CINXE.COM

Search results for: fuel upgrade

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fuel upgrade</title> <meta name="description" content="Search results for: fuel upgrade"> <meta name="keywords" content="fuel upgrade"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fuel upgrade" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fuel upgrade"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1749</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fuel upgrade</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1749</span> Cryogenic Separation of CO2 from Molten Carbonate Fuel Cell Anode Outlet—Experimental Guidelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaros%C5%82aw%C2%A0Milewski">Jarosław Milewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafa%C5%82%C2%A0Bernat"> Rafał Bernat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of using cryogenic separation unit for recovering fuel from anode off gas of molten carbonate fuel cells (MCFCs) in order to upgrade the efficiently of the unit. In the proposed solution, the CSU is used for condensing water and carbon dioxide from anode off gas, and re-cycling the rest of the stream to the anode, saving certain amount of fuel (at least 30%). The resulting system efficiency is increased considerably. CSU, virtually consumes power, thus this solution has energy penalty as well, on the other hand, MCFC generates large amount of heat at elevated temperature, thus part of the CSU can be based on absorption chiller. In all cases, a high amount of fuel is obtained after condensation of water and carbon dioxide and re-cycled to the anode inlet. Based on mathematical modeling done previously, the concept and guidelines for forthcoming experimental investigations are presented in this paper. During planned experiments, an existing single cell laboratory stand will be equipped with re-cycle device (a fan, a peristaltic pump, etc.). Parallel, a mixture of anode off gas will be cooled down for determining the proper temperature for the separation of water and carbon dioxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20separation" title="cryogenic separation">cryogenic separation</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cells" title=" fuel cells"> fuel cells</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20carbonate%20fuel%20cells" title=" molten carbonate fuel cells"> molten carbonate fuel cells</a> </p> <a href="https://publications.waset.org/abstracts/41874/cryogenic-separation-of-co2-from-molten-carbonate-fuel-cell-anode-outlet-experimental-guidelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1748</span> Production and Characterization of Biochars from Torrefaction of Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Yaman">Serdar Yaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanzade%20Haykiri-Acma"> Hanzade Haykiri-Acma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade" title=" fuel upgrade"> fuel upgrade</a>, <a href="https://publications.waset.org/abstracts/search?q=torrefaction" title=" torrefaction "> torrefaction </a> </p> <a href="https://publications.waset.org/abstracts/65133/production-and-characterization-of-biochars-from-torrefaction-of-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1747</span> Motorist Driving Strategy-Related Factors Affecting Vehicle Fuel Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Azizi">Aydin Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20Tanira"> Abdurrahman Tanira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the onset of climate change and limited fuel resources, improving fuel efficiency has become an important part of the motor industry. To maximize fuel efficiency, development of technologies must come hand-in-hand with awareness of efficient driving strategies. This study aims to explore the various driving habits that can impact fuel efficiency by reviewing available literature. Such habits include sudden and unnecessary acceleration or deceleration, improper hardware maintenance, driving above or below optimum speed and idling. By studying such habits and ultimately applying it to driving techniques, in combination with improved mechanics of the car, will optimize the use of fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20efficiency" title="fuel efficiency">fuel efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20techniques" title=" driving techniques"> driving techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20speed" title=" optimum speed"> optimum speed</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing%20fuel%20consumption" title=" optimizing fuel consumption"> optimizing fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/44070/motorist-driving-strategy-related-factors-affecting-vehicle-fuel-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1746</span> Ultra-Low NOx Combustion Technology of Liquid Fuel Burner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee"> Changyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burner" title="burner">burner</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20NOx" title=" low NOx"> low NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20fuel" title=" liquid fuel"> liquid fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20oxidation" title=" partial oxidation"> partial oxidation</a> </p> <a href="https://publications.waset.org/abstracts/2603/ultra-low-nox-combustion-technology-of-liquid-fuel-burner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1745</span> Implications of Fuel Reloading in Heterogeneous Thorium-Based Fuel Designs for Improved Fuel Cycle Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hendrik%20Bernard%20Van%20Der%20Walt">Hendrik Bernard Van Der Walt</a>, <a href="https://publications.waset.org/abstracts/search?q=Frik%20Van%20Niekerk"> Frik Van Niekerk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel models render a reduction in BOL when thorium is added to a reactor core. Thorium emulates the role of a fertile poison, and is beneficial for reducing beginning of cycle (BOC) excess reactivity. In spite of the build-up of 233U over the duration of a fuel cycle, the effects of fuel reloading have a significant impact on fuel viability, especially in the case of heterogeneous thorium-based fuels. The most common practice of compensating for the reduction of BOC reactivity is the addition of fissile isotopes (uranium fuel with increased enrichment or plutonium). This study introduces a heterogeneous thorium-based fuel with minimal fissile isotope additions. A pseudo reloading scheme was developed for numerical simulations of an infinite reactor based on the North-Anna 1 reactor operating in Virginia, USA. Use of this reloading pattern allows new thorium-based fuel to be loaded into the reactor model as part of a phasing in strategy at the end of any conventional reactor cycle. Results demonstrate the effects of thorium-based fuel on fuel cycle characteristics such as fuel cycle length, neutron economy and material matrix. Application of the above mentioned approach delivered promising results and presents a heterogeneous thorium-based fuel which could replace conventional fuel of typical, currently operating (or future) reactors without the need for expensive reactor redesign or fuel recycling strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel" title="nuclear fuel">nuclear fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20characteristics" title=" nuclear characteristics"> nuclear characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20cycle" title=" nuclear fuel cycle"> nuclear fuel cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=thorium-based%20fuel" title=" thorium-based fuel"> thorium-based fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20design" title=" heterogeneous design"> heterogeneous design</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20reloading" title=" fuel reloading"> fuel reloading</a> </p> <a href="https://publications.waset.org/abstracts/122557/implications-of-fuel-reloading-in-heterogeneous-thorium-based-fuel-designs-for-improved-fuel-cycle-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1744</span> Online Measurement of Fuel Stack Elongation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Ahn">Sung Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintae%20Hong"> Jintae Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Young%20Joung"> Chang Young Joung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Ho%20Yang"> Tae Ho Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Heo"> Sung Ho Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seo%20Yun%20Jang"> Seo Yun Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20deformation" title="axial deformation">axial deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20measurement" title=" elongation measurement"> elongation measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=in-pile%20instrumentation" title=" in-pile instrumentation"> in-pile instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=LVDT" title=" LVDT"> LVDT</a> </p> <a href="https://publications.waset.org/abstracts/46795/online-measurement-of-fuel-stack-elongation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1743</span> Investigating of the Fuel Consumption in Construction Machinery and Ways to Reduce Fuel Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Bahboodian">Reza Bahboodian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors in the use of construction machinery is the fuel consumption cost of this equipment. The use of diesel engines in off-road vehicles is an important source of nitrogen oxides and particulate matter. Emissions of nitrogen oxides and particulate matter 10 in off-road vehicles (construction and mining) may be high. Due to the high cost of fuel, it is necessary to minimize fuel consumption. Factors affecting the fuel consumption of these cars are very diverse. Climate changes such as changes in pressure, temperature, humidity, fuel type selection, type of gearbox used in the car are effective in fuel consumption and pollution, and engine efficiency. In this paper, methods for reducing fuel consumption and pollutants by considering valid European and European standards are examined based on new methods such as hybridization, optimal gear change, adding hydrogen to diesel fuel, determining optimal working fluids, and using oxidation catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=improve%20fuel%20consumption" title="improve fuel consumption">improve fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20machinery" title=" construction machinery"> construction machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20reduction" title=" pollutant reduction"> pollutant reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=determining%20the%20optimal%20working%20cycle" title=" determining the optimal working cycle"> determining the optimal working cycle</a> </p> <a href="https://publications.waset.org/abstracts/136399/investigating-of-the-fuel-consumption-in-construction-machinery-and-ways-to-reduce-fuel-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1742</span> Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee">Changyeop Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim"> Sewon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20lean%20reburn" title="fuel lean reburn">fuel lean reburn</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=LNG%20flame" title=" LNG flame"> LNG flame</a> </p> <a href="https://publications.waset.org/abstracts/17315/effect-of-fuel-lean-reburning-process-on-nox-reduction-and-co-emission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1741</span> Probabilistic Safety Assessment of Koeberg Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibongiseni%20Thabethe">Sibongiseni