CINXE.COM

Search results for: polymeric material

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: polymeric material</title> <meta name="description" content="Search results for: polymeric material"> <meta name="keywords" content="polymeric material"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="polymeric material" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="polymeric material"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6970</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: polymeric material</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6970</span> On Cold Roll Bonding of Polymeric Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Padhye">Nikhil Padhye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently a new phenomenon for bonding of polymeric films in solid-state, at ambient temperatures well below the glass transition temperature of the polymer, has been reported. This is achieved by bulk plastic compression of polymeric films held in contact. Here we analyze the process of cold-rolling of polymeric films via finite element simulations and illustrate a flexible and modular experimental rolling-apparatus that can achieve bonding of polymeric films through cold-rolling. Firstly, the classical theory of rolling a rigid-plastic thin-strip is utilized to estimate various deformation fields such as strain-rates, velocities, loads etc. in rolling the polymeric films at the specified feed-rates and desired levels of thickness-reduction(s). Predicted magnitudes of slow strain-rates, particularly at ambient temperatures during rolling, and moderate levels of plastic deformation (at which Bauschinger effect can be neglected for the particular class of polymeric materials studied here), greatly simplifies the task of material modeling and allows us to deploy a computationally efficient, yet accurate, finite deformation rate-independent elastic-plastic material behavior model (with inclusion of isotropic-hardening) for analyzing the rolling of these polymeric films. The interfacial behavior between the roller and polymer surfaces is modeled using Coulombic friction; consistent with the rate-independent behavior. The finite deformation elastic-plastic material behavior based on (i) the additive decomposition of stretching tensor (D = De + Dp, i.e. a hypoelastic formulation) with incrementally objective time integration and, (ii) multiplicative decomposition of deformation gradient (F = FeFp) into elastic and plastic parts, are programmed and carried out for cold-rolling within ABAQUS Explicit. Predictions from both the formulations, i.e., hypoelastic and multiplicative decomposition, exhibit a close match. We find that no specialized hyperlastic/visco-plastic model is required to describe the behavior of the blend of polymeric films, under the conditions described here, thereby speeding up the computation process . <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polymer%20Plasticity" title="Polymer Plasticity">Polymer Plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonding" title=" Bonding"> Bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=Deformation%20Induced%20Mobility" title=" Deformation Induced Mobility"> Deformation Induced Mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolling" title=" Rolling"> Rolling</a> </p> <a href="https://publications.waset.org/abstracts/123782/on-cold-roll-bonding-of-polymeric-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6969</span> Synthesis of Solid Polymeric Materials by Maghnite-H⁺ as a Green Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Draoua%20Zohra">Draoua Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Harrane%20Amine"> Harrane Amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Solid Polymeric Materials have been successfully prepared by the copolymerization of e-caprolactone (CL) and poly (ethylene glycol) (PEG) employing Maghnite-H+ at 80°C. Maghnite-H+ is a solid catalyst non-toxic. The presence of PEG chains leads to a break in the growth of PCL chains and consequently leads to the copolymer tri-block PCL-PEG-PCL. The objective of this study was to synthesize and characterize of Solid Polymeric Materials. The highly hydrophilic nature of polyethylene glycol has sparked our interest in developing a Solid Polymeric based e-caprolactone and poly (ethylene glycol). PCL and PEG are biocompatible materials. Their ring-opening copolymerization using Maghnite H+ makes to the Solid Polymeric Materials. The morphology and structure of Solid polymeric Materials were characterized by ¹H and ¹³C-NMR spectra and Gel Permeation Chromatography (GPC). This paper developed the application of Maghnite-H+ as an efficient catalyst by an easy-to-handle procedure to get solid polymeric materials. A cationic mechanism for the copolymerization reaction was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20copolymers" title="block copolymers">block copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maghnite" title=" maghnite"> maghnite</a>, <a href="https://publications.waset.org/abstracts/search?q=montmorillonite" title=" montmorillonite"> montmorillonite</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28e-caprolactone%29" title=" poly(e-caprolactone)"> poly(e-caprolactone)</a> </p> <a href="https://publications.waset.org/abstracts/97417/synthesis-of-solid-polymeric-materials-by-maghnite-h-as-a-green-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6968</span> Critical Investigation on Performance of Polymeric Materials in Rehabilitation of Metallic Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parastou%20Kharazmi">Parastou Kharazmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Failure and leakage of metallic components because of corrosion in infrastructure structures is a considerably problematic and expensive issue and the traditional solution of replacing the component is costly and time-consuming. Rehabilitation techniques by using advanced polymeric materials are an alternative solution towards this problem. This paper provides a summary of analyses on relined rehabilitated metallic samples after exposure in practice and real condition to study the composite material performance when it is exposed to water, heat and chemicals in real condition. The study was carried out by using different test methods such as microscopy, thermal and chemical as well as mechanical analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a> </p> <a href="https://publications.waset.org/abstracts/51886/critical-investigation-on-performance-of-polymeric-materials-in-rehabilitation-of-metallic-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6967</span> Renovation of Pipeline in Residential Buildings by Polymeric Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parastou%20Kharazmi">Parastou Kharazmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, rehabilitation methods for pipeline by advanced polymeric coating such as relining are reviewed. A number of diverse methods which are globally used are described and a brief