CINXE.COM
Integrating probability and big non-probability samples data to produce Official Statistics | Statistical Methods & Applications
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Integrating probability and big non-probability samples data to produce Official Statistics | Statistical Methods & Applications </title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Integrating probability and big non-probability samples data to produce Official Statistics"/> <meta name="twitter:description" content="Statistical Methods & Applications - This paper introduces the pseudo-calibration estimators, a novel method that integrates a non-probability sample of big size with a probability sample,..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig1_HTML.png"/> <meta name="journal_id" content="10260"/> <meta name="dc.title" content="Integrating probability and big non-probability samples data to produce Official Statistics"/> <meta name="dc.source" content="Statistical Methods & Applications 2024 33:2"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2024-01-18"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2024 The Author(s)"/> <meta name="dc.rights" content="2024 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="This paper introduces the pseudo-calibration estimators, a novel method that integrates a non-probability sample of big size with a probability sample, assuming both samples contain relevant information for estimating the population parameter. The proposed estimators share a structural similarity with the adjusted projection estimators and the difference estimators but they adopt a different inferential approach and informative setup. The pseudo-calibration estimators can be employed when the target variable is observed in the probability sample and, in the non-probability sample, it is observed correctly, observed with error, or predicted. This paper also introduces an original application of the jackknife-type method for variance estimation. A simulation study shows that the proposed estimators are robust and efficient compared to the regression data integration estimators that use the same informative setup. Finally, a further evaluation using real data is carried out."/> <meta name="prism.issn" content="1613-981X"/> <meta name="prism.publicationName" content="Statistical Methods & Applications"/> <meta name="prism.publicationDate" content="2024-01-18"/> <meta name="prism.volume" content="33"/> <meta name="prism.number" content="2"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="555"/> <meta name="prism.endingPage" content="580"/> <meta name="prism.copyright" content="2024 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s10260-023-00740-y"/> <meta name="prism.doi" content="doi:10.1007/s10260-023-00740-y"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s10260-023-00740-y.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s10260-023-00740-y"/> <meta name="citation_journal_title" content="Statistical Methods & Applications"/> <meta name="citation_journal_abbrev" content="Stat Methods Appl"/> <meta name="citation_publisher" content="Springer Berlin Heidelberg"/> <meta name="citation_issn" content="1613-981X"/> <meta name="citation_title" content="Integrating probability and big non-probability samples data to produce Official Statistics"/> <meta name="citation_volume" content="33"/> <meta name="citation_issue" content="2"/> <meta name="citation_publication_date" content="2024/04"/> <meta name="citation_online_date" content="2024/01/18"/> <meta name="citation_firstpage" content="555"/> <meta name="citation_lastpage" content="580"/> <meta name="citation_article_type" content="Original Paper"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s10260-023-00740-y"/> <meta name="DOI" content="10.1007/s10260-023-00740-y"/> <meta name="size" content="789795"/> <meta name="citation_doi" content="10.1007/s10260-023-00740-y"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s10260-023-00740-y&api_key="/> <meta name="description" content="This paper introduces the pseudo-calibration estimators, a novel method that integrates a non-probability sample of big size with a probability sample, ass"/> <meta name="dc.creator" content="Golini, Natalia"/> <meta name="dc.creator" content="Righi, Paolo"/> <meta name="dc.subject" content="Statistics, general"/> <meta name="dc.subject" content="Statistical Theory and Methods"/> <meta name="dc.subject" content="Statistics for Business, Management, Economics, Finance, Insurance"/> <meta name="dc.subject" content="Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences"/> <meta name="dc.subject" content="Statistics for Life Sciences, Medicine, Health Sciences"/> <meta name="dc.subject" content="Statistics for Social Sciences, Humanities, Law"/> <meta name="citation_reference" content="citation_journal_title=Surv Methodol; citation_title=Are probability surveys bound to disappear for the production of official statistics; citation_author=JF Beaumont; citation_volume=46; citation_issue=1; citation_publication_date=2020; citation_pages=1-28; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Int Stat Rev; citation_title=Selection bias in web surveys; citation_author=J Bethlehem; citation_volume=78; citation_issue=2; citation_publication_date=2010; citation_pages=161-188; citation_doi=10.1111/j.1751-5823.2010.00112.x; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=Math Probl Eng; citation_title=Identifying e-commerce in enterprises by means of text mining and classification algorithms Hindawi; citation_author=G Bianchi, R Bri, F Scalfati; citation_volume=2018; citation_publication_date=2020; citation_pages=1-8; citation_doi=10.1155/2018/7231920; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Stat Sci; citation_title=Model-assisted survey estimation with modern prediction techniques; citation_author=FJ Breidt, JD Opsomer; citation_volume=32; citation_publication_date=2017; citation_pages=190-205; citation_doi=10.1214/16-STS589; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Mach Learn; citation_title=Random forests; citation_author=L Breiman; citation_volume=45; citation_publication_date=2001; citation_pages=5-32; citation_doi=10.1023/A:1010933404324; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Expert Syst Appl; citation_title=Website categorization: a formal approach and robustness analysis in the case of e-commerce detection; citation_author=R Bruni, G Bianchi; citation_volume=142; citation_issue=113; citation_publication_date=2020; citation_pages=001; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=J Am Stat Assoc; citation_title=Doubly robust inference with nonprobability survey samples; citation_author=Y Chen, P Li, C Wu; citation_volume=115; citation_issue=532; citation_publication_date=2020; citation_pages=2011-2021; citation_doi=10.1080/01621459.2019.1677241; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Surv Methodol; citation_title=From multiple modes for surveys to multiple data sources for estimates; citation_author=CF Citro; citation_volume=40; citation_issue=2; citation_publication_date=2014; citation_pages=137-162; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=Surv Methodol; citation_title=A comparison of variance estimators for post-stratification to estimated control totals; citation_author=J Dever, R Valliant; citation_volume=36; citation_publication_date=2010; citation_pages=45-56; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=J Surv Stat Methodol; citation_title=General regression estimation adjusted for undercoverage and estimated control totals; citation_author=J Dever, R Valliant; citation_volume=4; citation_publication_date=2016; citation_pages=289-318; citation_doi=10.1093/jssam/smw001; citation_id=CR10"/> <meta name="citation_reference" content="citation_journal_title=J Am Stat Assoc; citation_title=Calibration estimators in survey sampling; citation_author=JC Deville, CE Särndal; citation_volume=87; citation_publication_date=1992; citation_pages=367-382; citation_doi=10.1080/01621459.1992.10475217; citation_id=CR11"/> <meta name="citation_reference" content="citation_journal_title=Stat Sci; citation_title=Inference for nonprobability samples; citation_author=M Elliot, R Valliant; citation_volume=32; citation_publication_date=2017; citation_pages=249-264; citation_id=CR12"/> <meta name="citation_reference" content="EUROSTAT (2018) Report describing the quality aspects of big data for official statistics. In: Work Package 8 Quality Deliverable 8.2. ESSnet Big Data"/> <meta name="citation_reference" content="EUROSTAT (2020) Deliverable k3: Revised version of the quality guidelines for the acquisition and usage of big data. In: Workpackage K Methodology and quality. ESSnet Big Data II"/> <meta name="citation_reference" content="citation_title=The elements of statistical learning; citation_publication_date=2001; citation_id=CR15; citation_author=T Hastie; citation_author=R Tibshirani; citation_author=J Friedman; citation_publisher=Springer New York Inc."/> <meta name="citation_reference" content="Horrigan MW (2013) Big data: A perspective from the BLS. AMSTAT News January:25–27"/> <meta name="citation_reference" content="citation_journal_title=Public Opin Q; citation_title=Big data in survey research: AAPOR task force report; citation_author=L Japec, F Kreuter, M Berg; citation_volume=79; citation_issue=4; citation_publication_date=2015; citation_pages=839-880; citation_doi=10.1093/poq/nfv039; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=Surv Stat; citation_title=A gentle introduction to data integration in survey sampling; citation_author=JK Kim; citation_volume=85; citation_publication_date=2022; citation_pages=19-29; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Biometrika; citation_title=Combining data from two independent surveys: a model-assisted approach; citation_author=JK Kim, JNK Rao; citation_volume=99; citation_issue=1; citation_publication_date=2011; citation_pages=85-100; citation_doi=10.1093/biomet/asr063; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Int Stat Rev; citation_title=Data integration by combining big data and survey sample data for finite population inference; citation_author=JK Kim, SM Tam; citation_volume=89; citation_issue=2; citation_publication_date=2021; citation_pages=382-401; citation_doi=10.1111/insr.12434; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=J Am Stat Assoc; citation_title=A note on handling nonresponse in sample surveys; citation_author=PS Kott; citation_volume=89; citation_issue=426; citation_publication_date=1994; citation_pages=693-696; citation_doi=10.1080/01621459.1994.10476795; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=J Off Stat; citation_title=Delete-a-group jackknife; citation_author=PS Kott; citation_volume=17; citation_issue=4; citation_publication_date=2001; citation_pages=521-526; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=J Off Stat; citation_title=Delete-a-group variance estimation for the general regression estimator under Poisson sampling; citation_author=PS Kott; citation_volume=22; citation_issue=4; citation_publication_date=2006; citation_pages=759-767; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Surv Methodol; citation_title=Using calibration weighting to adjust for nonresponse and coverage errors; citation_author=PS Kott; citation_volume=32; citation_issue=2; citation_publication_date=2006; citation_pages=133; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Sociol Methods Res; citation_title=Estimation for volunteer panel web surveys using propensity score adjustment and calibration adjustment; citation_author=S Lee, R Valliant; citation_volume=37; citation_issue=3; citation_publication_date=2009; citation_pages=319-343; citation_doi=10.1177/0049124108329643; citation_id=CR25"/> <meta name="citation_reference" content="citation_title=Statistical analysis with missing data; citation_publication_date=2019; citation_id=CR26; citation_author=RJA Little; citation_author=DB Rubin; citation_publisher=Wiley"/> <meta name="citation_reference" content="citation_journal_title=Ann Appl Stat; citation_title=Statistical paradises and paradoxes in big data (i) law of large populations, big data paradox, and the 2016 us presidential election; citation_author=XL Meng; citation_volume=12; citation_issue=2; citation_publication_date=2018; citation_pages=685-726; citation_doi=10.1214/18-AOAS1161SF; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=J Surv Stat Methodol; citation_title=Methodological issues and challenges in the production of official statistics: 24th annual Morris Hansen lecture; citation_author=D Pfeffermann; citation_volume=3; citation_issue=4; citation_publication_date=2015; citation_pages=425-483; citation_doi=10.1093/jssam/smv035; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Sankhya B; citation_title=On making valid inferences by integrating data from surveys and other sources; citation_author=J Rao; citation_volume=83; citation_publication_date=2021; citation_pages=242-272; citation_doi=10.1007/s13571-020-00227-w; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Stat Appl; citation_title=Integration of survey data and big data for finite population inference in official statistics: statistical challenges and practical applications; citation_author=P Righi, G Bianchi, A Nurra; citation_volume=XVII; citation_issue=2; citation_publication_date=2019; citation_pages=135-158; citation_id=CR31"/> <meta name="citation_reference" content="citation_title=Big data and official statistics: some evidence; citation_inbook_title=Book of short the papers: 51st scientific meeting of the Italian statistical society; citation_publication_date=2022; citation_pages=723-734; citation_id=CR32; citation_author=P Righi; citation_author=N Golini; citation_author=G Bianchi; citation_publisher=Pearson"/> <meta name="citation_reference" content="citation_journal_title=Biometrika; citation_title=Inference and missing data; citation_author=DB Rubin; citation_volume=63; citation_publication_date=1976; citation_pages=581-590; citation_doi=10.1093/biomet/63.3.581; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Biom J; citation_title=Enhancing estimation methods for integrating probability and nonprobability survey samples with machine-learning techniques. An application to a survey on the impact of the COVID-19 pandemic in Spain; citation_author=MDM Rueda, S Pasadas-del-Amo, BC Rodríguez; citation_volume=65; citation_issue=2; citation_publication_date=2023; citation_pages=2200035; citation_doi=10.1002/bimj.202200035; citation_id=CR34"/> <meta name="citation_reference" content="citation_title=Estimation in surveys with nonresponse; citation_publication_date=2005; citation_id=CR35; citation_author=CE Särndal; citation_author=S Lundström; citation_publisher=John Wiley & Sons"/> <meta name="citation_reference" content="citation_journal_title=Surv Stat; citation_title=A statistical framework for analysing big data; citation_author=SM Tam; citation_volume=72; citation_publication_date=2015; citation_pages=36-51; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Int Stat Rev; citation_title=Big data, official statistics and some initiatives by the Australian Bureau of Statistics; citation_author=SM Tam, F Clarke; citation_volume=83; citation_issue=3; citation_publication_date=2015; citation_pages=436-448; citation_doi=10.1111/insr.12105; citation_id=CR37"/> <meta name="citation_reference" content="Tam SM, Clarke F (2015) Big data, statistical inference and official statistics—methodology research papers. Australian Bureau of Statistics, Canberra"/> <meta name="citation_reference" content="UNECE Big Data Quality Task Team (2014) A suggested framework for the quality of big data. Deliverables of the UNECE Big Data Quality Task Team"/> <meta name="citation_reference" content="United Nations (2019) United Nations National Quality Assurance Frameworks Manual for Official Statistics. United Nations publication"/> <meta name="citation_reference" content="citation_journal_title=J Surv Stat Methodol; citation_title=Comparing alternatives for estimation from nonprobability samples; citation_author=R Valliant; citation_volume=8; citation_issue=2; citation_publication_date=2020; citation_pages=231-263; citation_doi=10.1093/jssam/smz003; citation_id=CR41"/> <meta name="citation_reference" content="Valliant R, Dorfman AH, Royall RM (eds) (2000) Finite population sampling and inference: a prediction approach. Wiley Series in Survey Methodology"/> <meta name="citation_reference" content="Vehovar V, Toepoel V, Steinmetz S (2016) Non-probability sampling, vol 1. The Sage handbook of survey methods"/> <meta name="citation_author" content="Golini, Natalia"/> <meta name="citation_author_email" content="natalia.golini@unito.it"/> <meta name="citation_author_institution" content="Department of Economics and Statistics “Cognetti de Martiis”, University of Turin, Turin, Italy"/> <meta name="citation_author" content="Righi, Paolo"/> <meta name="citation_author_email" content="parighi@istat.it"/> <meta name="citation_author_institution" content="Italian National Statistical Institute (Istat), Rome, Italy"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2024/04/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s10260-023-00740-y"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Integrating probability and big non-probability samples data to produce Official Statistics - Statistical Methods & Applications"/> <meta property="og:description" content="This paper introduces the pseudo-calibration estimators, a novel method that integrates a non-probability sample of big size with a probability sample, assuming both samples contain relevant information for estimating the population parameter. The proposed estimators share a structural similarity with the adjusted projection estimators and the difference estimators but they adopt a different inferential approach and informative setup. The pseudo-calibration estimators can be employed when the target variable is observed in the probability sample and, in the non-probability sample, it is observed correctly, observed with error, or predicted. This paper also introduces an original application of the jackknife-type method for variance estimation. A simulation study shows that the proposed estimators are robust and efficient compared to the regression data integration estimators that use the same informative setup. Finally, a further evaluation using real data is carried out."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig1_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-9fe647df8f.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-2a2a17cc99.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '10260.springer.com', siteWithPath: '10260.springer.com' + window.location.pathname, twitterHashtag: '10260', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s10260-023-00740-y","Page":"article","springerJournal":true,"Publishing Model":"Hybrid Access","Country":"SG","japan":false,"doi":"10.1007-s10260-023-00740-y","Journal Id":10260,"Journal Title":"Statistical Methods \u0026 Applications","imprint":"Springer","Keywords":"Big data, Calibration weighting, Data integration, Missing at random, Model-based inference, Variance estimation","kwrd":["Big_data","Calibration_weighting","Data_integration","Missing_at_random","Model-based_inference","Variance_estimation"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-s10260-023-00740-y","Full HTML":"Y","Subject Codes":["SCS","SCS0000X","SCS11001","SCS17010","SCS17020","SCS17030","SCS17040"],"pmc":["S","S0000X","S11001","S17010","S17020","S17030","S17040"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1613-981X","pissn":"1618-2510"},"type":"Article","category":{"pmc":{"primarySubject":"Statistics","primarySubjectCode":"S","secondarySubjects":{"1":"Statistics, general","2":"Statistical Theory and Methods","3":"Statistics for Business, Management, Economics, Finance, Insurance","4":"Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences","5":"Statistics for Life Sciences, Medicine, Health Sciences","6":"Statistics for Social Sciences, Humanities, Law"},"secondarySubjectCodes":{"1":"S0000X","2":"S11001","3":"S17010","4":"S17020","5":"S17030","6":"S17040"}},"sucode":"SC10","articleType":"Original Paper"},"attributes":{"deliveryPlatform":"oscar"}},"page":{"attributes":{"environment":"live"},"category":{"pageType":"article"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-237659debf.