Thabethe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Korir"> Ian Korir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective management of spent fuel pool (SFP) safety has been raised as one of the emerging issues to further enhance nuclear installation safety after the Fukushima accident on March 11, 2011. Before then, SFP safety-related issues have been mainly focused on (a) controlling the configuration of the fuel assemblies in the pool with no loss of pool coolants and (b) ensuring adequate pool storage space to prevent fuel criticality owing to chain reactions of the fission products and the ability for neutron absorption to keep the fuel cool. A probabilistic safety (PSA) assessment was performed using the systems analysis program for hands-on integrated reliability evaluations (SAPHIRE) computer code. Event and fault tree analysis was done to develop a PSA model for the Koeberg SFP. We present preliminary PSA results of events that lead to boiling and cause fuel uncovering, resulting in possible fuel damage in the Koeberg SFP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20code" title="computer code">computer code</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20assemblies" title=" fuel assemblies"> fuel assemblies</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/131191/probabilistic-safety-assessment-of-koeberg-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1740</span> A Comparative Study of Afghan Traditional and Contemporary Courtyard Housing Regarding Affordable Planning and Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saraj%20Sharifzai">Mohammad Saraj Sharifzai</a>, <a href="https://publications.waset.org/abstracts/search?q=Keisuke%20Kitagawa"> Keisuke Kitagawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Kamil%20Halimee"> Mohammad Kamil Halimee</a>, <a href="https://publications.waset.org/abstracts/search?q=Javid%20Habib"> Javid Habib</a>, <a href="https://publications.waset.org/abstracts/search?q=Daishi%20Sakaguchi"> Daishi Sakaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to upgrade a pleasing, sustainable and safe shelter in the Afghan urban community. It also aims to maintain traditional housing, which is fitted to its environment, while attempting to upgrade it with new, traditional standards. The three main objectives of this study are to upgrade the traditional courtyard house to become safe and sustainable today and tomorrow; to fit the contemporary house environmentally and culturally, and to suppress or reduce the broad gap between traditional and contemporary housing. The paper tries to exhibit and analyze the sustainably best practices available in both traditional and contemporary courtyard housing in Afghanistan. For instance, the use of thick walls and Tawa-Khana (floor heating system) shows the best sustainable practice in that context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afghan%20Traditional%20Courtyard%20Housing%20%28ATCH%29" title="Afghan Traditional Courtyard Housing (ATCH)">Afghan Traditional Courtyard Housing (ATCH)</a>, <a href="https://publications.waset.org/abstracts/search?q=Afghan%20Contemporary%20Courtyard%20Housing%20%28ACCH%29" title=" Afghan Contemporary Courtyard Housing (ACCH)"> Afghan Contemporary Courtyard Housing (ACCH)</a>, <a href="https://publications.waset.org/abstracts/search?q=suitability%20planning" title=" suitability planning"> suitability planning</a>, <a href="https://publications.waset.org/abstracts/search?q=affordable%20and%20%20thermal%20comfort" title=" affordable and thermal comfort"> affordable and thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/44928/a-comparative-study-of-afghan-traditional-and-contemporary-courtyard-housing-regarding-affordable-planning-and-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1739</span> Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Syahirin%20Aisha">Mohammad Syahirin Aisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Imran%20Sainan"> Khairul Imran Sainan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-breathing%20PEM%20fuel%20cell" title="air-breathing PEM fuel cell">air-breathing PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode%20side" title=" cathode side"> cathode side</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20in%20air%20condition" title=" variation in air condition"> variation in air condition</a> </p> <a href="https://publications.waset.org/abstracts/24926/air-conditioning-variation-of-1kw-open-cathode-proton-exchange-membrane-pem-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1738</span> Impacts on Regional Economy by the Upgrade of Railway Infrastructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20J.%20Dimitriou">Dimitrios J. Dimitriou</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20F.%20Sartzetaki"> Maria F. Sartzetaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transport is often the key driver for growth, especially for regions providing key opportunities for connectivity between busy areas and mature markets. Even though the benefits of transports are essential, limited research is published regarding the linkage of inland transport systems and other business sectors, the spillover effects on regional economy and the overall contribution to regional development. This paper deals with the determination of the key socioeconomic benefits on regions caused by the upgrade and the modernization of a railway corridor. The analysis framework is following a four-step analysis, providing key messages to planners, managers and decision makers. The provided case study is the upgrade of the railway corridor in North Greece, which is a very sensitive region suffering long time from economic stress. The application results are essential for comparisons with other destinations and provide key messages regarding the relationship of railway and economic