CINXE.COM

History of algebra - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>History of algebra - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"adb6578e-7acb-45f9-b1e9-f74f7995fa77","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"History_of_algebra","wgTitle":"History of algebra","wgCurRevisionId":1256994886,"wgRevisionId":1256994886,"wgArticleId":9550030,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with incomplete citations","Articles with incomplete citations from November 2024","Articles with short description","Short description is different from Wikidata","Articles containing Arabic-language text","Articles containing Ancient Greek (to 1453)-language text","Wikipedia articles needing clarification from June 2022","Pages using multiple image with auto scaled images","All articles with unsourced statements", "Articles with unsourced statements from June 2018","All articles with failed verification","Articles with failed verification from March 2024","Articles to be expanded from January 2017","Articles containing Spanish-language text","CS1 interwiki-linked names","History of algebra","Algebra"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"History_of_algebra","wgRelevantArticleId":9550030,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Greek_geometric_algebra","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false, "nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":100000,"wgInternalRedirectTargetUrl":"/wiki/History_of_algebra#Greek_geometric_algebra","wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q5018842","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles": "ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints", "ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="History of algebra - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/History_of_algebra#Greek_geometric_algebra"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=History_of_algebra&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/History_of_algebra#Greek_geometric_algebra"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-History_of_algebra rootpage-History_of_algebra skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=History+of+algebra" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=History+of+algebra" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=History+of+algebra" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=History+of+algebra" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Etymology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Etymology"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Etymology</span> </div> </a> <ul id="toc-Etymology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Stages_of_algebra" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Stages_of_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Stages of algebra</span> </div> </a> <button aria-controls="toc-Stages_of_algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Stages of algebra subsection</span> </button> <ul id="toc-Stages_of_algebra-sublist" class="vector-toc-list"> <li id="toc-Algebraic_expression" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Algebraic_expression"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Algebraic expression</span> </div> </a> <ul id="toc-Algebraic_expression-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conceptual_stages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conceptual_stages"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Conceptual stages</span> </div> </a> <ul id="toc-Conceptual_stages-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Babylon" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Babylon"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Babylon</span> </div> </a> <ul id="toc-Babylon-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ancient_Egypt" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Ancient_Egypt"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Ancient Egypt</span> </div> </a> <ul id="toc-Ancient_Egypt-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Greek_mathematics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Greek_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Greek mathematics</span> </div> </a> <button aria-controls="toc-Greek_mathematics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Greek mathematics subsection</span> </button> <ul id="toc-Greek_mathematics-sublist" class="vector-toc-list"> <li id="toc-Bloom_of_Thymaridas" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bloom_of_Thymaridas"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Bloom of Thymaridas</span> </div> </a> <ul id="toc-Bloom_of_Thymaridas-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Euclid_of_Alexandria" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Euclid_of_Alexandria"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Euclid of Alexandria</span> </div> </a> <ul id="toc-Euclid_of_Alexandria-sublist" class="vector-toc-list"> <li id="toc-Elements" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Elements"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span><i>Elements</i></span> </div> </a> <ul id="toc-Elements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Data" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Data"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span><i>Data</i></span> </div> </a> <ul id="toc-Data-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Conic_sections" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conic_sections"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Conic sections</span> </div> </a> <ul id="toc-Conic_sections-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-China" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#China"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>China</span> </div> </a> <button aria-controls="toc-China-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle China subsection</span> </button> <ul id="toc-China-sublist" class="vector-toc-list"> <li id="toc-Nine_Chapters_on_the_Mathematical_Art" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Nine_Chapters_on_the_Mathematical_Art"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span><i>Nine Chapters on the Mathematical Art</i></span> </div> </a> <ul id="toc-Nine_Chapters_on_the_Mathematical_Art-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sea-Mirror_of_the_Circle_Measurements" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sea-Mirror_of_the_Circle_Measurements"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span><i>Sea-Mirror of the Circle Measurements</i></span> </div> </a> <ul id="toc-Sea-Mirror_of_the_Circle_Measurements-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematical_Treatise_in_Nine_Sections" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematical_Treatise_in_Nine_Sections"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span><i>Mathematical Treatise in Nine Sections</i></span> </div> </a> <ul id="toc-Mathematical_Treatise_in_Nine_Sections-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Magic_squares" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Magic_squares"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Magic squares</span> </div> </a> <ul id="toc-Magic_squares-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Precious_Mirror_of_the_Four_Elements" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Precious_Mirror_of_the_Four_Elements"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span><i>Precious Mirror of the Four Elements</i></span> </div> </a> <ul id="toc-Precious_Mirror_of_the_Four_Elements-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Diophantus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Diophantus"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Diophantus</span> </div> </a> <ul id="toc-Diophantus-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-India" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#India"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>India</span> </div> </a> <button aria-controls="toc-India-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle India subsection</span> </button> <ul id="toc-India-sublist" class="vector-toc-list"> <li id="toc-Aryabhata" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Aryabhata"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span><i>Aryabhata</i></span> </div> </a> <ul id="toc-Aryabhata-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Brahma_Sphuta_Siddhanta" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Brahma_Sphuta_Siddhanta"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span><i>Brahma Sphuta Siddhanta</i></span> </div> </a> <ul id="toc-Brahma_Sphuta_Siddhanta-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bhāskara_II" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Bhāskara_II"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.3</span> <span>Bhāskara II</span> </div> </a> <ul id="toc-Bhāskara_II-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Islamic_world" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Islamic_world"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Islamic world</span> </div> </a> <button aria-controls="toc-Islamic_world-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Islamic world subsection</span> </button> <ul id="toc-Islamic_world-sublist" class="vector-toc-list"> <li id="toc-Al-jabr_wa&#039;l_muqabalah" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Al-jabr_wa&#039;l_muqabalah"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span><i>Al-jabr wa'l muqabalah</i></span> </div> </a> <ul id="toc-Al-jabr_wa&#039;l_muqabalah-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Logical_Necessities_in_Mixed_Equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Logical_Necessities_in_Mixed_Equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span><i>Logical Necessities in Mixed Equations</i></span> </div> </a> <ul id="toc-Logical_Necessities_in_Mixed_Equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Abu_Kamil_and_al-Karaji" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Abu_Kamil_and_al-Karaji"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.3</span> <span>Abu Kamil and al-Karaji</span> </div> </a> <ul id="toc-Abu_Kamil_and_al-Karaji-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Omar_Khayyám,_Sharaf_al-Dīn_al-Tusi,_and_al-Kashi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Omar_Khayyám,_Sharaf_al-Dīn_al-Tusi,_and_al-Kashi"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.4</span> <span>Omar Khayyám, Sharaf al-Dīn al-Tusi, and al-Kashi</span> </div> </a> <ul id="toc-Omar_Khayyám,_Sharaf_al-Dīn_al-Tusi,_and_al-Kashi-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Al-Hassār,_Ibn_al-Banna,_and_al-Qalasadi" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Al-Hassār,_Ibn_al-Banna,_and_al-Qalasadi"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.5</span> <span>Al-Hassār, Ibn al-Banna, and al-Qalasadi</span> </div> </a> <ul id="toc-Al-Hassār,_Ibn_al-Banna,_and_al-Qalasadi-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Europe_and_the_Mediterranean_region" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Europe_and_the_Mediterranean_region"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Europe and the Mediterranean region</span> </div> </a> <button aria-controls="toc-Europe_and_the_Mediterranean_region-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Europe and the Mediterranean region subsection</span> </button> <ul id="toc-Europe_and_the_Mediterranean_region-sublist" class="vector-toc-list"> <li id="toc-Late_Middle_Ages" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Late_Middle_Ages"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Late Middle Ages</span> </div> </a> <ul id="toc-Late_Middle_Ages-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Symbolic_algebra" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Symbolic_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Symbolic algebra</span> </div> </a> <button aria-controls="toc-Symbolic_algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Symbolic algebra subsection</span> </button> <ul id="toc-Symbolic_algebra-sublist" class="vector-toc-list"> <li id="toc-The_symbol_x" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_symbol_x"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>The symbol <i>x</i></span> </div> </a> <ul id="toc-The_symbol_x-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gottfried_Leibniz" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gottfried_Leibniz"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.2</span> <span>Gottfried Leibniz</span> </div> </a> <ul id="toc-Gottfried_Leibniz-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Abstract_algebra" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Abstract_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.3</span> <span>Abstract algebra</span> </div> </a> <ul id="toc-Abstract_algebra-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-The_father_of_algebra" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#The_father_of_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>The father of algebra</span> </div> </a> <ul id="toc-The_father_of_algebra-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">History of algebra</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 7 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-7" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">7 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%A7%D8%B1%D9%8A%D8%AE_%D8%A7%D9%84%D8%AC%D8%A8%D8%B1" title="تاريخ الجبر – Arabic" lang="ar" hreflang="ar" data-title="تاريخ الجبر" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AC%E0%A7%80%E0%A6%9C%E0%A6%97%E0%A6%A3%E0%A6%BF%E0%A6%A4%E0%A7%87%E0%A6%B0_%E0%A6%87%E0%A6%A4%E0%A6%BF%E0%A6%B9%E0%A6%BE%E0%A6%B8" title="বীজগণিতের ইতিহাস – Bangla" lang="bn" hreflang="bn" data-title="বীজগণিতের ইতিহাস" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%99%CF%83%CF%84%CE%BF%CF%81%CE%AF%CE%B1_%CF%84%CE%B7%CF%82_%CE%86%CE%BB%CE%B3%CE%B5%CE%B2%CF%81%CE%B1%CF%82" title="Ιστορία της Άλγεβρας – Greek" lang="el" hreflang="el" data-title="Ιστορία της Άλγεβρας" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Sejarah_aljabar" title="Sejarah aljabar – Indonesian" lang="id" hreflang="id" data-title="Sejarah aljabar" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ht mw-list-item"><a href="https://ht.wikipedia.org/wiki/Istwa_Alj%C3%A8b" title="Istwa Aljèb – Haitian Creole" lang="ht" hreflang="ht" data-title="Istwa Aljèb" data-language-autonym="Kreyòl ayisyen" data-language-local-name="Haitian Creole" class="interlanguage-link-target"><span>Kreyòl ayisyen</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Hist%C3%B3ria_da_%C3%A1lgebra" title="História da álgebra – Portuguese" lang="pt" hreflang="pt" data-title="História da álgebra" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/L%E1%BB%8Bch_s%E1%BB%AD_%C4%91%E1%BA%A1i_s%E1%BB%91_h%E1%BB%8Dc" title="Lịch sử đại số học – Vietnamese" lang="vi" hreflang="vi" data-title="Lịch sử đại số học" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5018842#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/History_of_algebra" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:History_of_algebra" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/History_of_algebra"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=History_of_algebra&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=History_of_algebra&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/History_of_algebra"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=History_of_algebra&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=History_of_algebra&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/History_of_algebra" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/History_of_algebra" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=History_of_algebra&amp;oldid=1256994886" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=History_of_algebra&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=History_of_algebra&amp;id=1256994886&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHistory_of_algebra%23Greek_geometric_algebra"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHistory_of_algebra%23Greek_geometric_algebra"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=History_of_algebra&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=History_of_algebra&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-wikiquote mw-list-item"><a href="https://en.wikiquote.org/wiki/History_of_algebra" hreflang="en"><span>Wikiquote</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q5018842" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Greek_geometric_algebra&amp;redirect=no" class="mw-redirect" title="Greek geometric algebra">Greek geometric algebra</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">For the modern history of algebra, see <a href="/wiki/Abstract_algebra#History" title="Abstract algebra">Abstract algebra §&#160;History</a>.</div> <p><a href="/wiki/Algebra" title="Algebra">Algebra</a> can essentially be considered as doing computations similar to those of <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a> but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the <a href="/wiki/Theory_of_equations" title="Theory of equations">theory of equations</a>. For example, the <a href="/wiki/Fundamental_theorem_of_algebra" title="Fundamental theorem of algebra">fundamental theorem of algebra</a> belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every <a href="/wiki/Mathematical_proof" title="Mathematical proof">proof</a> must use the <a href="/wiki/Completeness_of_the_real_numbers" title="Completeness of the real numbers">completeness of the real numbers</a>, which is not an algebraic property). </p><p>This article describes the history of the theory of equations, referred to in this article as "algebra", from the origins to the emergence of algebra as a separate area of <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Etymology">Etymology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=1" title="Edit section: Etymology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The word "algebra" is derived from the <a href="/wiki/Arabic_language" class="mw-redirect" title="Arabic language">Arabic</a> word <span title="Arabic-language text"><span lang="ar" dir="rtl">الجبر</span></span> <span title="Arabic-language romanization"><i lang="ar-Latn">al-jabr</i></span>, and this comes from the treatise written in the year 830 by the medieval Persian mathematician, <a href="/wiki/Muhammad_ibn_Musa_al-Khwarizmi" class="mw-redirect" title="Muhammad ibn Musa al-Khwarizmi">Al-Khwārizmī</a>, whose Arabic title, <i><a href="/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing" class="mw-redirect" title="The Compendious Book on Calculation by Completion and Balancing">Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala</a></i>, can be translated as <i>The Compendious Book on Calculation by Completion and Balancing</i>. The treatise provided for the systematic solution of <a href="/wiki/Linear_equation" title="Linear equation">linear</a> and <a href="/wiki/Quadratic_equation" title="Quadratic equation">quadratic equations</a>. According to one history, "[i]t is not certain just what the terms <i>al-jabr</i> and <i>muqabalah</i> mean, but the usual interpretation is similar to that implied in the previous translation. The word 'al-jabr' presumably meant something like 'restoration' or 'completion' and seems to refer to the transposition of <a href="/wiki/Subtraction" title="Subtraction">subtracted</a> terms to the other side of an equation; the word 'muqabalah' is said to refer to 'reduction' or 'balancing'—that is, the cancellation of like terms on opposite sides of the equation. Arabic influence in Spain long after the time of al-Khwarizmi is found in <i><a href="/wiki/Don_Quixote" title="Don Quixote">Don Quixote</a></i>, where the word 'algebrista' is used for a bone-setter, that is, a 'restorer'."<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> The term is used by al-Khwarizmi to describe the operations that he introduced, "<a href="/wiki/Reduction_(mathematics)" title="Reduction (mathematics)">reduction</a>" and "balancing", referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Stages_of_algebra">Stages of algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=2" title="Edit section: Stages of algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Timeline_of_algebra" title="Timeline of algebra">Timeline of algebra</a></div> <div class="mw-heading mw-heading3"><h3 id="Algebraic_expression">Algebraic expression</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=3" title="Edit section: Algebraic expression"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Algebra did not always make use of the symbolism that is now ubiquitous in mathematics; instead, it went through three distinct stages. The stages in the development of symbolic algebra are approximately as follows:<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> <span class="anchor" id="Rhetorical_algebra"></span> </p> <ul><li><b>Rhetorical algebra</b>, in which equations are written in full sentences. For example, the rhetorical form of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+1=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+1=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d24bef7ca951e2943fe27227c959f07aea38e615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.593ex; height:2.343ex;" alt="{\displaystyle x+1=2}"></span> is "The thing plus one equals two" or possibly "The thing plus 1 equals 2". Rhetorical algebra was first developed by the ancient <a href="/wiki/Babylonians" class="mw-redirect" title="Babylonians">Babylonians</a> and remained dominant up to the 16th century.</li></ul> <p><span class="anchor" id="Syncopated_algebra"></span> </p> <ul><li><b>Syncopated algebra</b>, in which some symbolism is used, but which does not contain all of the characteristics of symbolic algebra. For instance, there may be a restriction that subtraction may be used only once within one side of an equation, which is not the case with symbolic algebra. Syncopated algebraic expression <a href="/wiki/Arithmetica#Syncopated_algebra" title="Arithmetica">first appeared</a> in <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a>' <i><a href="/wiki/Arithmetica" title="Arithmetica">Arithmetica</a></i> (3rd century AD), followed by <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a>'s <i><a href="/wiki/Brahma_Sphuta_Siddhanta" class="mw-redirect" title="Brahma Sphuta Siddhanta">Brahma Sphuta Siddhanta</a></i> (7th century).</li> <li><b>Symbolic algebra</b>, in which full symbolism is used. Early steps toward this can be seen in the work of several <a href="/wiki/Islamic_mathematics" class="mw-redirect" title="Islamic mathematics">Islamic mathematicians</a> such as <a href="/wiki/Ibn_al-Banna_al-Marrakushi" class="mw-redirect" title="Ibn al-Banna al-Marrakushi">Ibn al-Banna</a> (13th–14th centuries) and <a href="/wiki/Ab%C5%AB_al-Hasan_ibn_Al%C4%AB_al-Qalas%C4%81d%C4%AB" class="mw-redirect" title="Abū al-Hasan ibn Alī al-Qalasādī">al-Qalasadi</a> (15th century), although fully symbolic algebra was developed by <a href="/wiki/Fran%C3%A7ois_Vi%C3%A8te" title="François Viète">François Viète</a> (16th century). Later, <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> (17th century) introduced the modern notation (for example, the use of <i>x</i>—<a href="#The_symbol_x">see below</a>) and showed that the problems occurring in <a href="/wiki/Geometry" title="Geometry">geometry</a> can be expressed and solved in terms of algebra (<a href="/wiki/Cartesian_geometry" class="mw-redirect" title="Cartesian geometry">Cartesian geometry</a>).</li></ul> <p>Equally important as the use or lack of symbolism in algebra was the degree of the equations that were addressed. <a href="/wiki/Quadratic_equations" class="mw-redirect" title="Quadratic equations">Quadratic equations</a> played an important role in early algebra; and throughout most of history, until the early modern period, all quadratic equations were classified as belonging to one of three categories. </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+px=q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>p</mi> <mi>x</mi> <mo>=</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+px=q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/379f214039b94b4a1961d93f3911881d6200b1c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.891ex; height:3.009ex;" alt="{\displaystyle x^{2}+px=q}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=px+q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>p</mi> <mi>x</mi> <mo>+</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=px+q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4310fed0abe8d49d06dd359b385dafcd03cc8e4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.891ex; height:3.009ex;" alt="{\displaystyle x^{2}=px+q}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+q=px}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mi>p</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+q=px}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d2dc0aea27772eb15373f6d0aaca030a15f5a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.891ex; height:3.009ex;" alt="{\displaystyle x^{2}+q=px}"></span></li></ul> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are positive. This trichotomy comes about because quadratic equations of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+px+q=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>p</mi> <mi>x</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+px+q=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c6d0d82ff5415dbe15afd76e1bd2562fc1f7875" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.541ex; height:3.009ex;" alt="{\displaystyle x^{2}+px+q=0,}"></span>with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> positive, have no positive <a href="/wiki/Zero_of_a_function" title="Zero of a function">roots</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>In between the rhetorical and syncopated stages of symbolic algebra, a <b>geometric constructive algebra</b> was developed by classical <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek</a> and <a href="/wiki/Indian_mathematics" title="Indian mathematics">Vedic Indian mathematicians</a> in which algebraic equations were solved through geometry. For instance, an equation of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa69992203e2e974bbd013f1112a4dc304dd28dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.225ex; height:2.676ex;" alt="{\displaystyle x^{2}=A}"></span> was solved by finding the side of a square of area <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8a71bf21ad35b8fe05555041d54d1e17eeb0f490" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.39ex; height:2.176ex;" alt="{\displaystyle A.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Conceptual_stages">Conceptual stages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=4" title="Edit section: Conceptual stages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In addition to the three stages of expressing algebraic ideas, some authors recognized four conceptual stages in the development of algebra that occurred alongside the changes in expression. These four stages were as follows:<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li><b>Geometric stage</b>, where the concepts of algebra are largely geometric. This dates back to the <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonians</a> and continued with the <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greeks</a>, and was later revived by <a href="/wiki/Omar_Khayy%C3%A1m" class="mw-redirect" title="Omar Khayyám">Omar Khayyám</a>.</li> <li><b>Static equation-solving stage</b>, where the objective is to find numbers satisfying certain relationships. The move away from the geometric stage dates back to <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> and <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a>, but algebra did not decisively move to the static equation-solving stage until <a href="/wiki/Muhammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB" class="mw-redirect" title="Muhammad ibn Mūsā al-Khwārizmī">Al-Khwarizmi</a> introduced generalized algorithmic processes for solving algebraic problems.</li> <li><b>Dynamic function stage</b>, where motion is an underlying idea. The idea of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> began emerging with <a href="/wiki/Sharaf_al-D%C4%ABn_al-T%C5%ABs%C4%AB" class="mw-redirect" title="Sharaf al-Dīn al-Tūsī">Sharaf al-Dīn al-Tūsī</a>, but algebra did not decisively move to the dynamic function stage until <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a>.</li> <li><b>Abstract stage</b>, where mathematical structure plays a central role. <a href="/wiki/Abstract_algebra" title="Abstract algebra">Abstract algebra</a> is largely a product of the 19th and 20th centuries.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Babylon">Babylon</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=5" title="Edit section: Babylon"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonian mathematics</a></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Plimpton_322.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Plimpton_322.jpg/220px-Plimpton_322.jpg" decoding="async" width="220" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Plimpton_322.jpg/330px-Plimpton_322.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/c2/Plimpton_322.jpg/440px-Plimpton_322.jpg 2x" data-file-width="1246" data-file-height="863" /></a><figcaption>The <a href="/wiki/Plimpton_322" title="Plimpton 322">Plimpton 322</a> tablet</figcaption></figure> <p>The origins of algebra can be traced to the ancient <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonians</a>,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> who developed a positional <a href="/wiki/Numeral_system" title="Numeral system">number system</a> that greatly aided them in solving their rhetorical algebraic equations. The Babylonians were not interested in exact solutions, but rather approximations, and so they would commonly use <a href="/wiki/Linear_interpolation" title="Linear interpolation">linear interpolation</a> to approximate intermediate values.<sup id="cite_ref-Boyer_Babylon_p30_7-0" class="reference"><a href="#cite_note-Boyer_Babylon_p30-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> One of the most famous tablets is the <a href="/wiki/Plimpton_322" title="Plimpton 322">Plimpton 322 tablet</a>, created around 1900–1600&#160;BC, which gives a table of <a href="/wiki/Pythagorean_triples" class="mw-redirect" title="Pythagorean triples">Pythagorean triples</a> and represents some of the most advanced mathematics prior to Greek mathematics.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p><p>Babylonian algebra was much more advanced than the Egyptian algebra of the time; whereas the Egyptians were mainly concerned with linear equations the Babylonians were more concerned with quadratic and <a href="/wiki/Cubic_equation" title="Cubic equation">cubic equations</a>.<sup id="cite_ref-Boyer_Babylon_p30_7-1" class="reference"><a href="#cite_note-Boyer_Babylon_p30-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The Babylonians had developed flexible algebraic operations with which they were able to add equals to equals and <a href="/wiki/Multiplication" title="Multiplication">multiply</a> both sides of an equation by like quantities so as to eliminate <a href="/wiki/Fraction" title="Fraction">fractions</a> and factors.<sup id="cite_ref-Boyer_Babylon_p30_7-2" class="reference"><a href="#cite_note-Boyer_Babylon_p30-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> They were familiar with many simple forms of <a href="/wiki/Factorization" title="Factorization">factoring</a>,<sup id="cite_ref-Boyer_Babylon_p30_7-3" class="reference"><a href="#cite_note-Boyer_Babylon_p30-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> three-term quadratic equations with positive roots,<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> and many cubic equations,<sup id="cite_ref-Boyer_Babylonian_Cubic_Equations_10-0" class="reference"><a href="#cite_note-Boyer_Babylonian_Cubic_Equations-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> although it is not known if they were able to reduce the general cubic equation.<sup id="cite_ref-Boyer_Babylonian_Cubic_Equations_10-1" class="reference"><a href="#cite_note-Boyer_Babylonian_Cubic_Equations-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Ancient_Egypt">Ancient Egypt</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=6" title="Edit section: Ancient Egypt"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Egyptian_A%27h-mos%C3%A8_or_Rhind_Papyrus_(1065x1330).png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Egyptian_A%27h-mos%C3%A8_or_Rhind_Papyrus_%281065x1330%29.png/220px-Egyptian_A%27h-mos%C3%A8_or_Rhind_Papyrus_%281065x1330%29.png" decoding="async" width="220" height="275" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Egyptian_A%27h-mos%C3%A8_or_Rhind_Papyrus_%281065x1330%29.png/330px-Egyptian_A%27h-mos%C3%A8_or_Rhind_Papyrus_%281065x1330%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Egyptian_A%27h-mos%C3%A8_or_Rhind_Papyrus_%281065x1330%29.png/440px-Egyptian_A%27h-mos%C3%A8_or_Rhind_Papyrus_%281065x1330%29.png 2x" data-file-width="1065" data-file-height="1330" /></a><figcaption>A portion of the <a href="/wiki/Rhind_Papyrus" class="mw-redirect" title="Rhind Papyrus">Rhind Papyrus</a></figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Egyptian_mathematics" class="mw-redirect" title="Egyptian mathematics">Egyptian mathematics</a></div> <p>Ancient Egyptian algebra dealt mainly with linear equations while the Babylonians found these equations too elementary, and developed mathematics to a higher level than the Egyptians.<sup id="cite_ref-Boyer_Babylon_p30_7-4" class="reference"><a href="#cite_note-Boyer_Babylon_p30-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Rhind Papyrus, also known as the Ahmes Papyrus, is an ancient Egyptian papyrus written c. 1650&#160;BC by Ahmes, who transcribed it from an earlier work that he dated to between 2000 and 1800&#160;BC.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> It is the most extensive ancient Egyptian mathematical document known to historians.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> The Rhind Papyrus contains problems where linear equations of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+ax=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mi>x</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+ax=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31f08d61b36ed261d24b7c4e9968efd09890d5bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.826ex; height:2.343ex;" alt="{\displaystyle x+ax=b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+ax+bx=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+ax+bx=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e526653ec319d39a8621fa3e2e012a8c3483106b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.003ex; height:2.343ex;" alt="{\displaystyle x+ax+bx=c}"></span> are solved, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ae9ae3580e0d3b9cfb40bebf5fe09640183361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.908ex; height:2.509ex;" alt="{\displaystyle a,b,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> are known and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> which is referred to as "aha" or heap, is the unknown.<sup id="cite_ref-Boyer_Chapter_Egypt_13-0" class="reference"><a href="#cite_note-Boyer_Chapter_Egypt-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> The solutions were possibly, but not likely, arrived at by using the "method of false position", or <i><a href="/wiki/Regula_falsi" title="Regula falsi">regula falsi</a></i>, where first a specific value is substituted into the left hand side of the equation, then the required arithmetic calculations are done, thirdly the result is compared to the right hand side of the equation, and finally the correct answer is found through the use of proportions. In some of the problems the author "checks" his solution, thereby writing one of the earliest known simple proofs.<sup id="cite_ref-Boyer_Chapter_Egypt_13-1" class="reference"><a href="#cite_note-Boyer_Chapter_Egypt-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Greek_mathematics"><span class="anchor" id="Greek_geometric_algebra"></span> Greek mathematics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=7" title="Edit section: Greek mathematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Greek_mathematics" title="Greek mathematics">Greek mathematics</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:P._Oxy._I_29.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/P._Oxy._I_29.jpg/250px-P._Oxy._I_29.jpg" decoding="async" width="250" height="152" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8d/P._Oxy._I_29.jpg/375px-P._Oxy._I_29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8d/P._Oxy._I_29.jpg/500px-P._Oxy._I_29.jpg 2x" data-file-width="1694" data-file-height="1032" /></a><figcaption>One of the oldest surviving fragments of <a href="/wiki/Euclid" title="Euclid">Euclid</a>'s <i><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Elements</a></i>, found at Oxyrhynchus and dated to circa 100&#160;AD (<a href="/wiki/Papyrus_Oxyrhynchus_29" title="Papyrus Oxyrhynchus 29">P. Oxy. 29</a>). The diagram accompanies Book II, Proposition 5.<sup id="cite_ref-Casselman_14-0" class="reference"><a href="#cite_note-Casselman-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>It is sometimes alleged that the <a href="/wiki/Greeks" title="Greeks">Greeks</a> had no algebra, but this is disputed.<sup id="cite_ref-Greek_Geometric_Algebra_15-0" class="reference"><a href="#cite_note-Greek_Geometric_Algebra-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> By the time of <a href="/wiki/Plato" title="Plato">Plato</a>, Greek mathematics had undergone a drastic change. The Greeks created a <b>geometric algebra</b> where terms were represented by sides of geometric objects,<sup id="cite_ref-A_history_of_Mathematics_the_application_of_areas_16-0" class="reference"><a href="#cite_note-A_history_of_Mathematics_the_application_of_areas-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> usually lines, that had letters associated with them,<sup id="cite_ref-Euclid_and_Khwarizmi_17-0" class="reference"><a href="#cite_note-Euclid_and_Khwarizmi-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> and with this new form of algebra they were able to find solutions to equations by using a process that they invented, known as "the application of areas".