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-2c19ea9e42.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-54.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-39.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s10260-023-00740-y"/> <script type="application/ld+json">{"mainEntity":{"headline":"Integrating probability and big non-probability samples data to produce Official Statistics","description":"This paper introduces the pseudo-calibration estimators, a novel method that integrates a non-probability sample of big size with a probability sample, assuming both samples contain relevant information for estimating the population parameter. The proposed estimators share a structural similarity with the adjusted projection estimators and the difference estimators but they adopt a different inferential approach and informative setup. The pseudo-calibration estimators can be employed when the target variable is observed in the probability sample and, in the non-probability sample, it is observed correctly, observed with error, or predicted. This paper also introduces an original application of the jackknife-type method for variance estimation. A simulation study shows that the proposed estimators are robust and efficient compared to the regression data integration estimators that use the same informative setup. Finally, a further evaluation using real data is carried out.","datePublished":"2024-01-18T00:00:00Z","dateModified":"2024-01-18T00:00:00Z","pageStart":"555","pageEnd":"580","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1007/s10260-023-00740-y","keywords":["Big data","Calibration weighting","Data integration","Missing at random","Model-based inference","Variance estimation","Statistics","general","Statistical Theory and Methods","Statistics for Business","Management","Economics","Finance","Insurance","Statistics for Engineering","Physics","Computer Science","Chemistry and Earth Sciences","Statistics for Life Sciences","Medicine","Health Sciences","Statistics for Social Sciences","Humanities","Law"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig4_HTML.png"],"isPartOf":{"name":"Statistical Methods & Applications","issn":["1613-981X","1618-2510"],"volumeNumber":"33","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer Berlin Heidelberg","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Natalia Golini","url":"http://orcid.org/0000-0003-4457-5781","affiliation":[{"name":"University of Turin","address":{"name":"Department of Economics and Statistics “Cognetti de Martiis”, University of Turin, Turin, Italy","@type":"PostalAddress"},"@type":"Organization"}],"email":"natalia.golini@unito.it","@type":"Person"},{"name":"Paolo Righi","affiliation":[{"name":"Italian National Statistical Institute (Istat)","address":{"name":"Italian National Statistical Institute (Istat), Rome, Italy","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-copy-link" viewBox="0 0 24 24"><path fill-rule="evenodd" clip-rule="evenodd" d="M19.4594 8.57015C19.0689 8.17963 19.0689 7.54646 19.4594 7.15594L20.2927 6.32261C20.2927 6.32261 20.2927 6.32261 20.2927 6.32261C21.0528 5.56252 21.0528 4.33019 20.2928 3.57014C19.5327 2.81007 18.3004 2.81007 17.5404 3.57014L16.7071 4.40347C16.3165 4.794 15.6834 4.794 15.2928 4.40348C14.9023 4.01296 14.9023 3.3798 15.2928 2.98927L16.1262 2.15594C17.6673 0.614803 20.1659 0.614803 21.707 2.15593C23.2481 3.69705 23.248 6.19569 21.707 7.7368L20.8737 8.57014C20.4831 8.96067 19.85 8.96067 19.4594 8.57015Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M18.0944 5.90592C18.4849 6.29643 18.4849 6.9296 18.0944 7.32013L16.4278 8.9868C16.0373 9.37733 15.4041 9.37734 15.0136 8.98682C14.6231 8.59631 14.6231 7.96314 15.0136 7.57261L16.6802 5.90594C17.0707 5.51541 17.7039 5.5154 18.0944 5.90592Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M13.5113 6.32243C13.9018 6.71295 13.9018 7.34611 13.5113 7.73664L12.678 8.56997C12.678 8.56997 12.678 8.56997 12.678 8.56997C11.9179 9.33006 11.9179 10.5624 12.6779 11.3224C13.438 12.0825 14.6703 12.0825 15.4303 11.3224L16.2636 10.4891C16.6542 10.0986 17.2873 10.0986 17.6779 10.4891C18.0684 10.8796 18.0684 11.5128 17.6779 11.9033L16.8445 12.7366C15.3034 14.2778 12.8048 14.2778 11.2637 12.7366C9.72262 11.1955 9.72266 8.69689 11.2637 7.15578L12.097 6.32244C12.4876 5.93191 13.1207 5.93191 13.5113 6.32243Z"/><path d="M8 20V22H19.4619C20.136 22 20.7822 21.7311 21.2582 21.2529C21.7333 20.7757 22 20.1289 22 19.4549V15C22 14.4477 21.5523 14 21 14C20.4477 14 20 14.4477 20 15V19.4549C20 19.6004 19.9426 19.7397 19.8408 19.842C19.7399 19.9433 19.6037 20 19.4619 20H8Z"/><path d="M4 13H2V19.4619C2 20.136 2.26889 20.7822 2.74705 21.2582C3.22434 21.7333 3.87105 22 4.5451 22H9C9.55228 22 10 21.5523 10 21C10 20.4477 9.55228 20 9 20H4.5451C4.39957 20 4.26028 19.9426 4.15804 19.8408C4.05668 19.7399 4 19.6037 4 19.4619V13Z"/><path d="M4 13H2V4.53808C2 3.86398 2.26889 3.21777 2.74705 2.74178C3.22434 2.26666 3.87105 2 4.5451 2H9C9.55228 2 10 2.44772 10 3C10 3.55228 9.55228 4 9 4H4.5451C4.39957 4 4.26028 4.05743 4.15804 4.15921C4.05668 4.26011 4 4.39633 4 4.53808V13Z"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-institution-medium" viewBox="0 0 24 24"><g><path fill-rule="evenodd" clip-rule="evenodd" d="M11.9967 1C11.6364 1 11.279 1.0898 10.961 1.2646C10.9318 1.28061 10.9035 1.29806 10.8761 1.31689L2.79765 6.87C2.46776 7.08001 2.20618 7.38466 2.07836 7.76668C1.94823 8.15561 1.98027 8.55648 2.12665 8.90067C2.42086 9.59246 3.12798 10 3.90107 10H4.99994V16H4.49994C3.11923 16 1.99994 17.1193 1.99994 18.5V19.5C1.99994 20.8807 3.11923 22 4.49994 22H19.4999C20.8807 22 21.9999 20.8807 21.9999 19.5V18.5C21.9999 17.1193 20.8807 16 19.4999 16H18.9999V10H20.0922C20.8653 10 21.5725 9.59252 21.8667 8.90065C22.0131 8.55642 22.0451 8.15553 21.9149 7.7666C21.7871 7.38459 21.5255 7.07997 21.1956 6.86998L13.1172 1.31689C13.0898 1.29806 13.0615 1.28061 13.0324 1.2646C12.7143 1.0898 12.357 1 11.9967 1ZM4.6844 8L11.9472 3.00755C11.9616 3.00295 11.9783 3 11.9967 3C12.015 3 12.0318 3.00295 12.0461 3.00755L19.3089 8H4.6844ZM16.9999 16V10H14.9999V16H16.9999ZM12.9999 16V10H10.9999V16H12.9999ZM8.99994 16V10H6.99994V16H8.99994ZM3.99994 18.5C3.99994 18.2239 4.2238 18 4.49994 18H19.4999C19.7761 18 19.9999 18.2239 19.9999 18.5V19.5C19.9999 19.7761 19.7761 20 19.4999 20H4.49994C4.2238 20 3.99994 19.7761 3.99994 19.5V18.5Z"/></g></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-rss" viewBox="0 0 22 22"><path d="M1.96094 1C1.96094 0.447715 2.40865 0 2.96094 0C5.46109 0 7.93678 0.492038 10.2467 1.44806C12.5565 2.40407 14.6554 3.80534 16.4234 5.57189C18.1913 7.33843 19.5939 9.4357 20.5508 11.744C21.5077 14.0522 22.0001 16.5263 22.0001 19.0247C22.0001 19.577 21.5524 20.0247 21.0001 20.0247C20.4478 20.0247 20.0001 19.577 20.0001 19.0247C20.0001 16.7891 19.5595 14.5753 18.7033 12.5098C17.8471 10.4444 16.5919 8.56762 15.0097 6.98666C13.4275 5.40575 11.5492 4.15167 9.48182 3.29604C7.41447 2.4404 5.19868 2 2.96094 2C2.40865 2 1.96094 1.55228 1.96094 1Z"/><path fill-rule="evenodd" clip-rule="evenodd" d="M0 18.649C0 16.7974 1.50196 15.298 3.35294 15.298C5.20392 15.298 6.70588 16.7974 6.70588 18.649C6.70588 20.5003 5.20397 22 3.35294 22C1.50191 22 0 20.5003 0 18.649ZM3.35294 17.298C2.60493 17.298 2 17.9036 2 18.649C2 19.3943 2.60498 20 3.35294 20C4.1009 20 4.70588 19.3943 4.70588 18.649C4.70588 17.9036 4.10095 17.298 3.35294 17.298Z"/><path d="M3.3374 7.46115C2.78512 7.46115 2.3374 7.90887 2.3374 8.46115C2.3374 9.01344 2.78512 9.46115 3.3374 9.46115C4.54515 9.46115 5.74107 9.69885 6.85684 10.1606C7.97262 10.6224 8.98639 11.2993 9.84028 12.1525C10.6942 13.0057 11.3715 14.0185 11.8336 15.1332C12.2956 16.2478 12.5335 17.4424 12.5335 18.649C12.5335 19.2013 12.9812 19.649 13.5335 19.649C14.0858 19.649 14.5335 19.2013 14.5335 18.649C14.5335 17.1796 14.2438 15.7247 13.6811 14.3673C13.1184 13.0099 12.2936 11.7765 11.2539 10.7377C10.2142 9.69885 8.97999 8.87484 7.62168 8.31266C6.26337 7.75049 4.80757 7.46115 3.3374 7.46115Z"/></symbol><symbol id="icon-eds-i-search-category-medium" viewBox="0 0 32 32"><path fill-rule="evenodd" d="M2 5.306A3.306 3.306 0 0 1 5.306 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833a3.306 3.306 0 0 1-3.306 3.305H5.306A3.306 3.306 0 0 1 2 11.14V5.306Zm3.306-.584a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.583.583 0 0 0 .583-.583V5.306a.583.583 0 0 0-.583-.584H5.306Zm15.555 8.945a7.194 7.194 0 1 0 4.034 13.153l2.781 2.781a1.361 1.361 0 1 0 1.925-1.925l-2.781-2.781a7.194 7.194 0 0 0-5.958-11.228Zm3.173 10.346a4.472 4.472 0 1 0-.021.021l.01-.01.011-.011Zm-5.117-19.29a.583.583 0 0 0-.584.583v5.833a1.361 1.361 0 0 1-2.722 0V5.306A3.306 3.306 0 0 1 18.917 2h5.833a3.306 3.306 0 0 1 3.306 3.306v5.833c0 .6-.161 1.166-.443 1.654a1.361 1.361 0 1 1-2.357-1.363.575.575 0 0 0 .078-.291V5.306a.583.583 0 0 0-.584-.584h-5.833ZM2 18.916a3.306 3.306 0 0 1 3.306-3.306h5.833a1.361 1.361 0 1 1 0 2.722H5.306a.583.583 0 0 0-.584.584v5.833c0 .322.261.583.584.583h5.833a.574.574 0 0 0 .29-.077 1.361 1.361 0 1 1 1.364 2.356 3.296 3.296 0 0 1-1.654.444H5.306A3.306 3.306 0 0 1 2 24.75v-5.833Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" data-track="click_login" data-track-context="header" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s10260-023-00740-y?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-5"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/10260" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Statistical Methods & Applications</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Integrating probability and big non-probability samples data to produce Official Statistics</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Original Paper</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2024-01-18">18 January 2024</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 33</span>, pages 555–580, (<span data-test="article-publication-year">2024</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s10260-023-00740-y.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/10260" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/10260?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/10260?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/10260?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/10260?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Statistical Methods & Applications</span> </a> <a href="https://link.springer.com/journal/10260/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://www.editorialmanager.com/smap/" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Integrating probability and big non-probability samples data to produce Official Statistics </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s10260-023-00740-y.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Natalia-Golini-Aff1" data-author-popup="auth-Natalia-Golini-Aff1" data-author-search="Golini, Natalia" data-corresp-id="c1">Natalia Golini<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><span class="u-js-hide"> <a class="js-orcid" href="http://orcid.org/0000-0003-4457-5781"><span class="u-visually-hidden">ORCID: </span>orcid.org/0000-0003-4457-5781</a></span><sup class="u-js-hide"><a href="#Aff1">1</a></sup> & </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Paolo-Righi-Aff2" data-author-popup="auth-Paolo-Righi-Aff2" data-author-search="Righi, Paolo">Paolo Righi</a><sup class="u-js-hide"><a href="#Aff2">2</a></sup> </li></ul> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>1644 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s10260-023-00740-y/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>This paper introduces the pseudo-calibration estimators, a novel method that integrates a non-probability sample of big size with a probability sample, assuming both samples contain relevant information for estimating the population parameter. The proposed estimators share a structural similarity with the adjusted projection estimators and the difference estimators but they adopt a different inferential approach and informative setup. The pseudo-calibration estimators can be employed when the target variable is observed in the probability sample and, in the non-probability sample, it is observed correctly, observed with error, or predicted. This paper also introduces an original application of the jackknife-type method for variance estimation. A simulation study shows that the proposed estimators are robust and efficient compared to the regression data integration estimators that use the same informative setup. Finally, a further evaluation using real data is carried out.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1080/15598608.2013.856359?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1080/15598608.2013.856359">Improved Family of Estimators of Population Variance in Simple Random Sampling </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">01 June 2015</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs13571-024-00346-8/MediaObjects/13571_2024_346_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s13571-024-00346-8?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/s13571-024-00346-8">Semiparametric Model-Assisted Approach to Probabilistic Sampling of Finite Populations With High Right-Skew and Kurtosis </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">08 November 2024</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs10260-017-0380-4/MediaObjects/10260_2017_380_Fig1_HTML.gif" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s10260-017-0380-4?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/s10260-017-0380-4">Small area estimation based on M-quantile models in presence of outliers in auxiliary variables </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">22 March 2017</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1743586580, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10260" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>In recent years, new data sources have emerged as a result of increased interactions with digital technologies by both citizens and business units, along with the growing capability of these technologies to generate digital trails. These sources, known as Big Data (BD) sources, encompass extensive amounts of digital information, including web surveys, search queries, website visits, social media activity, online purchases, self-reported administrative data sets, and other online interactions. BD sources typically comprise numerous records, often containing unstructured information, and are primarily generated for non-statistical purposes. They represent non-probability samples of the reference population. In many cases, they do not accurately represent the population of interest. Consequently, using them, for instance, to compute a simple mean of the observed values can lead to biased population mean estimates and erroneous conclusions, despite the large sample size (Bethlehem <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2010" title="Bethlehem J (2010) Selection bias in web surveys. Int Stat Rev 78(2):161–188" href="/article/10.1007/s10260-023-00740-y#ref-CR2" id="ref-link-section-d84953921e387">2010</a>; Vehovar et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2016" title="Vehovar V, Toepoel V, Steinmetz S (2016) Non-probability sampling, vol 1. The Sage handbook of survey methods" href="/article/10.1007/s10260-023-00740-y#ref-CR43" id="ref-link-section-d84953921e390">2016</a>; Meng <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="Meng XL (2018) Statistical paradises and paradoxes in big data (i) law of large populations, big data paradox, and the 2016 us presidential election. Ann Appl Stat 12(2):685–726" href="/article/10.1007/s10260-023-00740-y#ref-CR28" id="ref-link-section-d84953921e393">2018</a>). Notwithstanding these limitations, BD sources offer quick, easy, and cost-effective alternatives for obtaining data. They are becoming increasingly relevant in research and, notably, they present challenging sources of information for producing Official Statistics.</p><p>The use of BD sources is leading to a paradigm shift for National Statistical Institutes (NSIs), transitioning from planned statistics achieved through a designed process to data-oriented or data-driven statistics. Traditionally, NSIs rely on a designed process for collecting statistical data. This involves identifying the target population and its records, defining the target variables, planning the sampling design, and using efficient estimators. In the data-driven approach, the primary focus is on choosing the estimator that is most suitable for the task based on the observed variables. The process involves using a specific data collection tool, usually a digital device, on a sub-population selected through an unknown sampling technique. Horrigan (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2013" title="Horrigan MW (2013) Big data: A perspective from the BLS. AMSTAT News January:25–27" href="/article/10.1007/s10260-023-00740-y#ref-CR16" id="ref-link-section-d84953921e399">2013</a>) emphasizes the importance of creating transparent methodological documentation (metadata) describing how BD are used to construct any type of estimate. Citro (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2014" title="Citro CF (2014) From multiple modes for surveys to multiple data sources for estimates. Surv Methodol 40(2):137–162" href="/article/10.1007/s10260-023-00740-y#ref-CR8" id="ref-link-section-d84953921e402">2014</a>), Tam and Clarke (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2015a" title="Tam SM, Clarke F (2015) Big data, official statistics and some initiatives by the Australian Bureau of Statistics. Int Stat Rev 83(3):436–448" href="/article/10.1007/s10260-023-00740-y#ref-CR37" id="ref-link-section-d84953921e405">2015a</a>), Pfeffermann (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2015" title="Pfeffermann D (2015) Methodological issues and challenges in the production of official statistics: 24th annual Morris Hansen lecture. J Surv Stat Methodol 3(4):425–483" href="/article/10.1007/s10260-023-00740-y#ref-CR29" id="ref-link-section-d84953921e408">2015</a>) address the methodological uses and challenges of BD sources in the production of Official Statistics. Many reports have developed suitable statistical frameworks (among others: EUROSTAT <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2018" title="EUROSTAT (2018) Report describing the quality aspects of big data for official statistics. In: Work Package 8 Quality Deliverable 8.2. ESSnet Big Data" href="/article/10.1007/s10260-023-00740-y#ref-CR13" id="ref-link-section-d84953921e411">2018</a>; Japec et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2015" title="Japec L, Kreuter F, Berg M et al (2015) Big data in survey research: AAPOR task force report. Public Opin Q 79(4):839–880. 
