CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 67 results for author: <span class="mathjax">Song, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Song%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Song, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Song%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Song, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Song%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08196">arXiv:2409.08196</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08196">pdf</a>, <a href="https://arxiv.org/format/2409.08196">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Acoustic higher-order topological insulator from momentum-space nonsymmorphic symmetries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+J">Jinbing Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Kai Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tianle Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+X">Xuntao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhuang%2C+S">Songlin Zhuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08196v1-abstract-short" style="display: inline;"> Momentum-space nonsymmorphic symmetries, stemming from the projective algebra of synthetic gauge fields, can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena. We present an acoustic realization of higher-order topological insulators (HOTIs) protected by a pair of anticommutative momentum-space glide reflections. We confirm the presence of momentum-space glid&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08196v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08196v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08196v1-abstract-full" style="display: none;"> Momentum-space nonsymmorphic symmetries, stemming from the projective algebra of synthetic gauge fields, can modify the manifold of the Brillouin zone and lead to a variety of topological phenomena. We present an acoustic realization of higher-order topological insulators (HOTIs) protected by a pair of anticommutative momentum-space glide reflections. We confirm the presence of momentum-space glide reflection from the measured momentum half translation of edge bands and their momentum-resolved probability distribution using a cylinder geometry made of acoustic resonator arrays. In particular, we observe both intrinsic and extrinsic HOTI features in such a cylinder: hopping strength variation along the open boundary leads to a bulk gap closure, while that along the closed boundary results in an edge gap closure. In addition, we confirm the presence of quadrupole corner modes with transmission and field distribution measurements. Our observation enriches the study of topological physics of momentum-space nonsymmorphic symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08196v1-abstract-full').style.display = 'none'; document.getElementById('2409.08196v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04594">arXiv:2409.04594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04594">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anomalous Superconductivity in Twisted MoTe2 Nanojunctions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yanyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z+J">Zhaoyi Joy Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzan%2C+A+J">Ayelet J Uzan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yue Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pollak%2C+C+J">Connor J. Pollak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onyszczak%2C+M">Michael Onyszczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+S">Shiming Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ong%2C+N+P">N. P. Ong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Sanfeng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04594v1-abstract-short" style="display: inline;"> Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a new strategy for quantum engineering of superconducting junctions in moire materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04594v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04594v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04594v1-abstract-full" style="display: none;"> Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a new strategy for quantum engineering of superconducting junctions in moire materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe2) and observe anomalous superconducting effects in high-quality junctions across ~ 20 moire cells. Surprisingly, the junction develops enhanced, instead of weakened, superconducting behaviors, exhibiting fluctuations to a higher critical magnetic field compared to its adjacent Pd7MoTe2 superconductor. Additionally, the critical current further exhibits a striking V-shaped minimum at zero magnetic field. These features are unexpected in conventional Josephson junctions and indeed absent in junctions of natural bilayer MoTe2 created using the same approach. We discuss implications of these observations, including the possible formation of mixed even- and odd-parity superconductivity at the moire junctions. Our results also demonstrate a pathway to engineer and investigate superconductivity in fractional Chern insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04594v1-abstract-full').style.display = 'none'; document.getElementById('2409.04594v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 5 main article figures and 10 supplementary figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13953">arXiv:2407.13953</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13953">pdf</a>, <a href="https://arxiv.org/format/2407.13953">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Kinetic control of ferroelectricity in ultrathin epitaxial Barium Titanate capacitors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumarasubramanian%2C+H">Harish Kumarasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravindran%2C+P+V">Prasanna Venkat Ravindran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+T">Ting-Ran Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Taeyoung Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Surendran%2C+M">Mythili Surendran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Huandong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buragohain%2C+P">Pratyush Buragohain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tung%2C+I">I-Cheng Tung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+A+S">Arnab Sen Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Steinhardt%2C+R">Rachel Steinhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Young%2C+I+A">Ian A. Young</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+Y">Yu-Tsun Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+A+I">Asif Islam Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravichandran%2C+J">Jayakanth Ravichandran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13953v1-abstract-short" style="display: inline;"> Ferroelectricity is characterized by the presence of spontaneous and switchable macroscopic polarization. Scaling limits of ferroelectricity have been of both fundamental and technological importance, but the probes of ferroelectricity have often been indirect due to confounding factors such as leakage in the direct electrical measurements. Recent interest in low-voltage switching electronic devic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13953v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13953v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13953v1-abstract-full" style="display: none;"> Ferroelectricity is characterized by the presence of spontaneous and switchable macroscopic polarization. Scaling limits of ferroelectricity have been of both fundamental and technological importance, but the probes of ferroelectricity have often been indirect due to confounding factors such as leakage in the direct electrical measurements. Recent interest in low-voltage switching electronic devices squarely puts the focus on ultrathin limits of ferroelectricity in an electronic device form, specifically on the robustness of ferroelectric characteristics such as retention and endurance for practical applications. Here, we illustrate how manipulating the kinetic energy of the plasma plume during pulsed laser deposition can yield ultrathin ferroelectric capacitor heterostructures with high bulk and interface quality, significantly low leakage currents and a broad &#34;growth window&#34;. These heterostructures venture into previously unexplored aspects of ferroelectric properties, showcasing ultralow switching voltages ($&lt;$0.3 V), long retention times ($&gt;$10$^{4}$s), and high endurance ($&gt;$10$^{11}$cycles) in 20 nm films of the prototypical perovskite ferroelectric, BaTiO$_{3}$. Our work demonstrates that materials engineering can push the envelope of performance for ferroelectric materials and devices at the ultrathin limit and opens a direct, reliable and scalable pathway to practical applications of ferroelectrics in ultralow voltage switches for logic and memory technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13953v1-abstract-full').style.display = 'none'; document.getElementById('2407.13953v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09665">arXiv:2405.09665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09665">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sign-Alternating Thermoelectric Quantum Oscillations and Insulating Landau Levels in Monolayer WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yue Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guan%2C+H">Haosen Guan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yanyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z+J">Zhaoyi Joy Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzan%2C+A+J">Ayelet J. Uzan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onyszczak%2C+M">Michael Onyszczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xin Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ong%2C+N+P">N. P. Ong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Sanfeng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09665v1-abstract-short" style="display: inline;"> The detection of Landau-level-like energy structures near the chemical potential of an insulator is essential to the search for a class of correlated electronic matter hosting charge-neutral fermions and Fermi surfaces, a long-proposed concept that remains elusive experimentally. Here we introduce and demonstrate that the magneto-thermoelectric response of a quantum insulator can reveal critical i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09665v1-abstract-full').style.display = 'inline'; document.getElementById('2405.09665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09665v1-abstract-full" style="display: none;"> The detection of Landau-level-like energy structures near the chemical potential of an insulator is essential to the search for a class of correlated electronic matter hosting charge-neutral fermions and Fermi surfaces, a long-proposed concept that remains elusive experimentally. Here we introduce and demonstrate that the magneto-thermoelectric response of a quantum insulator can reveal critical information not available via other approaches. We report large quantum oscillations (QOs) in the Seebeck response of the hole-doped insulating state of monolayer tungsten ditelluride (WTe2) in magnetic fields. The QOs remarkably undergo sign-changes as the field is swept, mimicking those in metals with Landau quantization. The sign-change in the thermoelectric response directly implies the presence of a field-induced Landau-level-like structure at the chemical potential of the insulator. Our results reinforce WTe2 as a platform for investigating insulating Landau levels and mobile neutral fermions in two-dimensional insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09665v1-abstract-full').style.display = 'none'; document.getElementById('2405.09665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15007">arXiv:2404.15007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15007">pdf</a>, <a href="https://arxiv.org/ps/2404.15007">ps</a>, <a href="https://arxiv.org/format/2404.15007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Single-Spin Waved-Brim Flat-Top Hat in the Band Edge of GdIH Monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+N">Ningning Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Z">Zhao Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">Jiangtao Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+Z">Zhiheng Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yongting Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tielei Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xin Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhifeng Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15007v1-abstract-short" style="display: inline;"> Exotic electronic bands, such as flat bands, linear crossing bands, spontaneously valley- or spin-polarized bands, in two-dimensional materials have been the hot topics in condensed matter physics. Herein, we first propose a general dispersion model for possible hat-like electronic bands, and then identify an intriguing single-spin \emph{waved-brim flat-top hat} in the valence band edge of a stabl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15007v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15007v1-abstract-full" style="display: none;"> Exotic electronic bands, such as flat bands, linear crossing bands, spontaneously valley- or spin-polarized bands, in two-dimensional materials have been the hot topics in condensed matter physics. Herein, we first propose a general dispersion model for possible hat-like electronic bands, and then identify an intriguing single-spin \emph{waved-brim flat-top hat} in the valence band edge of a stable ferromagnetic semiconducting electrene (i.e., Janus GdIH monolayer), which can be well described by a simplified two-bands Hamiltonian model. Specifically, the hat-band has a waved brim with six valleys along the boundary of the first Brillouin zone; meanwhile it holds a flat top close to the Fermi level, resulting in the emergence of single-spin van Hove singularities divergence and Lifshitz transitions. Owing to the breaking of both time-reversal and space inversion symmetries, a sizable spontaneous valley polarization is formed between the adjacent brim valleys, which provides the opportunity to realize the high-temperature anomalous valley Hall effect. Particularly, via modest strains and carriers doping, various conductive bipolar-states (spin-up vs. spin-down, K valley vs. $-$K valley, and ultra-low-speed vs. ultra-high-speed) can be modulated out from the distorted waved-brim flat-top hat of GdIH ML. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15007v1-abstract-full').style.display = 'none'; document.getElementById('2404.15007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19877">arXiv:2403.19877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19877">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Superconductivity from On-Chip Metallization on 2D Topological Chalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yanyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzan%2C+A+J">Ayelet J Uzan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yue Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onyszczak%2C+M">Michael Onyszczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+Z+J">Zhaoyi Joy Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Sanfeng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19877v2-abstract-short" style="display: inline;"> Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D meta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19877v2-abstract-full').style.display = 'inline'; document.getElementById('2403.19877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19877v2-abstract-full" style="display: none;"> Two-dimensional (2D) transition metal dichalcogenides (TMDs) is a versatile class of quantum materials of interest to various fields including, e.g., nanoelectronics, optical devices, and topological and correlated quantum matter. Tailoring the electronic properties of TMDs is essential to their applications in many directions. Here, we report that a highly controllable and uniform on-chip 2D metallization process converts a class of atomically thin TMDs into robust superconductors, a property belonging to none of the starting materials. As examples, we demonstrate the introduction of superconductivity into a class of 2D air-sensitive topological TMDs, including monolayers of Td-WTe2, 1T&#39;-MoTe2 and 2H-MoTe2, as well as their natural and twisted bilayers, metalized with an ultrathin layer of Palladium. This class of TMDs are known to exhibit intriguing topological phases ranging from topological insulator, Weyl semimetal to fractional Chern insulator. The unique, high-quality two-dimensional metallization process is based on our recent findings of the long-distance, non-Fickian in-plane mass transport and chemistry in 2D that occur at relatively low temperatures and in devices fully encapsulated with inert insulating layers. Highly compatible with existing nanofabrication techniques for van der Waals (vdW) stacks, our results offer a route to designing and engineering superconductivity and topological phases in a class of correlated 2D materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19877v2-abstract-full').style.display = 'none'; document.getElementById('2403.19877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures. Accepted to Physical Review X</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11434">arXiv:2402.11434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11434">pdf</a>, <a href="https://arxiv.org/format/2402.11434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2632-2153/ad56fa">10.1088/2632-2153/ad56fa <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep learning methods for Hamiltonian parameter estimation and magnetic domain image generation in twisted van der Waals magnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+W+S">Woo Seok Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Taegeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+K">Kyoung-Min Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11434v2-abstract-short" style="display: inline;"> The application of twist engineering in van der Waals magnets has opened new frontiers in the field of two-dimensional magnetism, yielding distinctive magnetic domain structures. Despite the introduction of numerous theoretical methods, limitations persist in terms of accuracy or efficiency due to the complex nature of the magnetic Hamiltonians pertinent to these systems. In this study, we introdu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11434v2-abstract-full').style.display = 'inline'; document.getElementById('2402.11434v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11434v2-abstract-full" style="display: none;"> The application of twist engineering in van der Waals magnets has opened new frontiers in the field of two-dimensional magnetism, yielding distinctive magnetic domain structures. Despite the introduction of numerous theoretical methods, limitations persist in terms of accuracy or efficiency due to the complex nature of the magnetic Hamiltonians pertinent to these systems. In this study, we introduce a deep-learning approach to tackle these challenges. Utilizing customized, fully connected networks, we develop two deep-neural-network kernels that facilitate efficient and reliable analysis of twisted van der Waals magnets. Our regression model is adept at estimating the magnetic Hamiltonian parameters of twisted bilayer CrI3 from its magnetic domain images generated through atomistic spin simulations. The generative model excels in producing precise magnetic domain images from the provided magnetic parameters. The trained networks for these models undergo thorough validation, including statistical error analysis and assessment of robustness against noisy injections. These advancements not only extend the applicability of deep-learning methods to twisted van der Waals magnets but also streamline future investigations into these captivating yet poorly understood systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11434v2-abstract-full').style.display = 'none'; document.getElementById('2402.11434v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.08208">arXiv:2312.08208</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.08208">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0172259">10.1063/5.0172259 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disentangling stress and strain effects in ferroelectric HfO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tingfeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenzi%2C+V">Veniero Lenzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silva%2C+J+P+B">Jos茅 P. B. Silva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marques%2C+L">Lu铆s Marques</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fina%2C+I">Ignasi Fina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez%2C+F">Florencio S谩nchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.08208v1-abstract-short" style="display: inline;"> Ferroelectric HfO2 films are usually polycrystalline and contain a mixture of polar and nonpolar phases. This challenges the understanding and control of polar phase stabilization and ferroelectric properties. Several factors such as dopants, oxygen vacancies, or stress, among others, have been investigated and shown to have a crucial role on optimizing the ferroelectric response. Stress generated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08208v1-abstract-full').style.display = 'inline'; document.getElementById('2312.08208v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.08208v1-abstract-full" style="display: none;"> Ferroelectric HfO2 films are usually polycrystalline and contain a mixture of polar and nonpolar phases. This challenges the understanding and control of polar phase stabilization and ferroelectric properties. Several factors such as dopants, oxygen vacancies, or stress, among others, have been investigated and shown to have a crucial role on optimizing the ferroelectric response. Stress generated during deposition or annealing of thin films is a main factor determining the formed crystal phases and influences the lattice strain of the polar orthorhombic phase. It is difficult to discriminate between stress and strain effects on polycrystalline ferroelectric HfO2 films, and the direct impact of orthorhombic lattice strain on ferroelectric polarization has yet to be determined experimentally. Here, we analyze the crystalline phases and lattice strain of several series of doped HfO2 epitaxial films. We conclude that stress has a critical influence on metastable orthorhombic phase stabilization and ferroelectric polarization. On the contrary, the lattice deformation effects are much smaller than those caused by variations in the orthorhombic phase content. The experimental results are confirmed by density functional theory calculations on HfO2 and Hf0.5Zr0.5O2 ferroelectric phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.08208v1-abstract-full').style.display = 'none'; document.getElementById('2312.08208v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Applied Physical Reviews 10, 041415 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.11954">arXiv:2308.11954</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.11954">pdf</a>, <a href="https://arxiv.org/format/2308.11954">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/pssb.202300379">10.1002/pssb.202300379 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting Strain Effects due to Nanobubbles in Graphene Mach-Zehnder Interferometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Myoung%2C+N">Nojoon Myoung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Taegeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+H+C">Hee Chul Park</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.11954v1-abstract-short" style="display: inline;"> We investigate the effect of elastic strain on a Mach-Zehnder (MZ) interferometer created by graphene p-n junction in quantum Hall regime. We demonstrate that a Gaussian-shaped nanobubble causes detuning of the quantum Hall conductance oscillations across the p-n junction, due to the strain-induced local pseudo-magnetic fields. By performing a machine-learning-based Fourier analysis, we differenti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11954v1-abstract-full').style.display = 'inline'; document.getElementById('2308.11954v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.11954v1-abstract-full" style="display: none;"> We investigate the effect of elastic strain on a Mach-Zehnder (MZ) interferometer created by graphene p-n junction in quantum Hall regime. We demonstrate that a Gaussian-shaped nanobubble causes detuning of the quantum Hall conductance oscillations across the p-n junction, due to the strain-induced local pseudo-magnetic fields. By performing a machine-learning-based Fourier analysis, we differentiate the nanobubble-induced Fourier component from the conductance oscillations originating from the external magnetic fields. We show that the detuning of the conductance oscillations is due to the altered pathway of quantum Hall interface channels caused by the strain-induced pseudo-magnetic fields. In the presence of the nanobubble, a new Fourier component for a magnetic flux $桅_{0}/2$ appears, and the corresponding MZ interferometry indicates that the enclosed area is reduced by half due to the strain-mediated pathway between two quantum Hall interface channels. Our findings suggest the potential of using graphene as a strain sensor for developments in graphene-based device fabrications and measurements technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.11954v1-abstract-full').style.display = 'none'; document.getElementById('2308.11954v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physica Status Solidi b, 261, 2300379 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00610">arXiv:2308.00610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00610">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0160321">10.1063/5.0160321 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Platform for Far-Infrared Spectroscopy of Quantum Materials at Millikelvin Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Onyszczak%2C+M">Michael Onyszczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzan%2C+A+J">Ayelet J. Uzan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yue Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yanyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khoury%2C+J+F">Jason F. Khoury</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Sanfeng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00610v3-abstract-short" style="display: inline;"> Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution ref&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00610v3-abstract-full').style.display = 'inline'; document.getElementById('2308.00610v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00610v3-abstract-full" style="display: none;"> Optical spectroscopy of quantum materials at ultralow temperatures is rarely explored, yet it may provide critical characterizations of quantum phases not possible using other approaches. We describe the development of a novel experimental platform that enables optical spectroscopic studies, together with standard electronic transport, of materials at millikelvin temperatures inside a dilution refrigerator. The instrument is capable of measuring both bulk crystals and micron-sized two-dimensional van der Waals materials and devices. We demonstrate the performance by implementing photocurrent-based Fourier transform infrared spectroscopy on a monolayer WTe$_2$ device and a multilayer 1T-TaS$_2$ crystal, with a spectral range available from the near-infrared to the terahertz regime and in magnetic fields up to 5 T. In the far-infrared regime, we achieve spectroscopic measurements at a base temperature as low as ~ 43 mK and a sample electron temperature of ~ 450 mK. Possible experiments and potential future upgrades of this versatile instrumental platform are envisioned. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00610v3-abstract-full').style.display = 'none'; document.getElementById('2308.00610v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, typos corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15881">arXiv:2307.15881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15881">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-42821-2">10.1038/s41467-023-42821-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for Two Dimensional Anisotropic Luttinger Liquids at Millikelvin Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzan%2C+A+J">Ayelet J. Uzan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yanyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onyszczak%2C+M">Michael Onyszczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xin Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yue Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Sanfeng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15881v1-abstract-short" style="display: inline;"> While Landau&#39;s Fermi liquid theory provides the standard description for two- and three-dimensional (2D/3D) conductors, the physics of interacting one-dimensional (1D) conductors is governed by the distinct Luttinger liquid (LL) theory. Can a LL-like state, in which electronic excitations are fractionalized modes, emerge in a 2D system as a stable zero-temperature phase? This long-standing questio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15881v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15881v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15881v1-abstract-full" style="display: none;"> While Landau&#39;s Fermi liquid theory provides the standard description for two- and three-dimensional (2D/3D) conductors, the physics of interacting one-dimensional (1D) conductors is governed by the distinct Luttinger liquid (LL) theory. Can a LL-like state, in which electronic excitations are fractionalized modes, emerge in a 2D system as a stable zero-temperature phase? This long-standing question, first brought up by Anderson decades ago, is crucial in the study of non-Fermi liquids but remains unsettled. A recent experiment identified a moir茅 superlattice of twisted bilayer tungsten ditelluride (tWTe_2) with a small interlayer twist angle as a 2D host of the LL physics at temperatures of a few kelvins. Here we report experimental evidence for a 2D anisotropic LL state in a substantially reduced temperature regime, down to at least 50 mK, spontaneously formed in a tWTe_2 system with a twist angle of ~ 3 degree. While the system is metallic-like and nearly isotropic above 2 K, a dramatically enhanced electronic anisotropy develops in the millikelvin regime, featuring distinct transport behaviors along two orthogonal in-plane directions. In the strongly anisotropic phase, we observe transport characteristics of a 2D LL phase, i.e., the universal power law scaling behaviors in across-wire conductance and a zero-bias dip in the differential resistance along the wire direction. Our results represent a step forward in the search for stable LL physics beyond 1D and related unconventional quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15881v1-abstract-full').style.display = 'none'; document.getElementById('2307.15881v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 4 main figures and 10 extended data figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 14, 7025 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06477">arXiv:2307.06477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06477">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s44160-023-00442-z">10.1038/s44160-023-00442-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface-Confined Two-Dimensional Crystal Growth on a Monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yanyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+F">Fang Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yue Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzan%2C+A+J">Ayelet July Uzan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onyszczak%2C+M">Michael Onyszczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Sanfeng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06477v1-abstract-short" style="display: inline;"> Conventional vapor deposition or epitaxial growth of two-dimensional (2D) materials and heterostructures is conducted in a large chamber in which masses transport from the source to the substrate. Here we report a chamber-free, on-chip approach for growing a 2D crystalline structures directly in a nanoscale surface-confined 2D space. The method is based on a surprising discovery of a rapid, long-d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06477v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06477v1-abstract-full" style="display: none;"> Conventional vapor deposition or epitaxial growth of two-dimensional (2D) materials and heterostructures is conducted in a large chamber in which masses transport from the source to the substrate. Here we report a chamber-free, on-chip approach for growing a 2D crystalline structures directly in a nanoscale surface-confined 2D space. The method is based on a surprising discovery of a rapid, long-distance, non-Fickian transport of a uniform layer of atomically thin palladium (Pd) on a monolayer crystal of tungsten ditelluride (WTe2), at temperatures well below the known melting points of all materials involved. The resulting nanoconfined growth realizes a controlled formation of a stable new 2D crystalline material, Pd7WTe2 , when the monolayer seed is either free-standing or fully encapsulated in a van der Waals stack. The approach is generalizable and highly compatible with nanodevice fabrication, promising to expand the library of 2D materials and their functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06477v1-abstract-full').style.display = 'none'; document.getElementById('2307.06477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Synth (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06028">arXiv:2307.06028</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06028">pdf</a>, <a href="https://arxiv.org/format/2307.06028">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Disassociation of a one-dimensional cold molecule via quantum scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+W">Wen-Liang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+H">Hai-Jing Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tie-Ling Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D+L">D. L. