CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;5 of 5 results for author: <span class="mathjax">Milchenko, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Milchenko%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Milchenko, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Milchenko%2C+M&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Milchenko, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09011">arXiv:2305.09011</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.09011">pdf</a>, <a href="https://arxiv.org/format/2305.09011">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+H+B">Hongwei Bran Li</a>, <a href="/search/cs?searchtype=author&amp;query=Conte%2C+G+M">Gian Marco Conte</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+Q">Qingqiao Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Anwar%2C+S+M">Syed Muhammad Anwar</a>, <a href="/search/cs?searchtype=author&amp;query=Kofler%2C+F">Florian Kofler</a>, <a href="/search/cs?searchtype=author&amp;query=Ezhov%2C+I">Ivan Ezhov</a>, <a href="/search/cs?searchtype=author&amp;query=van+Leemput%2C+K">Koen van Leemput</a>, <a href="/search/cs?searchtype=author&amp;query=Piraud%2C+M">Marie Piraud</a>, <a href="/search/cs?searchtype=author&amp;query=Diaz%2C+M">Maria Diaz</a>, <a href="/search/cs?searchtype=author&amp;query=Cole%2C+B">Byrone Cole</a>, <a href="/search/cs?searchtype=author&amp;query=Calabrese%2C+E">Evan Calabrese</a>, <a href="/search/cs?searchtype=author&amp;query=Rudie%2C+J">Jeff Rudie</a>, <a href="/search/cs?searchtype=author&amp;query=Meissen%2C+F">Felix Meissen</a>, <a href="/search/cs?searchtype=author&amp;query=Adewole%2C+M">Maruf Adewole</a>, <a href="/search/cs?searchtype=author&amp;query=Janas%2C+A">Anastasia Janas</a>, <a href="/search/cs?searchtype=author&amp;query=Kazerooni%2C+A+F">Anahita Fathi Kazerooni</a>, <a href="/search/cs?searchtype=author&amp;query=LaBella%2C+D">Dominic LaBella</a>, <a href="/search/cs?searchtype=author&amp;query=Moawad%2C+A+W">Ahmed W. Moawad</a>, <a href="/search/cs?searchtype=author&amp;query=Farahani%2C+K">Keyvan Farahani</a>, <a href="/search/cs?searchtype=author&amp;query=Eddy%2C+J">James Eddy</a>, <a href="/search/cs?searchtype=author&amp;query=Bergquist%2C+T">Timothy Bergquist</a>, <a href="/search/cs?searchtype=author&amp;query=Chung%2C+V">Verena Chung</a>, <a href="/search/cs?searchtype=author&amp;query=Shinohara%2C+R+T">Russell Takeshi Shinohara</a>, <a href="/search/cs?searchtype=author&amp;query=Dako%2C+F">Farouk Dako</a>, <a href="/search/cs?searchtype=author&amp;query=Wiggins%2C+W">Walter Wiggins</a> , et al. (44 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09011v6-abstract-short" style="display: inline;"> Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time const&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09011v6-abstract-full').style.display = 'inline'; document.getElementById('2305.09011v6-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09011v6-abstract-full" style="display: none;"> Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09011v6-abstract-full').style.display = 'none'; document.getElementById('2305.09011v6-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Technical report of BraSyn</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.08992">arXiv:2305.08992</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.08992">pdf</a>, <a href="https://arxiv.org/format/2305.08992">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> The Brain Tumor Segmentation (BraTS) Challenge: Local Synthesis of Healthy Brain Tissue via Inpainting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kofler%2C+F">Florian Kofler</a>, <a href="/search/cs?searchtype=author&amp;query=Meissen%2C+F">Felix Meissen</a>, <a href="/search/cs?searchtype=author&amp;query=Steinbauer%2C+F">Felix Steinbauer</a>, <a href="/search/cs?searchtype=author&amp;query=Graf%2C+R">Robert Graf</a>, <a href="/search/cs?searchtype=author&amp;query=Ehrlich%2C+S+K">Stefan