addresses the limitations of the original DMBC used in DUGKS. Specifically, it is found that the DMBC produces spurious velocity slip and temperature jump, which are proportional to the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05282v1-abstract-full').style.display = 'inline'; document.getElementById('2501.05282v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.05282v1-abstract-full" style="display: none;"> In this paper, a multiscale boundary condition for the discrete unified gas kinetic scheme (DUGKS) is developed for gas flows in all flow regimes. Based on the discrete Maxwell boundary condition (DMBC), this study addresses the limitations of the original DMBC used in DUGKS. Specifically, it is found that the DMBC produces spurious velocity slip and temperature jump, which are proportional to the mesh size and the momentum accommodation coefficient. The proposed multiscale DMBC is implemented by ensuring that the reflected original distribution function excludes collision effects. Theoretical analyses and numerous numerical tests show that the multiscale DMBC can achieve exactly the non-slip and non-jump conditions in the continuum limit and accurately captures non-equilibrium phenomena across a wide range of Knudsen numbers. The results demonstrate that the DUGKS with the multiscale DMBC can work properly for wall boundary conditions in all flow regimes with a fixed discretization in both space and time, without limitations on the thickness of the Knudsen layer and relaxation time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.05282v1-abstract-full').style.display = 'none'; document.getElementById('2501.05282v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 16 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.01908">arXiv:2501.01908</a> <span> [<a href="https://arxiv.org/pdf/2501.01908">pdf</a>, <a href="https://arxiv.org/format/2501.01908">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Detecting and Mitigating Adversarial Attacks on Deep Learning-Based MRI Reconstruction Without Any Retraining </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saberi%2C+M">Mahdi Saberi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Akcakaya%2C+M">Mehmet Akcakaya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.01908v1-abstract-short" style="display: inline;"> Deep learning (DL) methods, especially those based on physics-driven DL, have become the state-of-the-art for reconstructing sub-sampled magnetic resonance imaging (MRI) data. However, studies have shown that these methods are susceptible to small adversarial input perturbations, or attacks, resulting in major distortions in the output images. Various strategies have been proposed to reduce the ef… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01908v1-abstract-full').style.display = 'inline'; document.getElementById('2501.01908v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.01908v1-abstract-full" style="display: none;"> Deep learning (DL) methods, especially those based on physics-driven DL, have become the state-of-the-art for reconstructing sub-sampled magnetic resonance imaging (MRI) data. However, studies have shown that these methods are susceptible to small adversarial input perturbations, or attacks, resulting in major distortions in the output images. Various strategies have been proposed to reduce the effects of these attacks, but they require retraining and may lower reconstruction quality for non-perturbed/clean inputs. In this work, we propose a novel approach for detecting and mitigating adversarial attacks on MRI reconstruction models without any retraining. Our detection strategy is based on the idea of cyclic measurement consistency. The output of the model is mapped to another set of MRI measurements for a different sub-sampling pattern, and this synthesized data is reconstructed with the same model. Intuitively, without an attack, the second reconstruction is expected to be consistent with the first, while with an attack, disruptions are present. Subsequently, this idea is extended to devise a novel objective function, which is minimized within a small ball around the attack input for mitigation. Experimental results show that our method substantially reduces the impact of adversarial perturbations across different datasets, attack types/strengths and PD-DL networks, and qualitatively and quantitatively outperforms conventional mitigation methods that involve retraining. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.01908v1-abstract-full').style.display = 'none'; document.getElementById('2501.01908v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20358">arXiv:2412.20358</a> <span> [<a href="https://arxiv.org/pdf/2412.20358">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Emittance Minimization for Aberration Correction I: Aberration correction of an electron microscope without knowing the aberration coefficients </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+D">Desheng Ma</a>, <a href="/search/physics?searchtype=author&query=Zeltmann%2C+S+E">Steven E. Zeltmann</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Baraissov%2C+Z">Zhaslan Baraissov</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+Y">Yu-Tsun Shao</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+C">Cameron Duncan</a>, <a href="/search/physics?searchtype=author&query=Maxson%2C+J">Jared Maxson</a>, <a href="/search/physics?searchtype=author&query=Edelen%2C+A">Auralee Edelen</a>, <a href="/search/physics?searchtype=author&query=Muller%2C+D+A">David A. Muller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20358v1-abstract-short" style="display: inline;"> Precise alignment of the electron beam is critical for successful application of scanning transmission electron microscopes (STEM) to understanding materials at atomic level. Despite the success of aberration correctors, aberration correction is still a complex process. Here we approach aberration correction from the perspective of accelerator physics and show it is equivalent to minimizing the em… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20358v1-abstract-full').style.display = 'inline'; document.getElementById('2412.20358v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20358v1-abstract-full" style="display: none;"> Precise alignment of the electron beam is critical for successful application of scanning transmission electron microscopes (STEM) to understanding materials at atomic level. Despite the success of aberration correctors, aberration correction is still a complex process. Here we approach aberration correction from the perspective of accelerator physics and show it is equivalent to minimizing the emittance growth of the beam, the span of the phase space distribution of the probe. We train a deep learning model to predict emittance growth from experimentally accessible Ronchigrams. Both simulation and experimental results show the model can capture the emittance variation with aberration coefficients accurately. We further demonstrate the model can act as a fast-executing function for the global optimization of the lens parameters. Our approach enables new ways to quickly quantify and automate aberration correction that takes advantage of the rapid measurements possible with high-speed electron cameras. In part II of the paper, we demonstrate how the emittance metric enables rapid online tuning of the aberration corrector using Bayesian optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20358v1-abstract-full').style.display = 'none'; document.getElementById('2412.20358v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.20356">arXiv:2412.20356</a> <span> [<a href="https://arxiv.org/pdf/2412.20356">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Emittance Minimization for Aberration Correction II: Physics-informed Bayesian Optimization of an Electron Microscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ma%2C+D">Desheng Ma</a>, <a href="/search/physics?searchtype=author&query=Zeltmann%2C+S+E">Steven E. Zeltmann</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Baraissov%2C+Z">Zhaslan Baraissov</a>, <a href="/search/physics?searchtype=author&query=Shao%2C+Y">Yu-Tsun Shao</a>, <a href="/search/physics?searchtype=author&query=Duncan%2C+C">Cameron Duncan</a>, <a href="/search/physics?searchtype=author&query=Maxson%2C+J">Jared Maxson</a>, <a href="/search/physics?searchtype=author&query=Edelen%2C+A">Auralee Edelen</a>, <a href="/search/physics?searchtype=author&query=Muller%2C+D+A">David A. Muller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.20356v2-abstract-short" style="display: inline;"> Aberration-corrected Scanning Transmission Electron Microscopy (STEM) has become an essential tool in understanding materials at the atomic scale. However, tuning the aberration corrector to produce a sub-脜ngstr枚m probe is a complex and time-costly procedure, largely due to the difficulty of precisely measuring the optical state of the system. When measurements are both costly and noisy, Bayesian… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20356v2-abstract-full').style.display = 'inline'; document.getElementById('2412.20356v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.20356v2-abstract-full" style="display: none;"> Aberration-corrected Scanning Transmission Electron Microscopy (STEM) has become an essential tool in understanding materials at the atomic scale. However, tuning the aberration corrector to produce a sub-脜ngstr枚m probe is a complex and time-costly procedure, largely due to the difficulty of precisely measuring the optical state of the system. When measurements are both costly and noisy, Bayesian methods provide rapid and efficient optimization. To this end, we develop a Bayesian approach to fully automate the process by minimizing a new quality metric, beam emittance, which is shown to be equivalent to performing aberration correction. In part I, we derived several important properties of the beam emittance metric and trained a deep neural network to predict beam emittance growth from a single Ronchigram. Here we use this as the black box function for Bayesian Optimization and demonstrate automated tuning of simulated and real electron microscopes. We explore different surrogate functions for the Bayesian optimizer and implement a deep neural network kernel to effectively learn the interactions between different control channels without the need to explicitly measure a full set of aberration coefficients. Both simulation and experimental results show the proposed method outperforms conventional approaches by achieving a better optical state with a higher convergence rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.20356v2-abstract-full').style.display = 'none'; document.getElementById('2412.20356v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18765">arXiv:2412.18765</a> <span> [<a href="https://arxiv.org/pdf/2412.18765">pdf</a>, <a href="https://arxiv.org/format/2412.18765">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Attosecond electron bunch generation by an intense laser propagation in conical channel with a curved wall </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cui-Wen Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+D">De-Sheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Sang%2C+H">Hai-Bo Sang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+B">Bai-Song Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18765v1-abstract-short" style="display: inline;"> By using two-dimensional particle-in-cell simulations, attosecond electron bunches with high density, high energy and small divergence angle can be obtained by p-polarized laser irradiation in conical channel with curved wall. We find that some electrons in the wall are pulled into the channel by the transverse electric field and are directly accelerated. Meanwhile, they move steadily along the co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18765v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18765v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18765v1-abstract-full" style="display: none;"> By using two-dimensional particle-in-cell simulations, attosecond electron bunches with high density, high energy and small divergence angle can be obtained by p-polarized laser irradiation in conical channel with curved wall. We find that some electrons in the wall are pulled into the channel by the transverse electric field and are directly accelerated. Meanwhile, they move steadily along the conical wall via laser pondermotive force. The results show that the focusing effect of the curved wall conical channel is stronger than that of the traditional flat wall conical channel, and the density of the attosecond electron bunches is increased by nearly 175% as well as the maximum energy is increased by 36%. We also find that the quality of the electron bunches is affected by the geometry of the concial channel wall. Interestingly it is found that the attosecond electron bunches obtained from the specific concial channel with the hyperbolic geometry of the curved wall can keep stable around the maximum electron energy within 10T0 even if they have left the channel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18765v1-abstract-full').style.display = 'none'; document.getElementById('2412.18765v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18395">arXiv:2412.18395</a> <span> [<a href="https://arxiv.org/pdf/2412.18395">pdf</a>, <a href="https://arxiv.org/format/2412.18395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Frozen natural spinors for Cholesky decomposition based two-component relativistic coupled cluster method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chamoli%2C+S">Somesh Chamoli</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+X">Xubo Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chaoqun Zhang</a>, <a href="/search/physics?searchtype=author&query=Nayak%2C+M+K">Malaya K. Nayak</a>, <a