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06028v1-abstract-short" style="display: inline;"> Motivated by the recent experimental developments on ultracold molecules and atoms, we propose a simplest theoretical model to address the disassociation, reflection and transmission probability of a 1-dimensional cold molecule via quantum scattering. First, we give the Born approximation results in the weak interaction regime. Then, employing the Lippmann-Schwinger equation, we give the numerical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06028v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06028v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06028v1-abstract-full" style="display: none;"> Motivated by the recent experimental developments on ultracold molecules and atoms, we propose a simplest theoretical model to address the disassociation, reflection and transmission probability of a 1-dimensional cold molecule via quantum scattering. First, we give the Born approximation results in the weak interaction regime. Then, employing the Lippmann-Schwinger equation, we give the numerical solution and investigate the disassociation&#39;s dependence on the injection momentum and the interaction strengths. We find that the maximum disassociation rate has a limit as increasing the interaction strengths and injection momentum. We expect that our model can be realized in experiments in the near future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06028v1-abstract-full').style.display = 'none'; document.getElementById('2307.06028v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06952">arXiv:2306.06952</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06952">pdf</a>, <a href="https://arxiv.org/format/2306.06952">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Numerically stable neural network for simulating Kardar-Parisi-Zhang growth in the presence of uncorrelated and correlated noises </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tianshu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+H">Hui Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06952v3-abstract-short" style="display: inline;"> Numerical simulations are essential tools for exploring the dynamic scaling properties of the nonlinear Kadar-Parisi-Zhang (KPZ) equation. Yet the inherent nonlinearity frequently causes numerical divergence within the strong-coupling regime using conventional simulation methods. To sustain the numerical stability, previous works either utilized discrete growth models belonging to the KPZ universa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06952v3-abstract-full').style.display = 'inline'; document.getElementById('2306.06952v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06952v3-abstract-full" style="display: none;"> Numerical simulations are essential tools for exploring the dynamic scaling properties of the nonlinear Kadar-Parisi-Zhang (KPZ) equation. Yet the inherent nonlinearity frequently causes numerical divergence within the strong-coupling regime using conventional simulation methods. To sustain the numerical stability, previous works either utilized discrete growth models belonging to the KPZ universality class or modified the original nonlinear term by the designed specified operators. However, recent studies revealed that these strategies could cause abnormal results. Motivated by the above-mentioned facts, we propose a convolutional neural network-based method to simulate the KPZ equation driven by uncorrelated and correlated noises, aiming to overcome the challenge of numerical divergence, and obtaining reliable scaling exponents. We first train the neural network to represent the determinant terms of the KPZ equation in a data-driven manner. Then, we perform simulations for the KPZ equation with various types of temporally and spatially correlated noises. The experimental results demonstrate that our neural network could effectively estimate the scaling exponents eliminating numerical divergence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06952v3-abstract-full').style.display = 'none'; document.getElementById('2306.06952v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06540">arXiv:2303.06540</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.06540">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02291-1">10.1038/s41567-023-02291-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Unconventional Superconducting Quantum Criticality in Monolayer WTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jia%2C+Y">Yanyu Jia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+G">Guo Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tang%2C+Y">Yue Tang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+P">Pengjie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singha%2C+R">Ratnadwip Singha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gui%2C+X">Xin Gui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Uzan%2C+A+J">Ayelet J. Uzan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onyszczak%2C+M">Michael Onyszczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cava%2C+R+J">Robert J. Cava</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schoop%2C+L+M">Leslie M. Schoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ong%2C+N+P">N. P. Ong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Sanfeng Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06540v2-abstract-short" style="display: inline;"> The superconductor to insulator or metal transition in two dimensions (2D) provides a valuable platform for studying continuous quantum phase transitions (QPTs) and critical phenomena. Distinct theoretical models, including both fermionic and bosonic localization scenarios, have been developed, but many questions remain unsettled despite decades of research. Extending Nernst experiments down to mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06540v2-abstract-full').style.display = 'inline'; document.getElementById('2303.06540v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06540v2-abstract-full" style="display: none;"> The superconductor to insulator or metal transition in two dimensions (2D) provides a valuable platform for studying continuous quantum phase transitions (QPTs) and critical phenomena. Distinct theoretical models, including both fermionic and bosonic localization scenarios, have been developed, but many questions remain unsettled despite decades of research. Extending Nernst experiments down to millikelvin temperatures, we uncover anomalous quantum fluctuations and identify an unconventional superconducting quantum critical point (QCP) in a gate-tuned excitonic quantum spin Hall insulator (QSHI), the monolayer tungsten ditelluride (WTe2). The observed vortex Nernst effect reveals singular superconducting fluctuations in the resistive normal state induced by magnetic fields or temperature, even well above the transition. Near the doping-induced QCP, the Nernst signal driven by quantum fluctuations is exceptionally large in the millikelvin regime, with a coefficient of ~ 4,100 uV/KT at zero magnetic field, an indication of the proliferation of vortices. Surprisingly, the Nernst signal abruptly disappears when the doping falls below the critical value, in striking conflict with conventional expectations. This series of phenomena, which have no prior analogue, call for careful examinations of the mechanism of the QCP, including the possibility of a continuous QPT between two distinct ordered phases in the monolayer. Our experiments open a new avenue for studying unconventional QPTs and quantum critical matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06540v2-abstract-full').style.display = 'none'; document.getElementById('2303.06540v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.05494">arXiv:2209.05494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.05494">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/adma.202205825">10.1002/adma.202205825 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reversibly controlled ternary polar states and ferroelectric bias promoted by boosting square-tensile-strain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+H">Jun Han Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Duong%2C+N+X">Nguyen Xuan Duong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+M">Min-Hyoung Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hyun-Jae Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+A">Ahyoung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yeo%2C+Y">Youngki Yeo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Junhyung Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+G">Gye-Hyeon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cho%2C+B">Byeong-Gwan Cho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jaegyu Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naqvi%2C+F+U+H">Furqan Ul Hassan Naqvi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bae%2C+J">Jong-Seong Bae</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+J">Jeehoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahn%2C+C+W">Chang Won Ahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Young-Min Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T+K">Tae Kwon Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ko%2C+J">Jae-Hyeon Ko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koo%2C+T">Tae-Yeong Koo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sohn%2C+C">Changhee Sohn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+K">Kibog Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+C">Chan-Ho Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+S+M">Sang Mo Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+H">Jun Hee Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+H+Y">Hu Young Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+H">Tae Heon Kim</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.05494v1-abstract-short" style="display: inline;"> Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, we report deterministic switching between the ferroe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05494v1-abstract-full').style.display = 'inline'; document.getElementById('2209.05494v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.05494v1-abstract-full" style="display: none;"> Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, we report deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO$_{3}$, which boosts square-tensile-strain to BaTiO$_{3}$ and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti$^{3+}$ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, we experimentally demonstrate that three electrically controlled polar-ordering states lead to switchable and non-volatile dielectric states for application of non-destructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.05494v1-abstract-full').style.display = 'none'; document.getElementById('2209.05494v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">According to the Copyright Policy, the submission version (before peer-review and revision)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Advanced Materials, 2205825 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06949">arXiv:2206.06949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.06949">pdf</a>, <a href="https://arxiv.org/format/2206.06949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c02931">10.1021/acs.nanolett.2c02931 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gate-tunable proximity effects in graphene on layered magnetic insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tseng%2C+C">Chun-Chih Tseng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suh%2C+J">Jaehyun Suh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yankowitz%2C+M">Matthew Yankowitz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06949v1-abstract-short" style="display: inline;"> The extreme versatility of two-dimensional van der Waals (vdW) materials derives from their ability to exhibit new electronic properties when assembled in proximity with dissimilar crystals. For example, although graphene is inherently non-magnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway towards achieving&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06949v1-abstract-full').style.display = 'inline'; document.getElementById('2206.06949v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06949v1-abstract-full" style="display: none;"> The extreme versatility of two-dimensional van der Waals (vdW) materials derives from their ability to exhibit new electronic properties when assembled in proximity with dissimilar crystals. For example, although graphene is inherently non-magnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway towards achieving a high-temperature quantum anomalous Hall effect. Here, we investigate heterostructures of graphene and chromium trihalide magnetic insulators (CrI$_3$, CrBr$_3$, and CrCl$_3$). Surprisingly, we are unable to detect a magnetic exchange field in the graphene, but instead discover proximity effects featuring unprecedented gate-tunability. The graphene becomes highly hole-doped due to charge transfer from the neighboring magnetic insulator, and further exhibits a variety of atypical transport features. These include highly extended quantum Hall plateaus, abrupt reversals in the Landau level filling sequence, and hysteresis over at least days-long time scales. In the case of CrI$_3$, we are able to completely suppress the charge transfer and all attendant atypical transport effects by gating. The charge transfer can additionally be altered in a first-order phase transition upon switching the magnetic states of the nearest CrI$_3$ layers. Our results provide a roadmap for exploiting the magnetic proximity effect in graphene, and motivate further experiments with other magnetic insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06949v1-abstract-full').style.display = 'none'; document.getElementById('2206.06949v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.06586">arXiv:2110.06586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.06586">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Selective hydrogenation improves interface properties of high-k dielectrics on 2D semiconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Yulin Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tong Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tingting Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+J">Jun Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chai%2C+J">Jianwei Chai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wong%2C+L+M">Lai Mun Wong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H">Hongyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+W">Wenzhang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shijie Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+M">Ming Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.06586v1-abstract-short" style="display: inline;"> The integration of high-k dielectrics with two-dimensional (2D) semiconductors is a critical step towards high-performance nanoelectronics, which however remains challenging due to high density of interface states and the damage to the monolayer 2D semiconductors. In this study, we propose a selective hydrogenation strategy to improve the interface properties while do not affect the 2D semiconduct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.06586v1-abstract-full').style.display = 'inline'; document.getElementById('2110.06586v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.06586v1-abstract-full" style="display: none;"> The integration of high-k dielectrics with two-dimensional (2D) semiconductors is a critical step towards high-performance nanoelectronics, which however remains challenging due to high density of interface states and the damage to the monolayer 2D semiconductors. In this study, we propose a selective hydrogenation strategy to improve the interface properties while do not affect the 2D semiconductors. Using the interface of monolayer MoS2 and silicon nitride as an example, we show substantially improved interface properties for electronic applications after the interfacial hydrogenation, as evidenced by reduced