 https://doi.org/10.1093/poq/nfv039
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR17" id="ref-link-section-d84953921e415">2015</a>) and quality frameworks (UNECE Big Data Quality Task Team <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2014" title="UNECE Big Data Quality Task Team (2014) A suggested framework for the quality of big data. Deliverables of the UNECE Big Data Quality Task Team" href="/article/10.1007/s10260-023-00740-y#ref-CR39" id="ref-link-section-d84953921e418">2014</a>; United Nations <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="United Nations (2019) United Nations National Quality Assurance Frameworks Manual for Official Statistics. United Nations publication" href="/article/10.1007/s10260-023-00740-y#ref-CR40" id="ref-link-section-d84953921e421">2019</a>; EUROSTAT <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="EUROSTAT (2020) Deliverable k3: Revised version of the quality guidelines for the acquisition and usage of big data. In: Workpackage K Methodology and quality. ESSnet Big Data II" href="/article/10.1007/s10260-023-00740-y#ref-CR14" id="ref-link-section-d84953921e424">2020</a>) that outline the fundamental principles and guidelines for using BD sources in producing Official Statistics. Several papers focusing on the accuracy and reliability of BD sources emphasize the growing need to determine the conditions under which BD sources can provide valid inferences. In this regard, many authors agree with the necessity of using methods combining data from big non-probability and probability samples to not severely sacrifice the quality of the estimates (Beaumont <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Beaumont JF (2020) Are probability surveys bound to disappear for the production of official statistics. Surv Methodol 46(1):1–28" href="/article/10.1007/s10260-023-00740-y#ref-CR1" id="ref-link-section-d84953921e427">2020</a>). Valliant (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Valliant R (2020) Comparing alternatives for estimation from nonprobability samples. J Surv Stat Methodol 8(2):231–263" href="/article/10.1007/s10260-023-00740-y#ref-CR41" id="ref-link-section-d84953921e430">2020</a>) and Rao (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Rao J (2021) On making valid inferences by integrating data from surveys and other sources. Sankhya B 83:242–272" href="/article/10.1007/s10260-023-00740-y#ref-CR30" id="ref-link-section-d84953921e434">2021</a>) provide insightful reviews of these methods. Kim (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Kim JK (2022) A gentle introduction to data integration in survey sampling. Surv Stat 85:19–29" href="/article/10.1007/s10260-023-00740-y#ref-CR18" id="ref-link-section-d84953921e437">2022</a>) offers an extensive review of data integration techniques for combining a probability sample with a non-probability sample when the study variable is only observed in the non-probability sample. Most methods assume that the variable of interest is available only in the non-probability sample, while other auxiliary variables are present in both samples.</p><p>In this work, we assume that the target variable is observed in the probability sample, while in the big non-probability sample, it is (a) observed correctly, (b) observed with error, or (c) predicted using covariates collected in the big non-probability sample. A real case study inspiring our research is the 2018 European Community survey data on ICT usage and e-commerce in enterprises, conducted annually by Istat. The ICT probability survey sample data can be combined with the internet data scraped from the enterprises’ websites belonging to the ICT target population (big non-probability sample data). The target variables related to e-commerce functionalities, social media links, and presence of job advertisements can be observed, according to assumption (a), or predicted, according to assumption (c), using text-mining techniques on the scraped website data (Righi et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Righi P, Bianchi G, Nurra A et al (2019) Integration of survey data and big data for finite population inference in official statistics: statistical challenges and practical applications. Stat Appl XVII(2):135–158" href="/article/10.1007/s10260-023-00740-y#ref-CR31" id="ref-link-section-d84953921e443">2019</a>). By integrating this additional information with the ICT survey, one can significantly improve the accuracy of the estimates. Another real case illustrating the type of BD we consider in this paper is given in Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2015" title="Tam SM (2015) A statistical framework for analysing big data. Surv Stat 72:36–51" href="/article/10.1007/s10260-023-00740-y#ref-CR36" id="ref-link-section-d84953921e446">2015</a>) and Tam and Clarke (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2015b" title="Tam SM, Clarke F (2015) Big data, statistical inference and official statistics—methodology research papers. Australian Bureau of Statistics, Canberra" href="/article/10.1007/s10260-023-00740-y#ref-CR38" id="ref-link-section-d84953921e449">2015b</a>). In these papers, the use of remote sensing for agricultural statistics using geo-localized satellite imagery and other satellite data (e.g., moisture, temperature) is investigated. After transforming the images into structured data (for instance, the reflectance data from frequency bands), the target variables (land use, crop type, crop yield) are predicted by supervised machine learning classification techniques. A probability sample of geo-localized areas collecting ground truth data is used as a training set. Another example is given by Rueda et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2023" title="Rueda MDM, Pasadas-del-Amo S, Rodríguez BC et al (2023) Enhancing estimation methods for integrating probability and nonprobability survey samples with machine-learning techniques. An application to a survey on the impact of the COVID-19 pandemic in Spain. Biom J 65(2):2200035" href="/article/10.1007/s10260-023-00740-y#ref-CR34" id="ref-link-section-d84953921e452">2023</a>) where an application of data integration techniques using a similar informative setup is provided. They consider a probability survey on the impact of the COVID-19 pandemic in Spain combined with a non-probability web-based survey. Both samples share the same questionnaire and measures.</p><p>In this paper, we introduce a novel class of estimators called pseudo-calibration (PC) estimators. They are based on big non-probability sample data, integrated with probability survey sample data and administrative or statistical registers. We also propose a variance estimation method based on the Delete-a-Group Jackknife technique (Kott <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2001" title="Kott PS (2001) Delete-a-group jackknife. J Off Stat 17(4):521–526" href="/article/10.1007/s10260-023-00740-y#ref-CR22" id="ref-link-section-d84953921e458">2001</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2006a" title="Kott PS (2006) Delete-a-group variance estimation for the general regression estimator under Poisson sampling. J Off Stat 22(4):759–767" href="/article/10.1007/s10260-023-00740-y#ref-CR23" id="ref-link-section-d84953921e461">2006a</a>). Specifically, we formalize the PC estimators initially introduced in an Istat technical report<sup><a href="#Fn1"><span class="u-visually-hidden">Footnote </span>1</a></sup> and employed in Righi et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Righi P, Bianchi G, Nurra A et al (2019) Integration of survey data and big data for finite population inference in official statistics: statistical challenges and practical applications. Stat Appl XVII(2):135–158" href="/article/10.1007/s10260-023-00740-y#ref-CR31" id="ref-link-section-d84953921e475">2019</a>). The PC estimators are developed within a model-based framework, although an automatic calibration procedure, typical of model-assisted estimators, is carried out. We highlight that the proposed estimators have a similar structure to the <i>adjusted projection estimator</i> (Kim and Rao <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2011" title="Kim JK, Rao JNK (2011) Combining data from two independent surveys: a model-assisted approach. Biometrika 99(1):85–100" href="/article/10.1007/s10260-023-00740-y#ref-CR19" id="ref-link-section-d84953921e482">2011</a>) and the <i>difference estimators</i> (Breidt and Opsomer <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Breidt FJ, Opsomer JD (2017) Model-assisted survey estimation with modern prediction techniques. Stat Sci 32:190–205" href="/article/10.1007/s10260-023-00740-y#ref-CR4" id="ref-link-section-d84953921e488">2017</a>), but a different inferential approach and informative setup. Furthermore, we show the analogies of the proposed estimators with the <i>doubly robust estimators</i> (Chen et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e494">2020</a>). Yet, we compare the proposed estimators with the <i>data integration estimators</i> proposed by Kim (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Kim JK (2022) A gentle introduction to data integration in survey sampling. Surv Stat 85:19–29" href="/article/10.1007/s10260-023-00740-y#ref-CR18" id="ref-link-section-d84953921e501">2022</a>), developed in the same informative setup. The data integration estimators utilize both a probability and non-probability sample from the reference population. The target variable is observed in both samples, but there is a possibility of inaccurate measurement in one of the samples. The PC and data integration estimators employ calibration techniques, which are well-established methods used by National Statistical Institutes (NSIs), making them suitable for producing Official Statistics. However, the calibration methods differ significantly between these two classes of estimators. Precisely, the PC estimators aim to compute the weights of units in the non-probability sample; the data integration estimators seek to compute the weights of the probability sample units according to a model-assisted approach. With few exceptions, the two classes of estimators produce different estimates of the target parameter.</p><p>The paper is structured as follows. Section <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec2">2</a> introduces the basic notation and the informative context. A brief introduction of the data integration estimators (Kim and Tam <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e511">2021</a>) is in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec4">3</a>. Section <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec5">4</a> illustrates the novel class of PC estimators, and Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec10">5</a> shows the jackknife-type variance estimator. Section <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec11">6</a> presents the results of a Monte Carlo simulation on the performance of PC estimators, the comparison with the data integration estimators, and the accuracy of the jackknife-type variance estimator. Section <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec14">7</a> shows an application of the two classes of estimators on the motivating real survey data and BD source introduced above. Finally, some concluding remarks are in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec17">8</a>.</p><p>This paper is an extended version of the paper presented at the 51st Scientific Meeting of the Italian Statistical Society on June 2022 (Righi et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2022" title="Righi P, Golini N, Bianchi G (2022) Big data and official statistics: some evidence. In: Balzanella A, Bini M, Cavicchia C et al (eds) Book of short the papers: 51st scientific meeting of the Italian statistical society. Pearson, Hoboken, pp 723–734" href="/article/10.1007/s10260-023-00740-y#ref-CR32" id="ref-link-section-d84953921e536">2022</a>).</p></div></div></section><section data-title="Informative context"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Informative context</h2><div class="c-article-section__content" id="Sec2-content"><p>We estimate the parameters of the finite target population using a big non-probability sample, where the values of the target variable may either be observed correctly, observed with error, or predicted. To ensure valid inferences, we assume the following: (i) there exists a reference survey, with a probability sample drawn from the target population, where the target variable is observed correctly; (ii) it is possible to identify which units in the probability sample also belong to the non-probability sample; (iii) in the big non-probability sample, a set of auxiliary variables related to the target variable are available.</p><p>Assumptions (i) and (ii) are necessary for implementing the proposed PC estimators when the values of the target variable are observed with error or predicted in the large non-probability sample. Assumption (iii) underlines that the non-probability sample can serve as a source to gather informative covariates for predicting the target variable.</p><h3 class="c-article__sub-heading" id="Sec3"><span class="c-article-section__title-number">2.1 </span>Notation and basic setup</h3><p>Let <span class="mathjax-tex">\(\mathcal {U} = \{1,\ldots ,N\}\)</span> denote the target population of size <i>N</i>, let <span class="mathjax-tex">\(Y = \Sigma _{i=1}^N y_i\)</span> be the target parameter and <span class="mathjax-tex">\(y_i\)</span> the observed value of the variable <span class="mathjax-tex">\(\mathcal {Y}\)</span> for the unit <i>i</i>. We have two independent samples from the finite population <span class="mathjax-tex">\(\mathcal {U}\)</span>: a probability sample <span class="mathjax-tex">\(\mathcal {S}_A\)</span> of size <span class="mathjax-tex">\(n_A\)</span> and a big non-probability sample <span class="mathjax-tex">\(\mathcal {S}_B\)</span> of size <span class="mathjax-tex">\(n_B\)</span>. For each unit <span class="mathjax-tex">\(i \in \mathcal {S}_A\)</span>, we observe the values of a vector of auxiliary variables <span class="mathjax-tex">\(\textbf{x}_i\)</span> and the target variable <span class="mathjax-tex">\(y_i\)</span>. Within a design-based framework, <span class="mathjax-tex">\(\hat{Y}_{HT,A} = \Sigma _{i \in A} d_i^{A} y_i\)</span> stands as the design-unbiased Horvitz-Thompson estimator of <i>Y</i>, where <span class="mathjax-tex">\(d_i^A = 1/\pi ^{A}_{i}\)</span> denotes the sampling weight and <span class="mathjax-tex">\(\pi ^{A}_{i} = Pr(i \in \mathcal {S}_A)\)</span> is the first-order inclusion probability in <span class="mathjax-tex">\(\mathcal {S}_A\)</span>.</p><p>In the big non-probability sample <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, the target variable <span class="mathjax-tex">\(\mathcal {Y}\)</span> can be observed correctly, with error, or predicted using a parametric or non-parametric model. In the first case, <span class="mathjax-tex">\(y_i\)</span> represents the observed value of <span class="mathjax-tex">\(\mathcal {Y}\)</span> for the unit <i>i</i>. In the latter two cases, the value of <span class="mathjax-tex">\(\mathcal {Y}\)</span> is denoted as <span class="mathjax-tex">\(\tilde{y}_i\)</span>. We use the notation <span class="mathjax-tex">\(y^{*}_{i}\)</span> to indicate either <span class="mathjax-tex">\(y_i\)</span> or <span class="mathjax-tex">\(\tilde{y}_i\)</span>.</p><p>We observe a vector of auxiliary variables <span class="mathjax-tex">\(\textbf{x}_{i}\)</span> for each unit <span class="mathjax-tex">\(i \in \mathcal {U}\)</span> and an additional vector of auxiliary variables <span class="mathjax-tex">\(\textbf{x}_{i,B}\)</span> for each unit <span class="mathjax-tex">\(i \in \mathcal {S}_B\)</span>. When the target variable cannot be observed in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, the vector <span class="mathjax-tex">\(\textbf{x}_{i,B}\)</span> contains good predictors for it.</p><p>The probability of a unit being included in the big non-probability sample, say <span class="mathjax-tex">\(\pi _{i}^{B} = Pr(i \in \mathcal {S}_B)\)</span>, is unknown. This probability is referred to as the propensity score. Let <span class="mathjax-tex">\(\delta _i = I(i \in \mathcal {S}_B)\)</span> be the indicator variable such that, <span class="mathjax-tex">\(\delta _i = 1\)</span> if <span class="mathjax-tex">\(i \in \mathcal {S}_B\)</span> and <span class="mathjax-tex">\(\delta _i = 0\)</span> if <span class="mathjax-tex">\(i \notin \mathcal {S}_B\)</span> <span class="mathjax-tex">\((i = 1, \ldots , N)\)</span>. The propensity scores are given by <span class="mathjax-tex">\(\pi _i^B=E_{p}(\delta _i\mid \textbf{x}_{i},y_i)= Pr(\delta _i = 1 \mid {\textbf {x}}_i, y_i)\)</span>, where <i>p</i> refers to the model for generating <span class="mathjax-tex">\(S_B\)</span>.</p><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab1">1</a> displays the data set available for the two samples and their representativeness.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Data available for <span class="mathjax-tex">\(\mathcal {S}_A\)</span> and <span class="mathjax-tex">\(\mathcal {S}_B\)</span></b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10260-023-00740-y/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>As in Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e2172">2021</a>) and Chen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e2175">2020</a>), we assume that units belonging to <span class="mathjax-tex">\(\mathcal {S}_A\)</span> can be recognized in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. Therefore, it is possible to specify <span class="mathjax-tex">\(\delta _i\)</span> for each unit <span class="mathjax-tex">\(i\in \mathcal {S}_A\)</span>.</p></div></div></section><section data-title="Data integration estimators"><div class="c-article-section" id="Sec4-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec4"><span class="c-article-section__title-number">3 </span>Data integration estimators</h2><div class="c-article-section__content" id="Sec4-content"><p>The data integration (DI) estimators, developed by Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e2286">2021</a>), provide a versatile tool for properly utilizing big non-probability samples in finite population inference. The big non-probability sample (BD source) is treated as a finite population of incomplete or inaccurate observations that can be used as auxiliary information. Thus, a calibration estimator can be directly used to adjust sampling weights for each <span class="mathjax-tex">\(i\in \mathcal {S}_A\)</span>, to reproduce certain known population totals for both the target population <span class="mathjax-tex">\(\mathcal {U}\)</span> and a non-probability sample <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. In Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e2360">2021</a>), the authors point out that if the fraction of the non-probability sample present in the finite population is not substantial, the efficiency gain achieved by the DI estimators is limited. Additionally, it is worth highlighting that making design-based inference is advantageous for NSIs, as they typically use this approach to produce Official Statistics.</p><p>The general form of the class of DI estimators is the Regression DI (RegDI) estimator which is defined as</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{RegDI} = \sum _{i \in \mathcal {S}_A} w^{A}_{i} y_i, \end{aligned}$$</span></div><div class="c-article-equation__number"> (1) </div></div><p>where <span class="mathjax-tex">\(\{w^{A}_{i}: i\in \mathcal {S}_A\}\)</span> is the vector of calibrated weights. These weights are determined by solving the following optimization problem</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\left\{ \begin{array}{ll} \min \sum _{i \in \mathcal {S}_A} Q(d^{A}_{i}, w^{A}_{i})/q_i \\ \sum _{i \in \mathcal {S}_A} w^{A}_{i} \textbf{x}_{i} = \textbf{X} \end{array}\right. }, \end{aligned}$$</span></div><div class="c-article-equation__number"> (2) </div></div><p>where <span class="mathjax-tex">\(d^{A}_{i}\)</span> represents the base sampling weight, <span class="mathjax-tex">\(q_i\)</span> is a known positive weight independent of <span class="mathjax-tex">\(d_i^A\)</span> and <span class="mathjax-tex">\(\textbf{X} = \sum _{i \in \mathcal {U}} \textbf{x}_i\)</span> is a vector of totals, including the totals of <span class="mathjax-tex">\(\delta _i\)</span> and <span class="mathjax-tex">\(\delta _i y^{*}_{i}\)</span>. These totals are assumed to be known or possibly to be estimated by a large and accurate survey (e.g., Dever and Valliant <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2010" title="Dever J, Valliant R (2010) A comparison of variance estimators for post-stratification to estimated control totals. Surv Methodol 36:45–56" href="/article/10.1007/s10260-023-00740-y#ref-CR9" id="ref-link-section-d84953921e2853">2010</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2016" title="Dever J, Valliant R (2016) General regression estimation adjusted for undercoverage and estimated control totals. J Surv Stat Methodol 4:289–318" href="/article/10.1007/s10260-023-00740-y#ref-CR10" id="ref-link-section-d84953921e2856">2016</a>). The function <span class="mathjax-tex">\(Q(\cdot )\)</span> is a distance function that can be defined, for example, as</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} Q(d^{A}_{i}, w^{A}_{i}; q_i) = \sum _{i \in \mathcal {S}_A} \frac{d^{A}_{i}}{q_i} \left( \frac{w^{A}_{i}}{d^A_i} - 1 \right) ^2. \end{aligned}$$</span></div><div class="c-article-equation__number"> (3) </div></div><p>It is important to note that, in practice, uniform weighting (<span class="mathjax-tex">\(q_i=1\)</span>) is commonly used, although sometimes different weights are employed (Deville and Särndal <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1992" title="Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:367–382" href="/article/10.1007/s10260-023-00740-y#ref-CR11" id="ref-link-section-d84953921e3067">1992</a>).