summary of advances in technology, methods and materials is provided. The paper explains why it is claimed that sewerage rehabilitation with relining in residential buildings is environmentally friendly and economical, the importance of the quality control procedure is discussed and several quality tests are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=renovation" title=" renovation"> renovation</a> </p> <a href="https://publications.waset.org/abstracts/47709/renovation-of-pipeline-in-residential-buildings-by-polymeric-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6966</span> Investigation of the Material Behaviour of Polymeric Interlayers in Broken Laminated Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Botz">Martin Botz</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kraus"> Michael Kraus</a>, <a href="https://publications.waset.org/abstracts/search?q=Geralt%20Siebert"> Geralt Siebert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of laminated glass gains increasing importance in structural engineering. For safety reasons, at least two glass panes are laminated together with a polymeric interlayer. In case of breakage of one or all of the glass panes, the glass fragments are still connected to the interlayer due to adhesion forces and a certain residual load-bearing capacity is left in the system. Polymer interlayers used in the laminated glass show a viscoelastic material behavior, e.g. stresses and strains in the interlayer are dependent on load duration and temperature. In the intact stage only small strains appear in the interlayer, thus the material can be described in a linear way. In the broken stage, large strains can appear and a non-linear viscoelasticity material theory is necessary. Relaxation tests on two different types of polymeric interlayers are performed at different temperatures and strain amplitudes to determine the border to the non-linear material regime. Based on the small-scale specimen results further tests on broken laminated glass panes are conducted. So-called ‘through-crack-bending’ (TCB) tests are performed, in which the laminated glass has a defined crack pattern. The test set-up is realized in a way that one glass layer is still able to transfer compressive stresses but tensile stresses have to be transferred by the interlayer solely. The TCB-tests are also conducted under different temperatures but constant force (creep test). Aims of these experiments are to elaborate if the results of small-scale tests on the interlayer are transferable to a laminated glass system in the broken stage. In this study, limits of the applicability of linear-viscoelasticity are established in the context of two commercially available polymer-interlayers. Furthermore, it is shown that the results of small-scale tests agree to a certain degree to the results of the TCB large-scale experiments. In a future step, the results can be used to develop material models for the post breakage performance of laminated glass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20breakage" title="glass breakage">glass breakage</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20glass" title=" laminated glass"> laminated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20test" title=" relaxation test"> relaxation test</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelasticity" title=" viscoelasticity"> viscoelasticity</a> </p> <a href="https://publications.waset.org/abstracts/91312/investigation-of-the-material-behaviour-of-polymeric-interlayers-in-broken-laminated-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6965</span> Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Farahmand">Elham Farahmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Ibrahim"> Fatimah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Samira%20Hosseini"> Samira Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Djordjevic"> Ivan Djordjevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Leo.%20H.%20Koole"> Leo. H. Koole </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free- radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymethylmethacrylate-co-methacrylic%20acid%20%28PMMA-co-MAA%29" title="polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA)">polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA)</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20material" title=" polymeric material"> polymeric material</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20force%20microscopy" title=" atomic force microscopy"> atomic force microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylic%20functional%20groups" title=" carboxylic functional groups"> carboxylic functional groups</a> </p> <a href="https://publications.waset.org/abstracts/17120/development-of-a-new-polymeric-material-with-controlled-surface-micro-morphology-aimed-for-biosensors-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17120.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6964</span> NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mrudula">M. S. Mrudula</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Gopinathan%20Nair"> M. R. Gopinathan Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20copolymer" title="block copolymer">block copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chelating%20exchanger" title=" chelating exchanger"> chelating exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20study" title=" swelling study"> swelling study</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20complexes" title=" metal complexes"> metal complexes</a> </p> <a href="https://publications.waset.org/abstracts/5328/nrpeo-block-copolymer-a-chelating-exchanger-for-metal-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6963</span> Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Tajau">R. Tajau</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rohani"> R. Rohani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Alias"> M. S. Alias</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Mudri"> N. H. Mudri</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Abdul%20Halim"> K. A. Abdul Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Harun"> M. H. Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Mat%20Isa"> N. Mat Isa</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Che%20Ismail"> R. Che Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Muhammad%20Faisal"> S. Muhammad Faisal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Talib"> M. Talib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Mohamed%20Zin"> M. R. Mohamed Zin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title="palm oil">palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20processing" title=" radiation processing"> radiation processing</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coatings" title=" surface coatings"> surface coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=VOC" title=" VOC"> VOC</a> </p> <a href="https://publications.waset.org/abstracts/137696/sustainable-radiation-curable-palm-oil-based-products-for-advanced-materials-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6962</span> Influence of Nanomaterials on the Properties of Shape Memory Polymeric Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katielly%20Vianna%20Polkowski">Katielly Vianna Polkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Denizarte%20de%20Oliveira%20Polkowski"> Rodrigo Denizarte de Oliveira Polkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Grings%20Herbert"> Cristiano Grings Herbert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of nanomaterials in the formulation of polymeric materials modifies their molecular structure, offering an infinite range of possibilities for the development of smart products, being of great importance for science and contemporary industry. Shape memory polymers are generally lightweight, have high shape recovery capabilities, they are easy to process and have properties that can be adapted for a variety of applications. Shape memory materials are active materials that have attracted attention due to their superior damping properties when compared to conventional structural materials. The development of methodologies capable of preparing new materials, which use graphene in their structure, represents technological innovation that transforms low-cost products into advanced materials with high added value. To obtain an improvement in the shape memory effect (SME) of polymeric materials, it is possible to use graphene in its composition containing low concentration by mass of graphene nanoplatelets (GNP), graphene oxide (GO) or other functionalized graphene, via different mixture process. As a result, there was an improvement in the SME, regarding the increase in the values of maximum strain. In addition, the use of graphene contributes to obtaining nanocomposites with superior electrical properties, greater crystallinity, as well as resistance to material degradation. The methodology used in the research is Systematic Review, scientific investigation, gathering relevant studies on influence of nanomaterials on the properties of shape memory polymeric, using the literature database as a source and study methods. In the present study, a systematic reviewwas performed of all papers published from 2014 to 2022 regarding graphene and shape memory polymeric througha search of three databases. This study allows for easy identification of themost relevant fields of study with respect to graphene and shape memory polymeric, as well as the main gaps to beexplored in the literature. The addition of graphene showed improvements in obtaining higher values of maximum deformation of the material, attributed to a possible slip between stacked or agglomerated nanostructures, as well as an increase in stiffness due to the increase in the degree of phase separation that results in a greater amount physical cross-links, referring to the formation of shortrange rigid domains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory" title=" shape memory"> shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20materials" title=" smart materials"> smart materials</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/157621/influence-of-nanomaterials-on-the-properties-of-shape-memory-polymeric-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6961</span> Environmentally Friendly Palm Oil-Based Polymeric Plasticiser for Poly (Vinyl Chloride)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Zahidah%20Rozaki">Nur Zahidah Rozaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Desmond%20Ang%20Teck%20Chye"> Desmond Ang Teck Chye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environment-friendly polymeric plasticisers for poly(vinyl chloride), PVC were synthesised using palm oil as the main raw material. The synthesis comprised of 2 steps: (i) transesterification of palm oil, followed by (ii) polycondensation between the products of transesterification with diacids. The synthesis involves four different formulations to produce plasticisers with different average molecular weight. Chemical structures of the plasticiser were studied using FTIR (Fourier-Transformed Infra-Red) and 1H-NMR (Proton-Nuclear Magnetic Resonance).The molecular weights of these palm oil-based polymers were obtained using GPC (Gel Permeation Chromatography). PVC was plasticised with the polymeric plasticisers through solvent casting technique using tetrahydrofuran, THF as the mutual solvent. Some of the tests conducted to evaluate the effectiveness of the plasticiser in the PVC film including thermal stability test using thermogravimetric analyser (TGA), differential scanning calorimetry (DSC) analysis to determine the glass transition temperature, Tg, and mechanical test to determine tensile strength, modulus and elongation at break of plasticised PVC using standard test method ASTM D882. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkyd" title="alkyd">alkyd</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil" title=" palm oil"> palm oil</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticiser" title=" plasticiser"> plasticiser</a>, <a href="https://publications.waset.org/abstracts/search?q=pvc" title=" pvc"> pvc</a> </p> <a href="https://publications.waset.org/abstracts/32724/environmentally-friendly-palm-oil-based-polymeric-plasticiser-for-poly-vinyl-chloride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6960</span> Highly Selective Polymeric Fluorescence Sensor for Cd(II) Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20Cubuk">Soner Cubuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozge%20Yilmaz"> Ozge Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ece%20Kok%20Yetimoglu"> Ece Kok Yetimoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vezir%20Kahraman"> M. Vezir Kahraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a polymer based highly selective fluorescence sensor membrane was prepared by the photopolymerization technique for the determination Cd(II) ion. Sensor characteristics such as effects of pH, response time and foreign ions on the fluorescence intensity of the sensor were also studied. Under optimized conditions, the polymeric sensor shows a rapid, stable and linear response for 4.45x10-⁹ mol L-¹ - 4.45x10-⁸ mol L-¹ Cd(II) ion with the detection limit of 6.23x10-¹⁰ mol L-¹. In addition, sensor membrane was selective which is not affected by common foreign metal ions. The concentrations of the foreign ions such as Pb²+, Co²+, Ag+, Zn²+, Cu²+, Cr³+ are 1000-fold higher than Cd(II) ions. Moreover, the developed polymeric sensor was successfully applied to the determination of cadmium ions in food and water samples. This work was supported by Marmara University, Commission of Scientific Research Project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%28II%29" title="cadmium(II)">cadmium(II)</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photopolymerization" title=" photopolymerization"> photopolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20sensor" title=" polymeric sensor"> polymeric sensor</a> </p> <a href="https://publications.waset.org/abstracts/65360/highly-selective-polymeric-fluorescence-sensor-for-cdii-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6959</span> Phase Changing Dicationic Polymeric Ionic Liquid with CO2 Capture Abilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Sundararajan">Swati Sundararajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Asit%20B.