inhomogeneous charge redistribution, increased band offset, and untouched electronic properties of MoS2. Interestingly, this hydrogenation process selectively occurs only at the silicon nitride surface and is compatible with the current semiconductor fabrication process. We further show that this strategy is general and applicable to other interfaces between high-k dielectrics and 2D semiconductors such as HfO2 on the monolayer MoS2. Our results demonstrate a simple yet viable way to improve the interfacial properties for integrating many high-k dielectrics on a broad range of two-dimensional transition metal disulfide semiconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.06586v1-abstract-full').style.display = 'none'; document.getElementById('2110.06586v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04626">arXiv:2107.04626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04626">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-29259-8">10.1038/s41467-022-29259-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric control of a canted-antiferromagnetic Chern insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">Jiaqi Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovchinnikov%2C+D">Dmitry Ovchinnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Minhao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D">David Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yong-Tao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Cui-Zu Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04626v1-abstract-short" style="display: inline;"> The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnB&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04626v1-abstract-full').style.display = 'inline'; document.getElementById('2107.04626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04626v1-abstract-full" style="display: none;"> The interplay between band topology and magnetism can give rise to exotic states of matter. For example, magnetically doped topological insulators can realize a Chern insulator that exhibits quantized Hall resistance at zero magnetic field. While prior works have focused on ferromagnetic systems, little is known about band topology and its manipulation in antiferromagnets. Here, we report that MnBi$_2$Te$_4$ is a rare platform for realizing a canted-antiferromagnetic (cAFM) Chern insulator with electrical control. We show that the Chern insulator state with Chern number $C = 1$ appears as soon as the AFM to canted-AFM phase transition happens. The Chern insulator state is further confirmed by observing the unusual transition of the $C = 1$ state in the cAFM phase to the $C = 2$ orbital quantum Hall states in the magnetic field induced ferromagnetic phase. Near the cAFM-AFM phase boundary, we show that the Chern number can be toggled on and off by applying an electric field alone. We attribute this switching effect to the electrical field tuning of the exchange gap alignment between the top and bottom surfaces. Our work paves the way for future studies on topological cAFM spintronics and facilitates the development of proof-of-concept Chern insulator devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04626v1-abstract-full').style.display = 'none'; document.getElementById('2107.04626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures, and 5 supplementary figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13772">arXiv:2106.13772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.13772">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.1c02493">10.1021/acs.nanolett.1c02493 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Even-Odd Layer-Dependent Anomalous Hall Effect in Topological Magnet MnBi2Te4 Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yi-Fan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Ling-Jie Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+F">Fei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+G">Guang Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ovchinnikov%2C+D">Dmitry Ovchinnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+H">Hemian Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+R">Ruobing Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Ke Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chan%2C+M+H+W">Moses H. W. Chan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chao-Xing Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Cui-Zu Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13772v1-abstract-short" style="display: inline;"> A central theme in condensed matter physics is to create and understand the exotic states of matter by incorporating magnetism into topological materials. One prime example is the quantum anomalous Hall (QAH) state. Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the QAH effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13772v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13772v1-abstract-full" style="display: none;"> A central theme in condensed matter physics is to create and understand the exotic states of matter by incorporating magnetism into topological materials. One prime example is the quantum anomalous Hall (QAH) state. Recently, MnBi2Te4 has been demonstrated to be an intrinsic magnetic topological insulator and the QAH effect was observed in exfoliated MnBi2Te4 flakes. Here, we used molecular beam epitaxy (MBE) to grow MnBi2Te4 films with thickness down to 1 septuple layer (SL) and performed thickness-dependent transport measurements. We observed a non-square hysteresis loop in the antiferromagnetic state for films with thickness greater than 2 SL. The hysteresis loop can be separated into two AH components. Through careful analysis, we demonstrated that one AH component with the larger coercive field is from the dominant MnBi2Te4 phase, while the other AH component with the smaller coercive field is from the minor Mn-doped Bi2Te3 phase in the samples. The extracted AH component of the MnBi2Te4 phase shows a clear even-odd layer-dependent behavior, a signature of antiferromagnetic thin films. Our studies reveal insights on how to optimize the MBE growth conditions to improve the quality of MnBi2Te4 films, in which the QAH and other exotic states are predicted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13772v1-abstract-full').style.display = 'none'; document.getElementById('2106.13772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Lett. 21, 7691(2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06766">arXiv:2105.06766</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.06766">pdf</a>, <a href="https://arxiv.org/format/2105.06766">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-26320-w">10.1038/s41467-021-26320-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Objective comparison of methods to decode anomalous diffusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mu%C3%B1oz-Gil%2C+G">Gorka Mu帽oz-Gil</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volpe%2C+G">Giovanni Volpe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-March%2C+M+A">Miguel Angel Garcia-March</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aghion%2C+E">Erez Aghion</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Argun%2C+A">Aykut Argun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+C+B">Chang Beom Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bland%2C+T">Tom Bland</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bo%2C+S">Stefano Bo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Conejero%2C+J+A">J. Alberto Conejero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Firbas%2C+N">Nicol谩s Firbas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Orts%2C+%C3%92+G+i">脪scar Garibo i Orts</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gentili%2C+A">Alessia Gentili</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+Z">Zihan Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeon%2C+J">Jae-Hyung Jeon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kabbech%2C+H">H茅l猫ne Kabbech</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+Y">Yeongjin Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kowalek%2C+P">Patrycja Kowalek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krapf%2C+D">Diego Krapf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Loch-Olszewska%2C+H">Hanna Loch-Olszewska</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lomholt%2C+M+A">Michael A. Lomholt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Masson%2C+J">Jean-Baptiste Masson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Meyer%2C+P+G">Philipp G. Meyer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Park%2C+S">Seongyu Park</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Requena%2C+B">Borja Requena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smal%2C+I">Ihor Smal</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06766v1-abstract-short" style="display: inline;"> Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the measurement of an individual trajectory are challenging tasks, which traditionally rely on calculating the mean squared displacement of the trajector&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06766v1-abstract-full').style.display = 'inline'; document.getElementById('2105.06766v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06766v1-abstract-full" style="display: none;"> Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the measurement of an individual trajectory are challenging tasks, which traditionally rely on calculating the mean squared displacement of the trajectory. However, this approach breaks down for cases of important practical interest, e.g., short or noisy trajectories, ensembles of heterogeneous trajectories, or non-ergodic processes. Recently, several new approaches have been proposed, mostly building on the ongoing machine-learning revolution. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition, the Anomalous Diffusion challenge (AnDi). Participating teams independently applied their own algorithms to a commonly-defined dataset including diverse conditions. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, providing practical advice for users and a benchmark for developers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06766v1-abstract-full').style.display = 'none'; document.getElementById('2105.06766v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 pages, 5 main figures, 1 table, 28 supplementary figures. Website: http://www.andi-challenge.org</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.13356">arXiv:2102.13356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.13356">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-5468/ac06c3">10.1088/1742-5468/ac06c3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Kinetic roughening and nontrivial scaling in the Kardar-Parisi-Zhang growth with long-range temporal correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tianshu Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+H">Hui Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.13356v2-abstract-short" style="display: inline;"> Long-range spatiotemporal correlations may play important roles in nonequilibrium surface growth process. In order to investigate the effects of long-range temporal correlation on dynamic scaling of growing surfaces, we perform extensive numerical simulations of the (1+1)- and (2+1)-dimensional Kardar-Parisi-Zhang (KPZ) growth system in the presence of temporally correlated noise, and compare our&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13356v2-abstract-full').style.display = 'inline'; document.getElementById('2102.13356v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.13356v2-abstract-full" style="display: none;"> Long-range spatiotemporal correlations may play important roles in nonequilibrium surface growth process. In order to investigate the effects of long-range temporal correlation on dynamic scaling of growing surfaces, we perform extensive numerical simulations of the (1+1)- and (2+1)-dimensional Kardar-Parisi-Zhang (KPZ) growth system in the presence of temporally correlated noise, and compare our results with previous theoretical predictions and numerical simulations. We find that surface morphologies are obviously affected with long-range temporal correlations, and as the temporal correlation exponent increases, the KPZ surfaces develop gradually faceted patterns in the saturated growth regimes. Our results show that the temporal correlated KPZ system displays evidently nontrivial dynamic properties when $0&lt;胃&lt;0.5$, the characteristic roughness exponents satisfy $伪&lt;伪_s$, and $伪_{loc}$ exhibiting non-universal scaling within local window sizes, which differs with the existing dynamic scaling classifications, both in the (1+1)- and (2+1)-dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.13356v2-abstract-full').style.display = 'none'; document.getElementById('2102.13356v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages,12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.10818">arXiv:2102.10818</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.10818">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abg8094">10.1126/sciadv.abg8094 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin Photovoltaic Effect in Magnetic van der Waals Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anderson%2C+E">Eric Anderson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+M+W">Matisse Wei-Yuan Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seyler%2C+K">Kyle Seyler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+X">Xiaosong Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Ting Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.10818v1-abstract-short" style="display: inline;"> The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin degree of freedom can be integrated to realize 2D spin-optoelectronics with spontaneous time-reversal symmetry breaking. Here, we report spin photovol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10818v1-abstract-full').style.display = 'inline'; document.getElementById('2102.10818v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.10818v1-abstract-full" style="display: none;"> The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin degree of freedom can be integrated to realize 2D spin-optoelectronics with spontaneous time-reversal symmetry breaking. Here, we report spin photovoltaic effects in vdW heterostructures of atomically thin magnet chromium triiodide (CrI3) sandwiched by graphene contacts. In the absence of a magnetic field, the photocurrent displays a distinct dependence on light helicity, which can be tuned by varying the magnetic states and photon energy. Circular polarization-resolved absorption measurements reveal that these observations originate from magnetic-order-coupled and thus helicity-dependent charge-transfer exciton states. The photocurrent displays multiple plateaus as the magnetic field is swept, which are associated with different spin configurations enabled by the layered antiferromagnetism and spin-flip transitions in CrI3. Remarkably, giant photo-magnetocurrent is observed, which tends to infinity for a small applied bias. Our results pave the way to explore emergent photo-spintronics by engineering magnetic vdW heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.10818v1-abstract-full').style.display = 'none'; document.getElementById('2102.10818v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11798">arXiv:2011.11798</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.11798">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.103.205111">10.1103/PhysRevB.103.205111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum Oscillations in the Field-induced Ferromagnetic State of MnBi$_{2-x}$Sb$_{x}$Te$_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+P">Paul Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhaoyu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Yue Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11798v1-abstract-short" style="display: inline;"> The intrinsic antiferromagnetic topological insulator MnBi$_{2}$Te$_{4}$ undergoes a metamagnetic transition in a c-axis magnetic field. It has been predicted that ferromagnetic MnBi$_{2}$Te$_{4}$ is an ideal Weyl semimetal with a single pair of Weyl nodes. Here we report measurements of quantum oscillations detected in the field-induced ferromagnetic phase of MnBi$_{2-x}$Sb$_{x}$Te$_{4}$, where S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11798v1-abstract-full').style.display = 'inline'; document.getElementById('2011.11798v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11798v1-abstract-full" style="display: none;"> The intrinsic antiferromagnetic topological insulator MnBi$_{2}$Te$_{4}$ undergoes a metamagnetic transition in a c-axis magnetic field. It has been predicted that ferromagnetic MnBi$_{2}$Te$_{4}$ is an ideal Weyl semimetal with a single pair of Weyl nodes. Here we report measurements of quantum oscillations detected in the field-induced ferromagnetic