CINXE.COM

{"title":"A Modern Review of the Non-Invasive Continuous Blood Glucose Measuring Devices and Techniques for Remote Patient Monitoring System","authors":"Muhibul Haque Bhuyan","volume":182,"journal":"International Journal of Biomedical and Biological Engineering","pagesStart":1,"pagesEnd":22,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10012400","abstract":"<p>Diabetes disease that arises from the higher glucose level due to insulin shortage or insulin opposition in the human body has become a common disease in the world. No medicine can cure it completely. However, by taking medicine, maintaining diets, and having exercises regularly, a diabetes patient can keep his glucose level within the specified limits and in this way, he\/she can lead a normal life like a healthy person. But to control glucose levels, a patient needs to monitor them regularly. Various techniques are being used over the last four decades. This modern review article aims to provide a comparative study report on various blood glucose monitoring techniques in a very concise and organized manner. The review mainly emphasizes working principles, cost, technology, sensors, measurement types, measurement accuracy, advantages, and disadvantages, etc. of various techniques and then compares among each other. Besides, the use of algorithms and simulators for the growth of this technology is also presented. Finally, current research trends of this measurement technology have also been discussed.<\/p>","references":"[1]\tC. E. F. do Amaral and B. Wolf, \u201cCurrent development in non-invasive glucose monitoring,\u201d Medical Engineering and Physics, vol. 30, no. 5, pp. 541-549, 2008.\r\n[2]\tR. Beebe and J. Myers, \u201cParamedic Professional Medical Emergencies,\u201d Maternal Health and Pediatric, vol. 2, second edition, Cengage Learning, 2010, pp. 324-336.\r\n[3]\tE. Wilkins and P. Atanasov, \u201cGlucose monitoring: state of the art and future possibilities,\u201d Medical Engineering and Physics, vol. 18, no. 4, pp. 273-288, 1996.\r\n[4]\tJ. Peacock, \u201cDiabetes,\u201d first edition, Capstone Press, Incorporated, 1999, pp. 4-6.\r\n[5]\tJ. M. Wojcicki and P. Ladyzynski, \u201cToward the improvement of diabetes treatment: recent developments in technical support,\u201d Journal of Artificial Organs, vol. 6, no. 2, pp. 73-87, 2003.\r\n[6]\tE. \u00d6zt\u00fcrk, A. K. K. Arslan, M. B. Yerer, and A. Bishayee, \u201cResveratrol and diabetes: A critical review of clinical studies,\u201d Biomedical Pharmacother, vol. 95, pp. 230-234, Nov. 2017.\r\n[7]\tR. Hanas, \u201cType 1 Diabetes in Children, Adolescents and Young Adults: How to Become an Expert on Your Own Diabetes,\u201d sixth edition, Class Pub., 2010, pp. 5-7.\r\n[8]\tD. B. Sacks, M. Arnold, G. L. Bakris, D. E. Bruns, A. R. Horvath, M. S. Kirkman, A. Lernmark, B. E. Metzger, and D. M. Nathan, \u201cGuidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus,\u201d Diabetes Care, vol. 34, no. 6, 2011, pp. e61-e99.\r\n[9]\tDiabetes Facts and Figures, IDF Diabetes Atlas Ninth edition 2019, https:\/\/idf.org\/aboutdiabetes\/what-is-diabetes\/facts-figures.html, accessed on 23 August 2021.\r\n[10]\tJ. d. R. F. Suvi Karuranga, Yadi Huang, Belma Malanda, IDF Diabetes Atlas, 8th Edition. Brussels, Belgium, 2017, pp. 1-150.\r\n[11]\tJ. Lucisano, T. Routh, J. Lin, and D. Gough, \u201cGlucose Monitoring in Individuals with Diabetes using a Long-Term Implanted Sensor\/ Telemetry System and Model,\u201d IEEE Transactions on Biomedical Engineering, vol. 64, no.9, pp. 1982-1993, Sept. 2017.\r\n[12]\tM. S. Boyne, D. M. Silver, J. Kaplan, and C. D. Saudek, \u201cTiming of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,\u201d Diabetes, vol. 52, no. 11, pp. 2790-2794, 2003.\r\n[13]\tE. Cengiz and W. V. Tamborlane, \u201cA tale of two compartments: interstitial versus blood glucose monitoring,\u201d Diabetes Technology and Therapeutics, vol. 11, no. 1, pp. S-11-S-16, 2009.\r\n[14]\tN. S. Oliver, C. Toumazou, A. E. G. Cass, and D. G. Johnston, \u201cGlucose sensors: a review of current and emerging technology,\u201d Diabetic Medicine, vol. 26, no. 3, 2009, PMID: 19317813, pp. 197-210.\r\n[15]\tE. Kulcu, J. A. Tamada, G. Reach, R. O. Potts, and M. J. Lesho, \u201cPhysiological Differences Between Interstitial Glucose and Blood Glucose Measured in Human Subjects,\u201d Diabetes Care, vol. 26, no. 8, pp. 2405-2409, 2003.\r\n[16]\tJ. Shao, M. Lin, Y. Li, X. Li, J. Liu, J. Liang, et al., \u201cIn Vivo Blood Glucose Quantification Using Raman Spectroscopy,\u201d PLoS ONE, vol. 7, p. e48127, 2012.\r\n[17]\tE. Renard, J. Place, M. Cantwell, H. Chevassus, and C. C. Palerm, \u201cClosed-Loop Insulin Delivery Using a Subcutaneous Glucose Sensor and Intraperitoneal Insulin Delivery: Feasibility Study Testing a New Model for the Artificial Pancreas,\u201d Diabetes Care, vol. 33, no. 1, pp. 121-127, 2010.\r\n[18]\tD. Elleri, D. B. Dunger, and R. Hovorka, \u201cClosed-loop insulin delivery for treatment of type I diabetes,\u201d BMC Med, vol. 9, no. 9, p. 120, 2011.\r\n[19]\tL. Heinemann and G. Schmelzeisen-Redeker, \u201cNon-invasive continuous glucose monitoring in Type I diabetic patients with optical glucose sensors,\u201d Diabetologia, vol. 41, no. 7, pp. 848-854, 1998.\r\n[20]\tC.-F. So, K.-S. Choi, T. K. Wong, and J. W. Chung, \u201cRecent advances in noninvasive glucose monitoring,\u201d Medical Devices, Auckland, New Zealand, vol. 5, p. 45, 2012.\r\n[21]\tS. K. Vashist, \u201cNon-invasive glucose monitoring technology in diabetes management: a review,\u201d Journal of Analytical Chimica Acta, vol. 750, no. 0, pp. 16-27, 2012.\r\n[22]\tO. S. Khalil, \u201cSpectroscopic and Clinical Aspects of Noninvasive Glucose Measurements,\u201d Journal of Clinical Chemistry, vol. 45, no. 2, pp. 165-177, 1999.\r\n[23]\tY. Yamakoshi, M. Ogawa, T. Yamakoshi, M. Satoh, M. Nogawa, S. Tanaka, T. Tamura, P. Rolfe, and K. Yamakoshi, \u201cA New Non-invasive Method for Measuring Blood Glucose Using Instantaneous Differential Near Infrared Spectrophotometry,\u201d Proceedings of the 29th IEEE Annual International Conference of Engineering in Medicine and Biology Society, Lyon, France, August 23-26, 2007, pp. 2964-2967, doi: 10.1109\/IEMBS.2007.4352951.