CINXE.COM
Trapéz – Wikipédia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="hu" dir="ltr"> <head> <meta charset="UTF-8"> <title>Trapéz – Wikipédia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )huwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""], "wgDefaultDateFormat":"ymd","wgMonthNames":["","január","február","március","április","május","június","július","augusztus","szeptember","október","november","december"],"wgRequestId":"d1d5e61c-49c9-410b-9852-a01afaddf398","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Trapéz","wgTitle":"Trapéz","wgCurRevisionId":27277220,"wgRevisionId":27277220,"wgArticleId":64611,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Wikipédia-szócikkek LCCN-azonosítóval","Wikipédia-szócikkek GND-azonosítóval","Négyszögek"],"wgPageViewLanguage":"hu","wgPageContentLanguage":"hu","wgPageContentModel":"wikitext","wgRelevantPageName":"Trapéz","wgRelevantArticleId":64611,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgFlaggedRevsParams":{"tags" :{"accuracy":{"levels":2}}},"wgStableRevisionId":27277220,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"hu","pageLanguageDir":"ltr","pageVariantFallbacks":"hu"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":6000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q46303","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.gadget.infobox":"ready","ext.gadget.wikiMenuStyles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.wdsearch","ext.gadget.irclogin","ext.gadget.ImageAnnotator.loader","ext.gadget.collapsible","ext.gadget.kepdia","ext.gadget.kinai","ext.gadget.poziciosTerkep","ext.gadget.wikiMenu","ext.gadget.wiwosm", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=hu&modules=ext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=hu&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=hu&modules=ext.gadget.infobox%2CwikiMenuStyles&only=styles&skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=hu&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/Trapez.svg/1200px-Trapez.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="707"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/Trapez.svg/800px-Trapez.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="471"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/Trapez.svg/640px-Trapez.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="377"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Trapéz – Wikipédia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//hu.m.wikipedia.org/wiki/Trap%C3%A9z"> <link rel="alternate" type="application/x-wiki" title="Szerkesztés" href="/w/index.php?title=Trap%C3%A9z&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipédia (hu)"> <link rel="EditURI" type="application/rsd+xml" href="//hu.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://hu.wikipedia.org/wiki/Trap%C3%A9z"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.hu"> <link rel="alternate" type="application/atom+xml" title="Wikipédia Atom-hírcsatorna" href="/w/index.php?title=Speci%C3%A1lis:Friss_v%C3%A1ltoztat%C3%A1sok&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Trapéz rootpage-Trapéz skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Ugrás a tartalomhoz</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Wiki"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Főmenü" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Főmenü</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Főmenü</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">elrejtés</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigáció </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Kezd%C5%91lap" title="A kezdőlap megtekintése [z]" accesskey="z"><span>Kezdőlap</span></a></li><li id="n-sidebar-contents" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Tartalom"><span>Tartalom</span></a></li><li id="n-sidebar-featured" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Kiemelt_sz%C3%B3cikkek_list%C3%A1ja"><span>Kiemelt szócikkek</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Friss_v%C3%A1ltoztat%C3%A1sok" title="A wikiben történt legutóbbi változtatások listája [r]" accesskey="r"><span>Friss változtatások</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Lap_tal%C3%A1lomra" title="Egy véletlenszerűen kiválasztott lap betöltése [x]" accesskey="x"><span>Lap találomra</span></a></li><li id="n-sidebar-enquiries" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Tudakoz%C3%B3"><span>Tudakozó</span></a></li> </ul> </div> </div> <div id="p-sidebar-participate" class="vector-menu mw-portlet mw-portlet-sidebar-participate" > <div class="vector-menu-heading"> Részvétel </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-sidebar-basics" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:%C3%9Aj_szerkeszt%C5%91knek"><span>Kezdőknek</span></a></li><li id="n-sidebar-help" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Seg%C3%ADts%C3%A9g"><span>Segítség</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Port%C3%A1l:K%C3%B6z%C3%B6ss%C3%A9g" title="A projektről, miben segíthetsz, mit hol találsz meg"><span>Közösségi portál</span></a></li><li id="n-sidebar-contact" class="mw-list-item"><a href="/wiki/Wikip%C3%A9dia:Kapcsolatfelv%C3%A9tel"><span>Kapcsolatfelvétel</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Kezd%C5%91lap" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipédia" src="/static/images/mobile/copyright/wikipedia-wordmark-fr.svg" style="width: 7.4375em; height: 1.125em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-hu.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Speci%C3%A1lis:Keres%C3%A9s" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Keresés a Wikipédián [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Keresés</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Keresés a Wikipédián" aria-label="Keresés a Wikipédián" autocapitalize="sentences" title="Keresés a Wikipédián [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Speciális:Keresés"> </div> <button class="cdx-button cdx-search-input__end-button">Keresés</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Személyes eszközök"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Megjelenés"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Megjelenés" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Megjelenés</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_hu.wikipedia.org&uselang=hu" class=""><span>Adományok</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1lis:Szerkeszt%C5%91i_fi%C3%B3k_l%C3%A9trehoz%C3%A1sa&returnto=Trap%C3%A9z" title="Arra bíztatunk, hogy hozz létre egy fiókot, és jelentkezz be, azonban ez nem kötelező" class=""><span>Fiók létrehozása</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Speci%C3%A1lis:Bel%C3%A9p%C3%A9s&returnto=Trap%C3%A9z" title="Bejelentkezni javasolt, de nem kötelező [o]" accesskey="o" class=""><span>Bejelentkezés</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="További lehetőségek" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Személyes eszközök" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Személyes eszközök</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="Felhasználói menü" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_hu.wikipedia.org&uselang=hu"><span>Adományok</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Szerkeszt%C5%91i_fi%C3%B3k_l%C3%A9trehoz%C3%A1sa&returnto=Trap%C3%A9z" title="Arra bíztatunk, hogy hozz létre egy fiókot, és jelentkezz be, azonban ez nem kötelező"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Fiók létrehozása</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Bel%C3%A9p%C3%A9s&returnto=Trap%C3%A9z" title="Bejelentkezni javasolt, de nem kötelező [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Bejelentkezés</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Lapok kijelentkezett szerkesztőknek <a href="/wiki/Seg%C3%ADts%C3%A9g:Bevezet%C3%A9s" aria-label="Tudj meg többet a szerkesztésről"><span>további információk</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:K%C3%B6zrem%C5%B1k%C3%B6d%C3%A9seim" title="Erről az IP-címről végrehajtott szerkesztések listája [y]" accesskey="y"><span>Közreműködések</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Vit%C3%A1m" title="Az általad használt IP-címről végrehajtott szerkesztések megvitatása [n]" accesskey="n"><span>Vitalap</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Wiki"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Tartalomjegyzék" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Tartalomjegyzék</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">elrejtés</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">Bevezető</div> </a> </li> <li id="toc-Területe" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Területe"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Területe</span> </div> </a> <button aria-controls="toc-Területe-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>A(z) Területe alszakasz kinyitása/becsukása</span> </button> <ul id="toc-Területe-sublist" class="vector-toc-list"> <li id="toc-Bizonyítás" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bizonyítás"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Bizonyítás</span> </div> </a> <ul id="toc-Bizonyítás-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-A_trapéz_jelentései_a_geometrián_kívül" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#A_trapéz_jelentései_a_geometrián_kívül"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>A trapéz jelentései a geometrián kívül</span> </div> </a> <ul id="toc-A_trapéz_jelentései_a_geometrián_kívül-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Külső_hivatkozások" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Külső_hivatkozások"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Külső hivatkozások</span> </div> </a> <ul id="toc-Külső_hivatkozások-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Megjegyzések" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Megjegyzések"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Megjegyzések</span> </div> </a> <ul id="toc-Megjegyzések-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Tartalomjegyzék" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Tartalomjegyzék kinyitása/becsukása" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Tartalomjegyzék kinyitása/becsukása</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Trapéz</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Ugrás egy más nyelvű szócikkre. Elérhető 99 nyelven" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-99" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">99 nyelv</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Trapezoid" title="Trapezoid – angol" lang="en" hreflang="en" data-title="Trapezoid" data-language-autonym="English" data-language-local-name="angol" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Trapesium" title="Trapesium – afrikaans" lang="af" hreflang="af" data-title="Trapesium" data-language-autonym="Afrikaans" data-language-local-name="afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B4%D8%A8%D9%87_%D9%85%D9%86%D8%AD%D8%B1%D9%81" title="شبه منحرف – arab" lang="ar" hreflang="ar" data-title="شبه منحرف" data-language-autonym="العربية" data-language-local-name="arab" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Trapeciu_(xeometr%C3%ADa)" title="Trapeciu (xeometría) – asztúr" lang="ast" hreflang="ast" data-title="Trapeciu (xeometría)" data-language-autonym="Asturianu" data-language-local-name="asztúr" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Trapesiya" title="Trapesiya – azerbajdzsáni" lang="az" hreflang="az" data-title="Trapesiya" data-language-autonym="Azərbaycanca" data-language-local-name="azerbajdzsáni" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8%D1%8F" title="Трапеция – baskír" lang="ba" hreflang="ba" data-title="Трапеция" data-language-autonym="Башҡортса" data-language-local-name="baskír" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-bcl mw-list-item"><a href="https://bcl.wikipedia.org/wiki/Trapesoyd" title="Trapesoyd – Central Bikol" lang="bcl" hreflang="bcl" data-title="Trapesoyd" data-language-autonym="Bikol Central" data-language-local-name="Central Bikol" class="interlanguage-link-target"><span>Bikol Central</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D1%8B%D1%8F" title="Трапецыя – belarusz" lang="be" hreflang="be" data-title="Трапецыя" data-language-autonym="Беларуская" data-language-local-name="belarusz" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D1%8D%D1%86%D1%8B%D1%8F" title="Трапэцыя – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Трапэцыя" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86" title="Трапец – bolgár" lang="bg" hreflang="bg" data-title="Трапец" data-language-autonym="Български" data-language-local-name="bolgár" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9F%E0%A7%8D%E0%A6%B0%E0%A6%BE%E0%A6%AA%E0%A6%BF%E0%A6%9C%E0%A6%BF%E0%A6%AF%E0%A6%BC%E0%A6%BE%E0%A6%AE" title="ট্রাপিজিয়াম – bangla" lang="bn" hreflang="bn" data-title="ট্রাপিজিয়াম" data-language-autonym="বাংলা" data-language-local-name="bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bo mw-list-item"><a href="https://bo.wikipedia.org/wiki/%E0%BD%A6%E0%BE%90%E0%BD%A6%E0%BC%8B%E0%BD%91%E0%BD%96%E0%BE%B1%E0%BD%B2%E0%BD%96%E0%BD%A6%E0%BC%8B" title="སྐས་དབྱིབས་ – tibeti" lang="bo" hreflang="bo" data-title="སྐས་དབྱིབས་" data-language-autonym="བོད་ཡིག" data-language-local-name="tibeti" class="interlanguage-link-target"><span>བོད་ཡིག</span></a></li><li class="interlanguage-link interwiki-br mw-list-item"><a href="https://br.wikipedia.org/wiki/Trapez" title="Trapez – breton" lang="br" hreflang="br" data-title="Trapez" data-language-autonym="Brezhoneg" data-language-local-name="breton" class="interlanguage-link-target"><span>Brezhoneg</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Trapez" title="Trapez – bosnyák" lang="bs" hreflang="bs" data-title="Trapez" data-language-autonym="Bosanski" data-language-local-name="bosnyák" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Trapezi" title="Trapezi – katalán" lang="ca" hreflang="ca" data-title="Trapezi" data-language-autonym="Català" data-language-local-name="katalán" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%86%DB%8C%D9%85%DA%86%DB%95%D9%84%D8%A7%D8%AA%DB%95%D8%B1%DB%8C%D8%A8" title="نیمچەلاتەریب – közép-ázsiai kurd" lang="ckb" hreflang="ckb" data-title="نیمچەلاتەریب" data-language-autonym="کوردی" data-language-local-name="közép-ázsiai kurd" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Lichob%C4%9B%C5%BEn%C3%ADk" title="Lichoběžník – cseh" lang="cs" hreflang="cs" data-title="Lichoběžník" data-language-autonym="Čeština" data-language-local-name="cseh" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8" title="Трапеци – csuvas" lang="cv" hreflang="cv" data-title="Трапеци" data-language-autonym="Чӑвашла" data-language-local-name="csuvas" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Trapesiwm" title="Trapesiwm – walesi" lang="cy" hreflang="cy" data-title="Trapesiwm" data-language-autonym="Cymraeg" data-language-local-name="walesi" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Trapez_(matematik)" title="Trapez (matematik) – dán" lang="da" hreflang="da" data-title="Trapez (matematik)" data-language-autonym="Dansk" data-language-local-name="dán" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Trapez_(Geometrie)" title="Trapez (Geometrie) – német" lang="de" hreflang="de" data-title="Trapez (Geometrie)" data-language-autonym="Deutsch" data-language-local-name="német" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A4%CF%81%CE%B1%CF%80%CE%AD%CE%B6%CE%B9%CE%BF" title="Τραπέζιο – görög" lang="el" hreflang="el" data-title="Τραπέζιο" data-language-autonym="Ελληνικά" data-language-local-name="görög" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Trapezo" title="Trapezo – eszperantó" lang="eo" hreflang="eo" data-title="Trapezo" data-language-autonym="Esperanto" data-language-local-name="eszperantó" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Trapecio_(geometr%C3%ADa)" title="Trapecio (geometría) – spanyol" lang="es" hreflang="es" data-title="Trapecio (geometría)" data-language-autonym="Español" data-language-local-name="spanyol" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Trapets" title="Trapets – észt" lang="et" hreflang="et" data-title="Trapets" data-language-autonym="Eesti" data-language-local-name="észt" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Trapezio" title="Trapezio – baszk" lang="eu" hreflang="eu" data-title="Trapezio" data-language-autonym="Euskara" data-language-local-name="baszk" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B0%D9%88%D8%B2%D9%86%D9%82%D9%87" title="ذوزنقه – perzsa" lang="fa" hreflang="fa" data-title="ذوزنقه" data-language-autonym="فارسی" data-language-local-name="perzsa" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Puolisuunnikas" title="Puolisuunnikas – finn" lang="fi" hreflang="fi" data-title="Puolisuunnikas" data-language-autonym="Suomi" data-language-local-name="finn" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Trap%C3%A8ze" title="Trapèze – francia" lang="fr" hreflang="fr" data-title="Trapèze" data-language-autonym="Français" data-language-local-name="francia" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-frr mw-list-item"><a href="https://frr.wikipedia.org/wiki/Trapeets" title="Trapeets – északi fríz" lang="frr" hreflang="frr" data-title="Trapeets" data-language-autonym="Nordfriisk" data-language-local-name="északi fríz" class="interlanguage-link-target"><span>Nordfriisk</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Traip%C3%A9isiam" title="Traipéisiam – ír" lang="ga" hreflang="ga" data-title="Traipéisiam" data-language-autonym="Gaeilge" data-language-local-name="ír" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Trapecio" title="Trapecio – gallego" lang="gl" hreflang="gl" data-title="Trapecio" data-language-autonym="Galego" data-language-local-name="gallego" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-gu mw-list-item"><a href="https://gu.wikipedia.org/wiki/%E0%AA%B8%E0%AA%AE%E0%AA%BE%E0%AA%82%E0%AA%A4%E0%AA%B0%E0%AA%AC%E0%AA%BE%E0%AA%9C%E0%AB%81_%E0%AA%9A%E0%AA%A4%E0%AB%81%E0%AA%B7%E0%AB%8D%E0%AA%95%E0%AB%8B%E0%AA%A3" title="સમાંતરબાજુ ચતુષ્કોણ – gudzsaráti" lang="gu" hreflang="gu" data-title="સમાંતરબાજુ ચતુષ્કોણ" data-language-autonym="ગુજરાતી" data-language-local-name="gudzsaráti" class="interlanguage-link-target"><span>ગુજરાતી</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%98%D7%A8%D7%A4%D7%96" title="טרפז – héber" lang="he" hreflang="he" data-title="טרפז" data-language-autonym="עברית" data-language-local-name="héber" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%B2%E0%A4%AE%E0%A5%8D%E0%A4%AC_%E0%A4%9A%E0%A4%A4%E0%A5%81%E0%A4%B0%E0%A5%8D%E0%A4%AD%E0%A5%81%E0%A4%9C" title="समलम्ब चतुर्भुज – hindi" lang="hi" hreflang="hi" data-title="समलम्ब चतुर्भुज" data-language-autonym="हिन्दी" data-language-local-name="hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Trapez_(geometrija)" title="Trapez (geometrija) – horvát" lang="hr" hreflang="hr" data-title="Trapez (geometrija)" data-language-autonym="Hrvatski" data-language-local-name="horvát" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hsb mw-list-item"><a href="https://hsb.wikipedia.org/wiki/Trapec" title="Trapec – felső-szorb" lang="hsb" hreflang="hsb" data-title="Trapec" data-language-autonym="Hornjoserbsce" data-language-local-name="felső-szorb" class="interlanguage-link-target"><span>Hornjoserbsce</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8D%D5%A5%D5%B2%D5%A1%D5%B6_(%D5%A5%D6%80%D5%AF%D6%80%D5%A1%D5%B9%D5%A1%D6%83%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6)" title="Սեղան (երկրաչափություն) – örmény" lang="hy" hreflang="hy" data-title="Սեղան (երկրաչափություն)" data-language-autonym="Հայերեն" data-language-local-name="örmény" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Trapezio" title="Trapezio – interlingva" lang="ia" hreflang="ia" data-title="Trapezio" data-language-autonym="Interlingua" data-language-local-name="interlingva" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Trapesium_(geometri)" title="Trapesium (geometri) – indonéz" lang="id" hreflang="id" data-title="Trapesium (geometri)" data-language-autonym="Bahasa Indonesia" data-language-local-name="indonéz" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Trapezoido" title="Trapezoido – idó" lang="io" hreflang="io" data-title="Trapezoido" data-language-autonym="Ido" data-language-local-name="idó" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Trapisa" title="Trapisa – izlandi" lang="is" hreflang="is" data-title="Trapisa" data-language-autonym="Íslenska" data-language-local-name="izlandi" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Trapezio" title="Trapezio – olasz" lang="it" hreflang="it" data-title="Trapezio" data-language-autonym="Italiano" data-language-local-name="olasz" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%8F%B0%E5%BD%A2" title="台形 – japán" lang="ja" hreflang="ja" data-title="台形" data-language-autonym="日本語" data-language-local-name="japán" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jv mw-list-item"><a href="https://jv.wikipedia.org/wiki/Ngapan-apan" title="Ngapan-apan – jávai" lang="jv" hreflang="jv" data-title="Ngapan-apan" data-language-autonym="Jawa" data-language-local-name="jávai" class="interlanguage-link-target"><span>Jawa</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%A2%E1%83%A0%E1%83%90%E1%83%9E%E1%83%94%E1%83%AA%E1%83%98%E1%83%90" title="ტრაპეცია – grúz" lang="ka" hreflang="ka" data-title="ტრაპეცია" data-language-autonym="ქართული" data-language-local-name="grúz" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8%D1%8F" title="Трапеция – kazah" lang="kk" hreflang="kk" data-title="Трапеция" data-language-autonym="Қазақша" data-language-local-name="kazah" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%85%E1%9E%8F%E1%9E%BB%E1%9E%80%E1%9F%84%E1%9E%8E%E1%9E%96%E1%9F%92%E1%9E%93%E1%9E%B6%E1%9E%99" title="ចតុកោណព្នាយ – khmer" lang="km" hreflang="km" data-title="ចតុកោណព្នាយ" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="khmer" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%82%AC%EB%8B%A4%EB%A6%AC%EA%BC%B4" title="사다리꼴 – koreai" lang="ko" hreflang="ko" data-title="사다리꼴" data-language-autonym="한국어" data-language-local-name="koreai" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-ky mw-list-item"><a href="https://ky.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8%D1%8F" title="Трапеция – kirgiz" lang="ky" hreflang="ky" data-title="Трапеция" data-language-autonym="Кыргызча" data-language-local-name="kirgiz" class="interlanguage-link-target"><span>Кыргызча</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Trapezium" title="Trapezium – latin" lang="la" hreflang="la" data-title="Trapezium" data-language-autonym="Latina" data-language-local-name="latin" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Trap%C3%A9se_(geometr%C3%ACa)" title="Trapése (geometrìa) – lombard" lang="lmo" hreflang="lmo" data-title="Trapése (geometrìa)" data-language-autonym="Lombard" data-language-local-name="lombard" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Trapecija" title="Trapecija – litván" lang="lt" hreflang="lt" data-title="Trapecija" data-language-autonym="Lietuvių" data-language-local-name="litván" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Trapece" title="Trapece – lett" lang="lv" hreflang="lv" data-title="Trapece" data-language-autonym="Latviešu" data-language-local-name="lett" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mhr mw-list-item"><a href="https://mhr.