phase of MnBi$_{2-x}$Sb$_{x}$Te$_{4}$, where Sb substitution tunes the majority carriers from electrons to holes. Single frequency Shubnikov-de Haas oscillations were observed in a wide range of Sb concentrations (0.54 $\leq$ x $\leq$ 1.21). The evolution of the oscillation frequency and the effective mass shows reasonable agreement with the Weyl semimetal band-structure of ferromagnetic MnBi$_{2}$Te$_{4}$ predicted by density functional calculations. Intriguingly, the quantum oscillation frequency shows a strong temperature dependence, indicating that the electronic structure sensitively depends on magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11798v1-abstract-full').style.display = 'none'; document.getElementById('2011.11798v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 103, 205111 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.00555">arXiv:2011.00555</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.00555">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.0c05117">10.1021/acs.nanolett.0c05117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ovchinnikov%2C+D">Dmitry Ovchinnikov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiong Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+J">Jiaqi Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Minhao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Chong Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+H">Hao Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yayu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+Y">Yang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+J">Jiaqiang Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C">Cui-Zu Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+Y">Yong-Tao Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.00555v1-abstract-short" style="display: inline;"> The interplay between band topology and magnetic order plays a key role in quantum states of matter. MnBi2Te4, a van der Waals magnet, has recently emerged as an exciting platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer-number dependent topological states, supported by promising edge transport measurements. Furthermore, it b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00555v1-abstract-full').style.display = 'inline'; document.getElementById('2011.00555v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.00555v1-abstract-full" style="display: none;"> The interplay between band topology and magnetic order plays a key role in quantum states of matter. MnBi2Te4, a van der Waals magnet, has recently emerged as an exciting platform for exploring Chern insulator physics. Its layered antiferromagnetic order was predicted to enable even-odd layer-number dependent topological states, supported by promising edge transport measurements. Furthermore, it becomes a Chern insulator when all spins are aligned by an applied magnetic field. However, the evolution of the bulk electronic structure as the magnetic state is continuously tuned and its dependence on layer number remains unexplored. Here, employing multimodal probes, we establish one-to-one correspondence between bulk electronic structure, magnetic state, topological order, and layer thickness in atomically thin MnBi2Te4 devices. As the magnetic state is tuned through the canted magnetic phase, we observe a band crossing, i.e., the closing and reopening of the bulk bandgap, corresponding to the concurrent topological phase transition. Surprisingly, we find that the even- and odd-layer number devices exhibit a similar topological phase transition coupled to magnetic states, distinct from recent theoretical and experimental reports. Our findings shed new light on the interplay between band topology and magnetic order in this newly discovered topological magnet and validate the band crossing with concurrent measurements of topological invariant in a continuously tuned topological phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.00555v1-abstract-full').style.display = 'none'; document.getElementById('2011.00555v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.14154">arXiv:2010.14154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.14154">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsaelm.0c00560">10.1021/acsaelm.0c00560 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial Ferroelectric La-doped Hf0.5Zr0.5O2 Thin Films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tingfeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bachelet%2C+R">Romain Bachelet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saint-Girons%2C+G">Guillaume Saint-Girons</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Solanas%2C+R">Raul Solanas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fina%2C+I">Ignasi Fina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+F">Florencio Sanchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.14154v2-abstract-short" style="display: inline;"> Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance - retention dilemma in La-doped epitaxial films. Compared to undoped epitaxial films, large values of polarization are obtained in a wider thickness&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14154v2-abstract-full').style.display = 'inline'; document.getElementById('2010.14154v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.14154v2-abstract-full" style="display: none;"> Doping ferroelectric Hf0.5Zr0.5O2 with La is a promising route to improve endurance. However, the beneficial effect of La on the endurance of polycrystalline films may be accompanied by degradation of the retention. We have investigated the endurance - retention dilemma in La-doped epitaxial films. Compared to undoped epitaxial films, large values of polarization are obtained in a wider thickness range, whereas the coercive fields are similar, and the leakage current is substantially reduced. Compared to polycrystalline La-doped films, epitaxial La-doped films show more fatigue but there is not significant wake-up effect and endurance-retention dilemma. The persistent wake-up effect common to polycrystalline La-doped Hf0.5Zr0.5O2 films, is limited to a few cycles in epitaxial films. Despite fatigue, endurance in epitaxial La-doped films is more than 1010 cycles, and this good property is accompanied by excellent retention of more than 10 years. These results demonstrate that wake-up effect and endurance-retention dilemma are not intrinsic in La-doped Hf0.5Zr0.5O2. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.14154v2-abstract-full').style.display = 'none'; document.getElementById('2010.14154v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACS Appl. Electron. Mater. 2, 3221-3232 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13440">arXiv:2009.13440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13440">pdf</a>, <a href="https://arxiv.org/format/2009.13440">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-22239-4">10.1038/s41467-021-22239-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic domains and domain wall pinning in two-dimensional ferromagnets revealed by nanoscale imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Q">Qi-Chao Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anderson%2C+E">Eric Anderson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shalomayeva%2C+T">Tetyana Shalomayeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6rster%2C+J">Johaness F枚rster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brunner%2C+A">Andreas Brunner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%A4fe%2C+J">Joachim Gr盲fe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St%C3%B6hr%2C+R">Rainer St枚hr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wrachtrup%2C+J">J枚rg Wrachtrup</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13440v1-abstract-short" style="display: inline;"> Magnetic-domain structure and dynamics play an important role in understanding and controlling the magnetic properties of two-dimensional magnets, which are of interest to both fundamental studies and applications[1-5]. However, the probe methods based on the spin-dependent optical permeability[1,2,6] and electrical conductivity[7-10] can neither provide quantitative information of the magnetizati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13440v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13440v1-abstract-full" style="display: none;"> Magnetic-domain structure and dynamics play an important role in understanding and controlling the magnetic properties of two-dimensional magnets, which are of interest to both fundamental studies and applications[1-5]. However, the probe methods based on the spin-dependent optical permeability[1,2,6] and electrical conductivity[7-10] can neither provide quantitative information of the magnetization nor achieve nanoscale spatial resolution. These capabilities are essential to image and understand the rich properties of magnetic domains. Here, we employ cryogenic scanning magnetometry using a single-electron spin of a nitrogen-vacancy center in a diamond probe to unambiguously prove the existence of magnetic domains and study their dynamics in atomically thin CrBr$_3$. The high spatial resolution of this technique enables imaging of magnetic domains and allows to resolve domain walls pinned by defects. By controlling the magnetic domain evolution as a function of magnetic field, we find that the pinning effect is a dominant coercivity mechanism with a saturation magnetization of about 26~$渭_B$/nm$^2$ for bilayer CrBr$_3$. The magnetic-domain structure and pinning-effect dominated domain reversal process are verified by micromagnetic simulation. Our work highlights scanning nitrogen-vacancy center magnetometry as a quantitative probe to explore two-dimensional magnetism at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13440v1-abstract-full').style.display = 'none'; document.getElementById('2009.13440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13610">arXiv:2007.13610</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.13610">pdf</a>, <a href="https://arxiv.org/format/2007.13610">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Analytic continuation of the self-energy via Machine Learning techniques </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Taegeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valenti%2C+R">Roser Valenti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hunpyo Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13610v1-abstract-short" style="display: inline;"> We develop a novel analytic continuation method for self-energies on the Matsubara domain as computed by quantum Monte Carlo simulations within dynamical mean field theory (QMC+DMFT). Unlike a maximum entropy (maxEn) procedure employed for the last thirty years, our approach is based on a machine learning (ML) technique in combination with the iterative perturbative theory impurity solver of the d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13610v1-abstract-full').style.display = 'inline'; document.getElementById('2007.13610v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13610v1-abstract-full" style="display: none;"> We develop a novel analytic continuation method for self-energies on the Matsubara domain as computed by quantum Monte Carlo simulations within dynamical mean field theory (QMC+DMFT). Unlike a maximum entropy (maxEn) procedure employed for the last thirty years, our approach is based on a machine learning (ML) technique in combination with the iterative perturbative theory impurity solver of the dynamical mean field theory self-consistent process (IPT+DMFT). The input and output training datasets for ML are simultaneously obtained from IPT+DMFT calculations on Matsubara and real frequency domains, respectively. The QMC+DMFT self-energy on real frequencies is determined from the -- usually noisy -- input QMC+DMFT self-energy on the Matsubara domain and the trained ML kernel. Our approach is free from both, bias of ML training datasets and from fitting parameters present in the maxEn method. We demonstrate the efficiency of the method on the testbed frustrated Hubbard model on the square lattice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13610v1-abstract-full').style.display = 'none'; document.getElementById('2007.13610v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.11596">arXiv:2006.11596</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> On the Bogoliubov theory: Casimir effect in a single weakly interacting Bose gas at zero-temperature with Neumann boundary condition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+P+T">Pham The Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.11596v2-abstract-short" style="display: inline;"> Developing Bogoliubov theory of weakly interacting Bose gas in uncompacted three-dimension space, quantum fluctuation energy of one component dilute gas of Bose-Einstein condensate (BEC) confined to two parallel plates investigated at zero-temperature in grand canonical ensemble (GCE) with Neumann boundary condition (BC). The Casimir force considered in comparison to the one with Robin BC, Dirichl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11596v2-abstract-full').style.display = 'inline'; document.getElementById('2006.11596v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.11596v2-abstract-full" style="display: none;"> Developing Bogoliubov theory of weakly interacting Bose gas in uncompacted three-dimension space, quantum fluctuation energy of one component dilute gas of Bose-Einstein condensate (BEC) confined to two parallel plates investigated at zero-temperature in grand canonical ensemble (GCE) with Neumann boundary condition (BC). The Casimir force considered in comparison to the one with Robin BC, Dirichlet BC and periodic BC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.11596v2-abstract-full').style.display = 'none'; document.getElementById('2006.11596v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Some calculations should be repaired</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.14477">arXiv:2005.14477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.14477">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/d0nr02204g">10.1039/d0nr02204g <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High polarization, endurance and retention in sub-5 nm Hf$_{0.5}$Zr$_{0.5}$O$_2$ films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lyu%2C+J">Jike Lyu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tingfeng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fina%2C+I">Ignasi Fina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%A1nchez%2C+F">Florencio S谩nchez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.14477v1-abstract-short" style="display: inline;"> Ferroelectric HfO$_2$ is a promising material for new memory devices, but significant improvement of important properties is necessary to reach applications. However, precedent literature shows that a dilemma between polarization, endurance and retention exists. Since all these properties should be simultaneously high, overcoming this issue is of the highest relevance. Here, we demonstrate that hi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14477v1-abstract-full').style.display = 'inline'; document.getElementById('2005.14477v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.14477v1-abstract-full" style="display: none;"> Ferroelectric HfO$_2$ is a promising material for new memory devices, but significant improvement of important properties is necessary to reach applications. However, precedent literature shows that a dilemma between polarization, endurance and retention exists. Since all these properties should be simultaneously high, overcoming this issue is of the highest relevance. Here, we demonstrate that high crystalline quality sub-5 nm Hf0.5Zr0.5O2 capacitors, integrated epitaxially with Si(001), present combined high polarization (2Pr of 27 uC/cm2 in the pristine state), endurance (2Pr &gt; 6 uC/cm2 after E11 cycles) and retention (2Pr &gt; 12 uC/cm2 extrapolated at 10 years) using same poling conditions (2.5 V). This achievement is demonstrated in films thinner than 5 nm, thus opening bright possibilities in ferroelectric tunnel junctions and other devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.14477v1-abstract-full').style.display = 'none'; document.getElementById('2005.14477v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Supporting Information available at https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr02204g (paper published as open access)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nanoscale, 2020, 12, 11280 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07025">arXiv:2001.07025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07025">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-020-0999-1">10.1038/s41567-020-0999-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of 2D magnons in atomically thin CrI$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cenker%2C+J">John