<sup id="cite_ref-A_history_of_Mathematics_the_application_of_areas_16-1" class="reference"><a href="#cite_note-A_history_of_Mathematics_the_application_of_areas-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> "The application of areas" is only a part of geometric algebra and it is thoroughly covered in <a href="/wiki/Euclid" title="Euclid">Euclid</a>'s <i><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Elements</a></i>. </p><p>An example of geometric algebra would be solving the linear equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax=bc.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>=</mo> <mi>b</mi> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax=bc.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bedccb38e26c58a83dc718eb1ca6c16b8fc963f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.309ex; height:2.176ex;" alt="{\displaystyle ax=bc.}"></span> The ancient Greeks would solve this equation by looking at it as an equality of areas rather than as an equality between the ratios <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a:b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>:</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a:b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3149b4f815ad9e8b3e8cdd29adcd02a42c22e5ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.165ex; height:2.176ex;" alt="{\displaystyle a:b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c:x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>:</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c:x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8994f6e6903c6c71adcf53aadabac929d2b8a660" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.921ex; height:1.676ex;" alt="{\displaystyle c:x.}"></span> The Greeks would construct a rectangle with sides of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae5e8f9eb465084d3a00a24026b80652b74ef58e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.654ex; height:2.009ex;" alt="{\displaystyle c,}"></span> then extend a side of the rectangle to length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f059f053fcf9f421b7c74362cf3bd5ed024e19d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.877ex; height:2.009ex;" alt="{\displaystyle a,}"></span> and finally they would complete the extended rectangle so as to find the side of the rectangle that is the solution.<sup id="cite_ref-A_history_of_Mathematics_the_application_of_areas_16-2" class="reference"><a href="#cite_note-A_history_of_Mathematics_the_application_of_areas-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bloom_of_Thymaridas">Bloom of Thymaridas</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=8" title="Edit section: Bloom of Thymaridas"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Iamblichus" title="Iamblichus">Iamblichus</a> in <i>Introductio arithmatica</i> says that <a href="/wiki/Thymaridas" title="Thymaridas">Thymaridas</a> (c. 400&#160;BC&#160;– c. 350&#160;BC) worked with simultaneous linear equations.<sup id="cite_ref-Heath_Thymaridas_18-0" class="reference"><a href="#cite_note-Heath_Thymaridas-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> In particular, he created the then famous rule that was known as the "bloom of Thymaridas" or as the "flower of Thymaridas", which states that: </p> <blockquote><p>If the sum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> quantities be given, and also the sum of every pair containing a particular quantity, then this particular quantity is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/(n-2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/(n-2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27883e029d34468fde880827aa57bd04f884b0fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.532ex; height:2.843ex;" alt="{\displaystyle 1/(n-2)}"></span> of the difference between the sums of these pairs and the first given sum.<sup id="cite_ref-Flegg_19-0" class="reference"><a href="#cite_note-Flegg-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Euclid-proof.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Euclid-proof.jpg/220px-Euclid-proof.jpg" decoding="async" width="220" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Euclid-proof.jpg/330px-Euclid-proof.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Euclid-proof.jpg/440px-Euclid-proof.jpg 2x" data-file-width="448" data-file-height="458" /></a><figcaption>A proof from Euclid's <i>Elements</i> that, given a line segment, an equilateral triangle exists that includes the segment as one of its sides</figcaption></figure> <p>or using modern notation, the solution of the following system of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> linear equations in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> unknowns,<sup id="cite_ref-Heath_Thymaridas_18-1" class="reference"><a href="#cite_note-Heath_Thymaridas-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <blockquote> <p> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+x_{1}+x_{2}+\cdots +x_{n-1}=s}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>s</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+x_{1}+x_{2}+\cdots +x_{n-1}=s}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bc4ec536463e84051f54827b4c2d2c873c93993" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:29.02ex; height:2.343ex;" alt="{\displaystyle x+x_{1}+x_{2}+\cdots +x_{n-1}=s}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+x_{1}=m_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+x_{1}=m_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13a57ed072135836a2bd1fef65d8f4d9e239af22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.747ex; height:2.343ex;" alt="{\displaystyle x+x_{1}=m_{1}}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+x_{2}=m_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+x_{2}=m_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d1e3f8fc2e9a3e5a3566972db9848b43c6962b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.747ex; height:2.343ex;" alt="{\displaystyle x+x_{2}=m_{2}}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \vdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22EE;<!-- ⋮ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \vdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8039d9feb6596ae092e5305108722975060c083" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.647ex; height:3.676ex;" alt="{\displaystyle \vdots }"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+x_{n-1}=m_{n-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+x_{n-1}=m_{n-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e700e45ec402c4f773e5fa62c67bd5767f9ae310" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.277ex; height:2.343ex;" alt="{\displaystyle x+x_{n-1}=m_{n-1}}"></span> </p> </blockquote> <p>is, </p> <blockquote><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\cfrac {(m_{1}+m_{2}+...+m_{n-1})-s}{n-2}}={\cfrac {(\sum _{i=1}^{n-1}m_{i})-s}{n-2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>+</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\cfrac {(m_{1}+m_{2}+...+m_{n-1})-s}{n-2}}={\cfrac {(\sum _{i=1}^{n-1}m_{i})-s}{n-2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbd81327ba05ad891be11a7c1f96ee6ce82ef719" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:51.433ex; height:7.343ex;" alt="{\displaystyle x={\cfrac {(m_{1}+m_{2}+...+m_{n-1})-s}{n-2}}={\cfrac {(\sum _{i=1}^{n-1}m_{i})-s}{n-2}}.}"></span></p></blockquote> <p>Iamblichus goes on to describe how some systems of linear equations that are not in this form can be placed into this form.<sup id="cite_ref-Heath_Thymaridas_18-2" class="reference"><a href="#cite_note-Heath_Thymaridas-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Euclid_of_Alexandria">Euclid of Alexandria</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=9" title="Edit section: Euclid of Alexandria"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Sanzio_01_Euclid.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Sanzio_01_Euclid.jpg/180px-Sanzio_01_Euclid.jpg" decoding="async" width="180" height="212" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/81/Sanzio_01_Euclid.jpg/270px-Sanzio_01_Euclid.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/81/Sanzio_01_Euclid.jpg/360px-Sanzio_01_Euclid.jpg 2x" data-file-width="930" data-file-height="1094" /></a><figcaption>Hellenistic mathematician <a href="/wiki/Euclid" title="Euclid">Euclid</a> details <a href="/wiki/Geometric" class="mw-redirect" title="Geometric">geometrical</a> algebra.</figcaption></figure> <p><a href="/wiki/Euclid" title="Euclid">Euclid</a> (<a href="/wiki/Greek_language" title="Greek language">Greek</a>: <span title="Ancient Greek (to 1453)-language text"><span lang="grc">Εὐκλείδης</span></span>) was a <a href="/wiki/Greeks" title="Greeks">Greek</a> mathematician who flourished in <a href="/wiki/Alexandria" title="Alexandria">Alexandria</a>, <a href="/wiki/Egypt" title="Egypt">Egypt</a>, almost certainly during the reign of <a href="/wiki/Ptolemy_I" class="mw-redirect" title="Ptolemy I">Ptolemy I</a> (323–283&#160;BC).<sup id="cite_ref-Boyer_Euclid_Alexandria_20-0" class="reference"><a href="#cite_note-Boyer_Euclid_Alexandria-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Neither the year nor place of his birth<sup id="cite_ref-Boyer_Euclid_Alexandria_20-1" class="reference"><a href="#cite_note-Boyer_Euclid_Alexandria-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> have been established, nor the circumstances of his death. </p><p>Euclid is regarded as the "father of <a href="/wiki/Geometry" title="Geometry">geometry</a>". His <i><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements">Elements</a></i> is the most successful <a href="/wiki/Textbook" title="Textbook">textbook</a> in the <a href="/wiki/History_of_mathematics" title="History of mathematics">history of mathematics</a>.<sup id="cite_ref-Boyer_Euclid_Alexandria_20-2" class="reference"><a href="#cite_note-Boyer_Euclid_Alexandria-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> Although he is one of the most famous mathematicians in history there are no new discoveries attributed to him; rather he is remembered for his great explanatory skills.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> The <i>Elements</i> is not, as is sometimes thought, a collection of all Greek mathematical knowledge to its date; rather, it is an elementary introduction to it.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Elements"><i>Elements</i></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=10" title="Edit section: Elements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The geometric work of the Greeks, typified in Euclid's <i>Elements</i>, provided the framework for generalizing formulae beyond the solution of particular problems into more general systems of stating and solving equations. </p><p>Book II of the <i>Elements</i> contains fourteen propositions, which in Euclid's time were extremely significant for doing geometric algebra. These propositions and their results are the geometric equivalents of our modern symbolic algebra and trigonometry.<sup id="cite_ref-Greek_Geometric_Algebra_15-1" class="reference"><a href="#cite_note-Greek_Geometric_Algebra-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Today, using modern symbolic algebra, we let symbols represent known and unknown magnitudes (i.e. numbers) and then apply algebraic operations on them, while in Euclid's time magnitudes were viewed as line segments and then results were deduced using the axioms or theorems of geometry.<sup id="cite_ref-Greek_Geometric_Algebra_15-2" class="reference"><a href="#cite_note-Greek_Geometric_Algebra-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>Many basic laws of addition and multiplication are included or proved geometrically in the <i>Elements</i>. For instance, proposition 1 of Book II states: </p> <dl><dd>If there be two straight lines, and one of them be cut into any number of segments whatever, the rectangle contained by the two straight lines is equal to the rectangles contained by the uncut straight line and each of the segments.</dd></dl> <p>But this is nothing more than the geometric version of the (left) <a href="/wiki/Distributive_property" title="Distributive property">distributive law</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(b+c+d)=ab+ac+ad}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>a</mi> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(b+c+d)=ab+ac+ad}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45dd251a3f38629693108ef8f5bf1548bfc3b18c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.629ex; height:2.843ex;" alt="{\displaystyle a(b+c+d)=ab+ac+ad}"></span>; and in Books V and VII of the <i>Elements</i> the <a href="/wiki/Commutative_property" title="Commutative property">commutative</a> and <a href="/wiki/Associative_property" title="Associative property">associative</a> laws for multiplication are demonstrated.<sup id="cite_ref-Greek_Geometric_Algebra_15-3" class="reference"><a href="#cite_note-Greek_Geometric_Algebra-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>Many basic equations were also proved geometrically. For instance, proposition 5 in Book II proves that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}-b^{2}=(a+b)(a-b),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}-b^{2}=(a+b)(a-b),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45b23f7c62dfac50b7a15844648d99d45d571e78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.676ex; height:3.176ex;" alt="{\displaystyle a^{2}-b^{2}=(a+b)(a-b),}"></span><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> and proposition 4 in Book II proves that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51f54e5bc3436c7ee90d1be484412b5a270f3908" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.083ex; height:3.176ex;" alt="{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}.}"></span><sup id="cite_ref-Greek_Geometric_Algebra_15-4" class="reference"><a href="#cite_note-Greek_Geometric_Algebra-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>Furthermore, there are also geometric solutions given to many equations. For instance, proposition 6 of Book II gives the solution to the quadratic equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+x^{2}=b^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+x^{2}=b^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/079a7ec61e05292f1bd93f201eff61c13dc2aac8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.581ex; height:3.009ex;" alt="{\displaystyle ax+x^{2}=b^{2},}"></span> and proposition 11 of Book II gives a solution to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+x^{2}=a^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+x^{2}=a^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95d03062dc6328a2f506e396cc508c82044114f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.813ex; height:2.843ex;" alt="{\displaystyle ax+x^{2}=a^{2}.}"></span><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Data"><i>Data</i></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=11" title="Edit section: Data"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Data_(Euclid)" class="mw-redirect" title="Data (Euclid)"><i>Data</i></a> is a work written by Euclid for use at the schools of Alexandria and it was meant to be used as a companion volume to the first six books of the <i>Elements</i>. The book contains some fifteen definitions and ninety-five statements, of which there are about two dozen statements that serve as algebraic rules or formulas.<sup id="cite_ref-Euclid&#39;s_Data_Boyer_26-0" class="reference"><a href="#cite_note-Euclid&#39;s_Data_Boyer-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> Some of these statements are geometric equivalents to solutions of quadratic equations.<sup id="cite_ref-Euclid&#39;s_Data_Boyer_26-1" class="reference"><a href="#cite_note-Euclid&#39;s_Data_Boyer-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> For instance, <i>Data</i> contains the solutions to the equations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx^{2}-adx+b^{2}c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx^{2}-adx+b^{2}c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3da5502ed1bd2c1dbc556aaf04a750376e3f3dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:20.376ex; height:2.843ex;" alt="{\displaystyle dx^{2}-adx+b^{2}c=0}"></span> and the familiar Babylonian equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy=a^{2},x\pm y=b.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>y</mi> <mo>=</mo> <mi>b</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy=a^{2},x\pm y=b.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7488f4263fc8073c9dde27f195f69a9fc6cac97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.97ex; height:3.009ex;" alt="{\displaystyle xy=a^{2},x\pm y=b.}"></span><sup id="cite_ref-Euclid&#39;s_Data_Boyer_26-2" class="reference"><a href="#cite_note-Euclid&#39;s_Data_Boyer-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Conic_sections">Conic sections</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=12" title="Edit section: Conic sections"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Conic_section" title="Conic section">conic section</a> is a curve that results from the <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a> of a <a href="/wiki/Cone" title="Cone">cone</a> with a <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">plane</a>. There are three primary types of conic sections: <a href="/wiki/Ellipse" title="Ellipse">ellipses</a> (including <a href="/wiki/Circle" title="Circle">circles</a>), <a href="/wiki/Parabola" title="Parabola">parabolas</a>, and <a href="/wiki/Hyperbola" title="Hyperbola">hyperbolas</a>. The conic sections are reputed to have been discovered by <a href="/wiki/Menaechmus" title="Menaechmus">Menaechmus</a><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> (c. 380&#160;BC&#160;– c. 320&#160;BC) and since dealing with conic sections is equivalent to dealing with their respective equations, they played geometric roles equivalent to cubic equations and other higher order equations. </p><p>Menaechmus knew that in a parabola, the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{2}=lx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>l</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{2}=lx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4156b741796623b510832f094bb9f09a293eb5ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.336ex; height:3.009ex;" alt="{\displaystyle y^{2}=lx}"></span> holds, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span> is a constant called the <a href="/wiki/Latus_rectum" class="mw-redirect" title="Latus rectum">latus rectum</a>, although he was not aware of the fact that any equation in two unknowns determines a curve.<sup id="cite_ref-Boyer_Menaechmus_28-0" class="reference"><a href="#cite_note-Boyer_Menaechmus-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> He apparently derived these properties of conic sections and others as well. Using this information it was now possible to find a solution to the problem of the <a href="/wiki/Duplication_of_the_cube" class="mw-redirect" title="Duplication of the cube">duplication of the cube</a> by solving for the points at which two parabolas intersect, a solution equivalent to solving a cubic equation.<sup id="cite_ref-Boyer_Menaechmus_28-1" class="reference"><a href="#cite_note-Boyer_Menaechmus-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> </p><p>We are informed by <a href="/wiki/Eutocius" class="mw-redirect" title="Eutocius">Eutocius</a> that the method he used to solve the cubic equation was due to <a href="/wiki/Dionysodorus" title="Dionysodorus">Dionysodorus</a> (250&#160;BC&#160;– 190&#160;BC). Dionysodorus solved the cubic by means of the intersection of a rectangular hyperbola and a parabola. This was related to a problem in <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a>' <i>On the Sphere and Cylinder</i>. Conic sections would be studied and used for thousands of years by Greek, and later Islamic and European, mathematicians. In particular <a href="/wiki/Apollonius_of_Perga" title="Apollonius of Perga">Apollonius of Perga</a>'s famous <i><a href="/wiki/Apollonius_of_Perga#Conics" title="Apollonius of Perga">Conics</a></i> deals with conic sections, among other topics. </p> <div class="mw-heading mw-heading2"><h2 id="China">China</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=13" title="Edit section: China"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Chinese_mathematics" title="Chinese mathematics">Chinese mathematics</a></div> <p>Chinese mathematics dates to at least 300&#160;BC with the <i><a href="/wiki/Zhoubi_Suanjing" title="Zhoubi Suanjing">Zhoubi Suanjing</a></i>, generally considered to be one of the oldest Chinese mathematical documents.<sup id="cite_ref-Boyer_Chinese_Math_29-0" class="reference"><a href="#cite_note-Boyer_Chinese_Math-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Nine_Chapters_on_the_Mathematical_Art"><i>Nine Chapters on the Mathematical Art</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=14" title="Edit section: Nine Chapters on the Mathematical Art"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif/220px-%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif" decoding="async" width="220" height="287" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif/330px-%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/8/88/%E4%B9%9D%E7%AB%A0%E7%AE%97%E8%A1%93.gif 2x" data-file-width="419" data-file-height="546" /></a><figcaption><i>Nine Chapters on the Mathematical Art</i></figcaption></figure> <p><i>Chiu-chang suan-shu</i> or <i><a href="/wiki/The_Nine_Chapters_on_the_Mathematical_Art" title="The Nine Chapters on the Mathematical Art">The Nine Chapters on the Mathematical Art</a></i>, written around 250&#160;BC, is one of the most influential of all Chinese math books and it is composed of some 246 problems. Chapter eight deals with solving determinate and indeterminate simultaneous linear equations using positive and negative numbers, with one problem dealing with solving four equations in five unknowns.<sup id="cite_ref-Boyer_Chinese_Math_29-1" class="reference"><a href="#cite_note-Boyer_Chinese_Math-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Sea-Mirror_of_the_Circle_Measurements"><i>Sea-Mirror of the Circle Measurements</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=15" title="Edit section: Sea-Mirror of the Circle Measurements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Ts'e-yuan hai-ching</i>, or <i>Sea-Mirror of the Circle Measurements</i>, is a collection of some 170 problems written by <a href="/wiki/Li_Zhi_(mathematician)" class="mw-redirect" title="Li Zhi (mathematician)">Li Zhi</a> (or Li Ye) (1192&#160;– 1279 AD). He used <i>fan fa</i>, or <a href="/wiki/Horner%27s_method" title="Horner&#39;s method">Horner's method</a>, to solve equations of degree as high as six, although he did not describe his method of solving equations.<sup id="cite_ref-Boyer_Sea_Mirror_30-0" class="reference"><a href="#cite_note-Boyer_Sea_Mirror-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Mathematical_Treatise_in_Nine_Sections"><i>Mathematical Treatise in Nine Sections</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=16" title="Edit section: Mathematical Treatise in Nine Sections"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Shu-shu chiu-chang</i>, or <i><a href="/wiki/Mathematical_Treatise_in_Nine_Sections" title="Mathematical Treatise in Nine Sections">Mathematical Treatise in Nine Sections</a></i>, was written by the wealthy governor and minister <a href="/wiki/Ch%27in_Chiu-shao" class="mw-redirect" title="Ch&#39;in Chiu-shao">Ch'in Chiu-shao</a> (c.&#160;1202&#160;– c.&#160;1261). With the introduction of a method for solving simultaneous <a href="/wiki/Modular_arithmetic" title="Modular arithmetic">congruences</a>, now called the <a href="/wiki/Chinese_remainder_theorem" title="Chinese remainder theorem">Chinese remainder theorem</a>, it marks the high point in Chinese <span class="cleanup-needed-content" style="padding-left:0.1em; padding-right:0.1em; color:var(--color-subtle, #54595d); border:1px solid var(--border-color-subtle, #c8ccd1);">indeterminate analysis</span><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="What is it ? (June 2022)">clarification needed</span></a></i>&#93;</sup>.<sup id="cite_ref-Boyer_Sea_Mirror_30-1" class="reference"><a href="#cite_note-Boyer_Sea_Mirror-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Magic_squares">Magic squares</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=17" title="Edit section: Magic squares"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Yanghui_triangle.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Yanghui_triangle.gif/220px-Yanghui_triangle.gif" decoding="async" width="220" height="342" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Yanghui_triangle.gif/330px-Yanghui_triangle.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Yanghui_triangle.gif/440px-Yanghui_triangle.gif 2x" data-file-width="704" data-file-height="1095" /></a><figcaption><a href="/wiki/Yang_Hui" title="Yang Hui">Yang Hui</a> (Pascal's) triangle, as depicted by the ancient Chinese using <a href="/wiki/Counting_rods" title="Counting rods">rod numerals</a></figcaption></figure> <p>The earliest known <a href="/wiki/Magic_square" title="Magic square">magic squares</a> appeared in China.<sup id="cite_ref-Boyer_Magic_Squares_31-0" class="reference"><a href="#cite_note-Boyer_Magic_Squares-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> In <i>Nine Chapters</i> the author solves a system of simultaneous linear equations by placing the coefficients and constant terms of the linear equations into a magic square (i.e. a matrix) and performing column reducing operations on the magic square.<sup id="cite_ref-Boyer_Magic_Squares_31-1" class="reference"><a href="#cite_note-Boyer_Magic_Squares-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> The earliest known magic squares of order greater than three are attributed to <a href="/wiki/Yang_Hui" title="Yang Hui">Yang Hui</a> (fl. c.&#160;1261&#160;– 1275), who worked with magic squares of order as high as ten.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Precious_Mirror_of_the_Four_Elements"><i>Precious Mirror of the Four Elements</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=18" title="Edit section: Precious Mirror of the Four Elements"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><i>Ssy-yüan yü-chien</i>《四元玉鑒》, or <i>Precious Mirror of the Four Elements</i>, was written by <a href="/wiki/Chu_Shih-chieh" class="mw-redirect" title="Chu Shih-chieh">Chu Shih-chieh</a> in 1303 and it marks the peak in the development of Chinese algebra. The <a href="/wiki/Classical_element" title="Classical element">four elements</a>, called heaven, earth, man and matter, represented the four unknown quantities in his algebraic equations. The <i>Ssy-yüan yü-chien</i> deals with simultaneous equations and with equations of degrees as high as fourteen. The author uses the method of <i>fan fa</i>, today called <a href="/wiki/Horner%27s_method" title="Horner&#39;s method">Horner's method</a>, to solve these equations.<sup id="cite_ref-Boyer_Precious_Mirror_33-0" class="reference"><a href="#cite_note-Boyer_Precious_Mirror-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <i>Precious Mirror</i> opens with a diagram of the arithmetic triangle (<a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a>) using a round zero symbol, but Chu Shih-chieh denies credit for it. A similar triangle appears in Yang Hui's work, but without the zero symbol.<sup id="cite_ref-Boyer_Precious_Mirror_p205_34-0" class="reference"><a href="#cite_note-Boyer_Precious_Mirror_p205-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p><p>There are many summation equations given without proof in the <i>Precious mirror</i>. A few of the summations are:<sup id="cite_ref-Boyer_Precious_Mirror_p205_34-1" class="reference"><a href="#cite_note-Boyer_Precious_Mirror_p205-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{2}+2^{2}+3^{2}+\cdots +n^{2}={n(n+1)(2n+1) \over 3!}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{2}+2^{2}+3^{2}+\cdots +n^{2}={n(n+1)(2n+1) \over 3!}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fab99700cd509ef4591de225a597fb5be7db823d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:44.089ex; height:5.843ex;" alt="{\displaystyle 1^{2}+2^{2}+3^{2}+\cdots +n^{2}={n(n+1)(2n+1) \over 3!}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+8+30+80+\cdots +{n^{2}(n+1)(n+2) \over 3!}={n(n+1)(n+2)(n+3)(4n+1) \over 5!}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>8</mn> <mo>+</mo> <mn>30</mn> <mo>+</mo> <mn>80</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>4</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+8+30+80+\cdots +{n^{2}(n+1)(n+2) \over 3!}={n(n+1)(n+2)(n+3)(4n+1) \over 5!}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7a002d1d063d76e83c31e20bdd3af80d9d5e1d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:76.918ex; height:6.009ex;" alt="{\displaystyle 1+8+30+80+\cdots +{n^{2}(n+1)(n+2) \over 3!}={n(n+1)(n+2)(n+3)(4n+1) \over 5!}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Diophantus">Diophantus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=19" title="Edit section: Diophantus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Diophantine_equation" title="Diophantine equation">Diophantine equation</a> and <a href="/wiki/Arithmetica" title="Arithmetica">Arithmetica</a></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Diophantus-cover.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/220px-Diophantus-cover.png" decoding="async" width="220" height="344" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/330px-Diophantus-cover.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3b/Diophantus-cover.png/440px-Diophantus-cover.png 2x" data-file-width="828" data-file-height="1295" /></a><figcaption>Cover of the 1621 edition of Diophantus' <i>Arithmetica</i>, translated into <a href="/wiki/Latin" title="Latin">Latin</a> by <a href="/wiki/Claude_Gaspard_Bachet_de_M%C3%A9ziriac" class="mw-redirect" title="Claude Gaspard Bachet de Méziriac">Claude Gaspard Bachet de Méziriac</a></figcaption></figure> <p><a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> was a <a href="/wiki/Hellenistic_civilization" class="mw-redirect" title="Hellenistic civilization">Hellenistic</a> mathematician who lived c.&#160;250&#160;AD, but the uncertainty of this date is so great that it may be off by more than a century. He is known for having written <i>Arithmetica</i>, a treatise that was originally thirteen books but of which only the first six have survived.<sup id="cite_ref-Boyer_Diophantus_35-0" class="reference"><a href="#cite_note-Boyer_Diophantus-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> <i>Arithmetica</i> is the earliest extant work present that solve arithmetic problems by algebra. Diophantus however did not invent the method of algebra, which existed before him.<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> Algebra was practiced and diffused orally by practitioners, with Diophantus picking up techniques to solve problems in arithmetic.<sup id="cite_ref-:0_37-0" class="reference"><a href="#cite_note-:0-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p><p>In modern algebra a polynomial is a linear combination of variable x that is built of exponentiation, scalar multiplication, addition, and subtraction. The algebra of Diophantus, similar to medieval arabic algebra is an aggregation of objects of different types with no operations present<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, in Diophantus a polynomial "6 4<span class="nowrap" style="padding-left:0.15em;">′</span> inverse Powers, 25 Powers lacking 9 units", which in modern notation is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6{\tfrac {1}{4}}x^{-1}+25x^{2}-9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mn>25</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6{\tfrac {1}{4}}x^{-1}+25x^{2}-9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9861c1b36b904f508f07de9189e90f54d79bfa87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:18.035ex; height:3.509ex;" alt="{\displaystyle 6{\tfrac {1}{4}}x^{-1}+25x^{2}-9}"></span> is a collection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 6{\tfrac {1}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>6</mn> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 6{\tfrac {1}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/222bc69e612578a83545878a0599c999774cb0f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.821ex; height:3.509ex;" alt="{\displaystyle 6{\tfrac {1}{4}}}"></span> object of one kind with 25 object of second kind which lack 9 objects of third kind with no operation present.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> </p><p>Similar to medieval Arabic algebra Diophantus uses three stages to solve a problem by Algebra: </p><p>1) An unknown is named and an equation is set up </p><p>2) An equation is simplified to a standard form( al-jabr and al-muqābala in arabic) </p><p>3) Simplified equation is solved<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> </p><p>Diophantus does not give a classification of equations in six types like Al-Khwarizmi in extant parts of Arithmetica. He does say that he would give solution to three terms equations later, so this part of the work is possibly just lost<sup id="cite_ref-:0_37-1" class="reference"><a href="#cite_note-:0-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p><p>In <i>Arithmetica</i>, Diophantus is the first to use symbols for unknown numbers as well as abbreviations for powers of numbers, relationships, and operations;<sup id="cite_ref-Boyer_Arithmetica_41-0" class="reference"><a href="#cite_note-Boyer_Arithmetica-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> thus he used what is now known as <i>syncopated</i> algebra. The main difference between Diophantine syncopated algebra and modern algebraic notation is that the former lacked special symbols for operations, relations, and exponentials.<sup id="cite_ref-Boyer_42-0" class="reference"><a href="#cite_note-Boyer-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> </p><p>So, for example, what we would write as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{3}-2x^{2}+10x-1=5,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>10</mn> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>=</mo> <mn>5</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{3}-2x^{2}+10x-1=5,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45bb2d540b72127f8e7906b93caaef85e1969acc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:24.176ex; height:3.009ex;" alt="{\displaystyle x^{3}-2x^{2}+10x-1=5,}"></span></dd></dl> <p>which can be rewritten as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>5</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22148789d81e1423c7b5f20e224d3b9d0f0248a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:34.366ex; height:3.343ex;" alt="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5,}"></span></dd></dl> <p>would be written in Diophantus's syncopated notation as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {K} ^{\upsilon }{\overline {\alpha }}\;\zeta {\overline {\iota }}\;\,\pitchfork \;\,\Delta ^{\upsilon }{\overline {\beta }}\;\mathrm {M} {\overline {\alpha }}\,\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thickmathspace" /> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B9;<!-- ι --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mo>&#x22D4;<!-- ⋔ --></mo> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thickmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {K} ^{\upsilon }{\overline {\alpha }}\;\zeta {\overline {\iota }}\;\,\pitchfork \;\,\Delta ^{\upsilon }{\overline {\beta }}\;\mathrm {M} {\overline {\alpha }}\,\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a6f34b992f64ad82a6963fea1a3f486c0d7a67e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.039ex; height:3.343ex;" alt="{\displaystyle \mathrm {K} ^{\upsilon }{\overline {\alpha }}\;\zeta {\overline {\iota }}\;\,\pitchfork \;\,\Delta ^{\upsilon }{\overline {\beta }}\;\mathrm {M} {\overline {\alpha }}\,\;}"></span><span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴ</span></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma \;\,\mathrm {M} {\overline {\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B5;<!-- ε --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma \;\,\mathrm {M} {\overline {\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73f8355814a4935d44d03603d240df778f7d15f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.691ex; height:2.343ex;" alt="{\displaystyle \sigma \;\,\mathrm {M} {\overline {\varepsilon }}}"></span></dd></dl> <p>where the symbols represent the following:<sup id="cite_ref-Diophantus_Syncopation_43-0" class="reference"><a href="#cite_note-Diophantus_Syncopation-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <tbody><tr> <th>Symbol </th> <th>What it represents </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\alpha }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\alpha }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f87618f0333926d073474c3e9b99c65628f6c09" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.603ex; height:2.343ex;" alt="{\displaystyle {\overline {\alpha }}}"></span> </td> <td>1 </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\beta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B2;<!-- β --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\beta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63c4114445a608fb557f7671a11e5006ec8e5909" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.458ex; height:3.343ex;" alt="{\displaystyle {\overline {\beta }}}"></span> </td> <td>2 </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\varepsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B5;<!-- ε --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\varepsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b2218c42327a03e8cd7483b392523f02e6e20cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.198ex; height:2.343ex;" alt="{\displaystyle {\overline {\varepsilon }}}"></span> </td> <td>5 </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {\iota }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B9;<!-- ι --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {\iota }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57a48f3d398ea03e7686b2f73e223af7a3b40baa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.938ex; height:2.343ex;" alt="{\displaystyle {\overline {\iota }}}"></span> </td> <td>10 </td></tr> <tr> <td><span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴσ</span></span> </td> <td>"equals" (short for <span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴσος</span></span>) </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pitchfork }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22D4;<!