CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 297 results for author: <span class="mathjax">Hughes, J P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Hughes, J P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Hughes%2C+J+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Hughes, J P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14404">arXiv:2410.14404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14404">pdf</a>, <a href="https://arxiv.org/format/2410.14404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: a census of bridges between galaxy clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Isopi%2C+G">G. Isopi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capalbo%2C+V">V. Capalbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">A. D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">E. Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cui%2C+W">W. Cui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">W. R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Petris%2C+M">M. De Petris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dolag%2C+K">K. Dolag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fabjan%2C+D">D. Fabjan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferragamo%2C+A">A. Ferragamo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">A. S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Y. Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">M. Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">K. Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">J. Orlowski-Scherer</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14404v1-abstract-short" style="display: inline;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing&#39;, resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web&#39;&#39;, a network of large scale dark matter filaments. Various studies have detected this i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14404v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14404v1-abstract-full" style="display: none;"> According to CMB measurements, baryonic matter constitutes about $5\%$ of the mass-energy density of the universe. A significant population of these baryons, for a long time referred to as `missing&#39;, resides in a low density, warm-hot intergalactic medium (WHIM) outside galaxy clusters, tracing the ``cosmic web&#39;&#39;, a network of large scale dark matter filaments. Various studies have detected this inter-cluster gas, both by stacking and by observing individual filaments in compact, massive systems. In this paper, we study short filaments (&lt; 10 Mpc) connecting massive clusters ($M_{500} \approx 3\times 10^{14} M_{\odot}$) detected by the Atacama Cosmology Telescope (ACT) using the scattering of CMB light off the ionised gas, a phenomenon known as the thermal Sunyaev-Zeldovich (tSZ) effect. The first part of this work is a search for suitable candidates for high resolution follow-up tSZ observations. We identify four cluster pairs with an intercluster signal above the noise floor (S/N $&gt;$ 2), including two with a tentative $&gt;2蟽$ statistical significance for an intercluster bridge from the ACT data alone. In the second part of this work, starting from the same cluster sample, we directly stack on ${\sim}100$ cluster pairs and observe an excess SZ signal between the stacked clusters of $y=(7.2^{+2.3}_{-2.5})\times 10^{-7}$ with a significance of $3.3蟽$. It is the first tSZ measurement of hot gas between clusters in this range of masses at moderate redshift ($\langle z\rangle\approx 0.5$). We compare this to the signal from simulated cluster pairs with similar redshifts and separations in the THE300 and MAGNETICUM Pathfinder cosmological simulations and find broad consistency. Additionally, we show that our measurement is consistent with scaling relations between filament parameters and mass of the embedded halos identified in simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14404v1-abstract-full').style.display = 'none'; document.getElementById('2410.14404v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 17 images</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 85A40 (Primary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04156">arXiv:2403.04156</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04156">pdf</a>, <a href="https://arxiv.org/format/2403.04156">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Destratification in the Progenitor Interior of the Mg-rich Supernova Remnant N49B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsunaga%2C+K">Kai Matsunaga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sawada%2C+R">Ryo Sawada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takahashi%2C+K">Koh Takahashi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suwa%2C+Y">Yudai Suwa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narita%2C+T">Takuto Narita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umeda%2C+H">Hideyuki Umeda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04156v1-abstract-short" style="display: inline;"> Simulations of pre-supernova evolution suggest that some intense shell burning can be so active that, in extreme cases, it can merge with the outer shell, changing the initial conditions for the supernova explosion. However, such violent activity in the interior of stars has been difficult to confirm from observations of stars. Here we propose that the elemental composition of O-rich ejecta in sup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04156v1-abstract-full').style.display = 'inline'; document.getElementById('2403.04156v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04156v1-abstract-full" style="display: none;"> Simulations of pre-supernova evolution suggest that some intense shell burning can be so active that, in extreme cases, it can merge with the outer shell, changing the initial conditions for the supernova explosion. However, such violent activity in the interior of stars has been difficult to confirm from observations of stars. Here we propose that the elemental composition of O-rich ejecta in supernova remnants can be a tool to test for this kind of intense shell burning activity in the final stages of progenitor evolution. As an example, we discuss the origin of &#34;Mg-rich&#34; ejecta in the supernova remnant N49B. A high Mg/Ne mass ratio $\gtrsim 1$ suggests that the Ne- or O-burning shell has broken into or merged with the outer shell before the collapse. Such Mg-rich (or Ne-poor) ejecta has been identified in some other supernova remnants, supporting the idea that some destratification process, such as a shell merger, does indeed occur in the interiors of some massive stars, although they may not be the majority. Our results suggest that X-ray observations of O-rich ejecta in core-collapse supernova remnants will be a unique tool to probe the shell burning activity during the final stage of a massive star&#39;s interior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04156v1-abstract-full').style.display = 'none'; document.getElementById('2403.04156v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ and received positive peer review. This is the version in the first submission. 11 pages, 7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17957">arXiv:2402.17957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17957">pdf</a>, <a href="https://arxiv.org/format/2402.17957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Missing Titanium in the Asymmetric Supernova Remnant W49B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sawada%2C+M">Makoto Sawada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+K">Keiichi Maeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+B+J">Brian J. Williams</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17957v1-abstract-short" style="display: inline;"> The progenitor of the W49B supernova remnant is still under debate. One of the candidates is a jet-driven core-collapse supernova. In such a highly asymmetric explosion, a strong $伪$-rich freezeout is expected in local high entropy regions, which should enrich elements synthesized by the capture of $伪$-particles such as $^{44}$Ti and $^{48}$Cr (decaying to $^{44}$Ca and $^{48}$Ti, respectively). I&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17957v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17957v1-abstract-full" style="display: none;"> The progenitor of the W49B supernova remnant is still under debate. One of the candidates is a jet-driven core-collapse supernova. In such a highly asymmetric explosion, a strong $伪$-rich freezeout is expected in local high entropy regions, which should enrich elements synthesized by the capture of $伪$-particles such as $^{44}$Ti and $^{48}$Cr (decaying to $^{44}$Ca and $^{48}$Ti, respectively). In the present work, in order to infer the progenitor of the W49B remnant, we constrain the amount of stable Ti ($^{48}$Ti) synthesized, using the {\it Suzaku} observation. We found no firm evidence for the Ti line and set the upper limit of $M_{\rm Ti}/M_{\rm Fe} &lt; 8.2 \times$ 10$^{-4}$ (99\% limit using Xspec) and $M_{\rm Ti}/M_{\rm Fe} &lt; 1.9 \times$ 10$^{-3}$ (99\% limit using SPEX), and thus excluded almost all hypernova/jet-driven supernova models. Our results, as complemented by some previous studies, suggest that a Type Ia supernova from a near-$M_{\rm Ch}$ (Chandrasekhar mass) white dwarf is the most favorable candidate for the origin of W49B. Future observations with X-ray calorimeter missions, such as XRISM, will give us a stronger constraint on the progenitor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17957v1-abstract-full').style.display = 'none'; document.getElementById('2402.17957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ, 7 pages, 3 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.06120">arXiv:2310.06120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.06120">pdf</a>, <a href="https://arxiv.org/format/2310.06120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348213">10.1051/0004-6361/202348213 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XLSSC 122 caught in the act of growing up: Spatially resolved SZ observations of a z=1.98 galaxy cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">L. Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A+S">A. S. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">E. S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">M. J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doze%2C+P">P. Doze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">J. Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knowles%2C+K">K. Knowles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A">A. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">K. Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">B. Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+G">G. Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">S. T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">E. J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.06120v3-abstract-short" style="display: inline;"> How protoclusters evolved from sparse galaxy overdensities to mature galaxy clusters is still not well understood. In this context, detecting and characterizing the hot ICM at high redshifts (z~2) is key to understanding how the continuous accretion from and mergers along the filamentary large-scale structure impact the first phases of cluster formation. We study the dynamical state and morphology&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06120v3-abstract-full').style.display = 'inline'; document.getElementById('2310.06120v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.06120v3-abstract-full" style="display: none;"> How protoclusters evolved from sparse galaxy overdensities to mature galaxy clusters is still not well understood. In this context, detecting and characterizing the hot ICM at high redshifts (z~2) is key to understanding how the continuous accretion from and mergers along the filamentary large-scale structure impact the first phases of cluster formation. We study the dynamical state and morphology of the z=1.98 galaxy cluster XLSSC 122 with high-resolution observations (~5&#34;) of the ICM through the SZ effect. Via Bayesian forward modeling, we map the ICM on scales from the virial radius down to the core of the cluster. To constrain such a broad range of spatial scales, we employ a new technique that jointly forward-models parametric descriptions of the pressure distribution to interferometric ACA and ALMA observations and multi-band imaging data from the 6-m, single-dish Atacama Cosmology Telescope. We detect the SZ effect with $11蟽$ in the ALMA+ACA observations and find a flattened inner pressure profile that is consistent with a non-cool core classification with a significance of $&gt;3蟽$. In contrast to the previous works, we find better agreement between the SZ effect signal and the X-ray emission as well as the cluster member distribution. Further, XLSSC 122 exhibits an excess of SZ flux in the south of the cluster where no X-ray emission is detected. By reconstructing the interferometric observations and modeling in the uv-plane, we obtain a tentative detection of an infalling group or filamentary-like structure that is believed to boost and heat up the ICM while the density of the gas is low. In addition, we provide an improved SZ mass of $M_{500,\mathrm{c}} = 1.66^{+0.23}_{-0.20} \times 10^{14} \rm M_\odot$. Altogether, the observations indicate that we see XLSSC 122 in a dynamic phase of cluster formation while a large reservoir of gas is already thermalized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.06120v3-abstract-full').style.display = 'none'; document.getElementById('2310.06120v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 689, A41 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12450">arXiv:2308.12450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12450">pdf</a>, <a href="https://arxiv.org/format/2308.12450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad2c0d">10.3847/1538-4357/ad2c0d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ground-based and JWST Observations of SN 2022pul: II. Evidence from Nebular Spectroscopy for a Violent Merger in a Peculiar Type-Ia Supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kwok%2C+L+A">Lindsey A. Kwok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+M+R">Matthew R. Siebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J">Joel Johansson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jha%2C+S+W">Saurabh W. Jha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blondin%2C+S">Stephane Blondin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dessart%2C+L">Luc Dessart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foley%2C+R+J">Ryan J. Foley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hillier%2C+D+J">D. John Hillier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larison%2C+C">Conor Larison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pakmor%2C+R">Ruediger Pakmor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Temim%2C+T">Tea Temim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrews%2C+J+E">Jennifer E. Andrews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badenes%2C+C">Carles Badenes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barna%2C+B">Barnabas Barna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bostroem%2C+K+A">K. Azalee Bostroem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Newman%2C+M+J+B">Max J. Brenner Newman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustamante-Rosell%2C+M+J">Maria Jose Bustamante-Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camacho-Neves%2C+Y">Yssavo Camacho-Neves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clocchiatti%2C+A">Alejandro Clocchiatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulter%2C+D+A">David A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+K+W">Kyle W. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deckers%2C+M">Maxime Deckers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dimitriadis%2C+G">Georgios Dimitriadis</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12450v2-abstract-short" style="display: inline;"> We present an analysis of ground-based and JWST observations of SN~2022pul, a peculiar &#34;03fg-like&#34; (or &#34;super-Chandrasekhar&#34;) Type Ia supernova (SN Ia), in the nebular phase at 338d post explosion. Our combined spectrum continuously covers 0.4--14 $渭$m and includes the first mid-infrared spectrum of an 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12450v2-abstract-full').style.display = 'inline'; document.getElementById('2308.12450v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12450v2-abstract-full" style="display: none;"> We present an analysis of ground-based and JWST observations of SN~2022pul, a peculiar &#34;03fg-like&#34; (or &#34;super-Chandrasekhar&#34;) Type Ia supernova (SN Ia), in the nebular phase at 338d post explosion. Our combined spectrum continuously covers 0.4--14 $渭$m and includes the first mid-infrared spectrum of an 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. Strong, broad, centrally peaked [Ne II] line at 12.81 $渭$m was previously predicted as a hallmark of &#34;violent merger&#39;&#39; SN Ia models, where dynamical interaction between two sub-$M_{ch}$ white dwarfs (WDs) causes disruption of the lower mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the ejecta to better reproduce the optical iron emission, and add mass in the innermost region ($&lt; 2000$ km s$^{-1}$) to account for the observed narrow [O I]~$位\lambda6300$, 6364 emission. A violent WD-WD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SN Ia. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12450v2-abstract-full').style.display = 'none'; document.getElementById('2308.12450v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, published in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 966, Issue 1, id.135, 18 pp., May 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12449">arXiv:2308.12449</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.12449">pdf</a>, <a href="https://arxiv.org/format/2308.12449">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Ground-based and JWST Observations of SN 2022pul: I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Siebert%2C+M+R">Matthew R. Siebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kwok%2C+L+A">Lindsey A. Kwok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J">Joel Johansson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jha%2C+S+W">Saurabh W. Jha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blondin%2C+S">St茅phane Blondin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dessart%2C+L">Luc Dessart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foley%2C+R+J">Ryan J. Foley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hillier%2C+D+J">D. John Hillier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larison%2C+C">Conor Larison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pakmor%2C+R">R眉diger Pakmor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Temim%2C+T">Tea Temim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrews%2C+J+E">Jennifer E. Andrews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badenes%2C+C">Carles Badenes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barna%2C+B">Barnabas Barna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bostroem%2C+K+A">K. Azalee Bostroem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Newman%2C+M+J+B">Max J. Brenner Newman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bustamante-Rosell%2C+M+J">Mar铆a Jos茅 Bustamante-Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camacho-Neves%2C+Y">Yssavo Camacho-Neves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clocchiatti%2C+A">Alejandro Clocchiatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coulter%2C+D+A">David A. Coulter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+K+W">Kyle W. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deckers%2C+M">Maxime Deckers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dimitriadis%2C+G">Georgios Dimitriadis</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12449v1-abstract-short" style="display: inline;"> Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground-based and space-based follow-up campaign to characterize SN 2022pul, a &#34;super-Chandrasekhar&#34; mass SN Ia (alternatively &#34;03fg-like&#34; S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12449v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12449v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12449v1-abstract-full" style="display: none;"> Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground-based and space-based follow-up campaign to characterize SN 2022pul, a &#34;super-Chandrasekhar&#34; mass SN Ia (alternatively &#34;03fg-like&#34; SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbon-oxygen rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity ($M_{B}=-18.9$ mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak $B$-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O I] $位位6300,\ 6364$ (${\rm FWHM} \approx 2{,}000$ km s$^{-1}$), strong, broad emission from [Ca II] $位位7291,\ 7323$ (${\rm FWHM} \approx 7{,}300$ km s$^{-1}$), and a rapid Fe III to Fe II ionization change. Finally, we present the first-ever optical-to-mid-infrared (MIR) nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with $T \approx 500$ K), combined with prominent [O I] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within carbon/oxygen-rich CSM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12449v1-abstract-full').style.display = 'none'; document.getElementById('2308.12449v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 11 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.03606">arXiv:2307.03606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.03606">pdf</a>, <a href="https://arxiv.org/format/2307.03606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Examining Neutrino-Matter Interactions in the Cassiopeia A Supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoshida%2C+T">Takashi Yoshida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umeda%2C+H">Hideyuki Umeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+K">Keiichi Maeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagataki%2C+S">Shigehiro Nagataki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+B+J">Brian J. Williams</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.03606v1-abstract-short" style="display: inline;"> Neutrino interactions with stellar material are widely believed to be fundamental to the explosion of massive stars. However, this important process has remained difficult to confirm observationally. We propose a new method to verify it using X-ray observations of the supernova remnant Cassiopeia A. The elemental composition in its Fe-rich ejecta that could have been produced at the innermost regi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03606v1-abstract-full').style.display = 'inline'; document.getElementById('2307.03606v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.03606v1-abstract-full" style="display: none;"> Neutrino interactions with stellar material are widely believed to be fundamental to the explosion of massive stars. However, this important process has remained difficult to confirm observationally. We propose a new method to verify it using X-ray observations of the supernova remnant Cassiopeia A. The elemental composition in its Fe-rich ejecta that could have been produced at the innermost region of the supernova, where neutrinos are expected to interact, allows us to examine the presence of neutrino interactions. Here we demonstrate that the amount of Mn produced without neutrino nucleosynthesis processes (i.e., the $谓$- and $谓$p-process) is too small to explain the Mn/Fe mass ratio we measure (0.14--0.67\%). This result supports the operation of significant neutrino interactions in the Cassiopeia A supernova. If the observed Mn/Fe mass ratio purely reflects the production at the innermost region of the supernova, this would be the first robust confirmation of neutrino-matter interactions in an individual supernova. We further show that the Mn/Fe mass ratio has the potential to constrain supernova neutrino parameters (i.e., total neutrino luminosity, neutrino temperature). Future spatially-resolved, high-resolution X-ray spectroscopy will allow us to investigate the details of neutrino-supernova astrophysics through its signatures in elemental composition not only in Cassiopeia A but also in other remnants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.03606v1-abstract-full').style.display = 'none'; document.getElementById('2307.03606v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures. Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01258">arXiv:2307.01258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01258">pdf</a>, <a href="https://arxiv.org/format/2307.01258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: High-resolution component-separated maps across one-third of the sky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coulton%2C+W+R">William R. Coulton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01258v1-abstract-short" style="display: inline;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01258v1-abstract-full" style="display: none;"> Observations of the millimeter sky contain valuable information on a number of signals, including the blackbody cosmic microwave background (CMB), Galactic emissions, and the Compton-$y$ distortion due to the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Extracting new insight into cosmological and astrophysical questions often requires combining multi-wavelength observations to spectrally isolate one component. In this work, we present a new arcminute-resolution Compton-$y$ map, which traces out the line-of-sight-integrated electron pressure, as well as maps of the CMB in intensity and E-mode polarization, across a third of the sky (around 13,000 sq.~deg.). We produce these through a joint analysis of data from the Atacama Cosmology Telescope (ACT) Data Release 4 and 6 at frequencies of roughly 93, 148, and 225 GHz, together with data from the \textit{Planck} satellite at frequencies between 30 GHz and 545 GHz. We present detailed verification of an internal linear combination pipeline implemented in a needlet frame that allows us to efficiently suppress Galactic contamination and account for spatial variations in the ACT instrument noise. These maps provide a significant advance, in noise levels and resolution, over the existing \textit{Planck} component-separated maps and will enable a host of science goals including studies of cluster and galaxy astrophysics, inferences of the cosmic velocity field, primordial non-Gaussianity searches, and gravitational lensing reconstruction of the CMB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01258v1-abstract-full').style.display = 'none'; document.getElementById('2307.01258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Compton-y map and associated products will be made publicly available upon publication of the paper. The CMB T and E mode maps will be made available when the DR6 maps are made public</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.03750">arXiv:2305.03750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.03750">pdf</a>, <a href="https://arxiv.org/format/2305.03750">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acd6a0">10.3847/2041-8213/acd6a0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> No Surviving SN Ia Companion In SNR 0509-67.5: Stellar Population Characterization and Comparison To Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shields%2C+J+V">Joshua V. Shields</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arunachalam%2C+P">Prasiddha Arunachalam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kerzendorf%2C+W">Wolfgang Kerzendorf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biriouk%2C+S">Sofia Biriouk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Monk%2C+H">Hayden Monk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buchner%2C+J">Johannes Buchner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.03750v1-abstract-short" style="display: inline;"> The community agrees that Type Ia supernovae arise from Carbon/Oxygen white dwarfs undergoing thermonuclear runaway. However, the full progenitor system and the process that prompts the white dwarf to explode remain unknown. Most current models suggest that the white dwarf explodes because of interaction with a binary companion which may survive the process and remain within the resulting remnant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03750v1-abstract-full').style.display = 'inline'; document.getElementById('2305.03750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.03750v1-abstract-full" style="display: none;"> The community agrees that Type Ia supernovae arise from Carbon/Oxygen white dwarfs undergoing thermonuclear runaway. However, the full progenitor system and the process that prompts the white dwarf to explode remain unknown. Most current models suggest that the white dwarf explodes because of interaction with a binary companion which may survive the process and remain within the resulting remnant of the exploded star. Furthermore, both the pre-supernova interaction process and the explosion of the primary are expected to imprint a significant departure from ordinary stellar radii and temperatures onto the secondary, making the star identifiable against the unrelated stellar population. Identification of a surviving companion inside an SN Ia remnant might confirm a specific corresponding SN Ia progenitor channel based on the identity of the companion. We conducted a surviving companion search of the Type Ia remnant SNR 0509-67.5 based in the Large Magellanic Cloud. The well-constrained distance to and foreground extinction of the Large Magellanic Cloud allow for Bayesian inference of stellar parameters with low correlation and uncertainties. We present a deep catalog of fully characterized stars interior to SNR 0509-67.5 with radii, effective temperatures, and metallicities inferred using combined Hubble Space Telescope photometric observations across multiple visits. We then compile a list of surviving companion models appropriate for the age of the remnant (roughly 400 years after the explosion). We compare these predictions with the inferred stellar parameters and conclude that none of the stars are consistent with the predicted signatures of a surviving companion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.03750v1-abstract-full').style.display = 'none'; document.getElementById('2305.03750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10219">arXiv:2304.10219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10219">pdf</a>, <a href="https://arxiv.org/format/2304.10219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> ACT-DR5 Sunyaev-Zel&#39;dovich Clusters: weak lensing mass calibration with KiDS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Robertson%2C+N+C">Naomi Clare Robertson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asgari%2C+M">Marika Asgari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bilicki%2C+M">Maciej Bilicki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giblin%2C+B">Benjamin Giblin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heymans%2C+C">Catherine Heymans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hildebrandt%2C+H">Hendrik Hildebrandt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoekstra%2C+H">Henk Hoekstra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuijken%2C+K">Konrad Kuijken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mallaby-Kay%2C+M">Maya Mallaby-Kay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">Lyman Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radovich%2C+M">Mario Radovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schneider%2C+P">Peter Schneider</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shan%2C+H">HuanYuan Shan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spergel%2C+D+N">David N. Spergel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tr%C3%B6ster%2C+T">Tilman Tr枚ster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10219v1-abstract-short" style="display: inline;"> We present weak gravitational lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a $&gt;5蟽$ thermal Sunyaev-Zel&#39;dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach we constrain the average total cluster mass, $M_{\rm WL}$, accounting for the ACT cluster selection function of the full sample. We find that the SZ clu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10219v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10219v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10219v1-abstract-full" style="display: none;"> We present weak gravitational lensing measurements of a sample of 157 clusters within the Kilo Degree Survey (KiDS), detected with a $&gt;5蟽$ thermal Sunyaev-Zel&#39;dovich (SZ) signal by the Atacama Cosmology Telescope (ACT). Using a halo-model approach we constrain the average total cluster mass, $M_{\rm WL}$, accounting for the ACT cluster selection function of the full sample. We find that the SZ cluster mass estimate $M_{\rm SZ}$, which was calibrated using X-ray observations, is biased with $M_{\rm SZ}/M_{\rm WL} = (1-b_{\rm SZ}) = 0.65\pm 0.05$. Separating the sample into six mass bins, we find no evidence of a strong mass-dependency for the mass bias, $(1-b_{\rm SZ})$. Adopting this ACT-KiDS SZ mass-calibration would bring the Planck SZ cluster count into agreement with the counts expected from the {\it Planck} cosmic microwave background $螞$CDM cosmological model, although it should be noted that the cluster sample considered in this work has a lower average mass $M_{\rm SZ, uncor} = 3.64 \times 10^{14} M_{\odot}$ compared to the Planck cluster sample which has an average mass in the range $M_{\rm SZ, uncor} = (5.5-8.5) \times 10^{14} M_{\odot}$, depending on the sub-sample used. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10219v1-abstract-full').style.display = 'none'; document.getElementById('2304.10219v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05203">arXiv:2304.05203</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05203">pdf</a>, <a href="https://arxiv.org/format/2304.05203">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acff5f">10.3847/1538-4357/acff5f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacCrann%2C+N">Niall MacCrann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (134 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05203v2-abstract-short" style="display: inline;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05203v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05203v2-abstract-full" style="display: none;"> We present cosmological constraints from a gravitational lensing mass map covering 9400 sq. deg. reconstructed from CMB measurements made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with BAO measurements (from SDSS and 6dF), we obtain the amplitude of matter fluctuations $蟽_8 = 0.819 \pm 0.015$ at 1.8% precision, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.840\pm0.028$ and the Hubble constant $H_0= (68.3 \pm 1.1)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$ at 1.6% precision. A joint constraint with CMB lensing measured by the Planck satellite yields even more precise values: $蟽_8 = 0.812 \pm 0.013$, $S_8\equiv蟽_8({惟_{\rm m}}/0.3)^{0.5}=0.831\pm0.023$ and $H_0= (68.1 \pm 1.0)\, \text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}$. These measurements agree well with $螞$CDM-model extrapolations from the CMB anisotropies measured by Planck. To compare these constraints to those from the KiDS, DES, and HSC galaxy surveys, we revisit those data sets with a uniform set of assumptions, and find $S_8$ from all three surveys are lower than that from ACT+Planck lensing by varying levels ranging from 1.7-2.1$蟽$. These results motivate further measurements and comparison, not just between the CMB anisotropies and galaxy lensing, but also between CMB lensing probing $z\sim 0.5-5$ on mostly-linear scales and galaxy lensing at $z\sim 0.5$ on smaller scales. We combine our CMB lensing measurements with CMB anisotropies to constrain extensions of $螞$CDM, limiting the sum of the neutrino masses to $\sum m_谓 &lt; 0.13$ eV (95% c.l.), for example. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the $螞$CDM model, while paving a promising path for neutrino physics with gravitational lensing from upcoming ground-based CMB surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05203v2-abstract-full').style.display = 'none'; document.getElementById('2304.05203v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 17 figures, replaced with version accepted in ApJ (Feb 2024). Cosmological likelihood data and mass maps are public here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Qu et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal, Volume 962, 2024, Page 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05202">arXiv:2304.05202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05202">pdf</a>, <a href="https://arxiv.org/format/2304.05202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfe06">10.3847/1538-4357/acfe06 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Qu%2C+F+J">Frank J. Qu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abril-Cabezas%2C+I">Irene Abril-Cabezas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alford%2C+T">Tommy Alford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia Stefano Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beringue%2C+B">Benjamin Beringue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolliet%2C+B">Boris Bolliet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+H">Hongbo Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a> , et al. (133 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05202v2-abstract-short" style="display: inline;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ sign&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'inline'; document.getElementById('2304.05202v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05202v2-abstract-full" style="display: none;"> We present new measurements of cosmic microwave background (CMB) lensing over $9400$ sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at $2.3\%$ precision ($43蟽$ significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of $A_{\mathrm{lens}}=1.013\pm0.023$ relative to the Planck 2018 CMB power spectra best-fit $螞$CDM model and $A_{\mathrm{lens}}=1.005\pm0.023$ relative to the $\text{ACT DR4} + \text{WMAP}$ best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination $S^{\mathrm{CMBL}}_8 \equiv 蟽_8 \left({惟_m}/{0.3}\right)^{0.25}$ of $S^{\mathrm{CMBL}}_8= 0.818\pm0.022$ from ACT DR6 CMB lensing alone and $S^{\mathrm{CMBL}}_8= 0.813\pm0.018$ when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with $螞$CDM model constraints from Planck or $\text{ACT DR4} + \text{WMAP}$ CMB power spectrum measurements. Our lensing measurements from redshifts $z\sim0.5$--$5$ are thus fully consistent with $螞$CDM structure growth predictions based on CMB anisotropies probing primarily $z\sim1100$. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05202v2-abstract-full').style.display = 'none'; document.getElementById('2304.05202v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45+22 pages, 50 figures. v2 matches with published version in ApJ. Cosmological likelihood data and lensing maps are here: https://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html ; likelihood software is here: https://github.com/ACTCollaboration/act_dr6_lenslike . Also see companion papers Madhavacheril et al and MacCrann et al</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-PUB-23-237-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04767">arXiv:2303.04767</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04767">pdf</a>, <a href="https://arxiv.org/format/2303.04767">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ace599">10.3847/1538-4357/ace599 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Systematic Transient Search of 3-Day Maps </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yaqiong Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biermann%2C+E">Emily Biermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+R">Rui An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hervias-Caimapo%2C+C">Carlos Hervias-Caimapo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Louis%2C+T">Thibaut Louis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mallaby-Kay%2C+M">Maya Mallaby-Kay</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04767v1-abstract-short" style="display: inline;"> We conduct a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40 percent of the sky at three bands spanning from 77 GHz to 277 GHz. Analysis of 3-day mean-subtracted sky maps, which were match-filtered for point sources, yielded 29 transients detections. Eight of these transients are due to known asteroids, and three others&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04767v1-abstract-full').style.display = 'inline'; document.getElementById('2303.04767v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04767v1-abstract-full" style="display: none;"> We conduct a systematic search for transients in three years of data (2017-2019) from the Atacama Cosmology Telescope (ACT). ACT covers 40 percent of the sky at three bands spanning from 77 GHz to 277 GHz. Analysis of 3-day mean-subtracted sky maps, which were match-filtered for point sources, yielded 29 transients detections. Eight of these transients are due to known asteroids, and three others were previously published. Four of these events occur in areas of with poor noise models and thus we cannot be confident they are real transients. We are left with 14 new transient events occurring at 11 unique locations. All of these events are associated with either rotationally variable stars or cool stars. Ten events have flat or falling spectra indicating radiation from synchrotron emission. One event has a rising spectrum indicating a different engine for the flare. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04767v1-abstract-full').style.display = 'none'; document.getElementById('2303.04767v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00038">arXiv:2211.00038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00038">pdf</a>, <a href="https://arxiv.org/format/2211.00038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acb4ec">10.3847/2041-8213/acb4ec <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A JWST Near- and Mid-Infrared Nebular Spectrum of the Type Ia Supernova 2021aefx </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kwok%2C+L+A">Lindsey A. Kwok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jha%2C+S+W">Saurabh W. Jha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Temim%2C+T">Tea Temim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+O+D">Ori D. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larison%2C+C">Conor Larison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Camacho-Neves%2C+Y">Yssavo Camacho-Neves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Newman%2C+M+J+B">Max J. Brenner Newman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pierel%2C+J+D+R">Justin D. R. Pierel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foley%2C+R+J">Ryan J. Foley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrews%2C+J+E">Jennifer E. Andrews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badenes%2C+C">Carles Badenes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barna%2C+B">Barnabas Barna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bostroem%2C+K+A">K. Azalee Bostroem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deckers%2C+M">Maxime Deckers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flors%2C+A">Andreas Flors</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garnavich%2C+P">Peter Garnavich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+L">Melissa L. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graur%2C+O">Or Graur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hosseinzadeh%2C+G">Griffin Hosseinzadeh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Howell%2C+D+A">D. Andrew Howell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J">Joel Johansson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kendrew%2C+S">Sarah Kendrew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kerzendorf%2C+W+E">Wolfgang E. Kerzendorf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+K">Keiichi Maeda</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00038v2-abstract-short" style="display: inline;"> We present JWST near- and mid-infrared spectroscopic observations of the nearby normal Type Ia supernova SN 2021aefx in the nebular phase at $+255$ days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument (MIRI) observations, combined with ground-based optical data from the South African Large Telescope (SALT), constitute the first complete optical $+$ NIR $+$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00038v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00038v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00038v2-abstract-full" style="display: none;"> We present JWST near- and mid-infrared spectroscopic observations of the nearby normal Type Ia supernova SN 2021aefx in the nebular phase at $+255$ days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument (MIRI) observations, combined with ground-based optical data from the South African Large Telescope (SALT), constitute the first complete optical $+$ NIR $+$ MIR nebular SN Ia spectrum covering 0.3$-$14 $渭$m. This spectrum unveils the previously unobserved 2.5$-$5 $渭$m region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements and as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2 $渭$m and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ar III] 8.99 $渭$m line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00038v2-abstract-full').style.display = 'none'; document.getElementById('2211.00038v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">published in ApJ Letters, 17 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, Volume 944 L3, 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09503">arXiv:2209.09503</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09503">pdf</a>, <a href="https://arxiv.org/ps/2209.09503">ps</a>, <a href="https://arxiv.org/format/2209.09503">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/pasj/psac110">10.1093/pasj/psac110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galaxy clusters at z~1 imaged by ALMA with the Sunyaev-Zel&#39;dovich effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kitayama%2C+T">T. Kitayama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ueda%2C+S">S. Ueda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Okabe%2C+N">N. Okabe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akahori%2C+T">T. Akahori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ichinohe%2C+Y">Y. Ichinohe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kohno%2C+K">K. Kohno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komatsu%2C+E">E. Komatsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+Y+-">Y. -T. Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miyatake%2C+H">H. Miyatake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oguri%2C+M">M. Oguri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takakuwa%2C+S">S. Takakuwa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Takizawa%2C+M">M. Takizawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsutsumi%2C+T">T. Tsutsumi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Marrewijk%2C+J">J. van Marrewijk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">E. J. Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09503v2-abstract-short" style="display: inline;"> We present high angular-resolution measurements of the thermal Sunyaev-Zel&#39;dovich effect (SZE) toward two galaxy clusters, RCS J2319+0038 at z=0.9 and HSC J0947-0119 at z=1.1, by the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 3. They are supplemented with available Chandra X-ray data, optical data taken by Hyper Suprime-Cam on Subaru, and millimeter-wave SZE data from the Atacama&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09503v2-abstract-full').style.display = 'inline'; document.getElementById('2209.09503v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09503v2-abstract-full" style="display: none;"> We present high angular-resolution measurements of the thermal Sunyaev-Zel&#39;dovich effect (SZE) toward two galaxy clusters, RCS J2319+0038 at z=0.9 and HSC J0947-0119 at z=1.1, by the Atacama Large Millimeter/submillimeter Array (ALMA) in Band 3. They are supplemented with available Chandra X-ray data, optical data taken by Hyper Suprime-Cam on Subaru, and millimeter-wave SZE data from the Atacama Cosmology Telescope. Taking into account departures from spherical symmetry, we have reconstructed non-parametrically the inner pressure profile of two clusters as well as electron temperature and density profiles for RCS J2319+0038. This is one of the first such measurements for an individual cluster at $z \gtrsim 0.9$. We find that the inner pressure profile of both clusters is much shallower than that of local cool-core clusters. Our results consistently suggest that RCS J2319+0038 hosts a weak cool core, where radiative cooling is less significant than in local cool cores. On the other hand, HSC J0947-0119 exhibits an even shallower pressure profile than RCS J2319+0038 and is more likely a non-cool-core cluster. The SZE centroid position is offset by more than 140 $h_{70}^{-1}$kpc from the peaks of galaxy distribution in HSC J0947-0119, suggesting a stronger influence of mergers in this cluster. We conclude that these distant clusters are at a very early stage of developing the cool cores typically found in clusters at lower redshifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09503v2-abstract-full').style.display = 'none'; document.getElementById('2209.09503v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 14 figures, 10 tables, revised after referee comments, accepted for publication in PASJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.01632">arXiv:2209.01632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.01632">pdf</a>, <a href="https://arxiv.org/format/2209.01632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac8f30">10.3847/1538-4357/ac8f30 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 3-D X-ray Ejecta Structure of Tycho&#39;s Supernova Remnant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Millard%2C+M+J">Matthew J. Millard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+S">Sangwook Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slane%2C+P">Patrick Slane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patnaude%2C+D">Daniel Patnaude</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burrows%2C+D">David Burrows</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badenes%2C+C">Carles Badenes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.01632v1-abstract-short" style="display: inline;"> We present our velocity measurements of 59 clumpy, metal-rich ejecta knots in the supernova remnant (SNR) of SN 1572 (Tycho). We use our 450 ks Chandra High Energy Transmission Grating Spectrometer observation to measure the Doppler shift of the He-like Si K$伪$ line-center wavelength emitted from these knots to find their line-of-sight (radial) velocities ($v_r$). We find $v_r$ up to $\sim$ 5500 k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01632v1-abstract-full').style.display = 'inline'; document.getElementById('2209.01632v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.01632v1-abstract-full" style="display: none;"> We present our velocity measurements of 59 clumpy, metal-rich ejecta knots in the supernova remnant (SNR) of SN 1572 (Tycho). We use our 450 ks Chandra High Energy Transmission Grating Spectrometer observation to measure the Doppler shift of the He-like Si K$伪$ line-center wavelength emitted from these knots to find their line-of-sight (radial) velocities ($v_r$). We find $v_r$ up to $\sim$ 5500 km s$^{-1}$, with roughly consistent speeds between blueshifted and redshifted ejecta knots. We also measure the proper motions (PMs) for our sample based on archival Chandra Advanced CCD Imaging Spectrometer data taken from 2003, 2009, and 2015. We estimate PMs up to 0$&#34;$.35 yr$^{-1}$, which corresponds to a transverse velocity of about 5800 km s$^{-1}$ for the distance of 3.5 kpc to Tycho. Our $v_r$ and transverse velocity measurements imply space velocities of $\sim$ 1900 - 6000 km s$^{-1}$ for the ejecta knots in Tycho. We estimate a new expansion center of R.A.(J2000) = 00$^h$25$^m$18$^s$.725 $\pm$ 1$^s$.157 and decl.(J2000) = +64$^{\circ}$08$&#39;$02$&#34;$.5 $\pm$ 11$&#34;$.2 from our PM measurements, consistent to within $\sim$ 13$&#34;$ of the geometric center. The distribution of space velocities throughout the remnant suggests that the southeast quadrant generally expands faster than the rest of the SNR. We find that blueshifted knots are projected more in the northern shell, while redshifted knots are more in the southern shell. The previously estimated reverse shock position is consistent with most of our estimated ejecta distribution, however some ejecta show deviations from the 1-D picture of the reverse shock. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.01632v1-abstract-full').style.display = 'none'; document.getElementById('2209.01632v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 7 figures, 3 tables, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07693">arXiv:2208.07693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.07693">pdf</a>, <a href="https://arxiv.org/format/2208.07693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac927c">10.3847/1538-4357/ac927c <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Hydro-Based MCMC Analysis of SNR 0509-67.5 Revealing the Explosion Properties from Fluid Discontinuities Alone </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Arunachalam%2C+P">Prasiddha Arunachalam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hovey%2C+L">Luke Hovey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eriksen%2C+K">Kristoffer Eriksen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07693v1-abstract-short" style="display: inline;"> Using HST narrow-band H伪 images of supernova remnant 0509-67.5 taken {\sim}10 years apart, we measure the forward shock (FS) proper motions (PMs) at 231 rim locations. The average shock radius and velocity are 3.66 {\pm} 0.036 pc and 6315 {\pm} 310 km s{^{-1}}. Hydrodynamic simulations, recast as similarity solutions, provide models for the remnant&#39;s expansion into a uniform ambient medium. These&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07693v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07693v1-abstract-full" style="display: none;"> Using HST narrow-band H伪 images of supernova remnant 0509-67.5 taken {\sim}10 years apart, we measure the forward shock (FS) proper motions (PMs) at 231 rim locations. The average shock radius and velocity are 3.66 {\pm} 0.036 pc and 6315 {\pm} 310 km s{^{-1}}. Hydrodynamic simulations, recast as similarity solutions, provide models for the remnant&#39;s expansion into a uniform ambient medium. These are coupled to a Markov chain Monte Carlo (MCMC) analysis to determine explosion parameters, constrained by the FS measurements. For specific global parameters, the MCMC posterior distributions yield an age of 315.5 {\pm} 1.8 yr, a dynamical explosion center at 5h09m31s.16s -67{^\circ}31{^\prime}17.1{^{\prime\prime}} and ambient medium densities at each azimuth ranging from 3.7-8.0 {\times} 10{^{-25}} g cm{^{-3}}. We can detect stellar PMs corresponding to speeds in the LMC of 770 km s{^{-1}} or more using the H$伪$ images. Five stars in the remnant show measurable PMs but none appear to be moving radially from the center, including a prominent red star 4.6{^{\prime\prime}} from the center. Using coronal [Fe XIV] 位5303 emission as a proxy for the reverse shock location, we constrain the explosion energy (for a compression factor of 4) to a value of E = (1.30 {\pm} 0.41) {\times} 10{^{51}} erg for the first time from shock kinematics alone. Higher compression factors (7 or more) are strongly disfavored based on multiple criteria, arguing for inefficient particle acceleration in the Balmer shocks of 0509-67.5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07693v1-abstract-full').style.display = 'none'; document.getElementById('2208.07693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04697">arXiv:2206.04697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04697">pdf</a>, <a href="https://arxiv.org/format/2206.04697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3015">10.1093/mnras/stac3015 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The thermal and non-thermal components within and between galaxy clusters Abell 399 and Abell 401 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vacca%2C+V">Valentina Vacca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E">Elia Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonafede%2C+A">Annalisa Bonafede</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Capalbo%2C+V">Valentina Capalbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feretti%2C+L">Luigina Feretti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+A">Ajay Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giovannini%2C+G">Gabriele Giovannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Govoni%2C+F">Federica Govoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Iacobelli%2C+M">Marco Iacobelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Isopi%2C+G">Giovanni Isopi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Loi%2C+F">Francesca Loi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murgia%2C+M">Matteo Murgia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orr%C3%B9%2C+E">Emanuela Orr霉</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paladino%2C+R">Rosita Paladino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04697v2-abstract-short" style="display: inline;"> We measure the local correlation between radio emission and Compton-$y$ signal across two galaxy clusters, Abell~399 and Abell~401, using maps from the Low-Frequency Array (LOFAR) and the Atacama Cosmology Telescope (ACT) + \Planck. These datasets allow us to make the first measurement of this kind at $\sim$arcminute resolution. We find that the radio brightness scales as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04697v2-abstract-full').style.display = 'inline'; document.getElementById('2206.04697v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04697v2-abstract-full" style="display: none;"> We measure the local correlation between radio emission and Compton-$y$ signal across two galaxy clusters, Abell~399 and Abell~401, using maps from the Low-Frequency Array (LOFAR) and the Atacama Cosmology Telescope (ACT) + \Planck. These datasets allow us to make the first measurement of this kind at $\sim$arcminute resolution. We find that the radio brightness scales as $F_{\mathrm{radio}} \propto y^{1.5}$ for Abell~401 and $F_{\mathrm{radio}} \propto y^{2.8}$ for Abell~399. Furthermore, using \XMM data, we derive a sublinear correlation between radio and X-ray brightness for both the clusters ($F_{\mathrm{radio}} \propto F_{\rm X}^{0.7}$). Finally, we correlate the Compton-$y$ and X-ray data, finding that an isothermal model is consistent with the cluster profiles, $y \propto F_{\rm X}^{0.5}$. By adopting an isothermal--$尾$ model, we are able, for the first time, to jointly use radio, X-ray, and Compton-$y$ data to estimate the scaling index for the magnetic field profile, $B(r) \propto n_{\mathrm{e}}(r)^畏$ in the injection and re-acceleration scenarios. Applying this model, we find that the combined radio and Compton-$y$ signal exhibits a significantly tighter correlation with the X-ray across the clusters than when the datasets are independently correlated. We find $畏\sim 0.6{-}0.8$. These results are consistent with the upper limit we derive for the scaling index of the magnetic field using rotation measure values for two radio galaxies in Abell~401. We also measure the radio, Compton-$y$, and X-ray correlations in the filament between the clusters but conclude that deeper data are required for a convincing determination of the correlations in the filament. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04697v2-abstract-full').style.display = 'none'; document.getElementById('2206.04697v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.02523">arXiv:2204.02523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.02523">pdf</a>, <a href="https://arxiv.org/format/2204.02523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac63b0">10.3847/2041-8213/ac63b0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LADUMA: Discovery of a luminous OH megamaser at $z &gt; 0.5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kazemi-Moridani%2C+A">Amir Kazemi-Moridani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frank%2C+B">Bradley Frank</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roberts%2C+H">Hayley Roberts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darling%2C+J">Jeremy Darling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kl%C3%B6ckner%2C+H">Hans-Rainer Kl枚ckner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+N">Nathan Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baker%2C+A+J">Andrew J. Baker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bershady%2C+M">Matthew Bershady</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blecher%2C+T">Tariq Blecher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blyth%2C+S">Sarah-Louise Blyth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bowler%2C+R">Rebecca Bowler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catinella%2C+B">Barbara Catinella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chemin%2C+L">Laurent Chemin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+S+M">Steven M. Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cress%2C+C">Catherine Cress</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dav%C3%A9%2C+R">Romeel Dav茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deane%2C+R">Roger Deane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Blok%2C+E">Erwin de Blok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delhaize%2C+J">Jacinta Delhaize</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duncan%2C+K">Kenneth Duncan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elson%2C+E">Ed Elson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=February%2C+S">Sean February</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gawiser%2C+E">Eric Gawiser</a> , et al. (43 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.02523v1-abstract-short" style="display: inline;"> In the local Universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (HI), radio surveys to probe the cosmic evolution of HI in galaxies also offer exc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02523v1-abstract-full').style.display = 'inline'; document.getElementById('2204.02523v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.02523v1-abstract-full" style="display: none;"> In the local Universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (HI), radio surveys to probe the cosmic evolution of HI in galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep HI survey, we report the first untargeted detection of an OHM at $z &gt; 0.5$, LADUMA J033046.20$-$275518.1 (nicknamed &#34;Nkalakatha&#34;). The host system, WISEA J033046.26$-$275518.3, is an infrared-luminous radio galaxy whose optical redshift $z \approx 0.52$ confirms the MeerKAT emission line detection as OH at a redshift $z_{\rm OH} = 0.5225 \pm 0.0001$ rather than HI at lower redshift. The detected spectral line has 18.4$蟽$ peak significance, a width of $459 \pm 59\,{\rm km\,s^{-1}}$, and an integrated luminosity of $(6.31 \pm 0.18\,{\rm [statistical]}\,\pm 0.31\,{\rm [systematic]}) \times 10^3\,L_\odot$, placing it among the most luminous OHMs known. The galaxy&#39;s far-infrared luminosity $L_{\rm FIR} = (1.576 \pm 0.013) \times 10^{12}\,L_\odot$ marks it as an ultra-luminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step towards a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.02523v1-abstract-full').style.display = 'none'; document.getElementById('2204.02523v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures. Accepted to ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10384">arXiv:2110.10384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10384">pdf</a>, <a href="https://arxiv.org/format/2110.10384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-021-03391-9">10.1038/s41586-021-03391-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-entropy ejecta plumes in Cassiopeia A from neutrino-driven convection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+K">Keiichi Maeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagataki%2C+S">Shigehiro Nagataki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoshida%2C+T">Takashi Yoshida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grefenstette%2C+B">Brian Grefenstette</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+B+J">Brian J. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umeda%2C+H">Hideyuki Umeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ono%2C+M">Masaomi Ono</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10384v1-abstract-short" style="display: inline;"> Recent multi-dimensional simulations suggest that high-entropy buoyant plumes help massive stars to explode. Outwardly protruding iron-rich fingers in the galactic supernova remnant Cassiopeia A are uniquely suggestive of this picture. Detecting signatures of specific elements synthesized in the high-entropy nuclear burning regime (i.e., $伪$-rich freeze out) would be among the strongest substantia&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10384v1-abstract-full').style.display = 'inline'; document.getElementById('2110.10384v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10384v1-abstract-full" style="display: none;"> Recent multi-dimensional simulations suggest that high-entropy buoyant plumes help massive stars to explode. Outwardly protruding iron-rich fingers in the galactic supernova remnant Cassiopeia A are uniquely suggestive of this picture. Detecting signatures of specific elements synthesized in the high-entropy nuclear burning regime (i.e., $伪$-rich freeze out) would be among the strongest substantiating evidence. Here we report the discovery of such elements, stable Ti and Cr, at a confidence level greater than 5$蟽$ in the shocked high-velocity iron-rich ejecta of Cassiopeia A. We found the observed Ti/Fe and Cr/Fe mass ratios require $伪$-rich freeze out, providing the first observational demonstration for the existence of high-entropy ejecta plumes that boosted the shock wave at explosion. The metal composition of the plumes agrees well with predictions for strongly neutrino-processed proton-rich ejecta. These results support the operation of the convective supernova engine via neutrino heating in the supernova that produced Cassiopeia A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10384v1-abstract-full').style.display = 'none'; document.getElementById('2110.10384v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature, Volume 592, Issue 7855, p.537-540 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01601">arXiv:2108.01601</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01601">pdf</a>, <a href="https://arxiv.org/format/2108.01601">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.123526">10.1103/PhysRevD.105.123526 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-correlation of DES Y3 lensing and ACT/${\it Planck}$ thermal Sunyaev Zel&#39;dovich Effect II: Modeling and constraints on halo pressure profiles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+X">X. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannini%2C+G">G. Giannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+H">H. Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moser%2C+E">E. Moser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eckert%2C+K">K. Eckert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elvin-Poole%2C+J">J. Elvin-Poole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S">S. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferte%2C+A">A. Ferte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+I">I. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccrann%2C+N">N. Maccrann</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01601v2-abstract-short" style="display: inline;"> Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel&#39;dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and is sensitive to effects such as baryonic feedback&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01601v2-abstract-full').style.display = 'inline'; document.getElementById('2108.01601v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01601v2-abstract-full" style="display: none;"> Hot, ionized gas leaves an imprint on the cosmic microwave background via the thermal Sunyaev Zel&#39;dovich (tSZ) effect. The cross-correlation of gravitational lensing (which traces the projected mass) with the tSZ effect (which traces the projected gas pressure) is a powerful probe of the thermal state of ionized baryons throughout the Universe, and is sensitive to effects such as baryonic feedback. In a companion paper (Gatti et al. 2021), we present tomographic measurements and validation tests of the cross-correlation between galaxy shear measurements from the first three years of observations of the Dark Energy Survey, and tSZ measurements from a combination of Atacama Cosmology Telescope and ${\it Planck}$ observations. In this work, we use the same measurements to constrain models for the pressure profiles of halos across a wide range of halo mass and redshift. We find evidence for reduced pressure in low mass halos, consistent with predictions for the effects of feedback from active galactic nuclei. We infer the hydrostatic mass bias ($B \equiv M_{500c}/M_{\rm SZ}$) from our measurements, finding $B = 1.8\pm0.1$ when adopting the ${\it Planck}$-preferred cosmological parameters. We additionally find that our measurements are consistent with a non-zero redshift evolution of $B$, with the correct sign and sufficient magnitude to explain the mass bias necessary to reconcile cluster count measurements with the ${\it Planck}$-preferred cosmology. Our analysis introduces a model for the impact of intrinsic alignments (IA) of galaxy shapes on the shear-tSZ correlation. We show that IA can have a significant impact on these correlations at current noise levels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01601v2-abstract-full').style.display = 'none'; document.getElementById('2108.01601v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 13 figures. Comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.01600">arXiv:2108.01600</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.01600">pdf</a>, <a href="https://arxiv.org/format/2108.01600">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.105.123525">10.1103/PhysRevD.105.123525 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-correlation of DES Y3 lensing and ACT/${\it Planck}$ thermal Sunyaev Zel&#39;dovich Effect I: Measurements, systematics tests, and feedback model constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gatti%2C+M">M. Gatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. C. Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moser%2C+E">E. Moser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raveri%2C+M">M. Raveri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+X">X. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannini%2C+G">G. Giannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+H">H. Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M">M. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campos%2C+A">A. Campos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+R">R. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+A">A. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eckert%2C+K">K. Eckert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elvin-Poole%2C+J">J. Elvin-Poole</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Everett%2C+S">S. Everett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferte%2C+A">A. Ferte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+I">I. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maccrann%2C+N">N. Maccrann</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.01600v1-abstract-short" style="display: inline;"> We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zeldovich (tSZ) maps from ${\it Planck}$ and the Atacama Cosmology Telescope (ACT) and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey (DES Y3). This correlation is sensitive to the thermal energy in baryons over a wide redshift range, and is therefore a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01600v1-abstract-full').style.display = 'inline'; document.getElementById('2108.01600v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.01600v1-abstract-full" style="display: none;"> We present a tomographic measurement of the cross-correlation between thermal Sunyaev-Zeldovich (tSZ) maps from ${\it Planck}$ and the Atacama Cosmology Telescope (ACT) and weak galaxy lensing shears measured during the first three years of observations of the Dark Energy Survey (DES Y3). This correlation is sensitive to the thermal energy in baryons over a wide redshift range, and is therefore a powerful probe of astrophysical feedback. We detect the correlation at a statistical significance of $21蟽$, the highest significance to date. We examine the tSZ maps for potential contaminants, including cosmic infrared background (CIB) and radio sources, finding that CIB has a substantial impact on our measurements and must be taken into account in our analysis. We use the cross-correlation measurements to test different feedback models. In particular, we model the tSZ using several different pressure profile models calibrated against hydrodynamical simulations. Our analysis marginalises over redshift uncertainties, shear calibration biases, and intrinsic alignment effects. We also marginalise over $惟_{\rm m}$ and $蟽_8$ using ${\it Planck}$ or DES priors. We find that the data prefers the model with a low amplitude of the pressure profile at small scales, compatible with a scenario with strong AGN feedback and ejection of gas from the inner part of the halos. When using a more flexible model for the shear profile, constraints are weaker, and the data cannot discriminate between different baryonic prescriptions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.01600v1-abstract-full').style.display = 'none'; document.getElementById('2108.01600v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.06725">arXiv:2107.06725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.06725">pdf</a>, <a href="https://arxiv.org/format/2107.06725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2679">10.1093/mnras/stab2679 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of compact sources in galaxy clusters using MUSTANG2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G">Gene Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+B+S">Brian S. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mates%2C+J+A+B">J. A. B. Mates</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarazin%2C+C+L">Craig L. Sarazin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sievers%2C+J">Jonathan Sievers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.06725v2-abstract-short" style="display: inline;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sam&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'inline'; document.getElementById('2107.06725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.06725v2-abstract-full" style="display: none;"> Compact sources can cause scatter in the scaling relationships between the amplitude of the thermal Sunyaev-Zel&#39;dovich Effect (tSZE) in galaxy clusters and cluster mass. Estimates of the importance of this scatter vary - largely due to limited data on sources in clusters at the frequencies at which tSZE cluster surveys operate. In this paper we present 90 GHz compact source measurements from a sample of 30 clusters observed using the MUSTANG2 instrument on the Green Bank Telescope. We present simulations of how a source&#39;s flux density, spectral index, and angular separation from the cluster&#39;s center affect the measured tSZE in clusters detected by the Atacama Cosmology Telescope (ACT). By comparing the MUSTANG2 measurements with these simulations we calibrate an empirical relationship between 1.4 GHz flux densities from radio surveys and source contamination in ACT tSZE measurements. We find 3 per cent of the ACT clusters have more than a 20 per cent decrease in Compton-y but another 3 per cent have a 10 per cent increase in the Compton-y due to the matched filters used to find clusters. As sources affect the measured tSZE signal and hence the likelihood that a cluster will be detected, testing the level of source contamination in the tSZE signal using a tSZE selected catalog is inherently biased. We confirm this by comparing the ACT tSZE catalog with optically and X-ray selected cluster catalogs. There is a strong case for a large, high resolution survey of clusters to better characterize their source population. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.06725v2-abstract-full').style.display = 'none'; document.getElementById('2107.06725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 Pages, 10 figures, 2 tables, with 4 pages of online only figures at end. Published on-line in MNRAS on 22/9/2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05523">arXiv:2107.05523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.05523">pdf</a>, <a href="https://arxiv.org/format/2107.05523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac7043">10.3847/1538-4357/ac7043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: I. Evidence for thermal energy anisotropy using oriented stacking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">M. Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlo%C5%BEek%2C+R">R. Hlo啪ek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Engelen%2C+A">A. van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">M. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">E. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">J. DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doux%2C+C">C. Doux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E+S">E. S. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+G">G. Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=To%2C+C">C. To</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. R. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brooks%2C+D">D. Brooks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">E. Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosell%2C+A+C">A. Carnero Rosell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kind%2C+M+C">M. Carrasco Kind</a> , et al. (82 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05523v3-abstract-short" style="display: inline;"> The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along inter-cluster bridges, visible through their thermal Sunyaev-Zel&#39;dovich signal in the Cosmic Microwave Background. We demonstrate a new, flexible method to analyze the hot gas signal from multi-scale extended structures. We use a Compton-$y$ map from&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05523v3-abstract-full').style.display = 'inline'; document.getElementById('2107.05523v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05523v3-abstract-full" style="display: none;"> The cosmic web contains filamentary structure on a wide range of scales. On the largest scales, superclustering aligns multiple galaxy clusters along inter-cluster bridges, visible through their thermal Sunyaev-Zel&#39;dovich signal in the Cosmic Microwave Background. We demonstrate a new, flexible method to analyze the hot gas signal from multi-scale extended structures. We use a Compton-$y$ map from the Atacama Cosmology Telescope (ACT) stacked on redMaPPer cluster positions from the optical Dark Energy Survey (DES). Cutout images from the $y$ map are oriented with large-scale structure information from DES galaxy data such that the superclustering signal is aligned before being overlaid. We find evidence for an extended quadrupole moment of the stacked $y$ signal at the 3.5$蟽$ level, demonstrating that the large-scale thermal energy surrounding galaxy clusters is anisotropically distributed. We compare our ACT$\times$DES results with the Buzzard simulations, finding broad agreement. Using simulations, we highlight the promise of this novel technique for constraining the evolution of anisotropic, non-Gaussian structure using future combinations of microwave and optical surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05523v3-abstract-full').style.display = 'none'; document.getElementById('2107.05523v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 23 figures, 4 tables. Added explanatory figure, table, covariance matrix equations, discussion of CIB impact. Matches the version published in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.04611">arXiv:2107.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.04611">pdf</a>, <a href="https://arxiv.org/format/2107.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3391">10.1093/mnras/stab3391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A high-resolution view of the filament of gas between Abell 399 and Abell 401 from the Atacama Cosmology Telescope and MUSTANG-2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Radiconi%2C+F">Federico Radiconi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romero%2C+C">Charles Romero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbavara%2C+E">Eleonora Barbavara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E">Elia Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Bernardis%2C+P">Paolo de Bernardis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Govoni%2C+F">Federica Govoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamagna%2C+L">Luca Lamagna</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.04611v2-abstract-short" style="display: inline;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'inline'; document.getElementById('2107.04611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.04611v2-abstract-full" style="display: none;"> We report a significant detection of the hot intergalactic medium in the filamentary bridge connecting the galaxy clusters Abell 399 and Abell 401. This result is enabled by a low-noise, high-resolution map of the thermal Sunyaev-Zeldovich signal from the Atacama Cosmology Telescope (ACT) and Planck satellite. The ACT data provide the $1.65&#39;$ resolution that allows us to clearly separate the profiles of the clusters, whose centres are separated by $37&#39;$, from the gas associated with the filament. A model that fits for only the two clusters is ruled out compared to one that includes a bridge component at $&gt;5蟽$. Using a gas temperature determined from Suzaku X-ray data, we infer a total mass of $(3.3\pm0.7)\times10^{14}\,\mathrm{M}_{\odot}$ associated with the filament, comprising about $8\%$ of the entire Abell 399-Abell 401 system. We fit two phenomenological models to the filamentary structure; the favoured model has a width transverse to the axis joining the clusters of ${\sim}1.9\,\mathrm{Mpc}$. When combined with the Suzaku data, we find a gas density of $(0.88\pm0.24)\times10^{-4}\,\mathrm{cm}^{-3}$, considerably lower than previously reported. We show that this can be fully explained by a geometry in which the axis joining Abell 399 and Abell 401 has a large component along the line of sight, such that the distance between the clusters is significantly greater than the $3.2\,\mathrm{Mpc}$ projected separation on the plane of the sky. Finally, we present initial results from higher resolution ($12.7&#34;$ effective) imaging of the bridge with the MUSTANG-2 receiver on the Green Bank Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.04611v2-abstract-full').style.display = 'none'; document.getElementById('2107.04611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, 3 tables. This is a pre-copyedited, author-produced PDF of an article accepted for publication in the Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available online at: https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/stab3391/6442294</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.00031">arXiv:2106.00031</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.00031">pdf</a>, <a href="https://arxiv.org/format/2106.00031">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac294f">10.3847/1538-4357/ac294f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Head-to-Toe Measurement of El Gordo: Improved Analysis of the Galaxy Cluster ACT-CL J0102-4915 with New Wide-field Hubble Space Telescope