Cenker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bevin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suri%2C+N">Nishchay Suri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thijssen%2C+P">Pearl Thijssen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+A">Aaron Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07025v1-abstract-short" style="display: inline;"> Exfoliated chromium triiodide (CrI$_3$) is a layered van der Waals (vdW) magnetic insulator that consists of ferromagnetic layers coupled through antiferromagnetic interlayer exchange. The resulting permutations of magnetic configurations combined with the underlying crystal symmetry produces tunable magneto-optical phenomena that is unique to the two-dimensional (2D) limit. Here, we report the di&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07025v1-abstract-full').style.display = 'inline'; document.getElementById('2001.07025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07025v1-abstract-full" style="display: none;"> Exfoliated chromium triiodide (CrI$_3$) is a layered van der Waals (vdW) magnetic insulator that consists of ferromagnetic layers coupled through antiferromagnetic interlayer exchange. The resulting permutations of magnetic configurations combined with the underlying crystal symmetry produces tunable magneto-optical phenomena that is unique to the two-dimensional (2D) limit. Here, we report the direct observation of 2D magnons through magneto-Raman spectroscopy with optical selection rules that are strictly determined by the honeycomb lattice and magnetic states of atomically thin CrI$_3$. In monolayers, we observe an acoustic magnon mode of ~0.3 meV with cross-circularly polarized selection rules locked to the magnetization direction. These unique selection rules arise from the discrete conservation of angular momentum of photons and magnons dictated by threefold rotational symmetry in a rotational analogue to Umklapp scattering. In bilayers, by tuning between the layered antiferromagnetic and ferromagnetic-like states, we observe the switching of two magnon modes. The bilayer structure also enables Raman activity from the optical magnon mode at ~17 meV (~4.2 THz) that is otherwise Raman-silent in the monolayer. From these measurements, we quantitatively extract the spin wave gap, magnetic anisotropy, intralayer and interlayer exchange constants, and establish 2D magnets as a new system for exploring magnon physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07025v1-abstract-full').style.display = 'none'; document.getElementById('2001.07025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.01370">arXiv:2001.01370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.01370">pdf</a>, <a href="https://arxiv.org/format/2001.01370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.101.022613">10.1103/PhysRevE.101.022613 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchronization of active rotators interacting with environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Taegeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+H">Heetae Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Son%2C+S">Seung-Woo Son</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jo%2C+J">Junghyo Jo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.01370v1-abstract-short" style="display: inline;"> Multiple organs in a living system respond to environmental changes, and the signals from the organs regulate the physiological environment. Inspired by this biological feedback, we propose a simple autonomous system of active rotators to explain how multiple units are synchronized under a fluctuating environment. We find that the feedback via an environment can entrain rotators to have synchronou&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01370v1-abstract-full').style.display = 'inline'; document.getElementById('2001.01370v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.01370v1-abstract-full" style="display: none;"> Multiple organs in a living system respond to environmental changes, and the signals from the organs regulate the physiological environment. Inspired by this biological feedback, we propose a simple autonomous system of active rotators to explain how multiple units are synchronized under a fluctuating environment. We find that the feedback via an environment can entrain rotators to have synchronous phases for specific conditions. This mechanism is markedly different from the simple entrainment by a common oscillatory external stimulus that is not interacting with systems. We theoretically examine how the phase synchronization depends on the interaction strength between rotators and environment. Furthermore, we successfully demonstrate the proposed model by realizing an analog electric circuit with microelectronic devices. This bio-inspired platform can be used as a sensor for monitoring varying environments, and as a controller for amplifying signals by their feedback-induced synchronization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.01370v1-abstract-full').style.display = 'none'; document.getElementById('2001.01370v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. E 101, 022613 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.00634">arXiv:2001.00634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.00634">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-020-0620-0">10.1038/s41563-020-0620-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic proximity and nonreciprocal current switching in a monolayer WTe2 helical edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Wenjin Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+H+K">Han Kyou Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Palomaki%2C+T">Tauno Palomaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Bosong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+P">Paul Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D+H">David H. Cobden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.00634v1-abstract-short" style="display: inline;"> The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials. The ability to simply stack very different two dimensional (2D) van der Waals materials in intimate contact permits a different approach. Here we use this approa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00634v1-abstract-full').style.display = 'inline'; document.getElementById('2001.00634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.00634v1-abstract-full" style="display: none;"> The integration of diverse electronic phenomena, such as magnetism and nontrivial topology, into a single system is normally studied either by seeking materials that contain both ingredients, or by layered growth of contrasting materials. The ability to simply stack very different two dimensional (2D) van der Waals materials in intimate contact permits a different approach. Here we use this approach to couple the helical edges states in a 2D topological insulator, monolayer WTe2, to a 2D layered antiferromagnet, CrI3. We find that the edge conductance is sensitive to the magnetization state of the CrI3, and the coupling can be understood in terms of an exchange field from the nearest and next-nearest CrI3 layers that produces a gap in the helical edge. We also find that the nonlinear edge conductance depends on the magnetization of the nearest CrI3 layer relative to the current direction. At low temperatures this produces an extraordinarily large nonreciprocal current that is switched by changing the antiferromagnetic state of the CrI3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.00634v1-abstract-full').style.display = 'none'; document.getElementById('2001.00634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.01804">arXiv:1910.01804</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.01804">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41565-019-0598-4">10.1038/s41565-019-0598-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning Inelastic Light Scattering via Symmetry Control in 2D Magnet CrI$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bevin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cenker%2C+J">John Cenker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ray%2C+E+L">Essance L. Ray</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.01804v2-abstract-short" style="display: inline;"> The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magnetic order to optical modulation and data storage technologies. Here, we demonstrate a new magneto-optical effect, namely, the tuning of inelastically&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01804v2-abstract-full').style.display = 'inline'; document.getElementById('1910.01804v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.01804v2-abstract-full" style="display: none;"> The coupling between spin and charge degrees of freedom in a crystal imparts strong optical signatures on scattered electromagnetic waves. This has led to magneto-optical effects with a host of applications, from the sensitive detection of local magnetic order to optical modulation and data storage technologies. Here, we demonstrate a new magneto-optical effect, namely, the tuning of inelastically scattered light through symmetry control in atomically thin chromium triiodide (CrI$_3$). In monolayers, we found an extraordinarily large magneto-optical Raman effect from an A$_{1g}$ phonon mode due to the emergence of ferromagnetic order. The linearly polarized, inelastically scattered light rotates by ~40$^o$, more than two orders of magnitude larger than the rotation from MOKE under the same experimental conditions. In CrI$_3$ bilayers, we show that the same A$_{1g}$ phonon mode becomes Davydov-split into two modes of opposite parity, exhibiting divergent selection rules that depend on inversion symmetry and the underlying magnetic order. By switching between the antiferromagnetic states and the fully spin-polarized states with applied magnetic and electric fields, we demonstrate the magnetoelectrical control over their selection rules. Our work underscores the unique opportunities provided by 2D magnets for controlling the combined time-reversal and inversion symmetries to manipulate Raman optical selection rules and for exploring emergent magneto-optical effects and spin-phonon coupled physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.01804v2-abstract-full').style.display = 'none'; document.getElementById('1910.01804v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Nature Nanotechnology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06082">arXiv:1906.06082</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.06082">pdf</a>, <a href="https://arxiv.org/ps/1906.06082">ps</a>, <a href="https://arxiv.org/format/1906.06082">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0256-307X/36/7/077102">10.1088/0256-307X/36/7/077102 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single crystal growth and magnetoresistivity study of topological semimetal CoSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D+S">D. S. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mi%2C+Z+Y">Z. Y. Mi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y+J">Y. J. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">W. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+P+L">P. L. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+Y+T">Y. T. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G+T">G. T. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luo%2C+J+L">J. L. Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06082v1-abstract-short" style="display: inline;"> We report single crystal growth of CoSi, which has recently been recognized as a new type of topological semimetal hosting fourfold and sixfold degenerate nodes. The Shubnikov-de Haas quantum oscillation (QO) is observed on our crystals. There are two frequencies originating from almost isotropic bulk electron Fermi surfaces, in accordance with band structure calculations. The effective mass, scat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06082v1-abstract-full').style.display = 'inline'; document.getElementById('1906.06082v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06082v1-abstract-full" style="display: none;"> We report single crystal growth of CoSi, which has recently been recognized as a new type of topological semimetal hosting fourfold and sixfold degenerate nodes. The Shubnikov-de Haas quantum oscillation (QO) is observed on our crystals. There are two frequencies originating from almost isotropic bulk electron Fermi surfaces, in accordance with band structure calculations. The effective mass, scattering rate, and QO phase difference of the two frequencies are extracted and discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06082v1-abstract-full').style.display = 'none'; document.getElementById('1906.06082v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear on Chinese Physics Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Chin. Phys. Lett. 2019, Vol. 36 Issue (7): 077102 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.10860">arXiv:1905.10860</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.10860">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-019-0505-2">10.1038/s41563-019-0505-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switching 2D Magnetic States via Pressure Tuning of Layer Stacking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yankowitz%2C+M">Matthew Yankowitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Z">Zhong Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Q">Qianni Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwangbo%2C+K">Kyle Hwangbo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+B">Bosong Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graf%2C+D">David Graf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Ting Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dean%2C+C+R">Cory R. Dean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.10860v1-abstract-short" style="display: inline;"> The physical properties of two-dimensional van der Waals (2D vdW) crystals depend sensitively on the interlayer coupling, which is intimately connected to the stacking arrangement and the interlayer spacing. For example, simply changing the twist angle between graphene layers can induce a variety of correlated electronic phases, which can be controlled further in a continuous manner by applying hy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.10860v1-abstract-full').style.display = 'inline'; document.getElementById('1905.10860v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.10860v1-abstract-full" style="display: none;"> The physical properties of two-dimensional van der Waals (2D vdW) crystals depend sensitively on the interlayer coupling, which is intimately connected to the stacking arrangement and the interlayer spacing. For example, simply changing the twist angle between graphene layers can induce a variety of correlated electronic phases, which can be controlled further in a continuous manner by applying hydrostatic pressure to decrease the interlayer spacing. In the recently discovered 2D magnets, theory suggests that the interlayer exchange coupling strongly depends on layer separation, while the stacking arrangement can even change the sign of the magnetic exchange, thus drastically modifying the ground state. Here, we demonstrate pressure tuning of magnetic order in the 2D magnet CrI3. We probe the magnetic states using tunneling and scanning magnetic circular dichroism microscopy measurements. We find that the interlayer magnetic coupling can be more than doubled by hydrostatic pressure. In bilayer CrI3, pressure induces a transition from layered antiferromagnetic to ferromagnetic phases. In trilayer CrI3, pressure can create coexisting domains of three phases, one ferromagnetic and two distinct antiferromagnetic. The observed changes in magnetic order can be explained by changes in the stacking arrangement. Such coupling between stacking order and magnetism provides ample opportunities for designer magnetic phases and functionalities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.10860v1-abstract-full').style.display = 'none'; document.getElementById('1905.10860v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08897">arXiv:1905.08897</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Comment on &#34;Topological Nodal-Net Semimetal in a Graphene Network Structure&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tielei Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xin Cui</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08897v3-abstract-short" style="display: inline;"> Recently, a distinct topological semimetal, nodal-net semimetal, has been identified by Wang et al. through ab initio calculations [Phys. Rev. Lett. 120, 026402 (2018)]. The authors claimed that a new body-centered tetragonal carbon allotrope with I4/mmm symmetry, termed bct-C40, can host this novel state exhibiting boxed-astrisk shaped nodal nets. In this Comment, we demonstrate that bct-C40 is