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8%D0%B9" title="Трапеций – Eastern Mari" lang="mhr" hreflang="mhr" data-title="Трапеций" data-language-autonym="Олык марий" data-language-local-name="Eastern Mari" class="interlanguage-link-target"><span>Олык марий</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D0%B7" title="Трапез – macedón" lang="mk" hreflang="mk" data-title="Трапез" data-language-autonym="Македонски" data-language-local-name="macedón" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%B2%E0%B4%82%E0%B4%AC%E0%B4%95%E0%B4%82" title="ലംബകം – malajálam" lang="ml" hreflang="ml" data-title="ലംബകം" data-language-autonym="മലയാളം" data-language-local-name="malajálam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86" title="Трапец – mongol" lang="mn" hreflang="mn" data-title="Трапец" data-language-autonym="Монгол" data-language-local-name="mongol" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%B8%E0%A4%AE%E0%A4%B2%E0%A4%82%E0%A4%AC_%E0%A4%9A%E0%A5%8C%E0%A4%95%E0%A5%8B%E0%A4%A8" title="समलंब चौकोन – maráthi" lang="mr" hreflang="mr" data-title="समलंब चौकोन" data-language-autonym="मराठी" data-language-local-name="maráthi" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Trapezium" title="Trapezium – maláj" lang="ms" hreflang="ms" data-title="Trapezium" data-language-autonym="Bahasa Melayu" data-language-local-name="maláj" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Trapezium" title="Trapezium – holland" lang="nl" hreflang="nl" data-title="Trapezium" data-language-autonym="Nederlands" data-language-local-name="holland" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Trapes_i_geometri" title="Trapes i geometri – norvég (nynorsk)" lang="nn" hreflang="nn" data-title="Trapes i geometri" data-language-autonym="Norsk nynorsk" data-language-local-name="norvég (nynorsk)" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Trapes_(geometri)" title="Trapes (geometri) – norvég (bokmål)" lang="nb" hreflang="nb" data-title="Trapes (geometri)" data-language-autonym="Norsk bokmål" data-language-local-name="norvég (bokmål)" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-or mw-list-item"><a href="https://or.wikipedia.org/wiki/%E0%AC%9F%E0%AD%8D%E0%AC%B0%E0%AC%BE%E0%AC%AA%E0%AC%BF%E0%AC%9C%E0%AC%BF%E0%AC%85%E0%AC%AE" title="ଟ୍ରାପିଜିଅମ – odia" lang="or" hreflang="or" data-title="ଟ୍ରାପିଜିଅମ" data-language-autonym="ଓଡ଼ିଆ" data-language-local-name="odia" class="interlanguage-link-target"><span>ଓଡ଼ିଆ</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%B8%E0%A8%AE%E0%A8%B2%E0%A9%B0%E0%A8%AC_%E0%A8%9A%E0%A8%A4%E0%A9%81%E0%A8%B0%E0%A8%AD%E0%A9%81%E0%A8%9C" title="ਸਮਲੰਬ ਚਤੁਰਭੁਜ – pandzsábi" lang="pa" hreflang="pa" data-title="ਸਮਲੰਬ ਚਤੁਰਭੁਜ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="pandzsábi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Trapez" title="Trapez – lengyel" lang="pl" hreflang="pl" data-title="Trapez" data-language-autonym="Polski" data-language-local-name="lengyel" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Trapessi" title="Trapessi – Piedmontese" lang="pms" hreflang="pms" data-title="Trapessi" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Trap%C3%A9zio_(geometria)" title="Trapézio (geometria) – portugál" lang="pt" hreflang="pt" data-title="Trapézio (geometria)" data-language-autonym="Português" data-language-local-name="portugál" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-qu mw-list-item"><a href="https://qu.wikipedia.org/wiki/Putuq" title="Putuq – kecsua" lang="qu" hreflang="qu" data-title="Putuq" data-language-autonym="Runa Simi" data-language-local-name="kecsua" class="interlanguage-link-target"><span>Runa Simi</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Trapez" title="Trapez – román" lang="ro" hreflang="ro" data-title="Trapez" data-language-autonym="Română" data-language-local-name="román" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D0%B8%D1%8F" title="Трапеция – orosz" lang="ru" hreflang="ru" data-title="Трапеция" data-language-autonym="Русский" data-language-local-name="orosz" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-se mw-list-item"><a href="https://se.wikipedia.org/wiki/Trapesa" title="Trapesa – északi számi" lang="se" hreflang="se" data-title="Trapesa" data-language-autonym="Davvisámegiella" data-language-local-name="északi számi" class="interlanguage-link-target"><span>Davvisámegiella</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Trapez_(geometrija)" title="Trapez (geometrija) – szerbhorvát" lang="sh" hreflang="sh" data-title="Trapez (geometrija)" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="szerbhorvát" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Trapezoid" title="Trapezoid – Simple English" lang="en-simple" hreflang="en-simple" data-title="Trapezoid" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Lichobe%C5%BEn%C3%ADk" title="Lichobežník – szlovák" lang="sk" hreflang="sk" data-title="Lichobežník" data-language-autonym="Slovenčina" data-language-local-name="szlovák" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Trapez" title="Trapez – szlovén" lang="sl" hreflang="sl" data-title="Trapez" data-language-autonym="Slovenščina" data-language-local-name="szlovén" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sn mw-list-item"><a href="https://sn.wikipedia.org/wiki/Gonyoina_sambambiri" title="Gonyoina sambambiri – sona" lang="sn" hreflang="sn" data-title="Gonyoina sambambiri" data-language-autonym="ChiShona" data-language-local-name="sona" class="interlanguage-link-target"><span>ChiShona</span></a></li><li class="interlanguage-link interwiki-so mw-list-item"><a href="https://so.wikipedia.org/wiki/Koor" title="Koor – szomáli" lang="so" hreflang="so" data-title="Koor" data-language-autonym="Soomaaliga" data-language-local-name="szomáli" class="interlanguage-link-target"><span>Soomaaliga</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D0%B7_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%98%D0%B0)" title="Трапез (геометрија) – szerb" lang="sr" hreflang="sr" data-title="Трапез (геометрија)" data-language-autonym="Српски / srpski" data-language-local-name="szerb" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Trap%C3%A9sium" title="Trapésium – szundanéz" lang="su" hreflang="su" data-title="Trapésium" data-language-autonym="Sunda" data-language-local-name="szundanéz" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Parallelltrapets" title="Parallelltrapets – svéd" lang="sv" hreflang="sv" data-title="Parallelltrapets" data-language-autonym="Svenska" data-language-local-name="svéd" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-szl mw-list-item"><a href="https://szl.wikipedia.org/wiki/Trapez" title="Trapez – sziléziai" lang="szl" hreflang="szl" data-title="Trapez" data-language-autonym="Ślůnski" data-language-local-name="sziléziai" class="interlanguage-link-target"><span>Ślůnski</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AE%B0%E0%AE%BF%E0%AE%B5%E0%AE%95%E0%AE%AE%E0%AF%8D" title="சரிவகம் – tamil" lang="ta" hreflang="ta" data-title="சரிவகம்" data-language-autonym="தமிழ்" data-language-local-name="tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B8%E0%B0%AE%E0%B0%B2%E0%B0%82%E0%B0%AC_%E0%B0%9A%E0%B0%A4%E0%B1%81%E0%B0%B0%E0%B1%8D%E0%B0%AD%E0%B1%81%E0%B0%9C%E0%B0%82" title="సమలంబ చతుర్భుజం – telugu" lang="te" hreflang="te" data-title="సమలంబ చతుర్భుజం" data-language-autonym="తెలుగు" data-language-local-name="telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A3%E0%B8%B9%E0%B8%9B%E0%B8%AA%E0%B8%B5%E0%B9%88%E0%B9%80%E0%B8%AB%E0%B8%A5%E0%B8%B5%E0%B9%88%E0%B8%A2%E0%B8%A1%E0%B8%84%E0%B8%B2%E0%B8%87%E0%B8%AB%E0%B8%A1%E0%B8%B9" title="รูปสี่เหลี่ยมคางหมู – thai" lang="th" hreflang="th" data-title="รูปสี่เหลี่ยมคางหมู" data-language-autonym="ไทย" data-language-local-name="thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tk mw-list-item"><a href="https://tk.wikipedia.org/wiki/Trapesi%C3%BDa" title="Trapesiýa – türkmén" lang="tk" hreflang="tk" data-title="Trapesiýa" data-language-autonym="Türkmençe" data-language-local-name="türkmén" class="interlanguage-link-target"><span>Türkmençe</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Trapesoid" title="Trapesoid – tagalog" lang="tl" hreflang="tl" data-title="Trapesoid" data-language-autonym="Tagalog" data-language-local-name="tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Yamuk" title="Yamuk – török" lang="tr" hreflang="tr" data-title="Yamuk" data-language-autonym="Türkçe" data-language-local-name="török" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D1%80%D0%B0%D0%BF%D0%B5%D1%86%D1%96%D1%8F" title="Трапеція – ukrán" lang="uk" hreflang="uk" data-title="Трапеція" data-language-autonym="Українська" data-language-local-name="ukrán" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%B4%DA%A9%D9%84_%D9%85%D9%86%D8%AD%D8%B1%D9%81" title="شکل منحرف – urdu" lang="ur" hreflang="ur" data-title="شکل منحرف" data-language-autonym="اردو" data-language-local-name="urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Trapetsiya" title="Trapetsiya – üzbég" lang="uz" hreflang="uz" data-title="Trapetsiya" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="üzbég" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%C3%ACnh_thang" title="Hình thang – vietnámi" lang="vi" hreflang="vi" data-title="Hình thang" data-language-autonym="Tiếng Việt" data-language-local-name="vietnámi" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-vls mw-list-item"><a href="https://vls.wikipedia.org/wiki/Trapezium" title="Trapezium – West Flemish" lang="vls" hreflang="vls" data-title="Trapezium" data-language-autonym="West-Vlams" data-language-local-name="West Flemish" class="interlanguage-link-target"><span>West-Vlams</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Trapesoyd" title="Trapesoyd – varaó" lang="war" hreflang="war" data-title="Trapesoyd" data-language-autonym="Winaray" data-language-local-name="varaó" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%A2%AF%E5%BD%A2" title="梯形 – wu kínai" lang="wuu" hreflang="wuu" data-title="梯形" data-language-autonym="吴语" data-language-local-name="wu kínai" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%A2%E1%83%A0%E1%83%90%E1%83%9E%E1%83%94%E1%83%AA%E1%83%98%E1%83%90" title="ტრაპეცია – Mingrelian" lang="xmf" hreflang="xmf" data-title="ტრაპეცია" data-language-autonym="მარგალური" data-language-local-name="Mingrelian" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%98%D7%A8%D7%90%D7%A4%D7%A2%D7%96" title="טראפעז – jiddis" lang="yi" hreflang="yi" data-title="טראפעז" data-language-autonym="ייִדיש" data-language-local-name="jiddis" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%A2%AF%E5%BD%A2" title="梯形 – kínai" lang="zh" hreflang="zh" data-title="梯形" data-language-autonym="中文" data-language-local-name="kínai" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%A2%AF%E5%BD%A2" title="梯形 – kantoni" lang="yue" hreflang="yue" data-title="梯形" data-language-autonym="粵語" data-language-local-name="kantoni" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q46303#sitelinks-wikipedia" title="Nyelvközi hivatkozások szerkesztése" class="wbc-editpage">Hivatkozások szerkesztése</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Névterek"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trap%C3%A9z" title="A lap megtekintése [c]" accesskey="c"><span>Szócikk</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Vita:Trap%C3%A9z" rel="discussion" title="Az oldal tartalmának megvitatása [t]" accesskey="t"><span>Vitalap</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Nyelvvariáns váltása" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">magyar</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Nézetek"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Trap%C3%A9z"><span>Olvasás</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trap%C3%A9z&action=edit" title="Az oldal forráskódjának szerkesztése [e]" accesskey="e"><span>Szerkesztés</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Trap%C3%A9z&action=history" title="A lap korábbi változatai [h]" accesskey="h"><span>Laptörténet</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Oldal eszközök"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Eszközök" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Eszközök</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Eszközök</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">elrejtés</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="További lehetőségek" > <div class="vector-menu-heading"> Műveletek </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Trap%C3%A9z"><span>Olvasás</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trap%C3%A9z&action=edit" title="Az oldal forráskódjának szerkesztése [e]" accesskey="e"><span>Szerkesztés</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Trap%C3%A9z&action=history"><span>Laptörténet</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> Általános </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Mi_hivatkozik_erre/Trap%C3%A9z" title="Az erre a lapra hivatkozó más lapok listája [j]" accesskey="j"><span>Mi hivatkozik erre?</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Kapcsol%C3%B3d%C3%B3_v%C3%A1ltoztat%C3%A1sok/Trap%C3%A9z" rel="nofollow" title="Az erről a lapról hivatkozott lapok utolsó változtatásai [k]" accesskey="k"><span>Kapcsolódó változtatások</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Speci%C3%A1lis:Speci%C3%A1lis_lapok" title="Az összes speciális lap listája [q]" accesskey="q"><span>Speciális lapok</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Trap%C3%A9z&oldid=27277220" title="Állandó hivatkozás ezen lap ezen változatához"><span>Hivatkozás erre a változatra</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Trap%C3%A9z&action=info" title="További információk erről a lapról"><span>Lapinformációk</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:Hivatkoz%C3%A1s&page=Trap%C3%A9z&id=27277220&wpFormIdentifier=titleform" title="Információk a lap idézésével kapcsolatban"><span>Hogyan hivatkozz erre a lapra?</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:UrlShortener&url=https%3A%2F%2Fhu.wikipedia.org%2Fwiki%2FTrap%25C3%25A9z"><span>Rövidített URL készítése</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:QrCode&url=https%3A%2F%2Fhu.wikipedia.org%2Fwiki%2FTrap%25C3%25A9z"><span>QR-kód letöltése</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Nyomtatás/exportálás </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:K%C3%B6nyv&bookcmd=book_creator&referer=Trap%C3%A9z"><span>Könyv készítése</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Speci%C3%A1lis:DownloadAsPdf&page=Trap%C3%A9z&action=show-download-screen"><span>Letöltés PDF-ként</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Trap%C3%A9z&printable=yes" title="A lap nyomtatható változata [p]" accesskey="p"><span>Nyomtatható változat</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> Társprojektek </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Trapezoids" hreflang="en"><span>Wikimédia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q46303" title="Kapcsolt adattárelem [g]" accesskey="g"><span>Wikidata-adatlap</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Oldal eszközök"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Megjelenés"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Megjelenés</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">áthelyezés az oldalsávba</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">elrejtés</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-indicator-fr-review-status" class="mw-indicator"><indicator name="fr-review-status" class="mw-fr-review-status-indicator" id="mw-fr-revision-toggle"><span class="cdx-fr-css-icon-review--status--stable"></span><b>Ellenőrzött</b></indicator></div> </div> <div id="siteSub" class="noprint">A Wikipédiából, a szabad enciklopédiából</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><div id="mw-fr-revision-messages"><div id="mw-fr-revision-details" class="mw-fr-revision-details-dialog" style="display:none;"><div tabindex="0"></div><div class="cdx-dialog cdx-dialog--horizontal-actions"><header class="cdx-dialog__header cdx-dialog__header--default"><div class="cdx-dialog__header__title-group"><h2 class="cdx-dialog__header__title">Változat állapota</h2><p class="cdx-dialog__header__subtitle">Ez a lap egy ellenőrzött változata</p></div><button class="cdx-button cdx-button--action-default cdx-button--weight-quiet 							cdx-button--size-medium cdx-button--icon-only cdx-dialog__header__close-button" aria-label="Close" onclick="document.getElementById("mw-fr-revision-details").style.display = "none";" type="submit"><span class="cdx-icon cdx-icon--medium 							cdx-fr-css-icon--close"></span></button></header><div class="cdx-dialog__body">Ez a <a href="/wiki/Wikip%C3%A9dia:Jel%C3%B6lt_lapv%C3%A1ltozatok" title="Wikipédia:Jelölt lapváltozatok">közzétett változat</a>, <a class="external text" href="https://hu.wikipedia.org/w/index.php?title=Speci%C3%A1lis:Rendszernapl%C3%B3k&type=review&page=Trap%C3%A9z">ellenőrizve</a>: <i>2024. július 9.