%20Samui"> Asit B. Samui</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashant%20S.%20Kulkarni"> Prashant S. Kulkarni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric ionic liquids combine the properties of ionic liquids and polymers into a single material which has gained massive interest in the recent years. These ionic liquids offer several advantages such as high phase change enthalpy, wide temperature range, chemical and thermal stability, non-volatility and the ability to make them task-specific. Separation of CO2 is an area of critical importance due to the concerns over greenhouse gasses leading to global warming. Thermal energy storage materials, also known as phase change materials absorb latent heat during fusion process and release the absorbed energy to the surrounding environment during crystallization. These materials retain this property over a number of cycles and therefore, are useful for bridging the gap between energy requirement and use. In an effort to develop materials, which will help in minimizing the growing energy demand and environmental concerns, a series of dicationic poly(ethylene glycol) based polymeric ionic liquids were synthesized. One part of an acrylate of poly(ethylene glycol) was reacted with imidazolium quarternizing agent and the second part was reacted with triazolium quarternizing agent. These two different monomers were then copolymerized to prepare dicationic polymeric ionic liquid. These materials were characterized for solid-liquid phase transition and the enthalpy by using differential scanning calorimetry. The CO2 capture studies were performed on a fabricated setup with varying pressure range from 1-20 atm. The findings regarding the prepared materials, having potential dual applications in the fields of thermal energy storage and CO2 capture, will be discussed in the presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title="CO2 capture">CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20glycol" title=" polyethylene glycol"> polyethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20ionic%20liquids" title=" polymeric ionic liquids"> polymeric ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a> </p> <a href="https://publications.waset.org/abstracts/63224/phase-changing-dicationic-polymeric-ionic-liquid-with-co2-capture-abilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6958</span> Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Koul">S. Koul</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Adedamola"> Joshua Adedamola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICP" title="ICP">ICP</a>, <a href="https://publications.waset.org/abstracts/search?q=dopant" title=" dopant"> dopant</a>, <a href="https://publications.waset.org/abstracts/search?q=EMI" title=" EMI"> EMI</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding" title=" shielding"> shielding</a> </p> <a href="https://publications.waset.org/abstracts/164742/intrinsically-dual-doped-conductive-polymer-system-for-electromagnetic-shielding-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6957</span> Biodegradable Polymeric Composites of Polylactide and Epoxidized Natural Rubber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masek%20A.">Masek A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Diakowska%20K."> Diakowska K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaborski%20M."> Zaborski M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric materials have found their use almost in every branch of industry worldwide. Most of them constitute so-called “petropolymers" obtained from crude oil. However literature information sounds a warning that its global sources are running out. Thus, it seems that one should search for polymeric materials from renewable raw materials belonging to the group of green polymers. Therefore on account of environmental protection and the issue of sustainable technologies, nowadays greater and greater achievements have been observed in the field of green technology using engineering sciences to develop composite materials. The main aim of this study was to research what is the influence of biofillers on the properties. We used biofillers like : cellulose with different length of fiber, cellulose UFC100, silica and montmorillonite. In our research, we reported on biodegradable composites exhibitingspecificity properties by melt blending of polylactide (PLA), one of the commercially available biodegradable material, and epoxidized natural rubber (ENR) containing 50 mol.%epoxy group. Blending hydrophilic natural polymers and aliphatic polyesters is of significant interest, since it could lead to the development of a new range of biodegradable polymeric materials. We research the degradation of composites on the basis epoxidized natural rubber and poly(lactide). The addition of biofillers caused far-reaching degradation processes. The greatest resistance to biodegradation showed a montmorillonite-based mixtures, the smallest inflated cellulose fibers of varying length.The final aim in the present study is to use ENR and poly(lactide) to design composite from renewable resources with controlled degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20resources" title="renewable resources">renewable resources</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolymer" title=" biopolymer"> biopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=polylactide" title=" polylactide"> polylactide</a> </p> <a href="https://publications.waset.org/abstracts/16425/biodegradable-polymeric-composites-of-polylactide-and-epoxidized-natural-rubber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6956</span> A Bayesian Parameter Identification Method for Thermorheological Complex Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Anton%20Kraus">Michael Anton Kraus</a>, <a href="https://publications.waset.org/abstracts/search?q=Miriam%20Schuster"> Miriam Schuster</a>, <a href="https://publications.waset.org/abstracts/search?q=Geralt%20Siebert"> Geralt Siebert</a>, <a href="https://publications.waset.org/abstracts/search?q=Jens%20Schneider"> Jens Schneider</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymers increasingly gained interest in construction materials over the last years in civil engineering applications. As polymeric materials typically show time- and temperature dependent material behavior, which is accounted for in the context of the theory of linear viscoelasticity. Within the context of this paper, the authors show, that some polymeric interlayers for laminated glass can not be considered as thermorheologically simple as they do not follow