href="/search/physics?searchtype=author&query=Dutta%2C+A+K">Achintya Kumar Dutta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18395v2-abstract-short" style="display: inline;"> We present an efficient and cost-effective implementation for the exact two-component atomic mean field (X2CAMF) based coupled cluster (CC) method, which integrates frozen natural spinors (FNS) and the Cholesky decomposition (CD) technique. The use of CD approximation greatly reduces the storage requirement of the calculation without any significant reduction in accuracy. Compared to four-componen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18395v2-abstract-full').style.display = 'inline'; document.getElementById('2412.18395v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18395v2-abstract-full" style="display: none;"> We present an efficient and cost-effective implementation for the exact two-component atomic mean field (X2CAMF) based coupled cluster (CC) method, which integrates frozen natural spinors (FNS) and the Cholesky decomposition (CD) technique. The use of CD approximation greatly reduces the storage requirement of the calculation without any significant reduction in accuracy. Compared to four-component methods, the FNS and CD-based X2CAMF-CC approach gives similar accuracy as that of the canonical four-component relativistic coupled cluster method at a fraction of the cost. The efficiency of the method is demonstrated by the calculation of a medium-sized uranium complex involving the correlation of over 1000 virtual spinors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18395v2-abstract-full').style.display = 'none'; document.getElementById('2412.18395v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 5 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.14850">arXiv:2412.14850</a> <span> [<a href="https://arxiv.org/pdf/2412.14850">pdf</a>, <a href="https://arxiv.org/format/2412.14850">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.170146">10.1016/j.nima.2024.170146 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Long-term stability of scientific X-ray CMOS detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Liu%2C+M">Mingjun Liu</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+Q">Qinyu Wu</a>, <a href="/search/physics?searchtype=author&query=Ling%2C+Z">Zhixing Ling</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/physics?searchtype=author&query=Yuan%2C+W">Weimin Yuan</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+S">Shuang-Nan Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.14850v1-abstract-short" style="display: inline;"> In recent years, complementary metal-oxide-semiconductor (CMOS) sensors have been demonstrated to have significant potential in X-ray astronomy, where long-term reliability is crucial for space X-ray telescopes. This study examines the long-term stability of a scientific CMOS sensor, focusing on its bias, dark current, readout noise, and X-ray spectral performance. The sensor was initially tested… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14850v1-abstract-full').style.display = 'inline'; document.getElementById('2412.14850v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.14850v1-abstract-full" style="display: none;"> In recent years, complementary metal-oxide-semiconductor (CMOS) sensors have been demonstrated to have significant potential in X-ray astronomy, where long-term reliability is crucial for space X-ray telescopes. This study examines the long-term stability of a scientific CMOS sensor, focusing on its bias, dark current, readout noise, and X-ray spectral performance. The sensor was initially tested at -30 $^\circ$C for 16 months, followed by accelerated aging at 20 $^\circ$C. After a total aging period of 610 days, the bias map, dark current, readout noise, gain, and energy resolution exhibited no observable degradation. There are less than 50 pixels within the 4 k $\times$ 4 k array which show a decrease of the bias under 50 ms integration time by over 10 digital numbers (DNs). First-order kinetic fitting of the gain evolution predicts a gain degeneration of 0.73% over 3 years and 2.41% over 10 years. These results underscore the long-term reliability of CMOS sensors for application in space missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.14850v1-abstract-full').style.display = 'none'; document.getElementById('2412.14850v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13004">arXiv:2412.13004</a> <span> [<a href="https://arxiv.org/pdf/2412.13004">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Phase Segregation Dynamics in Mixed-Halide Perovskites Revealed by Plunge-Freeze Cryogenic Electron Microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fan%2C+Q">Qingyuan Fan</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+Y">Yi Cui</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yanbin Li</a>, <a href="/search/physics?searchtype=author&query=Vigil%2C+J+A">Julian A. Vigil</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+Z">Zhiqiao Jiang</a>, <a href="/search/physics?searchtype=author&query=Nandi%2C+P">Partha Nandi</a>, <a href="/search/physics?searchtype=author&query=Colby%2C+R">Robert Colby</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chensong Zhang</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+Y">Yi Cui</a>, <a href="/search/physics?searchtype=author&query=Karunadasa%2C+H+I">Hemamala I. Karunadasa</a>, <a href="/search/physics?searchtype=author&query=Lindenberg%2C+A+M">Aaron M. Lindenberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13004v1-abstract-short" style="display: inline;"> Mixed-halide lead perovskites, with photoexcited charge-carrier properties suitable for high-efficiency photovoltaics, hold significant promise for high-efficiency tandem solar cells. However, phase segregation under illumination, where an iodide-rich phase forms carrier trap states, remains a barrier to applications. This study employs plunge-freeze cryogenic electron microscopy to visualize nano… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13004v1-abstract-full').style.display = 'inline'; document.getElementById('2412.13004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13004v1-abstract-full" style="display: none;"> Mixed-halide lead perovskites, with photoexcited charge-carrier properties suitable for high-efficiency photovoltaics, hold significant promise for high-efficiency tandem solar cells. However, phase segregation under illumination, where an iodide-rich phase forms carrier trap states, remains a barrier to applications. This study employs plunge-freeze cryogenic electron microscopy to visualize nanoscale phase segregation dynamics in CsPb(Br,I) films. By rapidly freezing the illuminated samples, we preserve transient photoexcited ion distributions for high-resolution structural and compositional analysis at the nanoscale. Cryogenic scanning transmission electron microscopy techniques (EELS, 4D-STEM) captured the dynamics of photo-induced iodine migration from grain boundaries to centers, identified the buildup of anisotropic strain, and captured the heterogeneous evolution of this process within a single grain. These findings provide new insights into microscopic phase segregation mechanisms and their dynamics, enhancing our understanding of mixed-halide perovskite photostability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13004v1-abstract-full').style.display = 'none'; document.getElementById('2412.13004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.11481">arXiv:2412.11481</a> <span> [<a href="https://arxiv.org/pdf/2412.11481">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Formation of Fe-6.5wt%Si High Silicon Steel by Double Glow Plasma Surface Metallurgy Technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zhong Xu</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">Jun Huang</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+H">Hongyan Wu</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">Rui Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengyuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Z">Zaifeng Xu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+W">Weixin Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+L">Lei Hu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.11481v1-abstract-short" style="display: inline;"> High silicon steel with 6.5% silicon content is the best because of its excellent magnetic properties, such as high saturation magnetization, high resistivity, low iron loss and near zero magnetostriction. High silicon steel can greatly save energy, and reduce the weight and size of electrical appliances. This has a very important application prospect for energy and aerospace industry. The high br… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11481v1-abstract-full').style.display = 'inline'; document.getElementById('2412.11481v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.11481v1-abstract-full" style="display: none;"> High silicon steel with 6.5% silicon content is the best because of its excellent magnetic properties, such as high saturation magnetization, high resistivity, low iron loss and near zero magnetostriction. High silicon steel can greatly save energy, and reduce the weight and size of electrical appliances. This has a very important application prospect for energy and aerospace industry. The high brittleness of high silicon steel makes its production and processing very difficult. For more than 30 years, many steel companies and research institutions around the world have adopted various technical means to study the industrialization of high silicon steel, but they have not been successful . JFE-NKK steel company in Japan has realized the small batch production of high silicon steel by using SiCl4-CVD technology. However, due to the complex process, corrosion and pollution, high cost, its production scale is greatly limited. So far, large-scale production of high silicon steel is still a major challenge in the world. This paper will introduce the experimental results of successfully preparing high silicon steel by Double Glow Plasma Surface Metallurgy Technology. The process is simple and easy without any corrosion or pollution, which may provide a new way for the world to achieve large-scale production of high silicon steel. The large-scale production and wide application of high silicon steel is likely to change the pattern of the world's energy and electric power industry, save a lot of energy for mankind, and create huge economic benefits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.11481v1-abstract-full').style.display = 'none'; document.getElementById('2412.11481v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08796">arXiv:2412.08796</a> <span> [<a href="https://arxiv.org/pdf/2412.08796">pdf</a>, <a href="https://arxiv.org/format/2412.08796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Fundamental bounds on many-body spin cluster intensities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bengs%2C+C">Christian Bengs</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chongwei Zhang</a>, <a href="/search/physics?searchtype=author&query=Ajoy%2C+A">Ashok Ajoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08796v1-abstract-short" style="display: inline;"> Multiple-quantum coherence (MQC) spectroscopy is a powerful technique for probing spin clusters, offering insights into diverse materials and quantum many-body systems. However, prior experiments have revealed a rapid decay in MQC intensities as the coherence order increases, restricting observable cluster sizes to the square root of the total system size. In this work, we establish fundamental bo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08796v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08796v1-abstract-full" style="display: none;"> Multiple-quantum coherence (MQC) spectroscopy is a powerful technique for probing spin clusters, offering insights into diverse materials and quantum many-body systems. However, prior experiments have revealed a rapid decay in MQC intensities as the coherence order increases, restricting observable cluster sizes to the square root of the total system size. In this work, we establish fundamental bounds on observable MQC intensities in the thermodynamic limit outside the weak polarisation limit. We identify a sharp transition point in the observable MQC intensities as the coherence order grows. This transition points fragments the state space into two components consisting of observable and unobservable spin clusters. Notably, we find that this transition point is directly proportional to the size $N$ and polarization $p$ of the system, suggesting that the aforementioned square root limitation can be overcome through hyperpolarization techniques. Our results provide important experimental guidelines for the observation of large spin cluster phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08796v1-abstract-full').style.display = 'none'; document.getElementById('2412.08796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04732">arXiv:2412.04732</a> <span> [<a href="https://arxiv.org/pdf/2412.04732">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Unveiling hole-facilitated amorphisation in pressure-induced phase transformation of silicon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhao%2C+T">Tong Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhong%2C+S">Shulin Zhong</a>, <a href="/search/physics?searchtype=author&query=Sun%2C+Y">Yuxin Sun</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+D">Defan Wu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chunyi Zhang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+R">Rui Shi</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+H">Hao Chen</a>, <a href="/search/physics?searchtype=author&query=Ni%2C+Z">Zhenyi Ni</a>, <a href="/search/physics?searchtype=author&query=Pi%2C+X">Xiaodong Pi</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+X">Xiangyang