development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regional%20development" title="regional development">regional development</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20impact%20assessment%20variables" title=" economic impact assessment variables"> economic impact assessment variables</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20infrastructure" title=" railway infrastructure"> railway infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20planning" title=" strategic planning"> strategic planning</a> </p> <a href="https://publications.waset.org/abstracts/57171/impacts-on-regional-economy-by-the-upgrade-of-railway-infrastructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1737</span> The Study of Tire Pyrolysis Fuel in CI Diesel Engine for Spray Combustion Character and Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun%20Pao%20Kuo">Chun Pao Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Tong%20Lin"> Chi Tong Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explored atomization characteristics of tire pyrolysis fuel and its impacts on using three types of fuel: diesel oil mixed with 10% of tire pyrolysis fuel (called T10), diesel oil mixed with 20% tire pyrolysis (called T20), and consumer-grade diesel oil (D100). The investigators used the fuel for simulation and tests at various fuel injection timing, engine speed, and fuel injection speed to inspect impacts from fuel type on oil droplet atomization speed and output power. Actual vehicle tests were conducted using a 5-ton sedan (Hino) with 3660 cc displacement and a front-end inline four-cylinder diesel engine, and this type of vehicle is easily available from the market. A dynamometer was used to set up three engine speeds for the dynamometer testing at different injection timing and pressure. Next, an exhaust analyzer was used to measure exhaust pollution at different conditions to explore the effect of fuel types and injection speeds on output power in order to establish the best operation conditions for tire pyrolysis fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20pollution" title=" exhaust pollution"> exhaust pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20injection%20timing" title=" fuel injection timing"> fuel injection timing</a>, <a href="https://publications.waset.org/abstracts/search?q=tire%20pyrolysis%20oil" title=" tire pyrolysis oil"> tire pyrolysis oil</a> </p> <a href="https://publications.waset.org/abstracts/31810/the-study-of-tire-pyrolysis-fuel-in-ci-diesel-engine-for-spray-combustion-character-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1736</span> Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrie%20Marinceu">Dimitrie Marinceu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20packing%20plant" title="used fuel packing plant">used fuel packing plant</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20assembly%20cell" title=" robotic assembly cell"> robotic assembly cell</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20container" title=" used fuel container"> used fuel container</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20geological%20repository" title=" deep geological repository"> deep geological repository</a> </p> <a href="https://publications.waset.org/abstracts/56119/application-of-robotics-to-assemble-a-used-fuel-container-in-the-canadian-used-fuel-packing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1735</span> Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Zamiri">Elham Zamiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 <sup>◦</sup>C to 70 <sup>◦</sup>C. This investigation is developable for any geometry and material used in the nuclear reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20fission" title="nuclear fuel fission">nuclear fuel fission</a>, <a href="https://publications.waset.org/abstracts/search?q=numberal%20simulation" title=" numberal simulation"> numberal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rod" title=" fuel rod"> fuel rod</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=Fluent%20software" title=" Fluent software"> Fluent software</a> </p> <a href="https://publications.waset.org/abstracts/108202/study-of-temperature-distribution-in-coolant-channel-of-nuclear-power-with-fuel-cylinder-element-using-fluent-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1734</span> Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Aydogan">Hasan Aydogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a> </p> <a href="https://publications.waset.org/abstracts/6129/combustion-characteristics-of-bioethanol-biodiesel-diesel-fuel-blends-used-in-a-common-rail-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1733</span> Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrol%20%C3%96nal">Gürol Önal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Din%C3%A7er"> Kevser Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Yayla"> Salih Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Polymer%20Electrolyte%20Membrane%20%28PEM%29" title=" Polymer Electrolyte Membrane (PEM)"> Polymer Electrolyte Membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/8063/experimental-investigation-of-performance-anode-side-of-pem-fuel-cell-with-spin-method-coated-with-yszsdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1732</span> Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayudhia%20P.