-- ⋔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pitchfork }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/131d2d6f4e4161d53e274221b9a2d514d0ae790f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.343ex;" alt="{\displaystyle \pitchfork }"></span> </td> <td>represents the subtraction of everything that follows <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pitchfork }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22D4;<!-- ⋔ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pitchfork }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/131d2d6f4e4161d53e274221b9a2d514d0ae790f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.343ex;" alt="{\displaystyle \pitchfork }"></span> up to <span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴσ</span></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {M} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {M} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1ec92b986053ec4967f418634cf062b9d980f9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.131ex; height:2.176ex;" alt="{\displaystyle \mathrm {M} }"></span> </td> <td>the zeroth power (i.e. a constant term) </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B6;<!-- ζ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5c3916703cae7938143d38865f78f27faadd4ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.095ex; height:2.509ex;" alt="{\displaystyle \zeta }"></span> </td> <td>the unknown quantity (because a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> raised to the first power is just <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> this may be thought of as "the first power") </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{\upsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ^{\upsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5da33a571fc1f5109907a46f966c0830e26194af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.056ex; height:2.343ex;" alt="{\displaystyle \Delta ^{\upsilon }}"></span> </td> <td>the second power, from Greek <span title="Ancient Greek (to 1453)-language text"><span lang="grc">δύναμις</span></span>, meaning strength or power </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {K} ^{\upsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {K} ^{\upsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a46f73e9841d00eec65acac5171dc2039425494" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.928ex; height:2.343ex;" alt="{\displaystyle \mathrm {K} ^{\upsilon }}"></span> </td> <td>the third power, from Greek <span title="Ancient Greek (to 1453)-language text"><span lang="grc">κύβος</span></span>, meaning a cube </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{\upsilon }\Delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ^{\upsilon }\Delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3023654863d1d4cc497d166539d450b325b2d3e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.992ex; height:2.343ex;" alt="{\displaystyle \Delta ^{\upsilon }\Delta }"></span> </td> <td>the fourth power </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathrm {K} ^{\upsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathrm {K} ^{\upsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f619f6cd368b886daf528fa8955cbf3a8bf22c06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.864ex; height:2.343ex;" alt="{\displaystyle \Delta \mathrm {K} ^{\upsilon }}"></span> </td> <td>the fifth power </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {K} ^{\upsilon }\mathrm {K} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C5;<!-- υ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">K</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {K} ^{\upsilon }\mathrm {K} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7804bdc32af45823667897e3e42ee597d9c76f68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.736ex; height:2.343ex;" alt="{\displaystyle \mathrm {K} ^{\upsilon }\mathrm {K} }"></span> </td> <td>the sixth power </td></tr> </tbody></table> <p>Unlike in modern notation, the coefficients come after the variables and that addition is represented by the juxtaposition of terms. A literal symbol-for-symbol translation of Diophantus's syncopated equation into a modern symbolic equation would be the following:<sup id="cite_ref-Diophantus_Syncopation_43-1" class="reference"><a href="#cite_note-Diophantus_Syncopation-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {x^{3}}1{x}10-{x^{2}}2{x^{0}}1={x^{0}}5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mn>10</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>1</mn> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {x^{3}}1{x}10-{x^{2}}2{x^{0}}1={x^{0}}5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/199cd6a4d18c4b4ae9ba30d9900beff5c8d190e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:23.779ex; height:2.843ex;" alt="{\displaystyle {x^{3}}1{x}10-{x^{2}}2{x^{0}}1={x^{0}}5}"></span></dd></dl> <p>where to clarify, if the modern parentheses and plus are used then the above equation can be rewritten as:<sup id="cite_ref-Diophantus_Syncopation_43-2" class="reference"><a href="#cite_note-Diophantus_Syncopation-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mn>10</mn> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>2</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mrow> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf926dcdef491e159138f5398d39e42f89ece9a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.719ex; height:3.343ex;" alt="{\displaystyle \left({x^{3}}1+{x}10\right)-\left({x^{2}}2+{x^{0}}1\right)={x^{0}}5}"></span></dd></dl> <p>However the distinction between "rhetorical algebra", "syncopated algebra" and "symbolic algebra" is considered outdated by Jeffrey Oaks and Jean Christianidis. The problems were solved on dust-board using some notation, while in books solution were written in "rhetorical style".<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> </p><p><i>Arithmetica</i> also makes use of the identities:<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><table> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a^{2}+b^{2})(c^{2}+d^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a^{2}+b^{2})(c^{2}+d^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3fdd09c96f35dd5aea7e4d425964f10bb1611a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.969ex; height:3.176ex;" alt="{\displaystyle (a^{2}+b^{2})(c^{2}+d^{2})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(ac+db)^{2}+(bc-ad)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(ac+db)^{2}+(bc-ad)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb723287aa2332ec3cd866a93a89d15efc524216" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.602ex; height:3.176ex;" alt="{\displaystyle =(ac+db)^{2}+(bc-ad)^{2}}"></span> </td></tr> <tr> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =(ad+bc)^{2}+(ac-bd)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>d</mi> <mo>+</mo> <mi>b</mi> <mi>c</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>d</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =(ad+bc)^{2}+(ac-bd)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4e157928b6e4c9539c406e33def2945d39035e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.602ex; height:3.176ex;" alt="{\displaystyle =(ad+bc)^{2}+(ac-bd)^{2}}"></span> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading2"><h2 id="India">India</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=20" title="Edit section: India"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Indian_mathematics" title="Indian mathematics">Indian mathematics</a></div> <p>The Indian mathematicians were active in studying about number systems. The earliest known <a href="/wiki/Indian_mathematics" title="Indian mathematics">Indian mathematical</a> documents are dated to around the middle of the first millennium BC (around the 6th century BC).<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> </p><p>The recurring themes in Indian mathematics are, among others, determinate and indeterminate linear and quadratic equations, simple mensuration, and Pythagorean triples.<sup id="cite_ref-India_Algebra_in_General_48-0" class="reference"><a href="#cite_note-India_Algebra_in_General-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Aryabhata"><i>Aryabhata</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=21" title="Edit section: Aryabhata"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a> (476–550) was an Indian mathematician who authored <i><a href="/wiki/Aryabhatiya" title="Aryabhatiya">Aryabhatiya</a></i>. In it he gave the rules,<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{2}+2^{2}+\cdots +n^{2}={n(n+1)(2n+1) \over 6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>6</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{2}+2^{2}+\cdots +n^{2}={n(n+1)(2n+1) \over 6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b1a47289cece2440528c05d6278f26976e777da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:39.032ex; height:5.676ex;" alt="{\displaystyle 1^{2}+2^{2}+\cdots +n^{2}={n(n+1)(2n+1) \over 6}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{3}+2^{3}+\cdots +n^{3}=(1+2+\cdots +n)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{3}+2^{3}+\cdots +n^{3}=(1+2+\cdots +n)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/551fa64a9d0998afbb6435d14eba6719eb595df0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.053ex; height:3.176ex;" alt="{\displaystyle 1^{3}+2^{3}+\cdots +n^{3}=(1+2+\cdots +n)^{2}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Brahma_Sphuta_Siddhanta"><i>Brahma Sphuta Siddhanta</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=22" title="Edit section: Brahma Sphuta Siddhanta"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a> (fl. 628) was an Indian mathematician who authored <i><a href="/wiki/Brahma_Sphuta_Siddhanta" class="mw-redirect" title="Brahma Sphuta Siddhanta">Brahma Sphuta Siddhanta</a></i>. In his work Brahmagupta solves the general quadratic equation for both positive and negative roots.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> In indeterminate analysis Brahmagupta gives the Pythagorean triads <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,{\frac {1}{2}}\left({m^{2} \over n}-n\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,{\frac {1}{2}}\left({m^{2} \over n}-n\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92ba7aee8fbdb90edf4dfbd25cf4f1337c954d22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.081ex; height:6.343ex;" alt="{\displaystyle m,{\frac {1}{2}}\left({m^{2} \over n}-n\right),}"></span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}\left({m^{2} \over n}+n\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mi>n</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}\left({m^{2} \over n}+n\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5747da67271b090efa63dd90d668c6746e74bcf6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:15.007ex; height:6.343ex;" alt="{\displaystyle {\frac {1}{2}}\left({m^{2} \over n}+n\right),}"></span> but this is a modified form of an old Babylonian rule that Brahmagupta may have been familiar with.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> He was the first to give a general solution to the linear Diophantine equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+by=c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>y</mi> <mo>=</mo> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+by=c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cad0ef4835d1ee3714c5a58e37e00a51e502850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.305ex; height:2.509ex;" alt="{\displaystyle ax+by=c,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ae9ae3580e0d3b9cfb40bebf5fe09640183361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.908ex; height:2.509ex;" alt="{\displaystyle a,b,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> are <a href="/wiki/Integer" title="Integer">integers</a>. Unlike Diophantus who only gave one solution to an indeterminate equation, Brahmagupta gave <i>all</i> integer solutions; but that Brahmagupta used some of the same examples as Diophantus has led some historians to consider the possibility of a Greek influence on Brahmagupta's work, or at least a common Babylonian source.<sup id="cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-0" class="reference"><a href="#cite_note-Boyer_Brahmagupta_Indeterminate_equations-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p>Like the algebra of Diophantus, the algebra of Brahmagupta was syncopated. Addition was indicated by placing the numbers side by side, subtraction by placing a dot over the subtrahend, and division by placing the divisor below the dividend, similar to our modern notation but without the bar. Multiplication, evolution, and unknown quantities were represented by abbreviations of appropriate terms.<sup id="cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-1" class="reference"><a href="#cite_note-Boyer_Brahmagupta_Indeterminate_equations-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> The extent of Greek influence on this syncopation, if any, is not known and it is possible that both Greek and Indian syncopation may be derived from a common Babylonian source.<sup id="cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-2" class="reference"><a href="#cite_note-Boyer_Brahmagupta_Indeterminate_equations-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Bhāskara_II"><span id="Bh.C4.81skara_II"></span>Bhāskara II</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=23" title="Edit section: Bhāskara II"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Bh%C4%81skara_II" title="Bhāskara II">Bhāskara II</a> (1114 – c. 1185) was the leading mathematician of the 12th century. In Algebra, he gave the general solution of <a href="/wiki/Pell%27s_equation" title="Pell&#39;s equation">Pell's equation</a>.<sup id="cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-3" class="reference"><a href="#cite_note-Boyer_Brahmagupta_Indeterminate_equations-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> He is the author of <i><a href="/wiki/Lilavati" class="mw-redirect" title="Lilavati">Lilavati</a></i> and <i>Vija-Ganita</i>, which contain problems dealing with determinate and indeterminate linear and quadratic equations, and Pythagorean triples<sup id="cite_ref-India_Algebra_in_General_48-1" class="reference"><a href="#cite_note-India_Algebra_in_General-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> and he fails to distinguish between exact and approximate statements.<sup id="cite_ref-Boyer_Lilvati222-223_53-0" class="reference"><a href="#cite_note-Boyer_Lilvati222-223-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> Many of the problems in <i>Lilavati</i> and <i>Vija-Ganita</i> are derived from other Hindu sources, and so Bhaskara is at his best in dealing with indeterminate analysis.<sup id="cite_ref-Boyer_Lilvati222-223_53-1" class="reference"><a href="#cite_note-Boyer_Lilvati222-223-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> </p><p>Bhaskara uses the initial symbols of the names for colors as the symbols of unknown variables. So, for example, what we would write today as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-x-1)+(2x-8)=x-9}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>8</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>9</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-x-1)+(2x-8)=x-9}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3672dd40c63fc4cd395e603c1801641a9a9e61c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.526ex; height:2.843ex;" alt="{\displaystyle (-x-1)+(2x-8)=x-9}"></span></dd></dl> <p>Bhaskara would have written as </p> <dl><dd><dl><dd>. <span style="color:white;">_</span> .</dd></dl></dd> <dd><i>ya</i> 1 <i>ru</i> 1 <dl><dd><dl><dd>.</dd></dl></dd></dl></dd> <dd><i>ya</i> 2 <i>ru</i> 8 <dl><dd><dl><dd><dl><dd>.</dd></dl></dd></dl></dd></dl></dd> <dd>Sum <i>ya</i> 1 ru <i>9</i></dd></dl> <p>where <i>ya</i> indicates the first syllable of the word for <i>black</i>, and <i>ru</i> is taken from the word <i>species</i>. The dots over the numbers indicate subtraction. </p> <div class="mw-heading mw-heading2"><h2 id="Islamic_world">Islamic world</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=24" title="Edit section: Islamic world"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg/220px-Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg" decoding="async" width="220" height="348" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/2/23/Image-Al-Kit%C4%81b_al-mu%E1%B8%ABta%E1%B9%A3ar_f%C4%AB_%E1%B8%A5is%C4%81b_al-%C4%9Fabr_wa-l-muq%C4%81bala.jpg 1.5x" data-file-width="240" data-file-height="380" /></a><figcaption>A page from <i><a href="/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing" class="mw-redirect" title="The Compendious Book on Calculation by Completion and Balancing">The Compendious Book on Calculation by Completion and Balancing</a></i></figcaption></figure> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Islamic_mathematics" class="mw-redirect" title="Islamic mathematics">Islamic mathematics</a></div> <p>The first century of the <a href="/wiki/Islam" title="Islam">Islamic</a> <a href="/wiki/Caliphate" title="Caliphate">Arab Empire</a> saw almost no scientific or mathematical achievements since the Arabs, with their newly conquered empire, had not yet gained any intellectual drive and research in other parts of the world had faded. In the second half of the 8th century, Islam had a cultural awakening, and research in mathematics and the sciences increased.<sup id="cite_ref-Boyer_Intro_Islamic_Algebra_54-0" class="reference"><a href="#cite_note-Boyer_Intro_Islamic_Algebra-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> The Muslim <a href="/wiki/Abbasid" class="mw-redirect" title="Abbasid">Abbasid</a> <a href="/wiki/Caliph" class="mw-redirect" title="Caliph">caliph</a> <a href="/wiki/Al-Mamun" class="mw-redirect" title="Al-Mamun">al-Mamun</a> (809–833) is said to have had a dream where Aristotle appeared to him, and as a consequence al-Mamun ordered that Arabic translation be made of as many Greek works as possible, including Ptolemy's <i>Almagest</i> and Euclid's <i>Elements</i>. Greek works would be given to the Muslims by the <a href="/wiki/Byzantine_Empire" title="Byzantine Empire">Byzantine Empire</a> in exchange for treaties, as the two empires held an uneasy peace.<sup id="cite_ref-Boyer_Intro_Islamic_Algebra_54-1" class="reference"><a href="#cite_note-Boyer_Intro_Islamic_Algebra-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> Many of these Greek works were translated by <a href="/wiki/Thabit_ibn_Qurra" class="mw-redirect" title="Thabit ibn Qurra">Thabit ibn Qurra</a> (826–901), who translated books written by Euclid, Archimedes, Apollonius, Ptolemy, and Eutocius.<sup id="cite_ref-Boyer_Islamic_Rhetoric_Algebra_Thabit_55-0" class="reference"><a href="#cite_note-Boyer_Islamic_Rhetoric_Algebra_Thabit-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p>Arabic mathematicians established algebra as an independent discipline, and gave it the name "algebra" (<i>al-jabr</i>). They were the first to teach algebra in an <a href="/wiki/Elementary_algebra" title="Elementary algebra">elementary form</a> and for its own sake.<sup id="cite_ref-Gandz236_56-0" class="reference"><a href="#cite_note-Gandz236-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> There are three theories about the origins of Arabic Algebra. The first emphasizes Hindu influence, the second emphasizes Mesopotamian or Persian-Syriac influence and the third emphasizes Greek influence. Many scholars believe that it is the result of a combination of all three sources.<sup id="cite_ref-Boyer_Three_Influences_on_al_Jabr_57-0" class="reference"><a href="#cite_note-Boyer_Three_Influences_on_al_Jabr-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> </p><p>Throughout their time in power, the Arabs used a fully rhetorical algebra, where often even the numbers were spelled out in words. The Arabs would eventually replace spelled out numbers (e.g. twenty-two) with <a href="/wiki/Arabic_numerals" title="Arabic numerals">Arabic numerals</a> (e.g. 22), but the Arabs did not adopt or develop a syncopated or symbolic algebra<sup id="cite_ref-Boyer_Islamic_Rhetoric_Algebra_Thabit_55-1" class="reference"><a href="#cite_note-Boyer_Islamic_Rhetoric_Algebra_Thabit-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> until the work of <a href="/wiki/Ibn_al-Banna" class="mw-redirect" title="Ibn al-Banna">Ibn al-Banna</a>, who developed a symbolic algebra in the 13th century, followed by <a href="/wiki/Ab%C5%AB_al-Hasan_ibn_Al%C4%AB_al-Qalas%C4%81d%C4%AB" class="mw-redirect" title="Abū al-Hasan ibn Alī al-Qalasādī">Abū al-Hasan ibn Alī al-Qalasādī</a> in the 15th century. </p> <div class="mw-heading mw-heading3"><h3 id="Al-jabr_wa'l_muqabalah"><span id="Al-jabr_wa.27l_muqabalah"></span><i>Al-jabr wa'l muqabalah</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=25" title="Edit section: Al-jabr wa&#039;l muqabalah"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing" class="mw-redirect" title="The Compendious Book on Calculation by Completion and Balancing">The Compendious Book on Calculation by Completion and Balancing</a></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:242px;max-width:242px"><div class="trow"><div class="tsingle" style="width:116px;max-width:116px"><div class="thumbimage" style="height:184px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:The_Algebra_of_Mohammed_ben_Musa_(Arabic).png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/The_Algebra_of_Mohammed_ben_Musa_%28Arabic%29.png/114px-The_Algebra_of_Mohammed_ben_Musa_%28Arabic%29.png" decoding="async" width="114" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/The_Algebra_of_Mohammed_ben_Musa_%28Arabic%29.png/171px-The_Algebra_of_Mohammed_ben_Musa_%28Arabic%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/eb/The_Algebra_of_Mohammed_ben_Musa_%28Arabic%29.png/228px-The_Algebra_of_Mohammed_ben_Musa_%28Arabic%29.png 2x" data-file-width="369" data-file-height="600" /></a></span></div></div><div class="tsingle" style="width:122px;max-width:122px"><div class="thumbimage" style="height:184px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:The_Algebra_of_Mohammed_ben_Musa_(English).png" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/The_Algebra_of_Mohammed_ben_Musa_%28English%29.png/120px-The_Algebra_of_Mohammed_ben_Musa_%28English%29.png" decoding="async" width="120" height="185" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/45/The_Algebra_of_Mohammed_ben_Musa_%28English%29.png/180px-The_Algebra_of_Mohammed_ben_Musa_%28English%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/45/The_Algebra_of_Mohammed_ben_Musa_%28English%29.png/240px-The_Algebra_of_Mohammed_ben_Musa_%28English%29.png 2x" data-file-width="390" data-file-height="600" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Left: The original Arabic print manuscript of the Book of Algebra by <a href="/wiki/Al-Khwarizmi" title="Al-Khwarizmi">Al-Khwarizmi</a>. Right: A page from The Algebra of <a href="/wiki/Al-Khwarizmi" title="Al-Khwarizmi">Al-Khwarizmi</a> by Fredrick Rosen, in <a href="/wiki/English_language" title="English language">English</a>.</div></div></div></div> <p>The Muslim<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Persia" class="mw-redirect" title="Persia">Persian</a> mathematician <a href="/wiki/Muhammad_ibn_Musa_al-Khwarizmi" class="mw-redirect" title="Muhammad ibn Musa al-Khwarizmi">Muhammad ibn Mūsā al-Khwārizmī</a>, described as the father<sup id="cite_ref-Corbin_1998_44_59-0" class="reference"><a href="#cite_note-Corbin_1998_44-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> or founder<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> of <a href="/wiki/Algebra" title="Algebra">algebra</a>, was a faculty member of the "<a href="/wiki/House_of_Wisdom" title="House of Wisdom">House of Wisdom</a>" (<i>Bait al-Hikma</i>) in Baghdad, which was established by Al-Mamun. Al-Khwarizmi, who died around 850&#160;AD, wrote more than half a dozen mathematical and <a href="/wiki/Astronomy" title="Astronomy">astronomical</a> works.<sup id="cite_ref-Boyer_Intro_Islamic_Algebra_54-2" class="reference"><a href="#cite_note-Boyer_Intro_Islamic_Algebra-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> One of al-Khwarizmi's most famous books is entitled <i>Al-jabr wa'l muqabalah</i> or <i><a href="/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing" class="mw-redirect" title="The Compendious Book on Calculation by Completion and Balancing">The Compendious Book on Calculation by Completion and Balancing</a></i>, and it gives an exhaustive account of solving <a href="/wiki/Polynomial" title="Polynomial">polynomials</a> up to the second <a href="/wiki/Degree_of_a_polynomial" title="Degree of a polynomial">degree</a>.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> The book also introduced the fundamental concept of "<a href="/wiki/Reduction_(mathematics)" title="Reduction (mathematics)">reduction</a>" and "balancing", referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation. This is the operation which Al-Khwarizmi originally described as <i>al-jabr</i>.<sup id="cite_ref-Boyer-229_65-0" class="reference"><a href="#cite_note-Boyer-229-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> The name "algebra" comes from the "<i>al-jabr</i>" in the title of his book. </p><p>R. Rashed and Angela Armstrong write: </p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>"Al-Khwarizmi's text can be seen to be distinct not only from the <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonian tablets</a>, but also from <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a>' <i><a href="/wiki/Arithmetica" title="Arithmetica">Arithmetica</a></i>. It no longer concerns a series of <a href="/wiki/Mathematical_problem" title="Mathematical problem">problems</a> to be resolved, but an <a href="/wiki/Expository_writing" class="mw-redirect" title="Expository writing">exposition</a> which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study. On the other hand, the idea of an equation for its own sake appears from the beginning and, one could say, in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems."<sup id="cite_ref-Rashed-Armstrong_66-0" class="reference"><a href="#cite_note-Rashed-Armstrong-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup></p></blockquote> <p><i>Al-Jabr</i> is divided into six chapters, each of which deals with a different type of formula. The first chapter of <i>Al-Jabr</i> deals with equations whose squares equal its roots <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(ax^{2}=bx\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>b</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(ax^{2}=bx\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6510917980c94f46aef11d9fd712d4f201eb9d00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.203ex; height:3.343ex;" alt="{\displaystyle \left(ax^{2}=bx\right),}"></span> the second chapter deals with squares equal to number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(ax^{2}=c\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(ax^{2}=c\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b80a663b0718f80e654fc33a6f5e50df8005bee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.883ex; height:3.343ex;" alt="{\displaystyle \left(ax^{2}=c\right),}"></span> the third chapter deals with roots equal to a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(bx=c\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mi>x</mi> <mo>=</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(bx=c\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa5274e377bdfbae8f0d81a7c244009629121bbb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.276ex; height:2.843ex;" alt="{\displaystyle \left(bx=c\right),}"></span> the fourth chapter deals with squares and roots equal a number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(ax^{2}+bx=c\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>=</mo> <mi>c</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(ax^{2}+bx=c\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38c78b42f3dfebbcbc971dc42f4354576def379a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.05ex; height:3.343ex;" alt="{\displaystyle \left(ax^{2}+bx=c\right),}"></span> the fifth chapter deals with squares and number equal roots <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(ax^{2}+c=bx\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mi>b</mi> <mi>x</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(ax^{2}+c=bx\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c245e40b60334552a7fbe22d96454a6867322ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.05ex; height:3.343ex;" alt="{\displaystyle \left(ax^{2}+c=bx\right),}"></span> and the sixth and final chapter deals with roots and number equal to squares <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(bx+c=ax^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mi>b</mi> <mi>x</mi> <mo>+</mo> <mi>c</mi> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(bx+c=ax^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be7f05feef8a8d8f329ede663e319f40101ffb59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.05ex; height:3.343ex;" alt="{\displaystyle \left(bx+c=ax^{2}\right).}"></span><sup id="cite_ref-Al_Jabr_and_its_chapters_67-0" class="reference"><a href="#cite_note-Al_Jabr_and_its_chapters-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Bodleian_MS._Huntington_214_roll332_frame36.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Bodleian_MS._Huntington_214_roll332_frame36.jpg/220px-Bodleian_MS._Huntington_214_roll332_frame36.jpg" decoding="async" width="220" height="159" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/Bodleian_MS._Huntington_214_roll332_frame36.jpg/330px-Bodleian_MS._Huntington_214_roll332_frame36.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/25/Bodleian_MS._Huntington_214_roll332_frame36.jpg/440px-Bodleian_MS._Huntington_214_roll332_frame36.jpg 2x" data-file-width="1000" data-file-height="722" /></a><figcaption>Pages from a 14th-century Arabic copy of the book, showing geometric solutions to two quadratic equations</figcaption></figure> <p>In <i>Al-Jabr</i>, al-Khwarizmi uses geometric proofs,<sup id="cite_ref-Euclid_and_Khwarizmi_17-1" class="reference"><a href="#cite_note-Euclid_and_Khwarizmi-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> he does not recognize the root <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d54be06efe9f69b9bfb720190b5f29c76944a45b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.237ex; height:2.509ex;" alt="{\displaystyle x=0,}"></span><sup id="cite_ref-Al_Jabr_and_its_chapters_67-1" class="reference"><a href="#cite_note-Al_Jabr_and_its_chapters-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> and he only deals with positive roots.<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> He also recognizes that the <a href="/wiki/Discriminant" title="Discriminant">discriminant</a> must be positive and described the method of <a href="/wiki/Completing_the_square" title="Completing the square">completing the square</a>, though he does not justify the procedure.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> The Greek influence is shown by <i>Al-Jabr'</i>s geometric foundations<sup id="cite_ref-Boyer_Three_Influences_on_al_Jabr_57-1" class="reference"><a href="#cite_note-Boyer_Three_Influences_on_al_Jabr-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> and by one problem taken from Heron.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> He makes use of lettered diagrams but all of the coefficients in all of his equations are specific numbers since he had no way of expressing with parameters what he could express geometrically; although generality of method is intended.<sup id="cite_ref-Euclid_and_Khwarizmi_17-2" class="reference"><a href="#cite_note-Euclid_and_Khwarizmi-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>Al-Khwarizmi most likely did not know of Diophantus's <i>Arithmetica</i>,<sup id="cite_ref-al-Khwarizmi_Diophantus_Brahmagupta_72-0" class="reference"><a href="#cite_note-al-Khwarizmi_Diophantus_Brahmagupta-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> which became known to the Arabs sometime before the 10th century.<sup id="cite_ref-Boyer_Ibn_Turk_73-0" class="reference"><a href="#cite_note-Boyer_Ibn_Turk-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> And even though al-Khwarizmi most likely knew of Brahmagupta's work, <i>Al-Jabr</i> is fully rhetorical with the numbers even being spelled out in words.<sup id="cite_ref-al-Khwarizmi_Diophantus_Brahmagupta_72-1" class="reference"><a href="#cite_note-al-Khwarizmi_Diophantus_Brahmagupta-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> So, for example, what we would write as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+10x=39}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>10</mn> <mi>x</mi> <mo>=</mo> <mn>39</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+10x=39}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab2d1fe59c70089e1a08ffca8c0a498f2f2afe22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.302ex; height:2.843ex;" alt="{\displaystyle x^{2}+10x=39}"></span></dd></dl> <p>Diophantus would have written as<sup id="cite_ref-Unknown_Quantity,_Dia,_al-Khwar_74-0" class="reference"><a href="#cite_note-Unknown_Quantity,_Dia,_al-Khwar-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta ^{\Upsilon }{\overline {\alpha }}\varsigma {\overline {\iota }}\,\;}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A5;<!-- Υ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>&#x03C2;<!-- ς --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B9;<!-- ι --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mspace width="thinmathspace" /> <mspace width="thickmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta ^{\Upsilon }{\overline {\alpha }}\varsigma {\overline {\iota }}\,\;}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6182dc8c82b23bf0692909364ce30f1834b96a5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.962ex; height:2.843ex;" alt="{\displaystyle \Delta ^{\Upsilon }{\overline {\alpha }}\varsigma {\overline {\iota }}\,\;}"></span><span title="Ancient Greek (to 1453)-language text"><span lang="grc">ἴ</span></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma \;\,\mathrm {M} \lambda {\overline {\theta }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">M</mi> </mrow> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B8;<!-- θ --></mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma \;\,\mathrm {M} \lambda {\overline {\theta }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7390ffc37cef8b479da61c94c58c483c37f02d26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.054ex; height:3.009ex;" alt="{\displaystyle \sigma \;\,\mathrm {M} \lambda {\overline {\theta }}}"></span></dd></dl> <p>And al-Khwarizmi would have written as<sup id="cite_ref-Unknown_Quantity,_Dia,_al-Khwar_74-1" class="reference"><a href="#cite_note-Unknown_Quantity,_Dia,_al-Khwar-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd>One square and ten roots of the same amount to thirty-nine <i><a href="/wiki/Dirhem" class="mw-redirect" title="Dirhem">dirhems</a></i>; that is to say, what must be the square which, when increased by ten of its own roots, amounts to thirty-nine?</dd></dl> <div class="mw-heading mw-heading3"><h3 id="Logical_Necessities_in_Mixed_Equations"><i>Logical Necessities in Mixed Equations</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=26" title="Edit section: Logical Necessities in Mixed Equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/%27Abd_al-Ham%C4%ABd_ibn_Turk" class="mw-redirect" title="&#39;Abd al-Hamīd ibn Turk">'Abd al-Hamīd ibn Turk</a> authored a manuscript entitled <i>Logical Necessities in Mixed Equations</i>, which is very similar to al-Khwarzimi's <i>Al-Jabr</i> and was published at around the same time as, or even possibly earlier than, <i>Al-Jabr</i>.<sup id="cite_ref-Boyer_Ibn_Turk_73-1" class="reference"><a href="#cite_note-Boyer_Ibn_Turk-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> The manuscript gives exactly the same geometric demonstration as is found in <i>Al-Jabr</i>, and in one case the same example as found in <i>Al-Jabr</i>, and even goes beyond <i>Al-Jabr</i> by giving a geometric proof that if the discriminant is negative then the quadratic equation has no solution.<sup id="cite_ref-Boyer_Ibn_Turk_73-2" class="reference"><a href="#cite_note-Boyer_Ibn_Turk-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> The similarity between these two works has led some historians to conclude that Arabic algebra may have been well developed by the time of al-Khwarizmi and 'Abd al-Hamid.<sup id="cite_ref-Boyer_Ibn_Turk_73-3" class="reference"><a href="#cite_note-Boyer_Ibn_Turk-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Abu_Kamil_and_al-Karaji">Abu Kamil and al-Karaji</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=27" title="Edit section: Abu Kamil and al-Karaji"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Arabic mathematicians treated <a href="/wiki/Irrational_number" title="Irrational number">irrational numbers</a> as algebraic objects.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Egypt" title="Egypt">Egyptian</a> mathematician <a href="/wiki/Ab%C5%AB_K%C4%81mil_Shuj%C4%81_ibn_Aslam" class="mw-redirect" title="Abū Kāmil Shujā ibn Aslam">Abū Kāmil Shujā ibn Aslam</a> (c. 850–930) was the first to accept irrational numbers in the form of a <a href="/wiki/Square_root" title="Square root">square root</a> or <a href="/wiki/Nth_root" title="Nth root">fourth root</a> as solutions to quadratic equations or as <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> in an equation.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> He was also the first to solve three non-linear <a href="/wiki/Simultaneous_equations" class="mw-redirect" title="Simultaneous equations">simultaneous equations</a> with three unknown <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a>.<sup id="cite_ref-Berggren-518_77-0" class="reference"><a href="#cite_note-Berggren-518-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Al-Karaji" title="Al-Karaji">Al-Karaji</a> (953–1029), also known as Al-Karkhi, was the successor of <a href="/wiki/Ab%C5%AB_al-Waf%C4%81%27_al-B%C5%ABzj%C4%81n%C4%AB" class="mw-redirect" title="Abū al-Wafā&#39; al-Būzjānī">Abū al-Wafā' al-Būzjānī</a> (940–998) and he discovered the first numerical solution to equations of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax^{2n}+bx^{n}=c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax^{2n}+bx^{n}=c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed971f857982fd7a6c07e5f2263d8611bf300b5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.738ex; height:2.843ex;" alt="{\displaystyle ax^{2n}+bx^{n}=c.}"></span><sup id="cite_ref-Boyer_al-Karkhi_ax2n_78-0" class="reference"><a href="#cite_note-Boyer_al-Karkhi_ax2n-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> Al-Karaji only considered positive roots.