</p><p>By specifying the terms of the RegDI estimator, one can derive various DI estimators. Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e3073">2021</a>) gives insight into the specific estimators. Furthermore, if we use alternative distance functions, we can obtain the calibration data integration estimators according to the definition by Deville and Särndal (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1992" title="Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:367–382" href="/article/10.1007/s10260-023-00740-y#ref-CR11" id="ref-link-section-d84953921e3076">1992</a>). Regression and calibration estimators are useful statistical tools for enhancing the precision of the sampling estimates and are commonly used to deal with unit non-response and the frame list under-coverage (Kott <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2006b" title="Kott PS (2006) Using calibration weighting to adjust for nonresponse and coverage errors. Surv Methodol 32(2):133" href="/article/10.1007/s10260-023-00740-y#ref-CR24" id="ref-link-section-d84953921e3079">2006b</a>; Särndal and Lundström <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2005" title="Särndal CE, Lundström S (2005) Estimation in surveys with nonresponse. John Wiley & Sons, Hoboken" href="/article/10.1007/s10260-023-00740-y#ref-CR35" id="ref-link-section-d84953921e3082">2005</a>).</p> <h3 class="c-article__sub-heading" id="FPar1">Remark 1</h3> <p>A special case of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ1">1</a>) can be obtained considering the distance function (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ3">3</a>) and setting <span class="mathjax-tex">\(\textbf{x}_i=\delta _i y_i^*\)</span> and <span class="mathjax-tex">\(q_i=\delta _i y_i^*\)</span>. We can define the RegDI estimator as</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{RegDI}=\hat{Y}_{HT,A}+\frac{\hat{Y}_{HT,A}}{\hat{Y}^{*(B)}_{HT,A}} \left( Y^{*(B)}-\hat{Y}^{*(B)}_{HT,A}\right) =\frac{\hat{Y}_{HT,A}}{\hat{Y}^{*(B)}_{HT,A}} Y^{*(B)}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (4) </div></div><p>where <span class="mathjax-tex">\(\hat{Y}_{HT,A} = \sum _{i \in \mathcal {S}_A} d^{A}_{i} y_i\)</span>, <span class="mathjax-tex">\(\hat{Y}^{*(B)}_{HT,A}=\sum _{i \in \mathcal {S}_A} d^{A}_{i} \delta _i y^*_i\)</span> and <span class="mathjax-tex">\(Y^{*(B)}=\sum _{i \in \mathcal {S}_B} y^*_i\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar2">Remark 2</h3> <p>The RegDI estimators utilize <span class="mathjax-tex">\(y_i^*\)</span> as auxiliary information in a design-based approach. They exhibit greater efficiency compared to the Horvitz-Thompson estimator when <span class="mathjax-tex">\(y_i^*\)</span> is correlated with the variable <span class="mathjax-tex">\(y_i\)</span> observed in <span class="mathjax-tex">\(\mathcal {S}_A\)</span>, with maximum efficiency achieved when <span class="mathjax-tex">\(y_i^* = y_i\)</span>. It is worth noting that in large-scale multi-purpose surveys, more than one target variable may be observed or predicted in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. Consequently, the RegDI estimators could face excess calibration constraints, potentially making the calibration process unfeasible. Sampling errors may be notably large when these constraints are satisfied.</p> </div></div></section><section data-title="Pseudo-calibration estimators"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5"><span class="c-article-section__title-number">4 </span>Pseudo-calibration estimators</h2><div class="c-article-section__content" id="Sec5-content"><h3 class="c-article__sub-heading" id="Sec6"><span class="c-article-section__title-number">4.1 </span>Model-based estimators</h3><p>In this section, we consider the case (a), i.e., where the target variable is observed in both samples.</p><p>Unlike the design-based approach, the model-based approach utilizes data from a big non-probability sample and directly estimates the finite population parameter. This is achieved by summing the observed target variable for <span class="mathjax-tex">\(i\in \mathcal {S}_B\)</span> and the target variable predicted for <span class="mathjax-tex">\(i \notin \mathcal {S}_B\)</span>. In this case, inference can be made within a model-based framework. Prediction methods rely on defining a super-population model that generates the target variable <span class="mathjax-tex">\(\mathcal {Y}\)</span> (Valliant et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2000" title="Valliant R, Dorfman AH, Royall RM (eds) (2000) Finite population sampling and inference: a prediction approach. Wiley Series in Survey Methodology" href="/article/10.1007/s10260-023-00740-y#ref-CR42" id="ref-link-section-d84953921e3978">2000</a>). Let’s suppose that the finite population <span class="mathjax-tex">\((\textbf{x}_i, y_i)\)</span>, for all <span class="mathjax-tex">\(i\in \mathcal {U}\)</span>, can be viewed as a random sample from the model <span class="mathjax-tex">\(y_i = \mu (\textbf{x}_i) + \epsilon _i\)</span>, where <span class="mathjax-tex">\(\mu (\cdot )\)</span> can take a parametric or an unspecified non-parametric form, and <span class="mathjax-tex">\(\epsilon _i\)</span> is an independent variable with zero mean and variance <span class="mathjax-tex">\(V(\epsilon _i)=v(\textbf{x}_i) \sigma ^2\)</span>, with the form of the variance function <span class="mathjax-tex">\(v(\cdot )\)</span> being known. This outcome model describes the dependence of the target variable on a vector of auxiliary variables <span class="mathjax-tex">\(\textbf{x}\)</span>. We can use this relationship to predict the values of the units not belonging to <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, provided that the <span class="mathjax-tex">\(\textbf{x}\)</span> values are known for all <span class="mathjax-tex">\(i\in \mathcal {U}\)</span>. In practice, we utilize the dataset of the pooled sample <span class="mathjax-tex">\(\{(\textbf{x}_{i}, y_i), i\in \mathcal {S}_B\cup \mathcal {S}_A\}\)</span> to construct the outcome model and make predictions. Given a parametric outcome model, <span class="mathjax-tex">\(y_i=\mu (\textbf{x}_i; \varvec{\beta }) + \epsilon_i\)</span>, and a consistent estimator <span class="mathjax-tex">\(\varvec{\hat{\beta }}\)</span> of the parameters <span class="mathjax-tex">\(\varvec{\beta }\)</span>, we obtain the predictions as <span class="mathjax-tex">\({{\hat{y}} }_i=\mu (\textbf{x}_i; \varvec{\hat{\beta }})\)</span>. The estimator for the population total <i>Y</i> is defined as <span class="mathjax-tex">\(\hat{Y}_m=\sum _{i\in \mathcal {S}_B}y_i+\sum _{i\notin \mathcal {S}_B} {\hat{y}}_i\)</span>. If the assumption <span class="mathjax-tex">\(E_{\mu }(y_i\mid \textbf{x}_i, \delta _i)=E_{\mu }(y_i\mid \textbf{x}_i)\)</span> holds, we obtain unbiased model-based estimates. Finally, the model-based estimator can be defined as a weighted sum of the observed values, <span class="mathjax-tex">\(\hat{Y}_m=\sum _{i\in \mathcal {S}_B} \omega _i y_i\)</span>, where <span class="mathjax-tex">\(\omega _i\)</span> are the appropriate weights representing the units not belonging to <span class="mathjax-tex">\(\mathcal {S}_B\)</span> (Valliant et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2000" title="Valliant R, Dorfman AH, Royall RM (eds) (2000) Finite population sampling and inference: a prediction approach. Wiley Series in Survey Methodology" href="/article/10.1007/s10260-023-00740-y#ref-CR42" id="ref-link-section-d84953921e4894">2000</a>).</p><p>Another class of model-based estimators involves estimating the propensity scores. Since the selection mechanism of <span class="mathjax-tex">\(\mathcal {S}_B\)</span> is unknown, <span class="mathjax-tex">\(\pi _i^B\)</span> is estimated by a propensity score model exploting the dataset <span class="mathjax-tex">\(\{(\delta _i,\delta _{i}y_{i},\textbf{x}_i), i\in \mathcal {V} \}\)</span>, where <span class="mathjax-tex">\(\mathcal {V}\)</span> is either <span class="mathjax-tex">\(\mathcal {U}\)</span> or <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. For example, let the propensity score model be parametric, <span class="mathjax-tex">\(\pi _{i}^{B} = \pi (\textbf{x}_i,y_i, \varvec{\theta })\)</span>, and let <span class="mathjax-tex">\(\hat{\varvec{\theta }}\)</span> be a consistent estimator of <span class="mathjax-tex">\(\varvec{\theta }\)</span>. The estimate of <span class="mathjax-tex">\(\pi _{i}^{B}\)</span> is then <span class="mathjax-tex">\(\hat{\pi _{i}}^{B} = \pi (\textbf{x}_i,y_i, \hat{\varvec{\theta }})\)</span>. Once estimated <span class="mathjax-tex">\(\pi _i^B\)</span>, the model-based estimator is given by <span class="mathjax-tex">\(\hat{Y}_{\pi } = \sum _{i \in \mathcal {S}_B} y_i / \hat{\pi }_{i}^{B}\)</span>. In practice, <span class="mathjax-tex">\(\varvec{\theta }\)</span> cannot be estimated when the model depends on the <span class="mathjax-tex">\(y_i\)</span> values since they are not observed for <span class="mathjax-tex">\(i\notin \mathcal {S}_B\)</span>. Given the assumptions</p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">A.1:</span> <p>the selection indicator <span class="mathjax-tex">\(\delta _i\)</span> and the target variable <span class="mathjax-tex">\(y_i\)</span> are independent given the vector of covariates <span class="mathjax-tex">\(\textbf{x}_i\)</span>;</p> </li> <li> <span class="u-custom-list-number">A.2:</span> <p><span class="mathjax-tex">\(\pi _i^B>0\)</span> for all <span class="mathjax-tex">\(i\in \mathcal {U}\)</span>;</p> </li> <li> <span class="u-custom-list-number">A.3:</span> <p>the variables <span class="mathjax-tex">\(\delta _i\)</span> and <span class="mathjax-tex">\(\delta _j\)</span> are independent given <span class="mathjax-tex">\(\textbf{x}_i\)</span> and <span class="mathjax-tex">\(\textbf{x}_j\)</span> for <span class="mathjax-tex">\(i\ne j\)</span> with <span class="mathjax-tex">\(i,j\in \mathcal {U},\)</span></p> </li> </ol><br><p>then, by Chen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e5795">2020</a>), <span class="mathjax-tex">\(\pi _{i}^{B} = Pr(\delta _i = 1 \mid \textbf{x}_{i}, y_i) = Pr(\delta _i = 1 \mid \textbf{x}_i)\)</span>. This model corresponds to the Missing At Random mechanism (MAR) as defined by Rubin (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1976" title="Rubin DB (1976) Inference and missing data. Biometrika 63:581–590" href="/article/10.1007/s10260-023-00740-y#ref-CR33" id="ref-link-section-d84953921e5912">1976</a>) and Little and Rubin (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Little RJA, Rubin DB (2019) Statistical analysis with missing data, 3rd edn. Wiley, Hoboken" href="/article/10.1007/s10260-023-00740-y#ref-CR26" id="ref-link-section-d84953921e5915">2019</a>). The MAR model parameters can be estimated using the dataset <span class="mathjax-tex">\(\{(\delta _i,\textbf{x}_i), i\in \mathcal {V} \}\)</span>. For example, one may opt for a logistic propensity score model and employ a maximum likelihood consistent estimator when <span class="mathjax-tex">\(\mathcal {V}\equiv \mathcal {U}\)</span>. However, if <span class="mathjax-tex">\(\mathcal {V}\equiv \mathcal {S}_B\)</span>, the (log)likelihood function cannot be completely computed. The method relies on the reference survey sample, collecting the <span class="mathjax-tex">\(\textbf{x}\)</span> values for <span class="mathjax-tex">\(i\in \mathcal {S}_A\)</span>. Afterwards, a pseudo-likelihood function can be defined, and the maximum pseudo-likelihood estimates of <span class="mathjax-tex">\(\varvec{\theta }\)</span> can be computed (for details, refer to formula (4) in Chen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e6105">2020</a>)). Given the propensity score estimates, the inverse probability weighted estimator can be estimated as <span class="mathjax-tex">\(\hat{Y}_{IPW}=\sum _{i \in \mathcal {S}_B} y_i/\hat{\pi }_{i}^{B}\)</span> being <span class="mathjax-tex">\(\hat{\pi _{i}}^{B}=\pi ({\textbf {x}}_i, \hat{\varvec{\theta }})\)</span> (Kott <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1994" title="Kott PS (1994) A note on handling nonresponse in sample surveys. J Am Stat Assoc 89(426):693–696" href="/article/10.1007/s10260-023-00740-y#ref-CR21" id="ref-link-section-d84953921e6266">1994</a>; Elliot and Valliant <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Elliot M, Valliant R (2017) Inference for nonprobability samples. Stat Sci 32:249–264" href="/article/10.1007/s10260-023-00740-y#ref-CR12" id="ref-link-section-d84953921e6269">2017</a>). Chen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e6272">2020</a>) show that, assuming the logistic regression model for the propensity scores, under the regularity conditions A1–A3 and other reasonable conditions (C1-C6 specified in the supplementary materials), then <span class="mathjax-tex">\(\hat{Y}_{IPW}-Y =O_p(n_B^{-1/2})\)</span>.</p><h3 class="c-article__sub-heading" id="Sec7"><span class="c-article-section__title-number">4.2 </span>Pseudo-calibration estimators when the target variable is observed in <span class="mathjax-tex">\(\mathcal {S}_B\)</span> </h3><p>In the case (a), we derive the PC estimators from the inverse probability weighted estimator. In this case, the maximum pseudo-likelihood estimator is replaced by a consistent estimator based on unbiased estimating functions. Consider the following class of estimating equations</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {U}} \delta _i \varvec{h}(\textbf{x}_i,\varvec{\theta }) - \sum _{i \in \mathcal {U}} \pi (\textbf{x}_i,\varvec{\theta }) \varvec{h}(\textbf{x}_i,\varvec{\theta }) = \varvec{0}, \end{aligned}$$</span></div><div class="c-article-equation__number"> (5) </div></div><p>where <span class="mathjax-tex">\(\varvec{h}(\textbf{x}_i,\varvec{\theta })\)</span> is a predefined smooth function of <span class="mathjax-tex">\(\varvec{\theta }\)</span> that ensures the system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ5">5</a>) has a unique solution.</p><p>When <span class="mathjax-tex">\(\textbf{x}_i\)</span> is known for each <span class="mathjax-tex">\(i\in \mathcal {U}\)</span> and <span class="mathjax-tex">\(\varvec{h}(\textbf{x}_i,\varvec{\theta })=\pi (\textbf{x}_i,\varvec{\theta })^{-1}\textbf{x}_i\)</span>, the system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ5">5</a>) becomes the conventional calibration equations</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_B} w_{i}^{B} \textbf{x}_i = \sum _{i \in \mathcal {U}} \textbf{x}_i, \end{aligned}$$</span></div><div class="c-article-equation__number"> (6) </div></div><p>where <span class="mathjax-tex">\(w_{i}^{B}=1/\pi (\textbf{x}_i,\varvec{\theta })\)</span>.</p><p>When <span class="mathjax-tex">\(\textbf{x}_i\)</span> can only be observed for the units belonging to <span class="mathjax-tex">\(\mathcal {S}_A\)</span>, Chen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e6993">2020</a>) propose to replace <span class="mathjax-tex">\(\sum _{i \in \mathcal {U}} \pi (\textbf{x}_i,\varvec{\theta }) \varvec{h}(\textbf{x}_i,\varvec{\theta })\)</span> with <span class="mathjax-tex">\(\sum _{i \in \mathcal {S}_A} d^{A}_{i} \pi (\textbf{x}_i,\varvec{\theta }) \varvec{h}(\textbf{x}_i,\varvec{\theta })\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ5">5</a>), obtaining the class of estimating equations,</p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_B} \varvec{h}(\textbf{x}_i,\varvec{\theta }) - \sum _{i \in \mathcal {S}_A} d_{i}^{A} \pi (\textbf{x}_i,\varvec{\theta }) \varvec{h}(\textbf{x}_i,\varvec{\theta }) = \varvec{0}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (7) </div></div><p>When <span class="mathjax-tex">\(\varvec{h}(\textbf{x}_i,\varvec{\theta }) = \textbf{x}_i\)</span>, the system (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ7">7</a>) simplifies to</p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_B} w_{i}^{B} \textbf{x}_i = \sum _{i \in \mathcal {S}_A} d_{i}^{A} \textbf{x}_i, \end{aligned}$$</span></div><div class="c-article-equation__number"> (8) </div></div><p>where the calibration is based on the estimated totals from the reference survey.</p><p>We can obtain the solution to (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ6">6</a>) or (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ8">8</a>) through the standard calibration process (Deville and Särndal <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1992" title="Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:367–382" href="/article/10.1007/s10260-023-00740-y#ref-CR11" id="ref-link-section-d84953921e7572">1992</a>). The weights <span class="mathjax-tex">\(w^{B}_{i}\)</span> are determined by solving the optimization problem</p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\left\{ \begin{array}{ll} \min \sum _{i \in \mathcal {S}_B} Q(d^{B}_{i}, w^{B}_{i}; q_i) \\ \sum _{i \in \mathcal {S}_B} w^{B}_{i} \textbf{x}_{i} = \textbf{X}^* \end{array}\right. }, \end{aligned}$$</span></div><div class="c-article-equation__number"> (9) </div></div><p>where <span class="mathjax-tex">\(Q(\cdot )\)</span> is a convex distance function, which may take the same form as illustrated in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ3">3</a>), replacing <span class="mathjax-tex">\(d_{i}^{A}\)</span> and <span class="mathjax-tex">\(w_{i}^{A}\)</span> by <span class="mathjax-tex">\(d_{i}^{B}\)</span> and <span class="mathjax-tex">\(w_{i}^{B}\)</span>, respectively. Additionally, the summation is indexed for <span class="mathjax-tex">\(i\in \mathcal {S}_B\)</span>. Here, <span class="mathjax-tex">\(d^{B}_{i}\)</span> represent the base sampling weights, <span class="mathjax-tex">\(w^{B}_{i}\)</span> are the calibration weights, and <span class="mathjax-tex">\(\textbf{X}^*\)</span> is a vector of known totals, denoted as <span class="mathjax-tex">\(\textbf{X}\)</span>, or estimated totals, denoted as <span class="mathjax-tex">\({\varvec{\hat{X}}}\)</span>, derived from an accurate reference survey (Dever and Valliant <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2010" title="Dever J, Valliant R (2010) A comparison of variance estimators for post-stratification to estimated control totals. Surv Methodol 36:45–56" href="/article/10.1007/s10260-023-00740-y#ref-CR9" id="ref-link-section-d84953921e8062">2010</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2016" title="Dever J, Valliant R (2016) General regression estimation adjusted for undercoverage and estimated control totals. J Surv Stat Methodol 4:289–318" href="/article/10.1007/s10260-023-00740-y#ref-CR10" id="ref-link-section-d84953921e8065">2016</a>).</p><p>At first glance, the PC estimators may appear to be a slight variation of the DI indicators proposed by Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e8072">2021</a>). However, there are key distinctions: the PC estimators operate on the propensity score of the non-probability sample, whereas the DI estimators work on the weights of the probability sample; the inference for the PC estimators is based on the outcome and a propensity score model, while the inference for the DI estimators is based on a model-assisted approach; the calibration constraints of the PC estimators do not use the target variable(s), while the calibration constraints of the DI estimators are strictly target variable-dependent. Since <span class="mathjax-tex">\(\mathcal {S}_B\)</span> is not a probability sample, the propensity scores <span class="mathjax-tex">\(\pi _{i}^{B}\)</span> and the base sampling weights <span class="mathjax-tex">\(d^{B}_{i}=1/\pi _{i}^{B}\)</span> for the units in <span class="mathjax-tex">\(\mathcal {S}_B\)</span> are unknown. Nevertheless, we make two alternative assumptions. The first is that we plan a census, but the frame list of <span class="mathjax-tex">\(\mathcal {S}_B\)</span> under-covers the target population <span class="mathjax-tex">\(\mathcal {U}\)</span>. Then, <span class="mathjax-tex">\(\pi _{i}^{B}=1\)</span> for all <span class="mathjax-tex">\(i \in \mathcal {S}_B\)</span> and the base sampling weights <span class="mathjax-tex">\(d^{B}_{i}\)</span> are adjusted to account for the under-coverage bias through a calibration estimator (Little and Rubin <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Little RJA, Rubin DB (2019) Statistical analysis with missing data, 3rd edn. Wiley, Hoboken" href="/article/10.1007/s10260-023-00740-y#ref-CR26" id="ref-link-section-d84953921e8324">2019</a>; Kott <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2006b" title="Kott PS (2006) Using calibration weighting to adjust for nonresponse and coverage errors. Surv Methodol 32(2):133" href="/article/10.1007/s10260-023-00740-y#ref-CR24" id="ref-link-section-d84953921e8328">2006b</a>). The second assumption is that in the absence of information about the process generating <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, the maximum likelihood estimate of <span class="mathjax-tex">\(\pi _{i}^{B}\)</span> is <span class="mathjax-tex">\(n_B/N\)</span> for all <span class="mathjax-tex">\(i \in \mathcal {S}_B\)</span>, and <span class="mathjax-tex">\(d^{B}_{i} = d^{B}\)</span> with <span class="mathjax-tex">\(d^B=N/n_B\)</span>. After observing the sample and the auxiliary variables within it, we improve the estimates of <span class="mathjax-tex">\(\pi _{i}^{B}\)</span>. In the space of possible final weight vectors, we look for the vector closest to the initial value of <span class="mathjax-tex">\(d^{B}\)</span>, reducing the variability of <span class="mathjax-tex">\(w_{i}^{B}\)</span> as much as possible. Furthermore, Remark <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s10260-023-00740-y#FPar7">7</a> shows that by setting <span class="mathjax-tex">\(d^B=N/n_B\)</span> for all <span class="mathjax-tex">\(i \in \mathcal {S}_B\)</span>, the RegDI estimator in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ4">4</a>) can be expressed as a special case of PC estimator. Eventually, the two proposed guesses provide the same vector of calibrated weights and, in general, we achieve the same solution when using <span class="mathjax-tex">\(d^{B}_{i} = d^{B}\)</span> regardless of the value of <span class="mathjax-tex">\(d^{B}\)</span>.