a simple TTSP, thus a methodology of identifying the thermorheologically complex constitutive bahavioir is needed. ‘Dynamical-Mechanical-Thermal-Analysis’ (DMTA) in tensile and shear mode as well as ‘Differential Scanning Caliometry’ (DSC) tests are carried out on the interlayer material ‘Ethylene-vinyl acetate’ (EVA). A navoel Bayesian framework for the Master Curving Process as well as the detection and parameter identification of the TTSPs along with their associated Prony-series is derived and applied to the EVA material data. To our best knowledge, this is the first time, an uncertainty quantification of the Prony-series in a Bayesian context is shown. Within this paper, we could successfully apply the derived Bayesian methodology to the EVA material data to gather meaningful Master Curves and TTSPs. Uncertainties occurring in this process can be well quantified. We found, that EVA needs two TTSPs with two associated Generalized Maxwell Models. As the methodology is kept general, the derived framework could be also applied to other thermorheologically complex polymers for parameter identification purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20parameter%20identification" title="bayesian parameter identification">bayesian parameter identification</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20Maxwell%20model" title=" generalized Maxwell model"> generalized Maxwell model</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20viscoelasticity" title=" linear viscoelasticity"> linear viscoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermorheological%20complex" title=" thermorheological complex "> thermorheological complex </a> </p> <a href="https://publications.waset.org/abstracts/93017/a-bayesian-parameter-identification-method-for-thermorheological-complex-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6955</span> Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pravat%20Ranjan%20Pati">Pravat Ranjan Pati</a>, <a href="https://publications.waset.org/abstracts/search?q=Alok%20Satapathy"> Alok Satapathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=glass-epoxy%20composites" title=" glass-epoxy composites"> glass-epoxy composites</a>, <a href="https://publications.waset.org/abstracts/search?q=LD%20slag" title=" LD slag"> LD slag</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20utilization" title=" waste utilization "> waste utilization </a> </p> <a href="https://publications.waset.org/abstracts/9085/processing-and-characterization-of-glass-epoxy-composites-filled-with-linz-donawitz-ld-slag" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6954</span> Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20AbdelRazek">E. M. AbdelRazek</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20ElBahy"> G. S. ElBahy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Allam"> M. A. Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Abdelghany"> A. M. Abdelghany</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Hezma"> A. M. Hezma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title="biocomposite">biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20synthesis" title=" chemical synthesis"> chemical synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20spectroscopy" title=" infrared spectroscopy"> infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/4210/cellulose-acetatepolyacrylic-acid-filled-with-nano-hydroxapatite-composites-spectroscopic-studies-and-search-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6953</span> Experimental Investigation on the Fire Performance of Corrugated Sandwich Panels made from Renewable Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avishek%20Chanda">Avishek Chanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Nam%20Kyeun%20Kim"> Nam Kyeun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Debes%20Bhattacharyya"> Debes Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of renewable substitutes in various semi-structural and structural applications has experienced an increase since the last few decades. Sandwich panels have been used for many decades, although research on understanding the effects of the core structures on the panels&rsquo; fire-reaction properties is limited. The current work investigates the fire-performance of a corrugated sandwich panel made from renewable, biodegradable, and sustainable material, plywood. The bench-scale fire testing apparatus, cone-calorimeter, was employed to evaluate the required fire-reaction properties of the sandwich core in a panel configuration, with three corrugated layers glued together with face-sheets under a heat irradiance of 50 kW/m<sup>2</sup>. The study helped in documenting a unique heat release trend associated with the fire performance of the 3-layered corrugated sandwich panels and in understanding the structural stability of the samples in the event of a fire. Furthermore, the total peak heat release rate was observed to be around 421 kW/m<sup>2</sup>, which is significantly low compared to many polymeric materials in the literature. The total smoke production was also perceived to be very limited compared to other structural materials, and the total heat release was also nominal. The time to ignition of 21.7 s further outlined the advantages of using the plywood component since polymeric composites, even with flame-retardant additives, tend to ignite faster. Overall, the corrugated plywood sandwich panels had significant fire-reaction properties and could have important structural applications. The possible use of structural panels made from bio-degradable material opens a new avenue for the use of similar structures in sandwich panel preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrugated%20sandwich%20panel" title="corrugated sandwich panel">corrugated sandwich panel</a>, <a href="https://publications.waset.org/abstracts/search?q=fire-reaction%20properties" title=" fire-reaction properties"> fire-reaction properties</a>, <a href="https://publications.waset.org/abstracts/search?q=plywood" title=" plywood"> plywood</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20material" title=" renewable material"> renewable material</a> </p> <a href="https://publications.waset.org/abstracts/132693/experimental-investigation-on-the-fire-performance-of-corrugated-sandwich-panels-made-from-renewable-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6952</span> Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Yazdanpanah%20Moghadam">Ehsan Yazdanpanah Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 &micro;l/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 &micro;l/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title="microfluidic">microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=microresonator" title=" microresonator"> microresonator</a> </p> <a href="https://publications.waset.org/abstracts/81819/increase-of-sensitivity-in-3d-suspended-polymeric-microfluidic-platform-through-lateral-misalignment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6951</span> Fabrication