<sup id="cite_ref-Boyer_al-Karkhi_ax2n_78-1" class="reference"><a href="#cite_note-Boyer_al-Karkhi_ax2n-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> He is also regarded as the first person to free algebra from <a href="/wiki/Geometry" title="Geometry">geometrical</a> operations and replace them with the type of <a href="/wiki/Arithmetic" title="Arithmetic">arithmetic</a> operations which are at the core of algebra today. His work on algebra and polynomials gave the rules for arithmetic operations to manipulate polynomials. The <a href="/wiki/History_of_mathematics" title="History of mathematics">historian of mathematics</a> F. Woepcke, in <i>Extrait du Fakhri, traité d'Algèbre par Abou Bekr Mohammed Ben Alhacan Alkarkhi</i> (<a href="/wiki/Paris" title="Paris">Paris</a>, 1853), praised Al-Karaji for being "the first who introduced the theory of algebraic calculus". Stemming from this, Al-Karaji investigated <a href="/wiki/Binomial_coefficients" class="mw-redirect" title="Binomial coefficients">binomial coefficients</a> and <a href="/wiki/Pascal%27s_triangle" title="Pascal&#39;s triangle">Pascal's triangle</a>.<sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Omar_Khayyám,_Sharaf_al-Dīn_al-Tusi,_and_al-Kashi"><span id="Omar_Khayy.C3.A1m.2C_Sharaf_al-D.C4.ABn_al-Tusi.2C_and_al-Kashi"></span>Omar Khayyám, Sharaf al-Dīn al-Tusi, and al-Kashi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=28" title="Edit section: Omar Khayyám, Sharaf al-Dīn al-Tusi, and al-Kashi"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:005-a-Ruby-kindles-in-the-vine-810x1146.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/005-a-Ruby-kindles-in-the-vine-810x1146.jpg/220px-005-a-Ruby-kindles-in-the-vine-810x1146.jpg" decoding="async" width="220" height="311" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/08/005-a-Ruby-kindles-in-the-vine-810x1146.jpg/330px-005-a-Ruby-kindles-in-the-vine-810x1146.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/08/005-a-Ruby-kindles-in-the-vine-810x1146.jpg/440px-005-a-Ruby-kindles-in-the-vine-810x1146.jpg 2x" data-file-width="810" data-file-height="1146" /></a><figcaption>Omar Khayyám</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Omar_Kayy%C3%A1m_-_Geometric_solution_to_cubic_equation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Omar_Kayy%C3%A1m_-_Geometric_solution_to_cubic_equation.svg/220px-Omar_Kayy%C3%A1m_-_Geometric_solution_to_cubic_equation.svg.png" decoding="async" width="220" height="275" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Omar_Kayy%C3%A1m_-_Geometric_solution_to_cubic_equation.svg/330px-Omar_Kayy%C3%A1m_-_Geometric_solution_to_cubic_equation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5e/Omar_Kayy%C3%A1m_-_Geometric_solution_to_cubic_equation.svg/440px-Omar_Kayy%C3%A1m_-_Geometric_solution_to_cubic_equation.svg.png 2x" data-file-width="360" data-file-height="450" /></a><figcaption>To solve the third-degree equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{3}+a^{2}x=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>x</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{3}+a^{2}x=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2df86c4c35ddc1009e6c96a982c6e97aca39b7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.934ex; height:2.843ex;" alt="{\displaystyle x^{3}+a^{2}x=b}"></span> Khayyám constructed the <a href="/wiki/Parabola" title="Parabola">parabola</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=ay,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>a</mi> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=ay,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69fa2027b0d7d12f077a137d97f52709ce01c267" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.515ex; height:3.009ex;" alt="{\displaystyle x^{2}=ay,}"></span>, a <a href="/wiki/Circle" title="Circle">circle</a> with diameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b/a^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b/a^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d41e66c951db651eec98f7a12fc0570240ce89e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.091ex; height:3.176ex;" alt="{\displaystyle b/a^{2},}"></span> and a vertical line through the intersection point. The solution is given by the length of the horizontal line segment from the origin to the intersection of the vertical line and the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>-axis.</figcaption></figure> <p><a href="/wiki/Omar_Khayy%C3%A1m" class="mw-redirect" title="Omar Khayyám">Omar Khayyám</a> (c. 1050 – 1123) wrote a book on Algebra that went beyond <i>Al-Jabr</i> to include equations of the third degree.<sup id="cite_ref-Boyer_Omar_Khayyam_positive_roots_80-0" class="reference"><a href="#cite_note-Boyer_Omar_Khayyam_positive_roots-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> Omar Khayyám provided both arithmetic and geometric solutions for quadratic equations, but he only gave geometric solutions for general <a href="/wiki/Cubic_function" title="Cubic function">cubic equations</a> since he mistakenly believed that arithmetic solutions were impossible.<sup id="cite_ref-Boyer_Omar_Khayyam_positive_roots_80-1" class="reference"><a href="#cite_note-Boyer_Omar_Khayyam_positive_roots-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> His method of solving cubic equations by using intersecting conics had been used by <a href="/wiki/Menaechmus" title="Menaechmus">Menaechmus</a>, <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a>, and <a href="/wiki/Ibn_al-Haytham" title="Ibn al-Haytham">Ibn al-Haytham (Alhazen)</a>, but Omar Khayyám generalized the method to cover all cubic equations with positive roots.<sup id="cite_ref-Boyer_Omar_Khayyam_positive_roots_80-2" class="reference"><a href="#cite_note-Boyer_Omar_Khayyam_positive_roots-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> He only considered positive roots and he did not go past the third degree.<sup id="cite_ref-Boyer_Omar_Khayyam_positive_roots_80-3" class="reference"><a href="#cite_note-Boyer_Omar_Khayyam_positive_roots-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> He also saw a strong relationship between geometry and algebra.<sup id="cite_ref-Boyer_Omar_Khayyam_positive_roots_80-4" class="reference"><a href="#cite_note-Boyer_Omar_Khayyam_positive_roots-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the 12th century, <a href="/wiki/Sharaf_al-D%C4%ABn_al-T%C5%ABs%C4%AB" class="mw-redirect" title="Sharaf al-Dīn al-Tūsī">Sharaf al-Dīn al-Tūsī</a> (1135–1213) wrote the <i>Al-Mu'adalat</i> (<i>Treatise on Equations</i>), which dealt with eight types of cubic equations with positive solutions and five types of cubic equations which may not have positive solutions. He used what would later be known as the "<a href="/wiki/Ruffini%27s_rule" title="Ruffini&#39;s rule">Ruffini</a>-<a href="/wiki/Horner_scheme" class="mw-redirect" title="Horner scheme">Horner</a> method" to <a href="/wiki/Numerical_analysis" title="Numerical analysis">numerically</a> approximate the root of a cubic equation. He also developed the concepts of the <a href="/wiki/Maxima_and_minima" class="mw-redirect" title="Maxima and minima">maxima and minima</a> of curves in order to solve cubic equations which may not have positive solutions.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> He understood the importance of the <a href="/wiki/Discriminant" title="Discriminant">discriminant</a> of the cubic equation and used an early version of <a href="/wiki/Cubic_equation#Cardano&#39;s_formula" title="Cubic equation">Cardano's formula</a><sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> to find algebraic solutions to certain types of cubic equations. Some scholars, such as Roshdi Rashed, argue that Sharaf al-Din discovered the <a href="/wiki/Derivative" title="Derivative">derivative</a> of cubic polynomials and realized its significance, while other scholars connect his solution to the ideas of Euclid and Archimedes.<sup id="cite_ref-Berggren_83-0" class="reference"><a href="#cite_note-Berggren-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> </p><p>Sharaf al-Din also developed the concept of a <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a>.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (June 2018)">citation needed</span></a></i>&#93;</sup> In his analysis of the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{3}+d=bx^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mi>d</mi> <mo>=</mo> <mi>b</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{3}+d=bx^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55122848b0c28bc59aa021e205faa8c161d2aebf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.92ex; height:2.843ex;" alt="{\displaystyle x^{3}+d=bx^{2}}"></span> for example, he begins by changing the equation's form to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}(b-x)=d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}(b-x)=d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee6daf102f49b59060c7bf28cc9e29152105b5a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.675ex; height:3.176ex;" alt="{\displaystyle x^{2}(b-x)=d}"></span>. He then states that the question of whether the equation has a solution depends on whether or not the "function" on the left side reaches the value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>. To determine this, he finds a maximum value for the function. He proves that the maximum value occurs when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {2b}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>b</mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {2b}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada53d28c53f9ab77cba4e97d6b0e2c6ae8a170c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.424ex; height:5.343ex;" alt="{\displaystyle x={\frac {2b}{3}}}"></span>, which gives the functional value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {4b^{3}}{27}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mn>27</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {4b^{3}}{27}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a18869f4e74bb4bc3e5f9733d71a98cf8f4cbb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:4.05ex; height:5.843ex;" alt="{\displaystyle {\frac {4b^{3}}{27}}}"></span>. Sharaf al-Din then states that if this value is less than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>, there are no positive solutions; if it is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>, then there is one solution at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {2b}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>b</mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {2b}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ada53d28c53f9ab77cba4e97d6b0e2c6ae8a170c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.424ex; height:5.343ex;" alt="{\displaystyle x={\frac {2b}{3}}}"></span>; and if it is greater than <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e85ff03cbe0c7341af6b982e47e9f90d235c66ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.216ex; height:2.176ex;" alt="{\displaystyle d}"></span>, then there are two solutions, one between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2b}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>b</mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2b}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c65352e87f810d4082479e99735710f7bd3faecb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.996ex; height:5.343ex;" alt="{\displaystyle {\frac {2b}{3}}}"></span> and one between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {2b}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>b</mi> </mrow> <mn>3</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {2b}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c65352e87f810d4082479e99735710f7bd3faecb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:2.996ex; height:5.343ex;" alt="{\displaystyle {\frac {2b}{3}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f11423fbb2e967f986e36804a8ae4271734917c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.998ex; height:2.176ex;" alt="{\displaystyle b}"></span>.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the early 15th century, <a href="/wiki/Jamsh%C4%ABd_al-K%C4%81sh%C4%AB" class="mw-redirect" title="Jamshīd al-Kāshī">Jamshīd al-Kāshī</a> developed an early form of <a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton's method</a> to numerically solve the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{P}-N=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>N</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{P}-N=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ade9f512270d7bb1a6f74be68fd4ef086f773ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.961ex; height:2.843ex;" alt="{\displaystyle x^{P}-N=0}"></span> to find roots of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> Al-Kāshī also developed <a href="/wiki/Decimal_fractions" class="mw-redirect" title="Decimal fractions">decimal fractions</a> and claimed to have discovered it himself. However, J. Lennart Berggrenn notes that he was mistaken, as decimal fractions were first used five centuries before him by the <a href="/wiki/Baghdad" title="Baghdad">Baghdadi</a> mathematician <a href="/wiki/Abu%27l-Hasan_al-Uqlidisi" title="Abu&#39;l-Hasan al-Uqlidisi">Abu'l-Hasan al-Uqlidisi</a> as early as the 10th century.<sup id="cite_ref-Berggren-518_77-1" class="reference"><a href="#cite_note-Berggren-518-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Al-Hassār,_Ibn_al-Banna,_and_al-Qalasadi"><span id="Al-Hass.C4.81r.2C_Ibn_al-Banna.2C_and_al-Qalasadi"></span>Al-Hassār, Ibn al-Banna, and al-Qalasadi</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=29" title="Edit section: Al-Hassār, Ibn al-Banna, and al-Qalasadi"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Al-Hass%C4%81r" class="mw-redirect" title="Al-Hassār">Al-Hassār</a>, a mathematician from <a href="/wiki/Morocco" title="Morocco">Morocco</a> specializing in <a href="/wiki/Islamic_inheritance_jurisprudence" title="Islamic inheritance jurisprudence">Islamic inheritance jurisprudence</a> during the 12th century, developed the modern symbolic <a href="/wiki/Mathematical_notation" title="Mathematical notation">mathematical notation</a> for <a href="/wiki/Fraction_(mathematics)" class="mw-redirect" title="Fraction (mathematics)">fractions</a>, where the <a href="/wiki/Numerator" class="mw-redirect" title="Numerator">numerator</a> and <a href="/wiki/Denominator" class="mw-redirect" title="Denominator">denominator</a> are separated by a horizontal bar. This same fractional notation appeared soon after in the work of <a href="/wiki/Fibonacci" title="Fibonacci">Fibonacci</a> in the 13th century.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability"><span title="The material near this tag failed verification of its source citation(s). (March 2024)">failed verification</span></a></i>&#93;</sup> </p><p><a href="/wiki/Ab%C5%AB_al-Hasan_ibn_Al%C4%AB_al-Qalas%C4%81d%C4%AB" class="mw-redirect" title="Abū al-Hasan ibn Alī al-Qalasādī">Abū al-Hasan ibn Alī al-Qalasādī</a> (1412–1486) was the last major medieval <a href="/wiki/Arab" class="mw-redirect" title="Arab">Arab</a> algebraist, who made the first attempt at creating an <a href="/wiki/Mathematical_notation" title="Mathematical notation">algebraic notation</a> since <a href="/wiki/Ibn_al-Banna" class="mw-redirect" title="Ibn al-Banna">Ibn al-Banna</a> two centuries earlier, who was himself the first to make such an attempt since <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a> and <a href="/wiki/Brahmagupta" title="Brahmagupta">Brahmagupta</a> in ancient times.<sup id="cite_ref-Qalasadi_87-0" class="reference"><a href="#cite_note-Qalasadi-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> The syncopated notations of his predecessors, however, lacked symbols for <a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">mathematical operations</a>.<sup id="cite_ref-Boyer_42-1" class="reference"><a href="#cite_note-Boyer-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> Al-Qalasadi "took the first steps toward the introduction of algebraic symbolism by using letters in place of numbers"<sup id="cite_ref-Qalasadi_87-1" class="reference"><a href="#cite_note-Qalasadi-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> and by "using short Arabic words, or just their initial letters, as mathematical symbols."<sup id="cite_ref-Qalasadi_87-2" class="reference"><a href="#cite_note-Qalasadi-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Europe_and_the_Mediterranean_region">Europe and the Mediterranean region</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=30" title="Edit section: Europe and the Mediterranean region"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Just as the death of <a href="/wiki/Hypatia" title="Hypatia">Hypatia</a> signals the close of the <a href="/wiki/Library_of_Alexandria" title="Library of Alexandria">Library of Alexandria</a> as a mathematical center, so does the death of <a href="/wiki/Boethius" title="Boethius">Boethius</a> signal the end of mathematics in the <a href="/wiki/Western_Roman_Empire" title="Western Roman Empire">Western Roman Empire</a>. Although there was some work being done at <a href="/wiki/Athens" title="Athens">Athens</a>, it came to a close when in 529 the <a href="/wiki/Byzantine" class="mw-redirect" title="Byzantine">Byzantine</a> emperor <a href="/wiki/Justinian" class="mw-redirect" title="Justinian">Justinian</a> closed the <a href="/wiki/Pagan" class="mw-redirect" title="Pagan">pagan</a> philosophical schools. The year 529 is now taken to be the beginning of the medieval period. Scholars fled the West towards the more hospitable East, particularly towards <a href="/wiki/Persia" class="mw-redirect" title="Persia">Persia</a>, where they found haven under King <a href="/wiki/Khosrau_I" class="mw-redirect" title="Khosrau I">Chosroes</a> and established what might be termed an "Athenian Academy in Exile".<sup id="cite_ref-Boyer_192-193_88-0" class="reference"><a href="#cite_note-Boyer_192-193-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> Under a treaty with Justinian, Chosroes would eventually return the scholars to the <a href="/wiki/Eastern_Empire" class="mw-redirect" title="Eastern Empire">Eastern Empire</a>. During the Dark Ages, European mathematics was at its nadir with mathematical research consisting mainly of commentaries on ancient treatises; and most of this research was centered in the <a href="/wiki/Byzantine_Empire" title="Byzantine Empire">Byzantine Empire</a>. The end of the medieval period is set as the fall of <a href="/wiki/Constantinople" title="Constantinople">Constantinople</a> to the <a href="/wiki/Ottoman_Empire" title="Ottoman Empire">Turks</a> in 1453. </p> <div class="mw-heading mw-heading3"><h3 id="Late_Middle_Ages">Late Middle Ages</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=31" title="Edit section: Late Middle Ages"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The 12th century saw a <a href="/wiki/Latin_translations_of_the_12th_century" title="Latin translations of the 12th century">flood of translations</a> from <a href="/wiki/Arabic" title="Arabic">Arabic</a> into <a href="/wiki/Latin" title="Latin">Latin</a> and by the 13th century, European mathematics was beginning to rival the mathematics of other lands. In the 13th century, the solution of a cubic equation by <a href="/wiki/Fibonacci" title="Fibonacci">Fibonacci</a> is representative of the beginning of a revival in European algebra. </p><p>As the Islamic world was declining after the 15th century, the European world was ascending. And it is here that algebra was further developed. </p> <div class="mw-heading mw-heading2"><h2 id="Symbolic_algebra">Symbolic algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=32" title="Edit section: Symbolic algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Missing_information plainlinks metadata ambox ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Wiki_letter_w.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/44px-Wiki_letter_w.svg.png" decoding="async" width="44" height="44" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/66px-Wiki_letter_w.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/6/6c/Wiki_letter_w.svg/88px-Wiki_letter_w.svg.png 2x" data-file-width="44" data-file-height="44" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>is missing information</b> about most important results in algebra that are more recent than 15th century, and are completely ignored.<span class="hide-when-compact"> Please expand the section to include this information. Further details may exist on the <a href="/wiki/Talk:History_of_algebra#Single_Source" title="Talk:History of algebra">talk page</a>.</span> <span class="date-container"><i>(<span class="date">January 2017</span>)</i></span></div></td></tr></tbody></table> <p>Modern notation for arithmetic operations was introduced between the end of the 15th century and the beginning of the 16th century by <a href="/wiki/Johannes_Widmann" title="Johannes Widmann">Johannes Widmann</a> and <a href="/wiki/Michael_Stifel" title="Michael Stifel">Michael Stifel</a>. At the end of 16th century, <a href="/wiki/Fran%C3%A7ois_Vi%C3%A8te" title="François Viète">François Viète</a> introduced symbols, now called <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a>, for representing indeterminate or unknown numbers. This created a new algebra consisting of computing with symbolic expressions as if they were numbers. </p><p>Another key event in the further development of algebra was the general algebraic solution of the cubic and <a href="/wiki/Quartic_equation" title="Quartic equation">quartic equations</a>, developed in the mid-16th century. The idea of a <a href="/wiki/Determinant" title="Determinant">determinant</a> was developed by <a href="/wiki/Japanese_mathematics" title="Japanese mathematics">Japanese mathematician</a> <a href="/wiki/Kowa_Seki" class="mw-redirect" title="Kowa Seki">Kowa Seki</a> in the 17th century, followed by <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a> ten years later, for the purpose of solving systems of simultaneous linear equations using <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>. <a href="/wiki/Gabriel_Cramer" title="Gabriel Cramer">Gabriel Cramer</a> also did some work on matrices and determinants in the 18th century. </p> <div class="mw-heading mw-heading3"><h3 id="The_symbol_x">The symbol <i>x</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=33" title="Edit section: The symbol x"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By tradition, the first unknown <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a> in an algebraic problem is nowadays represented by the <a href="/wiki/Symbol" title="Symbol">symbol</a> <a href="/wiki/X" title="X"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">x</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ec7aaa5b3f48ac71c8b33508e2a9645bbb7e72ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.114ex; width:1.193ex; height:1.676ex;" alt="{\displaystyle {\mathit {x}}}"></span></a> and if there is a second or a third unknown, then these are labeled <a href="/wiki/Y" title="Y"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">y</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/793901ca1cf3c961523e93950cecf6b1efdbe18b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.084ex; width:1.214ex; height:2.009ex;" alt="{\displaystyle {\mathit {y}}}"></span></a> and <a href="/wiki/Z" title="Z"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">z</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c3ea04f249eab5ba1223c42a8fb2bca0f0bf79a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.132ex; width:1.083ex; height:1.676ex;" alt="{\displaystyle {\mathit {z}}}"></span></a> respectively. Algebraic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is conventionally printed in <a href="/wiki/Italic_type" title="Italic type">italic type</a> to distinguish it from the sign of multiplication. </p><p>Mathematical historians<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> generally agree that the use of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> in algebra was introduced by <a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">René Descartes</a> and was first published in his treatise <i><a href="/wiki/La_G%C3%A9om%C3%A9trie" title="La Géométrie">La Géométrie</a></i> (1637).<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> In that work, he used letters from the beginning of the alphabet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a,b,c,\ldots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a,b,c,\ldots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1e4ad48ff0dc2b991cc7ffc1f2a1aea099cc26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.869ex; height:2.843ex;" alt="{\displaystyle (a,b,c,\ldots )}"></span> for known quantities, and letters from the end of the alphabet <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (z,y,x,\ldots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (z,y,x,\ldots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3818241df080a38de285b3454fe07a95f4bbd669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.208ex; height:2.843ex;" alt="{\displaystyle (z,y,x,\ldots )}"></span> for unknowns.<sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> It has been suggested that he later settled on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> (in place of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span>) for the first unknown because of its relatively greater abundance in the French and Latin typographical fonts of the time.<sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup> </p><p>Three alternative theories of the origin of algebraic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> were suggested in the 19th century: (1) a symbol used by German algebraists and thought to be derived from a cursive letter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/250644a0f511e9078be6f89ba78a606a0e08c0a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.695ex; height:2.009ex;" alt="{\displaystyle r,}"></span> mistaken for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>;<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> (2) the numeral <i>1</i> with oblique <a href="/wiki/Strikethrough" title="Strikethrough">strikethrough</a>;<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> and (3) an Arabic/Spanish source (see below). But the Swiss-American historian of mathematics <a href="/wiki/Florian_Cajori" title="Florian Cajori">Florian Cajori</a> examined these and found all three lacking in concrete evidence; Cajori credited Descartes as the originator, and described his <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ad6024a5a4f15ab696de3d6e4866da50c8a315d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.166ex; height:2.009ex;" alt="{\displaystyle x,y,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf368e72c009decd9b6686ee84a375632e11de98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.088ex; height:1.676ex;" alt="{\displaystyle z}"></span> as "free from tradition[,] and their choice purely arbitrary."<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> </p><p>Nevertheless, the Hispano-Arabic hypothesis continues to have a presence in <a href="/wiki/Popular_culture" title="Popular culture">popular culture</a> today.<sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>97<span class="cite-bracket">&#93;</span></a></sup> It is the claim that algebraic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is the abbreviation of a supposed <a href="/wiki/Loanword" title="Loanword">loanword</a> from Arabic in Old Spanish. The theory originated in 1884 with the German <a href="/wiki/Oriental_studies" title="Oriental studies">orientalist</a> <a href="/wiki/Paul_de_Lagarde" title="Paul de Lagarde">Paul de Lagarde</a>, shortly after he published his edition of a 1505 Spanish/Arabic bilingual glossary<sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>98<span class="cite-bracket">&#93;</span></a></sup> in which Spanish <span title="Spanish-language text"><i lang="es">cosa</i></span> ("thing") was paired with its Arabic equivalent, <span title="Arabic-language text"><span lang="ar" dir="rtl">شىء</span></span> (<i>shay<sup>ʔ</sup></i>), transcribed as <i>xei</i>. (The "sh" sound in <a href="/wiki/Old_Spanish_language" class="mw-redirect" title="Old Spanish language">Old Spanish</a> was routinely spelled <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span>) Evidently Lagarde was aware that Arab mathematicians, in the "rhetorical" stage of algebra's development, often used that word to represent the unknown quantity. He surmised that "nothing could be more natural" ("Nichts war also natürlicher...") than for the initial of the Arabic word—<a href="/wiki/Romanization" title="Romanization">romanized</a> as the Old Spanish <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>—to be adopted for use in algebra.<sup id="cite_ref-99" class="reference"><a href="#cite_note-99"><span class="cite-bracket">&#91;</span>99<span class="cite-bracket">&#93;</span></a></sup> A later reader reinterpreted Lagarde's conjecture as having "proven" the point.<sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>100<span class="cite-bracket">&#93;</span></a></sup> Lagarde was unaware that early Spanish mathematicians used, not a <i>transcription</i> of the Arabic word, but rather its <i>translation</i> in their own language, "cosa".<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>101<span class="cite-bracket">&#93;</span></a></sup> There is no instance of <i>xei</i> or similar forms in several compiled historical vocabularies of Spanish.<sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>102<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>103<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gottfried_Leibniz">Gottfried Leibniz</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=34" title="Edit section: Gottfried Leibniz"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Although the mathematical notion of <a href="/wiki/Function_(mathematics)" title="Function (mathematics)">function</a> was implicit in <a href="/wiki/Trigonometric_tables" title="Trigonometric tables">trigonometric</a> and <a href="/wiki/Mathematical_table#Tables_of_logarithms" title="Mathematical table">logarithmic tables</a>, which existed in his day, <a href="/wiki/Gottfried_Leibniz" class="mw-redirect" title="Gottfried Leibniz">Gottfried Leibniz</a> was the first, in 1692 and 1694, to employ it explicitly, to denote any of several geometric concepts derived from a curve, such as <a href="/wiki/Abscissa" class="mw-redirect" title="Abscissa">abscissa</a>, <a href="/wiki/Ordinate" class="mw-redirect" title="Ordinate">ordinate</a>, <a href="/wiki/Tangent" title="Tangent">tangent</a>, <a href="/wiki/Chord_(geometry)" title="Chord (geometry)">chord</a>, and the <a href="/wiki/Normal_(geometry)" title="Normal (geometry)">perpendicular</a>.<sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>104<span class="cite-bracket">&#93;</span></a></sup> In the 18th century, "function" lost these geometrical associations. </p><p>Leibniz realized that the coefficients of a system of <a href="/wiki/Linear_equation" title="Linear equation">linear equations</a> could be arranged into an array, now called a <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a>, which can be manipulated to find the solution of the system, if any. This method was later called <a href="/wiki/Gaussian_elimination" title="Gaussian elimination">Gaussian elimination</a>. Leibniz also discovered <a href="/wiki/Boolean_algebra_(logic)" class="mw-redirect" title="Boolean algebra (logic)">Boolean algebra</a> and <a href="/wiki/Symbolic_logic" class="mw-redirect" title="Symbolic logic">symbolic logic</a>, also relevant to algebra. </p> <div class="mw-heading mw-heading3"><h3 id="Abstract_algebra">Abstract algebra</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=35" title="Edit section: Abstract algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The ability to do algebra is a skill cultivated in <a href="/wiki/Mathematics_education" title="Mathematics education">mathematics education</a>. As explained by Andrew Warwick, <a href="/wiki/Cambridge_University" class="mw-redirect" title="Cambridge University">Cambridge University</a> students in the early 19th century practiced "mixed mathematics",<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>105<span class="cite-bracket">&#93;</span></a></sup> doing <a href="/wiki/Exercise_(mathematics)" title="Exercise (mathematics)">exercises</a> based on physical variables such as space, time, and weight. Over time the association of <a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variables</a> with physical quantities faded away as mathematical technique grew. Eventually mathematics was concerned completely with abstract <a href="/wiki/Polynomial" title="Polynomial">polynomials</a>, <a href="/wiki/Complex_number" title="Complex number">complex numbers</a>, <a href="/wiki/Hypercomplex_number" title="Hypercomplex number">hypercomplex numbers</a> and other concepts. Application to physical situations was then called <a href="/wiki/Applied_mathematics" title="Applied mathematics">applied mathematics</a> or <a href="/wiki/Mathematical_physics" title="Mathematical physics">mathematical physics</a>, and the field of mathematics expanded to include <a href="/wiki/Abstract_algebra" title="Abstract algebra">abstract algebra</a>. For instance, the issue of <a href="/wiki/Constructible_number" title="Constructible number">constructible numbers</a> showed some mathematical limitations, and the field of <a href="/wiki/Galois_theory" title="Galois theory">Galois theory</a> was developed. </p> <div class="mw-heading mw-heading2"><h2 id="The_father_of_algebra">The father of algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=36" title="Edit section: The father of algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The title of "the father of algebra" is frequently credited to the Persian mathematician <a href="/wiki/Muhammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB" class="mw-redirect" title="Muhammad ibn Mūsā al-Khwārizmī">Al-Khwarizmi</a>,<sup id="cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-0" class="reference"><a href="#cite_note-Carl_Boyer_For_Al_Khwarizmi-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>107<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>108<span class="cite-bracket">&#93;</span></a></sup> supported by <a href="/wiki/Historians_of_mathematics" class="mw-redirect" title="Historians of mathematics">historians of mathematics</a>, such as <a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Carl Benjamin Boyer</a>,<sup id="cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-1" class="reference"><a href="#cite_note-Carl_Boyer_For_Al_Khwarizmi-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Solomon_Gandz" title="Solomon Gandz">Solomon Gandz</a> and <a href="/wiki/Bartel_Leendert_van_der_Waerden" title="Bartel Leendert van der Waerden">Bartel Leendert van der Waerden</a>.<sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>109<span class="cite-bracket">&#93;</span></a></sup> However, the point is debatable and the title is sometimes credited to the <a href="/wiki/Hellenistic_civilization" class="mw-redirect" title="Hellenistic civilization">Hellenistic</a> mathematician <a href="/wiki/Diophantus" title="Diophantus">Diophantus</a>.<sup id="cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-2" class="reference"><a href="#cite_note-Carl_Boyer_For_Al_Khwarizmi-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-John_Derbyshire_For_Diophantus_110-0" class="reference"><a href="#cite_note-John_Derbyshire_For_Diophantus-110"><span class="cite-bracket">&#91;</span>110<span class="cite-bracket">&#93;</span></a></sup> Those who support Diophantus point to the algebra found in <i><a href="/wiki/The_Compendious_Book_on_Calculation_by_Completion_and_Balancing" class="mw-redirect" title="The Compendious Book on Calculation by Completion and Balancing">Al-Jabr</a></i> being more <a href="/wiki/Elementary_algebra" title="Elementary algebra">elementary</a> than the algebra found in <i><a href="/wiki/Arithmetica" title="Arithmetica">Arithmetica</a></i>, and <i>Arithmetica</i> being syncopated while <i>Al-Jabr</i> is fully rhetorical.<sup id="cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-3" class="reference"><a href="#cite_note-Carl_Boyer_For_Al_Khwarizmi-106"><span class="cite-bracket">&#91;</span>106<span class="cite-bracket">&#93;</span></a></sup> However, the mathematics historian <a href="/wiki/Kurt_Vogel_(historian)" title="Kurt Vogel (historian)">Kurt Vogel</a> argues against Diophantus holding this title,<sup id="cite_ref-111" class="reference"><a href="#cite_note-111"><span class="cite-bracket">&#91;</span>111<span class="cite-bracket">&#93;</span></a></sup> as his mathematics was not much more algebraic than that of the ancient <a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Babylonians</a>.<sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>112<span class="cite-bracket">&#93;</span></a></sup> </p><p>Those who support Al-Khwarizmi point to the fact that he gave an exhaustive explanation for the algebraic solution of quadratic equations with positive roots,<sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>113<span class="cite-bracket">&#93;</span></a></sup> and was the first to teach algebra in an <a href="/wiki/Elementary_algebra" title="Elementary algebra">elementary form</a> and for its own sake, whereas Diophantus was primarily concerned with the <a href="/wiki/Number_theory" title="Number theory">theory of numbers</a>.<sup id="cite_ref-Gandz236_56-1" class="reference"><a href="#cite_note-Gandz236-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> Al-Khwarizmi also introduced the fundamental concept of "reduction" and "balancing" (which he originally used the term <i>al-jabr</i> to refer to), referring to the transposition of subtracted terms to the other side of an equation, that is, the cancellation of like terms on opposite sides of the equation.<sup id="cite_ref-Boyer-229_65-1" class="reference"><a href="#cite_note-Boyer-229-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> Other supporters of Al-Khwarizmi point to his algebra no longer being concerned "with a series of <a href="/wiki/Mathematical_problem" title="Mathematical problem">problems</a> to be resolved, but an <a href="/wiki/Expository_writing" class="mw-redirect" title="Expository writing">exposition</a> which starts with primitive terms in which the combinations must give all possible prototypes for equations, which henceforward explicitly constitute the true object of study." They also point to his treatment of an equation for its own sake and "in a generic manner, insofar as it does not simply emerge in the course of solving a problem, but is specifically called on to define an infinite class of problems".