</p><p>The general expression of PC estimators is given by</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{PC} = \sum _{i \in \mathcal {S}_B} w_{i}^B y^{}_{i}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (10) </div></div><p>The PC estimators ensure that the weighted distribution of the non-probability sample across auxiliary variables aligns with the distribution of those variables in the target population. They offer a simple and direct implementation and utilize well-established and widely used statistical calibration tools in NSIs.</p> <h3 class="c-article__sub-heading" id="FPar3">Remark 3</h3> <p>(Justification of the optimization problem). We solve the calibration equations, <span class="mathjax-tex">\(\sum _{i \in \mathcal {S}_B} w^{B}_{i} \textbf{x}_{i} = \textbf{X}^*\)</span>, by setting up the optimization problem (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ9">9</a>). In the special case of <span class="mathjax-tex">\(d_i^B=1\)</span>, we encounter a frame list under-coverage problem for <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. Solving the optimization problem given in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ9">9</a>) is a commonly used strategy to address this issue. The basic idea is to limit the variability of <span class="mathjax-tex">\(w_i^B\)</span> and, through the choice of specific distance functions, prevent the occurrence of very large or negative values of <span class="mathjax-tex">\(w_i^B\)</span>. With <span class="mathjax-tex">\(d_i^B=N/n_B\)</span>, the optimization starts from the simple propensity score mean model, which does not incorporate any auxiliary variables. Then, we enhance the model by introducing explanatory auxiliary variables, aiming to find the model closest to the parsimonious mean model, obtaining the final weights.</p> <h3 class="c-article__sub-heading" id="FPar4">Remark 4</h3> <p>The pseudo-calibrated estimate converges to the true value of the target parameter as <span class="mathjax-tex">\(n_B\rightarrow N\)</span>, but its accuracy is sensitive to potential failures of the propensity score model, such as the violation of the MAR assumption, especially when dealing with small sample sizes. This is particularly notable in the case of sub-population estimates. A possible approach to enhancing the robustness of the PC estimators is to integrate a prediction model for the target variable and use a doubly robust estimator. When <span class="mathjax-tex">\(\textbf{x}_i\)</span> is known for each <span class="mathjax-tex">\(i\in \mathcal {U}\)</span>, we have</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{DR1} = \sum _{i \in \mathcal {S}_B} w_{i}^B (y^{}_{i}-\hat{{y}}_i)+\sum _{i \in \mathcal {U}} \hat{{y}}_i. \end{aligned}$$</span></div><div class="c-article-equation__number"> (11) </div></div><p>When <span class="mathjax-tex">\(\textbf{x}_i\)</span> is known for <span class="mathjax-tex">\(i\in \mathcal {S}_B\)</span> or <span class="mathjax-tex">\(i\in \mathcal {S}_A\)</span>, we have</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{DR2} = \sum _{i \in \mathcal {S}_B} w_{i}^B (y^{}_{i}-{\hat{y}}_i)+\sum _{i \in \mathcal {S}_A} d_i^A {\hat{y}}_i. \end{aligned}$$</span></div><div class="c-article-equation__number"> (12) </div></div><p> Chen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e9535">2020</a>) show the theoretical properties of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ11">11</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ12">12</a>).</p> <h3 class="c-article__sub-heading" id="FPar5">Remark 5</h3> <p>We can test the MAR assumption of the propensity score model (MAR model) using the dataset <span class="mathjax-tex">\(\{(\delta _i,y_i,\textbf{x}_i,), i\in \mathcal {S}_A \}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar6">Remark 6</h3> <p>The <span class="mathjax-tex">\(\hat{Y}_{PC}\)</span> estimator, with <span class="mathjax-tex">\(\textbf{x}_i=x_i\)</span> (where <span class="mathjax-tex">\(x_i\)</span> is a scalar), a distance function in the form given in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ3">3</a>), and <span class="mathjax-tex">\(q_i=x_i\)</span>, can be expressed as</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{PC}=\sum _{i\in {S}_B} y_i d_i^B\left( \frac{X}{\hat{X}_B}\right) , \end{aligned}$$</span></div><div class="c-article-equation__number"> (13) </div></div><p>where <span class="mathjax-tex">\(X= \sum _{i \in \mathcal {U}} x_i\)</span> and <span class="mathjax-tex">\(\hat{X}_B=\sum _{i \in \mathcal {S}_B} x_i d_i^B\)</span>. <span class="mathjax-tex">\(\hat{Y}_{PC}\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ13">13</a>) is the PC ratio estimator. Note we only use the <span class="mathjax-tex">\(x_i\)</span> values for <span class="mathjax-tex">\(i\in \mathcal {S}_B\)</span>. Moreover, we can obtain a second version of the PC ratio estimator by replacing <i>X</i> with <span class="mathjax-tex">\(\hat{X}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar7">Remark 7</h3> <p>In the case (a), the RegDI estimator in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ4">4</a>) can be reformulated as</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{RegDI} = \frac{N}{n_B}Y^{(B)}\left( \frac{n_B\hat{Y}_{HT,A}}{N\hat{Y}^{(B)}_{HT,A}}\right) =\sum _{i\in \mathcal {S}_B}y_i\frac{N}{n_B}\left( \frac{\hat{Y}_{HT,A}}{\hat{Y}_{HT,AB}}\right) , \end{aligned}$$</span></div><div class="c-article-equation__number"> (14) </div></div><p>where <span class="mathjax-tex">\(Y^{(B)}=\sum _{i \in \mathcal {S}_B} y_i\)</span>, <span class="mathjax-tex">\(\hat{Y}_{HT,A} = \sum _{i \in \mathcal {S}_A} d^{A}_{i} y_i\)</span>, <span class="mathjax-tex">\(\hat{Y}^{(B)}_{HT,A}=\sum _{i \in \mathcal {S}_A} d^{A}_{i} \delta _i y_i\)</span> and <span class="mathjax-tex">\(\hat{Y}_{HT,AB}=\sum _{i\in \mathcal {S}_A \cap \mathcal {S}_B} y_i d_i^A \frac{N}{n_B}\)</span>. The RegDI estimator in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ14">14</a>) is equivalent to the PC ratio estimator in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ13">13</a>) when <span class="mathjax-tex">\(d_i^B=N/n_B\)</span>. In this case, the PC ratio estimator incorporates <span class="mathjax-tex">\(\mathcal {Y}\)</span> as an auxiliary variable and performs calibration based on the unknown total population <span class="mathjax-tex">\(X \equiv Y\)</span>. Then, <i>Y</i> is replaced with <span class="mathjax-tex">\(\hat{Y}_{HT,A}\)</span>. Similarly, <span class="mathjax-tex">\(\hat{X}_B\)</span> is replaced with <span class="mathjax-tex">\(\hat{Y}_{HT,AB}\)</span>.</p> <h3 class="c-article__sub-heading" id="Sec8"><span class="c-article-section__title-number">4.3 </span>Pseudo-calibration estimators when the target variable is not observed in <span class="mathjax-tex">\(\mathcal {S}_B\)</span> </h3><p>When the target variable is not observed in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, we could be in the cases (b) or (c). In the case (b), we observe the target variable with error, i.e., <span class="mathjax-tex">\(\tilde{y}_i\)</span> is generated by a measurement error model as <span class="mathjax-tex">\(\tilde{y}_i=e(y_i)+\epsilon _i\)</span>, where <span class="mathjax-tex">\(e(\cdot )\)</span> is a <i>method</i> for estimating <span class="mathjax-tex">\(\tilde{y}_i\)</span>, <span class="mathjax-tex">\(\epsilon _i\)</span> such that are independent error terms with zero mean and variance <span class="mathjax-tex">\(V(\epsilon _i)=v({y}_i) \sigma ^2\)</span>. In the case (c) we predict its values according to a prediction model as <span class="mathjax-tex">\(\tilde{y}_i = m({\textbf {z}}_i)+\epsilon _i\)</span>, where <span class="mathjax-tex">\(m(\cdot )\)</span> is a <i>method</i> for predicting <span class="mathjax-tex">\(\tilde{y}_i\)</span>, <span class="mathjax-tex">\({\textbf {z}}_i'=({\textbf {x}}'_{i,B},{\textbf {x}}')\)</span> such that <span class="mathjax-tex">\(\epsilon _i\)</span> are independent error terms with zero mean and variance <span class="mathjax-tex">\(V(\epsilon _i)=v(\textbf{z}_i)\sigma ^2\)</span>. In both the cases, we can use the probability survey sample data, where the target variable is observed, to build the methods. Concerning the prediction methods, <span class="mathjax-tex">\(m(\cdot )\)</span> can belong to a very broad class of supervised prediction methods, encompassing both parametric and non-parametric methods, as well as machine learning techniques such as kernel methods, regression-tree (Hastie et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2001" title="Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer New York Inc., New York" href="/article/10.1007/s10260-023-00740-y#ref-CR15" id="ref-link-section-d84953921e11503">2001</a>) and random forest (Breiman <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2001" title="Breiman L (2001) Random forests. Mach Learn 45:5–32" href="/article/10.1007/s10260-023-00740-y#ref-CR5" id="ref-link-section-d84953921e11507">2001</a>). Non-parametric methods can be useful with high-dimensional and unstructured data, a scenario often encountered in big non-probability sources.</p><p>A real example of the case (c) is estimating the number of websites offering specific services, such as e-commerce. In this case, we can employ a web-scraping technique to collect text documents from the websites, perform text analysis, and then predict the presence of functionalities and services on the website using supervised machine learning techniques (Righi et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Righi P, Bianchi G, Nurra A et al (2019) Integration of survey data and big data for finite population inference in official statistics: statistical challenges and practical applications. Stat Appl XVII(2):135–158" href="/article/10.1007/s10260-023-00740-y#ref-CR31" id="ref-link-section-d84953921e11513">2019</a>). Supervised machine learning methods learn from a labelled training set, which consists of predictors (<span class="mathjax-tex">\(\textbf{z}_i\)</span>) and their corresponding target values (<span class="mathjax-tex">\({y}_i\)</span>). After training, the method can be employed to make predictions on new, unseen data (<span class="mathjax-tex">\(\tilde{y}_i\)</span>). We assume to observe the target variable in <span class="mathjax-tex">\(\mathcal {S}_A\)</span>, where <span class="mathjax-tex">\(\mathcal {S}_A\subset \mathcal {S}_B\)</span> or <span class="mathjax-tex">\(\mathcal {S}_A\cap \mathcal {S}_B \ne \emptyset\)</span> (see Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec9">4.3.1</a>). We train <span class="mathjax-tex">\(m(\cdot )\)</span> on the dataset <span class="mathjax-tex">\(\{(y_i, {\textbf {z}}_i): i \in \mathcal {S}_A \cap \mathcal {S}_B\}\)</span> to obtain <span class="mathjax-tex">\(\hat{m}(\cdot )\)</span>. Then, we make deterministic predictions with <span class="mathjax-tex">\(\bar{\tilde{y}}_{i} = \hat{m}({\textbf {z}}_i)\)</span> or random predictions with <span class="mathjax-tex">\(\hat{\tilde{y}}_{i} = \bar{\tilde{y}}_{i} + \hat{\epsilon }_i\)</span>, where <span class="mathjax-tex">\(\hat{\epsilon }_i\)</span> represents the estimated random error terms. Plugging the deterministic predictions in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ10">10</a>), we obtain the projection pseudo-calibration estimator, <span class="mathjax-tex">\(\hat{Y}_{PC}^P\)</span>, similar to the <i>projection estimator</i> proposed by Kim and Rao (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2011" title="Kim JK, Rao JNK (2011) Combining data from two independent surveys: a model-assisted approach. Biometrika 99(1):85–100" href="/article/10.1007/s10260-023-00740-y#ref-CR19" id="ref-link-section-d84953921e12052">2011</a>). Plugging the random predictions in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ10">10</a>), we obtain</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{PC}^P = \sum _{i \in \mathcal {S}_B} w_{i}^B \hat{\tilde{y}}_{i}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (15) </div></div><p>If the prediction method is misspecified or fails to capture the true relationship between the predictors and the target variable, then the estimates produced by (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ15">15</a>) are biased. In cases where <span class="mathjax-tex">\(\mathcal {S}_A \subset \mathcal {S}_B\)</span>, we introduce a correction term, defining the difference pseudo-calibration estimator in the case (c) as</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}^{D}_{PC} = \sum _{i \in \mathcal {S}_B} w_{i}^B \hat{\tilde{y}}_{i} + \sum _{i \in \mathcal {S}_A} d^{A}_{i} (y_{i} - \hat{\tilde{y}}_{i}). \end{aligned}$$</span></div><div class="c-article-equation__number"> (16) </div></div><p>In the case (b), we can define an estimator similar to <span class="mathjax-tex">\(\hat{Y}^{D}_{PC}\)</span> by replacing <span class="mathjax-tex">\(\hat{\tilde{y}}_{i}\)</span> with <span class="mathjax-tex">\(\tilde{y}_i\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ16">16</a>).</p> <h3 class="c-article__sub-heading" id="FPar8">Remark 8</h3> <p>The estimator <span class="mathjax-tex">\(\hat{Y}^{D}_{PC}\)</span> shares similarities with the estimator the <span class="mathjax-tex">\(\hat{Y}_{DR2}\)</span> described in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ12">12</a>). Notice how <span class="mathjax-tex">\(\hat{Y}^{D}_{PC}\)</span> reverses the roles of probability and non-probability samples compared to the <span class="mathjax-tex">\(\hat{Y}_{DR2}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar9">Remark 9</h3> <p>The estimator <span class="mathjax-tex">\(\hat{Y}^{D}_{PC}\)</span> shares a similar structure with the adjusted <i>projection estimator</i> proposed by Kim and Rao (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2011" title="Kim JK, Rao JNK (2011) Combining data from two independent surveys: a model-assisted approach. Biometrika 99(1):85–100" href="/article/10.1007/s10260-023-00740-y#ref-CR19" id="ref-link-section-d84953921e12672">2011</a>) and the <i>difference estimator</i> developed by Breidt and Opsomer (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Breidt FJ, Opsomer JD (2017) Model-assisted survey estimation with modern prediction techniques. Stat Sci 32:190–205" href="/article/10.1007/s10260-023-00740-y#ref-CR4" id="ref-link-section-d84953921e12678">2017</a>), both defined in the model-assisted framework.</p> <h3 class="c-article__sub-heading" id="FPar10">Remark 10</h3> <p>The asymptotic properties of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ16">16</a>) when <span class="mathjax-tex">\(\hat{m}(\cdot )\)</span> is used instead of <span class="mathjax-tex">\(m(\cdot )\)</span> are outlined in Breidt and Opsomer (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Breidt FJ, Opsomer JD (2017) Model-assisted survey estimation with modern prediction techniques. Stat Sci 32:190–205" href="/article/10.1007/s10260-023-00740-y#ref-CR4" id="ref-link-section-d84953921e12758">2017</a>). They provide conditions under which the differences <span class="mathjax-tex">\((\tilde{y}_i - \hat{\tilde{y}}_i)\)</span> can be considered negligible for many parametric and non-parametric methods. This theory is developed in the model-assisted framework, which is the context of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ16">16</a>) when considering the big non-probability sample frame list affected by under-coverage. Additionally, Chen et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e12823">2020</a>) offer insights into the asymptotic properties in the model-based framework, particularly when the propensity score model is the logistic model, and the outcome model is parametric.</p> <h3 class="c-article__sub-heading" id="FPar11">Remark 11</h3> <p>Given <span class="mathjax-tex">\(\hat{Y}_{RegDI}\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ4">4</a>), where <span class="mathjax-tex">\(y^{*}_{i} =\hat{\tilde{y}}_{i}\)</span>, and assuming <span class="mathjax-tex">\(m(\cdot )\)</span> such that <span class="mathjax-tex">\(E_m(\hat{\tilde{y}}_{i}) = y_i\)</span>, then,</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} E_{m}(\hat{Y}_{RegDI})= Y^{(B)}\frac{\hat{Y}_{HT,A}}{\hat{Y}^{(B)}_{HT,A}}+\text {Term of minor order}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (17) </div></div><p>When we consider <span class="mathjax-tex">\(\hat{Y}_{PC}^{D}\)</span>, with the first term defined as in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ13">13</a>), and <span class="mathjax-tex">\(w_i^B\)</span> being independent of <span class="mathjax-tex">\(y_i\)</span>, we have that <span class="mathjax-tex">\(E_{m}(\hat{Y}_{RegDI})\approx E_m(\hat{Y}^{D}_{PC})\)</span>.</p> <h4 class="c-article__sub-heading c-article__sub-heading--small" id="Sec9"><span class="c-article-section__title-number">4.3.1 </span>Pseudo-calibration estimators when <span class="mathjax-tex">\(\mathcal {S}_A\cap \mathcal {S}_B \ne \mathcal {S}_A\)</span> </h4><p>In some cases, it may happen that <span class="mathjax-tex">\(\mathcal {S}_A \not \subset \mathcal {S}_B\)</span> and <span class="mathjax-tex">\(\mathcal {S}_A\cap \mathcal {S}_B \ne \emptyset\)</span>, meaning that for certain units in <span class="mathjax-tex">\(\mathcal {S}_A\)</span>, we cannot observe <span class="mathjax-tex">\({\textbf {x}}_B\)</span>. This condition generally arises when we plan <span class="mathjax-tex">\(\mathcal {S}_A\)</span> independently from <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, but other practical reasons may also lead to this situation. For instance, in the previous example of business statistics regarding the services and functionalities of enterprise websites, the condition <span class="mathjax-tex">\(\mathcal {S}_A \not \subset \mathcal {S}_B\)</span> and <span class="mathjax-tex">\(\mathcal {S}_A\cap \mathcal {S}_B \ne \emptyset\)</span> arises when we select enterprises in <span class="mathjax-tex">\(\mathcal {S}_A\)</span> that implement anti-scraping techniques to block automatic scraping procedures on their websites. Consequently, these enterprises cannot belong to <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. We handle this situation as a non-response problem and replace <span class="mathjax-tex">\(d^{A}_{i}\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ16">16</a>) with <span class="mathjax-tex">\(f^{A}_{i}\)</span>, which are the final adjusted weights, since <span class="mathjax-tex">\(\mathcal {S}_A\)</span> is not fully included in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. The difference pseudo-calibration estimator (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ16">16</a>) can be rewritten in this case as</p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}^{D}_{PC} = \sum _{i \in \mathcal {S}_B} w_{i}^B \hat{\tilde{y}}_{i} + \sum _{i \in \mathcal {S}_A\cap \mathcal {S}_B} f^{A}_{i} (y_{i} - \hat{\tilde{y}}_{i}). \end{aligned}$$</span></div><div class="c-article-equation__number"> (18) </div></div></div></div></section><section data-title="Variance estimation"><div class="c-article-section" id="Sec10-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec10"><span class="c-article-section__title-number">5 </span>Variance estimation</h2><div class="c-article-section__content" id="Sec10-content"><p>We estimate the variance of PC estimators using a jackknife-type method based on an adjusted version of the Delete-a-Group Jackknife (DAGJK) method (Kott <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2001" title="Kott PS (2001) Delete-a-group jackknife. J Off Stat 17(4):521–526" href="/article/10.1007/s10260-023-00740-y#ref-CR22" id="ref-link-section-d84953921e13975">2001</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2006a" title="Kott PS (2006) Delete-a-group variance estimation for the general regression estimator under Poisson sampling. J Off Stat 22(4):759–767" href="/article/10.1007/s10260-023-00740-y#ref-CR23" id="ref-link-section-d84953921e13978">2006a</a>), which is suitable for handling huge sample sizes. The DAGJK method offers computational advantages over the traditional Jackknife technique. It is well-suited for complex sampling strategies involving stratified design, several sampling phases, adjustment for non-response, calibration and composite estimation (Kott <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2001" title="Kott PS (2001) Delete-a-group jackknife. J Off Stat 17(4):521–526" href="/article/10.1007/s10260-023-00740-y#ref-CR22" id="ref-link-section-d84953921e13981">2001</a>). The variance estimation is asymptotically unbiased when the target parameter is a smooth function of the stratum means. However, it is not possible to guarantee that the DAGJK quantile variance estimation is unbiased.</p><p>The DAGJK method defines <i>G</i> random replication groups drawn from the parent sample, i.e., <span class="mathjax-tex">\(\mathcal {S}_B\)</span> and <span class="mathjax-tex">\(\mathcal {S}_A\)</span>. Then, <i>G</i> estimation processes are carried out using the sampled data, excluding the units of one replication group. For the <span class="mathjax-tex">\(g-\)</span>th <span class="mathjax-tex">\((g=1, \ldots , G)\)</span> replicated estimate, the method computes a weight for each unit, <span class="mathjax-tex">\(w_i^{B(g)}\)</span> and <span class="mathjax-tex">\(d_i^{A(g)}\)</span> based respectively on the <span class="mathjax-tex">\(w_i^B\)</span> and <span class="mathjax-tex">\(d_i^A\)</span> weights adjusted by the exclusion of the units in the group <i>g</i>. When <span class="mathjax-tex">\(y_i^*=y_i\)</span>, the DAGJK variance estimation is</p><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} v(\hat{Y}_{PC})=\frac{G-1}{G}\sum _{g=1}^G ( \hat{Y}_{PC}^{(g)}-\hat{Y}_{PC})^2 , \end{aligned}$$</span></div><div class="c-article-equation__number"> (19) </div></div><p>with <span class="mathjax-tex">\(\hat{Y}_{PC}^{(g)}=\sum _{i\in \mathcal {S}_B}w_i^{B(g)}y_i\)</span>, being <span class="mathjax-tex">\(w_i^{B(g)}=0\)</span> when the unit <i>i</i> belongs to group <i>g</i>.