of Highly-Ordered Interconnected Porous Polymeric Particles and Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Alroaithi">Mohammad Alroaithi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porous polymeric materials have attracted a great attention due to their distinctive porous structure within a polymer matrix. They are characterised by the presence of external pores on the surface as well as inner interconnected windows. Conventional techniques to produce porous polymeric materials encounters major challenge in controlling the properties of the resultant structures including morphology, pores, cavities size, and porosity. Herein, we present a facile and versatile microfluidics technique for the fabrication of uniform porous polymeric structures with highly ordered and well-defined interconnected windows. The shapes of the porous structures can either be a microparticles or foam. Both shapes used microfluidics platform to first produce monodisperse emulsion. The uniform emulsions, were then consolidated into porous structures through UV photopolymerisation. The morphology, pores, cavities size, and porosity of the structures can be precisely manipulated by the flowrate. The proposed strategy might provide a key advantage for fabrication of uniform porous materials over many existing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20particles" title=" porous particles"> porous particles</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structures" title=" porous structures"> porous structures</a> </p> <a href="https://publications.waset.org/abstracts/84709/fabrication-of-highly-ordered-interconnected-porous-polymeric-particles-and-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6950</span> Nonlinear Pollution Modelling for Polymeric Outdoor Insulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahisham%20Abd%20Rahman">Rahisham Abd Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a nonlinear pollution model has been proposed to compute electric field distribution over the polymeric insulator surface under wet contaminated conditions. A 2D axial-symmetric insulator geometry, energized with 11kV was developed and analysed using Finite Element Method (FEM). A field-dependent conductivity with simplified assumptions was established to characterize the electrical properties of the pollution layer. Comparative field studies showed that simulation of dynamic pollution model results in a more realistic field profile, offering better understanding on how the electric field behaves under wet polluted conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20distributions" title="electric field distributions">electric field distributions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution%20layer" title=" pollution layer"> pollution layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20model" title=" dynamic model"> dynamic model</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20outdoor%20insulators" title=" polymeric outdoor insulators"> polymeric outdoor insulators</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a> </p> <a href="https://publications.waset.org/abstracts/29392/nonlinear-pollution-modelling-for-polymeric-outdoor-insulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6949</span> Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Tadevosyan">A. H. Tadevosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Mayrapetyan"> S. K. Mayrapetyan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20B.%20Tavakalyan"> N. B. Tavakalyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20I.%20Pyuskyulyan"> K. I. Pyuskyulyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Hovsepyan"> A. H. Hovsepyan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Sergeeva"> S. N. Sergeeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media–plant due to counter ions variation in the polymeric sorbents. As the research object, Japanese basil-Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media–plant system as well as accumulation in the plants has been cleared up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioceaseum" title="radioceaseum">radioceaseum</a>, <a href="https://publications.waset.org/abstracts/search?q=Japanese%20basil" title=" Japanese basil"> Japanese basil</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-plant%20system" title=" soil-plant system"> soil-plant system</a> </p> <a href="https://publications.waset.org/abstracts/7057/regulation-of-transfer-of-137cs-by-polymeric-sorbents-for-grow-ecologically-sound-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6948</span> Effect of Gamma Radiation on Bromophenol Blue Dyed Films as Dosimeter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20R.%20Oberoi">Priyanka R. Oberoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20B.%20Maurya"> Chandra B. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20A.%20Mahanwar"> Prakash A. Mahanwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ionizing radiation can cause a drastic change in the physical and chemical properties of the material exposed. Numerous medical devices are sterilized by ionizing radiation. In the current research paper, an attempt was made to develop precise and inexpensive polymeric film dosimeter which can be used for controlling radiation dosage. Polymeric film containing (pH sensitive dye) indicator dye Bromophenol blue (BPB) was casted to check the effect of Gamma radiation on its optical and physical properties. The film was exposed to gamma radiation at 4 kGy/hr in the range of 0 to 300 kGy at an interval of 50 kGy. Release of vinyl acetate from an emulsion on high radiation reacts with the BPB fading the color of the film from blue to light blue and then finally colorless, indicating a change in pH from basic to acidic form. The change was characterized by using CIE l*a*b*, ultra-violet spectroscopy and FT-IR respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bromophenol%20blue" title="bromophenol blue">bromophenol blue</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimeter" title=" dosimeter"> dosimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a> </p> <a href="https://publications.waset.org/abstracts/55840/effect-of-gamma-radiation-on-bromophenol-blue-dyed-films-as-dosimeter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6947</span> Study of the Physical Aging of Polyvinyl Chloride (PVC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ouazene">Mohamed Ouazene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The insulating properties of the polymers are widely used in electrical engineering for the production of insulators and various supports, as well as for the insulation of electric cables for medium and high voltage, etc. These polymeric materials have significant advantages both technically and economically. However, although the insulation with polymeric materials has advantages, there are also certain disadvantages such as the influence of the heat which can have a detrimental effect on these materials. Polyvinyl