\r\n[24]\tM. H. Bhuyan, S. D. Monty and M. R. Z. Sarkar, \u201cDesign and Implementation of an NIR-Technique Based Non-Invasive Glucometer using Microcontroller,\u201d Journal of Bangladesh Electronics Society, ISSN: 1816-1510, vol. 19, no 1-2, June-December 2019, pp. 75-84.\r\n[25]\tM. Ogawa, Y. Yamakoshi, M. Satoh, M. Nogawa, T. Yamakoshi, S. Tanaka, P. Rolfe, T. Tamura, and K. Yamakoshi \u201cSupport vector machines as multivariate calibration model for prediction of blood glucose concentration using a new non-invasive optical method named Pulse Glucometry,\u201d Proceedings of the 29th IEEE Annual International Conference of Engineering in Medicine and Biology Society, Lyon, France, August 23-26, 2007, pp. 4561-4563.\r\n[26]\tR. M\u00fcller, M. Haertelt, J. Niemasz, K. Schwarz, V. Daumer, Y. V. Flores, R. Ostendorf, and R. Rehm, Thermoelectrically-Cooled InAs\/GaSb Type-II Superlattice Detectors as an Alternative to HgCdTe in a Real-Time Mid-Infrared Backscattering Spectroscopy System, Journal of Micromachines, vol. 11, 2020, article no. 1124, 14, pages; doi: 10.3390\/mi11121124.\r\n[27]\tA. Zhao, X. Tang, Z. Zhang and J. Liu, \u201cThe parameters optimization selection of Savitzky-Golay filter and its application in smoothing pretreatment for FTIR spectra,\u201d Proceedings of the 9th IEEE Conference on Industrial Electronics and Applications, 2014, pp. 516-521, doi: 10.1109\/ICIEA.2014.6931218.\r\n[28]\tK. Polat and S. G\u00fcne\u015f, \u201cAn expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease,\u201d Journal of Digital Signal Processing, ISSN 1051-2004, vol. 17, issue 4, 2007, pp. 702-710, https:\/\/doi.org\/10.1016\/j.dsp.2006.09.005.\r\n[29]\tD. Kim, I. K. Ilev and J. U. Kang, \u201cUsing Mid-Infrared Glucose Absorption Peak Changes for High-Precision Glucose Detection,\u201d LEOS IEEE LASERS and Electro-Optics Society Annual Meeting Conference Proceedings, 2007, pp. 226-227, doi: 10.1109\/LEOS.2007.4382359.\r\n[30]\tJ. L. Smith, \u201cThe Pursuit of Noninvasive Glucose: \u201cHunting the Deceitful Turkey\u201d,\u201d second edition, 2006, p. 44.\r\n[31]\tZ. Zhao and R. A. Myllyla, \u201cPhotoacoustic blood glucose and skin measurement based on optical scattering effect,\u201d in Proceeding of SPIE, Optical Technologies in Biophysics and Medicine III, vol. 4707, Saratov, Russia, July 16, 2002, pp. 153-157.\r\n[32]\tO. C. Kulkarni, P. Mandal, S. S. Das, and S. Banerjee, \u201cA Feasibility Study on Noninvasive Blood Glucose Measurement Using Photoacoustic Method,\u201d Proceedings of the IEEE 4th International Conference on Bioinformatics and Biomedical Engineering, Chegdu, June 18-20, 2010, pp. 1-4.\r\n[33]\tZ. Ren, G. Liu, and Z. Huang, \u201cNoninvasive detection of glucose level based on tunable pulsed laser induced photoacoustic technique,\u201d Proceedings of the SPIE International Symposium on Optoelectronic Technology and Application, vol. 9297, Dec. 3, 2014, pp. 929707-09.\r\n[34]\tC. E. F. do Amaral, \u201cMulti-parameter Methods for Non-invasive Measurement of Blood Glucose,\u201d PhD Thesis, Electrical Engineering and Information Technology Department, Technical University of Munich, Germany, 2008.\r\n[35]\tH. A. MacKenzie, H. S. Ashton, S. Spiers, Y. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, \u201cAdvances in photoacoustic noninvasive glucose testing,\u201d Journal of Clinical Chemistry, vol. 45, no. 9, pp. 1587-1595, 1999.\r\n[36]\tM. S. Chou, \u201cMethod and apparatus for noninvasive measurement of blood glucose by photoacoustics,\u201d United States Patent 6,049,728, April 11, 2000.\r\n[37]\tA. J. Berger, T.-W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, \u201cMulticomponent Blood Analysis by Near-Infrared Raman Spectroscopy,\u201d Applied Optics, vol. 38, no. 13, pp. 2916-2926, 1999.\r\n[38]\tM. Hunter, A. Enejder, T. Scecina, M. Feld, and W. C. Shih, \u201cRaman spectroscopy for non-invasive glucose measurements,\" United States Patent US 8,355,767 B2, January 15, 2013.\r\n[39]\tA. Ergin, M. Vilaboy, A. Tchouassi, R. Greene, and G. Thomas, \u201cDetection and analysis of glucose at metabolic concentration using Raman spectroscopy,\u201d Proceeding of the 29th IEEE Bioengineering Conference, March 22-23, 2003, pp. 337-338.\r\n[40]\tA. Ergin and G. Thomas, \u201cNoninvasive detection of glucose in porcine eyes,\u201d Proceedings of the 31st IEEE Bioengineering Conference, Northeast, April 2-3, 2005, pp. 246-247.\r\n[41]\tJ. L. Lambert and M. S. Borchert, \u201cNon-invasive glucose monitor,\u201d United States Patent US 6,424,850 B1, Jul 23, 2002.\r\n[42]\tE. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, \u201cProspects for in vivo Raman spectroscopy,\u201d Physics in Medicine and Biology, vol. 45, no. 2, p. R1, 2000.\r\n[43]\tJ. Popp, V. V. Tuchin, A. Chiou, and S. H. Heinemann, \u201cHandbook of Biophotonics,\u201d second edition, Wiley, 2011, p. 2.\r\n[44]\tD. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, \u201cOptical coherence tomography,\u201d Science, vol. 254, no. 5035, pp. 1178-81, 1991.\r\n[45]\tJ. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, \u201cOptical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,\u201d Neoplasia, New York, NY, USA, vol. 2, no. 1-2, p. 9, 2000.\r\n[46]\tR. He, H. Wei, H. Gu, Z. Zhu, Y. Zhang, X. Guo, T. Cai, \u201cEffects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study,\u201d SPIE Journal of Biomedical Optics, vol. 17, no. 10, p. 101513, October 2012.\r\n[47]\tK. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, \u201cSpecificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study,\u201d Physics in Medicine and Biology, vol. 48, no. 10, p. 1371, 2003.\r\n[48]\tM. J. Schurman and W. J. Shakespeare, \u201cMethod and apparatus for monitoring glucose levels in a biological tissue,\u201d United States Patent US 7,254,429 B2, August 7, 2007.\r\n[49]\tA. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, \u201cOptical coherence tomography: a review of clinical development from bench to bedside,\u201d SPIE Journal of Biomedical Optics, vol. 12, no. 5, p. 051403, 2007.\r\n[50]\tS. Vaddiraju, D. J. Burgess, I. Tomazos, F. C. Jain, and F. Papadimitrakopoulos, \u201cTechnologies for continuous glucose monitoring: current problems and future promises,\u201d Journal of Diabetes Science and Technology, vol. 4, no. 6, p. 1540, 2010.\r\n[51]\tX. Zhang, C. M. Ting, and J. H. Yeo, \"Finger temperature controller for non-invasive blood glucose measurement,\" in Proceeding of SPIE, Optics in Health Care and Biomedical Optics IV, vol 7845, Beijing, China, Oct 18, 2010, pp. 78452X-78452X-6.\r\n[52]\tO. K. Cho, Y. O. Kim, H. Mitsumaki, and K. Kuwa, \"Noninvasive measurement of glucose by metabolic heat conformation method,\" Clinical chemistry, vol. 50(10), pp. 1894-1898, 2004.\r\n[53]\tF. Tang, X. Wang, D. Wang, and J. Li, \"Non-Invasive Glucose Measurement by Use of Metabolic Heat Conformation Method,\" Sensors, vol. 8(5), pp. 3335-3344, 2008.\r\n[54]\tJ. B. Ko, O. K. Cho, Y. O. Kim, and K. Yasuda, \"Body metabolism provides a foundation for noninvasive blood glucose monitoring,\" Diabetes care, vol. 27(5), pp. 1211-1212, 2004.\r\n[55]\tZ.-C. Chen, X.-l. Jin, J.-m. Zhu, D.-y. Wang, and T.-t. Zhang, \"Non-invasive glucose measuring apparatus based on conservation of energy method,\" Journal of Central South University of Technology, vol. 16(6), pp. 982-986, 2009.\r\n[56]\tS. Mansouri and J. S. Schultz, \u201cA miniature optical glucose sensor based on affinity binding,\u201d Nature biotechnology, vol. 2, no. 10, pp. 885-890, 1984.\r\n[57]\tG. Eigner, P. I. Sas, and L. Kov\u00e1cs, \u201cContinuous glucose monitoring systems in the service of artificial pancreas,\u201d 9th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), Romania, May 15-17, 2014, pp. 117-122.\r\n[58]\tA. Tura, A. Maran, and G. Pacini, \u201cNon-invasive glucose monitoring: assessment of technologies and devices according to quantitative criteria,\u201d Diabetes Research on Clinical Practice, vol. 77, no. 1, pp. 16-40, 2007.\r\n[59]\tH. V. Hsieh, D. B. Sherman, S. A. Andaluz, T. J. Amiss, and J. B. Pitner, \u201cFluorescence resonance energy transfer glucose sensor from site-specific dual-labeling of glucose\/galactose binding protein using ligand protection,\u201d Journal of Diabetes Science and Technology, vol. 6, pp. 1286-1295, 2011.\r\n[60]\tW. S. Grundfest and M. Stavridi, \u201cGlucose fluorescence monitor and method,\u201d United States Patent US5341805 A, August 30, 1994.\r\n[61]\tA.-K. M. O. Ola, S. Abdalsalam, R. M. Abd-Alhadi, S. D. Alshmaa, \u201cDesign of Simple Noninvasive Glucose Measuring Device,\u201d Proceedings of the IEEE Conference on Computing, Electrical and Electronics Engineering, Khartoum, Sudan, August 26-28, 2013, pp. 216-219.\r\n[62]\tA. Shinde and R. Prasad, \u201cNon-Invasive Blood Glucose Measurement using NIR technique based on occlusion spectroscopy,\u201d International Journal of Engineering Science and Technology (IJEST), vol. 3, pp. 8325-8333, 2011.\r\n[63]\tI. Fine, \u201cNon-invasive method and system of optical measurements for determining the concentration of a substance in blood,\u201d United States Patent US 6,400,972 B1, June 4, 2002.\r\n[64]\tG. Talukdar, \u201cNon-Invasive Measurement of Glucose Content in Human Body: A Comparative Study,\u201d Proceeding of 2nd International Conference on Biomedical Engineering for Assistive Technologies, May 29, 2012, pp. 1-6.\r\n[65]\tD. Xiang, \u201cAdvances in Near-infrared Glucose Monitoring Using Pure Component Selectivity Analysis for Model Characterization and a Novel Digital Micromirror Array Spectrometer,\u201d PhD Thesis, The University of Iowa, USA, 2006.\r\n[66]\tA. K. Amerov, Y. Sun, M. A. Arnold, and G. W. Small, \u201cKromoscopic analysis in two- and three-component aqueous solutions of blood constituents,\u201d Proceeding of SPIE Conference on Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, vol. 4263, June 13, 2001, pp. 1-10.\r\n[67]\tL. A. Sodickson and M. J. Block, \u201cKromoscopic analysis: a possible alternative to spectroscopic analysis for noninvasive measurement of analytes in vivo,\u201d Clinical Chemistry, vol. 40, no. 19, pp. 1838-44, 1994.\r\n[68]\tM. J. Block, H. E. Guthermann, and L. Sodickson, \u201cRapid non-invasive optical analysis using broad bandpass spectral processing,\u201d United States Patent US6028311 A, February 22, 2000.\r\n[69]\tJ. Li, T. Igbe, Y. Liu, Z. Nie, W. Qin, L. Wang, and Y. Hao, \u201cAn Approach for Noninvasive Blood Glucose Monitoring Based on Bio-impedance Difference Considering Blood Volume Pulsation,\u201d IEEE Access, e-ISSN: 2169-3536vol. 6, pp. 51119-51129, 22 August 2018, doi: 10.1109\/ACCESS.2018.2866601.\r\n[70]\tS. Saha, H. C.-Garcia, I. Sotiriou, O. Lipscombe, I. Gouzouasis, M. Koutsoupidou, G. Palikaras, R. Mackenzie, T. Reeve, P. Kosmas, and E. Kallos, \u201cA Glucose Sensing System Based on Transmission Measurements at Millimetre Waves using Micro strip Patch Antennas,\u201d Scientific Reports, vol. 7, no. 1, doi: 10.1038\/s41598-017-06926-1.\r\n[71]\tV. Trugul, and I. Kale, \u201cCharacterization of the complex permittivity of glucose\/water solutions for noninvasive RF\/Microwave blood glucose sensing,\u201d Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC), May 2016, doi: 10.1109\/I2MTC.2016.7520546.\r\n[72]\tM. M. Nazarov, O. P. Cherkasova, and A. P. Shkurinov, \u201cStudy of dielectric function of acquaous solutions of glucose and albumin by THz time-domain spectroscopy,\u201d Journal of Quantum Electronics, vol. 46, pp. 488-495, 2016.\r\n[73]\tM. Baghelani, Z. Abbasi, M. Daneshmand, and P. E. Light, \u201cNon invasive continuous time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators,\u201d Scientific Reports, vol. 10, Article no. 12980, 2020, doi: 10.1038\/s41598-020-69547-1.\r\n[74]\tC. Lee and C. Yang, \u201cComplementary Split-Ring Resonators for Measuring Dielectric Constants and Loss Tangents,\u201d IEEE Microwave and Wireless Components Letters, vol. 24, no. 8, pp. 563-565, August 2014.