CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 174 results for author: <span class="mathjax">Anand, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Anand%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Anand, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Anand%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Anand, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13673">arXiv:2411.13673</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13673">pdf</a>, <a href="https://arxiv.org/format/2411.13673">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Detecting electromagnetic counterparts to LIGO/Virgo/KAGRA gravitational wave events with DECam: Neutron Star Mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kunnumkai%2C+K">Keerthi Kunnumkai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmese%2C+A">Antonella Palmese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farah%2C+A+M">Amanda M Farah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dietrich%2C+T">Tim Dietrich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pang%2C+P+T+H">Peter T H Pang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cabrera%2C+T">Tomas Cabrera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connor%2C+B+O">Brendan O Connor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13673v1-abstract-short" style="display: inline;"> With GW170817 being the only multimessenger gravitational wave (GW) event with an associated kilonova (KN) detected so far, there exists a pressing need for realistic estimation of the GW localization uncertainties and rates, as well as optimization of available telescope time to enable the detection of new KNe. For this purpose, we simulate GW events assuming a data-driven, GW-motivated distribut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13673v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13673v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13673v1-abstract-full" style="display: none;"> With GW170817 being the only multimessenger gravitational wave (GW) event with an associated kilonova (KN) detected so far, there exists a pressing need for realistic estimation of the GW localization uncertainties and rates, as well as optimization of available telescope time to enable the detection of new KNe. For this purpose, we simulate GW events assuming a data-driven, GW-motivated distribution of binary parameters for the LIGO/Virgo/KAGRA (LVK) fourth and fifth observing runs (O4 and O5). For our particular case of estimating KN detection rates in the O4 and O5 runs, we map the binary neutron star (BNS) and neutron star-black hole (NSBH) properties to the optical light curves arising from r-process nucleosynthesis in the ejecta. We use the simulated population of KNe to generate follow-up observing plans, with the primary goal of optimizing detection with the Gravitational Wave Multi-Messenger Astronomy DECam Survey (GW-MMADS). We explore KN detectability as a function of mass, distance, and spin of the binaries. Out of the mergers that produce a KN in our simulations, we expect detectable KNe for DECam-like instruments at a per-year rate of: $1-16$ ($0-1$) for BNS (NSBH) in O4, and $16-165$ ($1-12$) for BNS (NSBH) in O5, using a fiducial exposure time and conditional on the uncertainty on the equation of state (EOS) and volumetric rates of the mergers. Taking into account observability constraints, our scheduler covers the location of the KN $\sim 30-38\%$ of the times for our fiducial EOS. We provide the depths needed to detect a significant fraction of our simulated mergers for the astronomical community to use in their follow-up campaigns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13673v1-abstract-full').style.display = 'none'; document.getElementById('2411.13673v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures, 10 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07974">arXiv:2411.07974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07974">pdf</a>, <a href="https://arxiv.org/format/2411.07974">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Hubble constant anchor galaxy NGC 4258: metallicity and distance from blue supergiants </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kudritzki%2C+R">Rolf-Peter Kudritzki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Urbaneja%2C+M+A">Miguel A. Urbaneja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bresolin%2C+F">Fabio Bresolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macri%2C+L+M">Lucas M. Macri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Siyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07974v1-abstract-short" style="display: inline;"> A quantitative spectroscopic study of blue supergiant stars in the Hubble constant anchor galaxy NGC 4258 is presented. The non-LTE analysis of Keck I telescope LRIS spectra yields a central logarithmic metallicity (in units of the solar value) of [Z] = -0.05\pm0.05 and a very shallow gradient of -(0.09\pm0.11)r/r25 with respect to galactocentric distance in units of the isophotal radius. Good agr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07974v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07974v1-abstract-full" style="display: none;"> A quantitative spectroscopic study of blue supergiant stars in the Hubble constant anchor galaxy NGC 4258 is presented. The non-LTE analysis of Keck I telescope LRIS spectra yields a central logarithmic metallicity (in units of the solar value) of [Z] = -0.05\pm0.05 and a very shallow gradient of -(0.09\pm0.11)r/r25 with respect to galactocentric distance in units of the isophotal radius. Good agreement with the mass-metallicity relationship of star forming galaxies based on stellar absorption line studies is found. A comparison with HII region oxygen abundances obtained from the analysis of strong