i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08897v3-abstract-full').style.display = 'inline'; document.getElementById('1905.08897v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08897v3-abstract-full" style="display: none;"> Recently, a distinct topological semimetal, nodal-net semimetal, has been identified by Wang et al. through ab initio calculations [Phys. Rev. Lett. 120, 026402 (2018)]. The authors claimed that a new body-centered tetragonal carbon allotrope with I4/mmm symmetry, termed bct-C40, can host this novel state exhibiting boxed-astrisk shaped nodal nets. In this Comment, we demonstrate that bct-C40 is in fact a nodal surface semimetal, the concept of which has been proposed as early as 2016 [Phys. Rev. B 93, 085427 (2016)]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08897v3-abstract-full').style.display = 'none'; document.getElementById('1905.08897v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Although the quasi-nodal surface has been identified in our preprint, there is a tiny band gap (millivolt-level) in the non high symmetry k-line (e.g.,K1-K5). In this regard, the proposed bct-C40 should be a nodal net semimetal based on the strict definition of topological semimetal. We would like to withdraw this work to avoid misleading the readers from Arxiv</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 120, 026402 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.03577">arXiv:1904.03577</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.03577">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1445-3">10.1038/s41586-019-1445-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant and nonreciprocal second harmonic generation from layered antiferromagnetism in bilayer CrI3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Z">Zeyuan Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+Y">Yangfan Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+G">Genevieve Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bevin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shan%2C+Y">Yuwei Shan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shuang Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D">Di Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gao%2C+C">Chunlei Gao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+Z">Zhanghai Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M">Michael McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+T">Ting Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wei-Tao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+S">Shiwei Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.03577v1-abstract-short" style="display: inline;"> Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. Recently, the van der Waals magnet, chromium triiodide (CrI3), emerged as the first layered antiferromagnetic insulator in its few-layer form, opening up ample opportunities for novel device functionalities. Here, we discovered an emergent nonreciprocal second order nonlinear o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03577v1-abstract-full').style.display = 'inline'; document.getElementById('1904.03577v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.03577v1-abstract-full" style="display: none;"> Layered antiferromagnetism is the spatial arrangement of ferromagnetic layers with antiferromagnetic interlayer coupling. Recently, the van der Waals magnet, chromium triiodide (CrI3), emerged as the first layered antiferromagnetic insulator in its few-layer form, opening up ample opportunities for novel device functionalities. Here, we discovered an emergent nonreciprocal second order nonlinear optical effect in bilayer CrI3. The observed second harmonic generation (SHG) is giant: several orders of magnitude larger than known magnetization induced SHG and comparable to SHG in the best 2D nonlinear optical materials studied so far (e.g. MoS2). We showed that while the parent lattice of bilayer CrI3 is centrosymmetric and thus does not contribute to the SHG signal, the observed nonreciprocal SHG originates purely from the layered antiferromagnetic order, which breaks both spatial inversion and time reversal symmetries. Furthermore, polarization-resolved measurements revealed the underlying C2h symmetry, and thus monoclinic stacking order in CrI3 bilayers, providing crucial structural information for the microscopic origin of layered antiferromagnetism. Our results highlight SHG as a highly sensitive probe that can reveal subtle magnetic order and open novel nonlinear and nonreciprocal optical device possibilities based on 2D magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.03577v1-abstract-full').style.display = 'none'; document.getElementById('1904.03577v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 572, 497-501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00261">arXiv:1904.00261</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.00261">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.9b01317">10.1021/acs.nanolett.9b01317 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomically Thin CrCl3: An in-Plane Layered Antiferromagnetic Insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinghan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+N+P">Nathan P. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Clark%2C+G">Genevieve Clark</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+M">Minhao He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00261v1-abstract-short" style="display: inline;"> The recent discovery of magnetism in atomically thin layers of van der Waals (vdW) crystals has created new opportunities for exploring magnetic phenomena in the two-dimensional (2D) limit. In most 2D magnets studied to date the c-axis is an easy axis, so that at zero applied field the polarization of each layer is perpendicular to the plane. Here, we demonstrate that atomically thin CrCl3 is a la&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00261v1-abstract-full').style.display = 'inline'; document.getElementById('1904.00261v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00261v1-abstract-full" style="display: none;"> The recent discovery of magnetism in atomically thin layers of van der Waals (vdW) crystals has created new opportunities for exploring magnetic phenomena in the two-dimensional (2D) limit. In most 2D magnets studied to date the c-axis is an easy axis, so that at zero applied field the polarization of each layer is perpendicular to the plane. Here, we demonstrate that atomically thin CrCl3 is a layered antiferromagnetic insulator with an easy-plane normal to the c-axis, that is the polarization is in the plane of each layer and has no preferred direction within it. Ligand field photoluminescence at 870 nm is observed down to the monolayer limit, demonstrating its insulating properties. We investigate the in-plane magnetic order using tunneling magnetoresistance in graphene/CrCl3/graphene tunnel junctions, establishing that the interlayer coupling is antiferromagnetic down to the bilayer. From the temperature dependence of the magnetoresistance we obtain an effective magnetic phase diagram for the bilayer. Our result shows that CrCl3 should be useful for studying the physics of 2D phase transitions and for making new kinds of vdW spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00261v1-abstract-full').style.display = 'none'; document.getElementById('1904.00261v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01501">arXiv:1901.01501</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01501">pdf</a>, <a href="https://arxiv.org/format/1901.01501">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.045153">10.1103/PhysRevB.100.045153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerated Continuous time quantum Monte Carlo method with Machine Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Taegeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+H">Hunpyo Lee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01501v1-abstract-short" style="display: inline;"> An acceleration of continuous time quantum Monte Carlo (CTQMC) methods is a potentially interesting branch of work as they are matchless as impurity solvers of a density functional theory in combination with a dynamical mean field theory approach for the description of electronic structures of strongly correlated materials. The inversion of the $k \times k$ matrix given by the diagram expansion or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01501v1-abstract-full').style.display = 'inline'; document.getElementById('1901.01501v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01501v1-abstract-full" style="display: none;"> An acceleration of continuous time quantum Monte Carlo (CTQMC) methods is a potentially interesting branch of work as they are matchless as impurity solvers of a density functional theory in combination with a dynamical mean field theory approach for the description of electronic structures of strongly correlated materials. The inversion of the $k \times k$ matrix given by the diagram expansion order $k$ in the CTQMC update and the multiplication of the $k \times k$ matrix and the non-interacting Green&#39;s function to measure the impurity Green&#39;s function are computationally time-consuming. Here, we propose the CTQMC method in combination with a machine learning technique, which would eliminate the need for multiplication of the matrix with the non-interacting Green&#39;s function. This method predicts the accurate impurity Green&#39;s function and double occupancy at low temperature, and also considers the physical properties of high Matsubara frequency in a much shorter computational time than the conventional CTQMC method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01501v1-abstract-full').style.display = 'none'; document.getElementById('1901.01501v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 045153 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.11304">arXiv:1812.11304</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1812.11304">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Magnetization flip in Fe-Cr-Ga system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+H+G">H. G. Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B+T">B. T Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+J">J. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yue%2C+M">M. Yue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+E+K">E. K. Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W+H">W. H. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+G+H">G. H. Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.11304v1-abstract-short" style="display: inline;"> A systematic investigation about the structure and magnetism of Fe75-xCr25Gax (11&lt;x&lt;33) and Fe50Cr50-yGay (0&lt;y&lt;33) series has been carried out in this work. It shows that the parent Fe50Cr25Ga25 phase has higher tolerance for Ga replacing Cr than replacing Fe atoms. An abrupt flip of Curie temperature and magnetization in the Fe50Cr50-yGay (0&lt;y&lt;33) series was observed at the composition of Fe50Cr2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11304v1-abstract-full').style.display = 'inline'; document.getElementById('1812.11304v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.11304v1-abstract-full" style="display: none;"> A systematic investigation about the structure and magnetism of Fe75-xCr25Gax (11&lt;x&lt;33) and Fe50Cr50-yGay (0&lt;y&lt;33) series has been carried out in this work. It shows that the parent Fe50Cr25Ga25 phase has higher tolerance for Ga replacing Cr than replacing Fe atoms. An abrupt flip of Curie temperature and magnetization in the Fe50Cr50-yGay (0&lt;y&lt;33) series was observed at the composition of Fe50Cr25Ga25. We proposed an explanation concerning anti-sites occupation and magnetic structure transition in this series. The induced structure is proved energetically favorable from first-principles calculations. This work can help us to understand the dependences between the crystal structure and magnetism in Fe-based Heusler compounds, and provides a method to deduce the atomic configurations based on the evolution of magnetism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.11304v1-abstract-full').style.display = 'none'; document.getElementById('1812.11304v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.11777">arXiv:1810.11777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.11777">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> All-Silicon Topological Semimetals with Closed Nodal Line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhifeng Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xin%2C+H">Hongli Xin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+L">Li Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Y">Yingqiao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tielei Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cui%2C+X">Xin Cui</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+G">Guojun Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+J">Jijun Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.11777v1-abstract-short" style="display: inline;"> Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystals in the zeolite frameworks by first-principles calculations, we disclose two structurally stable Si allotropes (AHT-Si24 and VFI-Si36) containing ope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11777v1-abstract-full').style.display = 'inline'; document.getElementById('1810.11777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.11777v1-abstract-full" style="display: none;"> Owing to the natural compatibility with current semiconductor industry, silicon allotropes with diverse structural and electronic properties provide promising platforms for the next-generation Si-based devices. After screening 230 all-silicon crystals in the zeolite frameworks by first-principles calculations, we disclose two structurally stable Si allotropes (AHT-Si24 and VFI-Si36) containing open channels as topological node-line semimetals with Dirac nodal points forming a nodal loop in the kz=0 plane of Brillouin zone. Interestingly, their nodal loops protected by inversion and time-reversal symmetries are robust against SU(2) symmetry breaking due to very weak spin-orbit coupling of Si. When the nodal lines are projected onto the (001) surface, flat surface bands can be observed because of the nontrivial topology of the bulk band structures. Our discoveries extend the topological physics to the three-dimensional Si materials, highlighting the possibility to realize low-cost, nontoxic and semiconductor-compatible Si-based electronics with topological quantum states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.11777v1-abstract-full').style.display = 'none'; document.getElementById('1810.11777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.09788">arXiv:1809.09788</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.09788">pdf</a>, <a href="https://arxiv.org/ps/1809.09788">ps</a>, <a href="https://arxiv.org/format/1809.09788">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Casimir force of a dilute Bose gas confined by a parallel plate geometry in improved Hatree-Fock approximation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Van+Thu%2C+N">Nguyen Van Thu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+P+T">Pham The Song</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.09788v1-abstract-short" style="display: inline;"> Within framework of quantum field theory, in improved Hatree-Fock (IHF) approximation, we have considered a dilute single Bose-Einstein condensate (BEC) confined between two parallel plates. We found that the effective mass and order parameter of BEC strongly depend on distance separating two plates. Our results shows that the effective mass, order parameter and the Casimir force in IHF approximat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09788v1-abstract-full').style.display = 'inline'; document.getElementById('1809.09788v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.09788v1-abstract-full" style="display: none;"> Within framework of quantum field theory, in improved Hatree-Fock (IHF) approximation, we have considered a dilute single Bose-Einstein condensate (BEC) confined between two parallel plates. We found that the effective mass and order parameter of BEC strongly depend on distance separating two plates. Our results shows that the effective mass, order parameter and the Casimir force in IHF approximation equal to their values in one-loop approximation added a corrected term due to contribution of two-loop diagrams. We also show that the one-loop approximation is enough for calculating Casimir effect in an ideal Bose gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.09788v1-abstract-full').style.display = 'none'; document.getElementById('1809.09788v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.05285">arXiv:1807.05285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.05285">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.8b04160">10.1021/acs.nanolett.8b04160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Voltage Control of a van der Waals Spin-Filter Magnetic Tunnel Junction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+M+W">Matisse Wei-Yuan Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carnahan%2C+C">Caitlin Carnahan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinghan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.05285v1-abstract-short" style="display: inline;"> Atomically thin chromium triiodide (CrI3) has recently been identified as a layered antiferromagnetic insulator, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled. This unusual magnetic structure naturally comprises a series of anti-aligned spin filters which can be utilized to make spin-filter magnetic tunnel junctions with very large tunneling magnetoresistance (TMR).