CINXE.COM

from torchbench.image_classification import ImageNet from pytorchcv.models.common.model_store import get_model_metainfo_dict from pytorchcv.model_provider import get_model as ptcv_get_model import torchvision.transforms as transforms import torch import math from sys import version_info model_metainfo_dict = get_model_metainfo_dict() for model_name, model_metainfo in (model_metainfo_dict.items() if version_info[0] >= 3 else model_metainfo_dict.iteritems()): # noqa caption, paper, ds, img_size, scale, batch, rem = model_metainfo[4:] net = ptcv_get_model(model_name, pretrained=True) if (ds != "in1k") or (img_size == 0) or ((len(rem) > 0) and (rem[-1] == "*")): continue paper_model_name = caption paper_arxiv_id = paper input_image_size = img_size resize_inv_factor = scale batch_size = batch model_description = "pytorch" + (rem if rem == "" else ", " + rem) assert (not hasattr(net, "in_size")) or (input_image_size == net.in_size[0]) ImageNet.benchmark( model=net, model_description=model_description, paper_model_name=paper_model_name, paper_arxiv_id=paper_arxiv_id, input_transform=transforms.Compose([ transforms.Resize(int(math.ceil(float(input_image_size) / resize_inv_factor))), transforms.CenterCrop(input_image_size), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), batch_size=batch_size, num_gpu=1, # data_root=os.path.join("..", "imgclsmob_data", "imagenet") ) torch.cuda.empty_cache()