Ma</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+Y">Yunhao Lu</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+D">Deren Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04732v1-abstract-short" style="display: inline;"> Pressure-induced phase transformation occurs during silicon (Si) wafering processes. \b{eta}-tin (Si-II) phase is formed at high pressures, followed by the transformation to Si-XII, Si-III or/and amorphous Si (伪-Si) phases during the subsequent decompression. While the imposed pressure and its release rate are known to dictate the phase transformation of Si, the effect of charge carriers are ignor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04732v1-abstract-full').style.display = 'inline'; document.getElementById('2412.04732v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04732v1-abstract-full" style="display: none;"> Pressure-induced phase transformation occurs during silicon (Si) wafering processes. \b{eta}-tin (Si-II) phase is formed at high pressures, followed by the transformation to Si-XII, Si-III or/and amorphous Si (伪-Si) phases during the subsequent decompression. While the imposed pressure and its release rate are known to dictate the phase transformation of Si, the effect of charge carriers are ignored. Here, we experimentally unveil that the increased hole concentration facilitates the amorphization in the pressure-induced phase transformation of Si. The underlying mechanism is elucidated by the theoretical calculations based on machine-learning interatomic potentials. The hole-facilitated amorphization is also experimentally confirmed to occur in the indented Ge, GaAs or SiC. We discover that hole concentration is another determining factor for the pressure-induced phase transformations of the industrially important semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04732v1-abstract-full').style.display = 'none'; document.getElementById('2412.04732v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19703">arXiv:2411.19703</a> <span> [<a href="https://arxiv.org/pdf/2411.19703">pdf</a>, <a href="https://arxiv.org/format/2411.19703">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Highly coherent two-color laser with stability below 3E-17 at 1 second </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=He%2C+B">Bibo He</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jiachuan Yang</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+F">Fei Meng</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+J">Jialiang Yu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chenbo Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+Q">Qi-Fan Yang</a>, <a href="/search/physics?searchtype=author&query=Zuo%2C+Y">Yani Zuo</a>, <a href="/search/physics?searchtype=author&query=Lin%2C+Y">Yige Lin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zhangyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Fang%2C+Z">Zhanjun Fang</a>, <a href="/search/physics?searchtype=author&query=Xie%2C+X">Xiaopeng Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19703v1-abstract-short" style="display: inline;"> Two-color lasers with high coherence are paramount in precision measurement, accurate light-matter interaction, and low-noise photonic microwave generation. However, conventional two-color lasers often suffer from low coherence, particularly when these two colors face large frequency spacings. Here, harnessing the Pound-Drever-Hall technique, we synchronize two lasers to a shared ultra-stable opti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19703v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19703v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19703v1-abstract-full" style="display: none;"> Two-color lasers with high coherence are paramount in precision measurement, accurate light-matter interaction, and low-noise photonic microwave generation. However, conventional two-color lasers often suffer from low coherence, particularly when these two colors face large frequency spacings. Here, harnessing the Pound-Drever-Hall technique, we synchronize two lasers to a shared ultra-stable optical reference cavity to break through the thermal noise constraint, achieving a highly coherent two-color laser. With conquering these non-common mode noises, we demonstrate an exceptional fractional frequency instability of 2.7E-17 at 1 second when normalized to the optical frequency. Characterizing coherence across large frequency spacings poses a significant challenge. To tackle this, we employ electro-optical frequency division to transfer the relative stability of a 0.5 THz spacing two-color laser to a 25 GHz microwave signal. As its performance surpasses the sensitivity of the current apparatus, we establish two independent systems for comparative analyses. The resulting 25 GHz signals exhibit exceptional phase noise of -74 dBc/Hz at 1 Hz and -120 dBc/Hz at 100 Hz, demonstrating the two-color laser's performance approaching the quantum noise limit of its synchronization system. It also sets a new record for the two-point frequency division method in photonic microwave generation. Our achievement in highly coherent two-color lasers and low-noise microwave signals will usher in a new era for precision measurements and refine the accuracy of light-matter and microwave-matter interactions to their next decimal place. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19703v1-abstract-full').style.display = 'none'; document.getElementById('2411.19703v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18899">arXiv:2411.18899</a> <span> [<a href="https://arxiv.org/pdf/2411.18899">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Low-Temperature Synthesis of Weakly Confined Carbyne inside Single-Walled Carbon Nanotubes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bo-Wen Zhang</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+X">Xi-Yang Qiu</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+Y">Yicheng Ma</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Q">Qingmei Hu</a>, <a href="/search/physics?searchtype=author&query=Fit%C3%B3-Parera%2C+A">Aina Fit贸-Parera</a>, <a href="/search/physics?searchtype=author&query=Kohata%2C+I">Ikuma Kohata</a>, <a href="/search/physics?searchtype=author&query=Feng%2C+Y">Ya Feng</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Y">Yongjia Zheng</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chiyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Matsuo%2C+Y">Yutaka Matsuo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">YuHuang Wang</a>, <a href="/search/physics?searchtype=author&query=Chiashi%2C+S">Shohei Chiashi</a>, <a href="/search/physics?searchtype=author&query=Otsuka%2C+K">Keigo Otsuka</a>, <a href="/search/physics?searchtype=author&query=Xiang%2C+R">Rong Xiang</a>, <a href="/search/physics?searchtype=author&query=Levshov%2C+D+I">Dmitry I. Levshov</a>, <a href="/search/physics?searchtype=author&query=Cambr%C3%A9%2C+S">Sofie Cambr茅</a>, <a href="/search/physics?searchtype=author&query=Wenseleers%2C+W">Wim Wenseleers</a>, <a href="/search/physics?searchtype=author&query=Rotkin%2C+S+V">Slava V. Rotkin</a>, <a href="/search/physics?searchtype=author&query=Maruyama%2C+S">Shigeo Maruyama</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18899v1-abstract-short" style="display: inline;"> Carbyne, a one-dimensional (1D) carbon allotrope with alternating triple and single bonds, has the highest known mechanical strength but is unstable to bending, limiting synthesis to short linear chains. Encapsulation within carbon nanotubes (CNTs) stabilizes carbyne, forming confined carbyne (CC), thus enabling further research concerning attractive 1D physics and materials properties of carbyne.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18899v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18899v1-abstract-full" style="display: none;"> Carbyne, a one-dimensional (1D) carbon allotrope with alternating triple and single bonds, has the highest known mechanical strength but is unstable to bending, limiting synthesis to short linear chains. Encapsulation within carbon nanotubes (CNTs) stabilizes carbyne, forming confined carbyne (CC), thus enabling further research concerning attractive 1D physics and materials properties of carbyne. While CC has been synthesized in multi-walled CNTs (MWCNTs) using the arc-discharge method and in double-walled CNTs (DWCNTs) via high-temperature high-vacuum (HTHV) method, synthesis in single-walled CNTs (SWCNTs) has been challenging due to their fragility under such conditions. In this work, we report a low-temperature method to synthesize CC inside SWCNTs (CC@SWCNT). By annealing SWCNTs containing ammonium deoxycholate (ADC) at 400掳C, ADC is converted into CC without damaging the SWCNTs. Raman spectroscopy revealed a strong CC phonon (CC-mode) peak at 1860-1870 cm^-1, much stronger than the SWCNT G-band peak, confirming a high fraction of CC in the resulting material. The Raman mapping result showed the uniformity of the CC-mode signal across the entire film sample, proving the high efficiency of this method in synthesizing CC in every SWCNT of appropriate size. Notably, the CC-mode peaks of CC@SWCNT (above 1860 cm^-1) are higher than those reported in previous CC@CNT samples (mostly less than 1856 cm^-1). This is attributed to larger SWCNT diameters (over 0.95 nm) used in this study, compared to the typical 0.6-0.8 nm range. Larger diameters result in reduced confinement, allowing carbyne to closely resemble free-standing carbyne while remaining stabilized. This low-temperature synthesis of long-chain, nearly free-standing carbyne within large-diameter SWCNTs offers new opportunities for exploring 1D physics and the unique properties of carbyne for potential applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18899v1-abstract-full').style.display = 'none'; document.getElementById('2411.18899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15221">arXiv:2411.15221</a> <span> [<a href="https://arxiv.org/pdf/2411.15221">pdf</a>, <a href="https://arxiv.org/format/2411.15221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zimmermann%2C+Y">Yoel Zimmermann</a>, <a href="/search/physics?searchtype=author&query=Bazgir%2C+A">Adib Bazgir</a>, <a href="/search/physics?searchtype=author&query=Afzal%2C+Z">Zartashia Afzal</a>, <a href="/search/physics?searchtype=author&query=Agbere%2C+F">Fariha Agbere</a>, <a href="/search/physics?searchtype=author&query=Ai%2C+Q">Qianxiang Ai</a>, <a href="/search/physics?searchtype=author&query=Alampara%2C+N">Nawaf Alampara</a>, <a href="/search/physics?searchtype=author&query=Al-Feghali%2C+A">Alexander Al-Feghali</a>, <a href="/search/physics?searchtype=author&query=Ansari%2C+M">Mehrad Ansari</a>, <a href="/search/physics?searchtype=author&query=Antypov%2C+D">Dmytro Antypov</a>, <a href="/search/physics?searchtype=author&query=Aswad%2C+A">Amro Aswad</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+J">Jiaru Bai</a>, <a href="/search/physics?searchtype=author&query=Baibakova%2C+V">Viktoriia Baibakova</a>, <a href="/search/physics?searchtype=author&query=Biswajeet%2C+D+D">Devi Dutta Biswajeet</a>, <a href="/search/physics?searchtype=author&query=Bitzek%2C+E">Erik Bitzek</a>, <a href="/search/physics?searchtype=author&query=Bocarsly%2C+J+D">Joshua D. Bocarsly</a>, <a href="/search/physics?searchtype=author&query=Borisova%2C+A">Anna Borisova</a>, <a href="/search/physics?searchtype=author&query=Bran%2C+A+M">Andres M Bran</a>, <a href="/search/physics?searchtype=author&query=Brinson%2C+L+C">L. Catherine Brinson</a>, <a href="/search/physics?searchtype=author&query=Calderon%2C+M+M">Marcel Moran Calderon</a>, <a href="/search/physics?searchtype=author&query=Canalicchio%2C+A">Alessandro Canalicchio</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+V">Victor Chen</a>, <a href="/search/physics?searchtype=author&query=Chiang%2C+Y">Yuan Chiang</a>, <a href="/search/physics?searchtype=author&query=Circi%2C+D">Defne Circi</a>, <a href="/search/physics?searchtype=author&query=Charmes%2C+B">Benjamin Charmes</a>, <a href="/search/physics?searchtype=author&query=Chaudhary%2C+V">Vikrant Chaudhary</a> , et al. (119 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15221v2-abstract-short" style="display: inline;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v2-abstract-full').style.display = 'inline'; document.getElementById('2411.15221v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15221v2-abstract-full" style="display: none;"> Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15221v2-abstract-full').style.display = 'none'; document.getElementById('2411.15221v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updating author information, the submission remains largely unchanged. 