K Ehrlich</a>, <a href="/search/cs?searchtype=author&amp;query=Reinke%2C+A">Annika Reinke</a>, <a href="/search/cs?searchtype=author&amp;query=Oswald%2C+E">Eva Oswald</a>, <a href="/search/cs?searchtype=author&amp;query=Waldmannstetter%2C+D">Diana Waldmannstetter</a>, <a href="/search/cs?searchtype=author&amp;query=Hoelzl%2C+F">Florian Hoelzl</a>, <a href="/search/cs?searchtype=author&amp;query=Horvath%2C+I">Izabela Horvath</a>, <a href="/search/cs?searchtype=author&amp;query=Turgut%2C+O">Oezguen Turgut</a>, <a href="/search/cs?searchtype=author&amp;query=Shit%2C+S">Suprosanna Shit</a>, <a href="/search/cs?searchtype=author&amp;query=Bukas%2C+C">Christina Bukas</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+K">Kaiyuan Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Paetzold%2C+J+C">Johannes C. Paetzold</a>, <a href="/search/cs?searchtype=author&amp;query=de+da+Rosa%2C+E">Ezequiel de da Rosa</a>, <a href="/search/cs?searchtype=author&amp;query=Mekki%2C+I">Isra Mekki</a>, <a href="/search/cs?searchtype=author&amp;query=Vinayahalingam%2C+S">Shankeeth Vinayahalingam</a>, <a href="/search/cs?searchtype=author&amp;query=Kassem%2C+H">Hasan Kassem</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+J">Juexin Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+K">Ke Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Weng%2C+Y">Ying Weng</a>, <a href="/search/cs?searchtype=author&amp;query=Durrer%2C+A">Alicia Durrer</a>, <a href="/search/cs?searchtype=author&amp;query=Cattin%2C+P+C">Philippe C. Cattin</a>, <a href="/search/cs?searchtype=author&amp;query=Wolleb%2C+J">Julia Wolleb</a> , et al. (81 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.08992v3-abstract-short" style="display: inline;"> A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with an already pathological scan. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantee for images featuring lesions. Examples include, but ar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08992v3-abstract-full').style.display = 'inline'; document.getElementById('2305.08992v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.08992v3-abstract-full" style="display: none;"> A myriad of algorithms for the automatic analysis of brain MR images is available to support clinicians in their decision-making. For brain tumor patients, the image acquisition time series typically starts with an already pathological scan. This poses problems, as many algorithms are designed to analyze healthy brains and provide no guarantee for images featuring lesions. Examples include, but are not limited to, algorithms for brain anatomy parcellation, tissue segmentation, and brain extraction. To solve this dilemma, we introduce the BraTS inpainting challenge. Here, the participants explore inpainting techniques to synthesize healthy brain scans from lesioned ones. The following manuscript contains the task formulation, dataset, and submission procedure. Later, it will be updated to summarize the findings of the challenge. The challenge is organized as part of the ASNR-BraTS MICCAI challenge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.08992v3-abstract-full').style.display = 'none'; document.getElementById('2305.08992v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.02314">arXiv:2107.02314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.02314">pdf</a>, <a href="https://arxiv.org/format/2107.02314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Baid%2C+U">Ujjwal Baid</a>, <a href="/search/cs?searchtype=author&amp;query=Ghodasara%2C+S">Satyam Ghodasara</a>, <a href="/search/cs?searchtype=author&amp;query=Mohan%2C+S">Suyash Mohan</a>, <a href="/search/cs?searchtype=author&amp;query=Bilello%2C+M">Michel Bilello</a>, <a href="/search/cs?searchtype=author&amp;query=Calabrese%2C+E">Evan Calabrese</a>, <a href="/search/cs?searchtype=author&amp;query=Colak%2C+E">Errol Colak</a>, <a href="/search/cs?searchtype=author&amp;query=Farahani%2C+K">Keyvan