emission lines shows reasonable agreement when the Pettini &amp; Pagel (2004) calibration is used, while the Zaritsky et al. (1994) calibration yields values that are 0.2 to 0.3 dex larger. These results allow to put the metallicity calibration of the Cepheid Period--Luminosity relation in this anchor galaxy on a purely stellar basis. Interstellar reddening and extinction are determined using HST and JWST photometry. Based on extinction-corrected magnitudes, combined with the stellar effective temperatures and gravities we determine, we use the Flux-weighted Gravity--Luminosity Relationship (FGLR) to estimate an independent spectroscopic distance. We obtain a distance modulus m-M = 29.38\pm0.12 mag, in agreement with the geometrical distance derived from the analysis of the water maser orbits in the galaxy&#39;s central circumnuclear disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07974v1-abstract-full').style.display = 'none'; document.getElementById('2411.07974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in the Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04793">arXiv:2411.04793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04793">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Rubin ToO 2024: Envisioning the Vera C. Rubin Observatory LSST Target of Opportunity program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banovetz%2C+J">John Banovetz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greenstreet%2C+S">Sarah Greenstreet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hebert%2C+C">Claire-Alice Hebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lister%2C+T">Tim Lister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmese%2C+A">Antonella Palmese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piranomonte%2C+S">Silvia Piranomonte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smartt%2C+S+J">S. J. Smartt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+G+P">Graham P. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+M+T">Michele T. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolin%2C+B+T">Bryce T. Bolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bom%2C+C+R">Clecio R. Bom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brethauer%2C+D">Daniel Brethauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brucker%2C+M+J">Melissa J. Brucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">David A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+P">Poonam Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+E">Eric Christensen</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04793v1-abstract-short" style="display: inline;"> The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory is planned to begin in the Fall of 2025. The LSST survey cadence has been designed via a community-driven process regulated by the Survey Cadence Optimization Committee (SCOC), which recommended up to 3% of the observing time to carry out Target of Opportunity (ToO) observations. Experts from the scientific community, Rubin Ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04793v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04793v1-abstract-full" style="display: none;"> The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory is planned to begin in the Fall of 2025. The LSST survey cadence has been designed via a community-driven process regulated by the Survey Cadence Optimization Committee (SCOC), which recommended up to 3% of the observing time to carry out Target of Opportunity (ToO) observations. Experts from the scientific community, Rubin Observatory personnel, and members of the SCOC were brought together to deliver a recommendation for the implementation of the ToO program during a workshop held in March 2024. Four main science cases were identified: gravitational wave multi-messenger astronomy, high energy neutrinos, Galactic supernovae, and small potentially hazardous asteroids possible impactors. Additional science cases were identified and briefly addressed in the documents, including lensed or poorly localized gamma-ray bursts and twilight discoveries. Trigger prioritization, automated response, and detailed strategies were discussed for each science case. This document represents the outcome of the Rubin ToO 2024 workshop, with additional contributions from members of the Rubin Science Collaborations. The implementation of the selection criteria and strategies presented in this document has been endorsed in the SCOC Phase 3 Recommendations document (PSTN-056). Although the ToO program is still to be finalized, this document serves as a baseline plan for ToO observations with the Rubin Observatory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04793v1-abstract-full').style.display = 'none'; document.getElementById('2411.04793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.05397">arXiv:2410.05397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.05397">pdf</a>, <a href="https://arxiv.org/format/2410.05397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Polycyclic Aromatic Hydrocarbon and CO(2-1) Emission at 50-150 pc Scales in 66 Nearby Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chown%2C+R">Ryan Chown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leroy%2C+A+K">Adam K. Leroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sandstrom%2C+K">Karin Sandstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chastenet%2C+J">Jeremy Chastenet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutter%2C+J">Jessica Sutter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koch%2C+E+W">Eric W. Koch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koziol%2C+H+B">Hannah B. Koziol</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neumann%2C+L">Lukas Neumann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+J">Jiayi Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+T+G">Thomas G. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baron%2C+D">Dalya Baron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+A+T">Ashley T. Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bazzi%2C+Z">Zein Bazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belfiore%2C+F">Francesco Belfiore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolatto%2C+A">Alberto Bolatto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boquien%2C+M">Mederic Boquien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+Y">Yixian Cao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chevance%2C+M">Melanie Chevance</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colombo%2C+D">Dario Colombo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egorov%2C+O+V">Oleg V. Egorov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eibensteiner%2C+C">Cosima Eibensteiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hassani%2C+H">Hamid Hassani</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.05397v1-abstract-short" style="display: inline;"> Combining Atacama Large Millimeter/sub-millimeter Array CO(2-1) mapping and JWST near- and mid-infrared imaging, we characterize the relationship between CO(2-1) and polycyclic aromatic hydrocarbon (PAH) emission at ~100 pc resolution in 66 nearby star-forming galaxies, expanding the sample size from previous ~100 pc resolution studies by more than an order of magnitude. Focusing on regions of gal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05397v1-abstract-full').style.display = 'inline'; document.getElementById('2410.05397v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.05397v1-abstract-full" style="display: none;"> Combining Atacama Large Millimeter/sub-millimeter Array CO(2-1) mapping and JWST near- and mid-infrared imaging, we characterize the relationship between CO(2-1) and polycyclic aromatic hydrocarbon (PAH) emission at ~100 pc resolution in 66 nearby star-forming galaxies, expanding the sample size from previous ~100 pc resolution studies by more than an order of magnitude. Focusing on regions of galaxies where most of the gas is likely to be molecular, we find strong correlations between CO(2-1) and 3.3 micron, 7.7 micron, and 11.3 micron PAH emission, estimated from JWST&#39;s F335M, F770W, and F1130W filters. We derive power law relations between CO(2-1) and PAH emission, which have indices in the range 0.8-1.2, implying relatively weak variations in the observed CO-to-PAH ratios across the regions that we study. We find that CO-to-PAH ratios and scaling relationships near HII regions are similar to those in diffuse sight lines. The main difference between the two types of regions is that sight lines near HII regions show higher intensities in all tracers. Galaxy centers, on the other hand, show higher overall intensities and enhanced CO-to-PAH ratios compared to galaxy disks. Individual galaxies show 0.19 dex scatter in the normalization of CO at fixed I_PAH and this normalization anti-correlates with specific star formation rate (SFR/M*) and correlates with stellar mass. We provide a prescription that accounts for these galaxy-to-galaxy variations and represents our best current empirical predictor to estimate CO(2-1) intensity from PAH emission, which allows one to take advantage of JWST&#39;s excellent sensitivity and resolution to trace cold gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.05397v1-abstract-full').style.display = 'none'; document.getElementById('2410.05397v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 4 figures, 3 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16964">arXiv:2409.16964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16964">pdf</a>, <a href="https://arxiv.org/format/2409.16964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Preferential Occurrence of Fast Radio Bursts in Massive Star-Forming Galaxies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+K">Kritti Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connor%2C+L">Liam Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Law%2C+C">Casey Law</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ocker%2C+S+K">Stella Koch Ocker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sherman%2C+M">Myles Sherman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kosogorov%2C+N">Nikita Kosogorov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Faber%2C+J">Jakob Faber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hallinan%2C+G">Gregg Hallinan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harnach%2C+C">Charlie Harnach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hellbourg%2C+G">Greg Hellbourg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hobbs%2C+R">Rick Hobbs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hodge%2C+D">David Hodge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hodges%2C+M">Mark Hodges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+J">James Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rasmussen%2C+P">Paul Rasmussen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Somalwar%2C+J">Jean Somalwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weinreb%2C+S">Sander Weinreb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woody%2C+D">David Woody</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leja%2C+J">Joel Leja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav Kashyap Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qin%2C+Y">Yu-Jing Qin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+S">Sam Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dong%2C+D+Z">Dillon Z. Dong</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16964v1-abstract-short" style="display: inline;"> Fast Radio Bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favor highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown. Although galactic magnetars are often&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16964v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16964v1-abstract-full" style="display: none;"> Fast Radio Bursts (FRBs) are millisecond-duration events detected from beyond the Milky Way. FRB emission characteristics favor highly magnetized neutron stars, or magnetars, as the sources, as evidenced by FRB-like bursts from a galactic magnetar, and the star-forming nature of FRB host galaxies. However, the processes that produce FRB sources remain unknown. Although galactic magnetars are often linked to core-collapse supernovae (CCSNe), it&#39;s uncertain what determines which supernovae result in magnetars. The galactic environments of FRB sources can be harnessed to probe their progenitors. Here, we present the stellar population properties of 30 FRB host galaxies discovered by the Deep Synoptic Array. Our analysis shows a significant deficit of low-mass FRB hosts compared to the occurrence of star-formation in the universe, implying that FRBs are a biased tracer of star-formation, preferentially selecting massive star-forming galaxies. This bias may be driven by galaxy metallicity, which is positively correlated with stellar mass. Metal-rich environments may favor the formation of magnetar progenitors through stellar mergers, as higher metallicity stars are less compact and more likely to fill their Roche lobes, leading to unstable mass transfer. Although massive stars do not have convective interiors to generate strong magnetic fields by dynamo, merger remnants are thought to have the requisite internal magnetic-field strengths to result in magnetars. The preferential occurrence of FRBs in massive star-forming galaxies suggests that CCSN of merger remnants preferentially forms magnetars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16964v1-abstract-full').style.display = 'none'; document.getElementById('2409.16964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature. The final version will be published by the journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.14546">arXiv:2409.14546</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.14546">pdf</a>, <a href="https://arxiv.org/format/2409.14546">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Hubble Tension in our own Backyard: DESI and the Nearness of the Coma Cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Daniel Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murakami%2C+Y+S">Yukei S. Murakami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peterson%2C+E+R">Erik R. Peterson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brout%2C+D">Dillon Brout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acevedo%2C+M">Maria Acevedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carreres%2C+B">Bastien Carreres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+D+O">David O. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Said%2C+K">Khaled Said</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Howlett%2C+C">Cullan Howlett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.14546v2-abstract-short" style="display: inline;"> The Dark Energy Spectroscopic Instrument (DESI) collaboration measured a tight relation between the Hubble constant ($H_0$) and the distance to the Coma cluster using the fundamental plane (FP) relation of the deepest, most homogeneous sample of early-type galaxies. To determine $H_0$, we measure the distance to Coma by several independent routes each with its own geometric reference. We measure t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14546v2-abstract-full').style.display = 'inline'; document.getElementById('2409.14546v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.14546v2-abstract-full" style="display: none;"> The Dark Energy Spectroscopic Instrument (DESI) collaboration measured a tight relation between the Hubble constant ($H_0$) and the distance to the Coma cluster using the fundamental plane (FP) relation of the deepest, most homogeneous sample of early-type galaxies. To determine $H_0$, we measure the distance to Coma by several independent routes each with its own geometric reference. We measure the most precise distance to Coma from 12 Type Ia Supernovae (SNe Ia) in the cluster with mean standardized brightness of $m_B^0=15.712\pm0.041$ mag. Calibrating the absolute magnitude of SNe Ia with the HST distance ladder yields $D_{\textrm Coma}=98.5\pm2.2$ Mpc, consistent with its canonical value of 95--100 Mpc. This distance results in $H_0=76.5 \pm 2.2$ km/s/Mpc from the DESI FP relation. Inverting the DESI relation by calibrating it instead to the Planck+$螞$CDM value of $H_0=67.4$ km/s/Mpc implies a much greater distance to Coma, $D_{\textrm Coma}=111.8\pm1.8$ Mpc, $4.6蟽$ beyond a joint, direct measure. Independent of SNe Ia, the HST Key Project FP relation as calibrated by Cepheids, Tip of the Red Giant Branch from JWST, or HST NIR surface brightness fluctuations all yield $D_{\textrm Coma}&lt;$ 100 Mpc, in joint tension themselves with the Planck-calibrated route at $&gt;3蟽$. From a broad array of distance estimates compiled back to 1990, it is hard to see how Coma could be located as far as the Planck+$螞$CDM expectation of $&gt;$110 Mpc. By extending the Hubble diagram to Coma, a well-studied location in our own backyard whose distance was in good accord well before the Hubble Tension, DESI indicates a more pervasive conflict between our knowledge of local distances and cosmological expectations. We expect future programs to refine the distance to Coma and nearer clusters to help illuminate this new, local window on the Hubble Tension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.14546v2-abstract-full').style.display = 