\r\n[75]\tA. E. Omer, G. Shaker, S. S.-Naeini, G. Alqui\u00e9, F. Deshours, and H. Kokabi, \u201cTriple-Poles Complementary Split Ring Resonator for Sensing Diabetics Glucose Levels at cm-Band,\u201d August 2019.\r\n[76]\tA. E. Omer, G. Shaker, S. S.-Naeini, H. Kokabi, G. Alqui\u00e9, F. Deshours, and R. M. Shubair, \u201cLow-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration,\u201d Scientific Reports, vol. 10, Article number: 15200, 2020.\r\n[77]\tS. Afroz, S. W. Thomas, G. Mumcu, C. W. Locke, S. E. Saddow, \u201cA Biocompatible SiC RF Antenna for In-Vivo Sensing Applications,\u201d Proceedings of the IEEE Symposium of Materials Research Society, vol. 1433, 2012, doi: 10.1557\/opl.2012.1150.\r\n[78]\tS. Lee, V. Nayak, J. Dodds, M. Pishko, N. B. Smith, \u201cGlucose measurements with sensors and ultrasound,\u201d Journal of Ultrasound Medicine Biology, vol. 31, no. 7, pp. 971-977, 2005.\r\n[79]\tA. R. Sadrolhosseini, P. M. Nia, M. Naseri, A. Mohammadi, Y. W. Fen, S. Shafie, and H. M. Kamari, \u201cSurface Plasmon Resonance Sensor Based on Polypyrrole\u2013Chitosan\u2013BaFe2O4 Nanocomposite Layer to Detect the Sugar,\u201d Applied Sciences, vol. 10, 2020, Article no. 2855; doi: https:\/\/doi.org\/10.3390\/app10082855.\r\n[80]\tA. R. Sadrolhosseini, S. A. Rashid, N. Jamaluddin, A. S. M. Noor, and A. M. Isloor, \u201cSurface plasmon resonance sensor using polypyrrole-chitosan\/graphene quantum dots layer for detection of sugar,\u201d Materials Research Express, vol. 6, article no. 075028, 2019.\r\n[81]\tC. K. Huang, H. C. Chih, and C. D. Chin, \u201cInterferometric optical sensor for measuring glucose concentration,\u201d Applied Optics, vol. 42, 2003, pp. 5774-5776.\r\n[82]\tA. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, \u201cSensitivity and detection limit of concentration and adsorption measurements by laser-induced surface plasmon resonance,\u201d Applied Optics, vol. 36, 1997, pp. 6539-6547.\r\n[83]\tI. Abdulhalim, M. Zourob, and A. Lakhtakia, \u201cSurface plasmon resonance for biosensing: a mini-review,\u201d Electromagnetics Journal, vol. 28, 2008, pp. 214-242.\r\n[84]\tA. M. Shrivastav, U. Cvelbar, and I. A. Abdulhalim, \u201cComprehensive review on plasmonic-based biosensors used in viral diagnostics,\u201d Communication Biology, vol. 4, article no. 70, January 2021. https:\/\/doi.org\/10.1038\/s42003-020-01615-8.\r\n[85]\tK. Rebrin, G. M. Steil, W. P. Van Antwerp, and J. J. Mastrototaro, \u201cSubcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring,\u201d American Journal of Physiological-Endocrinol Metab, vol. 277, no. 3 Pt 1, 1999, E561-E571.\r\n[86]\tO. Amir, D. Weinstein, S. Zilberman, M. Less, D. Perl-Treves, H. Primack, A. Weinstein, E. Gabis, B. Fikhte, and A. Karasik, \u201cContinuous noninvasive glucose monitoring technology based on \"occlusion spectroscopy\",\u201d Journal of Diabetes Science and Technology, vol. 1, no. 4, July 2007, pp. 463-469, PMID: 19885108; PMCID: PMC2769638, doi: 10.1177\/193229680700100403.\r\n[87]\tN. A. B. A. Salam, W. H. bin M. Saad, Z. B. Manap, and F. Salehuddin, \u201cThe Evolution of Non-invasive Blood Glucose Monitoring System for Personal Application,\u201d Journal of Telecommunication, Electronics and Computational Engineering (JTEC), vol. 8, no. 1, 2016, pp. 59-65.\r\n[88]\tK-U. Jagemann, C. Fischbacher, K. Danzer, U. A. Mueller. and B. Mertes, \u201cApplication of near-infrared spectroscopy for non-invasive determination of blood\/tissue glucose using neural networks,\u201d Z F\u00fcr Physical Chemistry, vol. 191, 1995, pp. 179-190.\r\n[89]\tI. M. E. Wentholt, J. B. L. Hoekstra, A. Zwart, and J. H. DeVries, \u201cPendra goes Dutch: lessons for the CE mark in Europe,\u201d Diabetologia, vol. 48, no. 6, pp. 1055-1058.\r\n[90]\tC. F. So, K. S. Choi, T. K. S. Wong, and J. Chung, \u201cRecent advances in noninvasive glucose monitoring,\u201d Medical Devices, Auckland, vol. 5, 2012, pp. 45-52.\r\n[91]\tL. Tang, S. J. Chang, C. J. Chen, and J. T. Liu, \u201cNon-Invasive Blood Glucose Monitoring Technology: A Review,\u201d Sensors Journal, (Basel, Switzerland), vol. 20, no. 23, article no. 6925, 2020, doi: https:\/\/doi.org\/10.3390\/s20236925.\r\n[92]\tD. Bruen, C. Delaney, L. Florea, and D. Diamond, \u201cGlucose Sensing for Diabetes Monitoring: Recent Developments,\u201d Sensors Journal (Basel, Switzerland), vo. 17, no. 8, article no. 1866, 2017. https:\/\/doi.org\/10.3390\/s17081866.\r\n[93]\tK. S. Khadilkar, T. Bandgar, V. Shivane, A. Lila, and N. Shah, \u201cCurrent concepts in blood glucose monitoring,\u201d Indian Journal of Endocrinology and Metabolism, vol. 17, 2013. S643-S649, doi: 10.4103\/2230-8210.123556.\r\n[94]\tA. Gorst, K. Zavyalova, V. Yakubov, A. Mironchev and A. Zapasnoy, \u201cTheoretical Simulation of the Near-Field Probe for Non-Invasive Measurements on Planar Layers with Biological Characteristics,\u201d Bioengineering Journal, vol. 7, article no. 0149, 2020, pp. 1-16, doi:10.3390\/bioengineering7040149.\r\n[95]\tE.-Y. Park, J. Baik, H. Kim, S.-M. Park, and C. Kim, \u201cUltrasound-modulated optical glucose sensing using a 1645 nm laser,\u201d Scientific Reports, vol. 10, article no. 13361, 2020.\r\n[96]\tM. Baghelani, Z. Abbasi, M. Daneshmand, and P. E. Light, \u201cNon-invasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators,\u201d Scientific Reports, vol. 10, Article # 12980, 2020, https:\/\/doi.org\/10.1038\/s41598-020-69547-1.\r\n[97]\tS. Haxha and J. Jhoja, \u201cOptical Based Noninvasive Glucose Monitoring Sensor Prototype,\u201d IEEE Photonics Journal, vol. 8, no. 6, pp. 1-11, December 2016, article # 6805911, doi: 10.1109\/JPHOT.2016.2616491.\r\n[98]\tR. Kumari, P. N. Patel, and R. Yadav, \u201cAn ENG resonator-based microwave sensor for the characterization of aqueous glucose,\u201d Journal of Physics D: Applied Physics, vol. 51, no. 7, January 2018, p. 075601, doi: 10.1088\/1361-6463\/aaa5c5.\r\n[99]\tY. Zhao, S. Li, A. Davidson, B. Yang, Q. Wang, and Q. Lin, \u201cA MEMS viscometric sensor for continuous glucose monitoring, Journal of Micromechanics and Microengineering, IOP Publishing, vol. 17, 2007, pp. 2528-2537, doi:10.1088\/0960-1317\/17\/12\/020.