Farahani</a>, <a href="/search/cs?searchtype=author&amp;query=Kalpathy-Cramer%2C+J">Jayashree Kalpathy-Cramer</a>, <a href="/search/cs?searchtype=author&amp;query=Kitamura%2C+F+C">Felipe C. Kitamura</a>, <a href="/search/cs?searchtype=author&amp;query=Pati%2C+S">Sarthak Pati</a>, <a href="/search/cs?searchtype=author&amp;query=Prevedello%2C+L+M">Luciano M. Prevedello</a>, <a href="/search/cs?searchtype=author&amp;query=Rudie%2C+J+D">Jeffrey D. Rudie</a>, <a href="/search/cs?searchtype=author&amp;query=Sako%2C+C">Chiharu Sako</a>, <a href="/search/cs?searchtype=author&amp;query=Shinohara%2C+R+T">Russell T. Shinohara</a>, <a href="/search/cs?searchtype=author&amp;query=Bergquist%2C+T">Timothy Bergquist</a>, <a href="/search/cs?searchtype=author&amp;query=Chai%2C+R">Rong Chai</a>, <a href="/search/cs?searchtype=author&amp;query=Eddy%2C+J">James Eddy</a>, <a href="/search/cs?searchtype=author&amp;query=Elliott%2C+J">Julia Elliott</a>, <a href="/search/cs?searchtype=author&amp;query=Reade%2C+W">Walter Reade</a>, <a href="/search/cs?searchtype=author&amp;query=Schaffter%2C+T">Thomas Schaffter</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+T">Thomas Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+J">Jiaxin Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Moawad%2C+A+W">Ahmed W. Moawad</a>, <a href="/search/cs?searchtype=author&amp;query=Coelho%2C+L+O">Luiz Otavio Coelho</a>, <a href="/search/cs?searchtype=author&amp;query=McDonnell%2C+O">Olivia McDonnell</a> , et al. (78 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.02314v2-abstract-short" style="display: inline;"> The BraTS 2021 challenge celebrates its 10th anniversary and is jointly organized by the Radiological Society of North America (RSNA), the American Society of Neuroradiology (ASNR), and the Medical Image Computing and Computer Assisted Interventions (MICCAI) society. Since its inception, BraTS has been focusing on being a common benchmarking venue for brain glioma segmentation algorithms, with wel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02314v2-abstract-full').style.display = 'inline'; document.getElementById('2107.02314v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.02314v2-abstract-full" style="display: none;"> The BraTS 2021 challenge celebrates its 10th anniversary and is jointly organized by the Radiological Society of North America (RSNA), the American Society of Neuroradiology (ASNR), and the Medical Image Computing and Computer Assisted Interventions (MICCAI) society. Since its inception, BraTS has been focusing on being a common benchmarking venue for brain glioma segmentation algorithms, with well-curated multi-institutional multi-parametric magnetic resonance imaging (mpMRI) data. Gliomas are the most common primary malignancies of the central nervous system, with varying degrees of aggressiveness and prognosis. The RSNA-ASNR-MICCAI BraTS 2021 challenge targets the evaluation of computational algorithms assessing the same tumor compartmentalization, as well as the underlying tumor&#39;s molecular characterization, in pre-operative baseline mpMRI data from 2,040 patients. Specifically, the two tasks that BraTS 2021 focuses on are: a) the segmentation of the histologically distinct brain tumor sub-regions, and b) the classification of the tumor&#39;s O[6]-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. The performance evaluation of all participating algorithms in BraTS 2021 will be conducted through the Sage Bionetworks Synapse platform (Task 1) and Kaggle (Task 2), concluding in distributing to the top ranked participants monetary awards of $60,000 collectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.02314v2-abstract-full').style.display = 'none'; document.getElementById('2107.02314v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 2 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.05874">arXiv:2105.05874</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.05874">pdf</a>, <a