CINXE.COM
Ortogonalidad (matemática) - Wikipedia, la enciclopedia libre
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="es" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ortogonalidad (matemática) - Wikipedia, la enciclopedia libre</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )eswikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"dmy","wgMonthNames":["","enero","febrero","marzo","abril","mayo","junio","julio","agosto","septiembre","octubre","noviembre","diciembre"],"wgRequestId":"b58e69a5-d4c2-4da0-b54e-1e612e7dae3f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ortogonalidad_(matemática)","wgTitle":"Ortogonalidad (matemática)","wgCurRevisionId":161799413,"wgRevisionId":161799413,"wgArticleId":632041,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Álgebra abstracta","Álgebra lineal"],"wgPageViewLanguage":"es","wgPageContentLanguage":"es","wgPageContentModel":"wikitext","wgRelevantPageName":"Ortogonalidad_(matemática)","wgRelevantArticleId":632041,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Ortogonal","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"es","pageLanguageDir":"ltr","pageVariantFallbacks":"es"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":6000,"wgInternalRedirectTargetUrl":"/wiki/Ortogonalidad_(matem%C3%A1tica)","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q215067","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":true,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE ={"ext.gadget.imagenesinfobox":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","mediawiki.page.gallery.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.a-commons-directo","ext.gadget.ReferenceTooltips","ext.gadget.refToolbar","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups", "ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=es&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=es&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=es&modules=ext.gadget.imagenesinfobox&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=es&modules=site.styles&only=styles&skin=vector-2022"> <noscript><link rel="stylesheet" href="/w/load.php?lang=es&modules=noscript&only=styles&skin=vector-2022"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2c/3D_coordinate_system.svg/1200px-3D_coordinate_system.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2c/3D_coordinate_system.svg/800px-3D_coordinate_system.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/2/2c/3D_coordinate_system.svg/640px-3D_coordinate_system.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ortogonalidad (matemática) - Wikipedia, la enciclopedia libre"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//es.m.wikipedia.org/wiki/Ortogonalidad_(matem%C3%A1tica)"> <link rel="alternate" type="application/x-wiki" title="Editar" href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (es)"> <link rel="EditURI" type="application/rsd+xml" href="//es.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://es.wikipedia.org/wiki/Ortogonalidad_(matem%C3%A1tica)"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.es"> <link rel="alternate" type="application/atom+xml" title="Canal Atom de Wikipedia" href="/w/index.php?title=Especial:CambiosRecientes&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ortogonalidad_matemática rootpage-Ortogonalidad_matemática skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ir al contenido</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Menú principal" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Menú principal</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Menú principal</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">ocultar</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navegación </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Wikipedia:Portada" title="Visitar la página principal [z]" accesskey="z"><span>Portada</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Portal:Comunidad" title="Acerca del proyecto, lo que puedes hacer, dónde encontrar información"><span>Portal de la comunidad</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Actualidad" title="Encuentra información de contexto sobre acontecimientos actuales"><span>Actualidad</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Especial:CambiosRecientes" title="Lista de cambios recientes en la wiki [r]" accesskey="r"><span>Cambios recientes</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasNuevas"><span>Páginas nuevas</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Especial:Aleatoria" title="Cargar una página al azar [x]" accesskey="x"><span>Página aleatoria</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/Ayuda:Contenidos" title="El lugar para aprender"><span>Ayuda</span></a></li><li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/Wikipedia:Informes_de_error"><span>Notificar un error</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Wikipedia:Portada" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="La enciclopedia libre" src="/static/images/mobile/copyright/wikipedia-tagline-es.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Especial:Buscar" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Buscar en este wiki [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Buscar</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Buscar en Wikipedia" aria-label="Buscar en Wikipedia" autocapitalize="sentences" title="Buscar en este wiki [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Especial:Buscar"> </div> <button class="cdx-button cdx-search-input__end-button">Buscar</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Herramientas personales"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Apariencia" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Apariencia</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_es.wikipedia.org&uselang=es" class=""><span>Donaciones</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Crear_una_cuenta&returnto=Ortogonalidad+%28matem%C3%A1tica%29" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio" class=""><span>Crear una cuenta</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Especial:Entrar&returnto=Ortogonalidad+%28matem%C3%A1tica%29" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o" class=""><span>Acceder</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Más opciones" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas personales" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Herramientas personales</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Menú de usuario" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_es.wikipedia.org&uselang=es"><span>Donaciones</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Crear_una_cuenta&returnto=Ortogonalidad+%28matem%C3%A1tica%29" title="Te recomendamos crear una cuenta e iniciar sesión; sin embargo, no es obligatorio"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Crear una cuenta</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Especial:Entrar&returnto=Ortogonalidad+%28matem%C3%A1tica%29" title="Te