98 pages total</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13776">arXiv:2411.13776</a> <span> [<a href="https://arxiv.org/pdf/2411.13776">pdf</a>, <a href="https://arxiv.org/format/2411.13776">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Maximizing Quantum Enhancement in Axion Dark Matter Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kuo%2C+C">Chao-Lin Kuo</a>, <a href="/search/physics?searchtype=author&query=Bartram%2C+C+L">Chelsea L. Bartram</a>, <a href="/search/physics?searchtype=author&query=Chou%2C+A+S">Aaron S. Chou</a>, <a href="/search/physics?searchtype=author&query=Dyson%2C+T+A">Taj A. Dyson</a>, <a href="/search/physics?searchtype=author&query=Kurinsky%2C+N+A">Noah A. Kurinsky</a>, <a href="/search/physics?searchtype=author&query=Rybka%2C+G">Gray Rybka</a>, <a href="/search/physics?searchtype=author&query=Wen%2C+O">Osmond Wen</a>, <a href="/search/physics?searchtype=author&query=Withers%2C+M+O">Matthew O. Withers</a>, <a href="/search/physics?searchtype=author&query=Yi%2C+A+K">Andrew K. Yi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13776v1-abstract-short" style="display: inline;"> We provide a comprehensive comparison of linear amplifiers and microwave photon-counters in axion dark matter experiments. The study is done assuming a range of realistic operating conditions and detector parameters, over the frequency range between 1--30 GHz. As expected, photon counters are found to be advantageous under low background, at high frequencies ($谓>$ 5 GHz), {\em if} they can be impl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13776v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13776v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13776v1-abstract-full" style="display: none;"> We provide a comprehensive comparison of linear amplifiers and microwave photon-counters in axion dark matter experiments. The study is done assuming a range of realistic operating conditions and detector parameters, over the frequency range between 1--30 GHz. As expected, photon counters are found to be advantageous under low background, at high frequencies ($谓>$ 5 GHz), {\em if} they can be implemented with robust wide-frequency tuning or a very low dark count rate. Additional noteworthy observations emerging from this study include: (1) an expanded applicability of off-resonance photon background reduction, including the single-quadrature state squeezing, for scan rate enhancements; (2) a much broader appeal for operating the haloscope resonators in the over-coupling regime, up to $尾\sim 10$; (3) the need for a detailed investigation into the cryogenic and electromagnetic conditions inside haloscope cavities to lower the photon temperature for future experiments; (4) the necessity to develop a distributed network of coupling ports in high-volume axion haloscopes to utilize these potential gains in the scan rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13776v1-abstract-full').style.display = 'none'; document.getElementById('2411.13776v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13719">arXiv:2411.13719</a> <span> [<a href="https://arxiv.org/pdf/2411.13719">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Persistent but weak magnetic field at Moon's midlife revealed by Chang'e-5 basalt </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Cai%2C+S">Shuhui Cai</a>, <a href="/search/physics?searchtype=author&query=Qin%2C+H">Huafeng Qin</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+H">Huapei Wang</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+C">Chenglong Deng</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+S">Saihong Yang</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Ya Xu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chi Zhang</a>, <a href="/search/physics?searchtype=author&query=Tang%2C+X">Xu Tang</a>, <a href="/search/physics?searchtype=author&query=Gu%2C+L">Lixin Gu</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">Xiaoguang Li</a>, <a href="/search/physics?searchtype=author&query=Shen%2C+Z">Zhongshan Shen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+M">Min Zhang</a>, <a href="/search/physics?searchtype=author&query=He%2C+K">Kuang He</a>, <a href="/search/physics?searchtype=author&query=Qi%2C+K">Kaixian Qi</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+Y">Yunchang Fan</a>, <a href="/search/physics?searchtype=author&query=Dong%2C+L">Liang Dong</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+Y">Yifei Hou</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+P">Pingyuan Shi</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shuangchi Liu</a>, <a href="/search/physics?searchtype=author&query=Su%2C+F">Fei Su</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yi Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Q">Qiuli Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jinhua Li</a>, <a href="/search/physics?searchtype=author&query=Mitchell%2C+R+N">Ross N. Mitchell</a>, <a href="/search/physics?searchtype=author&query=He%2C+H">Huaiyu He</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13719v1-abstract-short" style="display: inline;"> The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late stage evolution of the lunar magnetic field is poorly constrained, and thus the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13719v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13719v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13719v1-abstract-full" style="display: none;"> The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late stage evolution of the lunar magnetic field is poorly constrained, and thus the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at mid-latitude. We recovered weak paleointensities of 2-4 uT from the Chang'e-5 basalt clasts at 2 billion years ago, attestting to the longevity of a lunar dynamo until at least the Moon's midlife. This paleomagnetic result implies the existence of thermal convection in the lunar deep interior at the lunar mid-stage which may have supplied mantle heat flux for the young volcanism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13719v1-abstract-full').style.display = 'none'; document.getElementById('2411.13719v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13353">arXiv:2411.13353</a> <span> [<a href="https://arxiv.org/pdf/2411.13353">pdf</a>, <a href="https://arxiv.org/format/2411.13353">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Miniaturized spectrometer enabled by end-to-end deep learning on large-scale radiative cavity array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhou%2C+X">Xinyi Zhou</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaoyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Zuo%2C+Y">Yi Zuo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Z">Zixuan Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+F">Feifan Wang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Z">Zihao Chen</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hongbin Li</a>, <a href="/search/physics?searchtype=author&query=Peng%2C+C">Chao Peng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13353v1-abstract-short" style="display: inline;"> Miniaturized (mini-) spectrometers are highly desirable tools for chemical, biological, and medical diagnostics because of their potential for portable and in situ spectral detection. In this work, we propose and demonstrate a mini-spectrometer that combines a large-scale radiative cavity array with end-to-end deep learning networks. Specifically, we utilize high-Q bound states in continuum caviti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13353v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13353v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13353v1-abstract-full" style="display: none;"> Miniaturized (mini-) spectrometers are highly desirable tools for chemical, biological, and medical diagnostics because of their potential for portable and in situ spectral detection. In this work, we propose and demonstrate a mini-spectrometer that combines a large-scale radiative cavity array with end-to-end deep learning networks. Specifically, we utilize high-Q bound states in continuum cavities with distinct radiation characteristics as the fundamental units to achieve parallel spectral detection. We realize a 36 $\times$ 30 cavity array that spans a wide spectral range from 1525 to 1605 nm with quality factors above 10^4. We further train a deep network with 8000 outputs to directly map arbitrary spectra to array responses excited by the out-of-plane incident. Experimental results demonstrate that the proposed mini-spectrometer can resolve unknown spectra with a resolution of 0.048 nm in a bandwidth of 80 nm and fidelity exceeding 95%, thus offering a promising method for compact, high resolution, and broadband spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13353v1-abstract-full').style.display = 'none'; document.getElementById('2411.13353v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13221">arXiv:2411.13221</a> <span> [<a href="https://arxiv.org/pdf/2411.13221">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of non-Hermitian boundary induced hybrid skin-topological effect excited by synthetic complex frequencies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jiang%2C+T">Tianshu Jiang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chenyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+R">Ruo-Yang Zhang</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+Y">Yingjuan Yu</a>, <a href="/search/physics?searchtype=author&query=Guan%2C+Z">Zhenfu Guan</a>, <a href="/search/physics?searchtype=author&query=Wei%2C+Z">Zeyong Wei</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhanshan Wang</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+X">Xinbin Cheng</a>, <a href="/search/physics?searchtype=author&query=Chan%2C+C+T">C. T. Chan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13221v1-abstract-short" style="display: inline;"> The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13221v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13221v1-abstract-full" style="display: none;"> The hybrid skin-topological effect (HSTE) has recently been proposed as a mechanism where topological edge states collapse into corner states under the influence of the non-Hermitian skin effect (NHSE). However, directly observing this effect is challenging due to the complex frequencies of eigenmodes. In this study, we experimentally observe HSTE corner states using synthetic complex frequency excitations in a transmission line network. We demonstrate that HSTE induces asymmetric transmission along a specific direction within the topological band gap. Besides HSTE, we identify corner states originating from non-chiral edge states, which are caused by the unbalanced effective onsite energy shifts at the boundaries of the network. Furthermore, our results suggest that whether the bulk interior is Hermitian or non-Hermitian is not a key factor for HSTE. Instead, the HSTE states can be realized and relocated simply by adjusting the non-Hermitian distribution at the boundaries. Our research has deepened the understanding of a range of issues regarding HSTE, paving the way for advancements in the design of non-Hermitian topological devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13221v1-abstract-full').style.display = 'none'; document.getElementById('2411.13221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11267">arXiv:2411.11267</a> <span> [<a href="https://arxiv.org/pdf/2411.11267">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Applying Infomap-based Hierarchical Community Detection for Multi-level City On-Demand Delivery Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengbo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11267v1-abstract-short" style="display: inline;"> Efficient management of on-demand delivery systems is essential for modern urban logistics, especially in densely populated cities with complex spatial layouts. This study introduces a novel, computer-supported cooperative framework that utilizes Infomap-based hierarchical community detection to analyze spatial multilevel clustering patterns. The experiment was conducted to large scale on-demand d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11267v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11267v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11267v1-abstract-full" style="display: none;"> Efficient management of on-demand delivery systems is essential for modern urban logistics, especially in densely populated cities with complex spatial layouts. This study introduces a novel, computer-supported cooperative framework that utilizes Infomap-based hierarchical community detection to analyze spatial multilevel clustering patterns. The experiment was conducted to large scale on-demand delivery datasets from Shenzhen and Beijing, revealing integrated spatial clusters that align with cohesive urban layout. Through hierarchical detection, finer and fragmented clusters are identified, reflecting its diverse urban structure and delivery demands. The findings demonstrate the effectiveness of hierarchical community detection in uncovering spatial dependencies and optimizing resource allocation and delivery strategies. This framework provides practical insights for urban logistics, enabling tailored approaches for business hub placement, route allocation, and adaptive resource management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11267v1-abstract-full').style.display = 'none'; document.getElementById('2411.11267v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10428">arXiv:2411.10428</a> <span> [<a href="https://arxiv.org/pdf/2411.10428">pdf</a>, <a href="https://arxiv.org/format/2411.10428">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> BICEP/Keck XIX: Extremely Thin Composite Polymer Vacuum Windows for BICEP and Other High Throughput Millimeter Wave Telescopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+B">BICEP/Keck Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Ade%2C+P+A+R">P. A. R. Ade</a>, <a href="/search/physics?searchtype=author&query=Ahmed%2C+Z">Z. Ahmed</a>, <a href="/search/physics?searchtype=author&query=Amiri%2C+M">M. Amiri</a>, <a href="/search/physics?searchtype=author&query=Barkats%2C+D">D. Barkats</a>, <a href="/search/physics?searchtype=author&query=Thakur%2C+R+B">R. Basu Thakur</a>, <a href="/search/physics?searchtype=author&query=Bischoff%2C+C+A">C. A. Bischoff</a>, <a href="/search/physics?searchtype=author&query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&query=Bock%2C+J+J">J. J. Bock</a>, <a href="/search/physics?searchtype=author&query=Boenish%2C+H">H. Boenish</a>, <a href="/search/physics?searchtype=author&query=Buza%2C+V">V. Buza</a>, <a href="/search/physics?searchtype=author&query=Carter%2C+K">K. Carter</a>, <a href="/search/physics?searchtype=author&query=Cheshire%2C+J+R">J. R. Cheshire IV</a>, <a href="/search/physics?searchtype=author&query=Connors%2C+J">J. Connors</a>, <a href="/search/physics?searchtype=author&query=Cornelison%2C+J">J. Cornelison</a>, <a