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05285v1-abstract-full').style.display = 'inline'; document.getElementById('1807.05285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.05285v1-abstract-full" style="display: none;"> Atomically thin chromium triiodide (CrI3) has recently been identified as a layered antiferromagnetic insulator, in which adjacent ferromagnetic monolayers are antiferromagnetically coupled. This unusual magnetic structure naturally comprises a series of anti-aligned spin filters which can be utilized to make spin-filter magnetic tunnel junctions with very large tunneling magnetoresistance (TMR). Here we report voltage control of TMR formed by four-layer CrI3 sandwiched by monolayer graphene contacts in a dual-gated structure. By varying the gate voltages at fixed magnetic field, the device can be switched reversibly between bistable magnetic states with the same net magnetization but drastically different resistance (by a factor of ten or more). In addition, without switching the state, the TMR can be continuously modulated between 17,000% and 57,000%, due to the combination of spin-dependent tunnel barrier with changing carrier distributions in the graphene contacts. Our work demonstrates new kinds of magnetically moderated transistor action and opens up possibilities for voltage-controlled van der Waals spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.05285v1-abstract-full').style.display = 'none'; document.getElementById('1807.05285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.02559">arXiv:1803.02559</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.02559">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-018-0149-7">10.1038/s41563-018-0149-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-Dimensional Itinerant Ising Ferromagnetism in Atomically thin Fe3GeTe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fei%2C+Z">Zaiyao Fei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bevin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malinowski%2C+P">Paul Malinowski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanchez%2C+J">Joshua Sanchez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+X">Xiaoyang Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=May%2C+A">Andrew May</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+W">Weida Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D">David Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chu%2C+J">Jiun-Haw Chu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.02559v1-abstract-short" style="display: inline;"> Recent discoveries of intrinsic two-dimensional (2D) ferromagnetism in insulating/semiconducting van der Waals (vdW) crystals open up new possibilities for studying fundamental 2D magnetism and devices employing localized spins. However, a vdW material that exhibits 2D itinerant magnetism remains elusive. In fact, the synthesis of such single-crystal ferromagnetic metals with strong perpendicular&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02559v1-abstract-full').style.display = 'inline'; document.getElementById('1803.02559v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.02559v1-abstract-full" style="display: none;"> Recent discoveries of intrinsic two-dimensional (2D) ferromagnetism in insulating/semiconducting van der Waals (vdW) crystals open up new possibilities for studying fundamental 2D magnetism and devices employing localized spins. However, a vdW material that exhibits 2D itinerant magnetism remains elusive. In fact, the synthesis of such single-crystal ferromagnetic metals with strong perpendicular anisotropy at the atomically thin limit has been a long-standing challenge. Here, we demonstrate that monolayer Fe3GeTe2 is a robust 2D itinerant ferromagnet with strong out-of-plane anisotropy. Layer-dependent studies reveal a crossover from 3D to 2D Ising ferromagnetism for thicknesses less than 4 nm (five layers), accompanying a fast drop of the Curie temperature from 207 K down to 130 K in the monolayer. For Fe3GeTe2 flakes thicker than ~15 nm, a peculiar magnetic behavior emerges within an intermediate temperature range, which we show is due to the formation of labyrinthine domain patterns. Our work introduces a novel atomically thin ferromagnetic metal that could be useful for the study of controllable 2D itinerant Ising ferromagnetism and for engineering spintronic vdW heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02559v1-abstract-full').style.display = 'none'; document.getElementById('1803.02559v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.08679">arXiv:1801.08679</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.08679">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aar4851">10.1126/science.aar4851 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant Tunneling Magnetoresistance in Spin-Filter van der Waals Heterostructures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tiancheng Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cai%2C+X">Xinghan Cai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+M+W">Matisse Wei-Yuan Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+X">Xiaoou Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+B">Bevin Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+N+P">Nathan P. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seyler%2C+K+L">Kyle L. Seyler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhu%2C+L">Lin Zhu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=McGuire%2C+M+A">Michael A. McGuire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cobden%2C+D+H">David H. Cobden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xiao%2C+D">Di Xiao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Wang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.08679v1-abstract-short" style="display: inline;"> Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here we report novel multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunnelin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08679v1-abstract-full').style.display = 'inline'; document.getElementById('1801.08679v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.08679v1-abstract-full" style="display: none;"> Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here we report novel multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. These devices also show multiple resistance states as a function of magnetic field, suggesting the potential for multi-bit functionalities using an individual vdW sf-MTJ. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI3. Our work reveals the possibility to push magnetic information storage to the atomically thin limit, and highlights CrI3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08679v1-abstract-full').style.display = 'none'; document.getElementById('1801.08679v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1603.04579">arXiv:1603.04579</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1603.04579">pdf</a>, <a href="https://arxiv.org/ps/1603.04579">ps</a>, <a href="https://arxiv.org/format/1603.04579">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.94.035431">10.1103/PhysRevB.94.035431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impurity scattering and Friedel oscillations in mono-layer black phosphorus </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zou%2C+Y+L">Y. L. Zou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+J+T">J. T. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bai%2C+C+X">C. X. Bai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+K">K. Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1603.04579v2-abstract-short" style="display: inline;"> We study the effect of impurity scattering effect in black phosphorurene (BP) in this work. For single impurity, we calculate impurity induced local density of states (LDOS) in momentum space numerically based on tight-binding Hamiltonian. In real space, we calculate LDOS and Friedel oscillation analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are investigated using $T$-matr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.04579v2-abstract-full').style.display = 'inline'; document.getElementById('1603.04579v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1603.04579v2-abstract-full" style="display: none;"> We study the effect of impurity scattering effect in black phosphorurene (BP) in this work. For single impurity, we calculate impurity induced local density of states (LDOS) in momentum space numerically based on tight-binding Hamiltonian. In real space, we calculate LDOS and Friedel oscillation analytically. LDOS shows strong anisotropy in BP. Many impurities in BP are investigated using $T$-matrix approximation when the density is low. Midgap states appear in band gap with peaks in DOS. The peaks of midgap states are dependent on impurity potential. For finite positive potential, the impurity tends to bind negative charge carriers and vise versa. The infinite impurity potential problem is related to chiral symmetry in BP. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1603.04579v2-abstract-full').style.display = 'none'; document.getElementById('1603.04579v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 94, 035431 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.01341">arXiv:1509.01341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.01341">pdf</a>, <a href="https://arxiv.org/ps/1509.01341">ps</a>, <a href="https://arxiv.org/format/1509.01341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3938/jkps.67.1583">10.3938/jkps.67.1583 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural evolution of bismuth sodium titanate induced by A-site non-stoichiometry: Neutron powder diffraction studies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jeong%2C+I+-">I. -K. Jeong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sung%2C+Y+S">Y. S. Sung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T+K">T. K. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+M+-">M. -H. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Llobet%2C+A">A. Llobet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.01341v1-abstract-short" style="display: inline;"> We performed neutron powder diffraction measurements on (Bi$_{0.5}$Na$_{0.5+x}$)TiO$_3$ and (Bi$_{0.5+y}$Na$_{0.5}$)TiO$_3$ to study structural evolution induced by the non-stoichiometry. Despite the non-stoichiometry, the local structure ($r$$\leq$ 3.5 脜) from the pair distribution function analysis is barely affected by the sodium deficit of up to -5 mol%. With increasing pair distance, however,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01341v1-abstract-full').style.display = 'inline'; document.getElementById('1509.01341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.01341v1-abstract-full" style="display: none;"> We performed neutron powder diffraction measurements on (Bi$_{0.5}$Na$_{0.5+x}$)TiO$_3$ and (Bi$_{0.5+y}$Na$_{0.5}$)TiO$_3$ to study structural evolution induced by the non-stoichiometry. Despite the non-stoichiometry, the local structure ($r$$\leq$ 3.5 脜) from the pair distribution function analysis is barely affected by the sodium deficit of up to -5 mol%. With increasing pair distance, however, the atomic pair correlations weaken due to the disorder caused by the sodium deficiency. Although the sodium and the bismuth share the same crystallographic site, their non-stoichiometry have rather opposite effects as revealed from a distinctive distortion of the Bragg peaks. In addition, Rietveld refinement demonstrates that the octahedral tilting is continually suppressed by the sodium deficit of up to -5 mol%. This is contrary to the effect of the bismuth deficiency, which enhances the octahedral tilting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.01341v1-abstract-full').style.display = 'none'; document.getElementById('1509.01341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1502.07524">arXiv:1502.07524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1502.07524">pdf</a>, <a href="https://arxiv.org/format/1502.07524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4931458">10.1063/1.4931458 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Shuttle-promoted nano-mechanical current switch </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Taegeun Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gorelik%2C+L+Y">Leonid Y. Gorelik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhter%2C+R+I">Robert I. Shekhter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kiselev%2C+M+N">Mikhail N. Kiselev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikoin%2C+K">Konstantin Kikoin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1502.07524v2-abstract-short" style="display: inline;"> We investigate electron shuttling in three-terminal nanoelectromechanocal device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07524v2-abstract-full').style.display = 'inline'; document.getElementById('1502.07524v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1502.07524v2-abstract-full" style="display: none;"> We investigate electron shuttling in three-terminal nanoelectromechanocal device built on a movable metallic rod oscillating between two drains. The device shows a double-well shaped electromechanical potential tunable by a source-drain bias voltage. Four stationary regimes controllable by the bias are found for this device: (i) single stable fixed point, (ii) two stable fixed points, (iii) two limiting cycles, and (iv) single limiting cycle. In the presence of perpendicular magnetic field the Lorentz force makes possible switching from one electromechanical state to another. The mechanism of tunable transitions between various stable regimes based on the interplay between voltage controlled electromechanical instability and magnetically controlled switching is suggested. The switching phenomenon is implemented for achieving both a reliable \emph{active} current switch and sensoring of small variations of magnetic field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1502.07524v2-abstract-full').style.display = 'none'; document.getElementById('1502.07524v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 107, 123104 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.2903">arXiv:1412.2903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1412.2903">pdf</a>, <a href="https://arxiv.org/format/1412.2903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Hysteresis in a Superfluid Atom Circuit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+T">Tieling Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+D+L">D. L. Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.2903v3-abstract-short" style="display: inline;"> The energy band structure of a rotating BEC with a link in a quasi-one-dimensional torus and the role of dissipation is studied. Through this study we are able to give a microscopic interpretation of hysteresis recently observed in the experiment and we confirm that the hysteresis is the result of the presence of metastable state. We consider of both the adiabatic change and the instantaneous chan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2903v3-abstract-full').style.display = 'inline'; document.getElementById('1412.2903v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.2903v3-abstract-full" style="display: none;"> The energy band structure of a rotating BEC with a link in a quasi-one-dimensional torus and the role of dissipation is studied. Through this study we are able to give a microscopic interpretation of hysteresis recently observed in the experiment and we confirm that the hysteresis is the result of the presence of metastable state. We consider of both the adiabatic change and the instantaneous change of the rotation, and exhibit the differences between them. It is found that the sharp and size of the hysteresis loop change drastically with the strength of the link. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.2903v3-abstract-full').style.display = 'none'; document.getElementById('1412.2903v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Song%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Song%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10