CINXE.COM
A002779 - OEIS
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2 Final//EN"> <html> <head> <link rel="stylesheet" href="/styles.css"> <meta name="format-detection" content="telephone=no"> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta name="keywords" content="OEIS,integer sequences,Sloane" /> <title>A002779 - OEIS</title> <link rel="search" type="application/opensearchdescription+xml" title="OEIS" href="/oeis.xml"> <script> var myURL = "\/A002779" function redir() { var host = document.location.hostname; if(host != "oeis.org" && host != "127.0.0.1" && !/^([0-9.]+)$/.test(host) && host != "localhost" && host != "localhost.localdomain") { document.location = "https"+":"+"//"+"oeis"+".org/" + myURL; } } function sf() { if(document.location.pathname == "/" && document.f) document.f.q.focus(); } </script> </head> <body bgcolor=#ffffff onload="redir();sf()"> <div class=loginbar> <div class=login> <a href="/login?redirect=%2fA002779">login</a> </div> </div> <div class=center><div class=top> <center> <div class=donors> The OEIS is supported by <a href="http://oeisf.org/#DONATE">the many generous donors to the OEIS Foundation</a>. </div> <div class=banner> <a href="/"><img class=banner border="0" width="600" src="/banner2021.jpg" alt="A002779 - OEIS"></a> </div> <div class="motdbox"> <div class="motd"> <p>Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).</p> </div> <div class="donate"> <div id="donate-button-container"> <div id="donate-button"></div> <script src="https://www.paypalobjects.com/donate/sdk/donate-sdk.js" charset="UTF-8"></script> <script> PayPal.Donation.Button({ env:'production', hosted_button_id:'SVPGSDDCJ734A', image: { src:'https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif', alt:'Donate with PayPal button', title:'PayPal - The safer, easier way to pay online!', } }).render('#donate-button'); </script> </div> <a href="https://oeisf.org/donate/"> <strong>Other ways to Give</strong> </a> </div> </div> </center> </div></div> <div class=center><div class=pagebody> <div class=searchbarcenter> <form name=f action="/search" method="GET"> <div class=searchbargreet> <div class=searchbar> <div class=searchq> <input class=searchbox maxLength=1024 name=q value="" title="Search Query"> </div> <div class=searchsubmit> <input type=submit value="Search" name=go> </div> <div class=hints> <span class=hints><a href="/hints.html">Hints</a></span> </div> </div> <div class=searchgreet> (Greetings from <a href="/welcome">The On-Line Encyclopedia of Integer Sequences</a>!) </div> </div> </form> </div> <div class=sequence> <div class=space1></div> <div class=line></div> <div class=seqhead> <div class=seqnumname> <div class=seqnum> A002779 </div> <div class=seqname> Palindromic squares. <br><font size=-1>(Formerly M3371 N1358)</font> </div> </div> <div class=scorerefs> 41 </div> </div> <div> <div class=seqdatabox> <div class=seqdata>0, 1, 4, 9, 121, 484, 676, 10201, 12321, 14641, 40804, 44944, 69696, 94249, 698896, 1002001, 1234321, 4008004, 5221225, 6948496, 100020001, 102030201, 104060401, 121242121, 123454321, 125686521, 400080004, 404090404, 522808225</div> <div class=seqdatalinks> (<a href="/A002779/list">list</a>; <a href="/A002779/graph">graph</a>; <a href="/search?q=A002779+-id:A002779">refs</a>; <a href="/A002779/listen">listen</a>; <a href="/history?seq=A002779">history</a>; <a href="/search?q=id:A002779&fmt=text">text</a>; <a href="/A002779/internal">internal format</a>) </div> </div> </div> <div class=entry> <div class=section> <div class=sectname>OFFSET</div> <div class=sectbody> <div class=sectline>1,3</div> </div> </div> <div class=section> <div class=sectname>COMMENTS</div> <div class=sectbody> <div class=sectline>These are numbers that are both squares (see <a href="/A000290" title="The squares: a(n) = n^2.">A000290</a>) and palindromes (see <a href="/A002113" title="Palindromes in base 10.">A002113</a>).