href="/search/physics?searchtype=author&query=Corrigan%2C+L">L. Corrigan</a>, <a href="/search/physics?searchtype=author&query=Crumrine%2C+M">M. Crumrine</a>, <a href="/search/physics?searchtype=author&query=Crystian%2C+S">S. Crystian</a>, <a href="/search/physics?searchtype=author&query=Cukierman%2C+A+J">A. J. Cukierman</a>, <a href="/search/physics?searchtype=author&query=Denison%2C+E">E. Denison</a>, <a href="/search/physics?searchtype=author&query=Duband%2C+L">L. Duband</a>, <a href="/search/physics?searchtype=author&query=Echter%2C+M">M. Echter</a>, <a href="/search/physics?searchtype=author&query=Eiben%2C+M">M. Eiben</a>, <a href="/search/physics?searchtype=author&query=Elwood%2C+B+D">B. D. Elwood</a> , et al. (69 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10428v1-abstract-short" style="display: inline;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive opt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10428v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10428v1-abstract-full" style="display: none;"> Millimeter-wave refracting telescopes targeting the degree-scale structure of the cosmic microwave background (CMB) have recently grown to diffraction-limited apertures of over 0.5 meters. These instruments are entirely housed in vacuum cryostats to support their sub-kelvin bolometric detectors and to minimize radiative loading from thermal emission due to absorption loss in their transmissive optical elements. The large vacuum window is the only optical element in the system at ambient temperature, and therefore minimizing loss in the window is crucial for maximizing detector sensitivity. This motivates the use of low-loss polymer materials and a window as thin as practicable. However, the window must simultaneously meet the requirement to keep sufficient vacuum, and therefore must limit gas permeation and remain mechanically robust against catastrophic failure under pressure. We report on the development of extremely thin composite polyethylene window technology that meets these goals. Two windows have been deployed for two full observing seasons on the BICEP3 and BA150 CMB telescopes at the South Pole. On BICEP3, the window has demonstrated a 6% improvement in detector sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10428v1-abstract-full').style.display = 'none'; document.getElementById('2411.10428v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10002">arXiv:2411.10002</a> <span> [<a href="https://arxiv.org/pdf/2411.10002">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Uncover the Dynamic Community Structure of Instant Delivery Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chengbo Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yonglin Li</a>, <a href="/search/physics?searchtype=author&query=Xiao%2C+Z">Zuopeng Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10002v1-abstract-short" style="display: inline;"> The rise of instant delivery services has reshaped urban spatial structures through the interaction between suppliers and consumers. However, limited research has explored the spatiotemporal dynamics of delivery network structures. This study constructs a time-dependent, multi-layer instant delivery network in the case city of Beijing using a large-scale dataset from Eleme, organized into 500m gri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10002v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10002v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10002v1-abstract-full" style="display: none;"> The rise of instant delivery services has reshaped urban spatial structures through the interaction between suppliers and consumers. However, limited research has explored the spatiotemporal dynamics of delivery network structures. This study constructs a time-dependent, multi-layer instant delivery network in the case city of Beijing using a large-scale dataset from Eleme, organized into 500m grid units. A dynamic community detection method identifies evolving community structures over time. The results reveal 309 dynamic communities, with an average size of 13.78 square kilometers. Communities form in the morning, expand, stabilize, then contract, and disappear by night. Key factors influencing stability include building area and residential population, while online retail and service facilities contribute to instability. These findings offer insights into the spatial structure of instant delivery networks and the factors driving their dynamics, with practical implications for optimizing platform strategies, resource allocation, and urban transportation planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10002v1-abstract-full').style.display = 'none'; document.getElementById('2411.10002v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures.This is a long abstract for participating in the AAG meeting 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07775">arXiv:2411.07775</a> <span> [<a href="https://arxiv.org/pdf/2411.07775">pdf</a>, <a href="https://arxiv.org/format/2411.07775">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Topological resilience of optical skyrmions in local decoherence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wang%2C+L">Li-Wen Wang</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Sheng Liu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng-Jie Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+G">Geng Chen</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yong-Sheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chuan-Feng Li</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+G">Guang-Can Guo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07775v1-abstract-short" style="display: inline;"> The concept of skyrmions was introduced as early as the 1960s by Tony Skyrme. The topologically protected configuration embedded in skyrmions has prompted some investigations into their fundamental properties and versatile applications, sparking interest and guiding ongoing development. The topological protection associated with skyrmions was initially observed in systems with interactions. It is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07775v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07775v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07775v1-abstract-full" style="display: none;"> The concept of skyrmions was introduced as early as the 1960s by Tony Skyrme. The topologically protected configuration embedded in skyrmions has prompted some investigations into their fundamental properties and versatile applications, sparking interest and guiding ongoing development. The topological protection associated with skyrmions was initially observed in systems with interactions. It is widely believed that skyrmions are stable yet relevant confirmation and empirical research remains limited. A pertinent question is whether skyrmion configurations formed by single-particle wave functions also exhibit topological stability. In this study, we affirm this hypothesis by investigating the effects of local decoherence. We analytically and numerically demonstrate the topological resilience of skyrmions and occurrence of transition points of skyrmion numbers in local decoherence of three typical decoherence channels. On the other hand, we show that these qualities are independent of the initial state. From the numerical results, we verify that inhomogeneous but continuous decoherence channels also adhere to the same behaviors and hold topological stability of skyrmions as homogeneous decoherence channels. These properties of skyrmions contribute to further applications in various areas including communication and imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07775v1-abstract-full').style.display = 'none'; document.getElementById('2411.07775v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06604">arXiv:2411.06604</a> <span> [<a href="https://arxiv.org/pdf/2411.06604">pdf</a>, <a href="https://arxiv.org/format/2411.06604">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> An Analysis of Deep Learning Parameterizations for Ocean Subgrid Eddy Forcing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gultekin%2C+C">Cem Gultekin</a>, <a href="/search/physics?searchtype=author&query=Subel%2C+A">Adam Subel</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Leibovich%2C+M">Matan Leibovich</a>, <a href="/search/physics?searchtype=author&query=Perezhogin%2C+P">Pavel Perezhogin</a>, <a href="/search/physics?searchtype=author&query=Adcroft%2C+A">Alistair Adcroft</a>, <a href="/search/physics?searchtype=author&query=Fernandez-Granda%2C+C">Carlos Fernandez-Granda</a>, <a href="/search/physics?searchtype=author&query=Zanna%2C+L">Laure Zanna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06604v1-abstract-short" style="display: inline;"> Due to computational constraints, climate simulations cannot resolve a range of small-scale physical processes, which have a significant impact on the large-scale evolution of the climate system. Parameterization is an approach to capture the effect of these processes, without resolving them explicitly. In recent years, data-driven parameterizations based on convolutional neural networks have obta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06604v1-abstract-full').style.display = 'inline'; document.getElementById('2411.06604v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06604v1-abstract-full" style="display: none;"> Due to computational constraints, climate simulations cannot resolve a range of small-scale physical processes, which have a significant impact on the large-scale evolution of the climate system. Parameterization is an approach to capture the effect of these processes, without resolving them explicitly. In recent years, data-driven parameterizations based on convolutional neural networks have obtained promising results. In this work, we provide an in-depth analysis of these parameterizations developed using data from ocean simulations. The parametrizations account for the effect of mesoscale eddies toward improving simulations of momentum, heat, and mass exchange in the ocean. Our results provide several insights into the properties of data-driven parameterizations based on neural networks. First, their performance can be substantially improved by increasing the geographic extent of the training data. Second, they learn nonlinear structure, since they are able to outperform a linear baseline. Third, they generalize robustly across different CO2 forcings, but not necessarily across different ocean depths. Fourth, they exploit a relatively small region of their input to generate their output. Our results will guide the further development of ocean mesoscale eddy parameterizations, and multiscale modeling more generally. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06604v1-abstract-full').style.display = 'none'; document.getElementById('2411.06604v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01945">arXiv:2411.01945</a> <span> [<a href="https://arxiv.org/pdf/2411.01945">pdf</a>, <a href="https://arxiv.org/format/2411.01945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Semi-implicit Lax-Wendroff kinetic scheme for multi-scale phonon transport </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Peng%2C+S">Shuang Peng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Songze Chen</a>, <a href="/search/physics?searchtype=author&query=Liang%2C+H">Hong Liang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chuang Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01945v2-abstract-short" style="display: inline;"> Fast and accurate predictions of the spatiotemporal distributions of temperature are crucial to the multi-scale thermal management and safe operation of microelectronic devices. To realize it, an efficient semi-implicit Lax-Wendroff kinetic scheme is developed for numerically solving the transient phonon Boltzmann transport equation (BTE) from the ballistic to diffusive regime. The phonon BTE at t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01945v2-abstract-full').style.display = 'inline'; document.getElementById('2411.01945v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01945v2-abstract-full" style="display: none;"> Fast and accurate predictions of the spatiotemporal distributions of temperature are crucial to the multi-scale thermal management and safe operation of microelectronic devices. To realize it, an efficient semi-implicit Lax-Wendroff kinetic scheme is developed for numerically solving the transient phonon Boltzmann transport equation (BTE) from the ballistic to diffusive regime. The phonon BTE at the cell center is discretized under the framework of finite volume method, where the trapezoidal and midpoint rules are used to deal with the temporal integration of phonon scattering and convection terms, respectively. For the reconstruction of the interfacial distribution function, the phonon BTE at the cell interface is discretized in the form of finite difference method and solved numerically, where second-order upwind and central scheme are used to deal with the spatial interpolation and gradient of interfacial distribution function, respectively. The macroscopic governing equations are invoked for the evolution of macroscopic fields at both the cell center and interface, where the macroscopic flux is obtained by taking the moment of the interfacial distribution function. Numerical results show that the present scheme could accurately predict the steady/unsteady heat conduction in solid materials from the ballistic to diffusive regime, and its time and cell size are not limited by the relaxation time and phonon mean free path. The present work could provide a useful tool for the efficient predictions of the macroscopic spatiotemporal distributions in the multi-scale thermal engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01945v2-abstract-full').style.display = 'none'; document.getElementById('2411.01945v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 