</p><p>Let <span class="mathjax-tex">\(y_i^*=\bar{\tilde{y}}_i\)</span> be a deterministic prediction. In this case, we add a variability correction term into (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ19">19</a>) and rewrite the DAGJK variance estimator as</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} v(\hat{Y}_{PC}^{D})&= \frac{G-1}{G}\Bigl \{ \sum _{g=1}^G \biggr ( \sum _{i\in \mathcal {S}_B}w_i^{B(g)}\bar{\tilde{y}}_i-\hat{Y}_{PC}^{P} \biggr )^2 \nonumber \\&+ \sum _{g=1}^G \Bigl [\sum _{i \in \mathcal {S}_A} d^{A(g)}_{i} (y_{i} - \bar{\tilde{y}}_i)-\sum _{i \in \mathcal {S}_A} d^{A}_{i} (y_{i} - \bar{\tilde{y}}_i)\Bigr ]^2 \Bigr \} , \end{aligned}$$</span></div><div class="c-article-equation__number"> (20) </div></div><p>being <span class="mathjax-tex">\(w_i^{B(g)}=0\)</span> and <span class="mathjax-tex">\(d^{A(g)}_{i}=0\)</span> when the unit <i>i</i> belongs to group <i>g</i>. Finally, let <span class="mathjax-tex">\(y_i^*=\hat{\tilde{y}}_i+\hat{\epsilon }_i\)</span> be a random prediction, where <span class="mathjax-tex">\(\hat{\epsilon }_i\)</span> is the estimated error term obtained from the dataset <span class="mathjax-tex">\(\{(y_i,{\textbf {z}}_i): i \in \mathcal {S}_A\cap \mathcal {S}_B \}\)</span>. In the case of observations with errors in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, we use the dataset <span class="mathjax-tex">\(\{(y_i,\tilde{y}_i): i \in \mathcal {S}_A\cap \mathcal {S}_B \}\)</span> to estimate the measurement error model and the relative error term. In both cases, the DAGJK method involves a random generation of <span class="mathjax-tex">\(y_i^*\)</span> values in each group, replacing the <span class="mathjax-tex">\(\bar{\tilde{y}}_i\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ20">20</a>).</p><p>We evaluate (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ19">19</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ20">20</a>) in the simulation study presented in the next section.</p></div></div></section><section data-title="Simulation study"><div class="c-article-section" id="Sec11-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec11"><span class="c-article-section__title-number">6 </span>Simulation study</h2><div class="c-article-section__content" id="Sec11-content"><p>Following the simulation study 1) by Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e15487">2021</a>), we generate a finite population, <span class="mathjax-tex">\(\mathcal {U}\)</span>, of size <span class="mathjax-tex">\(N = 1,000,000\)</span>. The response variable, <span class="mathjax-tex">\(\mathcal {Y}\)</span>, is given by the following model:</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} y_i = 3 + 0.7(x_i - 2) + \eta _i, \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(x_i \sim \mathcal {N}(2,1)\)</span>, <span class="mathjax-tex">\(\eta _i \sim \mathcal {N}(0,0.51)\)</span> and <span class="mathjax-tex">\(\eta _i\)</span> is independent of <span class="mathjax-tex">\(x_i\)</span>. Next, we generate a contaminated version of <span class="mathjax-tex">\(y_i\)</span> as follows:</p><div id="Equ23" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \tilde{y}_{i} = 2 + 0.9(y_i - 3) + \epsilon _i, \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(\epsilon _i \sim \mathcal {N}(0,0.5^2)\)</span> and <span class="mathjax-tex">\(\epsilon _i\)</span> is independent of <span class="mathjax-tex">\(y_i\)</span>.</p><p>Additionally, we generate the auxiliary variable <span class="mathjax-tex">\(\varvec{\xi }\)</span> such that <span class="mathjax-tex">\(cor({\textbf {x}}, \varvec{\xi }) = 0.5\)</span>, which is given by:</p><div id="Equ24" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \xi _{i} = \frac{cov({\textbf {x}},\varvec{\xi })}{var({\textbf {x}})} x_i + \nu _i , \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(\nu _i \sim \mathcal {N}(0,1)\)</span> and <span class="mathjax-tex">\(\nu _i\)</span> is independent of <span class="mathjax-tex">\(x_i\)</span>. We define <span class="mathjax-tex">\(\Xi _{1} = \sum _{i \in U} \xi _{1i}\)</span> and <span class="mathjax-tex">\(\Xi _{2} = \sum _{i \in U} \xi _{2i}\)</span>, where <span class="mathjax-tex">\(\xi _{1i} = 1\)</span> if <span class="mathjax-tex">\(\xi _{i} \le 1\)</span> and 0 otherwise, and <span class="mathjax-tex">\(\xi _{2i} = 1\)</span> if <span class="mathjax-tex">\(\xi _{i} > 1\)</span> and 0 otherwise. We use these variables for prediction and calibration purposes.</p><p>We select two samples: <span class="mathjax-tex">\(\mathcal {S}_A\)</span> and <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, representing the probability and the non-probability samples, respectively. <span class="mathjax-tex">\(\mathcal {S}_A\)</span> is a simple random sample of size <span class="mathjax-tex">\(n_A = 1000\)</span>, while <span class="mathjax-tex">\(\mathcal {S}_B\)</span> is selected by a different probability sampling of size <span class="mathjax-tex">\(n_B = 500,000\)</span>. The latter is obtained by creating two strata in <span class="mathjax-tex">\(\mathcal {U}\)</span>: stratum 1 consists of units with <span class="mathjax-tex">\(x_i \le 2\)</span>, while stratum 2 consists of those with <span class="mathjax-tex">\(x_i >2\)</span>. We define <span class="mathjax-tex">\(X_{1} = \sum _{i \in U} x_{1i}\)</span> and <span class="mathjax-tex">\(X_{2} = \sum _{i \in U} x_{2i}\)</span>, where <span class="mathjax-tex">\(x_{1i} = 1\)</span> if <span class="mathjax-tex">\(x_{i} \le 2\)</span> and 0 otherwise, and <span class="mathjax-tex">\(x_{2i} = 1\)</span> if <span class="mathjax-tex">\(x_{i} > 2\)</span> and 0 otherwise. Within each stratum, we independently select <span class="mathjax-tex">\(n_{B1} = 300,000\)</span> and <span class="mathjax-tex">\(n_{B2} = 200,000\)</span> observations, respectively, through simple random sampling. The target parameter is the finite population mean of <span class="mathjax-tex">\(\mathcal {Y}\)</span>. This sampling procedure implies that the sample mean of <span class="mathjax-tex">\(\mathcal {S}_B\)</span> is smaller than the population mean.</p><p>The simulation study examines the first two scenarios proposed in Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e17066">2021</a>): </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>Scenario I: we observe <span class="mathjax-tex">\(y_i\)</span> in both samples;</p> </li> <li> <span class="u-custom-list-number">2.</span> <p>Scenario II: we observe <span class="mathjax-tex">\(y_i\)</span> in <span class="mathjax-tex">\(\mathcal {S}_A\)</span> and <span class="mathjax-tex">\(\tilde{y}_i\)</span> in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>.</p> </li> </ol><p>The indicator variable <span class="mathjax-tex">\(\delta _i\)</span> is observed in both <span class="mathjax-tex">\(\mathcal {S}_B\)</span> and <span class="mathjax-tex">\(\mathcal {S}_A\)</span>. Therefore, if <span class="mathjax-tex">\(\delta _i = 1\)</span> in <span class="mathjax-tex">\(\mathcal {S}_A\)</span>, we have both <span class="mathjax-tex">\(y_i\)</span> and <span class="mathjax-tex">\(\tilde{y}_{i}\)</span>.</p><h3 class="c-article__sub-heading" id="Sec12"><span class="c-article-section__title-number">6.1 </span>Estimators</h3><p>The simulation study considers two benchmark estimators: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>Mean <span class="mathjax-tex">\(\mathcal {S}_A\)</span> <span class="mathjax-tex">\(= \frac{1}{n_A}\sum _{i \in \mathcal {S}_A} y_i\)</span>,</p> </li> <li> <span class="u-custom-list-number">2.</span> <p>Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> <span class="mathjax-tex">\(= \frac{1}{n_B}\sum _{i \in \mathcal {S}_B} y_i\)</span>,</p> </li> </ol><p>and compares two classes of estimators integrating <span class="mathjax-tex">\(\mathcal {S}_A\)</span> and <span class="mathjax-tex">\(\mathcal {S}_B\)</span>.</p><p>The first class of estimators considers the RegDI methods proposed by Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e17629">2021</a>): </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>RegDI: regression data integration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ1">1</a>) with calibration equation </p><div id="Equ25" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_A} w_{i}^{A} (1, \delta _i, \delta _i y_i) = \sum _{i \in U} (1, \delta _i, \delta _i y_i) = (N, n_B, Y_B^{*}). \end{aligned}$$</span></div></div> </li> <li> <span class="u-custom-list-number">2.</span> <p>RegDI<span class="mathjax-tex">\(_{(X_{1},X_{2})}\)</span>: regression data integration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ1">1</a>) with calibration equation </p><div id="Equ26" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_A} w_{i}^{A} (1, \delta _i, \delta _i y_i, x_{1i}, x_{2,1}) = \sum _{i \in U} (1, \delta _i, \delta _i y_i, x_{1i}, x_{2,1}) = (N, n_B, Y_B^{*}, X_1, X_2). \end{aligned}$$</span></div></div> </li> <li> <span class="u-custom-list-number">3.</span> <p>RegDI<span class="mathjax-tex">\(_{(\Xi _{1},\Xi _{2})}\)</span>: regression data integration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ1">1</a>) with calibration equation </p><div id="Equ27" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_A} w_{i}^{A} (1, \delta _i, \delta _i y_i, \xi _{1i}, \xi _{2,1}) = \sum _{i \in U} (1, \delta _i, \delta _i y_i, \xi _{1i}, \xi _{2,1}) = (N, n_B, Y_B^{*}, \Xi _1, \Xi _2). \end{aligned}$$</span></div></div> </li> </ol><p>The second class of estimators includes the PC estimators. For Scenario I, we consider the following: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>PC<span class="mathjax-tex">\(_{(X_1,X_2)}\)</span>: pseudo-calibration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ10">10</a>) with calibration equation </p><div id="Equ28" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_B} w_{i}^{B} (x_{1i}, x_{2i}) = \sum _{i \in U} (x_{1i}, x_{2,1}) = (X_1, X_2). \end{aligned}$$</span></div></div> </li> <li> <span class="u-custom-list-number">2.</span> <p>PC<span class="mathjax-tex">\(_{(\Xi _1,\Xi _2)}\)</span>: pseudo-calibration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ10">10</a>) with calibration equation </p><div id="Equ29" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_B} w_{i}^{B} (\xi _{1i}, \xi _{2i}) = \sum _{i \in U} (\xi _{1i}, \xi _{2,1}) = (\Xi _1, \Xi _2). \end{aligned}$$</span></div></div> </li> </ol><p>For Scenario II, we consider the following estimators: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p>Difference Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span>= <span class="mathjax-tex">\(\frac{1}{n_B} \sum _{i \in \mathcal {S}_B} \tilde{y}_i + \frac{1}{N} \sum _{i \in \mathcal {S}_A} d_{i}^{A} (y_i - \tilde{y}_i)\)</span>: the sample mean of predictions in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, corrected by the weighted residuals calculated in <span class="mathjax-tex">\(\mathcal {S}_A\)</span>.</p> </li> <li> <span class="u-custom-list-number">2.</span> <p>PC<span class="mathjax-tex">\(^{D}_{(X_1,X_2)}\)</span>: pseudo-calibration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ16">16</a>) with calibration equation </p><div id="Equ30" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_B} w_{i}^{B} (x_{1i}, x_{2i}) = \sum _{i \in U} (x_{1i}, x_{2,1}) = (X_1, X_2). \end{aligned}$$</span></div></div> </li> <li> <span class="u-custom-list-number">3.</span> <p>PC<span class="mathjax-tex">\(^{D}_{(\Xi _1,\Xi _2)}\)</span>: pseudo-calibration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ16">16</a>) with calibration equation </p><div id="Equ31" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_B} w_{i}^{B} (\xi _{1i}, \xi _{2i}) = \sum _{i \in U} (\xi _{1i}, \xi _{2,1}) = (\Xi _1, \Xi _2). \end{aligned}$$</span></div></div> </li> </ol><h3 class="c-article__sub-heading" id="Sec13"><span class="c-article-section__title-number">6.2 </span>Results</h3><p>The performance of each estimator is evaluated through the bias (Bias), the standard error (SE), and the root mean squared error (MSE) given by the Monte Carlo process.</p><p>The two classes of estimators employ different inference approaches: a design-based approach for the RegDI estimators, where the <span class="mathjax-tex">\(y_i\)</span> values are treated as fixed, and a model-based approach for the PC estimators, where the variable <span class="mathjax-tex">\(\mathcal {Y}\)</span> is considered random. For the RegDI estimators, we generate 1000 Monte Carlo samples for both <span class="mathjax-tex">\(\mathcal {S}_A\)</span> and <span class="mathjax-tex">\(\mathcal {S}_B\)</span> from the finite population. We simulate 1000 Monte Carlo populations for the PC estimators and draw a single sample for each population for <span class="mathjax-tex">\(\mathcal {S}_A\)</span> and <span class="mathjax-tex">\(\mathcal {S}_B\)</span>.</p><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab2">2</a> shows the simulation study results for the design-based estimators. The results for the first three estimators (i.e., Mean <span class="mathjax-tex">\(\mathcal {S}_A\)</span>, Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span>, RegDI) are identical to the ones presented in Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e19891">2021</a>) (see pg. 394, Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab2">2</a>). As discussed in Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e19898">2021</a>), Mean <span class="mathjax-tex">\(\mathcal {S}_A\)</span> and the RegDI estimators are unbiased in both scenarios. In contrast, Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> estimator is always biased due to the selection bias in sample <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. The RegDI estimators have lower RMSE values. In particular, the RegDI<span class="mathjax-tex">\(_{(X_{1},X_{2})}\)</span> estimator, not considered in Kim and Tam (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e20015">2021</a>), has the lowest standard error. On the other hand, the RegDI<span class="mathjax-tex">\(_{(\Xi {1},\Xi _{2})}\)</span> estimator, which employs calibration variables not strictly related to the <span class="mathjax-tex">\(y_i\)</span> values, leads to an inflation in the standard error (SE).</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2 Results of the five estimators for the simulation study based on design-based Monte Carlo simulations of size 1000</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10260-023-00740-y/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab3">3</a> shows the simulation study results of the model-based estimators. The Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> estimator remains seriously biased due to the selection bias in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. Focusing on Scenario I, the PC<span class="mathjax-tex">\(_{(X_1,X_2)}\)</span> estimator shows competitiveness compared to the RegDI estimators, while the PC<span class="mathjax-tex">\(_{(\Xi _1,\Xi _2)}\)</span> estimator is affected by the use of a slightly wrong propensity score model, implicitly defined by the <span class="mathjax-tex">\(\xi _1\)</span> and <span class="mathjax-tex">\(\xi _2\)</span> variables. In Scenario II, as shown in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab3">3</a>, the Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> estimator increases the bias. In this case, indeed, both the outcome model for <span class="mathjax-tex">\(\tilde{y}_i\)</span> and the propensity score model for <span class="mathjax-tex">\(w_i^B\)</span> come into play. By utilizing the outcome model, the Difference Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> estimator significantly reduces the bias. Scenario II does not present results for the projection-type estimators, PC<span class="mathjax-tex">\(^{P}_{(X_1,X_2)}\)</span> and PC<span class="mathjax-tex">\(^P_{(\Xi _1,\Xi _2)}\)</span>, as they exclusively rely on the propensity score model. The PC<span class="mathjax-tex">\(^{P}_{(X_1,X_2)}\)</span> and PC<span class="mathjax-tex">\(^P_{(\Xi _1,\Xi _2)}\)</span> estimators exhibit bias levels closer to the Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> estimator than the Difference Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> estimator. The PC<span class="mathjax-tex">\(^{D}_{(X_1,X_2)}\)</span> estimator uses both models and remains competitive with the RegDI estimators. The PC<span class="mathjax-tex">\(^D_{(\Xi _1,\Xi _2)}\)</span> estimator reduces the bias compared to the Difference Mean <span class="mathjax-tex">\(\mathcal {S}_B\)</span> estimator. However, it is still more biased than the RegDI estimators.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-3"><figure><figcaption class="c-article-table__figcaption"><b id="Tab3" data-test="table-caption">Table 3 Results of the six estimators for the simulation study based on Monte Carlo populations of size 1000</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10260-023-00740-y/tables/3" aria-label="Full size table 3"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The second part of the simulation study is devoted to the variance estimator presented in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s10260-023-00740-y#Sec10">5</a>. We use the DAGJK method with 100 random groups. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab4">4</a> shows the standard error estimates of the PC estimators using either <span class="mathjax-tex">\((X_1,X_2)\)</span> or <span class="mathjax-tex">\((\Xi _1,\Xi _2)\)</span> in both scenarios. The DAGJK values represent the mean values of the DAGJK estimates computed on 1000 samples of the Monte Carlo simulation. In Scenario I, the DAGJK variance estimates are close to the Monte Carlo variances. As expected, in Scenario II we slightly overestimate the DAGJK variance estimates.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-4"><figure><figcaption class="c-article-table__figcaption"><b id="Tab4" data-test="table-caption">Table 4 Standard error estimates of four PC estimators for the simulation study based on 1000 Monte Carlo populations of size and on Delete-a-Group Jackknife estimator using 100 random groups</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10260-023-00740-y/tables/4" aria-label="Full size table 4"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="An application to the European community survey data on ICT usage and e-commerce in enterprises"><div class="c-article-section" id="Sec14-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec14"><span class="c-article-section__title-number">7 </span>An application to the European community survey data on ICT usage and e-commerce in enterprises</h2><div class="c-article-section__content" id="Sec14-content"><p>We implement the RegDI and PC estimators using the 2018 European Community Survey data on ICT usage and e-commerce in enterprises. This ICT survey is conducted yearly by Istat and by other member states of the EU. Additionally, we consider internet data scraped from enterprises’ websites that fall within the ICT target population. The primary objective of the ICT survey is to supply users with indicators related to internet connectivity and usage, encompassing aspects such as website usage, social media engagement, and cloud computing. The survey’s target population refers to enterprises with ten or more employees working in the industry and non-financial market services. The population frame is the Italian Business Register (Asia), which was last updated two years before the survey’s reference period. For the 2018 ICT survey, this population comprises 199,914 units. The ICT survey considers a stratified simple random sampling design with strata given by four classes of number of persons employed (0–9; 10–19; 20–249; 250 or more), economic activities (24 Nace groups) and geographical breakdown (21 administrative regions at NUTS 2 level). The strata, including the fourth size class (enterprises with 250 and more persons employed), are taken entirely. The number of units within these strata is 3342. For the 2018 ICT survey, the sample of respondents consists of 22,097 units. The survey posed questions to enterprises, including whether a) the website enables online ordering, reservations, or bookings and b) there are links to social media on the website. We assign specific variable names, WEBORD (<span class="mathjax-tex">\(\mathcal {Y}_1\)</span>) and WEBSM (<span class="mathjax-tex">\(\mathcal {Y}_2\)</span>), to these two questions, respectively. The current ICT survey estimator employs a calibration method, which considers the number of enterprises and persons employed based on economic activity, size class, and administrative region, according to a complex combination of these variables. We use Internet data as a big non-probability sample (i.e., a big data source). This process starts with text documents collected through web scraping from the enterprise’s websites. Specifically, we have gathered 93,848 scraped websites representing the units falling in <span class="mathjax-tex">\(\mathcal {S}_B\)</span>. It is worth mentioning that the total number of websites in the target population is unknown. The ICT survey estimates approximately 134,655.82 enterprises with a relative error of about 1%. The web-scraping step returns information retrieval for the WEBSM variable. That means that we observe the variable with <span class="mathjax-tex">\(y_{2i}=1\)</span> when the website has a link to social media and with <span class="mathjax-tex">\(y_{2i}=0\)</span> otherwise. Using the text document of each website, we predict the WEBORD variable using a machine learning technique (Random Forest) as described in Bianchi et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Bianchi G, Bri R, Scalfati F (2020) Identifying e-commerce in enterprises by means of text mining and classification algorithms Hindawi. Math Probl Eng 2018:1–8. 