recomendamos iniciar sesión, aunque no es obligatorio [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Acceder</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Páginas para editores desconectados <a href="/wiki/Ayuda:Introducci%C3%B3n" aria-label="Obtenga más información sobre editar"><span>más información</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Especial:MisContribuciones" title="Una lista de modificaciones hechas desde esta dirección IP [y]" accesskey="y"><span>Contribuciones</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Especial:MiDiscusi%C3%B3n" title="Discusión sobre ediciones hechas desde esta dirección IP [n]" accesskey="n"><span>Discusión</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Sitio"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contenidos" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contenidos</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">ocultar</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Inicio</div> </a> </li> <li id="toc-Ortogonalidad_en_espacios_vectoriales" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ortogonalidad_en_espacios_vectoriales"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Ortogonalidad en espacios vectoriales</span> </div> </a> <button aria-controls="toc-Ortogonalidad_en_espacios_vectoriales-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Alternar subsección Ortogonalidad en espacios vectoriales</span> </button> <ul id="toc-Ortogonalidad_en_espacios_vectoriales-sublist" class="vector-toc-list"> <li id="toc-Definición" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Definición"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Definición</span> </div> </a> <ul id="toc-Definición-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complemento_ortogonal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complemento_ortogonal"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Complemento ortogonal</span> </div> </a> <ul id="toc-Complemento_ortogonal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ortogonalidad_y_perpendicularidad" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ortogonalidad_y_perpendicularidad"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Ortogonalidad y perpendicularidad</span> </div> </a> <ul id="toc-Ortogonalidad_y_perpendicularidad-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ortogonalidad_respecto_de_una_matriz_(A-ortogonalidad)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ortogonalidad_respecto_de_una_matriz_(A-ortogonalidad)"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Ortogonalidad respecto de una matriz (A-ortogonalidad)</span> </div> </a> <ul id="toc-Ortogonalidad_respecto_de_una_matriz_(A-ortogonalidad)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Transformación_ortogonal" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Transformación_ortogonal"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Transformación ortogonal</span> </div> </a> <ul id="toc-Transformación_ortogonal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ortogonalidad_en_otros_contextos" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Ortogonalidad_en_otros_contextos"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Ortogonalidad en otros contextos</span> </div> </a> <ul id="toc-Ortogonalidad_en_otros_contextos-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sistemas_de_coordenadas_ortogonales" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sistemas_de_coordenadas_ortogonales"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Sistemas de coordenadas ortogonales</span> </div> </a> <ul id="toc-Sistemas_de_coordenadas_ortogonales-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Véase_también" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Véase_también"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Véase también</span> </div> </a> <ul id="toc-Véase_también-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Referencias" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Referencias"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Referencias</span> </div> </a> <ul id="toc-Referencias-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contenidos" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Cambiar a la tabla de contenidos" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Cambiar a la tabla de contenidos</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ortogonalidad (matemática)</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ir a un artículo en otro idioma. Disponible en 38 idiomas" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-38" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">38 idiomas</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%B9%D8%A7%D9%85%D8%AF_(%D8%B1%D9%8A%D8%A7%D8%B6%D9%8A%D8%A7%D8%AA)" title="تعامد (رياضيات) (árabe)" lang="ar" hreflang="ar" data-title="تعامد (رياضيات)" data-language-autonym="العربية" data-language-local-name="árabe" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Ortoqonal" title="Ortoqonal (azerbaiyano)" lang="az" hreflang="az" data-title="Ortoqonal" data-language-autonym="Azərbaycanca" data-language-local-name="azerbaiyano" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%BE%D1%81%D1%82" title="Ортогоналност (búlgaro)" lang="bg" hreflang="bg" data-title="Ортогоналност" data-language-autonym="Български" data-language-local-name="búlgaro" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Ortogonal" title="Ortogonal (catalán)" lang="ca" hreflang="ca" data-title="Ortogonal" data-language-autonym="Català" data-language-local-name="catalán" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Ortogonalita" title="Ortogonalita (checo)" lang="cs" hreflang="cs" data-title="Ortogonalita" data-language-autonym="Čeština" data-language-local-name="checo" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%BB%C4%95%D1%85" title="Ортогоналлĕх (chuvasio)" lang="cv" hreflang="cv" data-title="Ортогоналлĕх" data-language-autonym="Чӑвашла" data-language-local-name="chuvasio" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Ortogonalitet" title="Ortogonalitet (danés)" lang="da" hreflang="da" data-title="Ortogonalitet" data-language-autonym="Dansk" data-language-local-name="danés" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Orthogonalit%C3%A4t" title="Orthogonalität (alemán)" lang="de" hreflang="de" data-title="Orthogonalität" data-language-autonym="Deutsch" data-language-local-name="alemán" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Orthogonality" title="Orthogonality (inglés)" lang="en" hreflang="en" data-title="Orthogonality" data-language-autonym="English" data-language-local-name="inglés" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Orteco" title="Orteco (esperanto)" lang="eo" hreflang="eo" data-title="Orteco" data-language-autonym="Esperanto" data-language-local-name="esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Ortogonal" title="Ortogonal (euskera)" lang="eu" hreflang="eu" data-title="Ortogonal" data-language-autonym="Euskara" data-language-local-name="euskera" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D8%B9%D8%A7%D9%85%D8%AF_(%D8%AC%D8%A8%D8%B1_%D8%AE%D8%B7%DB%8C)" title="تعامد (جبر خطی) (persa)" lang="fa" hreflang="fa" data-title="تعامد (جبر خطی)" data-language-autonym="فارسی" data-language-local-name="persa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kohtisuoruus" title="Kohtisuoruus (finés)" lang="fi" hreflang="fi" data-title="Kohtisuoruus" data-language-autonym="Suomi" data-language-local-name="finés" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Orthogonalit%C3%A9" title="Orthogonalité (francés)" lang="fr" hreflang="fr" data-title="Orthogonalité" data-language-autonym="Français" data-language-local-name="francés" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%95%D7%A8%D7%AA%D7%95%D7%92%D7%95%D7%A0%D7%9C%D7%99%D7%95%D7%AA" title="אורתוגונליות (hebreo)" lang="he" hreflang="he" data-title="אורתוגונליות" data-language-autonym="עברית" data-language-local-name="hebreo" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Mer%C5%91legess%C3%A9g" title="Merőlegesség (húngaro)" lang="hu" hreflang="hu" data-title="Merőlegesség" data-language-autonym="Magyar" data-language-local-name="húngaro" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%88%D6%82%D5%B2%D5%B2%D5%A1%D5%B6%D5%AF%D5%B5%D5%B8%D6%82%D5%B6%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6" title="Ուղղանկյունություն (armenio)" lang="hy" hreflang="hy" data-title="Ուղղանկյունություն" data-language-autonym="Հայերեն" data-language-local-name="armenio" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%9B%B4%E4%BA%A4" title="直交 (japonés)" lang="ja" hreflang="ja" data-title="直交" data-language-autonym="日本語" data-language-local-name="japonés" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A7%81%EA%B5%90" title="직교 (coreano)" lang="ko" hreflang="ko" data-title="직교" data-language-autonym="한국어" data-language-local-name="coreano" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%B4%D1%83%D1%83%D0%BB%D1%83%D0%BA" title="Ортогоналдуулук (kirguís)" lang="ky" hreflang="ky" data-title="Ортогоналдуулук" data-language-autonym="Кыргызча" data-language-local-name="kirguís" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%BE%D1%81%D1%82" title="Ортогоналност (macedonio)" lang="mk" hreflang="mk" data-title="Ортогоналност" data-language-autonym="Македонски" data-language-local-name="macedonio" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Orthogonaal" title="Orthogonaal (neerlandés)" lang="nl" hreflang="nl" data-title="Orthogonaal" data-language-autonym="Nederlands" data-language-local-name="neerlandés" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ortogonalitet" title="Ortogonalitet (noruego nynorsk)" lang="nn" hreflang="nn" data-title="Ortogonalitet" data-language-autonym="Norsk nynorsk" data-language-local-name="noruego nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Ortogonalitet" title="Ortogonalitet (noruego bokmal)" lang="nb" hreflang="nb" data-title="Ortogonalitet" data-language-autonym="Norsk bokmål" data-language-local-name="noruego bokmal" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Ortogonalno%C5%9B%C4%87" title="Ortogonalność (polaco)" lang="pl" hreflang="pl" data-title="Ortogonalność" data-language-autonym="Polski" data-language-local-name="polaco" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Ortogonalidade" title="Ortogonalidade (portugués)" lang="pt" hreflang="pt" data-title="Ortogonalidade" data-language-autonym="Português" data-language-local-name="portugués" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Ortogonalitate" title="Ortogonalitate (rumano)" lang="ro" hreflang="ro" data-title="Ortogonalitate" data-language-autonym="Română" data-language-local-name="rumano" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Ортогональность (ruso)" lang="ru" hreflang="ru" data-title="Ортогональность" data-language-autonym="Русский" data-language-local-name="ruso" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Ortogonalnost" title="Ortogonalnost (serbocroata)" lang="sh" hreflang="sh" data-title="Ortogonalnost" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="serbocroata" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Ortogonalnost" title="Ortogonalnost (esloveno)" lang="sl" hreflang="sl" data-title="Ortogonalnost" data-language-autonym="Slovenščina" data-language-local-name="esloveno" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%BD%D0%BE%D1%81%D1%82" title="Ортогоналност (serbio)" lang="sr" hreflang="sr" data-title="Ортогоналност" data-language-autonym="Српски / srpski" data-language-local-name="serbio" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ortogonalitet" title="Ortogonalitet (sueco)" lang="sv" hreflang="sv" data-title="Ortogonalitet" data-language-autonym="Svenska" data-language-local-name="sueco" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Ortogonalidad" title="Ortogonalidad (tagalo)" lang="tl" hreflang="tl" data-title="Ortogonalidad" data-language-autonym="Tagalog" data-language-local-name="tagalo" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Ortogonallik" title="Ortogonallik (turco)" lang="tr" hreflang="tr" data-title="Ortogonallik" data-language-autonym="Türkçe" data-language-local-name="turco" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9E%D1%80%D1%82%D0%BE%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D1%96%D1%81%D1%82%D1%8C" title="Ортогональність (ucraniano)" lang="uk" hreflang="uk" data-title="Ортогональність" data-language-autonym="Українська" data-language-local-name="ucraniano" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Tr%E1%BB%B1c_giao" title="Trực giao (vietnamita)" lang="vi" hreflang="vi" data-title="Trực giao" data-language-autonym="Tiếng Việt" data-language-local-name="vietnamita" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%AD%A3%E4%BA%A4" title="正交 (chino)" lang="zh" hreflang="zh" data-title="正交" data-language-autonym="中文" data-language-local-name="chino" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%AD%A3%E4%BA%A4" title="正交 (cantonés)" lang="yue" hreflang="yue" data-title="正交" data-language-autonym="粵語" data-language-local-name="cantonés" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q215067#sitelinks-wikipedia" title="Editar enlaces interlingüísticos" class="wbc-editpage">Editar enlaces</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Espacios de nombres"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ortogonalidad_(matem%C3%A1tica)" title="Ver la página de contenido [c]" accesskey="c"><span>Artículo</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Discusi%C3%B3n:Ortogonalidad_(matem%C3%A1tica)&action=edit&redlink=1" rel="discussion" class="new" title="Discusión acerca de la página (aún no redactado) [t]" accesskey="t"><span>Discusión</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Cambiar variante de