</div> </div> </div> <div class=section> <div class=sectname>REFERENCES</div> <div class=sectbody> <div class=sectline>N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).</div> <div class=sectline>N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).</div> </div> </div> <div class=section> <div class=sectname>LINKS</div> <div class=sectbody> <div class=sectline>Hans Havermann (via Feng Yuan), T. D. Noe (from P. De Geest) [to 485], <a href="/A002779/b002779.txt">Table of n, a(n) for n = 1..1940</a></div> <div class=sectline>Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, <a href="http://arxiv.org/abs/1210.7593">On Polynomial Pairs of Integers</a>, arXiv:1210.7593 [math.NT], 2012-2014. - From <a href="/wiki/User:N._J._A._Sloane">N. J. A. Sloane</a>, Nov 08 2012</div> <div class=sectline>Martianus Frederic Ezerman, Bertrand Meyer and Patrick Solé, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Ezerman/eze3.html">On Polynomial Pairs of Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.5.</div> <div class=sectline>Patrick De Geest, <a href="http://www.worldofnumbers.com/square.htm">Palindromic Squares</a></div> <div class=sectline>W. R. Marshall, <a href="https://web.archive.org/web/20020614225321/http://www.geocities.com/williamrexmarshall/math/palsq.html">Palindromic Squares</a></div> <div class=sectline>Phakhinkon Phunphayap, Prapanpong Pongsriiam, <a href="https://arxiv.org/abs/1803.09621">Reciprocal sum of palindromes</a>, arXiv:1803.00161 [math.CA], 2018.</div> <div class=sectline>G. J. Simmons, <a href="/A002778/a002778_2.pdf">Palindromic powers</a>, J. Rec. Math., 3 (No. 2, 1970), 93-98. [Annotated scanned copy]</div> <div class=sectline>G. J. Simmons, <a href="/A002778/a002778.pdf">On palindromic squares of non-palindromic numbers</a>, J. Rec. Math., 5 (No. 1, 1972), 11-19. [Annotated scanned copy]</div> <div class=sectline>Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PalindromicNumber.html">Palindromic Number.</a></div> <div class=sectline>Feng Yuan, <a href="http://www.fengyuan.com/palindrome.html">Palindromic Square Numbers</a></div> </div> </div> <div class=section> <div class=sectname>FORMULA</div> <div class=sectbody> <div class=sectline>From <a href="/wiki/User:Reinhard_Zumkeller">Reinhard Zumkeller</a>, Oct 11 2011: (Start)</div> <div class=sectline>a(n) = <a href="/A002778" title="Numbers whose square is a palindrome.">A002778</a>(n)^2.</div> <div class=sectline><a href="/A136522" title="a(n) = 1 if n is a palindrome, otherwise 0.">A136522</a>(<a href="/A000290" title="The squares: a(n) = n^2.">A000290</a>(a(n))) = 1.</div> <div class=sectline><a href="/A010052" title="Characteristic function of squares: a(n) = 1 if n is a square, otherwise 0.">A010052</a>(a(n)) * <a href="/A136522" title="a(n) = 1 if n is a palindrome, otherwise 0.">A136522</a>(a(n)) = 1. (End)</div> </div> </div> <div class=section> <div class=sectname>EXAMPLE</div> <div class=sectbody> <div class=sectline>676 is included because it is both a perfect square and a palindrome.