<sup id="cite_ref-Rashed-Armstrong_66-1" class="reference"><a href="#cite_note-Rashed-Armstrong-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Victor_J._Katz" title="Victor J. Katz">Victor J. Katz</a> regards <i>Al-Jabr</i> as the first true algebra text that is still extant.<sup id="cite_ref-Katz2006_114-0" class="reference"><a href="#cite_note-Katz2006-114"><span class="cite-bracket">&#91;</span>114<span class="cite-bracket">&#93;</span></a></sup> </p><p>According to Jeffrey Oaks and Jean Christianidis neither Diophantus nor Al-Khwarizmi should be called "father of algebra".<sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>115<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-116" class="reference"><a href="#cite_note-116"><span class="cite-bracket">&#91;</span>116<span class="cite-bracket">&#93;</span></a></sup> Pre-modern algebra was developed and used by merchants and surveyors as part of what <a href="/wiki/Jens_H%C3%B8yrup" title="Jens Høyrup">Jens Høyrup</a> called "subscientific" tradition. Diophantus used this method of algebra in his book, in particular for indeterminate problems, while Al-Khwarizmi wrote one of the first books in Arabic about this method.<sup id="cite_ref-:0_37-2" class="reference"><a href="#cite_note-:0-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=37" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <ul><li><a href="/wiki/Al-Mansur" title="Al-Mansur">Al-Mansur</a>&#160;– 2nd Abbasid caliph (r. 754–775)</li> <li><a href="/wiki/Timeline_of_algebra" title="Timeline of algebra">Timeline of algebra</a>&#160;– Notable events in the history of algebra</li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=38" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a href="#CITEREFBoyer1991">Boyer (1991</a>:229)</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJeffrey_A._OaksHaitham_M._Alkhateeb2007" class="citation journal cs1">Jeffrey A. Oaks; Haitham M. Alkhateeb (2007). "Simplifying equations in Arabic algebra". <i>Historia Mathematica</i>. <b>34</b>: 45–61. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2006.02.006">10.1016/j.hm.2006.02.006</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0315-0860">0315-0860</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Simplifying+equations+in+Arabic+algebra&amp;rft.volume=34&amp;rft.pages=45-61&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2006.02.006&amp;rft.issn=0315-0860&amp;rft.au=Jeffrey+A.+Oaks&amp;rft.au=Haitham+M.+Alkhateeb&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. 180) "It has been said that three stages of in the historical development of algebra can be recognized: (1) the rhetorical or early stage, in which everything is written out fully in words; (2) a syncopated or intermediate state, in which some abbreviations are adopted; and (3) a symbolic or final stage. Such an arbitrary division of the development of algebra into three stages is, of course, a facile oversimplification; but it can serve effectively as a first approximation to what has happened""</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Mesopotamia" p. 32) "Until modern times there was no thought of solving a quadratic equation of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+px+q=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>p</mi> <mi>x</mi> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+px+q=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1447b7f80b86966dc9f431ba415b2de2608e50e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:15.894ex; height:3.009ex;" alt="{\displaystyle x^{2}+px+q=0}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> are positive, for the equation has no positive root. Consequently, quadratic equations in ancient and Medieval times—and even in the early modern period—were classified under three types: (1) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+px=q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>p</mi> <mi>x</mi> <mo>=</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+px=q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/379f214039b94b4a1961d93f3911881d6200b1c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.891ex; height:3.009ex;" alt="{\displaystyle x^{2}+px=q}"></span> (2) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=px+q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>p</mi> <mi>x</mi> <mo>+</mo> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=px+q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4310fed0abe8d49d06dd359b385dafcd03cc8e4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.891ex; height:3.009ex;" alt="{\displaystyle x^{2}=px+q}"></span> (3) <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+q=px}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>q</mi> <mo>=</mo> <mi>p</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+q=px}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d2dc0aea27772eb15373f6d0aaca030a15f5a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.891ex; height:3.009ex;" alt="{\displaystyle x^{2}+q=px}"></span>"</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzBarton2007" class="citation cs2">Katz, Victor J.; Barton, Bill (October 2007), "Stages in the History of Algebra with Implications for Teaching", <i>Educational Studies in Mathematics</i>, <b>66</b> (2): 185–201, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10649-006-9023-7">10.1007/s10649-006-9023-7</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120363574">120363574</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Educational+Studies+in+Mathematics&amp;rft.atitle=Stages+in+the+History+of+Algebra+with+Implications+for+Teaching&amp;rft.volume=66&amp;rft.issue=2&amp;rft.pages=185-201&amp;rft.date=2007-10&amp;rft_id=info%3Adoi%2F10.1007%2Fs10649-006-9023-7&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120363574%23id-name%3DS2CID&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rft.au=Barton%2C+Bill&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStruik1987" class="citation book cs1">Struik, Dirk J. (1987). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/concisehistoryof0000stru_m6j1"><i>A Concise History of Mathematics</i></a></span>. New York: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-60255-4" title="Special:BookSources/978-0-486-60255-4"><bdi>978-0-486-60255-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Concise+History+of+Mathematics&amp;rft.place=New+York&amp;rft.pub=Dover+Publications&amp;rft.date=1987&amp;rft.isbn=978-0-486-60255-4&amp;rft.aulast=Struik&amp;rft.aufirst=Dirk+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fconcisehistoryof0000stru_m6j1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Boyer_Babylon_p30-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Babylon_p30_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Babylon_p30_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Boyer_Babylon_p30_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Boyer_Babylon_p30_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Boyer_Babylon_p30_7-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Mesopotamia" p. 30) "Babylonian mathematicians did not hesitate to interpolate by proportional parts to approximate intermediate values. Linear interpolation seems to have been a commonplace procedure in ancient Mesopotamia, and the positional notation lent itself conveniently to the rule of three. [...] a table essential in Babylonian algebra; this subject reached a considerably higher level in Mesopotamia than in Egypt. Many problem texts from the Old Babylonian period show that the solution of the complete three-term quadratic equation afforded the Babylonians no serious difficulty, for flexible algebraic operations had been developed. They could transpose terms in an equations by adding equals to equals, and they could <a href="/wiki/Multiplication" title="Multiplication">multiply</a> both sides by like quantities to remove <a href="/wiki/Fraction" title="Fraction">fractions</a> or to eliminate factors. By adding <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4ab}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>a</mi> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4ab}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95c3aa7de31a0db7f6e7142f59baa42456dcda49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.39ex; height:2.176ex;" alt="{\displaystyle 4ab}"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a-b)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a-b)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f2e353b8d078fad165f745bdc00c0138244c33f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.931ex; height:3.176ex;" alt="{\displaystyle (a-b)^{2}}"></span> they could obtain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ceb5efe73b6089f83653aacb8db72a3dcc0d49b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.931ex; height:3.176ex;" alt="{\displaystyle (a+b)^{2}}"></span> for they were familiar with many simple forms of factoring. [...]Egyptian algebra had been much concerned with linear equations, but the Babylonians evidently found these too elementary for much attention. [...] In another problem in an Old Babylonian text we find two simultaneous linear equations in two unknown quantities, called respectively the "first silver ring" and the "second silver ring"."</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJoyce,_David_E.1995" class="citation web cs1">Joyce, David E. (1995). <a rel="nofollow" class="external text" href="http://aleph0.clarku.edu/~djoyce/mathhist/plimpnote.html">"Plimpton 322"</a>. <q>The clay tablet with the catalog number 322 in the G. A. Plimpton Collection at Columbia University may be the most well known mathematical tablet, certainly the most photographed one, but it deserves even greater renown. It was scribed in the Old Babylonian period between -1900 and -1600 and shows the most advanced mathematics before the development of Greek mathematics.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Plimpton+322&amp;rft.date=1995&amp;rft.au=Joyce%2C+David+E.&amp;rft_id=http%3A%2F%2Faleph0.clarku.edu%2F~djoyce%2Fmathhist%2Fplimpnote.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Mesopotamia" p. 31) "The solution of a three-term quadratic equation seems to have exceeded by far the algebraic capabilities of the Egyptians, but Neugebauer in 1930 disclosed that such equations had been handled effectively by the Babylonians in some of the oldest problem texts."</span> </li> <li id="cite_note-Boyer_Babylonian_Cubic_Equations-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Babylonian_Cubic_Equations_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Babylonian_Cubic_Equations_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Mesopotamia" p. 33) "There is no record in Egypt of the solution of a cubic equations, but among the Babylonians there are many instances of this. [...] Whether or not the Babylonians were able to reduce the general four-term cubic, <i>ax</i><sup>3</sup> + <i>bx</i><sup>2</sup> + <i>cx</i> = <i>d</i>, to their normal form is not known."</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Egypt" p. 11) "It had been bought in 1959 in a Nile resort town by a Scottish antiquary, Henry Rhind; hence, it often is known as the Rhind Papyrus or, less frequently, as the Ahmes Papyrus in honor of the scribe by whose hand it had been copied in about 1650&#160;BC. The scribe tells us that the material is derived from a prototype from the Middle Kingdom of about 2000 to 1800&#160;BCE."</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Egypt" p. 19) "Much of our information about Egyptian mathematics has been derived from the Rhind or Ahmes Papyrus, the most extensive mathematical document from ancient Egypt; but there are other sources as well."</span> </li> <li id="cite_note-Boyer_Chapter_Egypt-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Chapter_Egypt_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Chapter_Egypt_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Egypt" pp. 15–16) "The Egyptian problems so far described are best classified as arithmetic, but there are others that fall into a class to which the term algebraic is appropriately applied. These do not concern specific concrete objects such as bread and beer, nor do they call for operations on known numbers. Instead they require the equivalent of solutions of linear equations of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+ax=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mi>x</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+ax=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31f08d61b36ed261d24b7c4e9968efd09890d5bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.826ex; height:2.343ex;" alt="{\displaystyle x+ax=b}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+ax+bx=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>x</mi> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+ax+bx=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e526653ec319d39a8621fa3e2e012a8c3483106b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:16.003ex; height:2.343ex;" alt="{\displaystyle x+ax+bx=c}"></span>, where a and b and c are known and x is unknown. The unknown is referred to as "aha", or heap. [...] The solution given by Ahmes is not that of modern textbooks, but one proposed characteristic of a procedure now known as the "method of false position", or the "rule of false". A specific false value has been proposed by 1920s scholars and the operations indicated on the left hand side of the equality sign are performed on this assumed number. Recent scholarship shows that scribes had not guessed in these situations. Exact rational number answers written in Egyptian fraction series had confused the 1920s scholars. The attested result shows that Ahmes "checked" result by showing that 16 + 1/2 + 1/8 exactly added to a seventh of this (which is 2 + 1/4 + 1/8), does obtain 19. Here we see another significant step in the development of mathematics, for the check is a simple instance of a proof."</span> </li> <li id="cite_note-Casselman-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Casselman_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBill_Casselman" class="citation web cs1"><a href="/wiki/Bill_Casselman_(mathematician)" class="mw-redirect" title="Bill Casselman (mathematician)">Bill Casselman</a>. <a rel="nofollow" class="external text" href="http://www.math.ubc.ca/~cass/Euclid/papyrus/papyrus.html">"One of the Oldest Extant Diagrams from Euclid"</a>. University of British Columbia<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-09-26</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=One+of+the+Oldest+Extant+Diagrams+from+Euclid&amp;rft.pub=University+of+British+Columbia&amp;rft.au=Bill+Casselman&amp;rft_id=http%3A%2F%2Fwww.math.ubc.ca%2F~cass%2FEuclid%2Fpapyrus%2Fpapyrus.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Greek_Geometric_Algebra-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Greek_Geometric_Algebra_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Greek_Geometric_Algebra_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Greek_Geometric_Algebra_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Greek_Geometric_Algebra_15-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Greek_Geometric_Algebra_15-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p.109) "Book II of the <i>Elements</i> is a short one, containing only fourteen propositions, not one of which plays any role in modern textbooks; yet in Euclid's day this book was of great significance. This sharp discrepancy between ancient and modern views is easily explained—today we have symbolic algebra and trigonometry that have replaced the geometric equivalents from Greece. For instance, Proposition 1 of Book II states that "If there be two straight lines, and one of them be cut into any number of segments whatever, the rectangle contained by the two straight lines is equal to the rectangles contained by the uncut straight line and each of the segments." This theorem, which asserts (Fig. 7.5) that AD (AP + PR + RB) = AD·AP + AD·PR + AD·RB, is nothing more than a geometric statement of one of the fundamental laws of arithmetic known today as the distributive law: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a(b+c+d)=ab+ac+ad.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo>+</mo> <mi>c</mi> <mo>+</mo> <mi>d</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mi>b</mi> <mo>+</mo> <mi>a</mi> <mi>c</mi> <mo>+</mo> <mi>a</mi> <mi>d</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a(b+c+d)=ab+ac+ad.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84358a0dfd9bd0df1126c802e9979cf177c58e8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.276ex; height:2.843ex;" alt="{\displaystyle a(b+c+d)=ab+ac+ad.}"></span> In later books of the <i>Elements</i> (V and VII) we find demonstrations of the commutative and associative laws for multiplication. Whereas in our time magnitudes are represented by letters that are understood to be numbers (either known or unknown) on which we operate with algorithmic rules of algebra, in Euclid's day magnitudes were pictured as line segments satisfying the axions and theorems of geometry. It is sometimes asserted that the Greeks had no algebra, but this is patently false. They had Book II of the <i>Elements</i>, which is geometric algebra and served much the same purpose as does our symbolic algebra. There can be little doubt that modern algebra greatly facilitates the manipulation of relationships among magnitudes. But it is undoubtedly also true that a Greek geometer versed in the fourteen theorems of Euclid's "algebra" was far more adept in applying these theorems to practical mensuration than is an experienced geometer of today. Ancient geometric "algebra" was not an ideal tool, but it was far from ineffective. Euclid's statement (Proposition 4), "If a straight line be cut at random, the square on the whole is equal to the squares on the segments and twice the rectangle contained by the segments, is a verbose way of saying that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/088a0cbbeff707c1e8629fedd307923f5fe9d0e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.436ex; height:3.176ex;" alt="{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}}"></span>,"</span> </li> <li id="cite_note-A_history_of_Mathematics_the_application_of_areas-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-A_history_of_Mathematics_the_application_of_areas_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-A_history_of_Mathematics_the_application_of_areas_16-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-A_history_of_Mathematics_the_application_of_areas_16-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Heroic Age" pp. 77–78) "Whether deduction came into mathematics in the sixth century BCE or the fourth and whether incommensurability was discovered before or after 400&#160;BCE, there can be no doubt that Greek mathematics had undergone drastic changes by the time of Plato. [...] A "geometric algebra" had to take the place of the older "arithmetic algebra", and in this new algebra there could be no adding of lines to areas or of areas to volumes. From now on there had to be strict homogeneity of terms in equations, and the Mesopotamian normal form, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy=A,x\pm y=b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> <mo>=</mo> <mi>A</mi> <mo>,</mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>y</mi> <mo>=</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy=A,x\pm y=b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2317fe19dc9fd7eda825237756d7b87134e37611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.429ex; height:2.509ex;" alt="{\displaystyle xy=A,x\pm y=b,}"></span> = b, were to be interpreted geometrically. [...] In this way the Greeks built up the solution of quadratic equations by their process known as "the application of areas", a portion of geometric algebra that is fully covered by Euclid's <i>Elements</i>. [...] The linear equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax=bc,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>=</mo> <mi>b</mi> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax=bc,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a0e8602772e7bf705ac3dda95fec07e419d56d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.309ex; height:2.509ex;" alt="{\displaystyle ax=bc,}"></span>, for example, was looked upon as an equality of the areas <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d44662eeb8cbba7277da838b75c77d8cd3a4547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.559ex; height:1.676ex;" alt="{\displaystyle ax}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle bc,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle bc,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43377610065af24bc7f7c8a8111627e568e91f30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.651ex; height:2.509ex;" alt="{\displaystyle bc,}"></span> rather than as a proportion—an equality between the two ratios <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a:b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>:</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a:b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3149b4f815ad9e8b3e8cdd29adcd02a42c22e5ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.165ex; height:2.176ex;" alt="{\displaystyle a:b}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c:x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>:</mo> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c:x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8994f6e6903c6c71adcf53aadabac929d2b8a660" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.921ex; height:1.676ex;" alt="{\displaystyle c:x.}"></span>. Consequently, in constructing the fourth proportion <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> in this case, it was usual to construct a rectangle OCDB with the sides <i>b</i> = OB and <i>c</i> = OC (Fig 5.9) and then along OC to lay off OA = <i>a</i>. One completes the rectangle OCDB and draws the diagonal OE cutting CD in P. It is now clear that CP is the desired line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/feff4d40084c7351bf57b11ba2427f6331f5bdbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.977ex; height:2.009ex;" alt="{\displaystyle x,}"></span> for rectangle OARS is equal in area to rectangle OCDB"</span> </li> <li id="cite_note-Euclid_and_Khwarizmi-17"><span class="mw-cite-backlink">^ <a href="#cite_ref-Euclid_and_Khwarizmi_17-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Euclid_and_Khwarizmi_17-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Euclid_and_Khwarizmi_17-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Europe in the Middle Ages" p. 258) "In the arithmetical theorems in Euclid's <i>Elements</i> VII–IX, numbers had been represented by line segments to which letters had been attached, and the geometric proofs in al-Khwarizmi's <i>Algebra</i> made use of lettered diagrams; but all coefficients in the equations used in the <i>Algebra</i> are specific numbers, whether represented by numerals or written out in words. The idea of generality is implied in al-Khwarizmi's exposition, but he had no scheme for expressing algebraically the general propositions that are so readily available in geometry."</span> </li> <li id="cite_note-Heath_Thymaridas-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Heath_Thymaridas_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Heath_Thymaridas_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Heath_Thymaridas_18-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFHeath1981a">Heath 1981a</a>, "The ('Bloom') of Thymaridas" pp. 94–96) Thymaridas of Paros, an ancient Pythagorean already mentioned (p. 69), was the author of a rule for solving a certain set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> simultaneous simple equations connecting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> unknown quantities. The rule was evidently well known, for it was called by the special name [...] the 'flower' or 'bloom' of Thymaridas. [...] The rule is very obscurely worded, but it states in effect that, if we have the following <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> equations connecting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> unknown quantities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,x_{1},x_{2},\ldots ,x_{n-1},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,x_{1},x_{2},\ldots ,x_{n-1},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80692dee562e81338e5c1075b33cca9d3bf8b5f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.639ex; height:2.009ex;" alt="{\displaystyle x,x_{1},x_{2},\ldots ,x_{n-1},}"></span> namely [...] Iamblichus, our informant on this subject, goes on to show that other types of equations can be reduced to this, so that they rule does not 'leave us in the lurch' in those cases either."</span> </li> <li id="cite_note-Flegg-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-Flegg_19-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFFlegg1983">Flegg 1983</a>, "Unknown Numbers" p. 205) "Thymaridas (fourth century) is said to have had this rule for solving a particular set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> linear equations in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> unknowns:<br />If the sum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> quantities be given, and also the sum of every pair containing a particular quantity, then this particular quantity is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1/(n-2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1/(n-2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27883e029d34468fde880827aa57bd04f884b0fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.532ex; height:2.843ex;" alt="{\displaystyle 1/(n-2)}"></span> of the difference between the sums of these pairs and the first given sum."</span> </li> <li id="cite_note-Boyer_Euclid_Alexandria-20"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Euclid_Alexandria_20-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Euclid_Alexandria_20-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Boyer_Euclid_Alexandria_20-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 100) "but by 306&#160;BCE control of the Egyptian portion of the empire was firmly in the hands of Ptolemy I, and this enlightened ruler was able to turn his attention to constructive efforts. Among his early acts was the establishment at Alexandria of a school or institute, known as the Museum, second to none in its day. As teachers at the school he called a band of leading scholars, among whom was the author of the most fabulously successful mathematics textbook ever written—the <i>Elements</i> (<i>Stoichia</i>) of Euclid. Considering the fame of the author and of his best seller, remarkably little is known of Euclid's life. So obscure was his life that no birthplace is associated with his name."</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 101) "The tale related above in connection with a request of Alexander the Great for an easy introduction to geometry is repeated in the case of Ptolemy, who Euclid is reported to have assured that "there is no royal road to geometry"."</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 104) "Some of the faculty probably excelled in research, others were better fitted to be administrators, and still some others were noted for teaching ability. It would appear, from the reports we have, that Euclid very definitely fitted into the last category. There is no new discovery attributed to him, but he was noted for expository skills."</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 104) "The <i>Elements</i> was not, as is sometimes thought, a compendium of all geometric knowledge; it was instead an introductory textbook covering all <i>elementary</i> mathematics."</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 110) "The same holds true for <i>Elements</i> II.5, which contains what we should regard as an impractical circumlocution for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a^{2}-b^{2}=(a+b)(a-b)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a^{2}-b^{2}=(a+b)(a-b)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d52e4cff7a7157a34586d9a29df412a7d37f574" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.029ex; height:3.176ex;" alt="{\displaystyle a^{2}-b^{2}=(a+b)(a-b)}"></span>"</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 111) "In an exactly analogous manner the quadratic equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+x^{2}=b^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+x^{2}=b^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6544d2cd0901a97d5c6a65786cec26222473c2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:12.934ex; height:2.843ex;" alt="{\displaystyle ax+x^{2}=b^{2}}"></span> is solved through the use of II.6: If a straight line be bisected and a straight line be added to it in a straight line, the rectangle contained by the whole (with the added straight line) and the added straight line together with the square on the half is equal to the square on the straight line made up of the half and the added straight line. [...] with II.11 being an important special case of II.6. Here Euclid solves the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+x^{2}=a^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+x^{2}=a^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d01dbf76de06fc20a45116d3def048e56c6a7c2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.166ex; height:2.843ex;" alt="{\displaystyle ax+x^{2}=a^{2}}"></span>"</span> </li> <li id="cite_note-Euclid&#39;s_Data_Boyer-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-Euclid&#39;s_Data_Boyer_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Euclid&#39;s_Data_Boyer_26-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Euclid&#39;s_Data_Boyer_26-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria" p. 103) "Euclid's <i>Data</i>, a work that has come down to us through both Greek and the Arabic. It seems to have been composed for use at the schools of Alexandria, serving as a companion volume to the first six books of the <i>Elements</i> in much the same way that a manual of tables supplements a textbook. [...] It opens with fifteen definitions concerning magnitudes and loci. The body of the text comprises ninety-five statements concerning the implications of conditions and magnitudes that may be given in a problem. [...] There are about two dozen similar statements serving as algebraic rules or formulas. [...] Some of the statements are geometric equivalents of the solution of quadratic equations. For example[...] Eliminating <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a-x)dx=b^{2}c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a-x)dx=b^{2}c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ccd4d31ab724c451a5e2b7939d8557b9fa30b5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.912ex; height:3.176ex;" alt="{\displaystyle (a-x)dx=b^{2}c}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx^{2}-adx+b^{2}c=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>c</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx^{2}-adx+b^{2}c=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a254cb64f30817eef52017612075f6399673ce7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.022ex; height:3.009ex;" alt="{\displaystyle dx^{2}-adx+b^{2}c=0,}"></span> from which <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x={\frac {a}{2}}\pm {\sqrt {\left({\frac {a}{2}}\right)^{2}-b^{2}\left({\frac {c}{d}}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>a</mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mi>d</mi> </mfrac> </mrow> <mo>)</mo> </mrow> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x={\frac {a}{2}}\pm {\sqrt {\left({\frac {a}{2}}\right)^{2}-b^{2}\left({\frac {c}{d}}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f0e976d0c8271226b5578f0e5457f5c7fbcf88e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.308ex; height:6.176ex;" alt="{\displaystyle x={\frac {a}{2}}\pm {\sqrt {\left({\frac {a}{2}}\right)^{2}-b^{2}\left({\frac {c}{d}}\right)}}.}"></span> The geometric solution given by Euclid is equivalent to this, except that the negative sign before the radical is used. Statements 84 and 85 in the Data are geometric replacements of the familiar Babylonian algebraic solutions of the systems <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle xy=a^{2},x\pm y=b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mi>y</mi> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mi>x</mi> <mo>&#x00B1;<!-- ± --></mo> <mi>y</mi> <mo>=</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle xy=a^{2},x\pm y=b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32991df1e7ec2c455ff0386d1524ef9eea447c18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.97ex; height:3.009ex;" alt="{\displaystyle xy=a^{2},x\pm y=b,}"></span> which again are the equivalents of solutions of simultaneous equations."</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Euclidean Synthesis" p. 103) "Eutocius and Proclus both attribute the discovery of the conic sections to Menaechmus, who lived in Athens in the late fourth century BC. Proclus, quoting Eratosthenes, refers to "the conic section triads of Menaechmus." Since this quotation comes just after a discussion of "the section of a right-angled cone" and "the section of an acute-angled cone", it is inferred that the conic sections were produced by cutting a cone with a plane perpendicular to one of its elements. Then if the vertex angle of the cone is acute, the resulting section (called<i>oxytome</i>) is an ellipse. If the angle is right, the section (<i>orthotome</i>) is a parabola, and if the angle is obtuse, the section (<i>amblytome</i>) is a hyperbola (see Fig. 5.7)."</span> </li> <li id="cite_note-Boyer_Menaechmus-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Menaechmus_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Menaechmus_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The age of Plato and Aristotle" p. 94–95) "If OP = <i>y</i> and OD = <i>x</i> are coordinates of point P, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{2}=R}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>R</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{2}=R}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f739000a1dfed7fb65913a617ae4f2a40352e513" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.077ex; height:3.009ex;" alt="{\displaystyle y^{2}=R}"></span>).OV, or, on substituting equals, <br /><i>y</i><sup>2</sup> = R'D.OV = AR'.BC/AB.DO.BC/AB = AR'.BC<sup>2</sup>/AB<sup>2</sup>.<i>x</i><br />Inasmuch as segments AR', BC, and AB are the same for all points P on the curve EQDPG, we can write the equation of the curve, a "section of a right-angled cone", as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y^{2}=lx,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>l</mi> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y^{2}=lx,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b5417b0abda3eeaa416e26a5afcf890ba8b4792" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.983ex; height:3.009ex;" alt="{\displaystyle y^{2}=lx,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/829091f745070b9eb97a80244129025440a1cfac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\displaystyle l}"></span> is a constant, later to be known as the latus rectum of the curve. [...] Menaechmus apparently derived these properties of the conic sections and others as well. Since this material has a string resemblance to the use of coordinates, as illustrated above, it has sometimes been maintains that Menaechmus had analytic geometry. Such a judgment is warranted only in part, for certainly Menaechmus was unaware that any equation in two unknown quantities determines a curve. In fact, the general concept of an equation in unknown quantities was alien to Greek thought. [...] He had hit upon the conics in a successful search for curves with the properties appropriate to the duplication of the cube. In terms of modern notation the solution is easily achieved. By shifting the curring plane (Gig. 6.2), we can find a parabola with any latus rectum. If, then, we wish to duplicate a cube of edge <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f059f053fcf9f421b7c74362cf3bd5ed024e19d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.877ex; height:2.009ex;" alt="{\displaystyle a,}"></span> we locate on a right-angled cone two parabolas, one with latus rectum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> and another with latus rectum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2a.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>a</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2a.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd0574708c5edf71b13d95fb0ef56149864059b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.039ex; height:2.176ex;" alt="{\displaystyle 2a.}"></span> [...] It is probable that Menaechmus knew that the duplication could be achieved also by the use of a rectangular hyperbola and a parabola."</span> </li> <li id="cite_note-Boyer_Chinese_Math-29"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Chinese_Math_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Chinese_Math_29-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" pp. 195–197) "estimates concerning the <i>Chou Pei Suan Ching</i>, generally considered to be the oldest of the mathematical classics, differ by almost a thousand years. [...] A date of about 300&#160;B.C. would appear reasonable, thus placing it in close competition with another treatise, the <i>Chiu-chang suan-shu</i>, composed about 250&#160;B.C., that is, shortly before the Han dynasty (202&#160;B.C.). [...] Almost as old at the <i>Chou Pei</i>, and perhaps the most influential of all Chinese mathematical books, was the <i>Chui-chang suan-shu</i>, or <i>Nine Chapters on the Mathematical Art</i>. This book includes 246 problems on surveying, agriculture, partnerships, engineering, taxation, calculation, the solution of equations, and the properties of right triangles. [...] Chapter eight of the <i>Nine chapters</i> is significant for its solution of problems of simultaneous linear equations, using both positive and negative numbers. The last problem in the chapter involves four equations in five unknowns, and the topic of indeterminate equations was to remain a favorite among Oriental peoples."