\r\n[100]\tX. Huang, S. Li, D. Li, Q. Wang, and Q. Lin, \u201cA MEMS Dielectric Affinity Glucose Biosensor,\u201d Journal of Microelectromechanical Systems, vol. 23, no. 1, pp. 14-20, doi: 10.1109\/JMEMS.2013.2262603.\r\n[101]\tT. B. Chiddarwar and W. Patil, \u201cDesign of Sensitive MEMS Differential Dielectric Sensor for Glucose Measurement,\u201d International Journal of Computing and Technology (IJCT), vol. 1, issue 3, ISSN: 2348-6090, April 2014.\r\n[102]\tN. Samyuktha, P. Maneesha, B. R. Sreelakshmi, P. K. Pattnaik, and K. Narayan, \u201cApplication of MEMS based capacitive sensor for continuous monitoring of glucose,\u201d IEEE Region 10 Conference (TENCON 2015), Macao, China, pp. 1-4, doi: 10.1109\/TENCON.2015.7372771.\r\n[103]\tH. Gergeroglu, S. Yildirim, and M. F. Ebeoglugil, \u201cNano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60),\u201d SN Applied Sciences, vol. 2, article no. 603, March 2020. https:\/\/doi.org\/10.1007\/s42452-020-2404-1.\r\n[104]\tM. Sireesha, V. J. Babu, A. S. K. Kiranm, and S. Ramakrishna, \u201cA review on carbon nanotubes in biosensor devices and their applications in medicine,\u201d Journal of Nanocomposites, Taylor and Francis, vol. 4, no. 2, pp. 36-57, doi: 10.1080\/20550324.2018.1478765.\r\n[105]\tV. Turgul and I. Kale, \u201cPermittivity extraction of glucose solutions through artificial neural networks and non-invasive microwave glucose sensing,\u201d Sensors and Actuators A: Physical, vol. 277, July 2018, pp. 65-72, https:\/\/doi.org\/10.1016\/j.sna.2018.03.041.\r\n[106]\tA. Gorst, K. Zavyalova, A. Mironchev, A. Zapasnoy, and A, Klokov, \u201cSimulation and Experimental Study of the Near Field Probe in the Form of a Folded Dipole for Measuring Glucose Concentration,\u201d Applied Sciences, vol. 11, article # 5415, 2021, pages 19, doi: https:\/\/doi.org\/10.3390\/app11125415.\r\n[107]\tM. A. Arnold, \u201cNon-invasive glucose monitoring,\u201d Current Opinion in Biotechnology, vol. 7, no. 1, pp. 46-49, 1996.\r\n[108]\tJ. Nystrom, B. Lindholm-Sethson, L. Stenberg, S. Ollmar, J. W. Eriksson, and P. Geladi, \u201cCombined near-infrared spectroscopy and multi-frequency bio-impedance investigation of skin alterations in diabetes patients based on multivariate analyses,\u201d Journal of Medical and Biological Engineering and Computing, vol. 41, no. 3, pp. 324-329, 2003, https:\/\/doi.org\/10.1007\/BF02348438.\r\n[109]\tD. J. Cox, W. L. Clarke, L. Gonder-Frederick, S. Pohl, C. Hoover, A. Snyder, L. Zimbelman, W. R. Carter, S. Bobbitt, and J. Pennebaker, \u201cAccuracy of perceiving blood glucose in IDDM,\u201d Diabetes Care, vol. 8, no. 6, pp. 529-536, 1985, PMID: 4075939 doi: 10.2337\/diacare.8.6.529.\r\n[110]\tM. Gusev, L. Poposka, G. Spasevski, M. Kostoska, B. Koteska, M. Simjanoska, N. Ackovska, A. Stojmenski, J. Tasic, and J. Trontelj, \u201cNoninvasive Glucose Measurement Using Machine Learning and Neural Network Methods and Correlation with Heart Rate Variability,\u201d Journal of Sensors, Hindawi Publishing, vol. 2020, Article ID: 9628281, 13 pages, https:\/\/doi.org\/10.1155\/2020\/9628281.\r\n[111]\tZ. Zhang, \u201cA mathematical model for predicting glucose levels in critically-ill patients: the PIGnOLI model,\u201d PeerJ. 3:e1005, pages 11, June 9, 2015, doi: 10.7717\/peerj.1005.\r\n[112]\tV. Nademi, \u201cImproved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design,\u201d International Journal of Biomedical and Biological Engineering, vol. 12, no. 9, 2018, pp. 398-402.\r\n[113]\tM. Catalogna, E. Cohen, S. Fishman, Z. Halpern, U. Nevo, and E. Ben-Jacob, \u201cArtificial Neural Networks Based Controller for Glucose Monitoring during Clamp Test,\u201d PLOS ONE vol. 7, no. 8, August 2012, article no. e44587, doi: https:\/\/doi.org\/10.1371\/journal.pone.0044587.\r\n[114]\tP. Jain, A. M. Joshi, and S. P. Mohanty, \u201ciGLU: An Intelligent Device for Accurate Noninvasive Blood Glucose-Level Monitoring in Smart Healthcare,\u201d IEEE Consumer Electronics Magazine, vol. 9, no. 1, pp. 35-42, 1 January 2020, doi: 10.1109\/MCE.2019.2940855.\r\n[115]\tA. M. Joshi, P. Jain, S. P. Mohanty, and N. Agrawal, \u201ciGLU 2.0: A New Wearable for Accurate Non-Invasive Continuous Serum Glucose Measurement in IoMT Framework,\u201d IEEE Transactions on Consumer Electronics, vol. 66, no. 4, pp. 327-335, Nov. 2020, doi: 10.1109\/TCE.2020.3011966.\r\n[116]\tM. Islam, M. S. Ali, N. J. Shoumy, S. Khatun, M. S. A. Karim, and B. S. Bari, \u201cNon invasive blood glucose concentration level estimation accuracy using ultra wide band and artificial intelligence,\u201d SN Applied Sciences, Springer Nature Journal, Switzerland, vol. 20, article # 278, pages 9, 2020, doi: https:\/\/doi.org\/10.1007\/s42452-019-1884-3.\r\n[117]\tQ. Fang, and D. A. Boas, \u201cMonte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,\u201d Optics Express, OSA Publishing, vol. 17, no. 22, pp. 20178-20190, 2009, doi: https:\/\/doi.org\/10.1364\/OE.17.020178.\r\n[118]\tS. Yan, and Q. Fang, \u201cHybrid mesh and voxel based Monte Carlo algorithm for accurate and efficient photon transport modeling in complex bio-tissues,\u201d Biomedical Optics Express, OSA Publishing, vol. 11, no. 11, 2020, doi: 10.1364\/boe.409468.\r\n[119]\tM. Althobaiti and I. Al-Naib, \u201cOptimization of Dual-Channel Near-Infrared Non-Invasive Glucose Level Measurement Sensors Based on Monte-Carlo Simulations,\u201d IEEE Photonics Journal, vol. 13, no. 3, pp. 1-9, June 2021, article no. 3700109, doi: 10.1109\/JPHOT.2021.3079408.\r\n[120]\tB. Kapilevich and B. Litvak, \u201cOptimized Microwave Sensor for Online Concentration Measurements of Binary Liquid Mixtures,\u201d IEEE Sensors Journal, vol. 11, no. 10, pp. 2611-2616, October 2011, doi: 10.1109\/JSEN.2011.2149517.\r\n[121]\tB. Camli, E. Kusakci, B. Lafci, S. Salman, H. Torun and A. D. Yalcinkaya, \u201cCost-Effective, Microstrip Antenna Driven Ring Resonator Microwave Biosensor for Biospecific Detection of Glucose,\u201d IEEE Journal of Selected Topics in Quantum Electronics, vol. 23, no. 2, pp. 404-409, March-April 2017, Art no. 6900706, doi: 10.1109\/JSTQE.2017.2659226.