%20Gusti">Ayudhia P. Gusti</a>, <a href="https://publications.waset.org/abstracts/search?q=Semin"> Semin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maritime%20transportation" title="maritime transportation">maritime transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20fuel" title=" reducing fuel"> reducing fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping%20log%20data" title=" shipping log data"> shipping log data</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20optimization" title=" speed optimization"> speed optimization</a> </p> <a href="https://publications.waset.org/abstracts/61808/speed-optimization-model-for-reducing-fuel-consumption-based-on-shipping-log-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1731</span> A Global Fuel Combustion Data Product and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu%20Tao">Shu Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Wang"> Rong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huizhong%20Shen"> Huizhong Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Huang"> Ye Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-resolution mapping of fuel combustion is essential for reducing uncertainties in assessments of greenhouse gases and air pollutant emissions. Such inventories provide valuable information for inferring carbon sinks, modeling pollutant transport, and developing control strategies. Previous inventories included only a few fuel types and were derived using national population proxies which may distort the geographical variation within countries. In this study, a global 0.1 degree by 0.1 degree geo-referenced inventory of fuel combustion (PKU-FUEL-2007) was developed for 64 fuel sub-types along with uncertainty analysis for the year 2007. Sub-national fuel consumption of large countries and major power-station locations were used. The disaggregation error can be reduced significantly by using the sub-nationally energy data, because the uneven distribution of per-capita fuel consumption within countries is taken into consideration. The PKU-FUEL was used to generate global emission inventories of CO2 (PKU-CO2-2007), polycyclic aromatic hydrocarbons (PKU-PAHs-2007), and black carbons (PKU-BC-2007). Atmospheric transport modeling and expsoure assessment were conducted for BC and PAHs based on the inventory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel" title="fuel">fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=BC" title=" BC"> BC</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20transport" title=" atmospheric transport"> atmospheric transport</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a> </p> <a href="https://publications.waset.org/abstracts/5743/a-global-fuel-combustion-data-product-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1730</span> Low NOx Combustion Technology for Minimizing NOx </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee"> Changyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A noble low NOx combustion technology, based on partial oxidation combustion concept in a fuel rich combustion zone, is successfully applied in this research. The burner is designed such that a portion of fuel is heated and pre-vaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, and fuel distribution ratio on the emissions of NOx and CO are experimentally investigated. This newly developed combustion technology is successfully applied to industrial furnace, and showed extremely low NOx emission levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20NOx" title="low NOx">low NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=burner" title=" burner"> burner</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rich" title=" fuel rich"> fuel rich</a> </p> <a href="https://publications.waset.org/abstracts/17272/low-nox-combustion-technology-for-minimizing-nox" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1729</span> Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghoon%20Bae">Sanghoon Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanju%20Cha"> Hanju Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20flow%20dynamics%20%28CFD%29" title="computational flow dynamics (CFD)">computational flow dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=failed%20fuel%20detector%20%28FFD%29" title=" failed fuel detector (FFD)"> failed fuel detector (FFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20fuel%20assembly%20%28FFA%29" title=" fresh fuel assembly (FFA)"> fresh fuel assembly (FFA)</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20assembly%20%28SFA%29" title=" spent fuel assembly (SFA)"> spent fuel assembly (SFA)</a> </p> <a href="https://publications.waset.org/abstracts/73722/consideration-of-failed-fuel-detector-location-through-computational-flow-dynamics-analysis-on-primary-cooling-system-flow-with-two-outlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1728</span> An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giuliano%20Raimondo">Giuliano Raimondo</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Wangemann"> Jörg Wangemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Peer%20Drechsel"> Peer Drechsel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20emulation" title=" real time emulation"> real time emulation</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a> </p> <a href="https://publications.waset.org/abstracts/57838/an-empirical-dynamic-fuel-cell-model-used-for-power-system-verification-in-aerospace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1727</span> Upgrade of Value Chains and the Effect on Resilience of Russia’s Coal Industry and Receiving Regions on the Path of Energy Transition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Nikitenko">Sergey Nikitenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Klishin"> Vladimir Klishin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yury%20Malakhov"> Yury Malakhov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Goosen"> Elena Goosen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transition to renewable energy sources (solar, wind, bioenergy, etc.) and launching of alternative energy generation has weakened the role of coal as a source of energy. The Paris Agreement and assumption of obligations by many nations to orderly reduce CO₂ emissions by means of technological modernization and climate change adaptation has abridged coal demand