idioma" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">español</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Vistas"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ortogonalidad_(matem%C3%A1tica)"><span>Leer</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=history" title="Versiones anteriores de esta página [h]" accesskey="h"><span>Ver historial</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Herramientas" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Herramientas</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Herramientas</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">ocultar</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="Más opciones" > <div class="vector-menu-heading"> Acciones </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ortogonalidad_(matem%C3%A1tica)"><span>Leer</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit" title="Editar esta página [e]" accesskey="e"><span>Editar</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=history"><span>Ver historial</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Especial:LoQueEnlazaAqu%C3%AD/Ortogonalidad_(matem%C3%A1tica)" title="Lista de todas las páginas de la wiki que enlazan aquí [j]" accesskey="j"><span>Lo que enlaza aquí</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Especial:CambiosEnEnlazadas/Ortogonalidad_(matem%C3%A1tica)" rel="nofollow" title="Cambios recientes en las páginas que enlazan con esta [k]" accesskey="k"><span>Cambios en enlazadas</span></a></li><li id="t-upload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=es" title="Subir archivos [u]" accesskey="u"><span>Subir archivo</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Especial:P%C3%A1ginasEspeciales" title="Lista de todas las páginas especiales [q]" accesskey="q"><span>Páginas especiales</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&oldid=161799413" title="Enlace permanente a esta versión de la página"><span>Enlace permanente</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=info" title="Más información sobre esta página"><span>Información de la página</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Especial:Citar&page=Ortogonalidad_%28matem%C3%A1tica%29&id=161799413&wpFormIdentifier=titleform" title="Información sobre cómo citar esta página"><span>Citar esta página</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Especial:Acortador_de_URL&url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FOrtogonalidad_%28matem%25C3%25A1tica%29"><span>Obtener URL acortado</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Especial:QrCode&url=https%3A%2F%2Fes.wikipedia.org%2Fwiki%2FOrtogonalidad_%28matem%25C3%25A1tica%29"><span>Descargar código QR</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Imprimir/exportar </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Especial:Libro&bookcmd=book_creator&referer=Ortogonalidad+%28matem%C3%A1tica%29"><span>Crear un libro</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Especial:DownloadAsPdf&page=Ortogonalidad_%28matem%C3%A1tica%29&action=show-download-screen"><span>Descargar como PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&printable=yes" title="Versión imprimible de esta página [p]" accesskey="p"><span>Versión para imprimir</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> En otros proyectos </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Orthogonality" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q215067" title="Enlace al elemento conectado del repositorio de datos [g]" accesskey="g"><span>Elemento de Wikidata</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Página de herramientas"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Apariencia"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Apariencia</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">mover a la barra lateral</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">ocultar</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">De Wikipedia, la enciclopedia libre</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirigido desde «<a href="/w/index.php?title=Ortogonal&redirect=no" class="mw-redirect" title="Ortogonal">Ortogonal</a>»)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="es" dir="ltr"><figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/Archivo:3D_coordinate_system.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/3D_coordinate_system.svg/350px-3D_coordinate_system.svg.png" decoding="async" width="350" height="350" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2c/3D_coordinate_system.svg/525px-3D_coordinate_system.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2c/3D_coordinate_system.svg/700px-3D_coordinate_system.svg.png 2x" data-file-width="487" data-file-height="487" /></a><figcaption>Tres <a href="/wiki/Plano_(geometr%C3%ADa)" title="Plano (geometría)">planos</a> ortogonales</figcaption></figure> <p>En <a href="/wiki/Matem%C3%A1ticas" title="Matemáticas">matemáticas</a>, el término <b>ortogonalidad</b> (del griego <i>ὀρθός</i> ‘recto’ y <i>γωνία</i> ‘ángulo’) es una generalización de la noción <a href="/wiki/Geometr%C3%ADa" title="Geometría">geométrica</a> de <a href="/wiki/Perpendicularidad" title="Perpendicularidad">perpendicularidad</a>. En el <a href="/wiki/Espacio_eucl%C3%ADdeo" title="Espacio euclídeo">espacio euclídeo</a> convencional, el término ortogonal y el término perpendicular son sinónimos. Sin embargo, en espacios de dimensión finita y en <a href="/wiki/Geometr%C3%ADas_no_eucl%C3%ADdeas" class="mw-redirect" title="Geometrías no euclídeas">geometrías no euclídeas</a>, el concepto de ortogonalidad generaliza al de perpendicularidad. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Ortogonalidad_en_espacios_vectoriales">Ortogonalidad en espacios vectoriales</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=1" title="Editar sección: Ortogonalidad en espacios vectoriales"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Definición"><span id="Definici.C3.B3n"></span>Definición</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=2" title="Editar sección: Definición"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Formalmente, en un <a href="/wiki/Espacio_de_producto_interior" class="mw-redirect" title="Espacio de producto interior">espacio vectorial con producto interior</a> <i>V</i>, dos <a href="/wiki/Vector_(matem%C3%A1tica)" class="mw-redirect" title="Vector (matemática)">vectores</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa374e20b2db7f6b8caa71ff1865f7f84f215c9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.958ex; height:2.176ex;" alt="{\displaystyle x\in V}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y\in V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y\in V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da6483ea92075167a597963b8d1cb1f398d173f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.783ex; height:2.509ex;" alt="{\displaystyle y\in V}"></span> son ortogonales si el <a href="/wiki/Producto_escalar" title="Producto escalar">producto escalar</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle x,y\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle x,y\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df1806ebe1fed1a728b18aed82c30be8b2a0acb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.328ex; height:2.843ex;" alt="{\displaystyle \langle x,y\rangle }"></span> es cero.