</i><p><table id="mw-fr-revisionratings-box" class="flaggedrevs-color-1" style="margin: auto;" cellpadding="0"><tr><td class="fr-text" style="vertical-align: middle;">Pontosság</td><td class="fr-value40" style="vertical-align: middle;">ellenőrzött</td></tr></table></p></div></div><div tabindex="0"></div></div></div></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="hu" dir="ltr"><figure class="mw-halign-right" typeof="mw:File"><a href="/wiki/F%C3%A1jl:Trapez.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Trapez.svg/418px-Trapez.svg.png" decoding="async" width="418" height="246" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/90/Trapez.svg/627px-Trapez.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/90/Trapez.svg/836px-Trapez.svg.png 2x" data-file-width="292" data-file-height="172" /></a><figcaption></figcaption></figure> <p>A <a href="/wiki/Geometria" title="Geometria">geometriában</a> <b>trapéz</b>nak nevezik az olyan <a href="/wiki/N%C3%A9gysz%C3%B6g" title="Négyszög">négyszöget</a>, amelynek van két egymással <a href="/wiki/P%C3%A1rhuzamos" class="mw-redirect" title="Párhuzamos">párhuzamos</a> oldala. </p><p>A trapéz elnevezése más nyelvekben is ugyanez (hasonló), de megesik, hogy a trapéz elnevezés alatt – szűkített értelemben – csak olyan négyszöget értenek, amelynek pontosan egy pár párhuzamos oldala van. Ilyen meghatározás előfordulhat magyar szakirodalomban is. </p><p>Ha a másik két szemközti oldal <i>szintén</i> párhuzamos egymással, akkor a trapéz egyben <a href="/wiki/Paralelogramma" title="Paralelogramma">paralelogramma</a> is. Ha nem, akkor a másik két szemközti oldalt találkozásukig meghosszabbítva egy <a href="/wiki/H%C3%A1romsz%C3%B6g" title="Háromszög">háromszöget</a> kapunk, amely tartalmazza a trapézt. </p><p>A párhuzamos oldalakat <i>alapoknak</i>, a másik két oldalt <i>száraknak</i> nevezzük. A trapéz <a href="/wiki/Magass%C3%A1g" title="Magasság">magassága</a> alatt a két párhuzamos oldalegyenes távolságát értjük. A szárak felezőpontját összekötő szakasz a trapéz középvonala, hossza egyenlő az alapok számtani közepével. </p><p>A szakirodalom (feladatgyűjtemények stb.) külön megemlít kétfajta trapézt. Az egyik az <i>egyenlő szárú trapéz</i>, a másik a <i>derékszögű trapéz</i>. </p><p>Az <i>egyenlő szárú trapéz</i> a fenti (első) definíció értelmében olyan trapéz amelynek szárai egyenlő hosszúak. Az ilyen trapéznak az alapon fekvő szögei egyenlőek, vagy egymás kiegészítőszögei. Ha az alapon fekvő szögek egyenlőek, az ilyen trapézt szimmetrikus trapéznak, illetve húrtrapéznak nevezik, mert az alapok közös felező merőlegese egyúttal <a href="/w/index.php?title=Szimmetriatengely&action=edit&redlink=1" class="new" title="Szimmetriatengely (a lap nem létezik)">szimmetriatengely</a> is, és mert van <a href="/wiki/K%C3%B6r%C3%BCl%C3%ADrt_k%C3%B6r" class="mw-redirect" title="Körülírt kör">körülírt köre</a>. </p><p>A paralelogrammára ritkán használják az „egyenlő szárú trapéz” elnevezést. Ez általában akkor van, amikor egy szövegben az „egyenlő szárú trapéz” jelenthet húrtrapézt és paralelogrammát is. A paralelogramma (mint trapéz) szárai egyenlőek, az alapon fekvő szögek azonban eltérő nagyságúak (hacsak nem téglalap is egyben), így nem igazak rá a fenti megállapítások (tengelyes szimmetria, húrnégyszögség.) </p><p>A derékszögű trapéz, mint a neve is mondja, olyan trapéz, amelynek van derékszöge. Mivel van egy pár párhuzamos oldala, így a trapéznak páros számú derékszöge van. </p><p>Egy négyszög <a href="/wiki/Akkor_%C3%A9s_csak_akkor" class="mw-redirect" title="Akkor és csak akkor">akkor és csak akkor</a> trapéz, ha van benne két szomszédos csúcs, amelynek szögei kiegészítő szögek, azaz összegük 180°. Egy másik szükséges és elégséges feltétel, hogy az <a href="/wiki/%C3%81tl%C3%B3" title="Átló">átlók</a> ugyanolyan arányban osztják fel egymást. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Területe"><span id="Ter.C3.BClete"></span>Területe</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trap%C3%A9z&action=edit&section=1" title="Szakasz szerkesztése: Területe"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A trapéz <a href="/wiki/Ter%C3%BClet_(matematika)" title="Terület (matematika)">területe</a> a következőképpen számolható: vesszük két párhuzamos oldalának <a href="/wiki/Sz%C3%A1mtani_k%C3%B6z%C3%A9p" title="Számtani közép">számtani közepét</a> és megszorozzuk a magassággal. </p><p>Tehát, ha <i>a</i> és <i>c</i> a két párhuzamos oldal, és <i>m</i> a köztük lévő távolság (magasság), a területképlet a következő: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\frac {a+c}{2}}m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>c</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\frac {a+c}{2}}m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/114cecf34c0a32bb9c4f96e30f93e1296fa5bb39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.688ex; height:5.009ex;" alt="{\displaystyle T={\frac {a+c}{2}}m}"></span> </p><p>Egy másik területképlet akkor alkalmazható, ha csak a trapéz oldalainak hosszát ismerjük. Ekkor ha az oldalak rendre <i>a</i>, <i>b</i>, <i>c</i> és <i>d</i>, valamint <i>a</i> és <i>c</i> párhuzamosak (ahol <i>a</i> a hosszabbik párhuzamos oldal), akkor: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\frac {a+c}{4(a-c)}}{\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>c</mi> </mrow> <mrow> <mn>4</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\frac {a+c}{4(a-c)}}{\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6312fd0c0e4642a1215c4e89767e0ad249af0a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:76.874ex; height:5.843ex;" alt="{\displaystyle T={\frac {a+c}{4(a-c)}}{\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Bizonyítás"><span id="Bizony.C3.ADt.C3.A1s"></span>Bizonyítás</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trap%C3%A9z&action=edit&section=2" title="Szakasz szerkesztése: Bizonyítás"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Használjuk a lenti ábra jelöléseit: </p><p><span typeof="mw:File"><a href="/wiki/F%C3%A1jl:Trap%C3%A9z1201.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Trap%C3%A9z1201.png/350px-Trap%C3%A9z1201.png" decoding="async" width="350" height="164" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Trap%C3%A9z1201.png/525px-Trap%C3%A9z1201.png 1.5x, //upload.wikimedia.org/wikipedia/commons/a/a5/Trap%C3%A9z1201.png 2x" data-file-width="605" data-file-height="283" /></a></span> </p><p>Ha a D pontból párhuzamost húzunk a <i>b</i> oldallal, akkor az így keletkezett <i>DE</i> szakasz megegyezik <i>b</i>-vel. Az így kapott háromszög három oldala <i>a-c</i>, <i>b</i> és <i>d</i>. Fejezzük ki <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span>-t a <a href="/wiki/Koszinuszt%C3%A9tel" title="Koszinusztétel">koszinusztétellel</a>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos \alpha ={\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>cos</mi> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>d</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos \alpha ={\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8316c379fa518bcc0b32579825a431a9a03de47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:26.866ex; height:6.676ex;" alt="{\displaystyle \cos \alpha ={\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}}"></span> </p><p>Ebből fejezzük ki <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/071763dba322940a74766aaf79f4569c5954dcf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.73ex; height:2.176ex;" alt="{\displaystyle \sin \alpha }"></span>-t: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cos ^{2}\alpha ={\Bigg (}{\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}{\Bigg )}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>d</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cos ^{2}\alpha ={\Bigg (}{\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}{\Bigg )}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7c9a261cdeac4bdd7357831c42ec8437a3c716c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.656ex; height:8.009ex;" alt="{\displaystyle \cos ^{2}\alpha ={\Bigg (}{\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}{\Bigg )}^{2}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin ^{2}\alpha =1-\cos ^{2}\alpha =1-{\Bigg (}{\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}{\Bigg )}^{2}={\frac {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}{4d^{2}(a-c)^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>d</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="2.470em" minsize="2.470em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>4</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin ^{2}\alpha =1-\cos ^{2}\alpha =1-{\Bigg (}{\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}{\Bigg )}^{2}={\frac {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}{4d^{2}(a-c)^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd96aa022a8cbef151247c317d3486ef5e41d943" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:89.47ex; height:9.343ex;" alt="{\displaystyle \sin ^{2}\alpha =1-\cos ^{2}\alpha =1-{\Bigg (}{\frac {(a-c)^{2}+d^{2}-b^{2}}{2d(a-c)}}{\Bigg )}^{2}={\frac {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}{4d^{2}(a-c)^{2}}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \alpha ={\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2d(a-c)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>4</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mn>2</mn> <mi>d</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \alpha ={\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2d(a-c)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f526a8e108629af56b6bf5750acc9ba28d69a2d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:46.98ex; height:9.843ex;" alt="{\displaystyle \sin \alpha ={\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2d(a-c)}}}"></span> </p><p>Az ADE háromszögben fejezzük ki <i>m</i>-et <i>d</i> és <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/071763dba322940a74766aaf79f4569c5954dcf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.73ex; height:2.176ex;" alt="{\displaystyle \sin \alpha }"></span> segítségével: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=d\cdot \sin \alpha ={\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2(a-c)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mi>d</mi> <mo>⋅<!-- ⋅ --></mo> <mi>sin</mi> <mo>⁡<!-- --></mo> <mi>α<!-- α --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>4</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=d\cdot \sin \alpha ={\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2(a-c)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09013790b23cf2c4d50bc0ed9a5cc52f35ca8b1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:55.014ex; height:9.843ex;" alt="{\displaystyle m=d\cdot \sin \alpha ={\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2(a-c)}}}"></span> </p><p>A szorzattá alakításokat annak segítségével végezzük el, hogy két négyzetszám különbsége felírható a két szám összegének és különbségének szorzataként: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2(a-c)}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mn>4</mn> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2(a-c)}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe248b83c98978de09a3746fc099d167daeb860f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:41.604ex; height:9.843ex;" alt="{\displaystyle {\frac {\sqrt {4d^{2}(a-c)^{2}-{\Big (}(a-c)^{2}+d^{2}-b^{2}{\Big )}^{2}}}{2(a-c)}}=}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {\sqrt {{\Big (}2d(a-c)-(a-c)^{2}-d^{2}+b^{2}{\Big )}{\Big (}2d(a-c)+(a-c)^{2}+d^{2}-b^{2}{\Big )}}}{2(a-c)}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>d</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mn>2</mn> <mi>d</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </msqrt> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {\sqrt {{\Big (}2d(a-c)-(a-c)^{2}-d^{2}+b^{2}{\Big )}{\Big (}2d(a-c)+(a-c)^{2}+d^{2}-b^{2}{\Big )}}}{2(a-c)}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cfb0cfde01aca8f2740fa49e6d6dc3e33c88bc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:73.719ex; height:9.843ex;" alt="{\displaystyle ={\frac {\sqrt {{\Big (}2d(a-c)-(a-c)^{2}-d^{2}+b^{2}{\Big )}{\Big (}2d(a-c)+(a-c)^{2}+d^{2}-b^{2}{\Big )}}}{2(a-c)}}=}"></span> </p><p>(Teljes négyzetté alakítás) </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {\sqrt {{\Big (}b^{2}-(a-c-d)^{2}{\Big )}{\Big (}(a-c+d)^{2}-b^{2}{\Big )}}}{2(a-c)}}=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> </msqrt> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {\sqrt {{\Big (}b^{2}-(a-c-d)^{2}{\Big )}{\Big (}(a-c+d)^{2}-b^{2}{\Big )}}}{2(a-c)}}=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03de07957892f39e906d55ec992b0bf11419d2dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:47.396ex; height:9.843ex;" alt="{\displaystyle ={\frac {\sqrt {{\Big (}b^{2}-(a-c-d)^{2}{\Big )}{\Big (}(a-c+d)^{2}-b^{2}{\Big )}}}{2(a-c)}}=}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ={\frac {\sqrt {(b-a+c+d)(b+a-c-d)(a-c+d-b)(a-c+d+b)}}{2(a-c)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> </msqrt> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ={\frac {\sqrt {(b-a+c+d)(b+a-c-d)(a-c+d-b)(a-c+d+b)}}{2(a-c)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f51357461ec3176354e53902f63e6cc3b5c6fa67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:64.735ex; height:7.009ex;" alt="{\displaystyle ={\frac {\sqrt {(b-a+c+d)(b+a-c-d)(a-c+d-b)(a-c+d+b)}}{2(a-c)}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m={\frac {\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}{2(a-c)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </msqrt> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m={\frac {\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}{2(a-c)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/574d153dec022f61a1fdeb4043d9163f43612d60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:69.229ex; height:7.009ex;" alt="{\displaystyle m={\frac {\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}{2(a-c)}}}"></span> </p><p>Ezt az <i>m</i>-et behelyettesítjük a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\frac {a+c}{2}}m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>c</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\frac {a+c}{2}}m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/114cecf34c0a32bb9c4f96e30f93e1296fa5bb39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.688ex; height:5.009ex;" alt="{\displaystyle T={\frac {a+c}{2}}m}"></span> képletbe: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\frac {a+c}{2}}\cdot {\frac {\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}{2(a-c)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>c</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>⋅<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </msqrt> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\frac {a+c}{2}}\cdot {\frac {\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}{2(a-c)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d44098f32a17508d1d717a6b3cbf45a07a08a3ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:76.417ex; height:7.009ex;" alt="{\displaystyle T={\frac {a+c}{2}}\cdot {\frac {\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}{2(a-c)}}}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\frac {a+c}{4(a-c)}}{\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>c</mi> </mrow> <mrow> <mn>4</mn> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>c</mi> <mo>−<!-- − --></mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\frac {a+c}{4(a-c)}}{\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6312fd0c0e4642a1215c4e89767e0ad249af0a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:76.874ex; height:5.843ex;" alt="{\displaystyle T={\frac {a+c}{4(a-c)}}{\sqrt {(a+b-c+d)(a-b-c+d)(a+b-c-d)(-a+b+c+d)}}}"></span> </p><p>Ha a trapézunk <a href="/wiki/H%C3%BArtrap%C3%A9z" title="Húrtrapéz">húrtrapéz</a>, akkor területét <a href="/wiki/Brahmagupta_t%C3%A9tel" class="mw-redirect" title="Brahmagupta tétel">Brahmagupta képletével</a> is kiszámolhatjuk hiszen ekkor <a href="/wiki/H%C3%BArn%C3%A9gysz%C3%B6g" title="Húrnégyszög">húrnégyszög</a> is egyben. </p> <div class="mw-heading mw-heading2"><h2 id="A_trapéz_jelentései_a_geometrián_kívül"><span id="A_trap.C3.A9z_jelent.C3.A9sei_a_geometri.C3.A1n_k.C3.ADv.C3.BCl"></span>A trapéz jelentései a geometrián kívül</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trap%C3%A9z&action=edit&section=3" title="Szakasz szerkesztése: A trapéz jelentései a geometrián kívül"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ezek az elnevezések a geometriai kifejezésből erednek: </p> <ul><li>Az <a href="/w/index.php?title=Akrobatika&action=edit&redlink=1" class="new" title="Akrobatika (a lap nem létezik)">akrobatikában</a> formájáról <i>trapéz</i>nak nevezik a két kötélen függő vízszintes rúdból álló lengő nyújtót.