</span> </li> <li id="cite_note-Boyer_Sea_Mirror-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Sea_Mirror_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Sea_Mirror_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 204) "Li Chih (or Li Yeh, 1192–1279), a mathematician of Peking who was offered a government post by Khublai Khan in 1206, but politely found an excuse to decline it. His <i>Ts'e-yuan hai-ching</i> (<i>Sea-Mirror of the Circle Measurements</i>) includes 170 problems dealing with[...]some of the problems leading to equations of fourth degree. Although he did not describe his method of solution of equations, including some of sixth degree, it appears that it was not very different form that used by Chu Shih-chieh and Horner. Others who used the Horner method were Ch'in Chiu-shao (c. 1202 – c. 1261) and Yang Hui (fl. c. 1261 – 1275). The former was an unprincipled governor and minister who acquired immense wealth within a hundred days of assuming office. His <i>Shu-shu chiu-chang</i> (<i>Mathematical Treatise in Nine Sections</i>) marks the high point of Chinese indeterminate analysis, with the invention of routines for solving simultaneous congruences."</span> </li> <li id="cite_note-Boyer_Magic_Squares-31"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Magic_Squares_31-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Magic_Squares_31-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 197) "The Chinese were especially fond of patters; hence, it is not surprising that the first record (of ancient but unknown origin) of a magic square appeared there. [...] The concern for such patterns left the author of the <i>Nine Chapters</i> to solve the system of simultaneous linear equations [...] by performing column operations on the matrix [...] to reduce it to [...] The second form represented the equations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 36z=99,5y+z=24,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>36</mn> <mi>z</mi> <mo>=</mo> <mn>99</mn> <mo>,</mo> <mn>5</mn> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>24</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 36z=99,5y+z=24,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5547d7c18d119f3e3dd68aaf7caf2134ebc49d91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:22.187ex; height:2.509ex;" alt="{\displaystyle 36z=99,5y+z=24,}"></span> = 24, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3x+2y+z=39}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>x</mi> <mo>+</mo> <mn>2</mn> <mi>y</mi> <mo>+</mo> <mi>z</mi> <mo>=</mo> <mn>39</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3x+2y+z=39}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/862f2f3e303bf0c1ae7250b6e52e8cd4dff24e1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.002ex; height:2.509ex;" alt="{\displaystyle 3x+2y+z=39}"></span> from which the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z,y,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z,y,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2157d362efb438a7c46182d9abb073bb58cdaa9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.924ex; height:2.009ex;" alt="{\displaystyle z,y,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> are successively found with ease."</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" pp. 204–205) "The same "Horner" device was used by Yang Hui, about whose life almost nothing is known and who work has survived only in part. Among his contributions that are extant are the earliest Chinese magic squares of order greater than three, including two each of orders four through eight and one each of orders nine and ten."</span> </li> <li id="cite_note-Boyer_Precious_Mirror-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_Precious_Mirror_33-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 203) "The last and greatest of the Sung mathematicians was Chu Chih-chieh (<a href="/wiki/Floruit" title="Floruit">fl.</a> 1280–1303), yet we know little about him-, [...] Of greater historical and mathematical interest is the <i>Ssy-yüan yü-chien</i> (<i>Precious Mirror of the Four Elements</i>) of 1303. In the eighteenth century this, too, disappeared in China, only to be rediscovered in the next century. The four elements, called heaven, earth, man, and matter, are the representations of four unknown quantities in the same equation. The book marks the peak in the development of Chinese algebra, for it deals with simultaneous equations and with equations of degrees as high as fourteen. In it the author describes a transformation method that he calls <i>fan fa</i>, the elements of which to have arisen long before in China, but which generally bears the name of Horner, who lived half a millennium later."</span> </li> <li id="cite_note-Boyer_Precious_Mirror_p205-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Precious_Mirror_p205_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Precious_Mirror_p205_34-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 205) "A few of the many summations of series found in the <i>Precious Mirror</i> are the following:[...] However, no proofs are given, nor does the topic seem to have been continued again in China until about the nineteenth century. [...] The <i>Precious Mirror</i> opens with a diagram of the arithmetic triangle, inappropriately known in the West as "pascal's triangle." (See illustration.) [...] Chu disclaims credit for the triangle, referring to it as a "diagram of the old method for finding eighth and lower powers". A similar arrangement of coefficients through the sixth power had appeared in the work of Yang Hui, but without the round zero symbol."</span> </li> <li id="cite_note-Boyer_Diophantus-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_Diophantus_35-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. 178) Uncertainty about the life of Diophantus is so great that we do not know definitely in which century he lived. Generally he is assumed to have flourished about 250 CE, but dates a century or more earlier or later are sometimes suggested[...] If this conundrum is historically accurate, Diophantus lived to be eighty-four-years old. [...] The chief Diophantine work known to us is the <i>Arithmetica</i>, a treatise originally in thirteen books, only the first six of which have survived."</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean. <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. p.&#160;80.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=80&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-:0-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_37-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_37-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2013" class="citation journal cs1">Oaks, Jeffrey; Christianidis, Jean (2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2012.09.001">"Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria"</a>. <i>Historia Mathematica</i>. <b>40</b> (2): 158–160. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2012.09.001">10.1016/j.hm.2012.09.001</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Practicing+algebra+in+late+antiquity%3A+The+problem-solving+of+Diophantus+of+Alexandria&amp;rft.volume=40&amp;rft.issue=2&amp;rft.pages=158-160&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2012.09.001&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1016%252Fj.hm.2012.09.001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2013" class="citation journal cs1">Oaks, Jeffrey; Christianidis, Jean (2013). <a rel="nofollow" class="external text" href="https://www.academia.edu/5821882">"Practicing algebra in late antiquity: The problem-solving of Diophantus of Alexandria"</a>. <i>Historia Mathematica</i>. <b>40</b>: 150.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=Practicing+algebra+in+late+antiquity%3A+The+problem-solving+of+Diophantus+of+Alexandria&amp;rft.volume=40&amp;rft.pages=150&amp;rft.date=2013&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rft_id=https%3A%2F%2Fwww.academia.edu%2F5821882&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2023" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean (2023). <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. pp.&#160;51–52.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=51-52&amp;rft.date=2023&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2021" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean (2021). <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. pp.&#160;53–66.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=53-66&amp;rft.date=2021&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Boyer_Arithmetica-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_Arithmetica_41-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" pp. 180–182) "In this respect it can be compared with the great classics of the earlier <a href="/w/index.php?title=Alexandrian_Age&amp;action=edit&amp;redlink=1" class="new" title="Alexandrian Age (page does not exist)">Alexandrian Age</a>; yet it has practically nothing in common with these or, in fact, with any traditional Greek mathematics. It represents essentially a new branch and makes use of a different approach. Being divorced from geometric methods, it resembles Babylonian algebra to a large extent. But whereas Babylonian mathematicians had been concerned primarily with <i> approximate</i> solutions of <i>determinate</i> equations as far as the third degree, the <i>Arithmetica</i> of Diophantus (such as we have it) is almost entirely devoted to the <i>exact</i> solution of equations, both <i>determinate</i> and <i>indeterminate</i>. [...] Throughout the six surviving books of <i>Arithmetica</i> there is a systematic use of abbreviations for powers of numbers and for relationships and operations. An unknown number is represented by a symbol resembling the Greek letter ζ (perhaps for the last letter of arithmos). [...] It is instead a collection of some 150 problems, all worked out in terms of specific numerical examples, although perhaps generality of method was intended. There is no postulation development, nor is an effort made to find all possible solutions. In the case of quadratic equations with two positive roots, only the larger is give, and negative roots are not recognized. No clear-cut distinction is made between determinate and indeterminate problems, and even for the latter for which the number of solutions generally is unlimited, only a single answer is given. Diophantus solved problems involving several unknown numbers by skillfully expressing all unknown quantities, where possible, in terms of only one of them."</span> </li> <li id="cite_note-Boyer-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_42-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Revival and Decline of Greek Mathematics" p. 178) "The chief difference between Diophantine syncopation and the modern algebraic notation is the lack of special symbols for operations and relations, as well as of the exponential notation."</span> </li> <li id="cite_note-Diophantus_Syncopation-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-Diophantus_Syncopation_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Diophantus_Syncopation_43-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Diophantus_Syncopation_43-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFDerbyshire2006">Derbyshire 2006</a>, "The Father of Algebra" pp. 35–36)</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">(<a href="#CITEREFCooke1997">Cooke 1997</a>, "Mathematics in the Roman Empire" pp. 167–168)</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaksChristianidis2023" class="citation book cs1">Oaks, Jeffrey; Christianidis, Jean (2023). <i>The Arithmetica of Diophantus A Complete Translation and Commentary</i>. pp.&#160;78–79. <q>There are two major flaws with this trichotomy. First, the language written in books is not always the language in which problems were worked out. In Arabic, problems were often solved in notation on a dust-board or some other temporary surface, and then for inclusion in a book a rhetorical version was composed. Also, because of the two-dimensional character of the Arabic notation, it would have been written and read visually, independent of real or imagined speech. It thus fits nicely into Nesselmann's "symbolic" category. The rhetorical version of the same work, on the other hand, was categorized as being "rhetorical". These two ways of writing algebra do not reflect two stages of the development of algebra but are different ways of expressing the same ideas. Second, Nesselmann was unaware of the conceptual differences between premodern and modern algebra, and thus, he could not have appreciated the leap made in the time of Viète and Descartes that included a radical shift in how notation was interpreted.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Arithmetica+of+Diophantus+A+Complete+Translation+and+Commentary&amp;rft.pages=78-79&amp;rft.date=2023&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rft.au=Christianidis%2C+Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Europe in the Middle Ages" p. 257) "The book makes frequent use of the identities [...] which had appeared in Diophantus and had been widely used by the Arabs."</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Mathematics of the Hindus" p. 197) "The oldest surviving documents on Hindu mathematics are copies of works written in the middle of the first millennium B.C., approximately the time during which Thales and Pythagoras lived. [...] from the sixth century B.C."</span> </li> <li id="cite_note-India_Algebra_in_General-48"><span class="mw-cite-backlink">^ <a href="#cite_ref-India_Algebra_in_General_48-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-India_Algebra_in_General_48-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 222) "The <i>Livavanti</i>, like the <i>Vija-Ganita</i>, contains numerous problems dealing with favorite Hindu topics; linear and quadratic equations, both determinate and indeterminate, simple mensuration, arithmetic and geometric progressions, surds, Pythagorean triads, and others."</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Mathematics of the Hindus" p. 207) "He gave more elegant rules for the sum of the squares and cubes of an initial segment of the positive integers. The sixth part of the product of three quantities consisting of the number of terms, the number of terms plus one, and twice the number of terms plus one is the sum of the squares. The square of the sum of the series is the sum of the cubes."</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 219) "Brahmagupta (fl. 628), who lived in Central India somewhat more than a century after Aryabhata [...] in the trigonometry of his best-known work, the <i>Brahmasphuta Siddhanta</i>, [...] here we find general solutions of quadratic equations, including two roots even in cases in which one of them is negative."</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 220) "Hindu algebra is especially noteworthy in its development of indeterminate analysis, to which Brahmagupta made several contributions. For one thing, in his work we find a rule for the formation of Pythagorean triads expressed in the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m,1/2\left(m^{2}/n-n\right),1/2\left(m^{2}/n+n\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo>+</mo> <mi>n</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m,1/2\left(m^{2}/n-n\right),1/2\left(m^{2}/n+n\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/298c1a83ad4301aa66ab1630019cdb9f8267682b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.278ex; height:3.343ex;" alt="{\displaystyle m,1/2\left(m^{2}/n-n\right),1/2\left(m^{2}/n+n\right)}"></span>; but this is only a modified form of the old Babylonian rule, with which he may have become familiar."</span> </li> <li id="cite_note-Boyer_Brahmagupta_Indeterminate_equations-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Boyer_Brahmagupta_Indeterminate_equations_52-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" p. 221) "he was the first one to give a <i>general</i> solution of the linear Diophantine equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax+by=c,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>x</mi> <mo>+</mo> <mi>b</mi> <mi>y</mi> <mo>=</mo> <mi>c</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax+by=c,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cad0ef4835d1ee3714c5a58e37e00a51e502850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.305ex; height:2.509ex;" alt="{\displaystyle ax+by=c,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ae9ae3580e0d3b9cfb40bebf5fe09640183361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.908ex; height:2.509ex;" alt="{\displaystyle a,b,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> are integers. [...] It is greatly to the credit of Brahmagupta that he gave <i>all</i> integral solutions of the linear Diophantine equation, whereas Diophantus himself had been satisfied to give one particular solution of an indeterminate equation. Inasmuch as Brahmagupta used some of the same examples as Diophantus, we see again the likelihood of Greek influence in India—or the possibility that they both made use of a common source, possibly from Babylonia. It is interesting to note also that the algebra of Brahmagupta, like that of Diophantus, was syncopated. Addition was indicated by juxtaposition, subtraction by placing a dot over the subtrahend, and division by placing the divisor below the dividend, as in our fractional notation but without the bar. The operations of multiplication and evolution (the taking of roots), as well as unknown quantities, were represented by abbreviations of appropriate words. [...] Bhaskara (1114 – c. 1185), the leading mathematician of the twelfth century. It was he who filled some of the gaps in Brahmagupta's work, as by giving a general solution of the Pell equation and by considering the problem of division by zero."</span> </li> <li id="cite_note-Boyer_Lilvati222-223-53"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Lilvati222-223_53-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Lilvati222-223_53-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "China and India" pp. 222–223) "In treating of the circle and the sphere the <i>Lilavati</i> fails also to distinguish between exact and approximate statements. [...] Many of Bhaskara's problems in the <i>Livavati</i> and the <i>Vija-Ganita</i> evidently were derived from earlier Hindu sources; hence, it is no surprise to note that the author is at his best in dealing with indeterminate analysis."</span> </li> <li id="cite_note-Boyer_Intro_Islamic_Algebra-54"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Intro_Islamic_Algebra_54-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Intro_Islamic_Algebra_54-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Boyer_Intro_Islamic_Algebra_54-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 227) "The first century of the Muslim empire had been devoid of scientific achievement. This period (from about 650 to 750) had been, in fact, perhaps the nadir in the development of mathematics, for the Arabs had not yet achieved intellectual drive, and concern for learning in other parts of the world had faded. Had it not been for the sudden cultural awakening in Islam during the second half of the eighth century, considerably more of ancient science and mathematics would have been lost. [...] It was during the caliphate of al-Mamun (809–833), however, that the Arabs fully indulged their passion for translation. The caliph is said to have had a dream in which Aristotle appeared, and as a consequence al-Mamun determined to have Arabic versions made of all the Greek works that he could lay his hands on, including Ptolemy's <i>Almagest</i> and a complete version of Euclid's <i>Elements</i>. From the Byzantine Empire, with which the Arabs maintained an uneasy peace, Greek manuscripts were obtained through peace treaties. Al-Mamun established at Baghdad a "House of Wisdom" (Bait al-hikma) comparable to the ancient Museum at Alexandria. Among the faculty members was a mathematician and astronomer, Mohammed ibn-Musa al-Khwarizmi, whose name, like that of Euclid, later was to become a household word in Western Europe. The scholar, who died sometime before 850, wrote more than half a dozen astronomical and mathematical works, of which the earliest were probably based on the <i>Sindhad</i> derived from India."</span> </li> <li id="cite_note-Boyer_Islamic_Rhetoric_Algebra_Thabit-55"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Islamic_Rhetoric_Algebra_Thabit_55-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Islamic_Rhetoric_Algebra_Thabit_55-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 234) "but al-Khwarizmi's work had a serious deficiency that had to be removed before it could serve its purpose effectively in the modern world: a symbolic notation had to be developed to replace the rhetorical form. This step the Arabs never took, except for the replacement of number words by number signs. [...] Thabit was the founder of a school of translators, especially from Greek and Syriac, and to him we owe an immense debt for translations into Arabic of works by Euclid, Archimedes, Apollonius, Ptolemy, and Eutocius."</span> </li> <li id="cite_note-Gandz236-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gandz236_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gandz236_56-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Gandz and Saloman (1936), <i>The sources of al-Khwarizmi's algebra</i>, Osiris i, pp. 263–277: "In a sense, Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers".</span> </li> <li id="cite_note-Boyer_Three_Influences_on_al_Jabr-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Three_Influences_on_al_Jabr_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Three_Influences_on_al_Jabr_57-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 230) "Al-Khwarizmi continued: "We have said enough so far as numbers are concerned, about the six types of equations. Now, however, it is necessary that we should demonstrate geometrically the truth of the same problems which we have explained in numbers." The ring of this passage is obviously Greek rather than Babylonian or Indian. There are, therefore, three main schools of thought on the origin of Arabic algebra: one emphasizes Hindu influence, another stresses the Mesopotamian, or Syriac-Persian, tradition, and the third points to Greek inspiration. The truth is probably approached if we combine the three theories."</span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" pp. 228–229) "the author's preface in Arabic gave fulsome praise to Mohammed, the prophet, and to al-Mamun, "the Commander of the Faithful.""</span> </li> <li id="cite_note-Corbin_1998_44-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-Corbin_1998_44_59-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCorbin1998" class="citation book cs1">Corbin, Henry (1998). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_VF0AgAAQBAJ&amp;pg=PA44"><i>The Voyage and the Messenger: Iran and Philosophy</i></a>. North Atlantic Books. p.&#160;44. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-55643-269-9" title="Special:BookSources/978-1-55643-269-9"><bdi>978-1-55643-269-9</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230328222614/https://books.google.com/books?id=_VF0AgAAQBAJ&amp;pg=PA44">Archived</a> from the original on 28 March 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Voyage+and+the+Messenger%3A+Iran+and+Philosophy&amp;rft.pages=44&amp;rft.pub=North+Atlantic+Books&amp;rft.date=1998&amp;rft.isbn=978-1-55643-269-9&amp;rft.aulast=Corbin&amp;rft.aufirst=Henry&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_VF0AgAAQBAJ%26pg%3DPA44&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text">Boyer, Carl B., 1985. <i>A History of Mathematics</i>, p.&#160;252. Princeton University Press. "Diophantus sometimes is called the father of algebra, but this title more appropriately belongs to al-Khowarizmi...", "...the Al-jabr comes closer to the elementary algebra of today than the works of either Diophantus or Brahmagupta..."</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text">S Gandz, The sources of al-Khwarizmi's algebra, Osiris, i (1936), 263–277, "Al-Khwarizmi's algebra is regarded as the foundation and cornerstone of the sciences. In a sense, al-Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because al-Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers."</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz" class="citation journal cs1">Katz, Victor J. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190327085930/https://eclass.uoa.gr/modules/document/file.php/MATH104/20010-11/HistoryOfAlgebra.pdf">"Stages in the History of Algebra with Implications for Teaching"</a> <span class="cs1-format">(PDF)</span>. <i>VICTOR J. KATZ, University of the District of Columbia Washington, DC</i>: 190. Archived from <a rel="nofollow" class="external text" href="https://eclass.uoa.gr/modules/document/file.php/MATH104/20010-11/HistoryOfAlgebra.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 27 March 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">7 October</span> 2017</span> &#8211; via University of the District of Columbia Washington DC, USA. <q>The first true algebra text which is still extant is the work on al-jabr and al-muqabala by Mohammad ibn Musa al-Khwarizmi, written in Baghdad around 825.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=VICTOR+J.+KATZ%2C+University+of+the+District+of+Columbia+Washington%2C+DC&amp;rft.atitle=Stages+in+the+History+of+Algebra+with+Implications+for+Teaching&amp;rft.pages=190&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rft_id=https%3A%2F%2Feclass.uoa.gr%2Fmodules%2Fdocument%2Ffile.php%2FMATH104%2F20010-11%2FHistoryOfAlgebra.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEsposito2000" class="citation book cs1">Esposito, John L. (2000). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9HUDXkJIE3EC&amp;pg=PA188"><i>The Oxford History of Islam</i></a>. Oxford University Press. p.&#160;188. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-988041-6" title="Special:BookSources/978-0-19-988041-6"><bdi>978-0-19-988041-6</bdi></a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20230328222600/https://books.google.com/books?id=9HUDXkJIE3EC&amp;pg=PA188">Archived</a> from the original on 28 March 2023<span class="reference-accessdate">. Retrieved <span class="nowrap">29 September</span> 2020</span>. <q>Al-Khwarizmi is often considered the founder of algebra, and his name gave rise to the term algorithm.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Oxford+History+of+Islam&amp;rft.pages=188&amp;rft.pub=Oxford+University+Press&amp;rft.date=2000&amp;rft.isbn=978-0-19-988041-6&amp;rft.aulast=Esposito&amp;rft.aufirst=John+L.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9HUDXkJIE3EC%26pg%3DPA188&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 228) "The Arabs in general loved a good clear argument from premise to conclusion, as well as systematic organization—respects in which neither Diophantus nor the Hindus excelled."</span> </li> <li id="cite_note-Boyer-229-65"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer-229_65-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer-229_65-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 229) "It is not certain just what the terms <i>al-jabr</i> and <i>muqabalah</i> mean, but the usual interpretation is similar to that implied in the translation above. The word <i>al-jabr</i> presumably meant something like "restoration" or "completion" and seems to refer to the transposition of subtracted terms to the other side of an equation, which is evident in the treatise; the word <i>muqabalah</i> is said to refer to "reduction" or "balancing"—that is, the cancellation of like terms on opposite sides of the equation."</span> </li> <li id="cite_note-Rashed-Armstrong-66"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rashed-Armstrong_66-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rashed-Armstrong_66-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRashedArmstrong1994" class="citation cs2">Rashed, R.; Armstrong, Angela (1994), <i>The Development of Arabic Mathematics</i>, <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>, pp.&#160;11–12, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7923-2565-9" title="Special:BookSources/978-0-7923-2565-9"><bdi>978-0-7923-2565-9</bdi></a>, <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/29181926">29181926</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Development+of+Arabic+Mathematics&amp;rft.pages=11-12&amp;rft.pub=Springer&amp;rft.date=1994&amp;rft_id=info%3Aoclcnum%2F29181926&amp;rft.isbn=978-0-7923-2565-9&amp;rft.aulast=Rashed&amp;rft.aufirst=R.&amp;rft.au=Armstrong%2C+Angela&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Al_Jabr_and_its_chapters-67"><span class="mw-cite-backlink">^ <a href="#cite_ref-Al_Jabr_and_its_chapters_67-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Al_Jabr_and_its_chapters_67-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 229) "in six short chapters, of the six types of equations made up from the three kinds of quantities: roots, squares, and numbers (that is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x,x^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x,x^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bc68fa58553b8b6a4898e8d76fb8ab8dd991441" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.394ex; height:3.009ex;" alt="{\displaystyle x,x^{2},}"></span> and numbers). Chapter I, in three short paragraphs, covers the case of squares equal to roots, expressed in modern notation as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}=5x,x^{2}/3=4x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>5</mn> <mi>x</mi> <mo>,</mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>3</mn> <mo>=</mo> <mn>4</mn> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}=5x,x^{2}/3=4x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/85ff21718462e02349fcf39ea7afa25931ac8a5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.955ex; height:3.176ex;" alt="{\displaystyle x^{2}=5x,x^{2}/3=4x,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5x^{2}=10x,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>10</mn> <mi>x</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5x^{2}=10x,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70e75b85cc907c968819d4b131d8a1eac4f77a22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.946ex; height:3.009ex;" alt="{\displaystyle 5x^{2}=10x,}"></span> giving the answers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=5,x=12,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mi>x</mi> <mo>=</mo> <mn>12</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=5,x=12,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f9ff53b53d9bab4f30030ea4df3c9c81f77d96b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.024ex; height:2.509ex;" alt="{\displaystyle x=5,x=12,}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f39b6e42e5ffb81ac7b051b9e48b9a91d0713c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=2}"></span> respectively. (The root <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/953917eaf52f2e1baad54c8c9e3d6f9bb3710cdc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle x=0}"></span> was not recognized.) Chapter II covers the case of squares equal to numbers, and Chapter III solves the cases of roots equal to numbers, again with three illustrations per chapter to cover the cases in which the coefficient of the variable term is equal to, more than, or less than one. Chapters IV, V, and VI are more interesting, for they cover in turn the three classical cases of three-term quadratic equations: (1) squares and roots equal to numbers, (2) squares and numbers equal to roots, and (3) roots and numbers equal to squares."</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" pp. 229–230) "The solutions are "cookbook" rules for "completing the square" applied to specific instances. [...] In each case only the positive answer is give. [...] Again only one root is given for the other is negative. [...]The six cases of equations given above exhaust all possibilities for linear and quadratic equations having positive roots."</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 230) "Al-Khwarizmi here calls attention to the fact that what we designate as the discriminant must be positive: "You ought to understand also that when you take the half of the roots in this form of equation and then multiply the half by itself; if that which proceeds or results from the multiplication is less than the units above mentioned as accompanying the square, you have an equation." [...] Once more the steps in completing the square are meticulously indicated, without justification,"</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 231) "The <i>Algebra</i> of al-Khwarizmi betrays unmistakable Hellenic elements,"</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 233) "A few of al-Khwarizmi's problems give rather clear evidence of Arabic dependence on the Babylonian-Heronian stream of mathematics. One of them presumably was taken directly from Heron, for the figure and dimensions are the same."</span> </li> <li id="cite_note-al-Khwarizmi_Diophantus_Brahmagupta-72"><span class="mw-cite-backlink">^ <a href="#cite_ref-al-Khwarizmi_Diophantus_Brahmagupta_72-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-al-Khwarizmi_Diophantus_Brahmagupta_72-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 228) "the algebra of al-Khwarizmi is thoroughly rhetorical, with none of the syncopation found in the Greek <i>Arithmetica</i> or in Brahmagupta's work. Even numbers were written out in words rather than symbols! It is quite unlikely that al-Khwarizmi knew of the work of Diophantus, but he must have been familiar with at least the astronomical and computational portions of Brahmagupta; yet neither al-Khwarizmi nor other Arabic scholars made use of syncopation or of negative numbers."</span> </li> <li id="cite_note-Boyer_Ibn_Turk-73"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Ibn_Turk_73-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Ibn_Turk_73-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Boyer_Ibn_Turk_73-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Boyer_Ibn_Turk_73-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 234) "The <i>Algebra</i> of al-Khwarizmi usually is regarded as the first work on the subject, but a recent publication in Turkey raises some questions about this. A manuscript of a work by 'Abd-al-Hamid ibn-Turk, entitled "Logical Necessities in Mixed Equations," was part of a book on <i>Al-jabr wa'l muqabalah</i> which was evidently very much the same as that by al-Khwarizmi and was published at about the same time—possibly even earlier. The surviving chapters on "Logical Necessities" give precisely the same type of geometric demonstration as al-Khwarizmi's <i>Algebra</i> and in one case the same illustrative example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}+21=10x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>21</mn> <mo>=</mo> <mn>10</mn> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}+21=10x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b543c253ec27cf63395870509ddad6b75fdadbe1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:14.949ex; height:2.843ex;" alt="{\displaystyle x^{2}+21=10x.}"></span>. In one respect 'Abd-al-Hamad's exposition is more thorough than that of al-Khwarizmi for he gives geometric figures to prove that if the discriminant is negative, a quadratic equation has no solution. Similarities in the works of the two men and the systematic organization found in them seem to indicate that algebra in their day was not so recent a development as has usually been assumed. When textbooks with a conventional and well-ordered exposition appear simultaneously, a subject is likely to be considerably beyond the formative stage. [...] Note the omission of Diophantus and Pappus, authors who evidently were not at first known in Arabia, although the Diophantine <i>Arithmetica</i> became familiar before the end of the tenth century."</span> </li> <li id="cite_note-Unknown_Quantity,_Dia,_al-Khwar-74"><span class="mw-cite-backlink">^ <a href="#cite_ref-Unknown_Quantity,_Dia,_al-Khwar_74-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Unknown_Quantity,_Dia,_al-Khwar_74-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFDerbyshire2006">Derbyshire 2006</a>, "The Father of Algebra" p. 49)</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson1999" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a> (1999), <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/HistTopics/Arabic_mathematics.html">"Arabic mathematics: forgotten brilliance?"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Arabic+mathematics%3A+forgotten+brilliance%3F&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.date=1999&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FHistTopics%2FArabic_mathematics.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span> "Algebra was a unifying theory which allowed rational numbers, irrational numbers, geometrical magnitudes, etc., to all be treated as "algebraic objects"."</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text">Jacques Sesiano, "Islamic mathematics", p. 148, in <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSelinD&#39;Ambrosio2000" class="citation cs2"><a href="/wiki/Helaine_Selin" title="Helaine Selin">Selin, Helaine</a>; <a href="/wiki/Ubiratan_D%27Ambrosio" title="Ubiratan D&#39;Ambrosio">D'Ambrosio, Ubiratan</a>, eds. (2000), <i>Mathematics Across Cultures: The History of Non-Western Mathematics</i>, <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4020-0260-1" title="Special:BookSources/978-1-4020-0260-1"><bdi>978-1-4020-0260-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+Across+Cultures%3A+The+History+of+Non-Western+Mathematics&amp;rft.pub=Springer&amp;rft.date=2000&amp;rft.isbn=978-1-4020-0260-1&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Berggren-518-77"><span class="mw-cite-backlink">^ <a href="#cite_ref-Berggren-518_77-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Berggren-518_77-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerggren2007" class="citation book cs1">Berggren, J. Lennart (2007). "Mathematics in Medieval Islam". <i>The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook</i>. Princeton University Press. p.&#160;518. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-691-11485-9" title="Special:BookSources/978-0-691-11485-9"><bdi>978-0-691-11485-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Mathematics+in+Medieval+Islam&amp;rft.btitle=The+Mathematics+of+Egypt%2C+Mesopotamia%2C+China%2C+India%2C+and+Islam%3A+A+Sourcebook&amp;rft.pages=518&amp;rft.pub=Princeton+University+Press&amp;rft.date=2007&amp;rft.isbn=978-0-691-11485-9&amp;rft.aulast=Berggren&amp;rft.aufirst=J.