href="https://arxiv.org/format/2105.05874">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> The Federated Tumor Segmentation (FeTS) Challenge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Pati%2C+S">Sarthak Pati</a>, <a href="/search/cs?searchtype=author&amp;query=Baid%2C+U">Ujjwal Baid</a>, <a href="/search/cs?searchtype=author&amp;query=Zenk%2C+M">Maximilian Zenk</a>, <a href="/search/cs?searchtype=author&amp;query=Edwards%2C+B">Brandon Edwards</a>, <a href="/search/cs?searchtype=author&amp;query=Sheller%2C+M">Micah Sheller</a>, <a href="/search/cs?searchtype=author&amp;query=Reina%2C+G+A">G. Anthony Reina</a>, <a href="/search/cs?searchtype=author&amp;query=Foley%2C+P">Patrick Foley</a>, <a href="/search/cs?searchtype=author&amp;query=Gruzdev%2C+A">Alexey Gruzdev</a>, <a href="/search/cs?searchtype=author&amp;query=Martin%2C+J">Jason Martin</a>, <a href="/search/cs?searchtype=author&amp;query=Albarqouni%2C+S">Shadi Albarqouni</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yong Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Shinohara%2C+R+T">Russell Taki Shinohara</a>, <a href="/search/cs?searchtype=author&amp;query=Reinke%2C+A">Annika Reinke</a>, <a href="/search/cs?searchtype=author&amp;query=Zimmerer%2C+D">David Zimmerer</a>, <a href="/search/cs?searchtype=author&amp;query=Freymann%2C+J+B">John B. Freymann</a>, <a href="/search/cs?searchtype=author&amp;query=Kirby%2C+J+S">Justin S. Kirby</a>, <a href="/search/cs?searchtype=author&amp;query=Davatzikos%2C+C">Christos Davatzikos</a>, <a href="/search/cs?searchtype=author&amp;query=Colen%2C+R+R">Rivka R. Colen</a>, <a href="/search/cs?searchtype=author&amp;query=Kotrotsou%2C+A">Aikaterini Kotrotsou</a>, <a href="/search/cs?searchtype=author&amp;query=Marcus%2C+D">Daniel Marcus</a>, <a href="/search/cs?searchtype=author&amp;query=Milchenko%2C+M">Mikhail Milchenko</a>, <a href="/search/cs?searchtype=author&amp;query=Nazeri%2C+A">Arash Nazeri</a>, <a href="/search/cs?searchtype=author&amp;query=Fathallah-Shaykh%2C+H">Hassan Fathallah-Shaykh</a>, <a href="/search/cs?searchtype=author&amp;query=Wiest%2C+R">Roland Wiest</a>, <a href="/search/cs?searchtype=author&amp;query=Jakab%2C+A">Andras Jakab</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.05874v2-abstract-short" style="display: inline;"> This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on &#34;real-world&#34; clinical data often remains unclear, as the data included in challenge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05874v2-abstract-full').style.display = 'inline'; document.getElementById('2105.05874v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.05874v2-abstract-full" style="display: none;"> This manuscript describes the first challenge on Federated Learning, namely the Federated Tumor Segmentation (FeTS) challenge 2021. International challenges have become the standard for validation of biomedical image analysis methods. However, the actual performance of participating (even the winning) algorithms on &#34;real-world&#34; clinical data often remains unclear, as the data included in challenges are usually acquired in very controlled settings at few institutions. The seemingly obvious solution of just collecting increasingly more data from more institutions in such challenges does not scale well due to privacy and ownership hurdles. Towards alleviating these concerns, we are proposing the FeTS challenge 2021 to cater towards both the development and the evaluation of models for the segmentation of intrinsically heterogeneous (in appearance, shape, and histology) brain tumors, namely gliomas. Specifically, the FeTS 2021 challenge uses clinically acquired, multi-institutional magnetic resonance imaging (MRI) scans from the BraTS 2020 challenge, as well as from various remote independent institutions included in the collaborative network of a real-world federation (https://www.fets.ai/). The goals of the