<sup id="cite_ref-1" class="reference separada"><a href="#cite_note-1"><span class="corchete-llamada">[</span>1<span class="corchete-llamada">]</span></a></sup>​ Esta situación se denota <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\perp y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⊥<!-- ⊥ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\perp y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36702069481de67a3e4659e380c6ac7c67d0f4ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.584ex; height:2.509ex;" alt="{\displaystyle x\perp y}"></span>. Además, un conjunto A se dice que es ortogonal a otro conjunto B, si cualquiera de los vectores de A es ortogonal a cualquiera de los vectores del conjunto B. </p> <div class="mw-heading mw-heading3"><h3 id="Complemento_ortogonal">Complemento ortogonal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=3" title="Editar sección: Complemento ortogonal"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Si S es un subespacio vectorial de M, el complemento ortogonal de S en M está formado por los vectores de M que son perpendiculares a todos los vectores de S. </p> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Archivo:Orthogonal1.png" class="mw-file-description" title="Ejemplo 1"><img alt="Ejemplo 1" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Orthogonal1.png/120px-Orthogonal1.png" decoding="async" width="120" height="57" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Orthogonal1.png/180px-Orthogonal1.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/Orthogonal1.png/240px-Orthogonal1.png 2x" data-file-width="643" data-file-height="303" /></a></span></div> <div class="gallerytext">Ejemplo 1</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/Archivo:Orthogonal2.png" class="mw-file-description" title="Ejemplo 2. Cálculo por el método de Gauss"><img alt="Ejemplo 2. Cálculo por el método de Gauss" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Orthogonal2.png/119px-Orthogonal2.png" decoding="async" width="119" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Orthogonal2.png/179px-Orthogonal2.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Orthogonal2.png/238px-Orthogonal2.png 2x" data-file-width="489" data-file-height="493" /></a></span></div> <div class="gallerytext">Ejemplo 2. Cálculo por el método de Gauss</div> </li> </ul> <div class="mw-heading mw-heading3"><h3 id="Ortogonalidad_y_perpendicularidad">Ortogonalidad y perpendicularidad</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=4" title="Editar sección: Ortogonalidad y perpendicularidad"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En geometría euclídea se tiene, dos <a href="/wiki/Vector_(matem%C3%A1tica)" class="mw-redirect" title="Vector (matemática)">vectores</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> e <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> ortogonales forman un <a href="/wiki/%C3%81ngulo_recto" title="Ángulo recto">ángulo recto</a>, los vectores <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}=(3,4)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}=(3,4)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1e2a37210ef1f005b410f8b837f8f0d7a1d287f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.448ex; height:2.843ex;" alt="{\displaystyle v_{1}=(3,4)}"></span> y <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{2}=(4,-3)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{2}=(4,-3)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbd7a204ac3fcf2895de8ec8d7d3b67bdfe8c14a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.257ex; height:2.843ex;" alt="{\displaystyle v_{2}=(4,-3)}"></span> lo son ya que, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle v_{1},v_{2}\rangle =v_{1}\cdot v_{2}=3\times 4+4\times (-3)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>3</mn> <mo>×<!-- × --></mo> <mn>4</mn> <mo>+</mo> <mn>4</mn> <mo>×<!-- × --></mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle v_{1},v_{2}\rangle =v_{1}\cdot v_{2}=3\times 4+4\times (-3)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d9af6e00c6a80826db7af855ab4d047ce70b001" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.496ex; height:2.843ex;" alt="{\displaystyle \langle v_{1},v_{2}\rangle =v_{1}\cdot v_{2}=3\times 4+4\times (-3)=0}"></span>. En espacios no euclídeos puede definirse de modo abstracto el ángulo entre dos vectores a partir del producto interior. </p> <div class="mw-heading mw-heading3"><h3 id="Ortogonalidad_respecto_de_una_matriz_(A-ortogonalidad)"><span id="Ortogonalidad_respecto_de_una_matriz_.28A-ortogonalidad.29"></span>Ortogonalidad respecto de una matriz (A-ortogonalidad)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=5" title="Editar sección: Ortogonalidad respecto de una matriz (A-ortogonalidad)"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Dados dos vectores <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b0c788a124a32684f109737f7cfab7611d6a58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle u_{1}}"></span> y <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2b5855eefa1e5c167320e2fb16e432c4931b166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle u_{2}}"></span> pertenecientes a un espacio vectorial de dimensión <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> y una matriz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> de dimensión <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>×<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span>, si el productor escalar <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u_{1},Au_{2}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>A</mi> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u_{1},Au_{2}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85d63a49666d024961470b52e379fe34b4e5d270" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.354ex; height:2.843ex;" alt="{\displaystyle \langle u_{1},Au_{2}\rangle }"></span>, notado <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u_{1},u_{2}\rangle _{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u_{1},u_{2}\rangle _{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/78acd870bd7e06de914915870f1f1cd92daa0996" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.076ex; height:2.843ex;" alt="{\displaystyle \langle u_{1},u_{2}\rangle _{A}}"></span>, es igual a cero, se dice que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69b0c788a124a32684f109737f7cfab7611d6a58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle u_{1}}"></span> y <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2b5855eefa1e5c167320e2fb16e432c4931b166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.384ex; height:2.009ex;" alt="{\displaystyle