+Lennart&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Boyer_al-Karkhi_ax2n-78"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_al-Karkhi_ax2n_78-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_al-Karkhi_ax2n_78-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 239) "Abu'l Wefa was a capable algebraist as well as a trionometer. [...] His successor al-Karkhi evidently used this translation to become an Arabic disciple of Diophantus—but without Diophantine analysis! [...] In particular, to al-Karkhi is attributed the first numerical solution of equations of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ax^{2n}+bx^{n}=c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>b</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ax^{2n}+bx^{n}=c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4bd3eaaf93f71f208edfc2643e24350b289262f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.091ex; height:2.843ex;" alt="{\displaystyle ax^{2n}+bx^{n}=c}"></span> (only equations with positive roots were considered),"</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Al-Karaji.html">"Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Abu+Bekr+ibn+Muhammad+ibn+al-Husayn+Al-Karaji&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FAl-Karaji.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Boyer_Omar_Khayyam_positive_roots-80"><span class="mw-cite-backlink">^ <a href="#cite_ref-Boyer_Omar_Khayyam_positive_roots_80-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Boyer_Omar_Khayyam_positive_roots_80-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Boyer_Omar_Khayyam_positive_roots_80-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Boyer_Omar_Khayyam_positive_roots_80-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Boyer_Omar_Khayyam_positive_roots_80-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" pp. 241–242) "Omar Khayyam (c. 1050 – 1123), the "tent-maker", wrote an <i>Algebra</i> that went beyond that of al-Khwarizmi to include equations of third degree. Like his Arab predecessors, Omar Khayyam provided for quadratic equations both arithmetic and geometric solutions; for general cubic equations, he believed (mistakenly, as the sixteenth century later showed), arithmetic solutions were impossible; hence he gave only geometric solutions. The scheme of using intersecting conics to solve cubics had been used earlier by Menaechmus, Archimedes, and Alhazan, but Omar Khayyam took the praiseworthy step of generalizing the method to cover all third-degree equations (having positive roots). .. For equations of higher degree than three, Omar Khayyam evidently did not envision similar geometric methods, for space does not contain more than three dimensions, [...] One of the most fruitful contributions of Arabic eclecticism was the tendency to close the gap between numerical and geometric algebra. The decisive step in this direction came much later with Descartes, but Omar Khayyam was moving in this direction when he wrote, "Whoever thinks algebra is a trick in obtaining unknowns has thought it in vain. No attention should be paid to the fact that algebra and geometry are different in appearance. Algebras are geometric facts which are proved.""</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Al-Tusi_Sharaf.html">"Sharaf al-Din al-Muzaffar al-Tusi"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Sharaf+al-Din+al-Muzaffar+al-Tusi&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FAl-Tusi_Sharaf.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRashedArmstrong1994" class="citation cs2">Rashed, Roshdi; Armstrong, Angela (1994), <i>The Development of Arabic Mathematics</i>, <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>, pp.&#160;342–343, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7923-2565-9" title="Special:BookSources/978-0-7923-2565-9"><bdi>978-0-7923-2565-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Development+of+Arabic+Mathematics&amp;rft.pages=342-343&amp;rft.pub=Springer&amp;rft.date=1994&amp;rft.isbn=978-0-7923-2565-9&amp;rft.aulast=Rashed&amp;rft.aufirst=Roshdi&amp;rft.au=Armstrong%2C+Angela&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Berggren-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-Berggren_83-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBerggren1990" class="citation journal cs1">Berggren, J. L. (1990). "Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat". <i>Journal of the American Oriental Society</i>. <b>110</b> (2): 304–309. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F604533">10.2307/604533</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/604533">604533</a>. <q>Rashed has argued that Sharaf al-Din discovered the derivative of cubic polynomials and realized its significance for investigating conditions under which cubic equations were solvable; however, other scholars have suggested quite difference explanations of Sharaf al-Din's thinking, which connect it with mathematics found in Euclid or Archimedes.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+American+Oriental+Society&amp;rft.atitle=Innovation+and+Tradition+in+Sharaf+al-Din+al-Tusi%27s+Muadalat&amp;rft.volume=110&amp;rft.issue=2&amp;rft.pages=304-309&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.2307%2F604533&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F604533%23id-name%3DJSTOR&amp;rft.aulast=Berggren&amp;rft.aufirst=J.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVictor_J._Katz2007" class="citation cs2">Victor J. Katz, Bill Barton (October 2007), "Stages in the History of Algebra with Implications for Teaching", <i>Educational Studies in Mathematics</i>, <b>66</b> (2): 185–201 [192], <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10649-006-9023-7">10.1007/s10649-006-9023-7</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120363574">120363574</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Educational+Studies+in+Mathematics&amp;rft.atitle=Stages+in+the+History+of+Algebra+with+Implications+for+Teaching&amp;rft.volume=66&amp;rft.issue=2&amp;rft.pages=185-201+192&amp;rft.date=2007-10&amp;rft_id=info%3Adoi%2F10.1007%2Fs10649-006-9023-7&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120363574%23id-name%3DS2CID&amp;rft.aulast=Victor+J.+Katz&amp;rft.aufirst=Bill+Barton&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text">Tjalling J. Ypma (1995), "Historical development of the Newton-Raphson method", <i>SIAM Review</i> <b>37</b> (4): 531–551, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F1037125">10.1137/1037125</a></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.npr.org/2011/07/16/137845241/fibonaccis-numbers-the-man-behind-the-math">"Fibonacci's 'Numbers': The Man Behind The Math"</a>. <i><a href="/wiki/NPR" title="NPR">NPR</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=NPR&amp;rft.atitle=Fibonacci%27s+%27Numbers%27%3A+The+Man+Behind+The+Math&amp;rft_id=https%3A%2F%2Fwww.npr.org%2F2011%2F07%2F16%2F137845241%2Ffibonaccis-numbers-the-man-behind-the-math&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Qalasadi-87"><span class="mw-cite-backlink">^ <a href="#cite_ref-Qalasadi_87-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Qalasadi_87-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Qalasadi_87-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorRobertson" class="citation cs2">O'Connor, John J.; <a href="/wiki/Edmund_F._Robertson" title="Edmund F. Robertson">Robertson, Edmund F.</a>, <a rel="nofollow" class="external text" href="https://mathshistory.st-andrews.ac.uk/Biographies/Al-Qalasadi.html">"Abu'l Hasan ibn Ali al Qalasadi"</a>, <i><a href="/wiki/MacTutor_History_of_Mathematics_Archive" title="MacTutor History of Mathematics Archive">MacTutor History of Mathematics Archive</a></i>, <a href="/wiki/University_of_St_Andrews" title="University of St Andrews">University of St Andrews</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Abu%27l+Hasan+ibn+Ali+al+Qalasadi&amp;rft.btitle=MacTutor+History+of+Mathematics+Archive&amp;rft.pub=University+of+St+Andrews&amp;rft.aulast=O%27Connor&amp;rft.aufirst=John+J.&amp;rft.au=Robertson%2C+Edmund+F.&amp;rft_id=https%3A%2F%2Fmathshistory.st-andrews.ac.uk%2FBiographies%2FAl-Qalasadi.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-Boyer_192-193-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boyer_192-193_88-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "Euclid of Alexandria pp. 192–193) "The death of Boethius may be taken to mark the end of ancient mathematics in the Western Roman Empire, as the death of Hypatia had marked the close of Alexandria as a mathematical center; but work continued for a few years longer at Athens. [...] When in 527 Justinian became emperor in the East, he evidently felt that the pagan learning of the Academy and other philosophical schools at Athens was a threat to orthodox Christianity; hence, in 529 the philosophical schools were closed and the scholars dispersed. Rome at the time was scarcely a very hospitable home for scholars, and Simplicius and some of the other philosophers looked to the East for haven. This they found in Persia, where under King Chosroes they established what might be called the "Athenian Academy in Exile."(Sarton 1952; p. 400)."</span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text">E.g. <a href="#CITEREFBashmakovaSmirnova2000">Bashmakova &amp; Smirnova (2000</a>:78), <a href="#CITEREFBoyer1991">Boyer (1991</a>:180), <a href="#CITEREFBurton1995">Burton (1995</a>:319), <a href="#CITEREFDerbyshire2006">Derbyshire (2006</a>:93), <a href="#CITEREFKatzParshall2014">Katz &amp; Parshall (2014</a>:238), <a href="#CITEREFSesiano1999">Sesiano (1999</a>:125), and <a href="#CITEREFSwetz2013">Swetz (2013</a>:110)</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><a href="#CITEREFDescartes1637">Descartes (1637</a>:301–303)</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text"><a href="#CITEREFDescartes1925">Descartes (1925</a>:9–14)</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text"><a href="#CITEREFCajori1919">Cajori (1919</a>:698); <a href="#CITEREFCajori1928">Cajori (1928</a>:381–382)</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-93">^</a></b></span> <span class="reference-text"><a href="#CITEREFEneström1905">Eneström (1905</a>:317)</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-94">^</a></b></span> <span class="reference-text">E.g. <a href="#CITEREFTropfke1902">Tropfke (1902</a>:150). But <a href="/wiki/Gustaf_Enestr%C3%B6m" title="Gustaf Eneström">Gustaf Eneström</a> (1905:316–317) showed that Descartes, in a letter written in 1619, used the German symbol in clear contrast to his own <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text">A crossed numeral <i>1</i> was used by <a href="/wiki/Pietro_Cataldi" title="Pietro Cataldi">Pietro Cataldi</a> for the first power of the unknown. The link between this convention and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is attributed by Cajori to <a href="https://de.wikipedia.org/wiki/Gustav_Wertheim_(Mathematiker)" class="extiw" title="de:Gustav Wertheim (Mathematiker)">Gustav Wertheim</a>, but Cajori (1919:699; 1928:382) finds no evidence to support it.</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><a href="#CITEREFCajori1919">Cajori (1919</a>:699)</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><b><a href="#cite_ref-97">^</a></b></span> <span class="reference-text">See, for example, the <a href="/wiki/TED_(conference)" title="TED (conference)">TED talk</a> by Terry Moore, entitled <a rel="nofollow" class="external text" href="http://www.ted.com/talks/terry_moore_why_is_x_the_unknown?language=en">"Why Is 'x' the Unknown?"</a>, released in 2012.</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><b><a href="#cite_ref-98">^</a></b></span> <span class="reference-text"><a href="#CITEREFAlcalá1505">Alcalá (1505)</a></span> </li> <li id="cite_note-99"><span class="mw-cite-backlink"><b><a href="#cite_ref-99">^</a></b></span> <span class="reference-text"><a href="#CITEREFLagarde1884">Lagarde (1884)</a>.</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><b><a href="#cite_ref-100">^</a></b></span> <span class="reference-text"><a href="#CITEREFJacob1903">Jacob (1903</a>:519).</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><b><a href="#cite_ref-101">^</a></b></span> <span class="reference-text"><a href="#CITEREFRider1982">Rider (1982)</a> lists five treatises on algebra published in Spanish in the sixteenth century, all of which use "cosa": <a href="#CITEREFAurel1552">Aurel (1552)</a>, <a href="#CITEREFOrtega1552">Ortega (1552)</a>, <a href="#CITEREFDíez1556">Díez (1556)</a>, <a href="#CITEREFPérez_de_Moya1562">Pérez de Moya (1562)</a>, and <a href="#CITEREFNunes1567">Nunes (1567)</a>. The latter two works also abbreviate <i>cosa</i> as "<i>co.</i>"—as does <a href="#CITEREFPuig1672">Puig (1672)</a>.</span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><b><a href="#cite_ref-102">^</a></b></span> <span class="reference-text">The forms are absent from <a href="#CITEREFAlonso1986">Alonso (1986)</a>, <a href="#CITEREFKastenCody2001">Kasten &amp; Cody (2001)</a>, <a href="#CITEREFOelschläger1940">Oelschläger (1940)</a>, the <a href="/wiki/Real_Academia_Espa%C3%B1ola" class="mw-redirect" title="Real Academia Española">Spanish Royal Academy</a>'s online diachronic corpus of Spanish (<a rel="nofollow" class="external text" href="http://corpus.rae.es/cordenet.html">CORDE</a>), and <a href="/wiki/Mark_Davies_(linguist)" title="Mark Davies (linguist)">Davies</a>'s <i><a rel="nofollow" class="external text" href="http://www.corpusdelespanol.org/x.asp">Corpus del Español</a></i>.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><b><a href="#cite_ref-103">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://langnhist.weebly.com/why_x.html">"Why x?"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-05-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Why+x%3F&amp;rft_id=https%3A%2F%2Flangnhist.weebly.com%2Fwhy_x.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><b><a href="#cite_ref-104">^</a></b></span> <span class="reference-text">Struik (1969), 367.<sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources#What_information_to_include" title="Wikipedia:Citing sources"><span title="A complete citation is needed. (November 2024)">full citation needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><b><a href="#cite_ref-105">^</a></b></span> <span class="reference-text">Andrew Warwick (2003) <i>Masters of Theory: Cambridge and the Rise of Mathematical Physics</i>, Chicago: <a href="/wiki/University_of_Chicago_Press" title="University of Chicago Press">University of Chicago Press</a> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-226-87374-9" title="Special:BookSources/0-226-87374-9">0-226-87374-9</a></span> </li> <li id="cite_note-Carl_Boyer_For_Al_Khwarizmi-106"><span class="mw-cite-backlink">^ <a href="#cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Carl_Boyer_For_Al_Khwarizmi_106-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 228) "Diophantus sometimes is called "the father of algebra", but this title more appropriately belongs to Abu Abdullah bin mirsmi al-Khwarizmi. It is true that in two respects the work of al-Khwarizmi represented a retrogression from that of Diophantus. First, it is on a far more elementary level than that found in the Diophantine problems and, second, the algebra of al-Khwarizmi is thoroughly rhetorical, with none of the syncopation found in the Greek <i>Arithmetica</i> or in Brahmagupta's work. Even numbers were written out in words rather than symbols! It is quite unlikely that al-Khwarizmi knew of the work of Diophantus, but he must have been familiar with at least the astronomical and computational portions of Brahmagupta; yet neither al-Khwarizmi nor other Arabic scholars made use of syncopation or of negative numbers."</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><b><a href="#cite_ref-107">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHerscovicsLinchevski1994" class="citation journal cs1">Herscovics, Nicolas; Linchevski, Liora (1 July 1994). "A cognitive gap between arithmetic and algebra". <i>Educational Studies in Mathematics</i>. <b>27</b> (1): 59–78. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01284528">10.1007/BF01284528</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1573-0816">1573-0816</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119624121">119624121</a>. <q>This would have come as a surprise to al-Khwarizmi, considered to be the father of algebra (Boyer/Merzbach, 1991), who introduced it to the Mediterranean world around the ninth century</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Educational+Studies+in+Mathematics&amp;rft.atitle=A+cognitive+gap+between+arithmetic+and+algebra&amp;rft.volume=27&amp;rft.issue=1&amp;rft.pages=59-78&amp;rft.date=1994-07-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119624121%23id-name%3DS2CID&amp;rft.issn=1573-0816&amp;rft_id=info%3Adoi%2F10.1007%2FBF01284528&amp;rft.aulast=Herscovics&amp;rft.aufirst=Nicolas&amp;rft.au=Linchevski%2C+Liora&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><b><a href="#cite_ref-108">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDodge2008" class="citation book cs1">Dodge, Yadolah (2008). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/conciseencyclope00dodg"><i>The Concise Encyclopedia of Statistics</i></a></span>. <a href="/wiki/Springer_Science_%26_Business_Media" class="mw-redirect" title="Springer Science &amp; Business Media">Springer Science &amp; Business Media</a>. p.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/conciseencyclope00dodg/page/n8">1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780387317427" title="Special:BookSources/9780387317427"><bdi>9780387317427</bdi></a>. <q>The term algorithm comes from the Latin pronunciation of the name of the ninth century mathematician al-Khwarizmi, who lived in Baghdad and was the father of algebra.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Concise+Encyclopedia+of+Statistics&amp;rft.pages=1&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2008&amp;rft.isbn=9780387317427&amp;rft.aulast=Dodge&amp;rft.aufirst=Yadolah&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fconciseencyclope00dodg&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><b><a href="#cite_ref-109">^</a></b></span> <span class="reference-text">(<a href="#CITEREFDerbyshire2006">Derbyshire 2006</a>, "The Father of Algebra" p. 31) "Van der Waerden pushes the parentage of algebra to a point later in time, beginning with the mathematician al-Khwarizmi"</span> </li> <li id="cite_note-John_Derbyshire_For_Diophantus-110"><span class="mw-cite-backlink"><b><a href="#cite_ref-John_Derbyshire_For_Diophantus_110-0">^</a></b></span> <span class="reference-text">(<a href="#CITEREFDerbyshire2006">Derbyshire 2006</a>, "The Father of Algebra" p. 31) "Diophantus, the father of algebra, in whose honor I have named this chapter, lived in Alexandria, in Roman Egypt, in either the 1st, the 2nd, or the 3rd century CE."</span> </li> <li id="cite_note-111"><span class="mw-cite-backlink"><b><a href="#cite_ref-111">^</a></b></span> <span class="reference-text">J. Sesiano, K. Vogel, "Diophantus", <i><a href="/wiki/Dictionary_of_Scientific_Biography" title="Dictionary of Scientific Biography">Dictionary of Scientific Biography</a></i> (New York, 1970–1990), "Diophantus was not, as he has often been called, the father of algebra."</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><b><a href="#cite_ref-112">^</a></b></span> <span class="reference-text">(<a href="#CITEREFDerbyshire2006">Derbyshire 2006</a>, "The Father of Algebra" p. 31) "Kurt Vogel, for example, writing in the <i>Dictionary of Scientific Biography</i>, regards Diophantaus's work as not much more algebraic than that of the old Babylonians"</span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><b><a href="#cite_ref-113">^</a></b></span> <span class="reference-text">(<a href="#CITEREFBoyer1991">Boyer 1991</a>, "The Arabic Hegemony" p. 230) "The six cases of equations given above exhaust all possibilities for linear and quadratic equations having positive root. So systematic and exhaustive was al-Khwarizmi's exposition that his readers must have had little difficulty in mastering the solutions."</span> </li> <li id="cite_note-Katz2006-114"><span class="mw-cite-backlink"><b><a href="#cite_ref-Katz2006_114-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatz2006" class="citation journal cs1"><a href="/wiki/Victor_J._Katz" title="Victor J. Katz">Katz, Victor J.</a> (2006). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190327085930/https://eclass.uoa.gr/modules/document/file.php/MATH104/20010-11/HistoryOfAlgebra.pdf">"STAGES IN THE HISTORY OF ALGEBRA WITH IMPLICATIONS FOR TEACHING"</a> <span class="cs1-format">(PDF)</span>. <i>VICTOR J.KATZ, University of the District of Columbia Washington DC</i>: 190. Archived from <a rel="nofollow" class="external text" href="https://eclass.uoa.gr/modules/document/file.php/MATH104/20010-11/HistoryOfAlgebra.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2019-03-27<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-08-06</span></span> &#8211; via University of the District of Columbia Washington DC, USA. <q>The first true algebra text which is still extant is the work on al-jabr and al-muqabala by Mohammad ibn Musa al-Khwarizmi, written in Baghdad around 825.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=VICTOR+J.KATZ%2C+University+of+the+District+of+Columbia+Washington+DC&amp;rft.atitle=STAGES+IN+THE+HISTORY+OF+ALGEBRA+WITH+IMPLICATIONS+FOR+TEACHING&amp;rft.pages=190&amp;rft.date=2006&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rft_id=https%3A%2F%2Feclass.uoa.gr%2Fmodules%2Fdocument%2Ffile.php%2FMATH104%2F20010-11%2FHistoryOfAlgebra.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><b><a href="#cite_ref-115">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOaks2014" class="citation book cs1">Oaks, Jeffrey (2014). <i>The Oxford Encyclopedia of Islam and Philosophy, Science, and Technology</i>. p.&#160;458. <q>Judgments by historians that either downplay al-Khwārizmī's importance because of his lack of originality or force on him the title "inventor of the science of algebra" presuppose a modern, Western ideal of mathematical achievement that is not applicable to our ninth-century scholar. Al-Khwārizmī's fame in the Islamic world rests on his success in writing books that served a foundational role for practical study and for future scholarship.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Oxford+Encyclopedia+of+Islam+and+Philosophy%2C+Science%2C+and+Technology&amp;rft.pages=458&amp;rft.date=2014&amp;rft.aulast=Oaks&amp;rft.aufirst=Jeffrey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> <li id="cite_note-116"><span class="mw-cite-backlink"><b><a href="#cite_ref-116">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChristianidis2007" class="citation journal cs1">Christianidis, Jean (2007). "The way of Diophantus: Some clarifications on Diophantus' method of solution". <i>Historia Mathematica</i>. <b>34</b> (3): 303. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.hm.2006.10.003">10.1016/j.hm.2006.10.003</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Historia+Mathematica&amp;rft.atitle=The+way+of+Diophantus%3A+Some+clarifications+on+Diophantus%27+method+of+solution&amp;rft.volume=34&amp;rft.issue=3&amp;rft.pages=303&amp;rft.date=2007&amp;rft_id=info%3Adoi%2F10.1016%2Fj.hm.2006.10.003&amp;rft.aulast=Christianidis&amp;rft.aufirst=Jean&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=39" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlcalá1505" class="citation cs2">Alcalá, Pedro de (1505), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=Q8MOAAAAYAAJ&amp;q=editions:WIX_Q_xniSoC"><i>De lingua arabica</i></a>, Granada</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=De+lingua+arabica&amp;rft.place=Granada&amp;rft.date=1505&amp;rft.aulast=Alcal%C3%A1&amp;rft.aufirst=Pedro+de&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQ8MOAAAAYAAJ%26q%3Deditions%3AWIX_Q_xniSoC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span> Edition by Paul de Lagarde, Göttingen: Arnold Hoyer, 1883</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlonso1986" class="citation cs2 cs1-prop-interwiki-linked-name"><a href="https://es.wikipedia.org/wiki/Mart%C3%ADn_Alonso_Pedraz" class="extiw" title="es:Martín Alonso Pedraz">Alonso, Martín</a> <span class="cs1-format">[in Spanish]</span> (1986), <i>Diccionario del español medieval</i>, Salamanca: Universidad Pontificia de Salamanca</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Diccionario+del+espa%C3%B1ol+medieval&amp;rft.place=Salamanca&amp;rft.pub=Universidad+Pontificia+de+Salamanca&amp;rft.date=1986&amp;rft.aulast=Alonso&amp;rft.aufirst=Mart%C3%ADn&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAurel1552" class="citation cs2">Aurel, Marco (1552), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2qrrCWJQX2cC&amp;q=aurel+libro+primero"><i>Libro primero de arithmetica algebratica</i></a>, Valencia: Joan de Mey</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Libro+primero+de+arithmetica+algebratica&amp;rft.place=Valencia&amp;rft.pub=Joan+de+Mey&amp;rft.date=1552&amp;rft.aulast=Aurel&amp;rft.aufirst=Marco&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2qrrCWJQX2cC%26q%3Daurel%2Blibro%2Bprimero&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBashmakovaSmirnova2000" class="citation book cs1"><a href="/wiki/Isabella_Bashmakova" title="Isabella Bashmakova">Bashmakova, I</a>; Smirnova, G. (2000). <i>The Beginnings and Evolution of Algebra</i>. Dolciani Mathematical Expositions. Vol.&#160;23. Translated by Abe Shenitzer. The Mathematical Association of America.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Beginnings+and+Evolution+of+Algebra&amp;rft.series=Dolciani+Mathematical+Expositions&amp;rft.pub=The+Mathematical+Association+of+America&amp;rft.date=2000&amp;rft.aulast=Bashmakova&amp;rft.aufirst=I&amp;rft.au=Smirnova%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoyer1991" class="citation cs2"><a href="/wiki/Carl_Benjamin_Boyer" title="Carl Benjamin Boyer">Boyer, Carl B.</a> (1991), <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema00boye"><i>A History of Mathematics</i></a> (2nd&#160;ed.), John Wiley &amp; Sons, Inc., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-54397-8" title="Special:BookSources/978-0-471-54397-8"><bdi>978-0-471-54397-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematics&amp;rft.edition=2nd&amp;rft.pub=John+Wiley+%26+Sons%2C+Inc.&amp;rft.date=1991&amp;rft.isbn=978-0-471-54397-8&amp;rft.aulast=Boyer&amp;rft.aufirst=Carl+B.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema00boye&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurton1995" class="citation cs2">Burton, David M. (1995), <i>Burton's History of Mathematics: An Introduction</i> (3rd&#160;ed.), Dubuque: Wm. C. Brown</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Burton%27s+History+of+Mathematics%3A+An+Introduction&amp;rft.place=Dubuque&amp;rft.edition=3rd&amp;rft.pub=Wm.+C.+Brown&amp;rft.date=1995&amp;rft.aulast=Burton&amp;rft.aufirst=David+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBurton1997" class="citation cs2">Burton, David M. (1997), <i>The History of Mathematics: An Introduction</i> (3rd&#160;ed.), The McGraw-Hill Companies, Inc., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-07-009465-9" title="Special:BookSources/978-0-07-009465-9"><bdi>978-0-07-009465-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematics%3A+An+Introduction&amp;rft.edition=3rd&amp;rft.pub=The+McGraw-Hill+Companies%2C+Inc.&amp;rft.date=1997&amp;rft.isbn=978-0-07-009465-9&amp;rft.aulast=Burton&amp;rft.aufirst=David+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCajori1919" class="citation cs2"><a href="/wiki/Florian_Cajori" title="Florian Cajori">Cajori, Florian</a> (1919), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=X11LAAAAMAAJ&amp;q=webster+%22prevailingly+transcribed+as+xei.%22&amp;pg=PA698">"How x Came to Stand for Unknown Quantity"</a>, <i>School Science and Mathematics</i>, <b>19</b> (8): 698–699, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1949-8594.1919.tb07713.x">10.1111/j.1949-8594.1919.tb07713.x</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=School+Science+and+Mathematics&amp;rft.atitle=How+x+Came+to+Stand+for+Unknown+Quantity&amp;rft.volume=19&amp;rft.issue=8&amp;rft.pages=698-699&amp;rft.date=1919&amp;rft_id=info%3Adoi%2F10.1111%2Fj.1949-8594.1919.tb07713.x&amp;rft.aulast=Cajori&amp;rft.aufirst=Florian&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DX11LAAAAMAAJ%26q%3Dwebster%2B%2522prevailingly%2Btranscribed%2Bas%2Bxei.%2522%26pg%3DPA698&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCajori1928" class="citation cs2">Cajori, Florian (1928), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_byqAAAAQBAJ&amp;q=webster+x&amp;pg=PA380"><i>A History of Mathematical Notations</i></a>, Chicago: Open Court Publishing, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780486161167" title="Special:BookSources/9780486161167"><bdi>9780486161167</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Mathematical+Notations&amp;rft.place=Chicago&amp;rft.pub=Open+Court+Publishing&amp;rft.date=1928&amp;rft.isbn=9780486161167&amp;rft.aulast=Cajori&amp;rft.aufirst=Florian&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_byqAAAAQBAJ%26q%3Dwebster%2Bx%26pg%3DPA380&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCooke1997" class="citation cs2">Cooke, Roger (1997), <a rel="nofollow" class="external text" href="https://archive.org/details/historyofmathema0000cook"><i>The History of Mathematics: A Brief Course</i></a>, Wiley-Interscience, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-18082-1" title="Special:BookSources/978-0-471-18082-1"><bdi>978-0-471-18082-1</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+History+of+Mathematics%3A+A+Brief+Course&amp;rft.pub=Wiley-Interscience&amp;rft.date=1997&amp;rft.isbn=978-0-471-18082-1&amp;rft.aulast=Cooke&amp;rft.aufirst=Roger&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fhistoryofmathema0000cook&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDerbyshire2006" class="citation cs2"><a href="/wiki/John_Derbyshire" title="John Derbyshire">Derbyshire, John</a> (2006), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=mLqaAgAAQBAJ&amp;q=derbyshire+unknown+quantity"><i>Unknown Quantity: A Real And Imaginary History of Algebra</i></a>, Washington, DC: Joseph Henry Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-309-09657-7" title="Special:BookSources/978-0-309-09657-7"><bdi>978-0-309-09657-7</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Unknown+Quantity%3A+A+Real+And+Imaginary+History+of+Algebra&amp;rft.place=Washington%2C+DC&amp;rft.pub=Joseph+Henry+Press&amp;rft.date=2006&amp;rft.isbn=978-0-309-09657-7&amp;rft.aulast=Derbyshire&amp;rft.aufirst=John&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DmLqaAgAAQBAJ%26q%3Dderbyshire%2Bunknown%2Bquantity&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDescartes1637" class="citation cs2"><a href="/wiki/Ren%C3%A9_Descartes" title="René Descartes">Descartes, René</a> (1637), <a rel="nofollow" class="external text" href="http://www.gutenberg.org/ebooks/26400"><i>La Géométrie</i></a>, Leyde: Ian Maire. Online 2008 ed. by L. Hermann, Project Gutenberg.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=La+G%C3%A9om%C3%A9trie&amp;rft.place=Leyde&amp;rft.pub=Ian+Maire.+Online+2008+ed.+by+L.+Hermann%2C+Project+Gutenberg.&amp;rft.date=1637&amp;rft.aulast=Descartes&amp;rft.aufirst=Ren%C3%A9&amp;rft_id=http%3A%2F%2Fwww.gutenberg.org%2Febooks%2F26400&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDescartes1925" class="citation cs2">Descartes, René (1925), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=3CQQh9fWLQgC&amp;q=geometry+descartes+latham+1925"><i>The Geometry of René Descartes</i></a>, Chicago: Open Court, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781602066922" title="Special:BookSources/9781602066922"><bdi>9781602066922</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Ren%C3%A9+Descartes&amp;rft.place=Chicago&amp;rft.pub=Open+Court&amp;rft.date=1925&amp;rft.isbn=9781602066922&amp;rft.aulast=Descartes&amp;rft.aufirst=Ren%C3%A9&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D3CQQh9fWLQgC%26q%3Dgeometry%2Bdescartes%2Blatham%2B1925&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDíez1556" class="citation cs2">Díez, Juan (1556), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=dNxLAAAAMAAJ&amp;q=D%C3%ADez,+Juan+%281556%29.+Sumario+compendioso&amp;pg=PA5"><i>Sumario compendioso de las quentas de plata y oro que en los reynos del Piru son necessarias a los mercaderes: y todo genero de tratantes, con algunas reglas tocantes al arithmetica</i></a>, Mexico City</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Sumario+compendioso+de+las+quentas+de+plata+y+oro+que+en+los+reynos+del+Piru+son+necessarias+a+los+mercaderes%3A+y+todo+genero+de+tratantes%2C+con+algunas+reglas+tocantes+al+arithmetica&amp;rft.place=Mexico+City&amp;rft.date=1556&amp;rft.aulast=D%C3%ADez&amp;rft.aufirst=Juan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdNxLAAAAMAAJ%26q%3DD%25C3%25ADez%2C%2BJuan%2B%25281556%2529.%2BSumario%2Bcompendioso%26pg%3DPA5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEneström1905" class="citation cs2"><a href="/wiki/Gustaf_Enestr%C3%B6m" title="Gustaf Eneström">Eneström, Gustaf</a> (1905), <a rel="nofollow" class="external text" href="http://babel.hathitrust.org/cgi/pt?id=hvd.32044102937273;view=1up;seq=341">"Kleine Mitteilungen"</a>, <i>Bibliotheca Mathematica</i>, Ser. 3, <b>6</b></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bibliotheca+Mathematica&amp;rft.atitle=Kleine+Mitteilungen&amp;rft.volume=6&amp;rft.date=1905&amp;rft.aulast=Enestr%C3%B6m&amp;rft.aufirst=Gustaf&amp;rft_id=http%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Dhvd.32044102937273%3Bview%3D1up%3Bseq%3D341&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span> (online access only in U.S.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlegg1983" class="citation cs2">Flegg, Graham (1983), <i>Numbers: Their History and Meaning</i>, Dover publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-42165-0" title="Special:BookSources/978-0-486-42165-0"><bdi>978-0-486-42165-0</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Numbers%3A+Their+History+and+Meaning&amp;rft.pub=Dover+publications&amp;rft.date=1983&amp;rft.isbn=978-0-486-42165-0&amp;rft.aulast=Flegg&amp;rft.aufirst=Graham&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeath1981a" class="citation cs2"><a href="/wiki/T._L._Heath" class="mw-redirect" title="T. L. Heath">Heath, Thomas Little</a> (1981a), <i><a href="/wiki/A_History_of_Greek_Mathematics" title="A History of Greek Mathematics">A History of Greek Mathematics</a>, Volume I</i>, Dover publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-24073-2" title="Special:BookSources/978-0-486-24073-2"><bdi>978-0-486-24073-2</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Greek+Mathematics%2C+Volume+I&amp;rft.pub=Dover+publications&amp;rft.date=1981&amp;rft.isbn=978-0-486-24073-2&amp;rft.aulast=Heath&amp;rft.aufirst=Thomas+Little&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeath1981b" class="citation cs2"><a href="/wiki/T._L._Heath" class="mw-redirect" title="T. L. Heath">Heath, Thomas Little</a> (1981b), <i><a href="/wiki/A_History_of_Greek_Mathematics" title="A History of Greek Mathematics">A History of Greek Mathematics</a>, Volume II</i>, Dover publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-24074-9" title="Special:BookSources/978-0-486-24074-9"><bdi>978-0-486-24074-9</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+History+of+Greek+Mathematics%2C+Volume+II&amp;rft.pub=Dover+publications&amp;rft.date=1981&amp;rft.isbn=978-0-486-24074-9&amp;rft.aulast=Heath&amp;rft.aufirst=Thomas+Little&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacob1903" class="citation cs2">Jacob, Georg (1903), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=6j8WAAAAYAAJ&amp;q=Lagarde+xei+unknown&amp;pg=PA519">"Oriental Elements of Culture in the Occident"</a>, <i>Annual Report of the Board of Regents of the Smithsonian Institution [...] for the Year Ending June 30, 1902</i>: 509–529</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annual+Report+of+the+Board+of+Regents+of+the+Smithsonian+Institution+%5B...%5D+for+the+Year+Ending+June+30%2C+1902&amp;rft.atitle=Oriental+Elements+of+Culture+in+the+Occident&amp;rft.pages=509-529&amp;rft.date=1903&amp;rft.aulast=Jacob&amp;rft.aufirst=Georg&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D6j8WAAAAYAAJ%26q%3DLagarde%2Bxei%2Bunknown%26pg%3DPA519&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKastenCody2001" class="citation cs2"><a href="/wiki/Lloyd_Kasten" title="Lloyd Kasten">Kasten, Lloyd A.</a>; Cody, Florian J. (2001), <i>Tentative Dictionary of Medieval Spanish</i> (2nd&#160;ed.), New York: Hispanic Seminary of Medieval Studies</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tentative+Dictionary+of+Medieval+Spanish&amp;rft.place=New+York&amp;rft.edition=2nd&amp;rft.pub=Hispanic+Seminary+of+Medieval+Studies&amp;rft.date=2001&amp;rft.aulast=Kasten&amp;rft.aufirst=Lloyd+A.&amp;rft.au=Cody%2C+Florian+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKatzParshall2014" class="citation cs2">Katz, Victor J.; <a href="/wiki/Karen_Parshall" title="Karen Parshall">Parshall, Karen Hunger</a> (2014), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=nQLHAgAAQBAJ&amp;q=katz+parshall+taming+unknown"><i>Taming the Unknown: A History of Algebra from Antiquity to the Early Twentieth Century</i></a>, Princeton, NJ: Princeton University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-400-85052-5" title="Special:BookSources/978-1-400-85052-5"><bdi>978-1-400-85052-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Taming+the+Unknown%3A+A+History+of+Algebra+from+Antiquity+to+the+Early+Twentieth+Century&amp;rft.place=Princeton%2C+NJ&amp;rft.pub=Princeton+University+Press&amp;rft.date=2014&amp;rft.isbn=978-1-400-85052-5&amp;rft.aulast=Katz&amp;rft.aufirst=Victor+J.&amp;rft.au=Parshall%2C+Karen+Hunger&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DnQLHAgAAQBAJ%26q%3Dkatz%2Bparshall%2Btaming%2Bunknown&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLagarde1884" class="citation cs2"><a href="/wiki/Paul_de_Lagarde" title="Paul de Lagarde">Lagarde, Paul de</a> (1884), <a rel="nofollow" class="external text" href="http://babel.hathitrust.org/cgi/pt?id=nyp.33433081851275;view=1up;seq=142">"Woher stammt das x der Mathematiker?"</a>, <i>Mittheilungen</i>, vol.&#160;1, Goettingen: Dieterichsche Sortimentsbuchhandlung, pp.&#160;134–137</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Woher+stammt+das+x+der+Mathematiker%3F&amp;rft.btitle=Mittheilungen&amp;rft.place=Goettingen&amp;rft.pages=134-137&amp;rft.pub=Dieterichsche+Sortimentsbuchhandlung&amp;rft.date=1884&amp;rft.aulast=Lagarde&amp;rft.aufirst=Paul+de&amp;rft_id=http%3A%2F%2Fbabel.hathitrust.org%2Fcgi%2Fpt%3Fid%3Dnyp.33433081851275%3Bview%3D1up%3Bseq%3D142&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNunes1567" class="citation cs2"><a href="/wiki/Pedro_Nunes" title="Pedro Nunes">Nunes, Pedro</a> (1567), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=bojTKw9c9pMC&amp;q=Nunes,+Pedro+%281567%29.