Imaging Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+J">Jinhyub Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jee%2C+M+J">M. James Jee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+M">Mijin Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=HyeongHan%2C+K">Kim HyeongHan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menanteau%2C+F">Felipe Menanteau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sifon%2C+C">Cristobal Sifon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hovey%2C+L">Luke Hovey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arunachalam%2C+P">Prasiddha Arunachalam</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.00031v2-abstract-short" style="display: inline;"> We present an improved weak-lensing (WL) study of the high$-z$ $(z=0.87)$ merging galaxy cluster ACT-CL J0102-4915 (El Gordo) based on new wide-field Hubble Space Telescope (HST) imaging data. The new imaging data cover the 3.5$\times$3.5 Mpc region centered on the cluster and enable us to detect WL signals beyond the virial radius, which was not possible in previous studies. We confirm the binary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00031v2-abstract-full').style.display = 'inline'; document.getElementById('2106.00031v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.00031v2-abstract-full" style="display: none;"> We present an improved weak-lensing (WL) study of the high$-z$ $(z=0.87)$ merging galaxy cluster ACT-CL J0102-4915 (El Gordo) based on new wide-field Hubble Space Telescope (HST) imaging data. The new imaging data cover the 3.5$\times$3.5 Mpc region centered on the cluster and enable us to detect WL signals beyond the virial radius, which was not possible in previous studies. We confirm the binary mass structure consisting of the northwestern (NW) and southeastern (SE) subclusters and the 2$蟽$ dissociation between the SE mass peak and the X-ray cool core. We obtain the mass estimates of the subclusters by simultaneously fitting two Navarro-Frenk-White (NFW) halos without employing mass-concentration relations. The masses are $M_{200c}^{NW} = 9.9^{+2.1}_{-2.2} \times 10^{14} M_{\sun}$ and $M_{200c}^{SE} = 6.5^{+1.9}_{-1.4} \times 10^{14} M_{\sun}$ for the NW and SE subclusters, respectively. The mass ratio is consistent with our previous WL study but significantly different from the previous strong lensing results. This discrepancy is attributed to the use of extrapolation in strong lensing studies because the SE component possesses a higher concentration. By superposing the two best-fit NFW halos, we determine the total mass of El Gordo to be $M_{200c} = 2.13^{+0.25}_{-0.23} \times 10^{15} M_{\sun}$, which is 23% lower than our previous WL result [$M_{200c} =(2.76\pm0.51) \times 10^{15} M_{\sun}$]. Our updated mass is a more direct measurement since we are not extrapolating to $R_{200c}$ as in all previous studies. The new mass is compatible with the current $螞$CDM cosmology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.00031v2-abstract-full').style.display = 'none'; document.getElementById('2106.00031v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 18 figures, 3 tables; matches the version accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.05914">arXiv:2105.05914</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.05914">pdf</a>, <a href="https://arxiv.org/format/2105.05914">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2505">10.1093/mnras/stab2505 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The mass and galaxy distribution around SZ-selected clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+T">T. Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jain%2C+B">B. Jain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E+J">E. J. Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">C. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+S">S. Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salcedo%2C+A">A. Salcedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weinberg%2C+D+H">D. H. Weinberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amsellem%2C+A">A. Amsellem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belyakov%2C+M">M. Belyakov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dacunha%2C+T">T. Dacunha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldstein%2C+S">S. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kravtsov%2C+A+V">A. V. Kravtsov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Varga%2C+T+N">T. N. Varga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alarcon%2C+A">A. Alarcon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade-Oliveira%2C+F">F. Andrade-Oliveira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bechtol%2C+K">K. Bechtol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+M+R">M. R. Becker</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.05914v1-abstract-short" style="display: inline;"> We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev-Zel&#39;dovich-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 dataset. With signal-to-noise of 62 (43) for galaxy (weak lensing) profiles over scales of about&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05914v1-abstract-full').style.display = 'inline'; document.getElementById('2105.05914v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.05914v1-abstract-full" style="display: none;"> We present measurements of the radial profiles of the mass and galaxy number density around Sunyaev-Zel&#39;dovich-selected clusters using both weak lensing and galaxy counts. The clusters are selected from the Atacama Cosmology Telescope Data Release 5 and the galaxies from the Dark Energy Survey Year 3 dataset. With signal-to-noise of 62 (43) for galaxy (weak lensing) profiles over scales of about $0.2-20h^{-1}$ Mpc, these are the highest precision measurements for SZ-selected clusters to date. Because SZ selection closely approximates mass selection, these measurements enable several tests of theoretical models of the mass and light distribution around clusters. Our main findings are: 1. The splashback feature is detected at a consistent location in both the mass and galaxy profiles and its location is consistent with predictions of cold dark matter N-body simulations. 2. The full mass profile is also consistent with the simulations; hence it can constrain alternative dark matter models that modify the mass distribution of clusters. 3. The shapes of the galaxy and lensing profiles are remarkably similar for our sample over the entire range of scales, from well inside the cluster halo to the quasilinear regime. This can be used to constrain processes such as quenching and tidal disruption that alter the galaxy distribution inside the halo, and scale-dependent features in the transition regime outside the halo. We measure the dependence of the profile shapes on the galaxy sample, redshift and cluster mass. We extend the Diemer \&amp; Kravtsov model for the cluster profiles to the linear regime using perturbation theory and show that it provides a good match to the measured profiles. We also compare the measured profiles to predictions of the standard halo model and simulations that include hydrodynamics. Applications of these results to cluster mass estimation and cosmology are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05914v1-abstract-full').style.display = 'none'; document.getElementById('2105.05914v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures (main) + 3 pages, 6 figures (appendix), submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.05267">arXiv:2105.05267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.05267">pdf</a>, <a href="https://arxiv.org/format/2105.05267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac133f">10.3847/1538-4357/ac133f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Microwave Intensity and Polarization Maps of the Galactic Center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">Susan E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hensley%2C+B+S">Brandon S. Hensley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A+B">Arthur B. Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeff McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.05267v3-abstract-short" style="display: inline;"> We present arcminute-resolution intensity and polarization maps of the Galactic center made with the Atacama Cosmology Telescope (ACT). The maps cover a 32 deg$^2$ field at 98, 150, and 224 GHz with $\vert l\vert\le4^\circ$, $\vert b\vert\le2^\circ$. We combine these data with Planck observations at similar frequencies to create coadded maps with increased sensitivity at large angular scales. With&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05267v3-abstract-full').style.display = 'inline'; document.getElementById('2105.05267v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.05267v3-abstract-full" style="display: none;"> We present arcminute-resolution intensity and polarization maps of the Galactic center made with the Atacama Cosmology Telescope (ACT). The maps cover a 32 deg$^2$ field at 98, 150, and 224 GHz with $\vert l\vert\le4^\circ$, $\vert b\vert\le2^\circ$. We combine these data with Planck observations at similar frequencies to create coadded maps with increased sensitivity at large angular scales. With the coadded maps, we are able to resolve many known features of the Central Molecular Zone (CMZ) in both total intensity and polarization. We map the orientation of the plane-of-sky component of the Galactic magnetic field inferred from the polarization angle in the CMZ, finding significant changes in morphology in the three frequency bands as the underlying dominant emission mechanism changes from synchrotron to dust emission. Selected Galactic center sources, including Sgr A*, the Brick molecular cloud (G0.253+0.016), the Mouse pulsar wind nebula (G359.23-0.82), and the Tornado supernova remnant candidate (G357.7-0.1), are examined in detail. These data illustrate the potential for leveraging ground-based Cosmic Microwave Background polarization experiments for Galactic science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05267v3-abstract-full').style.display = 'none'; document.getElementById('2105.05267v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 14 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04235">arXiv:2105.04235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.04235">pdf</a>, <a href="https://arxiv.org/format/2105.04235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abff4f">10.3847/1538-4357/abff4f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatially Resolved RGS Analysis of Kepler&#39;s Supernova Remnant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kasuga%2C+T">Tomoaki Kasuga</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vink%2C+J">Jacco Vink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katsuda%2C+S">Satoru Katsuda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Uchida%2C+H">Hiroyuki Uchida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bamba%2C+A">Aya Bamba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John. P. Hughes</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04235v2-abstract-short" style="display: inline;"> The distribution and kinematics of the circumstellar medium (CSM) around a supernova remnant (SNR) tell us useful information about the explosion of its natal supernova (SN). Kepler&#39;s SNR, the remnant of SN1604, is widely regarded to be of Type Ia origin. Its shock is moving through a dense, asymmetric CSM. The presence of this dense gas suggests that its parent progenitor system consisted of a wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04235v2-abstract-full').style.display = 'inline'; document.getElementById('2105.04235v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04235v2-abstract-full" style="display: none;"> The distribution and kinematics of the circumstellar medium (CSM) around a supernova remnant (SNR) tell us useful information about the explosion of its natal supernova (SN). Kepler&#39;s SNR, the remnant of SN1604, is widely regarded to be of Type Ia origin. Its shock is moving through a dense, asymmetric CSM. The presence of this dense gas suggests that its parent progenitor system consisted of a white dwarf and an asymptotic giant branch (AGB) star. In this paper, we analyze a new and long observation with the reflection grating spectrometers (RGS) on board the XMM-Newton satellite, spatially resolving the remnant emission in the cross-dispersion direction. We find that the CSM component is blue-shifted with velocities in the general range 0-500 km/s. We also derive information on the central bar structure and find that the northwest half is blue-shifted, while the southeast half is red-shifted. Our result is consistent with a picture proposed by previous studies, in which a &#34;runaway&#34; AGB star moved to the north-northwest and toward us in the line of sight, although it is acceptable for both single-degenerate and core-degenerate scenarios for the progenitor system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04235v2-abstract-full').style.display = 'none'; document.getElementById('2105.04235v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures, accepted for publication in ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> RESCEU-8/21 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.00068">arXiv:2105.00068</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.00068">pdf</a>, <a href="https://arxiv.org/format/2105.00068">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141200">10.1051/0004-6361/202141200 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atacama Cosmology Telescope measurements of a large sample of candidates from the Massive and Distant Clusters of WISE Survey: Sunyaev-Zeldovich effect confirmation of MaDCoWS candidates using ACT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Orlowski-Scherer%2C+J">John Orlowski-Scherer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Mascolo%2C+L">Luca Di Mascolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandarkar%2C+T">Tanay Bhandarkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manduca%2C+A">Alex Manduca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">Tony Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brodwin%2C+M">Mark Brodwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S">Simon Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez%2C+A+H">Anthony H. Gonzalez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacInnis%2C+A">Amanda MacInnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knowles%2C+K">Kenda Knowles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">Brian J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lowe%2C+I">Ian Lowe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Federico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.00068v2-abstract-short" style="display: inline;"> Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2,839 significant galaxy overdensities at redshifts $0.7\lesssim z\lesssim 1.5$, which included extensive follow-up imaging from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00068v2-abstract-full').style.display = 'inline'; document.getElementById('2105.00068v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.00068v2-abstract-full" style="display: none;"> Galaxy clusters are an important tool for cosmology, and their detection and characterization are key goals for current and future surveys. Using data from the Wide-field Infrared Survey Explorer (WISE), the Massive and Distant Clusters of WISE Survey (MaDCoWS) located 2,839 significant galaxy overdensities at redshifts $0.7\lesssim z\lesssim 1.5$, which included extensive follow-up imaging from the Spitzer Space Telescope to determine cluster richnesses. Concurrently, the Atacama Cosmology Telescope (ACT) has produced large area mm-wave maps in three frequency bands along with a large catalog of Sunyaev-Zeldovich (SZ) selected clusters, as part of its Data Release 5 (DR5). Using the maps and cluster catalog from DR5, we explore the scaling between SZ mass and cluster richness. We use complementary radio survey data from the Very Large Array, submillimeter data from Herschel, and ACT 224~GHz data to assess the impact of contaminating sources on the SZ signals. We then use a hierarchical Bayesian model to fit the mass-richness scaling relation. We find that MaDCoWS clusters have submillimeter contamination which is consistent with a gray-body spectrum, while the ACT clusters are consistent with no submillimeter emission on average. We find the best fit ACT SZ mass vs. MaDCoWS richness scaling relation has a slope of $魏= 1.84^{+0.15}_{-0.14}$, where the slope is defined as $M\propto 位_{15}^魏$ where $位_{15}$ is the richness. Additionally, we find that the approximate level of in-fill of the ACT and MaDCoWS cluster SZ signals to be at the percent level <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00068v2-abstract-full').style.display = 'none'; document.getElementById('2105.00068v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 17 Figures; accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 653, A135 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.03154">arXiv:2103.03154</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.03154">pdf</a>, <a href="https://arxiv.org/format/2103.03154">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abfcc4">10.3847/1538-4365/abfcc4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Summary of DR4 and DR5 Data Products and Data Access </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mallaby-Kay%2C+M">Maya Mallaby-Kay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atkins%2C+Z">Zachary Atkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edwawd V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fichman%2C+K">Kyra Fichman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Golec%2C+J+E">Joseph E. Golec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a> , et al. (35 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.03154v2-abstract-short" style="display: inline;"> Two recent large data releases for the Atacama Cosmology Telescope (ACT), called DR4 and DR5, are available for public access. These data include temperature and polarization maps that cover nearly half the sky at arcminute resolution in three frequency bands; lensing maps and component-separated maps covering ~ 2,100 deg^2 of sky; derived power spectra and cosmological likelihoods; a catalog of o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03154v2-abstract-full').style.display = 'inline'; document.getElementById('2103.03154v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.03154v2-abstract-full" style="display: none;"> Two recent large data releases for the Atacama Cosmology Telescope (ACT), called DR4 and DR5, are available for public access. These data include temperature and polarization maps that cover nearly half the sky at arcminute resolution in three frequency bands; lensing maps and component-separated maps covering ~ 2,100 deg^2 of sky; derived power spectra and cosmological likelihoods; a catalog of over 4,000 galaxy clusters; and supporting ancillary products including beam functions and masks. The data and products are described in a suite of ACT papers; here we provide a summary. In order to facilitate ease of access to these data we present a set of Jupyter IPython notebooks developed to introduce users to DR4, DR5, and the tools needed to analyze these data. The data products (excluding simulations) and the set of notebooks are publicly available on the NASA Legacy Archive for Microwave Background Data Analysis (LAMBDA); simulation products are available on the National Energy Research Scientific Computing Center (NERSC). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.03154v2-abstract-full').style.display = 'none'; document.getElementById('2103.03154v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJS. 21 pages, 8 figures. Data and notebooks available on LAMBDA https://lambda.gsfc.nasa.gov/product/act/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08374">arXiv:2101.08374</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08374">pdf</a>, <a href="https://arxiv.org/format/2101.08374">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.043502">10.1103/PhysRevD.104.043502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Detection of the Pairwise Kinematic Sunyaev-Zel&#39;dovich Effect with SDSS DR15 Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08374v2-abstract-short" style="display: inline;"> We present a 5.4$蟽$ detection of the pairwise kinematic Sunyaev-Zel&#39;dovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and $\it{Planck}$ CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 GHz and 98 GHz maps, combining observations from 2008-2018 (ACT DR5), whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08374v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08374v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08374v2-abstract-full" style="display: none;"> We present a 5.4$蟽$ detection of the pairwise kinematic Sunyaev-Zel&#39;dovich (kSZ) effect using Atacama Cosmology Telescope (ACT) and $\it{Planck}$ CMB observations in combination with Luminous Red Galaxy samples from the Sloan Digital Sky Survey (SDSS) DR15 catalog. Results are obtained using three ACT CMB maps: co-added 150 GHz and 98 GHz maps, combining observations from 2008-2018 (ACT DR5), which overlap with SDSS DR15 over 3,700 sq. deg., and a component-separated map using night-time only observations from 2014-2015 (ACT DR4), overlapping with SDSS DR15 over 2,089 sq. deg. Comparisons of the results from these three maps provide consistency checks in relation to potential frequency-dependent foreground contamination. A total of 343,647 galaxies are used as tracers to identify and locate galaxy groups and clusters from which the kSZ signal is extracted using aperture photometry. We consider the impact of various aperture photometry assumptions and covariance estimation methods on the signal extraction. Theoretical predictions of the pairwise velocities are used to obtain best-fit, mass-averaged, optical depth estimates for each of five luminosity-selected tracer samples. A comparison of the kSZ-derived optical depth measurements obtained here to those derived from the thermal SZ effect for the same sample is presented in a companion paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08374v2-abstract-full').style.display = 'none'; document.getElementById('2101.08374v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures. Updated to match published version in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 043502 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08373">arXiv:2101.08373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08373">pdf</a>, <a href="https://arxiv.org/format/2101.08373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.043503">10.1103/PhysRevD.104.043503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Probing the Baryon Content of SDSS DR15 Galaxies with the Thermal and Kinematic Sunyaev-Zel&#39;dovich Effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Vavagiakis%2C+E+M">Eve M. Vavagiakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battistelli%2C+E+S">Elia S. Battistelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">S. M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunner%2C+R">Rolando Dunner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlozek%2C+R">Renee Hlozek</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08373v2-abstract-short" style="display: inline;"> We present high signal-to-noise measurements (up to 12$蟽$) of the average thermal Sunyaev Zel&#39;dovich (tSZ) effect from optically selected galaxy groups and clusters and estimate their baryon content within a 2.1$^\prime$ radius aperture. Sources from the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) DR15 catalog overlap with 3,700 sq. deg. of sky observed by the At&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08373v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08373v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08373v2-abstract-full" style="display: none;"> We present high signal-to-noise measurements (up to 12$蟽$) of the average thermal Sunyaev Zel&#39;dovich (tSZ) effect from optically selected galaxy groups and clusters and estimate their baryon content within a 2.1$^\prime$ radius aperture. Sources from the Sloan Digital Sky Survey (SDSS) Baryon Oscillation Spectroscopic Survey (BOSS) DR15 catalog overlap with 3,700 sq. deg. of sky observed by the Atacama Cosmology Telescope (ACT) from 2008 to 2018 at 150 and 98 GHz (ACT DR5), and 2,089 sq. deg. of internal linear combination component-separated maps combining ACT and $\it{Planck}$ data (ACT DR4). The corresponding optical depths, $\bar蟿$, which depend on the baryon content of the halos, are estimated using results from cosmological hydrodynamic simulations assuming an AGN feedback radiative cooling model. We estimate the mean mass of the halos in multiple luminosity bins, and compare the tSZ-based $\bar蟿$ estimates to theoretical predictions of the baryon content for a Navarro-Frenk-White profile. We do the same for $\bar蟿$ estimates extracted from fits to pairwise baryon momentum measurements of the kinematic Sunyaev-Zel&#39;dovich effect (kSZ) for the same data set obtained in a companion paper. We find that the $\bar蟿$ estimates from the tSZ measurements in this work and the kSZ measurements in the companion paper agree within $1蟽$ for two out of the three disjoint luminosity bins studied, while they differ by 2-3$蟽$ in the highest luminosity bin. The optical depth estimates account for one third to all of the theoretically predicted baryon content in the halos across luminosity bins. Potential systematic uncertainties are discussed. The tSZ and kSZ measurements provide a step towards empirical Compton-$\bar{y}$-$\bar蟿$ relationships to provide new tests of cluster formation and evolution models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08373v2-abstract-full').style.display = 'none'; document.getElementById('2101.08373v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 043503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.15088">arXiv:2012.15088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.15088">pdf</a>, <a href="https://arxiv.org/format/2012.15088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab939">10.1093/mnras/stab939 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MERGHERS Pilot: MeerKAT discovery of diffuse emission in nine massive Sunyaev-Zel&#39;dovich-selected galaxy clusters from ACT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Knowles%2C+K">K. Knowles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pillay%2C+D+S">D. S. Pillay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">S. Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baker%2C+A+J">A. J. Baker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+K">K. Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crichton%2C+D">D. Crichton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Gasperin%2C+F">F. de Gasperin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">M. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferrari%2C+C">C. Ferrari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">K. M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">J. P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B+J">B. J. Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">K. Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroczkowski%2C+T">T. Mroczkowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">F. Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Newburgh%2C+L+B">L. B. Newburgh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oozeer%2C+N">N. Oozeer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L">L. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">B. Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pfrommer%2C+C">C. Pfrommer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salatino%2C+M">M. Salatino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schillaci%2C+A">A. Schillaci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.15088v2-abstract-short" style="display: inline;"> The MeerKAT Exploration of Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS) survey is a planned project to study a large statistical sample of galaxy clusters with the MeerKAT observatory. Here we present the results of a 16--hour pilot project, observed in response to the 2019 MeerKAT Shared Risk proposal call, to test the feasibility of using MeerKAT for a large cluster study usin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15088v2-abstract-full').style.display = 'inline'; document.getElementById('2012.15088v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.15088v2-abstract-full" style="display: none;"> The MeerKAT Exploration of Relics, Giant Halos, and Extragalactic Radio Sources (MERGHERS) survey is a planned project to study a large statistical sample of galaxy clusters with the MeerKAT observatory. Here we present the results of a 16--hour pilot project, observed in response to the 2019 MeerKAT Shared Risk proposal call, to test the feasibility of using MeerKAT for a large cluster study using short (0.2--2.1\,hour) integration times. The pilot focuses on 1.28\,GHz observations of 13 massive, low-to-intermediate redshift ($0.22 &lt; z &lt; 0.65$) clusters from the Sunyaev-Zel&#39;dovich-selected Atacama Cosmology Telescope (ACT) DR5 catalogue that show multiwavelength indications of dynamical disturbance. With a 70 per cent detection rate (9/13 clusters), this pilot study validates our proposed MERGHERS observing strategy and provides twelve detections of diffuse emission, eleven of them new, indicating the strength of MeerKAT for such types of studies. The detections (signal-to-noise ratio $\gtrsim6$) are summarised as follows: two systems host both relic(s) and a giant radio halo, five systems host radio halos, and two have candidate radio halos. Power values, $k$-corrected to 1.4 GHz assuming a fiducial spectral index of $伪= -1.3 \pm 0.4$, are consistent with known radio halo and relic scaling relations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15088v2-abstract-full').style.display = 'none'; document.getElementById('2012.15088v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, 2 tables. Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.11043">arXiv:2009.11043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.11043">pdf</a>, <a href="https://arxiv.org/format/2009.11043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abd023">10.3847/1538-4365/abd023 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Catalog of &gt; 4000 Sunyaev-Zel&#39;dovich Galaxy Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">M. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">C. Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">S. Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M">M. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oguri%2C+M">M. Oguri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rozo%2C+E">E. Rozo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E">E. Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+T+M+C">T. M. C. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">S. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguena%2C+M">M. Aguena</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">S. Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allam%2C+S">S. Allam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">S. Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amon%2C+A">A. Amon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Annis%2C+J">J. Annis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ansarinejad%2C+B">B. Ansarinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aros-Bunster%2C+C">C. Aros-Bunster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">J. E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Avila%2C+S">S. Avila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bacon%2C+D">D. Bacon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">N. Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">J. A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">D. T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernstein%2C+G+M">G. M. Bernstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bertin%2C+E">E. Bertin</a> , et al. (124 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.11043v2-abstract-short" style="display: inline;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'inline'; document.getElementById('2009.11043v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.11043v2-abstract-full" style="display: none;"> We present a catalog of 4195 optically confirmed Sunyaev-Zel&#39;dovich (SZ) selected galaxy clusters detected with signal-to-noise &gt; 4 in 13,211 deg$^2$ of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multi-frequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008-2018, and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 &lt; z &lt; 1.91 (median z = 0.52). The catalog contains 222 z &gt; 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ-signal vs. mass scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c &gt; 3.8 x 10$^{14}$ MSun, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio &gt; 5 in maps filtered at an angular scale of 2.4&#39;. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ-signal mass-scaling relation, such as the Dark Energy Survey (4566 deg$^2$), the Hyper Suprime-Cam Subaru Strategic Program (469 deg$^2$), and the Kilo Degree Survey (825 deg$^2$). We highlight some noteworthy objects in the sample, including potentially projected systems; clusters with strong lensing features; clusters with active central galaxies or star formation; and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses, and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.11043v2-abstract-full').style.display = 'none'; document.getElementById('2009.11043v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 27 figures, accepted for publication in ApJS; v1.0 catalogs will be available from LAMBDA https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm; v1.0 catalogs available from https://astro.ukzn.ac.za/~mjh/ACTDR5/v1.0/ until then</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.07772">arXiv:2009.07772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.07772">pdf</a>, <a href="https://arxiv.org/format/2009.07772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/abbccb">10.3847/2041-8213/abbccb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Weighing distant clusters with the most ancient light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dicker%2C+S+R">Simon R. Dicker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a> , et al. (36 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.07772v2-abstract-short" style="display: inline;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'inline'; document.getElementById('2009.07772v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.07772v2-abstract-full" style="display: none;"> We use gravitational lensing of the cosmic microwave background (CMB) to measure the mass of the most distant blindly-selected sample of galaxy clusters on which a lensing measurement has been performed to date. In CMB data from the the Atacama Cosmology Telescope (ACT) and the Planck satellite, we detect the stacked lensing effect from 677 near-infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS), which have a mean redshift of $ \langle z \rangle = 1.08$. There are no current optical weak lensing measurements of clusters that match the distance and average mass of this sample. We detect the lensing signal with a significance of $4.2 蟽$. We model the signal with a halo model framework to find the mean mass of the population from which these clusters are drawn. Assuming that the clusters follow Navarro-Frenk-White density profiles, we infer a mean mass of $\langle M_{500c}\rangle = \left(1.7 \pm 0.4 \right)\times10^{14}\,\mathrm{M}_\odot$. We consider systematic uncertainties from cluster redshift errors, centering errors, and the shape of the NFW profile. These are all smaller than 30% of our reported uncertainty. This work highlights the potential of CMB lensing to enable cosmological constraints from the abundance of distant clusters populating ever larger volumes of the observable Universe, beyond the capabilities of optical weak lensing measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.07772v2-abstract-full').style.display = 'none'; document.getElementById('2009.07772v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures, matches version accepted in ApJL, code available at https://github.com/ACTCollaboration/madcows_lensing/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05558">arXiv:2009.05558</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05558">pdf</a>, <a href="https://arxiv.org/format/2009.05558">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.063514">10.1103/PhysRevD.103.063514 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Modeling the Gas Thermodynamics in BOSS CMASS galaxies from Kinematic and Thermal Sunyaev-Zel&#39;dovich Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schaan%2C+E">Emmanuel Schaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moser%2C+E">Emily Moser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hall%2C+K+R">Kirsten R. Hall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05558v4-abstract-short" style="display: inline;"> The thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05558v4-abstract-full').style.display = 'inline'; document.getElementById('2009.05558v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05558v4-abstract-full" style="display: none;"> The thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new measurements of the kSZ and tSZ signals obtained in a companion paper. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection $蔚M_\star c^2$, where $M_\star$ is the stellar mass, to be $蔚=(40\pm9)\times10^{-6}$, and the amplitude of the non-thermal pressure profile to be $伪_{\rm Nth}&lt;0.2$ (2$蟽$), indicating that less than 20% of the total pressure within the virial radius is due to a non-thermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best-fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in arXiv:1611.08606 by half but does not fully reconcile it. Comparing the tSZ measurements to cosmological simulations, we find that simulations underestimate the CGM pressure at large radii while they fare better in comparison with the kSZ measurements. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05558v4-abstract-full').style.display = 'none'; document.getElementById('2009.05558v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected error in the algorithm that calculates the kSZ temperature profile for a given GNFW density model. The value of $\log_{\rm10} 蟻_0$ changed by 0.75$蟽$ in Tab.II and Fig.2, and affected the results in the left panels of Fig. 6. Conclusions are unchanged. Erratum published at https://link.aps.org/doi/10.1103/PhysRevD.107.049903</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 063514 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.05557">arXiv:2009.05557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.05557">pdf</a>, <a href="https://arxiv.org/format/2009.05557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.063513">10.1103/PhysRevD.103.063513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Combined kinematic and thermal Sunyaev-Zel&#39;dovich measurements from BOSS CMASS and LOWZ halos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schaan%2C+E">Emmanuel Schaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.05557v2-abstract-short" style="display: inline;"> The scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ galaxy catalogs from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05557v2-abstract-full').style.display = 'inline'; document.getElementById('2009.05557v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.05557v2-abstract-full" style="display: none;"> The scattering of cosmic microwave background (CMB) photons off the free-electron gas in galaxies and clusters leaves detectable imprints on high resolution CMB maps: the thermal and kinematic Sunyaev-Zel&#39;dovich effects (tSZ and kSZ respectively). We use combined microwave maps from the Atacama Cosmology Telescope (ACT) DR5 and Planck in combination with the CMASS and LOWZ galaxy catalogs from the Baryon Oscillation Spectroscopic Survey (BOSS DR10 and DR12), to study the gas associated with these galaxy groups. Using individual reconstructed velocities, we perform a stacking analysis and reject the no-kSZ hypothesis at 6.5$蟽$, the highest significance to date. This directly translates into a measurement of the electron number density profile, and thus of the gas density profile. Despite the limited signal to noise, the measurement shows at high significance that the gas density profile is more extended than the dark matter density profile, for any reasonable baryon abundance (formally $&gt;90蟽$ for the cosmic baryon abundance). We simultaneously measure the tSZ signal, i.e. the electron thermal pressure profile of the same CMASS objects, and reject the no-tSZ hypothesis at 10$蟽$. We combine tSZ and kSZ measurements to estimate the electron temperature to 20% precision in several aperture bins, and find it comparable to the virial temperature. In a companion paper, we analyze these measurements to constrain the gas thermodynamics and the properties of feedback inside galaxy groups. We present the corresponding LOWZ measurements in this paper, ruling out a null kSZ (tSZ) signal at 2.9 (13.9)$蟽$, and leave their interpretation to future work. Our stacking software ThumbStack is publicly available at https://github.com/EmmanuelSchaan/ThumbStack and directly applicable to future Simons Observatory and CMB-S4 data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.05557v2-abstract-full').style.display = 'none'; document.getElementById('2009.05557v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in Physical Review D, Editors&#39; Suggestion</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 063513 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11663">arXiv:2008.11663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11663">pdf</a>, <a href="https://arxiv.org/format/2008.11663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac0bbc">10.3847/1538-4357/ac0bbc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing galaxy evolution in massive clusters using ACT and DES: splashback as a cosmic clock </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+S">Susmita Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+T">Tae-hyeon Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jain%2C+B">Bhuvnesh