'none'; document.getElementById('2409.14546v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2 - team name fixed</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.16810">arXiv:2408.16810</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.16810">pdf</a>, <a href="https://arxiv.org/format/2408.16810">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> The TRGB-SBF Project. II. Resolving the Virgo Cluster with JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tully%2C+R+B">R. Brent Tully</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cohen%2C+Y">Yotam Cohen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shaya%2C+E+J">Edward J. Shaya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Makarov%2C+D+I">Dmitry I. Makarov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Makarova%2C+L+N">Lidia N. Makarova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chazov%2C+M+I">Maksim I. Chazov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blakeslee%2C+J+P">John P. Blakeslee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cantiello%2C+M">Michele Cantiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jensen%2C+J+B">Joseph B. Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kourkchi%2C+E">Ehsan Kourkchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raimondo%2C+G">Gabriella Raimondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.16810v1-abstract-short" style="display: inline;"> The Virgo Cluster is the nearest substantial cluster of galaxies to the Milky Way and a cornerstone of the extragalactic distance scale. Here, we present JWST/NIRCam observations that simultaneously cover the cores and halos of ten galaxies in and around the Virgo Cluster and are designed to perform simultaneous measurements of the tip of the red giant branch (TRGB) and surface brightness fluctuat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16810v1-abstract-full').style.display = 'inline'; document.getElementById('2408.16810v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.16810v1-abstract-full" style="display: none;"> The Virgo Cluster is the nearest substantial cluster of galaxies to the Milky Way and a cornerstone of the extragalactic distance scale. Here, we present JWST/NIRCam observations that simultaneously cover the cores and halos of ten galaxies in and around the Virgo Cluster and are designed to perform simultaneous measurements of the tip of the red giant branch (TRGB) and surface brightness fluctuations (SBF). Seven of the targets are within the Virgo Cluster and where we are able to resolve some of the cluster&#39;s substructure, while an additional three provide important constraints on Virgo infall. The seven galaxies within Virgo itself all have SBF measurements from the Advanced Camera for Surveys Virgo Cluster Survey (ACSVCS). After adjusting the ACSVCS measurements for the offset from our new JWST TRGB measurements, we determine a distance to the Virgo Cluster of d $=$ 16.17 $\pm$ 0.25 (stat) $\pm$ 0.47 (sys) Mpc. The work presented here is part of a larger program to develop a Population II distance scale through the TRGB and SBF that is completely independent of the prominent Cepheid + Type Ia supernova ladder. The TRGB distances to the galaxies presented here, when combined with future SBF measurements, will provide a crucial step forward for determining whether or not systematic errors can explain the well-known &#34;Hubble tension&#39;&#39; or if there is significant evidence for cracks in the $螞$CDM model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.16810v1-abstract-full').style.display = 'none'; document.getElementById('2408.16810v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to ApJ. comments welcome and appreciated. program name has changed from Paper I&#39;s &#34;The Population II Extragalactic Distance Scale&#34; to &#34;The TRGB-SBF Project&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14586">arXiv:2408.14586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14586">pdf</a>, <a href="https://arxiv.org/format/2408.14586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Optical and Radio Analysis of Systematically Classified Broad-lined Type Ic Supernovae from the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez-Fleming%2C+M">Marquice Sanchez-Fleming</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pope%2C+J">Jack Pope</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">Nikhil Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Omand%2C+C">Conor Omand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruch%2C+R">Rachel Bruch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangopadhyay%2C+A">Anjasha Gangopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J+E">Jacob E. Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14586v3-abstract-short" style="display: inline;"> We study a magnitude-limited sample of 36 Broad-lined Type Ic Supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between March 2018 and August 2021), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe, and analyze the shape of the LCs to derive empirical parameters, along wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14586v3-abstract-full').style.display = 'inline'; document.getElementById('2408.14586v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14586v3-abstract-full" style="display: none;"> We study a magnitude-limited sample of 36 Broad-lined Type Ic Supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between March 2018 and August 2021), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe, and analyze the shape of the LCs to derive empirical parameters, along with the explosion epochs for every event. The sample has an average absolute peak magnitude in the r band of $M_r^{max}$ = -18.51 $\pm$ 0.15 mag. Using spectra obtained around peak light, we compute expansion velocities from the Fe II 