+Libro+de+algebra"><i>Libro de algebra en arithmetica y geometria</i></a>, Antwerp: Arnoldo Birckman</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Libro+de+algebra+en+arithmetica+y+geometria&amp;rft.place=Antwerp&amp;rft.pub=Arnoldo+Birckman&amp;rft.date=1567&amp;rft.aulast=Nunes&amp;rft.aufirst=Pedro&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DbojTKw9c9pMC%26q%3DNunes%2C%2BPedro%2B%25281567%2529.%2BLibro%2Bde%2Balgebra&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOelschläger1940" class="citation cs2">Oelschläger, Victor R. B. (1940), <i>A Medieval Spanish Word-List</i>, Madison: University of Wisconsin Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Medieval+Spanish+Word-List&amp;rft.place=Madison&amp;rft.pub=University+of+Wisconsin+Press&amp;rft.date=1940&amp;rft.aulast=Oelschl%C3%A4ger&amp;rft.aufirst=Victor+R.+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOrtega1552" class="citation cs2">Ortega, Juan de (1552), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=RwN81o8SrysC&amp;q=Ortega,+Juan+de+%281552%29.+Tractado+subtilissimo"><i>Tractado subtilissimo de arismetica y geometria</i></a>, Granada: René Rabut</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tractado+subtilissimo+de+arismetica+y+geometria&amp;rft.place=Granada&amp;rft.pub=Ren%C3%A9+Rabut&amp;rft.date=1552&amp;rft.aulast=Ortega&amp;rft.aufirst=Juan+de&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DRwN81o8SrysC%26q%3DOrtega%2C%2BJuan%2Bde%2B%25281552%2529.%2BTractado%2Bsubtilissimo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPérez_de_Moya1562" class="citation cs2 cs1-prop-interwiki-linked-name"><a href="https://es.wikipedia.org/wiki/Juan_P%C3%A9rez_de_Moya" class="extiw" title="es:Juan Pérez de Moya">Pérez de Moya, Juan</a> <span class="cs1-format">[in Spanish]</span> (1562), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=qDwT_2T_o7MC&amp;q=P%C3%A9rez+de+Moya+aritmetica"><i>Aritmética práctica y especulativa</i></a>, Salamanca: Mathias Gast</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Aritm%C3%A9tica+pr%C3%A1ctica+y+especulativa&amp;rft.place=Salamanca&amp;rft.pub=Mathias+Gast&amp;rft.date=1562&amp;rft.aulast=P%C3%A9rez+de+Moya&amp;rft.aufirst=Juan&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DqDwT_2T_o7MC%26q%3DP%25C3%25A9rez%2Bde%2BMoya%2Baritmetica&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPuig1672" class="citation cs2">Puig, Andrés (1672), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=xGjVFzQ9dBYC&amp;q=puig+arithmetica+especulativa"><i>Arithmetica especulativa y practica; y arte de algebra</i></a>, Barcelona: Antonio Lacavalleria</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Arithmetica+especulativa+y+practica%3B+y+arte+de+algebra&amp;rft.place=Barcelona&amp;rft.pub=Antonio+Lacavalleria&amp;rft.date=1672&amp;rft.aulast=Puig&amp;rft.aufirst=Andr%C3%A9s&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DxGjVFzQ9dBYC%26q%3Dpuig%2Barithmetica%2Bespeculativa&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRider1982" class="citation cs2">Rider, Robin E. (1982), <i>A Bibliography of Early Modern Algebra, 1500–1800</i>, Berkeley: Berkeley Papers in History of Science</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Bibliography+of+Early+Modern+Algebra%2C+1500%E2%80%931800&amp;rft.place=Berkeley&amp;rft.pub=Berkeley+Papers+in+History+of+Science&amp;rft.date=1982&amp;rft.aulast=Rider&amp;rft.aufirst=Robin+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSesiano1999" class="citation cs2">Sesiano, Jacques (1999), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=zYONAwAAQBAJ&amp;q=Sesiano,+Jacques+%281999%29.+An+Introduction&amp;pg=PR4"><i>An Introduction to the History of Algebra: Solving Equations from Mesopotamian Times to the Renaissance</i></a>, Providence, RI: American Mathematical Society, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780821844731" title="Special:BookSources/9780821844731"><bdi>9780821844731</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+Introduction+to+the+History+of+Algebra%3A+Solving+Equations+from+Mesopotamian+Times+to+the+Renaissance&amp;rft.place=Providence%2C+RI&amp;rft.pub=American+Mathematical+Society&amp;rft.date=1999&amp;rft.isbn=9780821844731&amp;rft.aulast=Sesiano&amp;rft.aufirst=Jacques&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DzYONAwAAQBAJ%26q%3DSesiano%2C%2BJacques%2B%25281999%2529.%2BAn%2BIntroduction%26pg%3DPR4&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStillwell2004" class="citation cs2"><a href="/wiki/John_Stillwell" title="John Stillwell">Stillwell, John</a> (2004), <i>Mathematics and its History</i> (2nd&#160;ed.), Springer Science + Business Media Inc., <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-95336-6" title="Special:BookSources/978-0-387-95336-6"><bdi>978-0-387-95336-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematics+and+its+History&amp;rft.edition=2nd&amp;rft.pub=Springer+Science+%2B+Business+Media+Inc.&amp;rft.date=2004&amp;rft.isbn=978-0-387-95336-6&amp;rft.aulast=Stillwell&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSwetz2013" class="citation cs2">Swetz, Frank J. (2013), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2x4bIdTkcEAC&amp;q=Swetz,+Frank+J.,+ed.+(2013).%C2%A0%C2%A0The+European+Mathematical+Awakening"><i>The European Mathematical Awakening: A Journey Through the History of Mathematics, 1000–1800</i></a> (2nd&#160;ed.), Mineola, NY: Dover Publications, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780486498058" title="Special:BookSources/9780486498058"><bdi>9780486498058</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+European+Mathematical+Awakening%3A+A+Journey+Through+the+History+of+Mathematics%2C+1000%E2%80%931800&amp;rft.place=Mineola%2C+NY&amp;rft.edition=2nd&amp;rft.pub=Dover+Publications&amp;rft.date=2013&amp;rft.isbn=9780486498058&amp;rft.aulast=Swetz&amp;rft.aufirst=Frank+J.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2x4bIdTkcEAC%26q%3DSwetz%2C%2BFrank%2BJ.%2C%2Bed.%2B%282013%29.%25C2%25A0%25C2%25A0The%2BEuropean%2BMathematical%2BAwakening&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTropfke1902" class="citation cs2"><a href="/wiki/Johannes_Tropfke" title="Johannes Tropfke">Tropfke, Johannes</a> (1902), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=4zJRAAAAYAAJ&amp;q=Tropfke+in+Geschichte+der+Elementar-Mathematik"><i>Geschichte der Elementar-Mathematik in systematischer Darstellung</i></a>, vol.&#160;1, Leipzig: Von Veit &amp; Comp.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Geschichte+der+Elementar-Mathematik+in+systematischer+Darstellung&amp;rft.place=Leipzig&amp;rft.pub=Von+Veit+%26+Comp.&amp;rft.date=1902&amp;rft.aulast=Tropfke&amp;rft.aufirst=Johannes&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D4zJRAAAAYAAJ%26q%3DTropfke%2Bin%2BGeschichte%2Bder%2BElementar-Mathematik&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AHistory+of+algebra" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=History_of_algebra&amp;action=edit&amp;section=40" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/34px-Wikiquote-logo.svg.png" decoding="async" width="34" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/51px-Wikiquote-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fa/Wikiquote-logo.svg/68px-Wikiquote-logo.svg.png 2x" data-file-width="300" data-file-height="355" /></span></span></div> <div class="side-box-text plainlist">Wikiquote has quotations related to <i><b><a href="https://en.wikiquote.org/wiki/Special:Search/History_of_algebra" class="extiw" title="q:Special:Search/History of algebra">History of algebra</a></b></i>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="http://www.wdl.org/en/item/3202">"Commentary by Islam's Sheikh Zakariyya al-Ansari on Ibn al-Hā’im's Poem on the Science of Algebra and Balancing Called the Creator's Epiphany in Explaining the Cogent"</a> featuring the basic concepts of algebra dating back to the 15th century, from the <a href="/wiki/World_Digital_Library" title="World Digital Library">World Digital Library</a>.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Algebra" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Algebra" title="Template:Algebra"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Algebra" title="Template talk:Algebra"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Algebra" title="Special:EditPage/Template:Algebra"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Algebra" style="font-size:114%;margin:0 4em"><a href="/wiki/Algebra" title="Algebra">Algebra</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Outline_of_algebra" title="Outline of algebra">Outline</a></li> <li><a class="mw-selflink selflink">History</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Areas</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_algebra" title="Abstract algebra">Abstract algebra</a></li> <li><a href="/wiki/Algebraic_geometry" title="Algebraic geometry">Algebraic geometry</a> <ul><li><a href="/wiki/Algebraic_variety" title="Algebraic variety">Algebraic variety</a></li> <li><a href="/wiki/Scheme_(mathematics)" title="Scheme (mathematics)">Scheme</a></li></ul></li> <li><a href="/wiki/Algebraic_number_theory" title="Algebraic number theory">Algebraic number theory</a></li> <li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Commutative_algebra" title="Commutative algebra">Commutative algebra</a></li> <li><a href="/wiki/Elementary_algebra" title="Elementary algebra">Elementary algebra</a></li> <li><a href="/wiki/Homological_algebra" title="Homological algebra">Homological algebra</a></li> <li><a href="/wiki/K-theory" title="K-theory">K-theory</a></li> <li><a href="/wiki/Linear_algebra" title="Linear algebra">Linear algebra</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Noncommutative_algebra" class="mw-redirect" title="Noncommutative algebra">Noncommutative algebra</a></li> <li><a href="/wiki/Order_theory" title="Order theory">Order theory</a></li> <li><a href="/wiki/Representation_theory" title="Representation theory">Representation theory</a></li> <li><a href="/wiki/Universal_algebra" title="Universal algebra">Universal algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Algebraic_expression" title="Algebraic expression">Algebraic expression</a></li> <li><a href="/wiki/Equation" title="Equation">Equation</a> (<a href="/wiki/Linear_equation" title="Linear equation">Linear equation</a>, <a href="/wiki/Quadratic_equation" title="Quadratic equation">Quadratic equation</a>)</li> <li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a> (<a href="/wiki/Polynomial_function" class="mw-redirect" title="Polynomial function">Polynomial function</a>)</li> <li><a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">Inequality</a> (<a href="/wiki/Linear_inequality" title="Linear inequality">Linear inequality</a>)</li> <li><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operation</a> (<a href="/wiki/Addition" title="Addition">Addition</a>, <a href="/wiki/Multiplication" title="Multiplication">Multiplication</a>)</li> <li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> (<a href="/wiki/Equivalence_relation" title="Equivalence relation">Equivalence relation</a>)</li> <li><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">Variable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebraic structures</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Field_(mathematics)" title="Field (mathematics)">Field</a>&#160;(<a href="/wiki/Field_theory_(mathematics)" class="mw-redirect" title="Field theory (mathematics)">theory</a>)</li> <li><a href="/wiki/Group_(mathematics)" title="Group (mathematics)">Group</a>&#160;(<a href="/wiki/Group_theory" title="Group theory">theory</a>)</li> <li><a href="/wiki/Module_(mathematics)" title="Module (mathematics)">Module</a>&#160;(<a href="/wiki/Commutative_algebra" title="Commutative algebra">theory</a>)</li> <li><a href="/wiki/Ring_(mathematics)" title="Ring (mathematics)">Ring</a>&#160;(<a href="/wiki/Ring_theory" title="Ring theory">theory</a>)</li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a>&#160;(<a href="/wiki/Coordinate_vector" title="Coordinate vector">Vector</a>)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Linear and <br />multilinear algebra</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Determinant" title="Determinant">Determinant</a></li> <li><a href="/wiki/Eigenvalues_and_eigenvectors" title="Eigenvalues and eigenvectors">Eigenvalues and eigenvectors</a></li> <li><a href="/wiki/Inner_product_space" title="Inner product space">Inner product space</a> (<a href="/wiki/Dot_product" title="Dot product">Dot product</a>)</li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a> (<a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a>)</li> <li><a href="/wiki/Linear_subspace" title="Linear subspace">Linear subspace</a> (<a href="/wiki/Affine_space" title="Affine space">Affine space</a>)</li> <li><a href="/wiki/Norm_(mathematics)" title="Norm (mathematics)">Norm</a> (<a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">Euclidean norm</a>)</li> <li><a href="/wiki/Orthogonality" title="Orthogonality">Orthogonality</a> (<a href="/wiki/Orthogonal_complement" title="Orthogonal complement">Orthogonal complement</a>)</li> <li><a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">Rank</a></li> <li><a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">Trace</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Algebraic constructions</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Composition_algebra" title="Composition algebra">Composition algebra</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Free_object" title="Free object">Free object</a> (<a href="/wiki/Free_group" title="Free group">Free group</a>, ...)</li> <li><a href="/wiki/Geometric_algebra" title="Geometric algebra">Geometric algebra</a>&#160;(<a href="/wiki/Multivector" title="Multivector">Multivector</a>)</li> <li><a href="/wiki/Polynomial_ring" title="Polynomial ring">Polynomial ring</a>&#160;(<a href="/wiki/Polynomial" title="Polynomial">Polynomial</a>)</li> <li><a href="/wiki/Quotient_object" class="mw-redirect" title="Quotient object">Quotient object</a> (<a href="/wiki/Quotient_group" title="Quotient group">Quotient group</a>, ...)</li> <li><a href="/wiki/Symmetric_algebra" title="Symmetric algebra">Symmetric algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Topic lists</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Category:Algebraic_structures" title="Category:Algebraic structures">Algebraic structures</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Glossaries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Glossary_of_field_theory" title="Glossary of field theory">Field theory</a></li> <li><a href="/wiki/Glossary_of_linear_algebra" title="Glossary of linear algebra">Linear algebra</a></li> <li><a href="/wiki/Glossary_of_order_theory" title="Glossary of order theory">Order theory</a></li> <li><a href="/wiki/Glossary_of_ring_theory" title="Glossary of ring theory">Ring theory</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Algebra" title="Category:Algebra">Category</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="History_of_science" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_science" title="Template:History of science"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_science" class="mw-redirect" title="Template talk:History of science"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_science" title="Special:EditPage/Template:History of science"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="History_of_science" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_science" title="History of science">History of science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Background</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sociology_of_the_history_of_science" title="Sociology of the history of science">Theories and sociology</a></li> <li><a href="/wiki/Historiography_of_science" title="Historiography of science">Historiography</a></li> <li><a href="/wiki/History_of_pseudoscience" title="History of pseudoscience">Pseudoscience</a></li> <li><a href="/wiki/History_and_philosophy_of_science" title="History and philosophy of science">History and philosophy of science</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="8" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg/80px-Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg" decoding="async" width="80" height="118" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg/120px-Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e5/Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg/160px-Johannes-kepler-tabulae-rudolphinae-google-arts-culture.jpg 2x" data-file-width="3992" data-file-height="5880" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By era</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Science_in_the_ancient_world" title="Science in the ancient world">Ancient world</a></li> <li><a href="/wiki/Science_in_classical_antiquity" title="Science in classical antiquity">Classical Antiquity</a></li> <li><a href="/wiki/European_science_in_the_Middle_Ages" title="European science in the Middle Ages">Medieval European</a></li> <li><a href="/wiki/History_of_science_in_the_Renaissance" class="mw-redirect" title="History of science in the Renaissance">Renaissance</a></li> <li><a href="/wiki/Scientific_Revolution" title="Scientific Revolution">Scientific Revolution</a></li> <li><a href="/wiki/Science_in_the_Age_of_Enlightenment" title="Science in the Age of Enlightenment">Age of Enlightenment</a></li> <li><a href="/wiki/Romanticism_in_science" title="Romanticism in science">Romanticism</a></li> <li><a href="/wiki/19th_century_in_science" title="19th century in science">19th century in science</a></li> <li><a href="/wiki/20th_century_in_science" title="20th century in science">20th century in science</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By culture</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_science_and_technology_in_Africa" title="History of science and technology in Africa">African</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Argentina" title="History of science and technology in Argentina">Argentine</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Brazil" class="mw-redirect" title="History of science and technology in Brazil">Brazilian</a></li> <li><a href="/wiki/Byzantine_science" title="Byzantine science">Byzantine</a></li> <li><a href="/wiki/History_of_science_and_technology_in_France" class="mw-redirect" title="History of science and technology in France">French</a></li> <li><a href="/wiki/History_of_science_and_technology_in_China" title="History of science and technology in China">Chinese</a></li> <li><a href="/wiki/History_of_science_and_technology_in_the_Indian_subcontinent" class="mw-redirect" title="History of science and technology in the Indian subcontinent">Indian</a></li> <li><a href="/wiki/Science_in_the_medieval_Islamic_world" title="Science in the medieval Islamic world">Medieval Islamic</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Japan" title="History of science and technology in Japan">Japanese</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Korea" title="History of science and technology in Korea">Korean</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Mexico" title="History of science and technology in Mexico">Mexican</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Russia" class="mw-redirect" title="History of science and technology in Russia">Russian</a></li> <li><a href="/wiki/History_of_science_and_technology_in_Spain" title="History of science and technology in Spain">Spanish</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_natural_science" class="mw-redirect" title="History of natural science">Natural sciences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_astronomy" title="History of astronomy">Astronomy</a></li> <li><a href="/wiki/History_of_biology" title="History of biology">Biology</a></li> <li><a href="/wiki/History_of_chemistry" title="History of chemistry">Chemistry</a></li> <li><a href="/wiki/Outline_of_Earth_sciences#History_of_Earth_science" title="Outline of Earth sciences">Earth science</a></li> <li><a href="/wiki/History_of_physics" title="History of physics">Physics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_mathematics" title="History of mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Algebra</a></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">Calculus</a></li> <li><a href="/wiki/History_of_combinatorics" title="History of combinatorics">Combinatorics</a></li> <li><a href="/wiki/History_of_geometry" title="History of geometry">Geometry</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">Logic</a></li> <li><a href="/wiki/History_of_probability" title="History of probability">Probability</a></li> <li><a href="/wiki/History_of_statistics" title="History of statistics">Statistics</a></li> <li><a href="/wiki/History_of_trigonometry" title="History of trigonometry">Trigonometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_the_social_sciences" title="History of the social sciences">Social sciences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_anthropology" title="History of anthropology">Anthropology</a></li> <li><a href="/wiki/History_of_archaeology" title="History of archaeology">Archaeology</a></li> <li><a href="/wiki/History_of_economic_thought" title="History of economic thought">Economics</a></li> <li><a href="/wiki/History" title="History">History</a></li> <li><a href="/wiki/History_of_political_science" title="History of political science">Political science</a></li> <li><a href="/wiki/History_of_psychology" title="History of psychology">Psychology</a></li> <li><a href="/wiki/History_of_sociology" title="History of sociology">Sociology</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_technology" title="History of technology">Technology</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_agricultural_science" title="History of agricultural science">Agricultural science</a></li> <li><a href="/wiki/History_of_computer_science" title="History of computer science">Computer science</a></li> <li><a href="/wiki/History_of_materials_science" title="History of materials science">Materials science</a></li> <li><a href="/wiki/History_of_engineering" title="History of engineering">Engineering</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_medicine" title="History of medicine">Medicine</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/History_of_medicine" title="History of medicine">Human medicine</a></li> <li><a href="/wiki/History_of_veterinary_medicine" class="mw-redirect" title="History of veterinary medicine">Veterinary medicine</a></li> <li><a href="/wiki/History_of_anatomy" title="History of anatomy">Anatomy</a></li> <li><a href="/wiki/History_of_neuroscience" title="History of neuroscience">Neuroscience</a></li> <li><a href="/wiki/History_of_neurology_and_neurosurgery" title="History of neurology and neurosurgery">Neurology and neurosurgery </a></li> <li><a href="/wiki/History_of_nutrition" class="mw-redirect" title="History of nutrition">Nutrition</a></li> <li><a href="/wiki/History_of_pathology" title="History of pathology">Pathology</a></li> <li><a href="/wiki/History_of_pharmacy" title="History of pharmacy">Pharmacy</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="3" style="margin-right:0.5em; padding:0.1em 0 0.4em;line-height:1.7em;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/List_of_timelines#Science" title="List of timelines">Timelines</a></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <a href="/wiki/Portal:History_of_science" title="Portal:History of science">Portal</a></span></li> <li><span class="nowrap"><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_science" title="Category:History of science">Category</a></span></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="History_of_mathematics_(timeline)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:History_of_mathematics" title="Template:History of mathematics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:History_of_mathematics" title="Template talk:History of mathematics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:History_of_mathematics" title="Special:EditPage/Template:History of mathematics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="History_of_mathematics_(timeline)" style="font-size:114%;margin:0 4em"><a href="/wiki/History_of_mathematics" title="History of mathematics">History of mathematics</a> (<a href="/wiki/Timeline_of_mathematics" title="Timeline of mathematics">timeline</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">By topic</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Algebra</a> <ul><li><a href="/wiki/Timeline_of_algebra" title="Timeline of algebra">timeline</a></li></ul></li> <li>Algorithms <ul><li><a href="/wiki/Timeline_of_algorithms" title="Timeline of algorithms">timeline</a></li></ul></li> <li><a href="/wiki/History_of_arithmetic" class="mw-redirect" title="History of arithmetic">Arithmetic</a> <ul><li><a href="/wiki/Timeline_of_numerals_and_arithmetic" title="Timeline of numerals and arithmetic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_calculus" title="History of calculus">Calculus</a> <ul><li><a href="/wiki/Timeline_of_calculus_and_mathematical_analysis" title="Timeline of calculus and mathematical analysis">timeline</a></li> <li><a href="/wiki/History_of_Grandi%27s_series" title="History of Grandi&#39;s series">Grandi's series</a></li></ul></li> <li>Category theory <ul><li><a href="/wiki/Timeline_of_category_theory_and_related_mathematics" title="Timeline of category theory and related mathematics">timeline</a></li> <li><a href="/wiki/History_of_topos_theory" title="History of topos theory">Topos theory</a></li></ul></li> <li><a href="/wiki/History_of_combinatorics" title="History of combinatorics">Combinatorics</a></li> <li><a href="/wiki/History_of_the_function_concept" title="History of the function concept">Functions</a> <ul><li><a href="/wiki/History_of_logarithms" title="History of logarithms">Logarithms</a></li></ul></li> <li><a href="/wiki/History_of_geometry" title="History of geometry">Geometry</a> <ul><li><a href="/wiki/History_of_trigonometry" title="History of trigonometry">Trigonometry</a></li> <li><a href="/wiki/Timeline_of_geometry" title="Timeline of geometry">timeline</a></li></ul></li> <li><a href="/wiki/History_of_group_theory" title="History of group theory">Group theory</a></li> <li><a href="/wiki/History_of_information_theory" title="History of information theory">Information theory</a> <ul><li><a href="/wiki/Timeline_of_information_theory" title="Timeline of information theory">timeline</a></li></ul></li> <li><a href="/wiki/History_of_logic" title="History of logic">Logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/History_of_mathematical_notation" title="History of mathematical notation">Math notation</a></li> <li>Number theory <ul><li><a href="/wiki/Timeline_of_number_theory" title="Timeline of number theory">timeline</a></li></ul></li> <li><a href="/wiki/History_of_statistics" title="History of statistics">Statistics</a> <ul><li><a href="/wiki/Timeline_of_probability_and_statistics" title="Timeline of probability and statistics">timeline</a></li> <li><a href="/wiki/History_of_probability" title="History of probability">Probability</a></li></ul></li> <li>Topology <ul><li><a href="/wiki/History_of_manifolds_and_varieties" title="History of manifolds and varieties">Manifolds</a> <ul><li><a href="/wiki/Timeline_of_manifolds" title="Timeline of manifolds">timeline</a></li></ul></li> <li><a href="/wiki/History_of_the_separation_axioms" title="History of the separation axioms">Separation axioms</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Numeral systems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Prehistoric_counting" title="Prehistoric counting">Prehistoric</a></li> <li><a href="/wiki/History_of_ancient_numeral_systems" title="History of ancient numeral systems">Ancient</a></li> <li><a href="/wiki/History_of_the_Hindu%E2%80%93Arabic_numeral_system" title="History of the Hindu–Arabic numeral system">Hindu-Arabic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By ancient cultures</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Babylonian_mathematics" title="Babylonian mathematics">Mesopotamia</a></li> <li><a href="/wiki/Ancient_Egyptian_mathematics" title="Ancient Egyptian mathematics">Ancient Egypt</a></li> <li><a href="/wiki/Greek_mathematics" title="Greek mathematics">Ancient Greece</a></li> <li><a href="/wiki/Chinese_mathematics" title="Chinese mathematics">China</a></li> <li><a href="/wiki/Indian_mathematics" title="Indian mathematics">India</a></li> <li><a href="/wiki/Mathematics_in_the_medieval_Islamic_world" title="Mathematics in the medieval Islamic world">Medieval Islamic world</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Controversies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Brouwer%E2%80%93Hilbert_controversy" title="Brouwer–Hilbert controversy">Brouwer–Hilbert</a></li> <li><a href="/wiki/Controversy_over_Cantor%27s_theory" title="Controversy over Cantor&#39;s theory">Over Cantor's theory</a></li> <li><a href="/wiki/Leibniz%E2%80%93Newton_calculus_controversy" title="Leibniz–Newton calculus controversy">Leibniz–Newton</a></li> <li><a href="/wiki/Hobbes%E2%80%93Wallis_controversy" title="Hobbes–Wallis controversy">Hobbes–Wallis</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Women in mathematics <ul><li><a href="/wiki/Timeline_of_women_in_mathematics" title="Timeline of women in mathematics">timeline</a></li></ul></li> <li><a href="/wiki/Approximations_of_%CF%80" title="Approximations of π">Approximations of π</a> <ul><li><a href="/wiki/Chronology_of_computation_of_%CF%80" title="Chronology of computation of π">timeline</a></li></ul></li> <li><a href="/wiki/Future_of_mathematics" title="Future of mathematics">Future of mathematics</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:History_of_mathematics" title="Category:History of mathematics">Category</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c59558b9d‐kqnj8 Cached time: 20241129174216 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.933 seconds Real time usage: 2.486 seconds Preprocessor visited node count: 9355/1000000 Post‐expand include size: 199897/2097152 bytes Template argument size: 4215/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 20/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 321140/5000000 bytes Lua time usage: 1.070/10.000 seconds Lua memory usage: 17757852/52428800 bytes Lua Profile: ? 240 ms 21.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 240 ms 21.8% dataWrapper <mw.lua:672> 100 ms 9.1% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::find 60 ms 5.5% type 60 ms 5.5% <mw.lua:694> 40 ms 3.6% recursiveClone <mwInit.lua:45> 40 ms 3.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::gsub 40 ms 3.6% is_alias_used <Module:Citation/CS1/Utilities:275> 20 ms 1.8% sub 20 ms 1.8% [others] 240 ms 21.8% Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1766.084 1 -total 38.31% 676.589 1 Template:Reflist 13.85% 244.602 36 Template:Citation 9.40% 166.039 8 Template:Cite_journal 8.29% 146.349 11 Template:Lang 8.18% 144.490 1 Template:Short_description 6.65% 117.521 1 Template:Algebra 6.50% 114.707 28 Template:Harvcoltxt 6.48% 114.476 3 Template:Navbox 4.89% 86.397 11 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:9550030:|#|:idhash:canonical and timestamp 20241129174216 and revision id 1256994886. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=History_of_algebra&amp;oldid=1256994886#Greek_geometric_algebra">https://en.wikipedia.org/w/index.php?title=History_of_algebra&amp;oldid=1256994886#Greek_geometric_algebra</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:History_of_algebra" title="Category:History of algebra">History of algebra</a></li><li><a href="/wiki/Category:Algebra" title="Category:Algebra">Algebra</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_incomplete_citations" title="Category:All articles with incomplete citations">All articles with incomplete citations</a></li><li><a href="/wiki/Category:Articles_with_incomplete_citations_from_November_2024" title="Category:Articles with incomplete citations from November 2024">Articles with incomplete citations from November 2024</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_Arabic-language_text" title="Category:Articles containing Arabic-language text">Articles containing Arabic-language text</a></li><li><a href="/wiki/Category:Articles_containing_Ancient_Greek_(to_1453)-language_text" title="Category:Articles containing Ancient Greek (to 1453)-language text">Articles containing Ancient Greek (to 1453)-language text</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_June_2022" title="Category:Wikipedia articles needing clarification from June 2022">Wikipedia articles needing clarification from June 2022</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_June_2018" title="Category:Articles with unsourced statements from June 2018">Articles with unsourced statements from June 2018</a></li><li><a href="/wiki/Category:All_articles_with_failed_verification" title="Category:All articles with failed verification">All articles with failed verification</a></li><li><a href="/wiki/Category:Articles_with_failed_verification_from_March_2024" title="Category:Articles with failed verification from March 2024">Articles with failed verification from March 2024</a></li><li><a href="/wiki/Category:Articles_to_be_expanded_from_January_2017" title="Category:Articles to be expanded from January 2017">Articles to be expanded from January 2017</a></li><li><a href="/wiki/Category:Articles_containing_Spanish-language_text" title="Category:Articles containing Spanish-language text">Articles containing Spanish-language text</a></li><li><a href="/wiki/Category:CS1_interwiki-linked_names" title="Category:CS1 interwiki-linked names">CS1 interwiki-linked names</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 12 November 2024, at 16:59<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=History_of_algebra&amp;mobileaction=toggle_view_mobile#Greek_geometric_algebra" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-jn4xc","wgBackendResponseTime":145,"wgPageParseReport":{"limitreport":{"cputime":"1.933","walltime":"2.486","ppvisitednodes":{"value":9355,"limit":1000000},"postexpandincludesize":{"value":199897,"limit":2097152},"templateargumentsize":{"value":4215,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":20,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":321140,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1766.084 1 -total"," 38.31% 676.589 1 Template:Reflist"," 13.85% 244.602 36 Template:Citation"," 9.40% 166.039 8 Template:Cite_journal"," 8.29% 146.349 11 Template:Lang"," 8.18% 144.490 1 Template:Short_description"," 6.65% 117.521 1 Template:Algebra"," 6.50% 114.707 28 Template:Harvcoltxt"," 6.48% 114.476 3 Template:Navbox"," 4.89% 86.397 11 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"1.070","limit":"10.000"},"limitreport-memusage":{"value":17757852,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAlcalá1505\"] = 1,\n [\"CITEREFAlonso1986\"] = 1,\n [\"CITEREFAurel1552\"] = 1,\n [\"CITEREFBashmakovaSmirnova2000\"] = 1,\n [\"CITEREFBerggren1990\"] = 1,\n [\"CITEREFBerggren2007\"] = 1,\n [\"CITEREFBill_Casselman\"] = 1,\n [\"CITEREFBoyer1991\"] = 1,\n [\"CITEREFBurton1995\"] = 1,\n [\"CITEREFBurton1997\"] = 1,\n [\"CITEREFCajori1919\"] = 1,\n [\"CITEREFCajori1928\"] = 1,\n [\"CITEREFChristianidis2007\"] = 1,\n [\"CITEREFCooke1997\"] = 1,\n [\"CITEREFCorbin1998\"] = 1,\n [\"CITEREFDerbyshire2006\"] = 1,\n [\"CITEREFDescartes1637\"] = 1,\n [\"CITEREFDescartes1925\"] = 1,\n [\"CITEREFDodge2008\"] = 1,\n [\"CITEREFDíez1556\"] = 1,\n [\"CITEREFEneström1905\"] = 1,\n [\"CITEREFEsposito2000\"] = 1,\n [\"CITEREFFlegg1983\"] = 1,\n [\"CITEREFHeath1981a\"] = 1,\n [\"CITEREFHeath1981b\"] = 1,\n [\"CITEREFHerscovicsLinchevski1994\"] = 1,\n [\"CITEREFJacob1903\"] = 1,\n [\"CITEREFJeffrey_A._OaksHaitham_M._Alkhateeb2007\"] = 1,\n [\"CITEREFJoyce,_David_E.1995\"] = 1,\n [\"CITEREFKastenCody2001\"] = 1,\n [\"CITEREFKatz\"] = 1,\n [\"CITEREFKatz2006\"] = 1,\n [\"CITEREFKatzBarton2007\"] = 1,\n [\"CITEREFKatzParshall2014\"] = 1,\n [\"CITEREFLagarde1884\"] = 1,\n [\"CITEREFNunes1567\"] = 1,\n [\"CITEREFOaks2014\"] = 1,\n [\"CITEREFOaksChristianidis\"] = 1,\n [\"CITEREFOaksChristianidis2013\"] = 2,\n [\"CITEREFOaksChristianidis2021\"] = 1,\n [\"CITEREFOaksChristianidis2023\"] = 2,\n [\"CITEREFOelschläger1940\"] = 1,\n [\"CITEREFOrtega1552\"] = 1,\n [\"CITEREFPuig1672\"] = 1,\n [\"CITEREFPérez_de_Moya1562\"] = 1,\n [\"CITEREFRashedArmstrong1994\"] = 2,\n [\"CITEREFRider1982\"] = 1,\n [\"CITEREFSelinD\u0026#039;Ambrosio2000\"] = 1,\n [\"CITEREFSesiano1999\"] = 1,\n [\"CITEREFStillwell2004\"] = 1,\n [\"CITEREFStruik1987\"] = 1,\n [\"CITEREFSwetz2013\"] = 1,\n [\"CITEREFTropfke1902\"] = 1,\n [\"CITEREFVictor_J._Katz2007\"] = 1,\n [\"Greek_geometric_algebra\"] = 1,\n [\"Rhetorical_algebra\"] = 1,\n [\"Syncopated_algebra\"] = 1,\n}\ntemplate_list = table#1 {\n [\"About\"] = 1,\n [\"Algebra\"] = 1,\n [\"Anchor\"] = 3,\n [\"Annotated link\"] = 2,\n [\"Blockquote\"] = 1,\n [\"Citation\"] = 36,\n [\"Citation needed\"] = 1,\n [\"Cite book\"] = 11,\n [\"Cite journal\"] = 8,\n [\"Cite web\"] = 4,\n [\"Clarify\"] = 1,\n [\"DEFAULTSORT:Algebra, History of\"] = 1,\n [\"Doi\"] = 1,\n [\"Failed verification\"] = 1,\n [\"Fcn\"] = 1,\n [\"Harv\"] = 63,\n [\"Harvcoltxt\"] = 28,\n [\"History of mathematics\"] = 1,\n [\"History of science\"] = 1,\n [\"Isbn\"] = 1,\n [\"Lang\"] = 11,\n [\"MacTutor\"] = 3,\n [\"MacTutor Biography\"] = 1,\n [\"Missing information\"] = 1,\n [\"Multiple image\"] = 1,\n [\"Portal\"] = 1,\n [\"Prime\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 9,\n [\"Short description\"] = 1,\n [\"Transliteration\"] = 1,\n [\"Wikiquote\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","240","21.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","240","21.8"],["dataWrapper \u003Cmw.lua:672\u003E","100","9.1"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::find","60","5.5"],["type","60","5.5"],["\u003Cmw.lua:694\u003E","40","3.6"],["recursiveClone \u003CmwInit.lua:45\u003E","40","3.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::gsub","40","3.6"],["is_alias_used \u003CModule:Citation/CS1/Utilities:275\u003E","20","1.8"],["sub","20","1.8"],["[others]","240","21.8"]]},"cachereport":{"origin":"mw-web.codfw.main-5c59558b9d-kqnj8","timestamp":"20241129174216","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"History of algebra","url":"https:\/\/en.wikipedia.org\/wiki\/History_of_algebra#Greek_geometric_algebra","sameAs":"http:\/\/www.wikidata.org\/entity\/Q5018842","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q5018842","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-02-17T00:58:19Z","dateModified":"2024-11-12T16:59:46Z","headline":"history of the study of mathematical symbols and the rules for manipulating these symbols"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10