Jain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baxter%2C+E">Eric Baxter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+C">Chihway Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wechsler%2C+R+H">Risa H. Wechsler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bocquet%2C+S">Sebastian Bocquet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeRose%2C+J">Joseph DeRose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evrard%2C+A+E">August E. Evrard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lokken%2C+M">Martine Lokken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacInnis%2C+A">Amanda MacInnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McMahon%2C+J">Jeffrey McMahon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nati%2C+F">Frederico Nati</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Newburgh%2C+L+B">Laura B. Newburgh</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11663v1-abstract-short" style="display: inline;"> We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev--Zeldovich (SZ) effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius for the complete galaxy sample is consistent with theoretical measurements from CDM-only simulations, and is loc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11663v1-abstract-full').style.display = 'inline'; document.getElementById('2008.11663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11663v1-abstract-full" style="display: none;"> We measure the projected number density profiles of galaxies and the splashback feature in clusters selected by the Sunyaev--Zeldovich (SZ) effect from the Advanced Atacama Cosmology Telescope (AdvACT) survey using galaxies observed by the Dark Energy Survey (DES). The splashback radius for the complete galaxy sample is consistent with theoretical measurements from CDM-only simulations, and is located at $2.4^{+0.3}_{-0.4}$ Mpc $h^{-1}$. We split the sample based on galaxy color and find significant differences in the profile shapes. Red galaxies and those in the green valley show a splashback-like minimum in their slope profile consistent with theoretical predictions, while the bluest galaxies show a weak feature that appears at a smaller radius. We develop a mapping of galaxies to subhalos in $N$-body simulations by splitting subhalos based on infall time onto the cluster halos. We find that the location of the steepest slope and differences in the shapes of the profiles can be mapped to differences in the average time of infall of galaxies of different colors. The minima of the slope in the galaxy profiles trace a discontinuity in the phase space of dark matter halos. By relating spatial profiles to infall time for galaxies of different colours, we can use splashback as a clock to understand galaxy quenching. We find that red galaxies have on average been in their clusters for over $3.2 ~\rm Gyrs$, green galaxies about $2.2 ~\rm Gyrs$, while blue galaxies have been accreted most recently and have not reached apocenter. Using the information from the complete radial profiles, we fit a simple quenching model and find that the onset of galaxy quenching in clusters occurs after a delay of about a gigayear, and that galaxies quench rapidly thereafter with an exponential timescale of $0.6$ Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11663v1-abstract-full').style.display = 'none'; document.getElementById('2008.11663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, to be submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.14405">arXiv:2007.14405</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.14405">pdf</a>, <a href="https://arxiv.org/format/2007.14405">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Delensed Power Spectra and Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacInnis%2C+A">Amanda MacInnis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Engelen%2C+A">Alexander van Engelen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A+E">Anna E. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlo%C5%BEek%2C+R">Ren茅e Hlo啪ek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.14405v2-abstract-short" style="display: inline;"> We present LCDM cosmological parameter constraints obtained from delensed microwave background power spectra. Lensing maps from a subset of DR4 data from the Atacama Cosmology Telescope (ACT) are used to undo the lensing effect in ACT spectra observed at 150 and 98 GHz. At 150 GHz, we remove the lensing distortion with an effective efficiency of 30% (TT), 30% (EE), 26% (TE) and 20% (BB); this resu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14405v2-abstract-full').style.display = 'inline'; document.getElementById('2007.14405v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.14405v2-abstract-full" style="display: none;"> We present LCDM cosmological parameter constraints obtained from delensed microwave background power spectra. Lensing maps from a subset of DR4 data from the Atacama Cosmology Telescope (ACT) are used to undo the lensing effect in ACT spectra observed at 150 and 98 GHz. At 150 GHz, we remove the lensing distortion with an effective efficiency of 30% (TT), 30% (EE), 26% (TE) and 20% (BB); this results in detections of the delensing effect at 8.7 sigma (TT), 5.1 sigma (EE), 2.6 sigma (TE), and 2.4 sigma (BB) significance. The combination of 150 and 98 GHz TT, EE, and TE delensed spectra is well fit by a standard LCDM model. We also measure the shift in best-fit parameters when fitting delensed versus lensed spectra; while this shift does not inform our ability to measure cosmological parameters, it does provide a three-way consistency check among the lensing inferred from the best-fit parameters, the lensing in the CMB power spectrum, and the reconstructed lensing map. This shift is predicted to be zero when fitting with the correct model since both lensed and delensed spectra originate from the same region of sky. Fitting with a LCDM model and marginalizing over foregrounds, we find that the shift in cosmological parameters is consistent with zero. Our results show that gravitational lensing of the microwave background is internally consistent within the framework of the standard cosmological model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.14405v2-abstract-full').style.display = 'none'; document.getElementById('2007.14405v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 17 figures, version matches that accepted by JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP, Issue 01, article id. 031 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07290">arXiv:2007.07290</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07290">pdf</a>, <a href="https://arxiv.org/format/2007.07290">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/12/046">10.1088/1475-7516/2020/12/046 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR5 maps of 18,000 square degrees of the microwave sky from ACT 2008-2018 data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+R+J">Richard J. Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cothard%2C+N+F">Nicholas F. Cothard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crowley%2C+K+T">Kevin T. Crowley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Datta%2C+R">Rahul Datta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Denison%2C+E+V">Edward V. Denison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duell%2C+C+J">Cody J. Duell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duff%2C+S+M">Shannon M. Duff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duivenvoorden%2C+A+J">Adriaan J. Duivenvoorden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A+E">Anna E. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07290v5-abstract-short" style="display: inline;"> This paper presents a maximum-likelihood algorithm for combining sky maps with disparate sky coverage, angular resolution and spatially varying anisotropic noise into a single map of the sky. We use this to merge hundreds of individual maps covering the 2008-2018 ACT observing seasons, resulting in by far the deepest ACT maps released so far. We also combine the maps with the full Planck maps, res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07290v5-abstract-full').style.display = 'inline'; document.getElementById('2007.07290v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07290v5-abstract-full" style="display: none;"> This paper presents a maximum-likelihood algorithm for combining sky maps with disparate sky coverage, angular resolution and spatially varying anisotropic noise into a single map of the sky. We use this to merge hundreds of individual maps covering the 2008-2018 ACT observing seasons, resulting in by far the deepest ACT maps released so far. We also combine the maps with the full Planck maps, resulting in maps that have the best features of both Planck and ACT: Planck&#39;s nearly white noise on intermediate and large angular scales and ACT&#39;s high-resolution and sensitivity on small angular scales. The maps cover over 18,000 square degrees, nearly half the full sky, at 100, 150 and 220 GHz. They reveal 4,000 optically-confirmed clusters through the Sunyaev Zel&#39;dovich effect (SZ) and 18,500 point source candidates at $&gt; 5蟽$, the largest single collection of SZ clusters and millimeter wave sources to date. The multi-frequency maps provide millimeter images of nearby galaxies and individual Milky Way nebulae, and even clear detections of several nearby stars. Other anticipated uses of these maps include, for example, thermal SZ and kinematic SZ cluster stacking, CMB cluster lensing and galactic dust science. The method itself has negligible bias. However, due to the preliminary nature of some of the component data sets, we caution that these maps should not be used for precision cosmological analysis. The maps are part of ACT DR5, and are available on LAMBDA at https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.cfm. There is also a web atlas at https://phy-act1.princeton.edu/public/snaess/actpol/dr5/atlas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07290v5-abstract-full').style.display = 'none'; document.getElementById('2007.07290v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 29 figures, data release on lambda. Published in JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07289">arXiv:2007.07289</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07289">pdf</a>, <a href="https://arxiv.org/format/2007.07289">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/12/045">10.1088/1475-7516/2020/12/045 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectra at 98 and 150 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koopman%2C+B">Brian Koopman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lungu%2C+M">Marius Lungu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">Maximilian H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angile%2C+E">Elio Angile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campusano%2C+L+E">Luis E. Campusano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrero%2C+F">Felipe Carrero</a> , et al. (114 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07289v2-abstract-short" style="display: inline;"> We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $&gt;$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07289v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07289v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07289v2-abstract-full" style="display: none;"> We present the temperature and polarization angular power spectra of the CMB measured by the Atacama Cosmology Telescope (ACT) from 5400 deg$^2$ of the 2013-2016 survey, which covers $&gt;$15000 deg$^2$ at 98 and 150 GHz. For this analysis we adopt a blinding strategy to help avoid confirmation bias and, related to this, show numerous checks for systematic error done before unblinding. Using the likelihood for the cosmological analysis we constrain secondary sources of anisotropy and foreground emission, and derive a &#34;CMB-only&#34; spectrum that extends to $\ell=4000$. At large angular scales, foreground emission at 150 GHz is $\sim$1% of TT and EE within our selected regions and consistent with that found by Planck. Using the same likelihood, we obtain the cosmological parameters for $螞$CDM for the ACT data alone with a prior on the optical depth of $蟿=0.065\pm0.015$. $螞$CDM is a good fit. The best-fit model has a reduced $蠂^2$ of 1.07 (PTE=0.07) with $H_0=67.9\pm1.5$ km/s/Mpc. We show that the lensing BB signal is consistent with $螞$CDM and limit the celestial EB polarization angle to $蠄_P =-0.07^{\circ}\pm0.09^{\circ}$. We directly cross correlate ACT with Planck and observe generally good agreement but with some discrepancies in TE. All data on which this analysis is based will be publicly released. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07289v2-abstract-full').style.display = 'none'; document.getElementById('2007.07289v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 27 figures, products available on the NASA LAMBDA website, version accepted for publication in JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.07288">arXiv:2007.07288</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.07288">pdf</a>, <a href="https://arxiv.org/format/2007.07288">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/12/047">10.1088/1475-7516/2020/12/047 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maurin%2C+L">Lo茂c Maurin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmitt%2C+B+L">Benjamin L. Schmitt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abitbol%2C+M+H">Maximilian H. Abitbol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ade%2C+P+A+R">Peter A. R. Ade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso%2C+D">David Alonso</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amiri%2C+M">Mandana Amiri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amodeo%2C+S">Stefania Amodeo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angile%2C+E">Elio Angile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Austermann%2C+J+E">Jason E. Austermann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nick Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+S+M">Sarah Marie Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campusano%2C+L+E">Luis E. Campusano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrero%2C+F">Felipe Carrero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cho%2C+H">Hsiao-mei Cho</a> , et al. (116 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.07288v2-abstract-short" style="display: inline;"> We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below 10 $渭$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07288v2-abstract-full').style.display = 'inline'; document.getElementById('2007.07288v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.07288v2-abstract-full" style="display: none;"> We present new arcminute-resolution maps of the Cosmic Microwave Background temperature and polarization anisotropy from the Atacama Cosmology Telescope, using data taken from 2013-2016 at 98 and 150 GHz. The maps cover more than 17,000 deg$^2$, the deepest 600 deg$^2$ with noise levels below 10 $渭$K-arcmin. We use the power spectrum derived from almost 6,000 deg$^2$ of these maps to constrain cosmology. The ACT data enable a measurement of the angular scale of features in both the divergence-like polarization and the temperature anisotropy, tracing both the velocity and density at last-scattering. From these one can derive the distance to the last-scattering surface and thus infer the local expansion rate, $H_0$. By combining ACT data with large-scale information from WMAP we measure $H_0 = 67.6 \pm 1.1$ km/s/Mpc, at 68% confidence, in excellent agreement with the independently-measured Planck satellite estimate (from ACT alone we find $H_0 = 67.9 \pm 1.5$ km/s/Mpc). The $螞$CDM model provides a good fit to the ACT data, and we find no evidence for deviations: both the spatial curvature, and the departure from the standard lensing signal in the spectrum, are zero to within 1$蟽$; the number of relativistic species, the primordial Helium fraction, and the running of the spectral index are consistent with $螞$CDM predictions to within $1.5 - 2.2蟽$. We compare ACT, WMAP, and Planck at the parameter level and find good consistency; we investigate how the constraints on the correlated spectral index and baryon density parameters readjust when adding CMB large-scale information that ACT does not measure. The DR4 products presented here will be publicly released on the NASA Legacy Archive for Microwave Background Data Analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.07288v2-abstract-full').style.display = 'none'; document.getElementById('2007.07288v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 24 figures, products available on the NASA LAMBDA website, version accepted for publication in JCAP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.01139">arXiv:2004.01139</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.01139">pdf</a>, <a href="https://arxiv.org/format/2004.01139">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3438">10.1093/mnras/staa3438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: A CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B">Blake Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S">Steve Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Jo Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A+E">Anna E. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.01139v2-abstract-short" style="display: inline;"> We construct cosmic microwave background lensing mass maps using data from the 2014 and 2015 seasons of observations with the Atacama Cosmology Telescope (ACT). These maps cover 2100 square degrees of sky and overlap with a wide variety of optical surveys. The maps are signal dominated on large scales and have fidelity such that their correlation with the cosmic infrared background is clearly visi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01139v2-abstract-full').style.display = 'inline'; document.getElementById('2004.01139v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.01139v2-abstract-full" style="display: none;"> We construct cosmic microwave background lensing mass maps using data from the 2014 and 2015 seasons of observations with the Atacama Cosmology Telescope (ACT). These maps cover 2100 square degrees of sky and overlap with a wide variety of optical surveys. The maps are signal dominated on large scales and have fidelity such that their correlation with the cosmic infrared background is clearly visible by eye. We also create lensing maps with thermal Sunyaev-Zel&#39;dovich contamination removed using a novel cleaning procedure that only slightly degrades the lensing signal-to-noise ratio. The cross-spectrum between the cleaned lensing map and the BOSS CMASS galaxy sample is detected at $10$-$蟽$ significance, with an amplitude of $A=1.02 \pm 0.10$ relative to the Planck best-fit LCDM cosmological model with fiducial linear galaxy bias. Our measurement lays the foundation for lensing cross-correlation science with current ACT data and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.01139v2-abstract-full').style.display = 'none'; document.getElementById('2004.01139v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, lensing map products will be made available on LAMBDA as part of the upcoming ACT data release, v2 corrects author list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08922">arXiv:2003.08922</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.08922">pdf</a>, <a href="https://arxiv.org/format/2003.08922">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab822a">10.3847/1538-4357/ab822a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Sub-Solar Metallicity Progenitor for Cassiopeia A, the remnant of a Type IIb Supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoshida%2C+T">Takashi Yoshida</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Umeda%2C+H">Hideyuki Umeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagataki%2C+S">Shigehiro Nagataki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ono%2C+M">Masaomi Ono</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+K">Keiichi Maeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+R">Ryosuke Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+B+J">Brian J. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+Y">Yoshitomo Maeda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08922v2-abstract-short" style="display: inline;"> We report, for the first time, the detection of the Mn-K$伪$ line in the Type IIb supernova (SN IIb) remnant, Cassiopeia A. Manganese ($^{55}$Mn after decay of $^{55}$Co), a neutron-rich element, together with chromium ($^{52}$Cr after decay of $^{52}$Fe), is mainly synthesized at the explosive incomplete Si burning regime. Therefore, the Mn/Cr mass ratio with its neutron excess reflects the neutro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08922v2-abstract-full').style.display = 'inline'; document.getElementById('2003.08922v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08922v2-abstract-full" style="display: none;"> We report, for the first time, the detection of the Mn-K$伪$ line in the Type IIb supernova (SN IIb) remnant, Cassiopeia A. Manganese ($^{55}$Mn after decay of $^{55}$Co), a neutron-rich element, together with chromium ($^{52}$Cr after decay of $^{52}$Fe), is mainly synthesized at the explosive incomplete Si burning regime. Therefore, the Mn/Cr mass ratio with its neutron excess reflects the neutronization at the relevant burning layer during the explosion. Chandra&#39;s archival X-ray data of Cassiopeia A indicate a low Mn/Cr mass ratio with values in the range 0.10--0.66, which, when compared to one-dimensional SN explosion models, requires that the electron fraction be 0.4990 $\lesssim Y_{\rm e} \lesssim$ 0.5 at the incomplete Si burning layer. An explosion model assuming a solar-metallicity progenitor with a typical explosion energy ($1 \times 10^{51}$ erg) fails to reproduce such a high electron fraction. In such models, the explosive Si-burning regime extends only to the Si/O layer established during the progenitor&#39;s hydrostatic evolution; the $Y_e$ in the Si/O layer is lower than the value required by our observational constraints. We can satisfy the observed Mn/Cr mass ratio if the explosive Si-burning regime were to extend into the O/Ne hydrostatic layer, which has a higher $Y_{\rm e}$. This would require an energetic ($&gt; 2 \times 10^{51}$ erg) and/or asymmetric explosion of a sub-solar metallicity progenitor ($Z \lesssim 0.5Z_{\odot}$) for Cassiopeia A. The low initial metallicity can be used to rule out a single-star progenitor, leaving the possibility of a binary progenitor with a compact companion (white dwarf, neutron star or black hole). We discuss the detectability of X-rays from Bondi accretion onto such a compact companion around the explosion site. We also discuss other possible mass-loss scenarios for the progenitor system of Cassiopeia A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08922v2-abstract-full').style.display = 'none'; document.getElementById('2003.08922v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 5 figure. Accepted for publication in ApJ. minor changes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.10465">arXiv:2001.10465</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.10465">pdf</a>, <a href="https://arxiv.org/ps/2001.10465">ps</a>, <a href="https://arxiv.org/format/2001.10465">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.101.083527">10.1103/PhysRevD.101.083527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Constraints on Cosmic Birefringence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Namikawa%2C+T">Toshiya Namikawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guan%2C+Y">Yilun Guan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherwin%2C+B+D">Blake D. Sherwin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beall%2C+J+A">James A. Beall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becker%2C+D+T">Daniel T. Becker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chesmore%2C+G+E">Grace E. Chesmore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A+E">Anna E. Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gluscevic%2C+V">Vera Gluscevic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlo%C5%BEek%2C+R">Ren茅e Hlo啪ek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K">Kevin Huffenberger</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.10465v2-abstract-short" style="display: inline;"> We present new constraints on anisotropic birefringence of the cosmic microwave background polarization using two seasons of data from the Atacama Cosmology Telescope covering $456$ square degrees of sky. The birefringence power spectrum, measured using a curved-sky quadratic estimator, is consistent with zero. Our results provide the tightest current constraint on birefringence over a range of an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10465v2-abstract-full').style.display = 'inline'; document.getElementById('2001.10465v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.10465v2-abstract-full" style="display: none;"> We present new constraints on anisotropic birefringence of the cosmic microwave background polarization using two seasons of data from the Atacama Cosmology Telescope covering $456$ square degrees of sky. The birefringence power spectrum, measured using a curved-sky quadratic estimator, is consistent with zero. Our results provide the tightest current constraint on birefringence over a range of angular scales between $5$ arcminutes and $9$ degrees. We improve previous upper limits on the amplitude of a scale-invariant birefringence power spectrum by a factor of between $2$ and $3$. Assuming a nearly-massless axion field during inflation, our result is equivalent to a $2\,蟽$ upper limit on the Chern-Simons coupling constant between axions and photons of $g_{伪纬}&lt;4.0\times 10^{-2}/H_I$ where $H_I$ is the inflationary Hubble scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.10465v2-abstract-full').style.display = 'none'; document.getElementById('2001.10465v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 3 figures, Accepted for publication in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 101, 083527 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.09587">arXiv:2001.09587</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.09587">pdf</a>, <a href="https://arxiv.org/format/2001.09587">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab193">10.1093/mnras/stab193 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: SZ-based masses and dust emission from IR-selected cluster candidates in the SHELA survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fuzia%2C+B+J">Brittany J. Fuzia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawinwanichakij%2C+L">Lalitwadee Kawinwanichakij</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mehrtens%2C+N">Nicola Mehrtens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciardullo%2C+R">Robin Ciardullo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finkelstein%2C+S+L">Steven L. Finkelstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M">Megan Gralla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jogee%2C+S">Shardha Jogee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maldonado%2C+F+A">Felipe A. Maldonado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Papovich%2C+C">Casey Papovich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rykoff%2C+E">Eli Rykoff</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sehgal%2C+N">Neelima Sehgal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sifon%2C+C">Cristobal Sifon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">Suzanne T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E">Edward Wollack</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.09587v1-abstract-short" style="display: inline;"> We examine the stacked thermal Sunyaev-Zel\text{&#39;}dovich (SZ) signals for a sample of galaxy cluster candidates from the Spitzer-HETDEX Exploratory Large Area (SHELA) Survey, which are identified in combined optical and infrared SHELA data using the redMaPPer algorithm. We separate the clusters into three richness bins, with average photometric redshifts ranging from 0.70 to 0.80. The richest bin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09587v1-abstract-full').style.display = 'inline'; document.getElementById('2001.09587v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.09587v1-abstract-full" style="display: none;"> We examine the stacked thermal Sunyaev-Zel\text{&#39;}dovich (SZ) signals for a sample of galaxy cluster candidates from the Spitzer-HETDEX Exploratory Large Area (SHELA) Survey, which are identified in combined optical and infrared SHELA data using the redMaPPer algorithm. We separate the clusters into three richness bins, with average photometric redshifts ranging from 0.70 to 0.80. The richest bin shows a clear temperature decrement at 148 GHz in the Atacama Cosmology Telescope data, which we attribute to the SZ effect. All richness bins show an increment at 220 GHz, which we attribute to dust emission from cluster galaxies. We correct for dust emission using stacked profiles from Herschel Stripe 82 data, and allow for synchrotron emission using stacked profiles created by binning source fluxes from NVSS data. We see dust emission in all three richness bins, but can only confidently detect the SZ decrement in the highest richness bin, finding $M_{500}$ = $8.7^{+1.7}_{-1.3} \times 10^{13} M_\odot$. Neglecting the correction for dust depresses the inferred mass by 26 percent, indicating a partial fill-in of the SZ decrement from thermal dust and synchrotron emission by the cluster member galaxies. We compare our corrected SZ masses to two redMaPPer mass--richness scaling relations and find that the SZ mass is lower than predicted by the richness. We discuss possible explanations for this discrepancy, and note that the SHELA richnesses may differ from previous richness measurements due to the inclusion of IR data in redMaPPer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.09587v1-abstract-full').style.display = 'none'; document.getElementById('2001.09587v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures. Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.02662">arXiv:2001.02662</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.02662">pdf</a>, <a href="https://arxiv.org/format/2001.02662">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab6aa2">10.3847/1538-4357/ab6aa2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Nucleosynthetic Origin for the Southwestern Fe-rich Structure in Kepler&#39;s Supernova Remnant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sato%2C+T">Toshiki Sato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bravo%2C+E">Eduardo Bravo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Badenes%2C+C">Carles Badenes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+B+J">Brian J. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yamaguchi%2C+H">Hiroya Yamaguchi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.02662v1-abstract-short" style="display: inline;"> {\it Chandra} X-ray observations of Kepler&#39;s supernova remnant indicate the existence of a high speed Fe-rich ejecta structure in the southwestern region. We report strong K-shell emission from Fe-peak elements (Cr, Mn, Fe, Ni), as well as Ca, in this Fe-rich structure, implying that those elements could be produced in the inner area of the exploding white dwarf. We found Ca/Fe, Cr/Fe, Mn/Fe and N&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02662v1-abstract-full').style.display = 'inline'; document.getElementById('2001.02662v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.02662v1-abstract-full" style="display: none;"> {\it Chandra} X-ray observations of Kepler&#39;s supernova remnant indicate the existence of a high speed Fe-rich ejecta structure in the southwestern region. We report strong K-shell emission from Fe-peak elements (Cr, Mn, Fe, Ni), as well as Ca, in this Fe-rich structure, implying that those elements could be produced in the inner area of the exploding white dwarf. We found Ca/Fe, Cr/Fe, Mn/Fe and Ni/Fe mass ratios of 1.0--4.1\%, 1.0--4.6\%, 1--11\% and 2--30\%, respectively. In order to constrain the burning regime that could produce this structure, we compared these observed mass ratios with those in 18 one-dimensional Type Ia nucleosynthesis models (including both near-$M_{\rm Ch}$ and sub-$M_{\rm Ch}$ explosion models). The observed mass ratios agree well with those around the middle layer of incomplete Si-burning in Type Ia nucleosynthesis models with a peak temperature of $\sim$(5.0--5.3)$\times$10$^{9}$ K and a high metallicity, Z $&gt;$ 0.0225. Based on our results, we infer the necessity for some mechanism to produce protruding Fe-rich clumps dominated by incomplete Si-burning products during the explosion. We also discuss the future perspectives of X-ray observations of Fe-rich structures in other Type Ia supernova remnants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02662v1-abstract-full').style.display = 'none'; document.getElementById('2001.02662v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 12 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.05717">arXiv:1911.05717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.05717">pdf</a>, <a href="https://arxiv.org/format/1911.05717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.102.023534">10.1103/PhysRevD.102.023534 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel&#39;dovich effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhavacheril%2C+M+S">Mathew S. Madhavacheril</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naess%2C+S">Sigurd Naess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiola%2C+S">Simone Aiola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baildon%2C+T">Taylor Baildon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bean%2C+R">Rachel Bean</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bond%2C+J+R">J. Richard Bond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calabrese%2C+E">Erminia Calabrese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calafut%2C+V">Victoria Calafut</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+S+K">Steve K. Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darwish%2C+O">Omar Darwish</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M+J">Mark J. Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%BCnner%2C+R">Rolando D眉nner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferraro%2C+S">Simone Ferraro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gallardo%2C+P+A">Patricio A. Gallardo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halpern%2C+M">Mark Halpern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+D">Dongwon Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselfield%2C+M">Matthew Hasselfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hincks%2C+A+D">Adam D. Hincks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hlo%C5%BEek%2C+R">Ren茅e Hlo啪ek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+S+P">Shuay-Pwu Patty Ho</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.05717v2-abstract-short" style="display: inline;"> Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05717v2-abstract-full').style.display = 'inline'; document.getElementById('1911.05717v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.05717v2-abstract-full" style="display: none;"> Optimal analyses of many signals in the cosmic microwave background (CMB) require map-level extraction of individual components in the microwave sky, rather than measurements at the power spectrum level alone. To date, nearly all map-level component separation in CMB analyses has been performed exclusively using satellite data. In this paper, we implement a component separation method based on the internal linear combination (ILC) approach which we have designed to optimally account for the anisotropic noise (in the 2D Fourier domain) often found in ground-based CMB experiments. Using this method, we combine multi-frequency data from the Planck satellite and the Atacama Cosmology Telescope Polarimeter (ACTPol) to construct the first wide-area, arcminute-resolution component-separated maps (covering approximately 2100 sq. deg.) of the CMB temperature anisotropy and the thermal Sunyaev-Zel&#39;dovich (tSZ) effect sourced by the inverse-Compton scattering of CMB photons off hot, ionized gas. Our ILC pipeline allows for explicit deprojection of various contaminating signals, including a modified blackbody approximation of the cosmic infrared background (CIB) spectral energy distribution. The cleaned CMB maps will be a useful resource for CMB lensing reconstruction, kinematic SZ cross-correlations, and primordial non-Gaussianity studies. The tSZ maps will be used to study the pressure profiles of galaxies, groups, and clusters through cross-correlations with halo catalogs, with dust contamination controlled via CIB deprojection. The data products described in this paper are available on LAMBDA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.05717v2-abstract-full').style.display = 'none'; document.getElementById('1911.05717v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 11 figures, matches version accepted by PRD. Data products are available on LAMBDA at https://lambda.gsfc.nasa.gov/product/act/act_dr4_derived_maps_get.cfm</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 102, 023534 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11731">arXiv:1907.11731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.11731">pdf</a>, <a href="https://arxiv.org/format/1907.11731">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2751">10.1093/mnras/stz2751 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantifying the Thermal Sunyaev-Zel&#39;dovich Effect and Excess Millimeter Emission in Quasar Environments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hall%2C+K+R">Kirsten R. Hall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zakamska%2C+N+L">Nadia L. Zakamska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G">Graeme Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Battaglia%2C+N">Nicholas Battaglia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crichton%2C+D">Devin Crichton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Devlin%2C+M">Mark Devlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dunkley%2C+J">Joanna Dunkley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gralla%2C+M">Megan Gralla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+J+C">J. Colin Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hilton%2C+M">Matt Hilton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hubmayr%2C+J">Johannes Hubmayr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+J+P">John P. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huffenberger%2C+K+M">Kevin M. Huffenberger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosowsky%2C+A">Arthur Kosowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marriage%2C+T+A">Tobias A. Marriage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maurin%2C+L">Lo茂c Maurin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moodley%2C+K">Kavilan Moodley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Niemack%2C+M+D">Michael D. Niemack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+L+A">Lyman A. Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Partridge%2C+B">Bruce Partridge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Planella%2C+R+D">Rolando D眉nner Planella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schillaci%2C+A">Alessandro Schillaci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sif%C3%B3n%2C+C">Crist贸bal Sif贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staggs%2C+S+T">Suzanne T. Staggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wollack%2C+E+J">Edward J. Wollack</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11731v2-abstract-short" style="display: inline;"> In this paper we probe the hot, post-shock gas component of quasar-driven winds through the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Combining datasets from the Atacama Cosmology Telescope, the $\textit{Herschel}$ Space Observatory, and the Very Large Array, we measure average spectral energy distributions (SEDs) of 109,829 optically-selected, radio quiet quasars from 1.4~GHz to 3000~GHz in six re&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11731v2-abstract-full').style.display = 'inline'; document.getElementById('1907.11731v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11731v2-abstract-full" style="display: none;"> In this paper we probe the hot, post-shock gas component of quasar-driven winds through the thermal Sunyaev-Zel&#39;dovich (tSZ) effect. Combining datasets from the Atacama Cosmology Telescope, the $\textit{Herschel}$ Space Observatory, and the Very Large Array, we measure average spectral energy distributions (SEDs) of 109,829 optically-selected, radio quiet quasars from 1.4~GHz to 3000~GHz in six redshift bins between $0.3&lt;z&lt;3.5$. We model the emission components in the radio and far-infrared, plus a spectral distortion from the tSZ effect. At $z&gt;1.91$, we measure the tSZ effect at $3.8蟽$ significance with an amplitude corresponding to a total thermal energy of $3.1\times10^{60}$ ergs. If this energy is due to virialized gas, then our measurement implies quasar host halo masses are $\sim6\times10^{12}~h^{-1}$M$_\odot$. Alternatively, if the host dark matter halo masses are $\sim2\times10^{12}~h^{-1}$M$_\odot$ as some measurements suggest, then we measure a $&gt;$90 per cent excess in the thermal energy over that expected due to virialization. If the measured SZ effect is primarily due to hot bubbles from quasar-driven winds, we find that $(5^{+1.2}_{-1.3}$) per cent of the quasar bolometric luminosity couples to the intergalactic medium over a fiducial quasar lifetime of 100 Myr. An additional source of tSZ may be correlated structure, and further work is required to separate the contributions. At $z\leq1.91$, we detect emission at 95 and 148~GHz that is in excess of thermal dust and optically thin synchrotron emission. We investigate potential sources of this excess emission, finding that CO line emission and an additional optically thick synchrotron component are the most viable candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11731v2-abstract-full').style.display = 'none'; document.getElementById('1907.11731v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 10 figures, accepted to MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Hughes%2C+J+P&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10