5169 Angstrom line for each event with high enough signal-to-noise ratio spectra, and find an average value of $v_{ph}$ = 16,100 $\pm$ 1,100 km $s^{-1}$. We also compute bolometric LCs, study the blackbody temperature and radii evolution over time, and derive the explosion properties of the SNe. The explosion properties of the sample have average values of $M_{Ni}$ = $0.37_{-0.06}^{+0.08}$ solar masses, $M_{ej}$ = $2.45_{-0.41}^{+0.47}$ solar masses, and $E_K$= $4.02_{-1.00}^{+1.37} \times 10^{51}$ erg. Thirteen events have radio observations from the Very Large Array, with 8 detections and 5 non-detections. We find that the populations that have radio detections and radio non-detections are indistinct from one another with respect to their optically-inferred explosion properties, and there are no statistically significant correlations present between the events&#39; radio luminosities and optically-inferred explosion properties. This provides evidence that the explosion properties derived from optical data alone cannot give inferences about the radio properties of SNe Ic-BL, and likely their relativistic jet formation mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14586v3-abstract-full').style.display = 'none'; document.getElementById('2408.14586v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 34 Figures, 8 Tables; Accepted to ApJ, Revised Title from Proofs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11770">arXiv:2408.11770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11770">pdf</a>, <a href="https://arxiv.org/format/2408.11770">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> JWST Validates HST Distance Measurements: Selection of Supernova Subsample Explains Differences in JWST Estimates of Local H0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuval%2C+L">Louise Breuval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macri%2C+L+M">Lucas M. Macri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Siyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+C+D">Caroline D. Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jha%2C+S">Saurabh Jha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murakami%2C+Y+S">Yukei S. Murakami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">Rachael Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brout%2C+D">Dillon Brout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+T">Tianrui Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Addison%2C+G+E">Graeme E. Addison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bennett%2C+C">Charles Bennett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+R+I">Richard I. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carr%2C+A">Anthony Carr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11770v2-abstract-short" style="display: inline;"> JWST provides new opportunities to cross-check the HST Cepheid/SNeIa distance ladder, which yields the most precise local measure of H0. We analyze early JWST subsamples (~1/4 of the HST sample) from the SH0ES and CCHP groups, calibrated by a single anchor (N4258). We find HST Cepheid distances agree well (~1 sigma) with all 8 combinations of methods, samples, and telescopes: JWST Cepheids, TRGB,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11770v2-abstract-full').style.display = 'inline'; document.getElementById('2408.11770v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11770v2-abstract-full" style="display: none;"> JWST provides new opportunities to cross-check the HST Cepheid/SNeIa distance ladder, which yields the most precise local measure of H0. We analyze early JWST subsamples (~1/4 of the HST sample) from the SH0ES and CCHP groups, calibrated by a single anchor (N4258). We find HST Cepheid distances agree well (~1 sigma) with all 8 combinations of methods, samples, and telescopes: JWST Cepheids, TRGB, and JAGB by either group, plus HST TRGB and Miras. The comparisons explicitly include the measurement uncertainty of each method in N4258, an oft-neglected but dominant term. Mean differences are ~0.03 mag, far smaller than the 0.18 mag &#34;Hubble tension.&#34; Combining all measures produces the strongest constraint yet on the linearity of HST Cepheid distances, 0.994+-0.010, ruling out distance-dependent bias or offset as the source of the tension at ~7 sigma. Yet, measurements of H0 from current JWST subsamples produce large sampling differences whose size and direction we can directly estimate from the full HST set. We show that Delta(H0)~2.5 km/s/Mpc between the CCHP JWST program and the full HST sample is entirely consistent with differences in sample selection. Combining all JWST samples produces a new, distance-limited set of 16 SNeIa at D&lt;25 Mpc and more closely resembles the full sample thanks to &#34;reversion to the mean&#34; of larger samples. Using JWST Cepheids, JAGB, and TRGB, we find 73.4+-2.1, 72.2+-2.2, and 72.1+-2.2 km/s/Mpc, respectively. Explicitly accounting for SNe in common, the combined-sample three-method result from JWST is H0=72.6+-2.0, similar to H0=72.8 expected from HST Cepheids in the same galaxies. The small JWST sample trivially lowers the Hubble tension significance due to small-sample statistics and is not yet competitive with the HST set (42 SNeIa and 4 anchors), which yields 73.2+-0.9. Still, the joint JWST sample provides important crosschecks which the HST data passes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11770v2-abstract-full').style.display = 'none'; document.getElementById('2408.11770v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ accepted, version replaced with accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.00065">arXiv:2408.00065</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.00065">pdf</a>, <a href="https://arxiv.org/format/2408.00065">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Tip