yet more. This paper aims to assess current resilience of the coal industry to stress and to define prospects for coal production optimization using high technologies pursuant to global challenges and requirements of energy transition. Our research is based on the resilience concept adapted to the coal industry. It is proposed to divide the coal sector into segments depending on the prevailing value chains (VC). Four representative models of VC are identified in the coal sector. The most promising lines of upgrading VC in the coal industry include: •Elongation of VC owing to introduction of clean technologies of coal conversion and utilization; •Creation of parallel VC by means of waste management; •Branching of VC (conversion of a company’s VC into a production network). The upgrade effectiveness is governed in many ways by applicability of advanced coal processing technologies, usability of waste, expandability of production, entrance to non-rival markets and localization of new segments of VC in receiving regions. It is also important that upgrade of VC by means of formation of agile high-tech inter-industry production networks within the framework of operating surface and underground mines can reduce social, economic and ecological risks associated with closure of coal mines. Such promising route of VC upgrade is application of methanotrophic bacteria to produce protein to be used as feed-stuff in fish, poultry and cattle breeding, or in production of ferments, lipoids, sterols, antioxidants, pigments and polysaccharides. Closed mines can use recovered methane as a clean energy source. There exist methods of methane utilization from uncontrollable sources, including preliminary treatment and recovery of methane from air-and-methane mixture, or decomposition of methane to hydrogen and acetylene. Separated hydrogen is used in hydrogen fuel cells to generate power to feed the process of methane utilization and to supply external consumers. Despite the recent paradigm of carbon-free energy generation, it is possible to preserve the coal mining industry using the differentiated approach to upgrade of value chains based on flexible technologies with regard to specificity of mining companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resilience" title="resilience">resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20concept" title=" resilience concept"> resilience concept</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20indicator" title=" resilience indicator"> resilience indicator</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience%20in%20the%20Russian%20coal%20industry" title=" resilience in the Russian coal industry"> resilience in the Russian coal industry</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20chains" title=" value chains"> value chains</a> </p> <a href="https://publications.waset.org/abstracts/159366/upgrade-of-value-chains-and-the-effect-on-resilience-of-russias-coal-industry-and-receiving-regions-on-the-path-of-energy-transition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1726</span> Analysis of Fuel Efficiency in Heavy Construction Compaction Machine and Factors Affecting Fuel Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amey%20Kulkarni">Amey Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Paavan%20Shetty"> Paavan Shetty</a>, <a href="https://publications.waset.org/abstracts/search?q=Amol%20Patil"> Amol Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rajiv"> B. Rajiv</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel Efficiency plays a very important role in overall performance of an automobile. In this paper study of fuel efficiency of heavy construction, compaction machine is done. The fuel Consumption trials are performed in order to obtain the consumption of fuel in performing certain set of actions by the compactor. Usually, Heavy Construction machines are put to work in locations where refilling the fuel tank is not an easy task and also the fuel is consumed at a greater rate than a passenger automobile. So it becomes important to have a fuel efficient machine for long working hours. The fuel efficiency is the most important point in determining the future scope of the product. A heavy construction compaction machine operates in five major roles. These five roles are traveling, Static working, High-frequency Low amplitude compaction, Low-frequency High amplitude compaction, low idle. Fuel consumption readings for 1950 rpm, 2000 rpm & 2350 rpm of the engine are taken by using differential fuel flow meter and are analyzed. And the optimum RPM setting which fulfills the fuel efficiency, as well as engine performance criteria, is considered. Also, other factors such as rear end gears, Intake and exhaust restriction for an engine, vehicle operating techniques, air drag, Tribological aspects, Tires are considered for increasing the fuel efficiency of the compactor. The fuel efficiency of compactor can be precisely calculated by using Differential Fuel Flow Meter. By testing the compactor at different combinations of Engine RPM and also considering other factors such as rear end gears, Intake and exhaust restriction of an engine, vehicle operating techniques, air drag, Tribological aspects, The optimum solution was obtained which lead to significant improvement in fuel efficiency of the compactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20fuel%20flow%20meter" title="differential fuel flow meter">differential fuel flow meter</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20RPM" title=" engine RPM"> engine RPM</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20efficiency" title=" fuel efficiency"> fuel efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20construction%20compaction%20%20machine" title=" heavy construction compaction machine"> heavy construction compaction machine</a> </p> <a