chloride (PVC) is one of the polymers used in a plasticized state in the cable insulation to medium and high voltage. The studied material is polyvinyl chloride (PVC 4000 M) from the Algerian national oil company whose formula is: Industrial PVC 4000 M is in the form of white powder. The test sample is a pastille of 1 mm thick and 1 cm in diameter. The consequences of increasing the temperature of a polymer are modifications; some of them are reversible and others irreversible [1]. The reversible changes do not affect the chemical composition of the polymer, or its structure. They are characterized by transitions and relaxations. The glass transition temperature is an important feature of a polymer. Physical aging of PVC is to maintain the material for a longer or shorter time to its glass transition temperature. The aim of this paper is to study this phenomenon by the method of thermally stimulated depolarization currents. Relaxations within the polymer have been recorded in the form of current peaks. We have found that the intensity decreases for more residence time in the polymer along its glass transition temperature. Furthermore, it is inferred from this work that the phenomenon of physical aging can have important consequences on the properties of the polymer. It leads to a more compact rearrangement of the material and a reconstruction or reinforcement of structural connections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depolarization%20currents" title="depolarization currents">depolarization currents</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20aging" title=" physical aging"> physical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20chloride%20%28PVC%29" title=" polyvinyl chloride (PVC)"> polyvinyl chloride (PVC)</a> </p> <a href="https://publications.waset.org/abstracts/19336/study-of-the-physical-aging-of-polyvinyl-chloride-pvc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6946</span> The Effect of Enzymatic Keratin Hydrolysate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Tshela%20Ntumba">Y. H. Tshela Ntumba</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Przepi%C3%B3rkowska"> A. Przepiórkowska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Procho%C5%84"> M. Prochoń</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching. The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20mat" title="agricultural mat">agricultural mat</a>, <a href="https://publications.waset.org/abstracts/search?q=biodecomposition" title=" biodecomposition"> biodecomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=carboxylated%20butadiene-styrene%20latex" title=" carboxylated butadiene-styrene latex"> carboxylated butadiene-styrene latex</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosic-elastomeric%20material" title=" cellulosic-elastomeric material"> cellulosic-elastomeric material</a>, <a href="https://publications.waset.org/abstracts/search?q=keratin%20hydrolyzate" title=" keratin hydrolyzate"> keratin hydrolyzate</a>, <a href="https://publications.waset.org/abstracts/search?q=mulching" title=" mulching"> mulching</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20hydrolyzate" title=" protein hydrolyzate"> protein hydrolyzate</a> </p> <a href="https://publications.waset.org/abstracts/10015/the-effect-of-enzymatic-keratin-hydrolysate-on-the-susceptibility-of-cellulosic-elastomeric-material-to-biodecomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6945</span> Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Grigoraviciute-Puroniene">I. Grigoraviciute-Puroniene</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Tsuru"> K. Tsuru</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Garskaite"> E. Garskaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Stankeviciute"> Z. Stankeviciute</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Beganskiene"> A. Beganskiene</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ishikawa"> K. Ishikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kareiva"> A. Kareiva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tricalcium phosphate (&beta;-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, &beta;-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 &deg;C, the crystalline &beta;-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of &beta;-TCP. The SEM results showed that &beta;-TCP solids were homogeneous having a small particle size distribution. The &beta;-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated &beta;-TCP specimens were placed to the bones of the rats and maintained for 1-2 months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tricalcium%20phosphate%20%28%CE%B2-Ca3%28PO4%292" title="Tricalcium phosphate (β-Ca3(PO4)2">Tricalcium phosphate (β-Ca3(PO4)2</a>, <a href="https://publications.waset.org/abstracts/search?q=bone%20regeneration" title=" bone regeneration"> bone regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20chemical%20processing" title=" wet chemical processing"> wet chemical processing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20precipitation" title=" polymeric precipitation"> polymeric precipitation</a> </p> <a href="https://publications.waset.org/abstracts/69402/wet-polymeric-precipitation-synthesis-for-monophasic-tricalcium-phosphate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6944</span> Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Levitsky">S. Levitsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20propagation" title="sound propagation">sound propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20bubbles" title=" gas bubbles"> gas bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20liquid" title=" polymeric liquid"> polymeric liquid</a> </p> <a href="https://publications.waset.org/abstracts/28205/liquid-temperature-effect-on-sound-propagation-in-polymeric-solution-with-gas-bubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6943</span> Hansen Solubility Parameter from Surface Measurements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neveen%20AlQasas">Neveen AlQasas</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Johnson"> Daniel Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membranes for water treatment are an established technology that attracts great attention due to its simplicity and cost effectiveness. However, membranes in operation suffer from the adverse effect of membrane fouling. Bio-fouling is a phenomenon that occurs at the water-membrane interface, and is a dynamic process that is initiated by the adsorption of dissolved organic material, including biomacromolecules, on the membrane surface. After initiation, attachment of microorganisms occurs, followed by biofilm growth. The biofilm blocks the pores of the membrane and consequently results in reducing the water flux. Moreover, the presence of a fouling layer can have a substantial impact on the membrane separation properties. Understanding the mechanism of the initiation phase of biofouling is a key point in eliminating the biofouling on membrane surfaces. The