\r\n[122]\tM. Koutsoupidou, H. Cano-Garcia, R. L. Pricci, S. C. Saha, G. Palikaras, E. Kallos and P. Kosmas, \u201cStudy and Suppression of Multipath Signals in a Non-Invasive Millimeter Wave Transmission Glucose Sensing System,\u201d IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 4, no. 3, pp. 187-193, September 2020, doi: 10.1109\/JERM.2019.2938876.\r\n[123]\tH. Choi J. Naylon, S. Luzio, J. Beutler, J. Birchall, C. Martin, and A. Porch, \u201cDesign and In Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor,\u201d IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 10, pp. 3016-3025, October 2015, doi: 10.1109\/TMTT.2015.2472019.\r\n[124]\tL. O. Bagio, \u201cFinite Element Modeling of Electrochemical Biosensors,\u201d MSc in EE Thesis, December 2018, California State University, Northridge, USA, URI: http:\/\/hdl.handle.net\/10211.3\/207848.\r\n[125]\tJ. Vrba, J. Karch, and D. Vrba, \u201cPhantoms for Development of Microwave Sensors for Noninvasive Blood Glucose Monitoring,\u201d International Journal of Antennas and Propagation, Hindawi Publishing Corporation, vol. 2015, article ID. 570870, 5 pages, doi: http:\/\/dx.doi.org\/10.1155\/2015\/570870.\r\n[126]\tJ. Karch, \u201cDielectric-properties measurements of glucose solutions and design of suitable measurement probe for noninvasive monitoring of blood glucose levels,\u201d MS Thesis, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic, 2014.\r\n[127]\tJ. Venkataraman and B. Freer, \u201cFeasibility of non-invasive blood glucose monitoring: In-vitro measurements and phantom models,\u201d IEEE International Symposium on Antennas and Propagation (APSURSI), WA, USA, 2011, pp. 603-606, doi: 10.1109\/APS.2011.5996782.\r\n[128]\tA. Kumar, C. Wang, F.-Y. Meng, Z.-L. Zhou, M. Zhao, G.-F. Yan, E.-S. Kim, and N.-Y. Kim, \u201cHigh-Sensitivity, Quantified, Linear and Mediator-Free Resonator-Based Microwave Biosensor for Glucose Detection,\u201d Sensors, vol. 20, article no. 4024, July 2020, 17 pages, doi: 10.3390\/s20144024.\r\n[129]\tM. S. Wr\u00f3bel, \u201cNon-invasive blood glucose monitoring with Raman spectroscopy: prospects for device miniaturization,\u201d 39th International Conference Microelectronics and Packaging (IMAPS), IOP Conference Series: Materials Science and Engineering, vol. 104, 2015, Poland, article no. 012036, doi:10.1088\/1757-899X\/104\/1\/012036.\r\n[130]\tS. P. Singh, S. Mukherjee, L. H. Galindo, P. T. C. So, R. R. Dasari, U. Z. Khan, R. Kannan, A. Upendran, and J. W. Kang, \u201cEvaluation of accuracy dependence of Raman spectroscopic models on the ratio of calibration and validation points for non-invasive glucose sensing,\u201d Analytical and Bioanalytical Chemistry, vol. 410, no. 4, July 2018, pp, 6469\u20136475, doi: https:\/\/doi.org\/10.1007\/s00216-018-1244-y.\r\n[131]\tJ. Kottmann, J. M. Rey, and M. W. Sigrist, \u201cMid-Infrared Photoacoustic Detection of Glucose in Human Skin: Towards Non-Invasive Diagnostics,\u201d Sensors, vol. 16, article no: 1663, 2016.\r\n[132]\tC. Jang, J.-K. Park, H.-J. Lee, G.-H. Yun, and J.-G. Yook, \u201cNon-Invasive Fluidic Glucose Detection Based on Dual Microwave Complementary Split Ring Resonators with a Switching Circuit for Environmental Effect Elimination,\u201d IEEE Sensors Journal, vol. 20, 2020, pp. 8520-8527.\r\n[133]\tS. A. Siddiqui, Y. Zhang, J. Lloret, H. Song, and Z. Obradovic, \u201cPain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects,\u201d IEEE Reviews in Biomedical Engineering, vol. 11, 2018, pp. 21-35.\r\n[134]\tF. Tang, X. Wang, D. Wang, and J. Li, \u201cNon-Invasive Glucose Measurement by Use of Metabolic Heat Conformation Method,\u201d Sensors Journal, vol. 8, no. 5, 2008, pp. 3335-3344, doi: https:\/\/doi.org\/10.3390\/s8053335.\r\n[135]\tO. K. Cho, Y. O. Kim, H. Mitsumaki, and K. Kuwa \u201cNoninvasive measurement of glucose by metabolic heat conformation method,\u201d Clinical Chemistry, vol. 50, no. 10, October 2004, pp. 1894-1898, doi: 10.1373\/clinchem.2004.036954. Epub 2004, Aug 12. PMID: 15308597.\r\n[136]\tT. Danne, R. Nimri, T. Battelino, R. M. Bergenstal, K. L. Close, J. H. DeVries, S. Garg, L. Heinemann, I. Hirsch, S. A. Amiel, R. Beck, E. Bosi et al., \u201cInternational Consensus on Use of Continuous Glucose Monitoring,\u201d Diabetes Care, vol. 40, no. 12, 2017, pp. 1631-1640, doi: https:\/\/doi.org\/10.2337\/dc17-1600.\r\n[137]\tF. Reiterer, P. Polterauer, M. Schoemaker, G. S.-Redecker, G. Freckmann, L. Heinemann, L. delRe, \u201cSignificance and Reliability of MARD for the Accuracy of CGM Systems,\u201d Journal of Diabetes Science and Technology, vol. 11, 2017, pp. 59\u201367.\r\n[138]\tT. S. Bailey, \u201cClinical Implications of Accuracy Measurements of Continuous Glucose Sensors,\u201d Diabetes Technology and Therapeutics, vol. 19, no. S2, May 2017, pp. S51-S54, doi:10.1089\/dia.2017.0050.\r\n[139]\tR. R. Chai amd T. Draxler, \u201cRoot Mean Square Error (RMSE) or Mean Absolute Error (MAE)? \u2013 Arguments Against Avoiding RMSE in the Literature,\u201d Geosci. Model Dev., vol. 7, 2014, pp. 1247-1250, https:\/\/doi.org\/10.5194\/gmd-7-1247-2014.\r\n[140]\tR. Pamungkas, A. Putrada, and M. Abdurohman, \u201cPerformance Improvement of Non Invasive Blood Glucose Measuring System With Near Infra-Red Using Artificial Neural Networks,\u201d Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, ISSN: 2503-2267, vol. 4, no. 4, November 2019, pp. 315-324, doi: http:\/\/dx.doi.org\/10.22219\/kinetik.v4i4.844.\r\n[141]\tS. A. Boren and W. L. Clarke, \u201cAnalytical and Clinical Performance of Blood Glucose Monitors,\u201d Journal of Diabetes Science and Technology, vol. 4, 2010, pp. 84-97.\r\n[142]\tD. C. Klonoff, C. Lias, R. Vigersky, W. Clarke, J. L. Parkes, D. B. Sacks, M. S. Kirkman, B. Kovatchev, \u201cThe Surveillance Error Grid,\u201d Journal of Diabetes Science and Technology, vol. 8, 2014, pp. 658-672.\r\n[143]\tD. C. Klonoff, \u201cThe Need for Clinical Accuracy Guidelines for Blood Glucose Monitors,\u201d Journal of Diabetes Science and Technology, vol. 6, 2012, pp.1-4.