href="https://publications.waset.org/abstracts/71303/analysis-of-fuel-efficiency-in-heavy-construction-compaction-machine-and-factors-affecting-fuel-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1725</span> Influence of Driving Strategy on Power and Fuel Consumption of Lightweight PEM Fuel Cell Vehicle Powertrain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhadiyana%20Hanapi">Suhadiyana Hanapi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alhassan%20Salami%20Tijani"> Alhassan Salami Tijani</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20N%20Wan%20Mohamed"> W. A. N Wan Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a prototype PEM fuel cell vehicle integrated with a 1 kW air-blowing proton exchange membrane fuel cell (PEMFC) stack as a main power sources has been developed for a lightweight cruising vehicle. The test vehicle is equipped with a PEM fuel cell system that provides electric power to a brushed DC motor. This vehicle was designed to compete with industrial lightweight vehicle with the target of consuming least amount of energy and high performance. Individual variations in driving style have a significant impact on vehicle energy efficiency and it is well established from the literature. The primary aim of this study was to assesses the power and fuel consumption of a hydrogen fuel cell vehicle operating at three difference driving technique (i.e. 25 km/h constant speed, 22-28 km/h speed range, 20-30 km/h speed range). The goal is to develop the best driving strategy to maximize performance and minimize fuel consumption for the vehicle system. The relationship between power demand and hydrogen consumption has also been discussed. All the techniques can be evaluated and compared on broadly similar terms. Automatic intelligent controller for driving prototype fuel cell vehicle on different obstacle while maintaining all systems at maximum efficiency was used. The result showed that 25 km/h constant speed was identified for optimal driving with less fuel consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prototype%20fuel%20cell%20electric%20vehicles" title="prototype fuel cell electric vehicles">prototype fuel cell electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient" title=" energy efficient"> energy efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=control%2Fdriving%20technique" title=" control/driving technique"> control/driving technique</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20economy" title=" fuel economy"> fuel economy</a> </p> <a href="https://publications.waset.org/abstracts/36697/influence-of-driving-strategy-on-power-and-fuel-consumption-of-lightweight-pem-fuel-cell-vehicle-powertrain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1724</span> Experimental Investigation of the Effect of Temperature on A PEM Fuel Cell Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20%C5%9Eahin">Remzi Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sad%C4%B1k%20Ata"> Sadık Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated. The efficiency of energy conversion in PEM fuel cells is dependent on the catalytic activities of the catalysts used in the cathode and anode of membrane electrode assemblies. Membrane is considered the heart of PEM fuel cells without which they cannot produce electricity. PEM fuel cell performance increased with coating carbon nanotube (CNT). CNT show a unique combination of stiffness, strength, and tenacity compared to other fiber materials which usually lack one or more of these properties. Two different experiments were performed and the membrane performance has been determined by repeating the two experiments that were done before coating. The purposes of these experiments are the observation of power change due to a temperature change in the same voltage value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20%28CNT%29" title="carbon nanotube (CNT)">carbon nanotube (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20%28PEM%29" title=" proton exchange membrane (PEM)"> proton exchange membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/50261/experimental-investigation-of-the-effect-of-temperature-on-a-pem-fuel-cell-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1723</span> Technical and Environmental Improvement of LNG Carrier&#039;s Propulsion Machinery by Using Jatropha Biao Diesel Fuel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20Hegazy">E. H. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mosaad"> M. A. Mosaad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Tawfik"> A. A. Tawfik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Hassan"> A. A. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbas"> M. Abbas </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid depletion of petroleum reserves and rising oil prices has led to the search for alternative fuels. A promising alternative fuel Jatropha Methyl Easter, JME, has drawn the attention of researchers in recent times as a high potential substrate for production of biodiesel fuel. In this paper, the combustion, performance and emission characteristics of a single cylinder diesel engine when fuelled with JME, diesel oil and natural gas are evaluated experimentally and theoretically. The experimental results showed that the thermal and volumetric efficiency of diesel engine is higher than Jatropha biodiesel engine. The specific fuel consumption, exhaust gas temperature, HC, CO2 and NO were comparatively higher in Jatropha biodiesel, while CO emission is appreciable decreased. CFD investigation was carried out in the present work to compare diesel fuel oil and JME. The CFD simulation offers a powerful and convenient way to help understanding physical and chemical processes involved internal combustion engines for diesel oil fuel and JME fuel. The CFD concluded that the deviation between diesel fuel pressure and JME not exceeds 3 bar and the trend for