20 figures, 60 refernece</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 82D37; 80A05 80A19 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01914">arXiv:2411.01914</a> <span> [<a href="https://arxiv.org/pdf/2411.01914">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Manipulating terahertz phonon-polariton in the ultrastrong coupling regime with bound states in the continuum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Yang%2C+J">Jiaxing Yang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+K">Kai Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+L">Liyu Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chen Zhang</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+A">Aoyu Fan</a>, <a href="/search/physics?searchtype=author&query=He%2C+Z">Zijian He</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Z">Zhidi Li</a>, <a href="/search/physics?searchtype=author&query=Han%2C+X">Xiaobo Han</a>, <a href="/search/physics?searchtype=author&query=Ling%2C+F">Furi Ling</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+P">Peixiang Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01914v1-abstract-short" style="display: inline;"> The strong coupling between photons and phonons in polar materials gives rise to phonon-polaritons that encapsulate a wealth of physical information, offering crucial tools for the ultrafast terahertz sources and the topological engineering of terahertz light. However, it is still quite challenging to form and manipulate the terahertz phonon-polaritons under the ultrastrong coupling regime till no… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01914v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01914v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01914v1-abstract-full" style="display: none;"> The strong coupling between photons and phonons in polar materials gives rise to phonon-polaritons that encapsulate a wealth of physical information, offering crucial tools for the ultrafast terahertz sources and the topological engineering of terahertz light. However, it is still quite challenging to form and manipulate the terahertz phonon-polaritons under the ultrastrong coupling regime till now. In this work, we demonstrate the ultrastrong coupling between the phonon (at 0.95 THz) in a MaPbI<sub>3</sub> film and the metallic bound states in the continuum (BICs) in Au metasurfaces. The Rabi splitting can be continuously tuned from 28% to 48.4% of the phonon frequency by adjusting the parameters (size, shape and period) of Au metasurfaces, reaching the ultrastrong coupling regime. By introducing wavelet transform, the mode evolution information of the terahertz phonon-polariton is successfully extracted. It indicates that the phonon radiation intensity of the MaPbI<sub>3</sub> film is enhanced as the coupling strength is increased. This work not only establishes a new platform for terahertz devices but also opens new avenues for exploring the intricate dynamics of terahertz phonon-polaritons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01914v1-abstract-full').style.display = 'none'; document.getElementById('2411.01914v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01260">arXiv:2411.01260</a> <span> [<a href="https://arxiv.org/pdf/2411.01260">pdf</a>, <a href="https://arxiv.org/format/2411.01260">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Detector integration at HEPS: a systematic, efficient and high-performance approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+Q">Qun Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+P">Peng-Cheng Li</a>, <a href="/search/physics?searchtype=author&query=Bian%2C+L">Ling-Zhu Bian</a>, <a href="/search/physics?searchtype=author&query=Li%2C+C">Chun Li</a>, <a href="/search/physics?searchtype=author&query=Yue%2C+Z">Zong-Yang Yue</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng-Long Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Z">Zhuo-Feng Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+G">Gang Li</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+A">Ai-Yu Zhou</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01260v2-abstract-short" style="display: inline;"> At least 25 kinds of detector-like devices need to be integrated in Phase I of the High Energy Photon Source (HEPS), and the work needs to be carefully planned to maximise productivity with highly limited human resources. After a systematic analysis on the actual work involved in detector integration, a separation of concerns between collaborating groups of personnel is established to minimise the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01260v2-abstract-full').style.display = 'inline'; document.getElementById('2411.01260v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01260v2-abstract-full" style="display: none;"> At least 25 kinds of detector-like devices need to be integrated in Phase I of the High Energy Photon Source (HEPS), and the work needs to be carefully planned to maximise productivity with highly limited human resources. After a systematic analysis on the actual work involved in detector integration, a separation of concerns between collaborating groups of personnel is established to minimise the duplication of efforts. To facilitate software development for detector integration, the ADGenICam library, which abstracts repeated code in EPICS modules for cameras, is extended to support a much wider range of detectors. An increasingly considerable fraction of detectors, both inside and outside HEPS, offer performance that exceed capabilities of the areaDetector framework in EPICS. Given this background, areaDetector's limitations in performance and architecture are analysed, and a QueueIOC -based framework that overcomes these limitations is introduced. A simple, flexible ZeroMQ-based protocol is used for data transport in this framework, while RDMA transport and multi-node readout will be explored for higher data throughputs. By calling C/C++ libraries from within Python, the performance of the former and the expressiveness of the latter can coexist nicely; the expressiveness allows for much higher efficiency in the implementation and use of integration modules functionally comparable to their EPICS counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01260v2-abstract-full').style.display = 'none'; document.getElementById('2411.01260v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.01138">arXiv:2411.01138</a> <span> [<a href="https://arxiv.org/pdf/2411.01138">pdf</a>, <a href="https://arxiv.org/format/2411.01138">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> </div> <p class="title is-5 mathjax"> Addressing out-of-sample issues in multi-layer convolutional neural-network parameterization of mesoscale eddies applied near coastlines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Perezhogin%2C+P">Pavel Perezhogin</a>, <a href="/search/physics?searchtype=author&query=Adcroft%2C+A">Alistair Adcroft</a>, <a href="/search/physics?searchtype=author&query=Zanna%2C+L">Laure Zanna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.01138v1-abstract-short" style="display: inline;"> This study addresses the boundary artifacts in machine-learned (ML) parameterizations for ocean subgrid mesoscale momentum forcing, as identified in the online ML implementation from a previous study (Zhang et al., 2023). We focus on the boundary condition (BC) treatment within the existing convolutional neural network (CNN) models and aim to mitigate the "out-of-sample" errors observed near compl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01138v1-abstract-full').style.display = 'inline'; document.getElementById('2411.01138v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.01138v1-abstract-full" style="display: none;"> This study addresses the boundary artifacts in machine-learned (ML) parameterizations for ocean subgrid mesoscale momentum forcing, as identified in the online ML implementation from a previous study (Zhang et al., 2023). We focus on the boundary condition (BC) treatment within the existing convolutional neural network (CNN) models and aim to mitigate the "out-of-sample" errors observed near complex coastal regions without developing new, complex network architectures. Our approach leverages two established strategies for placing BCs in CNN models, namely zero and replicate padding. Offline evaluations revealed that these padding strategies significantly reduce root mean squared error (RMSE) in coastal regions by limiting the dependence on random initialization of weights and restricting the range of out-of-sample predictions. Further online evaluations suggest that replicate padding consistently reduces boundary artifacts across various retrained CNN models. In contrast, zero padding sometimes intensifies artifacts in certain retrained models despite both strategies performing similarly in offline evaluations. This study underscores the need for BC treatments in CNN models trained on open water data when predicting near-coastal subgrid forces in ML parameterizations. The application of replicate padding, in particular, offers a robust strategy to minimize the propagation of extreme values that can contaminate computational models or cause simulations to fail. Our findings provide insights for enhancing the accuracy and stability of ML parameterizations in the online implementation of ocean circulation models with coastlines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.01138v1-abstract-full').style.display = 'none'; document.getElementById('2411.01138v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20365">arXiv:2410.20365</a> <span> [<a href="https://arxiv.org/pdf/2410.20365">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.molliq.2024.126190">10.1016/j.molliq.2024.126190 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ionic Selectivity of Nanopores: Comparison among Cases under the Hydrostatic Pressure, Electric Field, and Concentration Gradient </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+M">Mengnan Guo</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Ren%2C+X">Xiuhua Ren</a>, <a href="/search/physics?searchtype=author&query=Gao%2C+Y">Yinghao Gao</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+Y">Yinghua Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20365v1-abstract-short" style="display: inline;"> The ionic selectivity of nanopores is crucial for the energy conversion based on nanoporous membranes. It can be significantly affected by various parameters of nanopores and the applied fields driving ions through porous membranes. Here, with finite element simulations, the selective transport of ions through nanopores is systematically investigated under three common fields, i.e. the electric fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20365v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20365v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20365v1-abstract-full" style="display: none;"> The ionic selectivity of nanopores is crucial for the energy conversion based on nanoporous membranes. It can be significantly affected by various parameters of nanopores and the applied fields driving ions through porous membranes. Here, with finite element simulations, the selective transport of ions through nanopores is systematically investigated under three common fields, i.e. the electric field (V), hydrostatic pressure (p), and concentration gradient (C). For negatively charged nanopores, through the quantitative comparison of the cation selectivity (t+) under the three fields, the cation selectivity of nanopores follows the order of t+V > t+c > t+p. This is due to the transport characteristics of cations and anions through the nanopores. Because of the strong transport of counterions in electric double layers under electric fields and concentration gradients, the nanopore exhibits a relatively higher selectivity to counterions. We also explored the modulation of t+ on the properties of nanopores and solutions. Under all three fields, t+ is directly proportional to the pore length and surface charge density, and inversely correlated to the pore diameter and salt concentration. Under both the electric field and hydrostatic pressure, t+ has almost no dependence on the applied field strength or ion species, which can affect t+ in the case of the concentration gradient. Our results provide detailed insights into the comparison and regulation of ionic selectivity of nanopores under three fields which can be useful for the design of high-performance devices for energy conversion based on nanoporous membranes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20365v1-abstract-full').style.display = 'none'; document.getElementById('2410.20365v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Molecular Liquids, 2024, 414: 126190 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20360">arXiv:2410.20360</a> <span> [<a href="https://arxiv.org/pdf/2410.20360">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.langmuir.4c03204">10.1021/acs.langmuir.4c03204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modulation of ionic current rectification in short bipolar nanopores </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+H">Hongwen Zhang</a>, <a href="/search/physics?searchtype=author&query=Ma%2C+L">Long Ma</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Qiu%2C+Y">Yinghua Qiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20360v1-abstract-short" style="display: inline;"> Bipolar nanopores, with asymmetric charge distributions, can induce significant ionic current rectification (ICR) at ultra-short lengths, finding potential applications in nanofluidic devices, energy conversion, and other related fields. Here, with simulations, we investigated the characteristics of ion transport and modulation of ICR inside bipolar nanopores. With bipolar nanopores of