u_{2}}"></span> son ortogonales respecto a la matriz <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> o <b>A-ortogonales</b>. Un conjunto de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> vectores <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{u_{i}\}_{i=1}^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{u_{i}\}_{i=1}^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89e9c814610fd14f7551ba02a2fb1f5e8f0b0371" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.354ex; height:3.009ex;" alt="{\displaystyle \{u_{i}\}_{i=1}^{n}}"></span> se dice que forma una <b>base A-ortonormal</b> si <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle u_{i},u_{j}\rangle _{A}=\delta _{ij}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle u_{i},u_{j}\rangle _{A}=\delta _{ij}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8afb77af36ebf2f101aa6231d1c8f03ec074f419" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.285ex; height:3.009ex;" alt="{\displaystyle \langle u_{i},u_{j}\rangle _{A}=\delta _{ij}}"></span> para todo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i,j=1,...,n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i,j=1,...,n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c2a2c994bfdf328947bf99567f7898692c423be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.62ex; height:2.509ex;" alt="{\displaystyle i,j=1,...,n}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Transformación_ortogonal"><span id="Transformaci.C3.B3n_ortogonal"></span>Transformación ortogonal</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=6" title="Editar sección: Transformación ortogonal"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>En <a href="/wiki/Geometr%C3%ADa" title="Geometría">geometría</a> y <a href="/wiki/%C3%81lgebra_lineal" title="Álgebra lineal">álgebra lineal</a>, una transformación <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi :E\longrightarrow E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo>:</mo> <mi>E</mi> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi :E\longrightarrow E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d8bd5a9ee0c1c17cafd69a6df3f32a35939aebc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.104ex; height:2.676ex;" alt="{\displaystyle \varphi :E\longrightarrow E}"></span> de un <a href="/wiki/Espacio_prehilbertiano" title="Espacio prehilbertiano">espacio prehilbertiano</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,\langle \cdot ,\cdot \rangle )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,\langle \cdot ,\cdot \rangle )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e31a33cc421837bdb43fc2b171344bc675bd4f9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.756ex; height:2.843ex;" alt="{\displaystyle (E,\langle \cdot ,\cdot \rangle )}"></span> en sí mismo —donde <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \cdot ,\cdot \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \cdot ,\cdot \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a50080b735975d8001c9552ac2134b49ad534c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.137ex; height:2.843ex;" alt="{\displaystyle \langle \cdot ,\cdot \rangle }"></span> representa el <a href="/wiki/Producto_escalar" title="Producto escalar">producto escalar</a> en <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>— es ortogonal cuando <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> es una <a href="/wiki/Aplicaci%C3%B3n_lineal" title="Aplicación lineal">aplicación lineal</a> de <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> en sí mismo (un <a href="/wiki/Automorfismo" title="Automorfismo">automorfismo</a>) de forma que cualesquiera que sean los <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u,v\in E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>∈<!-- ∈ --></mo> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u,v\in E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5f83411290ec9b03db58a85bf1ddbfb428bf00b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.108ex; height:2.509ex;" alt="{\displaystyle u,v\in E}"></span> se cumple que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \langle \varphi (u),\varphi (v)\rangle =\langle u,v\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> <mo>=</mo> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \langle \varphi (u),\varphi (v)\rangle =\langle u,v\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d8ac3fba06d18cd7cb1764e5d7d8a0efc2e2fe6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.358ex; height:2.843ex;" alt="{\displaystyle \langle \varphi (u),\varphi (v)\rangle =\langle u,v\rangle }"></span>. </p><p>En particular, el conjunto <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> puede ser un <a href="/wiki/Espacio_eucl%C3%ADdeo" title="Espacio euclídeo">espacio euclídeo</a>. </p><p>En caso de que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> sea un <a href="/wiki/Espacio_vectorial" title="Espacio vectorial">espacio vectorial</a> sobre el <a href="/wiki/Cuerpo_(matem%C3%A1tica)" class="mw-redirect" title="Cuerpo (matemática)">cuerpo</a> de los <a href="/wiki/N%C3%BAmeros_complejos" class="mw-redirect" title="Números complejos">números complejos</a>, se dirá que <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> es <i>transformación unitaria</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Ortogonalidad_en_otros_contextos">Ortogonalidad en otros contextos</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=7" title="Editar sección: Ortogonalidad en otros contextos"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>El concepto de ortogonalidad puede extenderse a otros objetos geométricos diferente de los vectores. Por ejemplo, dos <a href="/wiki/Curva" title="Curva">curvas suaves</a> se consideran ortogonales en un punto si sus respectivos <a href="/wiki/Geometr%C3%ADa_diferencial_de_curvas#Vectores_tangente,_normal_y_binormal:_Triedro_de_Frênet-Serret" title="Geometría diferencial de curvas">vectores tangentes</a> son ortogonales. Dos <a href="/wiki/Foliaci%C3%B3n" title="Foliación">familias de curvas</a> se llaman ortogonales si en el punto de intersección de una curva de la primera familia con una curva de la segunda familia ambas resultan ser ortogonales. Un ejemplo de esto es el de las líneas isostáticas de tracción y compresión en una viga, las cuales son las <a href="/w/index.php?title=Envolventes&action=edit&redlink=1" class="new" title="Envolventes (aún no redactado)">envolventes</a> de las <a href="/wiki/Direcci%C3%B3n_principal#Tensiones_principales" title="Dirección principal">tensiones principales</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Sistemas_de_coordenadas_ortogonales">Sistemas de coordenadas ortogonales</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=8" title="Editar sección: Sistemas de coordenadas ortogonales"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Un <a href="/wiki/Sistema_de_coordenadas" title="Sistema de