compression pressure almost the same, also the temperature deviation between diesel fuel and JME not exceeds 40 k and the trend for temperature almost the same. Finally the maximum heat release rate of JME is lower than that of diesel fuel. The experimental and CFD investigation indicated that the Jatropha biodiesel can be used instead of diesel fuel oil with safe engine operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20fuel%20diesel%20engine" title="dual fuel diesel engine">dual fuel diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title=" natural gas"> natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20Methyl%20Easter" title=" Jatropha Methyl Easter"> Jatropha Methyl Easter</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20%20efficiency" title=" volumetric efficiency"> volumetric efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a> </p> <a href="https://publications.waset.org/abstracts/20734/technical-and-environmental-improvement-of-lng-carriers-propulsion-machinery-by-using-jatropha-biao-diesel-fuel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1722</span> Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Tolj">Ivan Tolj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20fuel%20cell" title="PEM fuel cell">PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20heat%20exchange" title=" passive heat exchange"> passive heat exchange</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management" title=" thermal management"> thermal management</a> </p> <a href="https://publications.waset.org/abstracts/104586/passive-heat-exchanger-for-proton-exchange-membrane-fuel-cell-cooling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1721</span> Transition to Hydrogen Cities in Korea and Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minhee%20Son">Minhee Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Nam%20Kim"> Kyung Nam Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the plan of the Korean and Japanese governments to transition into the hydrogen economy. Two motor companies, Hyundai Motor Company from Korea and Toyota from Japan, released the Hydrogen Fuel Cell Vehicle to monopolize the green energy automobile market. Although, they are the main countries which emit greenhouse gas, hydrogen energy can bring from a certain industry places, such as chemical plants and steel mills. Recent, the two countries have been focusing on the hydrogen industry including a fuel cell vehicle, a hydrogen station, a fuel cell plant, a residential fuel cell. The purpose of this paper is to find out the differences of the policies in the two countries to be hydrogen societies. We analyze the behavior of the public and private sectors in Korea and Japan about hydrogen energy and fuel cells for the transition of the hydrogen economy. Finally we show the similarities and differences of both countries in hydrogen fuel cells. And some cities have feature such as Hydrogen cities. Hydrogen energy can make impact environmental sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20city" title=" hydrogen city"> hydrogen city</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20fuel%20cell%20vehicle" title=" hydrogen fuel cell vehicle"> hydrogen fuel cell vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20station" title=" hydrogen station"> hydrogen station</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20energy" title=" hydrogen energy"> hydrogen energy</a> </p> <a href="https://publications.waset.org/abstracts/36011/transition-to-hydrogen-cities-in-korea-and-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1720</span> Study on Pressurized Reforming System for the Application of Hydrogen Permeable Membrane Applying to Proton Exchange Membrane Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwangho%20Lee">Kwangho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Joongmyeon%20Bae"> Joongmyeon Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel cells are spotlighted in the world for being highly efficient and environmentally friendly. A hydrogen fuel for a fuel cell is obtained from a number of sources. Most of fuel cell for APU(Auxiliary power unit) system using diesel fuel as a hydrogen source. Diesel fuel has many advantages, such as high hydrogen storage density, easy to transport and also well-infra structure. However, conventional diesel reforming system for PEMFC(Proton exchange membrane fuel cell) requires a large volume and complex CO removal system for the lower the CO level to less than 10ppm. In addition, the PROX(Preferential Oxidation) reaction cooling load is needed because of the strong exothermic reaction. However, the hydrogen separation membrane that we propose can be eliminated many disadvantages, because the volume is small and permeates only pure hydrogen. In this study, we were conducted to the pressurized diesel reforming and water-gas shift reaction experiment for the hydrogen permeable membrane application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title="hydrogen">hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=diesel" title=" diesel"> diesel</a>, <a href="https://publications.waset.org/abstracts/search?q=reforming" title=" reforming"> reforming</a>, <a href="https://publications.waset.org/abstracts/search?q=ATR" title=" ATR"> ATR</a>, <a href="https://publications.waset.org/abstracts/search?q=WGS" title=" WGS"> WGS</a>, <a href="https://publications.waset.org/abstracts/search?q=PROX" title=" PROX"> PROX</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/57559/study-on-pressurized-reforming-system-for-the-application-of-hydrogen-permeable-membrane-applying-to-proton-exchange-membrane-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=58">58</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=59">59</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuel%20upgrade&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10