\r\n[144]\tW. L. Clarke, D. Cox, L. A. G.-Frederick, W. Carter, and S. L. Pohl, \u201cEvaluating clinical accuracy of systems for self-monitoring of blood glucose,\u201d Diabetes Care, vol. 10, 1987, pp. 622-628.\r\n[145]\tDiabetes Care uses Clarke Error Grid Analysis (EGA) Analysis: http:\/\/care.diabetesjournals.org\/cgi\/content\/abstract\/10\/5\/622?ijkey=959ce0073ff9f91dfd78630b4259267d96a9db0f&keytype2=tf_ipsecsha, accessed on 7 August 2021.\r\n[146]\tJ. L. Parkes, S. L. Slatin, S. Pardo, and B. H. Ginsberg, \u201cA new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose,\u201d Diabetes Care, vol. 23, no. 8, August 2000, pp. 1143-1148, https:\/\/doi.org\/10.2337\/diacare.23.8.1143.\r\n[147]\tISO Focus, The Magazine of the International Organization for Standardization, vol. 6, no. 2, February 2009, ISSN 1729-8709, p. 32.\r\n[148]\tInternational Organization for Standardization (ISO). Available online: https:\/\/www.iso.org, accessed on 28 August 2021.\r\n[149]\tN. Jendrike, A. Baumstark, U. Kamecke, C. Haug, and G. Freckmann, \u201cISO 15197: 2013 Evaluation of a Blood Glucose Monitoring System\u2019s Measurement Accuracy,\u201d Journal of Diabetes Science and Technology, vol. 11, no. 6, November 2017, pp. 1275-1276, PMCID: PMC5951056, PMID: 28849677, doi: https:\/\/doi.org\/10.1177\/1932296817727550.\r\n[150]\tA. Baumstark, C. Schmid, S. Pleus, D. Rittmeyer, C. Haug, and G. Freckmann, \u201cAccuracy Assessment of an Advanced Blood Glucose Monitoring System for Self-Testing With Three Reagent System Lots Following ISO 15197:2013,\u201d Journal of Diabetes Science and Technology, vol. 8, no. 6, August 7, 2014; pp. 1241-1242. doi:10.1177\/1932296814546529. \r\n[151]\tS. Pleus, A. Baumstark, N. Jendrike, J. Mende, M. Link, E. Zschornack, C. Haug, and G. Freckmann, \u201cSystem accuracy evaluation of 18 CE-marked current-generation blood glucose monitoring systems based on EN ISO 15197:2015,\u201d BMJ Open Diabetes Research and Care vol. 8, e001067, 2020; doi: 10.1136\/bmjdrc-2019-001067.\r\n[152]\tW. V. Gonzales, A. T. Mobashsher, and A. Abbosh, \u201cThe Progress of Glucose Monitoring\u2014A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors,\u201d Sensors, vol. 19, 2019, article no. 800, p. 9, doi: 10.3390\/s19040800.\r\n[153]\tInternational Organization for Standardization (ISO). ISO 15197:2013. In Vitro Diagnostic Test Systems\u2014Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus; International Organization for Standardization (ISO): Geneva, Switzerland, 2013.\r\n[154]\tG. Freckmann, A. Baumstark, N. Jendrike, D. Rittmeyer, S. Pleus, and C. Haug, \u201cAccuracy Evaluation of Four Blood Glucose Monitoring Systems in the Hands of Intended Users and Trained Personnel Based on ISO 15197 Requirements,\u201d Diabetes Technology and Therapeutics, vol. 19, 2017, pp. 246-254.\r\n[155]\tInternational Organization for Standardization (ISO). International Organization for Standardization (ISO). In vitro diagnostic test systems\u2014Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus (ISO 15197:2013). In EN ISO 15197:2015; International Organization for Standardization (ISO): Geneva, Switzerland, 2015.\r\n[156]\tG. Freckmann, C. Schmid, A. Baumstark, M. Rutschmann, C. Haug, and L. Heinemann, \u201cAnalytical Performance Requirements for Systems for Self-Monitoring of Blood Glucose with Focus on System Accuracy: Relevant Differences among ISO 15197:2003, ISO 15197:2013, and Current FDA Recommendations,\u201d Journal of Diabetes Science and Technology, vol. 9, 2015, pp. 885-894.\r\n[157]\tUS Food and Drug Administration (FDA). Blood Glucose Monitoring Test Systems for Prescription Point-of-Care Use; US Food and Drug Administration (FDA): Silver Spring, MD, USA, 2016.\r\n[158]\tUS Food and Drug Administration (FDA). Self-Monitoring Blood Glucose Test Systems for over-the-Counter Use; US Food and Drug Administration (FDA): Silver Spring, MD, USA, 2016.\r\n[159]\tEuropean Commission. In vitro Diagnostic Medical Devices. Online: http:\/\/ec.europa.eu\/growth\/single-market\/european-standards\/harmonised-standards\/iv-diagnostic-medical-devices\/#Note%202.1, accessed on 12 August 2021.\r\n[160]\tGovernment of Canada. New Requirements for Medical Device License Applications for Lancing Devices and Blood Glucose Monitoring Systems. Online: https:\/\/www.canada.ca\/en\/health-canada\/services\/ drugs-health-products\/medical-devices\/activities\/announcements\/notice-new-requirementsmedical-device-licence-applications-lancing-devices-blood-glucose-monitoring-systems.html, accessed on 12 August 2021.\r\n[161]\tAg\u00eancia Nacional de Vigil\u00e2ncia Sanit\u00e1ria (ANVISA). Instru\u00e7\u00e3o Normativa N\u00ba 24; Ag\u00eancia Nacional de Vigil\u00e2ncia Sanit\u00e1ria (ANVISA): Bras\u00edlia, Brazil, 2018.\r\n[162]\tChina Food & Drug Administration (CFDA). Glucometer Registration Technical Review Guidelines; Chemical Inspection and Regulation Service (CIRS): Beijing, China, 2016.\r\n[163]\tPharmaceuticals and Medical Devices Agency (PMDA). Handling of Self-Testing Blood Glucose Meters. Online: http:\/\/www.std.pmda.go.jp\/stdDB\/Data\/MDStd\/CerStd\/Notif\/K1100009_01_2016_en.pdf, accessed on 2 August 2021.\r\n[164]\tPharmaceuticals and Medical Devices Agency (PMDA). List of Certification Standards; Pharmaceuticals and Medical Devices Agency (PMDA): Tokyo, Japan, 2018.\r\n[165]\tDepartment of Therapeutic Goods Administration (TGA). Australian Regulatory Guidelines for Medical Devices (ARGMD). Online: https:\/\/www.tga.gov.au\/publication\/australian-regulatoryguidelines-medical-devices-argmd, accessed on 5 August 2021.\r\n[166]\tStandards Australia. ISO 15197:2013. Online: https:\/\/www.standards.org.au\/standardscatalogue\/international\/iso-slash-tc--212\/iso--15197-colon-2013, accessed on 5 August 2021.\r\n[167]\tDepartment of Therapeutic Goods Administration (TGA). Medical Devices Regulation: An Introduction. Online: http:\/\/www.tga.gov.au\/sme-assist\/medical-devices-regulation-introduction, accessed on 5 August 2021.