</li> <li>Az <a href="/wiki/Anat%C3%B3mia" title="Anatómia">anatómiában</a> a <i><a href="/wiki/Trap%C3%A9zcsont" title="Trapézcsont">trapézcsont</a></i> a <a href="/wiki/K%C3%A9z" title="Kéz">kéz</a> egy <a href="/wiki/Csont" title="Csont">csontja</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Külső_hivatkozások"><span id="K.C3.BCls.C5.91_hivatkoz.C3.A1sok"></span>Külső hivatkozások</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trap%C3%A9z&action=edit&section=4" title="Szakasz szerkesztése: Külső hivatkozások"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Trapezoid.html">"Trapezoid"</a> on <a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Megjegyzések"><span id="Megjegyz.C3.A9sek"></span>Megjegyzések</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Trap%C3%A9z&action=edit&section=5" title="Szakasz szerkesztése: Megjegyzések"><span>szerkesztés</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="ref-1col"><div style="-moz-column-count:2; -webkit-column-count:2; column-count:2; -webkit-column-gap: 3em; -moz-column-gap: 3em; column-gap: 3em;"></div></div><div class="ref-1col"><div style="-moz-column-count:2; -webkit-column-count:2; column-count:2; -webkit-column-gap: 3em; -moz-column-gap: 3em; column-gap: 3em;"></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r26593303">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r26641489">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{width:100%;line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style><style data-mw-deduplicate="TemplateStyles:r26643308">@media screen and (max-width:719px){.mw-parser-output div.navbox.authoritycontrol{display:block}.mw-parser-output .authoritycontrol tbody,.mw-parser-output .authoritycontrol tr,.mw-parser-output .authoritycontrol th,.mw-parser-output .authoritycontrol td,.mw-parser-output .authoritycontrol .navbox-row>th+td{display:block;text-align:center}.mw-parser-output .authoritycontrol .navbox-list-with-group{border:none}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r26593303"></div><div role="navigation" class="navbox authoritycontrol" aria-labelledby="Nemzetközi_katalógusok" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="Nemzetközi_katalógusok" scope="row" class="navbox-group" style="width:auto"><a href="/wiki/Sablon:Nemzetk%C3%B6zi_katal%C3%B3gusok/doc" title="Sablon:Nemzetközi katalógusok/doc">Nemzetközi katalógusok</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kongresszusi_K%C3%B6nyvt%C3%A1r" title="Kongresszusi Könyvtár">LCCN</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://lccn.loc.gov/sh85137116">sh85137116</a></span></li> <li><a href="/wiki/Integr%C3%A1lt_katal%C3%B3gust%C3%A1r" title="Integrált katalógustár">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/1156515645">1156515645</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="noprint noviewer" style="overflow: hidden; clear: both;"><div style="margin-left:0; margin-right:2px;"><ul style="display:block; list-style-image:none; list-style-type:none; width:100%; vertical-align:middle; margin:0; padding:0; min-height: 27px;"><li style="float:left; min-height: 27px; line-height:25px; width:100%; margin:0; margin-top:.5em; margin-left:0; margin-right:0; padding:0; border:1px solid #CCF; background-color:#F0EEFF"><span typeof="mw:File"><a href="/wiki/F%C3%A1jl:P_cartesian_graph.svg" class="mw-file-description" title="matematika"><img alt="matematika" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/P_cartesian_graph.svg/25px-P_cartesian_graph.svg.png" decoding="async" width="25" height="23" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/P_cartesian_graph.svg/38px-P_cartesian_graph.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/P_cartesian_graph.svg/50px-P_cartesian_graph.svg.png 2x" data-file-width="400" data-file-height="360" /></a></span> <b><a href="/wiki/Port%C3%A1l:Matematika" title="Portál:Matematika">Matematikaportál</a></b> • összefoglaló, színes tartalomajánló lap</li></ul></div></div></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">A lap eredeti címe: „<a dir="ltr" href="https://hu.wikipedia.org/w/index.php?title=Trapéz&oldid=27277220">https://hu.wikipedia.org/w/index.php?title=Trapéz&oldid=27277220</a>”</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Wikip%C3%A9dia:Kateg%C3%B3ri%C3%A1k" title="Wikipédia:Kategóriák">Kategória</a>: <ul><li><a href="/wiki/Kateg%C3%B3ria:N%C3%A9gysz%C3%B6gek" title="Kategória:Négyszögek">Négyszögek</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Rejtett kategóriák: <ul><li><a href="/wiki/Kateg%C3%B3ria:Wikip%C3%A9dia-sz%C3%B3cikkek_LCCN-azonos%C3%ADt%C3%B3val" title="Kategória:Wikipédia-szócikkek LCCN-azonosítóval">Wikipédia-szócikkek LCCN-azonosítóval</a></li><li><a href="/wiki/Kateg%C3%B3ria:Wikip%C3%A9dia-sz%C3%B3cikkek_GND-azonos%C3%ADt%C3%B3val" title="Kategória:Wikipédia-szócikkek GND-azonosítóval">Wikipédia-szócikkek GND-azonosítóval</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> A lap utolsó módosítása: 2024. július 9., 05:44</li> <li id="footer-info-copyright">A lap szövege <a rel="nofollow" class="external text" href="http://creativecommons.org/licenses/by-sa/4.0/deed.hu">Creative Commons Nevezd meg! – Így add tovább! 4.0</a> licenc alatt van; egyes esetekben más módon is felhasználható. Részletekért lásd a <a href="/wiki/Wikip%C3%A9dia:Felhaszn%C3%A1l%C3%A1si_felt%C3%A9telek" title="Wikipédia:Felhasználási feltételek">felhasználási feltételeket</a>.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Adatvédelmi irányelvek</a></li> <li id="footer-places-about"><a href="/wiki/Wikip%C3%A9dia:R%C3%B3lunk">A Wikipédiáról</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikip%C3%A9dia:Jogi_nyilatkozat">Jogi nyilatkozat</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Magatartási kódex</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Fejlesztők</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/hu.wikipedia.org">Statisztikák</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Sütinyilatkozat</a></li> <li id="footer-places-mobileview"><a href="//hu.m.wikipedia.org/w/index.php?title=Trap%C3%A9z&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobil nézet</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-795c86c559-5pl9d","wgBackendResponseTime":252,"wgPageParseReport":{"limitreport":{"cputime":"0.150","walltime":"0.483","ppvisitednodes":{"value":365,"limit":1000000},"postexpandincludesize":{"value":5741,"limit":2097152},"templateargumentsize":{"value":157,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":8050,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 143.264 1 -total"," 83.88% 120.176 1 Sablon:Nemzetközi_katalógusok"," 9.00% 12.893 1 Sablon:Portál"," 6.99% 10.013 1 Sablon:Jegyzetek"," 5.08% 7.279 2 Sablon:References"," 1.86% 2.669 2 Sablon:Portál/speciális"," 1.66% 2.385 1 Portál:Matematika/ikon"," 1.66% 2.375 2 Sablon:Hasáb_eleje"," 1.50% 2.145 1 Sablon:Portál/leírások"," 1.28% 1.835 2 Sablon:Hasáb_vége"]},"scribunto":{"limitreport-timeusage":{"value":"0.086","limit":"10.000"},"limitreport-memusage":{"value":974510,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-85db4f49b5-ntlxs","timestamp":"20241114043942","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Trap\u00e9z","url":"https:\/\/hu.wikipedia.org\/wiki\/Trap%C3%A9z","sameAs":"http:\/\/www.wikidata.org\/entity\/Q46303","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q46303","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-03-27T00:05:33Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/9\/90\/Trapez.svg","headline":"n\u00e9gysz\u00f6g, amelynek van k\u00e9t egym\u00e1ssal p\u00e1rhuzamos oldala"}</script> </body> </html>