coordenadas">sistema de coordenadas</a> sobre una <a href="/wiki/Variedad_de_Riemann" title="Variedad de Riemann">variedad de Riemann</a> o un espacio <a href="/wiki/Localmente" title="Localmente">localmente</a> <a href="/wiki/Espacio_eucl%C3%ADdeo" title="Espacio euclídeo">euclídeo</a> es <b>ortogonal</b> cuando las líneas coordenadas asociadas a los valores constantes de alguna de las coordenadas tienen vectores tangentes que son ortogonales entre sí. Las <a href="/wiki/Coordenadas_cartesianas" title="Coordenadas cartesianas">coordenadas cartesianas</a>, las <a href="/wiki/Coordenadas_cil%C3%ADndricas" title="Coordenadas cilíndricas">coordenadas cilíndricas</a> y las <a href="/wiki/Coordenadas_esf%C3%A9ricas" title="Coordenadas esféricas">coordenadas esféricas</a> son ejemplos de sistemas de <a href="/wiki/Coordenadas_ortogonales" title="Coordenadas ortogonales">coordenadas ortogonales</a>. </p><p>Los sistemas de coordenadas ortogonales son interesantes porque el <a href="/wiki/Tensor_m%C3%A9trico" title="Tensor métrico">tensor métrico</a> expresado en ese sistema de coordenadas es diagonal. Si además todos los términos del tensor métrico son +1 (o también -1 si estamos en una <a href="/wiki/Variedad_pseudoriemanniana" title="Variedad pseudoriemanniana">variedad pseudoriemanniana</a>) el sistema de coordenadas se califica además de <b>ortonormal</b>. </p><p>Los sistemas de coordenadas ortogonales las líneas coordenadas forman familias de curvas ortogonales entre sí. </p> <div class="mw-heading mw-heading2"><h2 id="Véase_también"><span id="V.C3.A9ase_tambi.C3.A9n"></span>Véase también</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=9" title="Editar sección: Véase también"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Base_(%C3%A1lgebra)" title="Base (álgebra)">Base (álgebra)</a></li> <li><a href="/wiki/Base_can%C3%B3nica" title="Base canónica">Base canónica</a></li> <li><a href="/wiki/Ortonormal" title="Ortonormal">Base Ortonormal</a></li> <li><a href="/wiki/Combinaci%C3%B3n_lineal" title="Combinación lineal">Combinación lineal</a></li> <li><a href="/wiki/Coordenadas_cartesianas" title="Coordenadas cartesianas">Coordenadas cartesianas</a></li> <li><a href="/wiki/Espacio_vectorial" title="Espacio vectorial">Espacio vectorial</a></li> <li><a href="/wiki/Independencia_lineal" class="mw-redirect" title="Independencia lineal">Independencia lineal</a></li> <li><a href="/wiki/Producto_escalar" title="Producto escalar">Producto escalar</a></li> <li><a href="/wiki/Producto_vectorial" title="Producto vectorial">Producto vectorial</a></li> <li><a href="/wiki/Producto_mixto" title="Producto mixto">Producto mixto</a></li> <li><a href="/wiki/Producto_tensorial" title="Producto tensorial">Producto tensorial</a></li> <li><a href="/wiki/Sistema_generador" title="Sistema generador">Sistema generador</a></li> <li><a href="/wiki/Vector_normal" title="Vector normal">Vector normal</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Referencias">Referencias</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&action=edit&section=10" title="Editar sección: Referencias"><span>editar</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="listaref" style="list-style-type: decimal;"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><span class="citation web"><a rel="nofollow" class="external text" href="http://matematicas.uam.es/~fernando.chamizo/asignaturas/2021alglin/sections/4_2.pdf">«Ortogonalidad»</a>.</span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AOrtogonalidad+%28matem%C3%A1tica%29&rft.btitle=Ortogonalidad&rft.genre=book&rft_id=http%3A%2F%2Fmatematicas.uam.es%2F~fernando.chamizo%2Fasignaturas%2F2021alglin%2Fsections%2F4_2.pdf&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook" class="Z3988"><span style="display:none;"> </span></span></span> </li> </ol></div> <p><span id="Reference-Mathworld-Ortogonal" class="citation web"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W</a>. <a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Orthogonal.html">«Ortogonal»</a>. En Weisstein, Eric W, ed. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i> <span style="color:var(--color-subtle, #555 );">(en inglés)</span>. <a href="/wiki/Wolfram_Research" title="Wolfram Research">Wolfram Research</a>.</span><span title="ctx_ver=Z39.88-2004&rfr_id=info%3Asid%2Fes.wikipedia.org%3AOrtogonalidad+%28matem%C3%A1tica%29&rft.atitle=Ortogonal&rft.au=Weisstein%2C+Eric+W&rft.aulast=Weisstein%2C+Eric+W&rft.genre=article&rft.jtitle=MathWorld&rft.pub=Wolfram+Research&rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FOrthogonal.html&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal" class="Z3988"><span style="display:none;"> </span></span> </p><p><a rel="nofollow" class="external free" href="https://blog.nekomath.com/algebra-lineal-i-ortogonalidad-y-espacio-ortogonal/">https://blog.nekomath.com/algebra-lineal-i-ortogonalidad-y-espacio-ortogonal/</a> Definición y más información sobre ortogonalidad. </p> <style data-mw-deduplicate="TemplateStyles:r161257576">.mw-parser-output .mw-authority-control{margin-top:1.5em}.mw-parser-output .mw-authority-control .navbox table{margin:0}.mw-parser-output .mw-authority-control .navbox hr:last-child{display:none}.mw-parser-output .mw-authority-control .navbox+.mw-mf-linked-projects{display:none}.mw-parser-output .mw-authority-control .mw-mf-linked-projects{display:flex;padding:0.5em;border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral,#eaecf0);color:var(--color-base,#202122)}.mw-parser-output .mw-authority-control .mw-mf-linked-projects ul li{margin-bottom:0}.mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#a2a9b1);background-color:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .mw-authority-control .navbox-list{border-color:#f8f9fa}.mw-parser-output .mw-authority-control .navbox th{background-color:#eeeeff}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d);background-color:var(--background-color-neutral,#27292d);color:var(--color-base,#eaecf0)}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-night .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .mw-mf-linked-projects{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral,#27292d)!important;color:var(--color-base,#eaecf0)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox{border:1px solid var(--border-color-base,#72777d)!important;background-color:var(--background-color-neutral-subtle,#202122)!