</div> </div> </div> <div class=section> <div class=sectname>MATHEMATICA</div> <div class=sectbody> <div class=sectline>palindromicNumberQ = ((# // IntegerDigits // Reverse // FromDigits) == #) &; Select[Table[n^2, {n, 0, 9999}], palindromicNumberQ] (* <a href="/wiki/User:Herman_Beeksma">Herman Beeksma</a>, Jul 14 2005 *)</div> <div class=sectline>pb10Q[n_] := Module[{idn10 = IntegerDigits[n, 10]}, idn10 == Reverse[idn10]]; Select[Range[0, 19999]^2, pb10Q] (* <a href="/wiki/User:Vincenzo_Librandi">Vincenzo Librandi</a>, Jul 24 2014 *)</div> <div class=sectline>Select[Range[0, 22999]^2, PalindromeQ] (* Requires Mathematica version 10 or later. - <a href="/wiki/User:Harvey_P._Dale">Harvey P. Dale</a>, May 01 2017 *)</div> </div> </div> <div class=section> <div class=sectname>PROG</div> <div class=sectbody> <div class=sectline>(Haskell)</div> <div class=sectline>a002779 n = a002778_list !! (n-1)</div> <div class=sectline>a002779_list = filter ((== 1) . a136522) a000290_list</div> <div class=sectline>-- <a href="/wiki/User:Reinhard_Zumkeller">Reinhard Zumkeller</a>, Oct 11 2011</div> <div class=sectline>(PARI) is(n)=my(d=digits(n)); d==Vecrev(d) && issquare(n) \\ <a href="/wiki/User:Charles_R_Greathouse_IV">Charles R Greathouse IV</a>, Feb 06 2017</div> <div class=sectline>(Scala) def isPalindromic(n: BigInt): Boolean = n.toString == n.toString.reverse</div> <div class=sectline> val squares = ((1: BigInt) to (1000000: BigInt)).map(n => n * n)</div> <div class=sectline> squares.filter(isPalindromic(_)) // <a href="/wiki/User:Alonso_del_Arte">Alonso del Arte</a>, Oct 07 2019</div> <div class=sectline>(Magma) [k^2:k in [0..100000]| Intseq(k^2) eq Reverse(Intseq(k^2)) ]; // <a href="/wiki/User:Marius_A._Burtea">Marius A. Burtea</a>, Oct 15 2019</div> <div class=sectline>(Python)</div> <div class=sectline><a href="/A002779" title="Palindromic squares.">A002779</a>_list = [int(s) for s in (str(m**2) for m in range(10**5)) if s == s[::-1]] # <a href="/wiki/User:Chai_Wah_Wu">Chai Wah Wu</a>, Aug 26 2021</div> </div> </div> <div class=section> <div class=sectname>CROSSREFS</div> <div class=sectbody> <div class=sectline>Cf. <a href="/A000290" title="The squares: a(n) = n^2.">A000290</a>, <a href="/A002113" title="Palindromes in base 10.">A002113</a>, <a href="/A002778" title="Numbers whose square is a palindrome.">A002778</a>, <a href="/A010052" title="Characteristic function of squares: a(n) = 1 if n is a square, otherwise 0.">A010052</a>, <a href="/A027829" title="Palindromic squares with an even number of digits.">A027829</a> (subsets), <a href="/A028817" title="Palindromic squares with an odd number of digits.">A028817</a>, <a href="/A029734" title="Palindromic squares in base 16.">A029734</a>.</div> <div class=sectline>Cf. <a href="/A029738" title="Palindromic squares in base 12.">A029738</a>, <a href="/A029806" title="n in base 8 is a palindromic square.">A029806</a>, <a href="/A029983" title="Squares which are palindromes in base 2.">A029983</a>, <a href="/A029985" title="Squares which are palindromes in base 3.">A029985</a>, <a href="/A029987" title="Squares which are palindromes in base 4.">A029987</a>, <a href="/A029989" title="Squares which are palindromes in base 5.">A029989</a>, <a href="/A029991" title="Squares which are palindromes in base 6.">A029991</a>, <a href="/A029993" title="Squares which are palindromes in base 7.">A029993</a>.