half-positi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20360v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20360v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20360v1-abstract-full" style="display: none;"> Bipolar nanopores, with asymmetric charge distributions, can induce significant ionic current rectification (ICR) at ultra-short lengths, finding potential applications in nanofluidic devices, energy conversion, and other related fields. Here, with simulations, we investigated the characteristics of ion transport and modulation of ICR inside bipolar nanopores. With bipolar nanopores of half-positive and half-negative surfaces, the most significant ICR phenomenon appears at various concentrations. In these cases, ICR ratios are independent of electrolyte types. In other cases where nanopores have oppositely charged surfaces in different lengths, ICR ratios are related to the mobility of anions and cations. The pore length and surface charge density can enhance ICR. As the pore length increases, ICR ratios first increase and then approach their saturation which is determined by the surface charge density. External surface charges of nanopores can promote the ICR phenomenon mainly due to the enhancement of ion enrichment inside nanopores by external surface conductance. The effective width of exterior charged surfaces under various conditions is also explored, which is inversely proportional to the pore length and salt concentration, and linearly related to the pore diameter, surface charge density, and applied voltage. Our results may provide guidance for the design of bipolar porous membranes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20360v1-abstract-full').style.display = 'none'; document.getElementById('2410.20360v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Langmuir, 2024, 40 (41): 21866-21875 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20338">arXiv:2410.20338</a> <span> [<a href="https://arxiv.org/pdf/2410.20338">pdf</a>, <a href="https://arxiv.org/format/2410.20338">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0250178">10.1063/5.0250178 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gain-Loss Coupled Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chunlei Zhang</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+M">Mun Kim</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+Y">Yi-Hui Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yi-Pu Wang</a>, <a href="/search/physics?searchtype=author&query=Trivedi%2C+D">Deepanshu Trivedi</a>, <a href="/search/physics?searchtype=author&query=Krasnok%2C+A">Alex Krasnok</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+J">Jianbo Wang</a>, <a href="/search/physics?searchtype=author&query=Isleifson%2C+D">Dustin Isleifson</a>, <a href="/search/physics?searchtype=author&query=Roshko%2C+R">Roy Roshko</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+C">Can-Ming Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20338v1-abstract-short" style="display: inline;"> Achieving oscillations with small dimensions, high power, high coherence, and low phase noise has been a long-standing goal in wave physics, driving innovations across classical electromagnetic theory and quantum physics. Key applications include electronic oscillators, lasers, and spin-torque oscillations. In recent decades, physicists have increasingly focused on harnessing passive oscillatory m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20338v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20338v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20338v1-abstract-full" style="display: none;"> Achieving oscillations with small dimensions, high power, high coherence, and low phase noise has been a long-standing goal in wave physics, driving innovations across classical electromagnetic theory and quantum physics. Key applications include electronic oscillators, lasers, and spin-torque oscillations. In recent decades, physicists have increasingly focused on harnessing passive oscillatory modes to manipulate these oscillations, leading to the development of diverse gain-loss coupled systems, including photon-photon, exciton-photon, photon-magnon, magnon-phonon, and magnon-magnon couplings. This review provides a comprehensive overview of these systems, exploring their fundamental physical structures, key experimental observations, and theoretical insights. By synthesizing insights from these studies, we propose future research directions to further advance the understanding and application of gain-loss coupled systems for quantum science and quantum technologies. (The field of gain-loss coupled systems is vast. The authors welcome suggestions and feedback from the community to continuously improve this review article until it is published). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20338v1-abstract-full').style.display = 'none'; document.getElementById('2410.20338v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13306">arXiv:2410.13306</a> <span> [<a href="https://arxiv.org/pdf/2410.13306">pdf</a>, <a href="https://arxiv.org/format/2410.13306">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> The cloud cover and meteorological parameters at the Lenghu site on the Tibetan Plateau </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+R">Ruiyue Li</a>, <a href="/search/physics?searchtype=author&query=He%2C+F">Fei He</a>, <a href="/search/physics?searchtype=author&query=Deng%2C+L">Licai Deng</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xiaodian Chen</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+F">Fan Yang</a>, <a href="/search/physics?searchtype=author&query=Zhao%2C+Y">Yong Zhao</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+B">Bo Zhang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chunguang Zhang</a>, <a href="/search/physics?searchtype=author&query=Yang%2C+C">Chen Yang</a>, <a href="/search/physics?searchtype=author&query=Lan%2C+T">Tian Lan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13306v1-abstract-short" style="display: inline;"> The cloud cover and meteorological parameters serve as fundamental criteria for the qualification of an astronomical observatory working in optical and infrared wavelengths. In this paper, we present a systematic assessment of key meteorological parameters at the Lenghu site. The datasets adopted in this study includes the meteorological parameters collected at the local weather stations at the si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13306v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13306v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13306v1-abstract-full" style="display: none;"> The cloud cover and meteorological parameters serve as fundamental criteria for the qualification of an astronomical observatory working in optical and infrared wavelengths. In this paper, we present a systematic assessment of key meteorological parameters at the Lenghu site. The datasets adopted in this study includes the meteorological parameters collected at the local weather stations at the site and in the Lenghu Town, the sky brightness at the local zenith acquired by the Sky Quality Meters and night sky all-sky images from a digital camera, the ERA5 reanalysis database and global climate monitoring data. From 2019 to 2023, the fractional observable time of photometric condition is 69.70%, 74.97%, 70.26%, 74.27% and 65.12%, respectively. The fractional observing time is inversely correlated with surface air temperature, relative humidity, precipitable water vapor, and dew temperature, demonstrating that the observing conditions are influenced by these meteorological parameters. Large-scale air-sea interactions affect the climate at Lenghu site, which in fact delivers a clue to understand the irregularity of 2023. Specifically, precipitable water vapor at Lenghu site is correlated to both the westerly wind index and the summer North Atlantic Oscillation index, the yearly average temperature of Lenghu site is observed to increase significantly during the occurrence of a strong El Ni帽o event and the relative humidity anomaly at Lenghu site is correlated to the Pacific Decadal Oscillation index. The decrease of fractional observing time in 2023 was due to the ongoing strong El Ni帽o event and relevant global climate change. We underscore the substantial role of global climate change in regulating astronomical observing conditions and the necessity for long-term continuous monitoring of the astronomical meteorological parameters at Lenghu site. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13306v1-abstract-full').style.display = 'none'; document.getElementById('2410.13306v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05956">arXiv:2410.05956</a> <span> [<a href="https://arxiv.org/pdf/2410.05956">pdf</a>, <a href="https://arxiv.org/format/2410.05956">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> </div> </div> <p class="title is-5 mathjax"> Waveguide-multiplexed photonic matrix-vector multiplication processor using multiport photodetectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Tang%2C+R">Rui Tang</a>, <a href="/search/physics?searchtype=author&query=Okano%2C+M">Makoto Okano</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Toprasertpong%2C+K">Kasidit Toprasertpong</a>, <a href="/search/physics?searchtype=author&query=Takagi%2C+S">Shinichi Takagi</a>, <a href="/search/physics?searchtype=author&query=Takenaka%2C+M">Mitsuru Takenaka</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05956v3-abstract-short" style="display: inline;"> The slowing down of Moore's law has driven the development of application-specific processors for deep learning. Analog photonic processors offer a promising solution for accelerating matrix-vector multiplications (MVMs) in deep learning by leveraging parallel computations in the optical domain. Intensity-based photonic MVM processors, which do not utilize the phase information of light, are appea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05956v3-abstract-full').style.display = 'inline'; document.getElementById('2410.05956v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05956v3-abstract-full" style="display: none;"> The slowing down of Moore's law has driven the development of application-specific processors for deep learning. Analog photonic processors offer a promising solution for accelerating matrix-vector multiplications (MVMs) in deep learning by leveraging parallel computations in the optical domain. Intensity-based photonic MVM processors, which do not utilize the phase information of light, are appealing due to their simplified operations. However, existing intensity-based schemes for such processors often employ wavelength multiplexing or mode multiplexing, both of which have limited scalability due to high insertion loss or wavelength crosstalk. In this work, we present a scalable intensity-based photonic MVM processor based on the concept of waveguide multiplexing. This scheme employs multiport photodetectors (PDs) to sum the intensities of multiple optical signals, eliminating the need for multiple wavelengths or modes. A 16-port Ge PD with a 3 dB bandwidth of 11.8 GHz at a bias voltage of -3 V is demonstrated, and it can be further scaled up to handle 250 ports while maintaining a 6.1 GHz operation bandwidth. A 4 $\times$ 4 circuit fabricated on a Si-on-insulator (SOI) platform is used to perform MVMs in a 3-layer neural network designed for classifying Iris flowers, achieving a classification accuracy of 93.3%. Furthermore, the performance of large-scale circuits in a convolutional neural network (CNN) for Fashion-MNIST is simulated, resulting in a classification accuracy of 90.53%. This work provides a simplified and scalable approach to photonic MVM, laying a foundation for large-scale and multi-dimensional photonic matrix-matrix multiplication in optical neural networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05956v3-abstract-full').style.display = 'none'; document.getElementById('2410.05956v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04603">arXiv:2410.04603</a> <span> [<a href="https://arxiv.org/pdf/2410.04603">pdf</a>, <a href="https://arxiv.org/format/2410.04603">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.111.032007">10.1103/PhysRevD.111.032007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Self-compensating Light Calorimetry with Liquid Argon Time Projection Chamber for GeV Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ning%2C+X">Xuyang Ning</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+W">Wei Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Riccio%2C+C">Ciro Riccio</a>, <a href="/search/physics?searchtype=author&query=Jo%2C+J+H">Jay Hyun Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04603v2-abstract-short" style="display: inline;"> The Liquid Argon Time Projection Chamber (LArTPC) is a powerful dual calorimeter capable of estimating particle energy from both ionization charge and scintillation light. Our study shows that, due to the recombination luminescence, the LArTPC functions as a self-compensating light calorimeter: the missing energy in the hadronic component is compensated for by the increased luminescence relative t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04603v2-abstract-full').style.display = 'inline'; document.getElementById('2410.04603v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04603v2-abstract-full" style="display: none;"> The Liquid Argon Time Projection Chamber (LArTPC) is a powerful dual calorimeter capable of estimating particle energy from both ionization charge and scintillation light. Our study shows that, due to the recombination luminescence, the LArTPC functions as a self-compensating light calorimeter: the missing energy in the hadronic component is compensated for by the increased luminescence relative to the electromagnetic component. Using 0.5--5 GeV electron neutrino charged current interactions as a case study, we show that good compensation of the electron-to-hadron response ratio (e/h) from 1--1.05 can be achieved across a broad range of drift electric fields (0.2--1.8 kV/cm), with better performance for neutrino energies above 2 GeV. This study highlights the potential of light calorimetry in LArTPCs for GeV neutrino energy reconstruction, complementing traditional charge calorimetry. Under ideal conditions of uniform light collection, we show that LArTPC light calorimetry can achieve an energy resolution comparable to the charge imaging calorimetry. Challenges arising from nonuniform light collection in large LArTPCs can be mitigated with a position-dependent light yield correction derived from 3D charge signal imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04603v2-abstract-full').style.display = 'none'; document.getElementById('2410.04603v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 111, 032007 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02153">arXiv:2410.02153</a> <span> [<a href="https://arxiv.org/pdf/2410.02153">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhancing heat transfer in X-ray tube by van der heterostructures-based thermionic emission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+S">Sunchao Huang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Suguo Chen</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Y">Yue Wang</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+X">Xihang Shi</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xiaoqiuyan Zhang</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+M">Min Hu</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+S">Shaomeng Wang</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chao Zhang</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+Y">Yubin Gong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02153v1-abstract-short" style="display: inline;"> Van der Waals (vdW) heterostructures have attracted much attention due to their distinctive optical, electrical, and thermal properties, demonstrating promising potential in areas such as photocatalysis, ultrafast photonics, and free electron radiation devices. Particularly, they are promising platforms for studying thermionic emission. Here, we illustrate that using vdW heterostructure-based ther… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02153v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02153v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02153v1-abstract-full" style="display: none;"> Van der Waals (vdW) heterostructures have attracted much attention due to their distinctive optical, electrical, and thermal properties, demonstrating promising potential in areas such as photocatalysis, ultrafast photonics, and free electron radiation devices. Particularly, they are promising platforms for studying thermionic emission. Here, we illustrate that using vdW heterostructure-based thermionic emission can enhance heat transfer in vacuum devices. As a proof of concept, we demonstrate that this approach offers a promising solution to the long-standing overheating issue in X-ray tubes. Specifically, we show that the saturated target temperature of a 2000 W X-ray tube can be reduced from around 1200 celsius to 490 celsius. Additionally, our study demonstrates that by reducing the height of the Schottky barrier formed in the vdW heterostructures, the thermionic cooling performance can be enhanced. Our findings pave the way for the development of high-power X-ray tubes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02153v1-abstract-full').style.display = 'none'; document.getElementById('2410.02153v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures, 11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01753">arXiv:2410.01753</a> <span> [<a href="https://arxiv.org/pdf/2410.01753">pdf</a>, <a href="https://arxiv.org/format/2410.01753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-08256-5">10.1038/s41586-024-08256-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $^{229}\mathrm{ThF}_4$ thin films for solid-state nuclear clocks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Chuankun Zhang</a>, <a href="/search/physics?searchtype=author&query=von+der+Wense%2C+L">Lars von der Wense</a>, <a href="/search/physics?searchtype=author&query=Doyle%2C+J+F">Jack F. Doyle</a>, <a href="/search/physics?searchtype=author&query=Higgins%2C+J+S">Jacob S. Higgins</a>, <a href="/search/physics?searchtype=author&query=Ooi%2C+T">Tian Ooi</a>, <a href="/search/physics?searchtype=author&query=Friebel%2C+H+U">Hans U. Friebel</a>, <a href="/search/physics?searchtype=author&query=Ye%2C+J">Jun Ye</a>, <a href="/search/physics?searchtype=author&query=Elwell%2C+R">R. Elwell</a>, <a href="/search/physics?searchtype=author&query=Terhune%2C+J+E+S">J. E. S. Terhune</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+H+W+T">H. W. T. Morgan</a>, <a href="/search/physics?searchtype=author&query=Alexandrova%2C+A+N">A. N. Alexandrova</a>, <a href="/search/physics?searchtype=author&query=Tan%2C+H+B+T">H. B. Tran Tan</a>, <a href="/search/physics?searchtype=author&query=Derevianko%2C+A">Andrei Derevianko</a>, <a href="/search/physics?searchtype=author&query=Hudson%2C+E+R">Eric R. Hudson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01753v1-abstract-short" style="display: inline;"> After nearly fifty years of searching, the vacuum ultraviolet $^{229}$Th nuclear isomeric transition has recently been directly laser excited [1,2] and measured with high spectroscopic precision [3]. Nuclear clocks based on this transition are expected to be more robust [4,5] than and may outperform [6,7] current optical atomic clocks. They also promise sensitive tests for new physics beyond the s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01753v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01753v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01753v1-abstract-full" style="display: none;"> After nearly fifty years of searching, the vacuum ultraviolet $^{229}$Th nuclear isomeric transition has recently been directly laser excited [1,2] and measured with high spectroscopic precision [3]. Nuclear clocks based on this transition are expected to be more robust [4,5] than and may outperform [6,7] current optical atomic clocks. They also promise sensitive tests for new physics beyond the standard model [5,8,9]. In light of these important advances and applications, a dramatic increase in the need for $^{229}$Th spectroscopy targets in a variety of platforms is anticipated. However, the growth and handling of high-concentration $^{229}$Th-doped crystals [5] used in previous measurements [1-3,10] are challenging due to the scarcity and radioactivity of the $^{229}$Th material. Here, we demonstrate a potentially scalable solution to these problems by demonstrating laser excitation of the nuclear transition in $^{229}$ThF$_4$ thin films grown with a physical vapor deposition process, consuming only micrograms of $^{229}$Th material. The $^{229}$ThF$_4$ thin films are intrinsically compatible with photonics platforms and nanofabrication tools for integration with laser sources and detectors, paving the way for an integrated and field-deployable solid-state nuclear clock with radioactivity up to three orders of magnitude smaller than typical \thor-doped crystals [1-3,10]. The high nuclear emitter density in $^{229}$ThF$_4$ also potentially enables quantum optics studies in a new regime. Finally, we describe the operation and present the estimation of the performance of a nuclear clock based on a defect-free ThF$_4$ crystal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01753v1-abstract-full').style.display = 'none'; document.getElementById('2410.01753v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 636, 603-608 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.20080">arXiv:2409.20080</a> <span> [<a href="https://arxiv.org/pdf/2409.20080">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Individually Addressable Nanoscale OLEDs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zhang%2C+C">Cheng Zhang</a>, <a href="/search/physics?searchtype=author&query=Ewald%2C+B">Bj枚rn Ewald</a>, <a href="/search/physics?searchtype=author&query=Siebigs%2C+L">Leo Siebigs</a>, <a href="/search/physics?searchtype=author&query=Steinbrecher%2C+L">Luca Steinbrecher</a>, <a href="/search/physics?searchtype=author&query=R%C3%B6del%2C+M">Maximilian R枚del</a>, <a href="/search/physics?searchtype=author&query=Emmerling%2C+M">Monika Emmerling</a>, <a href="/search/physics?searchtype=author&query=Pflaum%2C+J">Jens Pflaum</a>, <a href="/search/physics?searchtype=author&query=Hecht%2C+B">Bert Hecht</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.20080v1-abstract-short" style="display: inline;"> Augmented Reality (AR) and Virtual Reality (VR), require miniaturized displays with ultrahigh pixel densities. Here, we demonstrate an individually addressable subwavelength OLED pixel based on a nanoscale electrode capable of supporting plasmonic modes. Our approach is based on the notion that when scaling down pixel size, the 2D planar geometry of conventional organic light-emitting diodes (OLED… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20080v1-abstract-full').style.display = 'inline'; document.getElementById('2409.20080v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.20080v1-abstract-full" style="display: none;"> Augmented Reality (AR) and Virtual Reality (VR), require miniaturized displays with ultrahigh pixel densities. Here, we demonstrate an individually addressable subwavelength OLED pixel based on a nanoscale electrode capable of supporting plasmonic modes. Our approach is based on the notion that when scaling down pixel size, the 2D planar geometry of conventional organic light-emitting diodes (OLEDs) evolves into a significantly more complex 3D geometry governed by sharp nanoelectrode contours. These cause (i) spatially imbalanced charge carrier transport and recombination, resulting in a low quantum efficiency, and (ii) filament growth, leading to rapid device failure. Here, we circumvent such effects by selectively covering sharp electrode contours with an insulating layer, while utilizing a nano-aperture in flat areas of the electrode. We thereby ensure controlled charge carrier injection and recombination at the nanoscale and suppress filament growth. As a proof of principle, we first demonstrate stable and efficient hole injection from Au nanoelectrodes in hole-only devices with above 90 % pixel yield and longtime operation stability and then a complete vertical OLED pixel with an individually addressable nanoelectrode (300 x 300 nm$^{2}$), highlighting the potential to further leverage plasmonic nanoantenna effects to enhance the performance and functionality of nano-OLEDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.20080v1-abstract-full').style.display = 'none'; document.getElementById('2409.20080v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18288">arXiv:2409.18288</a> <span> [<a href="https://arxiv.org/pdf/2409.18288">pdf</a>, <a href="https://arxiv.org/format/2409.18288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The track-length extension fitting algorithm for energy measurement of interacting particles in liquid argon TPCs and its performance with ProtoDUNE-SP data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=DUNE+Collaboration"> DUNE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abud%2C+A+A">A. Abed Abud</a>, <a href="/search/physics?searchtype=author&query=Abi%2C+B">B. Abi</a>, <a href="/search/physics?searchtype=author&query=Acciarri%2C+R">R. Acciarri</a>, <a href="/search/physics?searchtype=author&query=Acero%2C+M+A">M. A. Acero</a>, <a href="/search/physics?searchtype=author&query=Adames%2C+M+R">M. R. Adames</a>, <a href="/search/physics?searchtype=author&query=Adamov%2C+G">G. Adamov</a>, <a href="/search/physics?searchtype=author&query=Adamowski%2C+M">M. Adamowski</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D">D. Adams</a>, <a href="/search/physics?searchtype=author&query=Adinolfi%2C+M">M. Adinolfi</a>, <a href="/search/physics?searchtype=author&query=Adriano%2C+C">C. Adriano</a>, <a href="/search/physics?searchtype=author&query=Aduszkiewicz%2C+A">A. Aduszkiewicz</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J">J. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Akbar%2C+F">F. Akbar</a>, <a href="/search/physics?searchtype=author&query=Alex%2C+N+S">N. S. Alex</a>, <a href="/search/physics?searchtype=author&query=Allison%2C+K">K. Allison</a>, <a href="/search/physics?searchtype=author&query=Monsalve%2C+S+A">S. Alonso Monsalve</a>, <a href="/search/physics?searchtype=author&query=Alrashed%2C+M">M. Alrashed</a>, <a href="/search/physics?searchtype=author&query=Alton%2C+A">A. Alton</a>, <a href="/search/physics?searchtype=author&query=Alvarez%2C+R">R. Alvarez</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+T">T. Alves</a>, <a href="/search/physics?searchtype=author&query=Amar%2C+H">H. Amar</a>, <a href="/search/physics?searchtype=author&query=Amedo%2C+P">P. Amedo</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">J. Anderson</a>, <a href="/search/physics?searchtype=author&query=Andreopoulos%2C+C">C. Andreopoulos</a> , et al. (1348 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18288v3-abstract-short" style="display: inline;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy los… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'inline'; document.getElementById('2409.18288v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18288v3-abstract-full" style="display: none;"> This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of the dE/dx model on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18288v3-abstract-full').style.display = 'none'; document.getElementById('2409.18288v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-24-0561-LBNF-PPD, CERN-EP-2024-256 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhang%2C+C&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>