 https://doi.org/10.1155/2018/7231920
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR3" id="ref-link-section-d84953921e22436">2020</a>) and Bruni and Bianchi (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Bruni R, Bianchi G (2020) Website categorization: a formal approach and robustness analysis in the case of e-commerce detection. Expert Syst Appl 142(113):001" href="/article/10.1007/s10260-023-00740-y#ref-CR6" id="ref-link-section-d84953921e22439">2020</a>). We use a deterministic prediction for the WEBORD, meaning we use the estimated probability that the website incorporates functionalities for online ordering, reservations, or bookings. Further insights into the ICT survey, web scraping, and machine learning procedure can be found in Righi et al. (<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2019" title="Righi P, Bianchi G, Nurra A et al (2019) Integration of survey data and big data for finite population inference in official statistics: statistical challenges and practical applications. Stat Appl XVII(2):135–158" href="/article/10.1007/s10260-023-00740-y#ref-CR31" id="ref-link-section-d84953921e22442">2019</a>).</p><h3 class="c-article__sub-heading" id="Sec15"><span class="c-article-section__title-number">7.1 </span>Estimators</h3><p>We compare a simplified version of the estimator used by Istat for the ICT survey, denoted as T0, with four different RegDI estimators (RegDI.1, RegDI.2, RegDI.3, RegDI.4) and three other PC estimators (PC.1, PC.2, PC.3) for the population total.</p><p>T0 is a calibration estimator of the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ1">1</a>) that uses the number of enterprises and employed persons for four enterprise-size classes (0–9; 10–19; 20–249; +249) and for three macro-regions (aggregation of NUTS 2 regions, North, Centre and South) as known totals. We set <span class="mathjax-tex">\(\textbf{x}_i=(1 \mathbf {\lambda }_{i}',e_i \mathbf {\lambda }_{i}')'\)</span>, where <span class="mathjax-tex">\(e_i\)</span> is the number of employed persons in unit <i>i</i>, and <span class="mathjax-tex">\(\mathbf {\lambda }_i = (\lambda _{i(0-9)},\lambda _{i(10-19)},\lambda _{i(20-249)},\lambda _{i(+249)},\lambda _{i(North)},\lambda _{i(Centre)},\lambda _{i(South)})'\)</span>, where the generic element of <span class="mathjax-tex">\(\mathbf {\lambda }_i\)</span>, <span class="mathjax-tex">\(\lambda _{i(d)}\)</span>, is equal to 1 if <i>i</i> belongs to one of four enterprise-size classes or one of three macro-regions, and equal to 0 otherwise. For example, if the enterprise <i>i</i> has ten employed persons and is located in southern Italy, then <span class="mathjax-tex">\(\mathbf {\lambda }_i = (0,1,0,0,0,0,1)'\)</span>. Then, the calibration equation is</p><div id="Equ32" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sum _{i \in \mathcal {S}_A} w_{i}^{A}(1 \lambda _{i}',e_i \lambda _{i}') = \sum _{i \in \mathcal {U}}&(N_{0-9},N_{10-19},N_{20-249},N_{+249},N_{Centre},N_{North},N_{South}, \\ {}&E_{0-9},E_{10-19}, E_{20-249},E_{+249},E_{Centre},E_{North},E_{South}), \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(N_{d}\)</span> and <span class="mathjax-tex">\(E_{d}\)</span> are the total number of enterprises and employed persons, respectively, in each enterprise-size class and macro-region. As a result, the estimates of the total population and the seven sub-populations using T0 can be derived as</p><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}_{j,T0} = \sum _{i \in \mathcal {S}_A} w^{A}_{i} y_{ji} \quad \text {and} \quad \hat{Y}_{j,T0(d)} = \sum _{i \in \mathcal {S}_A} w^{A}_{i} y_{ji} \lambda _{i(d)} \quad \text {for} \quad j = 1,2. \end{aligned}$$</span></div><div class="c-article-equation__number"> (21) </div></div><p>The calibration variables are <span class="mathjax-tex">\((\textbf{x}_{i}^{'},\delta _i \mathbf {\lambda }_{i}^{'})'\)</span>, <span class="mathjax-tex">\((\textbf{x}_{i}^{'},\delta _i \mathbf {\lambda }_{i}^{'},\delta _i y_{1i} \mathbf {\lambda }_{i}^{'})'\)</span>, <span class="mathjax-tex">\((\textbf{x}_{i}^{'},\delta _i \mathbf {\lambda }_{i}^{'},\delta _i y_{2i} \mathbf {\lambda }_{i}^{'})'\)</span> and <span class="mathjax-tex">\((\textbf{x}_{i}^{'},\delta _i \mathbf {\lambda }_{i}^{'},\delta _i y_{1i} \mathbf {\lambda }_{i}^{'},\delta _i y_{2i} \mathbf {\lambda }_{i}^{'})'\)</span> for the RegDI.1, RegDI.2, RegDI.3 and RegDI.4 estimators, respectively. It follows that the estimates of the population total and the seven sub-populations using the RegDI estimators have the same form of (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ21">21</a>) but different calibration weights.</p><p>The PC.1 estimator calibrates the weights using the same totals as T0. It corresponds to the estimator (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ10">10</a>) for WEBSM and the estimator (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ15">15</a>) for WEBORD. Additionally, for the WEBORD total, we implement the PC.2 and PC.3 estimators following the formula (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s10260-023-00740-y#Equ18">18</a>). In the PC.2 estimator, the sampling calibrated weights are adjusted by the factor <span class="mathjax-tex">\(f_{2i}^{A} = \sum _{\mathcal {S}_A} \phi _i / \sum _{\mathcal {S}_A}{\delta _i}\)</span>, with <span class="mathjax-tex">\(\phi _i = 1\)</span> when the enterprise has the website and <span class="mathjax-tex">\(\phi _i = 0\)</span> otherwise. The PC.3 estimator uses the factor <span class="mathjax-tex">\(f_{3i}^{A} = \sum _{\mathcal {S}_A} \phi _i w_{i}^{A} / \sum _{\mathcal {S}_A} \delta _i w_{i}^{A}\)</span>, where <span class="mathjax-tex">\(w_{i}^{A}\)</span> is the calibrated sampling weight of the ICT survey estimator (T0). It follows that the estimates of the population total and the seven sub-populations using the PC.1 estimator can be derived as</p><div id="Equ33" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}^{P}_{1,PC.1}= & {} \sum _{i \in \mathcal {S}_B} w^{B}_{i} \hat{\tilde{y}}_{1i} \quad \text {and} \quad \hat{Y}^{P}_{1,PC.1(d)} = \sum _{i \in \mathcal {S}_B} w^{B}_{i} \hat{\tilde{y}}_{1i} \lambda _{i(d)}, \\ \hat{Y}_{2,PC.1}= & {} \sum _{i \in \mathcal {S}_B} w^{B}_{i} y_{2i} \quad \text {and} \quad \hat{Y}_{2,PC.1(d)} = \sum _{i \in \mathcal {S}_B} w^{B}_{i} y_{2i} \lambda _{i(d)}. \end{aligned}$$</span></div></div><p>The estimates of the population total and the seven sub-populations using the PC.2 and PC.3 estimators can be obtained as</p><div id="Equ34" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \hat{Y}^{D}_{1,PC.l}= & {} \sum _{i \in \mathcal {S}_B} w^{B}_{i} \hat{\tilde{y}}_{1i} + \sum _{i \in \mathcal {S}_A} f^{A}_{li} (y_{1i} - \hat{\tilde{y}}_{1i}) \quad \text {(for} \quad l = 2, 3) \quad \text {and} \\ \hat{Y}^{D}_{1,PC.l(d)}= & {} \sum _{i \in \mathcal {S}_B} w^{B}_{i} \tilde{y}_{1i} \lambda _{i(d)} + \sum _{i \in \mathcal {S}_A} f^{A}_{li} (y_{1i} - \hat{\tilde{y}}_{1i}) \lambda _{i(d)} \quad \text {(for} \quad l = 2, 3). \end{aligned}$$</span></div></div><h3 class="c-article__sub-heading" id="Sec16"><span class="c-article-section__title-number">7.2 </span>Results</h3><p>Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab5">5</a> shows the estimates for the totals at the national level. We can observe that the RegDI.1 estimator does not affect the Coefficient of Variation (CV) of the estimates compared to T0. On the other hand, the RegDI.2 and RegDI.3 estimators reduce the CV for the variable involved in the calibration. Only when we apply the RegDI.4 estimator we observe a substantial decrease in CV for both the WEBORD and WEBSM variables. These results highlight a crucial crossroads in a multi-purpose survey. The choices are twofold: (1) make a massive calibration, risking either the non-attainment of the optimal solution to the optimization problem or the inflation of variance due to excessively small or large final weights; (2) omit certain target variables from the calibration process and risking to compromise in the enhancement of their estimation accuracy. The estimates of WEBSM given by RegDI.3 and RegDI.4 fall outside the 95% Confidence Interval (CI) of T0. Since the RegDI.3 and RegDI.4 estimators are unbiased, the findings suggest that the T0 estimate has such a large error that it considerably underestimates the WEBSM total.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-5"><figure><figcaption class="c-article-table__figcaption"><b id="Tab5" data-test="table-caption">Table 5 Results of the considered estimators at the national level</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10260-023-00740-y/tables/5" aria-label="Full size table 5"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The analysis of the PC estimators reveals some important findings. The PC.1 estimates fall outside the 95% CI of T0. While we know the PC.1-WEBORD estimate can be biased since it bypasses the correction term, the PC.1-WEBSM estimate appears different from the corresponding T0 estimate. Nevertheless, the 95% CI of the PC.1-WEBSM estimator overlaps the CI of the RegDI.3 and RegDI.4 estimates. The consistency among these three estimates suggests that the PC.1-WEBSM estimator is unbiased. The CI of PC.1-WEBSM estimator is much narrower compared to the CIs of RegDI. We apply the pseudo-calibration difference estimators, PCE.2 and PCE.3, for the WEBORD total estimate. The PCE.2 and PCE.3 estimates fall within the 95% CI of the T0 estimate, and their 95% CIs overlap the RegDI-WEBORD estimators’ 95% CIs. This suggests that we may have effectively adjusted for the bias in the measurement error of the big data target variable. The CV of the PC.3 estimator is smaller than that of T0 and is roughly equivalent to the CVs of the others RegDI.3 and RegDI.4.</p><p>We compare the estimates of WEBORD and WEBSM totals by size class domains (Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig1">1</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig2">2</a>) and macro-regions domains (Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig3">3</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig4">4</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="340"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Estimator CIs (95%) by size class for WEBORD total</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="438"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Estimator CIs (95%) by size class for WEBSM total</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="438"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Estimator CIs (95%) by macro-regions for WEBORD total</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig4_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs10260-023-00740-y/MediaObjects/10260_2023_740_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="438"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>Estimator CIs (95%) by macro-regions for WEBSM total</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s10260-023-00740-y/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>In Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig1">1</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig2">2</a>, <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig3">3</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig4">4</a>, it is evident that the RegDI estimator 95% CIs always overlap the 95% CI of the T0 estimates except for WEBSM estimates in the domain <span class="mathjax-tex">\(0-9\)</span> size class or North macro-region. We underlined this evidence for the national estimate. While the 95% CIs of the RegDI estimators appear similar in length, they are slightly narrower than the 95% CI of the T0 estimate for some domains (such as the size class <span class="mathjax-tex">\(0-9\)</span> for WEBORD and WEBSM). The PC estimators give the shortest intervals. As expected, in certain domains, the WEBSM estimates significantly deviate from those of T0 (specifically, in the <span class="mathjax-tex">\(0-9\)</span> size class, Center and North macro-regions) (see Figs. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig2">2</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig4">4</a>). Regarding the WEBORD totals, the PC.1 estimates fall outside the CIs of T0 and frequently deviate significantly from those generated by the RegDI.1 estimator, which utilizes the same auxiliary variables. This outcome is anticipated because the PC.1 estimator ignores the correction term, and the prediction method (i.e., random forest technique) could fail to accurately capture the true relationship between the predictors and the target variable in specific domains. Consequently, the PC.1 estimator can be biased. The difference estimator adjusts the PC.1-WEBORD estimates that fall within the 95% CIs of the T0 estimate, or at least produces 95% CIs that overlap the 95% CIs of the RegDI.3 and RegDI.4 estimators. Figures <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig1">1</a> and <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s10260-023-00740-y#Fig2">2</a> also include the T<span class="mathjax-tex">\(_b\)</span> estimator, which is a naïve PC estimator defined as <span class="mathjax-tex">\((\hat{N}_W /n_B ) \sum _{\mathcal {S}_B} y_i^{*}\)</span>, where <span class="mathjax-tex">\(\hat{N}_W\)</span> is the survey-based estimate of the number of units with a website. Finally, it is noteworthy that the estimates from PC.2 and PC.3 differ (though not significantly) from those generated by the RegDI.4 estimator, which incorporates all auxiliary variables. We interpret these findings as indicative of intrinsic distinctions arising from the utilization of information within the two classes of estimators.</p><p>Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab6">6</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab7">7</a> investigate the sampling errors of the estimators of the cross-classified domain size class by macro-region (12 domains) by the average CV (%) for WEBORD and WEBSM total estimate, respectively. We categorize the domains into two groups: six domains with a sample size between 344 and 547 units (Group 1) and six domains with a sample size between 1558 and 8299 sample units (Group 2).</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-6"><figure><figcaption class="c-article-table__figcaption"><b id="Tab6" data-test="table-caption">Table 6 Coefficient of variation of the estimators for size classes by the macro-region domain of WEBORD total</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10260-023-00740-y/tables/6" aria-label="Full size table 6"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-7"><figure><figcaption class="c-article-table__figcaption"><b id="Tab7" data-test="table-caption">Table 7 Coefficient of variation of the estimators for size classes by macro-region domain of WEBSM total</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/article/10.1007/s10260-023-00740-y/tables/7" aria-label="Full size table 7"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Tables <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab6">6</a> and <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/article/10.1007/s10260-023-00740-y#Tab7">7</a> show that the PC estimators are more efficient. Among the RegDI estimators, those in Group 2 (large domains) are more efficient than T0. Conversely, the average CVs (%) for the RegDI estimators in Group 1 (small domains) are greater than the CV of T0. We attribute this to the increased number of calibration constraints, resulting in some units having extreme weights, which in turn leads to higher variance estimates. This effect of extreme weights is more pronounced in domains with small sample sizes.</p></div></div></section><section data-title="Discussion"><div class="c-article-section" id="Sec17-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec17"><span class="c-article-section__title-number">8 </span>Discussion</h2><div class="c-article-section__content" id="Sec17-content"><p>The PC estimators integrate data from various sources, including probability and big non-probability samples, administrative records, or statistical registers. They are applicable when the target variable is observed in the probability sample and, in the big non-probability sample, it is (a) observed correctly, (b) observed with error, or (c) predicted using highly correlated auxiliary variables. In the case (a), the PC estimators are inverse probability weighted estimators (Chen et al. <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2020" title="Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. 
 https://doi.org/10.1080/01621459.2019.1677241
 
 " href="/article/10.1007/s10260-023-00740-y#ref-CR7" id="ref-link-section-d84953921e26586">2020</a>). In the cases (b) and (c), they represent a novel class of estimators with forms akin to the adjusted projection estimator (Kim and Rao <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2011" title="Kim JK, Rao JNK (2011) Combining data from two independent surveys: a model-assisted approach. Biometrika 99(1):85–100" href="/article/10.1007/s10260-023-00740-y#ref-CR19" id="ref-link-section-d84953921e26589">2011</a>) and difference estimators (Breidt and Opsomer <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2017" title="Breidt FJ, Opsomer JD (2017) Model-assisted survey estimation with modern prediction techniques. Stat Sci 32:190–205" href="/article/10.1007/s10260-023-00740-y#ref-CR4" id="ref-link-section-d84953921e26592">2017</a>) developed within the model-assisted framework. In these cases, the PC estimators reverse the roles of probability and non-probability samples in the estimation process compared to the doubly robust estimators.The paper outlines the RegDI estimators (Kim and Tam <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2021" title="Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401" href="/article/10.1007/s10260-023-00740-y#ref-CR20" id="ref-link-section-d84953921e26595">2021</a>), as they share the same informative context (cases (a) and (b)) required by the PC estimators. Both the PC and RegDI estimators employ calibration techniques, albeit with distinct approaches. The use of calibration tools is standard in the inferential context of data integration estimators, while it is less conventional in the context of PC estimators, although it has been previously suggested in the literature (Lee and Valliant <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2009" title="Lee S, Valliant R (2009) Estimation for volunteer panel web surveys using propensity score adjustment and calibration adjustment. Sociol Methods Res 37(3):319–343" href="/article/10.1007/s10260-023-00740-y#ref-CR25" id="ref-link-section-d84953921e26598">2009</a>). With few exceptions, one of which is shown in the paper, the RegDI and PC estimators yield different point estimates. A jackknife-type variance estimator is introduced for the PC estimators suitable for large-scale datasets. Moreover, a comparative analysis is conducted between the PC and RegDI estimators, both defined within the same informative framework. This analysis leverages a Monte Carlo simulation and an experiment using real data from the ICT enterprise survey and information scraped from enterprise websites. The PC estimators show competitiveness with the RegDI estimators in Monte Carlo simulations, with the jackknife-type variance estimates very close to the Monte Carlo variances. In the experiment with real data, PC estimates are not significantly different from the RegDI estimates, and the confidence intervals are narrower than those of the RegDI.</p></div></div></section> </div> <section data-title="Notes"><div class="c-article-section" id="notes-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="notes">Notes</h2><div class="c-article-section__content" id="notes-content"><ol class="c-article-footnote c-article-footnote--listed"><li class="c-article-footnote--listed__item" id="Fn1" data-counter="1."><div class="c-article-footnote--listed__content"><p><a href="https://www.istat.it/it/files//2020/05/Tech_Report_ICT2018.pdf">https://www.istat.it/it/files//2020/05/Tech_Report_ICT2018.pdf</a></p></div></li></ol></div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ul class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR1">Beaumont JF (2020) Are probability surveys bound to disappear for the production of official statistics. Surv Methodol 46(1):1–28</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1179927" aria-label="MathSciNet reference 1">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&title=Are%20probability%20surveys%20bound%20to%20disappear%20for%20the%20production%20of%20official%20statistics&journal=Surv%20Methodol&volume=46&issue=1&pages=1-28&publication_year=2020&author=Beaumont%2CJF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR2">Bethlehem J (2010) Selection bias in web surveys. Int Stat Rev 78(2):161–188</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/j.1751-5823.2010.00112.x" data-track-item_id="10.1111/j.1751-5823.2010.00112.x" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Fj.1751-5823.2010.00112.x" aria-label="Article reference 2" data-doi="10.1111/j.1751-5823.2010.00112.x">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&title=Selection%20bias%20in%20web%20surveys&journal=Int%20Stat%20Rev&doi=10.1111%2Fj.1751-5823.2010.00112.x&volume=78&issue=2&pages=161-188&publication_year=2010&author=Bethlehem%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR3">Bianchi G, Bri R, Scalfati F (2020) Identifying e-commerce in enterprises by means of text mining and classification algorithms Hindawi. Math Probl Eng 2018:1–8. <a href="https://doi.org/10.1155/2018/7231920" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1155/2018/7231920">https://doi.org/10.1155/2018/7231920</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1155/2018/7231920" data-track-item_id="10.1155/2018/7231920" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1155%2F2018%2F7231920" aria-label="Article reference 3" data-doi="10.1155/2018/7231920">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Identifying%20e-commerce%20in%20enterprises%20by%20means%20of%20text%20mining%20and%20classification%20algorithms%20Hindawi&journal=Math%20Probl%20Eng&doi=10.1155%2F2018%2F7231920&volume=2018&pages=1-8&publication_year=2020&author=Bianchi%2CG&author=Bri%2CR&author=Scalfati%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR4">Breidt FJ, Opsomer JD (2017) Model-assisted survey estimation with modern prediction techniques. Stat Sci 32:190–205</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1214/16-STS589" data-track-item_id="10.1214/16-STS589" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1214%2F16-STS589" aria-label="Article reference 4" data-doi="10.1214/16-STS589">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3648955" aria-label="MathSciNet reference 4">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=Model-assisted%20survey%20estimation%20with%20modern%20prediction%20techniques&journal=Stat%20Sci&doi=10.1214%2F16-STS589&volume=32&pages=190-205&publication_year=2017&author=Breidt%2CFJ&author=Opsomer%2CJD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR5">Breiman L (2001) Random forests. Mach Learn 45:5–32</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1023/A:1010933404324" data-track-item_id="10.1023/A:1010933404324" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1023%2FA%3A1010933404324" aria-label="Article reference 5" data-doi="10.1023/A:1010933404324">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&title=Random%20forests&journal=Mach%20Learn&doi=10.1023%2FA%3A1010933404324&volume=45&pages=5-32&publication_year=2001&author=Breiman%2CL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR6">Bruni R, Bianchi G (2020) Website categorization: a formal approach and robustness analysis in the case of e-commerce detection. Expert Syst Appl 142(113):001</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=Website%20categorization%3A%20a%20formal%20approach%20and%20robustness%20analysis%20in%20the%20case%20of%20e-commerce%20detection&journal=Expert%20Syst%20Appl&volume=142&issue=113&publication_year=2020&author=Bruni%2CR&author=Bianchi%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR7">Chen Y, Li P, Wu C (2020) Doubly robust inference with nonprobability survey samples. J Am Stat Assoc 115(532):2011–2021. <a href="https://doi.org/10.1080/01621459.2019.1677241" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1080/01621459.2019.1677241">https://doi.org/10.1080/01621459.2019.1677241</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/01621459.2019.1677241" data-track-item_id="10.1080/01621459.2019.1677241" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F01621459.2019.1677241" aria-label="Article reference 7" data-doi="10.1080/01621459.2019.1677241">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4189773" aria-label="MathSciNet reference 7">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Doubly%20robust%20inference%20with%20nonprobability%20survey%20samples&journal=J%20Am%20Stat%20Assoc&doi=10.1080%2F01621459.2019.1677241&volume=115&issue=532&pages=2011-2021&publication_year=2020&author=Chen%2CY&author=Li%2CP&author=Wu%2CC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR8">Citro CF (2014) From multiple modes for surveys to multiple data sources for estimates. Surv Methodol 40(2):137–162</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&title=From%20multiple%20modes%20for%20surveys%20to%20multiple%20data%20sources%20for%20estimates&journal=Surv%20Methodol&volume=40&issue=2&pages=137-162&publication_year=2014&author=Citro%2CCF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR9">Dever J, Valliant R (2010) A comparison of variance estimators for post-stratification to estimated control totals. Surv Methodol 36:45–56</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=A%20comparison%20of%20variance%20estimators%20for%20post-stratification%20to%20estimated%20control%20totals&journal=Surv%20Methodol&volume=36&pages=45-56&publication_year=2010&author=Dever%2CJ&author=Valliant%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR10">Dever J, Valliant R (2016) General regression estimation adjusted for undercoverage and estimated control totals. J Surv Stat Methodol 4:289–318</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/jssam/smw001" data-track-item_id="10.1093/jssam/smw001" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fjssam%2Fsmw001" aria-label="Article reference 10" data-doi="10.1093/jssam/smw001">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&title=General%20regression%20estimation%20adjusted%20for%20undercoverage%20and%20estimated%20control%20totals&journal=J%20Surv%20Stat%20Methodol&doi=10.1093%2Fjssam%2Fsmw001&volume=4&pages=289-318&publication_year=2016&author=Dever%2CJ&author=Valliant%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR11">Deville JC, Särndal CE (1992) Calibration estimators in survey sampling. J Am Stat Assoc 87:367–382</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/01621459.1992.10475217" data-track-item_id="10.1080/01621459.1992.10475217" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F01621459.1992.10475217" aria-label="Article reference 11" data-doi="10.1080/01621459.1992.10475217">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1173804" aria-label="MathSciNet reference 11">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=Calibration%20estimators%20in%20survey%20sampling&journal=J%20Am%20Stat%20Assoc&doi=10.1080%2F01621459.1992.10475217&volume=87&pages=367-382&publication_year=1992&author=Deville%2CJC&author=S%C3%A4rndal%2CCE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR12">Elliot M, Valliant R (2017) Inference for nonprobability samples. Stat Sci 32:249–264</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3648958" aria-label="MathSciNet reference 12">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 12" href="http://scholar.google.com/scholar_lookup?