</div> <div class=sectline>Cf. <a href="/A029995" title="Squares which are palindromes in base 9.">A029995</a>, <a href="/A029997" title="Squares which are palindromes in base 11.">A029997</a>, <a href="/A029999" title="Squares which are palindromes in base 13.">A029999</a>, <a href="/A030074" title="Squares which are palindromes in base 14.">A030074</a>, <a href="/A030075" title="Squares which are palindromes in base 15.">A030075</a>, <a href="/A057136" title="Palindromes whose square root is a palindrome.">A057136</a>, <a href="/A136522" title="a(n) = 1 if n is a palindrome, otherwise 0.">A136522</a>.</div> <div class=sectline>Sequence in context: <a href="/A229971" title="Palindromes n whose product of proper divisors is a palindrome > 1 and not equal to n.">A229971</a> <a href="/A158642" title="Palindromic numbers which are the product of a number n and its reversal (n written backwards)">A158642</a> <a href="/A131760" title="Numbers n such that n multiplied by its reverse yields a fourth power.">A131760</a> * <a href="/A028817" title="Palindromic squares with an odd number of digits.">A028817</a> <a href="/A319483" title="a(n) = A128921(n)^2.">A319483</a> <a href="/A057136" title="Palindromes whose square root is a palindrome.">A057136</a></div> <div class=sectline>Adjacent sequences: <a href="/A002776" title="Terms in certain determinants.">A002776</a> <a href="/A002777" title="Restricted permutations.">A002777</a> <a href="/A002778" title="Numbers whose square is a palindrome.">A002778</a> * <a href="/A002780" title="Numbers whose cube is a palindrome.">A002780</a> <a href="/A002781" title="Palindromic cubes.">A002781</a> <a href="/A002782" title="Concatenate the natural numbers, then partition into minimal strings so that each term divides the next.">A002782</a></div> </div> </div> <div class=section> <div class=sectname>KEYWORD</div> <div class=sectbody> <div class=sectline><span title="a sequence of nonnegative numbers">nonn</span>,<span title="dependent on base used for sequence">base</span>,<span title="an exceptionally nice sequence">nice</span>,<span title="it is very easy to produce terms of sequence">easy</span></div> </div> </div> <div class=section> <div class=sectname>AUTHOR</div> <div class=sectbody> <div class=sectline><a href="/wiki/User:N._J._A._Sloane">N. J. A. Sloane</a></div> </div> </div> <div class=section> <div class=sectname>STATUS</div> <div class=sectbody> <div class=sectline>approved</div> </div> </div> </div> <div class=space10></div> </div> </div></div> <p> <div class=footerpad></div> <div class=footer> <center> <div class=bottom> <div class=linksbar> <a href="/">Lookup</a> <a href="/wiki/Welcome"><font color="red">Welcome</font></a> <a href="/wiki/Main_Page"><font color="red">Wiki</font></a> <a href="/wiki/Special:RequestAccount">Register</a> <a href="/play.html">Music</a> <a href="/plot2.html">Plot 2</a> <a href="/demo1.html">Demos</a> <a href="/wiki/Index_to_OEIS">Index</a> <a href="/webcam">WebCam</a> <a href="/Submit.html">Contribute</a> <a href="/eishelp2.html">Format</a> <a href="/wiki/Style_Sheet">Style Sheet</a> <a href="/transforms.html">Transforms</a> <a href="/ol.html">Superseeker</a> <a href="/recent">Recents</a> </div> <div class=linksbar> <a href="/community.html">The OEIS Community</a> </div> <div class=linksbar> Maintained by <a href="http://oeisf.org">The OEIS Foundation Inc.</a> </div> <div class=dbinfo>Last modified December 11 02:47 EST 2024. Contains 378602 sequences.</div> <div class=legal> <a href="/wiki/Legal_Documents">License Agreements, Terms of Use, Privacy Policy</a> </div> </div> </center> </div> </body> </html>