\r\n[168]\tI. Harman-Boehm, A. Gal, A. M. Raykhman, E. Naidis, and Y. Mayzel \u201cNoninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors,\u201d Journal of Diabetes Science and Technology, vol. 4, no. 3, May 2010; pp. 583-595, doi: https:\/\/doi.org\/10.1177\/193229681000400312.\r\n[169]\tContinuous Blood Glucose Monitoring via a Fiber Optic Sensor, https:\/\/en.eyesense.com\/, accessed on 6 August 2021.\r\n[170]\tInvisible Eye Glucose Monitor Accurately Measures Sugar Levels, https:\/\/www.labiotech.eu\/more-news\/noviosense-glucose-monitor-diabetes\/, accessed on 6 August 2021.\r\n[171]\tA. E. Kownacka, D. Vegelyte, M. Joosse, N. Anton, B. J. Toebes, J. Lauko, I. Buzzacchera, K. Lipinska, D. A. Wilson, N. Geelhoed-Duijvestijn, and C. J. Wilson, \u201cClinical Evidence for Use of a Noninvasive Biosensor for Tear Glucose as an Alternative to Painful Finger-Prick for Diabetes Management Utilizing a Biopolymer Coating,\u201d Bio macromolecules, vol. 19, no. 11, 2018, pp. 4504-4511, ACS Publications, doi: 10.1021\/acs.biomac.8b01429.\r\n[172]\tGlucose Measurement System Skips the Finger Stab, https:\/\/healthtechinsider.com\/2021\/05\/04\/glucose-measurement-system-skips-the-finger-stab-video\/, accessed on 10 August 2021.\r\n[173]\tC8 Non-Invasive Optical Glucose Monitor System Cleared for Sale in Europe https:\/\/www.medgadget.com\/2012\/10\/c8-non-invasive-optical-glucose-monitor-system-cleared-for-sale-in-europe-video.html, accessed on 10 August 2021.\r\n[174]\tNon-invasive continuous blood glucose monitoring. Online: https:\/\/patents.google.com\/patent\/US5823966A\/en, accessed on 7 August 2021.\r\n[175]\tC. D. Malchoff, J. I. Landau, K. Shoukri, J. M. Buchert, \u201cA Novel Noninvasive Blood Glucose Monitor,\u201d Diabetes Care, vol. 25, no. 12, December 2002, pp. 2268-2275.\r\n[176]\tGlucose Monitor Uses LASER Sensor: Device could replace implants and frequent finger pricking for diabetics, report published in The International Society for Optics and Photonics (SPIE) on 01 October 2015. Online: https:\/\/spie.org\/news\/spie-professional-magazine-archive\/2015-october\/pbw-glucose-monitor-laser-sensor?SSO=1, accessed on 6 August 2021.\r\n[177]\tMeasure blood sugar with light. https:\/\/scienceinfo.net\/measure-blood-sugar-with-light.html, accessed on 7 August 2021.\r\n[178]\tHitachi Developing Non-Invasive Blood Sugar Monitoring Device- Proprietary Technologies would take the Pain and Hassle out of Measuring Blood Sugar Levels. Online: https:\/\/www.hitachi.com\/New\/cnews\/040223.html, accessed on 7 August 2021.\r\n[179]\tBiosensors Inc. Online: http:\/\/www.biosensors-tech.com\/technology.php, accessed on 7 August 2021.\r\n[180]\tR. Weiss, Y. Yegorchikov, A. Shusterman, and I. Raz, \u201cNoninvasive Continuous Glucose Monitoring Using Photoacoustic Technology\u2014Results from the First 62 Subjects,\u201d Diabetes Technology and Therapeutics, vol. 9, no. 1, February 2007, doi: https:\/\/doi.org\/10.1089\/dia.2006.0059.\r\n[181]\tGlucon: Blood Sugar Magic. Online: https:\/\/www.medgadget.com\/2005\/06\/glucon_blood_su.html, accessed on 7 August 2021.\r\n[182]\tWorld's first blood sampling-free (non-invasive) blood glucose sensor using advanced laser technology. Light Touch Technology (LTT), http:\/\/www.light-tt.co.jp\/product?lang=en, accessed on 7 August 2021.\r\n[183]\tESER G2 Mobile-Noninvasive Glucose Monitor. Online: http:\/\/www.eserdigital.com\/productform\/42-en.html, accessed on 7 August 2021.\r\n[184]\tMediWise. GlucoWise. Available online: http:\/\/www.gluco-wise.com\/, accessed on 6 August 2021.\r\n[185]\tS. Saha, H. Cano-Garcia, I. Sotiriou, O. Lipscombe, I. Gouzouasis, M. Koutsoupidou, G. Palikaras, R. Mackenzie, T. Reeve, P. Kosmas, and E. Kallos, \u201cA Glucose Sensing System Based on Transmission Measurements at Millimeter Waves using Micro strip Patch Antennas,\u201d Scientific Reports, vol. 7, no. 1, July 2017, Article 6855, p. 1-11, doi: 10.1038\/s41598-017-06926-1.\r\n[186]\tA. DeHennis, S. Tankiewicz, T. Whitehurst, Analyte Sensor. US Patent US 9,901,293 B2, 24 February 2015.\r\n[187]\tR. Z. Jafri, C. A. Balliro, F. El-Khatib, M. Maheno, M. A. Hillard, A. J. Donovan, R. Selagamsetty, H. U. I. Zheng, E. Damiano, S. J. Russell, \u201cA Three-Way Accuracy Comparison of the Dexcom G5, Abbott Freestyle Libre Pro, and Senseonics Eversense CGM Devices in an Outpatient Study of Subjects with Type 1 Diabetes,\u201d Diabetes, vol. 67, July 2018, doi: https:\/\/doi.org\/10.2337\/db18-14-OR.\r\n[188]\tSenseonics. Eversense User Guide. Online: https:\/\/www.ascensiadiabetes.com\/eversense\/eversense-cgm-system\/, accessed on 7 August 2021.\r\n[189]\tY. (J.) Segman, \u201cDevice and Method for Noninvasive Glucose Assessment,\u201d Journal of Diabetes Science and Technology, vol. 12, no. 6, 2018, pp. 1159-1168, doi: 10.1177\/1932296818763457.\r\n[190]\tMeasure blood sugar with light. https:\/\/scienceinfo.net\/measure-blood-sugar-with-light.html, accessed on 7 August 2021.\r\n[191]\tTech4Life Enterprises, Non-Invasive Glucometer, https:\/\/tech4lifeenterprises.com\/non-invasive-glucometer\/, accessed on 18 August 2021.\r\n[192]\tWorld Global Network (WGN), Helo Extense. https:\/\/website.worldgn.com\/heloextense\/, accessed on 15 August 2021.\r\n[193]\tNemaura Medical, SugarBEAT\u00ae Complete FDA Clinic Data file, \u201cA Prospective Single Centre Evaluation of the Accuracy and safety of the sugarBEAT\u00ae Non-invasive Continuous Glucose Monitor (CGM) System,\u201d 18 December 2018, European Clinical Program, https:\/\/nemauramedical.com\/publications\/, accessed on 5 August 2021.\r\n[194]\tE. Hadar, R. Chen, Y. Toledano, K. Tenenbaum-Gavish, Y. Atzmon, and M. Hod, \u201cNoninvasive, continuous, real-time glucose measurements compared to reference laboratory venous plasma glucose values,\u201d The Journal of Maternal-Fetal and Neonatal Medicine, vol. 32, no. 20, April 2018, pp. 3393-3400, doi: https:\/\/doi.org\/10.1080\/14767058.2018.1463987.\r\n[195]\thttps:\/\/nfb.org\/\/sites\/default\/files\/images\/nfb\/publications\/vod\/vod212\/vodspr0601.htm, accessed on 7 August 2021.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 182, 2022"}