FeTS challenge are directly represented by the two included tasks: 1) the identification of the optimal weight aggregation approach towards the training of a consensus model that has gained knowledge via federated learning from multiple geographically distinct institutions, while their data are always retained within each institution, and 2) the federated evaluation of the generalizability of brain tumor segmentation models &#34;in the wild&#34;, i.e. on data from institutional distributions that were not part of the training datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.05874v2-abstract-full').style.display = 'none'; document.getElementById('2105.05874v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.02629">arXiv:1811.02629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.02629">pdf</a>, <a href="https://arxiv.org/format/1811.02629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> </div> </div> <p class="title is-5 mathjax"> Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bakas%2C+S">Spyridon Bakas</a>, <a href="/search/cs?searchtype=author&amp;query=Reyes%2C+M">Mauricio Reyes</a>, <a href="/search/cs?searchtype=author&amp;query=Jakab%2C+A">Andras Jakab</a>, <a href="/search/cs?searchtype=author&amp;query=Bauer%2C+S">Stefan Bauer</a>, <a href="/search/cs?searchtype=author&amp;query=Rempfler%2C+M">Markus Rempfler</a>, <a href="/search/cs?searchtype=author&amp;query=Crimi%2C+A">Alessandro Crimi</a>, <a href="/search/cs?searchtype=author&amp;query=Shinohara%2C+R+T">Russell Takeshi Shinohara</a>, <a href="/search/cs?searchtype=author&amp;query=Berger%2C+C">Christoph Berger</a>, <a href="/search/cs?searchtype=author&amp;query=Ha%2C+S+M">Sung Min Ha</a>, <a href="/search/cs?searchtype=author&amp;query=Rozycki%2C+M">Martin Rozycki</a>, <a href="/search/cs?searchtype=author&amp;query=Prastawa%2C+M">Marcel Prastawa</a>, <a href="/search/cs?searchtype=author&amp;query=Alberts%2C+E">Esther Alberts</a>, <a href="/search/cs?searchtype=author&amp;query=Lipkova%2C+J">Jana Lipkova</a>, <a href="/search/cs?searchtype=author&amp;query=Freymann%2C+J">John Freymann</a>, <a href="/search/cs?searchtype=author&amp;query=Kirby%2C+J">Justin Kirby</a>, <a href="/search/cs?searchtype=author&amp;query=Bilello%2C+M">Michel Bilello</a>, <a href="/search/cs?searchtype=author&amp;query=Fathallah-Shaykh%2C+H">Hassan Fathallah-Shaykh</a>, <a href="/search/cs?searchtype=author&amp;query=Wiest%2C+R">Roland Wiest</a>, <a href="/search/cs?searchtype=author&amp;query=Kirschke%2C+J">Jan Kirschke</a>, <a href="/search/cs?searchtype=author&amp;query=Wiestler%2C+B">Benedikt Wiestler</a>, <a href="/search/cs?searchtype=author&amp;query=Colen%2C+R">Rivka Colen</a>, <a href="/search/cs?searchtype=author&amp;query=Kotrotsou%2C+A">Aikaterini Kotrotsou</a>, <a href="/search/cs?searchtype=author&amp;query=Lamontagne%2C+P">Pamela Lamontagne</a>, <a href="/search/cs?searchtype=author&amp;query=Marcus%2C+D">Daniel Marcus</a>, <a href="/search/cs?searchtype=author&amp;query=Milchenko%2C+M">Mikhail Milchenko</a> , et al. (402 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.02629v3-abstract-short" style="display: inline;"> Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles dissem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02629v3-abstract-full').style.display = 'inline'; document.getElementById('1811.02629v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.02629v3-abstract-full" style="display: none;"> Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e., 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST/RANO criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that underwent gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.02629v3-abstract-full').style.display = 'none'; document.getElementById('1811.02629v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The International Multimodal Brain Tumor Segmentation (BraTS) Challenge</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10