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox-list{border-color:#202122!important}html.skin-theme-clientpref-os .mw-parser-output .mw-authority-control .navbox th{background-color:#27292d!important}}</style><div class="mw-authority-control"><div role="navigation" class="navbox" aria-label="Navbox" style="width: inherit;padding:3px"><table class="hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width: 12%; text-align:center;"><a href="/wiki/Control_de_autoridades" title="Control de autoridades">Control de autoridades</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><b>Proyectos Wikimedia</b></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q215067" class="extiw" title="wikidata:Q215067">Q215067</a></span></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Commonscat"><img alt="Commonscat" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Multimedia:</span> <span class="uid"><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Orthogonality">Orthogonality</a></span> / <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Special:MediaSearch?type=image&search=%22Q215067%22">Q215067</a></span></span></li></ul> <hr /> <ul><li><b>Diccionarios y enciclopedias</b></li> <li><span style="white-space:nowrap;"><a href="/wiki/Enciclopedia_Brit%C3%A1nica" title="Enciclopedia Británica">Britannica</a>:</span> <span class="uid"><a rel="nofollow" class="external text" href="https://www.britannica.com/topic/orthogonality">url</a></span></li></ul> </div></td></tr></tbody></table></div><div class="mw-mf-linked-projects hlist"> <ul><li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikidata" title="Wikidata"><img alt="Wd" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/20px-Wikidata-logo.svg.png" decoding="async" width="20" height="11" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/30px-Wikidata-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/ff/Wikidata-logo.svg/40px-Wikidata-logo.svg.png 2x" data-file-width="1050" data-file-height="590" /></a></span> Datos:</span> <span class="uid"><a href="https://www.wikidata.org/wiki/Q215067" class="extiw" title="wikidata:Q215067">Q215067</a></span></li> <li><span style="white-space:nowrap;"><span typeof="mw:File"><a href="/wiki/Wikimedia_Commons" title="Commonscat"><img alt="Commonscat" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/15px-Commons-logo.svg.png" decoding="async" width="15" height="20" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/23px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></a></span> Multimedia:</span> <span class="uid"><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Orthogonality">Orthogonality</a></span> / <span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Special:MediaSearch?type=image&search=%22Q215067%22">Q215067</a></span></span></li></ul> </div></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐6dbf84c58d‐x5j47 Cached time: 20241111143628 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.242 seconds Real time usage: 0.466 seconds Preprocessor visited node count: 417/1000000 Post‐expand include size: 7366/2097152 bytes Template argument size: 28/2097152 bytes Highest expansion depth: 6/100 Expensive parser function count: 2/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 6268/5000000 bytes Lua time usage: 0.126/10.000 seconds Lua memory usage: 2227160/52428800 bytes Number of Wikibase entities loaded: 3/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 194.456 1 -total 73.52% 142.964 1 Plantilla:Control_de_autoridades 22.04% 42.867 2 Plantilla:Cita_web 22.01% 42.803 1 Plantilla:Listaref 4.33% 8.417 1 Plantilla:MathWorld --> <!-- Saved in parser cache with key eswiki:pcache:idhash:632041-0!canonical and timestamp 20241111143628 and revision id 161799413. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Obtenido de «<a dir="ltr" href="https://es.wikipedia.org/w/index.php?title=Ortogonalidad_(matemática)&oldid=161799413">https://es.wikipedia.org/w/index.php?title=Ortogonalidad_(matemática)&oldid=161799413</a>»</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Especial:Categor%C3%ADas" title="Especial:Categorías">Categorías</a>: <ul><li><a href="/wiki/Categor%C3%ADa:%C3%81lgebra_abstracta" title="Categoría:Álgebra abstracta">Álgebra abstracta</a></li><li><a href="/wiki/Categor%C3%ADa:%C3%81lgebra_lineal" title="Categoría:Álgebra lineal">Álgebra lineal</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Esta página se editó por última vez el 11 ago 2024 a las 01:07.</li> <li id="footer-info-copyright">El texto está disponible bajo la <a href="/wiki/Wikipedia:Texto_de_la_Licencia_Creative_Commons_Atribuci%C3%B3n-CompartirIgual_4.0_Internacional" title="Wikipedia:Texto de la Licencia Creative Commons Atribución-CompartirIgual 4.0 Internacional">Licencia Creative Commons Atribución-CompartirIgual 4.0</a>; pueden aplicarse cláusulas adicionales. Al usar este sitio aceptas nuestros <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/es">términos de uso</a> y nuestra <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Privacy_policy/es">política de privacidad</a>.<br />Wikipedia® es una marca registrada de la <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/es/">Fundación Wikimedia</a>, una organización sin ánimo de lucro.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/es">Política de privacidad</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:Acerca_de">Acerca de Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:Limitaci%C3%B3n_general_de_responsabilidad">Limitación de responsabilidad</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Código de conducta</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Desarrolladores</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/es.wikipedia.org">Estadísticas</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement/es">Declaración de cookies</a></li> <li id="footer-places-mobileview"><a href="//es.m.wikipedia.org/w/index.php?title=Ortogonalidad_(matem%C3%A1tica)&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Versión para móviles</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-9dtxv","wgBackendResponseTime":143,"wgPageParseReport":{"limitreport":{"cputime":"0.242","walltime":"0.466","ppvisitednodes":{"value":417,"limit":1000000},"postexpandincludesize":{"value":7366,"limit":2097152},"templateargumentsize":{"value":28,"limit":2097152},"expansiondepth":{"value":6,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":6268,"limit":5000000},"entityaccesscount":{"value":3,"limit":400},"timingprofile":["100.00% 194.456 1 -total"," 73.52% 142.964 1 Plantilla:Control_de_autoridades"," 22.04% 42.867 2 Plantilla:Cita_web"," 22.01% 42.803 1 Plantilla:Listaref"," 4.33% 8.417 1 Plantilla:MathWorld"]},"scribunto":{"limitreport-timeusage":{"value":"0.126","limit":"10.000"},"limitreport-memusage":{"value":2227160,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-6dbf84c58d-x5j47","timestamp":"20241111143628","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ortogonalidad (matem\u00e1tica)","url":"https:\/\/es.wikipedia.org\/wiki\/Ortogonalidad_(matem%C3%A1tica)","sameAs":"http:\/\/www.wikidata.org\/entity\/Q215067","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q215067","author":{"@type":"Organization","name":"Colaboradores de los proyectos Wikimedia"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-11-09T22:50:38Z","dateModified":"2024-08-11T01:07:16Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/2\/2c\/3D_coordinate_system.svg","headline":"generalizaci\u00f3n de la noci\u00f3n geom\u00e9trica de perpendicularidad"}</script> </body> </html>