adhesion and attachment of different fouling materials is affected by the surface properties of the membrane materials. Therefore, surface properties of different polymeric materials had been studied in terms of their surface energies and Hansen solubility parameters (HSP). The difference between the combined HSP parameters (HSP distance) allows prediction of the affinity of two materials to each other. The possibilities of measuring the HSP of different polymer films via surface measurements, such as contact angle has been thoroughly investigated. Knowing the HSP of a membrane material and the HSP of a specific foulant, facilitate the estimation of the HSP distance between the two, and therefore the strength of attachment to the surface. Contact angle measurements using fourteen different solvents on five different polymeric films were carried out using the sessile drop method. Solvents were ranked as good or bad solvents using different ranking method and ranking was used to calculate the HSP of each polymeric film. Results clearly indicate the absence of a direct relation between contact angle values of each film and the HSP distance between each polymer film and the solvents used. Therefore, estimating HSP via contact angle alone is not sufficient. However, it was found if the surface tensions and viscosities of the used solvents are taken in to the account in the analysis of the contact angle values, a prediction of the HSP from contact angle measurements is possible. This was carried out via training of a neural network model. The trained neural network model has three inputs, contact angle value, surface tension and viscosity of solvent used. The model is able to predict the HSP distance between the used solvent and the tested polymer (material). The HSP distance prediction is further used to estimate the total and individual HSP parameters of each tested material. The results showed an accuracy of about 90% for all the five studied films <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20characterization" title="surface characterization">surface characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=hansen%20solubility%20parameter%20estimation" title=" hansen solubility parameter estimation"> hansen solubility parameter estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle%20measurements" title=" contact angle measurements"> contact angle measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20model" title=" artificial neural network model"> artificial neural network model</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20measurements" title=" surface measurements"> surface measurements</a> </p> <a href="https://publications.waset.org/abstracts/161801/hansen-solubility-parameter-from-surface-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6942</span> Recycled Waste Glass Powder as a Partial Cement Replacement in Polymer-Modified Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikol%20%C5%BDi%C5%BEkov%C3%A1">Nikol Žižková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to observe the behavior of&nbsp;polymer-modified cement mortars with regard to the use of&nbsp;a&nbsp;pozzolanic admixture. Polymer-modified mortars (PMMs) containing various types of waste glass (waste packing glass and fluorescent tube glass) were produced always with 20% of cement substituted with a pozzolanic-active material. Ethylene/vinyl acetate copolymer (EVA) was used for polymeric modification. The findings confirm the possibility of using the waste glass examined herein as a&nbsp;partial substitute for cement in the production of PMM, which contributes to the preservation of non-renewable raw material resources and to the efficiency of waste glass material reuse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20waste%20glass" title="recycled waste glass">recycled waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-modified%20mortars" title=" polymer-modified mortars"> polymer-modified mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20admixture" title=" pozzolanic admixture"> pozzolanic admixture</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%2Fvinyl%20acetate%20copolymer" title=" ethylene/vinyl acetate copolymer"> ethylene/vinyl acetate copolymer</a> </p> <a href="https://publications.waset.org/abstracts/58596/recycled-waste-glass-powder-as-a-partial-cement-replacement-in-polymer-modified-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6941</span> Analysis of Solvent Effect on the Mechanical Properties of Poly(Ether Ether Ketone) Using Nano-Indentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Iqbal">Tanveer Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Saima%20Yasin"> Saima Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Zafar"> Muhammad Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shakeel"> Ahmad Shakeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Nazir"> Fahad Nazir</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20F.%20Luckham"> Paul F. Luckham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contact performance of polymeric composites is dependent on the localized mechanical properties of materials. This is particularly important for fiber oriented polymeric materials where self-lubrication from top layers has been the basic requirement. The nanoindentation response of fiber reinforced poly(etheretherketone), PEEK, composites have been evaluated to determine the near-surface mechanical characteristics. Load-displacement compliance, hardness and elastic modulus data based on contact compliance mode (CSM) indentation of carbon fiber oriented and glass fiber oriented PEEK composites are reported as a function of indentation contact displacement. The composite surfaces were indented to a maximum penetration depth of 5µm using Berkovich tip indenter. A typical multiphase response of the composite surface is depicted from analysis of the indentation data for the composites, showing presence of polymer matrix, fibers, and interphase regions. The observed experimental results show that although the surface mechanical properties of carbon fiber based PEEK composite were comparatively higher, the properties of matrix material were seen to be increased in the presence of glass fibers. The experimental methodology may provide a convenient means to understand morphological description of the multimodal polymeric composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=PEEK" title=" PEEK"> PEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus" title=" modulus"> modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticization" title=" plasticization"> plasticization</a> </p> <a href="https://publications.waset.org/abstracts/78722/analysis-of-solvent-effect-on-the-mechanical-properties-of-polyether-ether-ketone-using-nano-indentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=232">232</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=233">233</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=polymeric%20material&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10