&title=Inference%20for%20nonprobability%20samples&journal=Stat%20Sci&volume=32&pages=249-264&publication_year=2017&author=Elliot%2CM&author=Valliant%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR13">EUROSTAT (2018) Report describing the quality aspects of big data for official statistics. In: Work Package 8 Quality Deliverable 8.2. ESSnet Big Data</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR14">EUROSTAT (2020) Deliverable k3: Revised version of the quality guidelines for the acquisition and usage of big data. In: Workpackage K Methodology and quality. ESSnet Big Data II</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR15">Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning. Springer New York Inc., New York</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/978-0-387-21606-5" data-track-item_id="10.1007/978-0-387-21606-5" data-track-value="book reference" data-track-action="book reference" href="https://link.springer.com/doi/10.1007/978-0-387-21606-5" aria-label="Book reference 15" data-doi="10.1007/978-0-387-21606-5">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&title=The%20elements%20of%20statistical%20learning&doi=10.1007%2F978-0-387-21606-5&publication_year=2001&author=Hastie%2CT&author=Tibshirani%2CR&author=Friedman%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR16">Horrigan MW (2013) Big data: A perspective from the BLS. AMSTAT News January:25–27</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR17">Japec L, Kreuter F, Berg M et al (2015) Big data in survey research: AAPOR task force report. Public Opin Q 79(4):839–880. <a href="https://doi.org/10.1093/poq/nfv039" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1093/poq/nfv039">https://doi.org/10.1093/poq/nfv039</a></p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/poq/nfv039" data-track-item_id="10.1093/poq/nfv039" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fpoq%2Fnfv039" aria-label="Article reference 17" data-doi="10.1093/poq/nfv039">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&title=Big%20data%20in%20survey%20research%3A%20AAPOR%20task%20force%20report&journal=Public%20Opin%20Q&doi=10.1093%2Fpoq%2Fnfv039&volume=79&issue=4&pages=839-880&publication_year=2015&author=Japec%2CL&author=Kreuter%2CF&author=Berg%2CM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR18">Kim JK (2022) A gentle introduction to data integration in survey sampling. Surv Stat 85:19–29</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=A%20gentle%20introduction%20to%20data%20integration%20in%20survey%20sampling&journal=Surv%20Stat&volume=85&pages=19-29&publication_year=2022&author=Kim%2CJK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR19">Kim JK, Rao JNK (2011) Combining data from two independent surveys: a model-assisted approach. Biometrika 99(1):85–100</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/biomet/asr063" data-track-item_id="10.1093/biomet/asr063" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fbiomet%2Fasr063" aria-label="Article reference 19" data-doi="10.1093/biomet/asr063">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2899665" aria-label="MathSciNet reference 19">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=Combining%20data%20from%20two%20independent%20surveys%3A%20a%20model-assisted%20approach&journal=Biometrika&doi=10.1093%2Fbiomet%2Fasr063&volume=99&issue=1&pages=85-100&publication_year=2011&author=Kim%2CJK&author=Rao%2CJNK"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR20">Kim JK, Tam SM (2021) Data integration by combining big data and survey sample data for finite population inference. Int Stat Rev 89(2):382–401</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/insr.12434" data-track-item_id="10.1111/insr.12434" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Finsr.12434" aria-label="Article reference 20" data-doi="10.1111/insr.12434">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4411911" aria-label="MathSciNet reference 20">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Data%20integration%20by%20combining%20big%20data%20and%20survey%20sample%20data%20for%20finite%20population%20inference&journal=Int%20Stat%20Rev&doi=10.1111%2Finsr.12434&volume=89&issue=2&pages=382-401&publication_year=2021&author=Kim%2CJK&author=Tam%2CSM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR21">Kott PS (1994) A note on handling nonresponse in sample surveys. J Am Stat Assoc 89(426):693–696</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1080/01621459.1994.10476795" data-track-item_id="10.1080/01621459.1994.10476795" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1080%2F01621459.1994.10476795" aria-label="Article reference 21" data-doi="10.1080/01621459.1994.10476795">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1294093" aria-label="MathSciNet reference 21">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=A%20note%20on%20handling%20nonresponse%20in%20sample%20surveys&journal=J%20Am%20Stat%20Assoc&doi=10.1080%2F01621459.1994.10476795&volume=89&issue=426&pages=693-696&publication_year=1994&author=Kott%2CPS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR22">Kott PS (2001) Delete-a-group jackknife. J Off Stat 17(4):521–526</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Delete-a-group%20jackknife&journal=J%20Off%20Stat&volume=17&issue=4&pages=521-526&publication_year=2001&author=Kott%2CPS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR23">Kott PS (2006) Delete-a-group variance estimation for the general regression estimator under Poisson sampling. J Off Stat 22(4):759–767</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&title=Delete-a-group%20variance%20estimation%20for%20the%20general%20regression%20estimator%20under%20Poisson%20sampling&journal=J%20Off%20Stat&volume=22&issue=4&pages=759-767&publication_year=2006&author=Kott%2CPS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR24">Kott PS (2006) Using calibration weighting to adjust for nonresponse and coverage errors. Surv Methodol 32(2):133</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=Using%20calibration%20weighting%20to%20adjust%20for%20nonresponse%20and%20coverage%20errors&journal=Surv%20Methodol&volume=32&issue=2&publication_year=2006&author=Kott%2CPS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR25">Lee S, Valliant R (2009) Estimation for volunteer panel web surveys using propensity score adjustment and calibration adjustment. Sociol Methods Res 37(3):319–343</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1177/0049124108329643" data-track-item_id="10.1177/0049124108329643" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1177%2F0049124108329643" aria-label="Article reference 25" data-doi="10.1177/0049124108329643">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2649463" aria-label="MathSciNet reference 25">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=Estimation%20for%20volunteer%20panel%20web%20surveys%20using%20propensity%20score%20adjustment%20and%20calibration%20adjustment&journal=Sociol%20Methods%20Res&doi=10.1177%2F0049124108329643&volume=37&issue=3&pages=319-343&publication_year=2009&author=Lee%2CS&author=Valliant%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR26">Little RJA, Rubin DB (2019) Statistical analysis with missing data, 3rd edn. Wiley, Hoboken</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&title=Statistical%20analysis%20with%20missing%20data&publication_year=2019&author=Little%2CRJA&author=Rubin%2CDB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR28">Meng XL (2018) Statistical paradises and paradoxes in big data (i) law of large populations, big data paradox, and the 2016 us presidential election. Ann Appl Stat 12(2):685–726</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1214/18-AOAS1161SF" data-track-item_id="10.1214/18-AOAS1161SF" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1214%2F18-AOAS1161SF" aria-label="Article reference 27" data-doi="10.1214/18-AOAS1161SF">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3834282" aria-label="MathSciNet reference 27">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&title=Statistical%20paradises%20and%20paradoxes%20in%20big%20data%20%28i%29%20law%20of%20large%20populations%2C%20big%20data%20paradox%2C%20and%20the%202016%20us%20presidential%20election&journal=Ann%20Appl%20Stat&doi=10.1214%2F18-AOAS1161SF&volume=12&issue=2&pages=685-726&publication_year=2018&author=Meng%2CXL"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR29">Pfeffermann D (2015) Methodological issues and challenges in the production of official statistics: 24th annual Morris Hansen lecture. J Surv Stat Methodol 3(4):425–483</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/jssam/smv035" data-track-item_id="10.1093/jssam/smv035" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fjssam%2Fsmv035" aria-label="Article reference 28" data-doi="10.1093/jssam/smv035">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=Methodological%20issues%20and%20challenges%20in%20the%20production%20of%20official%20statistics%3A%2024th%20annual%20Morris%20Hansen%20lecture&journal=J%20Surv%20Stat%20Methodol&doi=10.1093%2Fjssam%2Fsmv035&volume=3&issue=4&pages=425-483&publication_year=2015&author=Pfeffermann%2CD"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR30">Rao J (2021) On making valid inferences by integrating data from surveys and other sources. Sankhya B 83:242–272</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13571-020-00227-w" data-track-item_id="10.1007/s13571-020-00227-w" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13571-020-00227-w" aria-label="Article reference 29" data-doi="10.1007/s13571-020-00227-w">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4256318" aria-label="MathSciNet reference 29">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&title=On%20making%20valid%20inferences%20by%20integrating%20data%20from%20surveys%20and%20other%20sources&journal=Sankhya%20B&doi=10.1007%2Fs13571-020-00227-w&volume=83&pages=242-272&publication_year=2021&author=Rao%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR31">Righi P, Bianchi G, Nurra A et al (2019) Integration of survey data and big data for finite population inference in official statistics: statistical challenges and practical applications. Stat Appl XVII(2):135–158</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&title=Integration%20of%20survey%20data%20and%20big%20data%20for%20finite%20population%20inference%20in%20official%20statistics%3A%20statistical%20challenges%20and%20practical%20applications&journal=Stat%20Appl&volume=XVII&issue=2&pages=135-158&publication_year=2019&author=Righi%2CP&author=Bianchi%2CG&author=Nurra%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR32">Righi P, Golini N, Bianchi G (2022) Big data and official statistics: some evidence. In: Balzanella A, Bini M, Cavicchia C et al (eds) Book of short the papers: 51st scientific meeting of the Italian statistical society. Pearson, Hoboken, pp 723–734</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&title=Big%20data%20and%20official%20statistics%3A%20some%20evidence&pages=723-734&publication_year=2022&author=Righi%2CP&author=Golini%2CN&author=Bianchi%2CG"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR33">Rubin DB (1976) Inference and missing data. Biometrika 63:581–590</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/biomet/63.3.581" data-track-item_id="10.1093/biomet/63.3.581" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fbiomet%2F63.3.581" aria-label="Article reference 32" data-doi="10.1093/biomet/63.3.581">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=455196" aria-label="MathSciNet reference 32">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&title=Inference%20and%20missing%20data&journal=Biometrika&doi=10.1093%2Fbiomet%2F63.3.581&volume=63&pages=581-590&publication_year=1976&author=Rubin%2CDB"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR34">Rueda MDM, Pasadas-del-Amo S, Rodríguez BC et al (2023) Enhancing estimation methods for integrating probability and nonprobability survey samples with machine-learning techniques. An application to a survey on the impact of the COVID-19 pandemic in Spain. Biom J 65(2):2200035</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/bimj.202200035" data-track-item_id="10.1002/bimj.202200035" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fbimj.202200035" aria-label="Article reference 33" data-doi="10.1002/bimj.202200035">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4555963" aria-label="MathSciNet reference 33">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&title=Enhancing%20estimation%20methods%20for%20integrating%20probability%20and%20nonprobability%20survey%20samples%20with%20machine-learning%20techniques.%20An%20application%20to%20a%20survey%20on%20the%20impact%20of%20the%20COVID-19%20pandemic%20in%20Spain&journal=Biom%20J&doi=10.1002%2Fbimj.202200035&volume=65&issue=2&publication_year=2023&author=Rueda%2CMDM&author=Pasadas-del-Amo%2CS&author=Rodr%C3%ADguez%2CBC"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR35">Särndal CE, Lundström S (2005) Estimation in surveys with nonresponse. John Wiley & Sons, Hoboken</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/0470011351" data-track-item_id="10.1002/0470011351" data-track-value="book reference" data-track-action="book reference" href="https://doi.org/10.1002%2F0470011351" aria-label="Book reference 34" data-doi="10.1002/0470011351">Book</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&title=Estimation%20in%20surveys%20with%20nonresponse&doi=10.1002%2F0470011351&publication_year=2005&author=S%C3%A4rndal%2CCE&author=Lundstr%C3%B6m%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR36">Tam SM (2015) A statistical framework for analysing big data. Surv Stat 72:36–51</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&title=A%20statistical%20framework%20for%20analysing%20big%20data&journal=Surv%20Stat&volume=72&pages=36-51&publication_year=2015&author=Tam%2CSM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR37">Tam SM, Clarke F (2015) Big data, official statistics and some initiatives by the Australian Bureau of Statistics. Int Stat Rev 83(3):436–448</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1111/insr.12105" data-track-item_id="10.1111/insr.12105" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1111%2Finsr.12105" aria-label="Article reference 36" data-doi="10.1111/insr.12105">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&title=Big%20data%2C%20official%20statistics%20and%20some%20initiatives%20by%20the%20Australian%20Bureau%20of%20Statistics&journal=Int%20Stat%20Rev&doi=10.1111%2Finsr.12105&volume=83&issue=3&pages=436-448&publication_year=2015&author=Tam%2CSM&author=Clarke%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR38">Tam SM, Clarke F (2015) Big data, statistical inference and official statistics—methodology research papers. Australian Bureau of Statistics, Canberra</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR39">UNECE Big Data Quality Task Team (2014) A suggested framework for the quality of big data. Deliverables of the UNECE Big Data Quality Task Team</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR40">United Nations (2019) United Nations National Quality Assurance Frameworks Manual for Official Statistics. United Nations publication</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR41">Valliant R (2020) Comparing alternatives for estimation from nonprobability samples. J Surv Stat Methodol 8(2):231–263</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1093/jssam/smz003" data-track-item_id="10.1093/jssam/smz003" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1093%2Fjssam%2Fsmz003" aria-label="Article reference 40" data-doi="10.1093/jssam/smz003">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&title=Comparing%20alternatives%20for%20estimation%20from%20nonprobability%20samples&journal=J%20Surv%20Stat%20Methodol&doi=10.1093%2Fjssam%2Fsmz003&volume=8&issue=2&pages=231-263&publication_year=2020&author=Valliant%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR42">Valliant R, Dorfman AH, Royall RM (eds) (2000) Finite population sampling and inference: a prediction approach. Wiley Series in Survey Methodology</p></li><li class="c-article-references__item js-c-reading-companion-references-item"><p class="c-article-references__text" id="ref-CR43">Vehovar V, Toepoel V, Steinmetz S (2016) Non-probability sampling, vol 1. The Sage handbook of survey methods</p></li></ul><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s10260-023-00740-y?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>Open access funding provided by Università degli Studi di Torino within the CRUI-CARE Agreement. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Department of Economics and Statistics “Cognetti de Martiis”, University of Turin, Lungo Dora Siena 100 A, 10153, Turin, Italy</p><p class="c-article-author-affiliation__authors-list">Natalia Golini</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Italian National Statistical Institute (Istat), Via Cesare Balbo, 16, 00184, Rome, Italy</p><p class="c-article-author-affiliation__authors-list">Paolo Righi</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Natalia-Golini-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Natalia Golini</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&dc.creator=Natalia%20Golini" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Natalia%20Golini" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Natalia%20Golini%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Paolo-Righi-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Paolo Righi</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?sortBy=newestFirst&dc.creator=Paolo%20Righi" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text"><span class="c-article-authors-search__links-text">You can also search for this author in</span><span class="c-article-identifiers"><a class="c-article-identifiers__item" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Paolo%20Righi" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="https://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Paolo%20Righi%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:natalia.golini@unito.it">Natalia Golini</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar12">Conflict of interest</h3> <p>All authors declare that they have no conflicts of interest.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Integrating%20probability%20and%20big%20non-probability%20samples%20data%20to%20produce%20Official%20Statistics&author=Natalia%20Golini%20et%20al&contentID=10.1007%2Fs10260-023-00740-y&copyright=The%20Author%28s%29&publication=1618-2510&publicationDate=2024-01-18&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s10260-023-00740-y" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s10260-023-00740-y" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Golini, N., Righi, P. Integrating probability and big non-probability samples data to produce Official Statistics. <i>Stat Methods Appl</i> <b>33</b>, 555–580 (2024). https://doi.org/10.1007/s10260-023-00740-y</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s10260-023-00740-y?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-12-06">06 December 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-01-18">18 January 2024</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Issue Date<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2024-04">April 2024</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s10260-023-00740-y</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Big%20data&facet-discipline="Statistics"" data-track="click" data-track-action="view keyword" data-track-label="link">Big data</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Calibration%20weighting&facet-discipline="Statistics"" data-track="click" data-track-action="view keyword" data-track-label="link">Calibration weighting</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Data%20integration&facet-discipline="Statistics"" data-track="click" data-track-action="view keyword" data-track-label="link">Data integration</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Missing%20at%20random&facet-discipline="Statistics"" data-track="click" data-track-action="view keyword" data-track-label="link">Missing at random</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Model-based%20inference&facet-discipline="Statistics"" data-track="click" data-track-action="view keyword" data-track-label="link">Model-based inference</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Variance%20estimation&facet-discipline="Statistics"" data-track="click" data-track-action="view keyword" data-track-label="link">Variance estimation</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside aria-label="reading companion"> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=10260" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/10260/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s10260-023-00740-y;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <nav aria-label="expander navigation"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> </nav> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our brands</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/brands/discover" data-track="nav_imprint_Discover" data-track-action="Discover" data-track-context="unified footer" data-track-label="link">Discover</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/legal-notice" data-track="nav_legal_notice" data-track-action="legal notice" data-track-context="unified footer" data-track-label="link">Legal notice</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2025 Springer Nature</p> </div> </div> </footer> </div> </body> </html>