of the Red Giant Branch Distances with JWST. II. I-band Measurements in a Sample of Hosts of 10 SN Ia Match HST Cepheids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Siyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuval%2C+L">Louise Breuval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macri%2C+L+M">Lucas M. Macri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Daniel Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">Rachael Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+R+I">Richard I. Anderson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.00065v2-abstract-short" style="display: inline;"> The Hubble Tension, a &gt;5 sigma discrepancy between direct and indirect measurements of the Hubble constant (H0), has persisted for a decade and motivated intense scrutiny of the paths used to infer H0. Comparing independently-derived distances for a set of galaxies with different standard candles, such as the tip of the red giant branch (TRGB) and Cepheid variables, can test for systematics in the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00065v2-abstract-full').style.display = 'inline'; document.getElementById('2408.00065v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.00065v2-abstract-full" style="display: none;"> The Hubble Tension, a &gt;5 sigma discrepancy between direct and indirect measurements of the Hubble constant (H0), has persisted for a decade and motivated intense scrutiny of the paths used to infer H0. Comparing independently-derived distances for a set of galaxies with different standard candles, such as the tip of the red giant branch (TRGB) and Cepheid variables, can test for systematics in the middle rung of the distance ladder. The I band is the preferred filter for measuring the TRGB due to constancy with color, a result of low sensitivity to population differences in age and metallicity supported by stellar models. We use James Webb Space Telescope (JWST) observations with the maser host NGC 4258 as our geometric anchor to measure I-band (F090W vs F090W-F150W) TRGB distances to 8 hosts of 10 Type Ia supernovae (SNe Ia) within 28 Mpc: NGC 1448, NGC 1559, NGC 2525, NGC 3370, NGC 3447, NGC 5584, NGC 5643, and NGC 5861. We compare these with Hubble Space Telescope (HST) Cepheid-based relative distance moduli for the same galaxies and anchor. We find no evidence of a difference between their weighted means, 0.01 +/- 0.04 (stat) +/- 0.04 (sys) mag. We produce fourteen variants of the TRGB analysis, altering the smoothing level and color range used to measure the tips to explore their impact. For some hosts, this changes the identification of the strongest peak, but this causes little change to the sample mean difference producing a full range of 0.01 to 0.03 mag, all consistent at 1 sigma with no difference. The result matches past comparisons of I-band TRGB and Cepheids when both use HST. SNe and anchor samples observed with JWST are too small to yield a measure of H0 that is competitive with the HST sample of 42 SNe Ia and 4 anchors; however, they already provide a vital systematic crosscheck to HST measurements of the distance ladder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.00065v2-abstract-full').style.display = 'none'; document.getElementById('2408.00065v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, 4 tables, submitted to ApJ, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.12867">arXiv:2407.12867</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.12867">pdf</a>, <a href="https://arxiv.org/format/2407.12867">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> </div> <p class="title is-5 mathjax"> Swift-BAT GUANO follow-up of gravitational-wave triggers in the third LIGO-Virgo-KAGRA observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Raman%2C+G">Gayathri Raman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ronchini%2C+S">Samuele Ronchini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Delaunay%2C+J">James Delaunay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tohuvavohu%2C+A">Aaron Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">Jamie A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parsotan%2C+T">Tyler Parsotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ambrosi%2C+E">Elena Ambrosi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardini%2C+M+G">Maria Grazia Bernardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campana%2C+S">Sergio Campana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cusumano%2C+G">Giancarlo Cusumano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Ai%2C+A">Antonino D&#39;Ai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">Paolo D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Elia%2C+V">Valerio D&#39;Elia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Pasquale%2C+M">Massimiliano De Pasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P">Phil Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">Dieter Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuin%2C+P">Paul Kuin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">Andrea Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+P">Paul O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osborne%2C+J+P">Julian P. Osborne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+K">Kim Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmer%2C+D+M">David M. Palmer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sbarufatti%2C+B">Boris Sbarufatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tagliaferri%2C+G">Gianpiero Tagliaferri</a> , et al. (1797 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.12867v1-abstract-short" style="display: inline;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'inline'; document.getElementById('2407.12867v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.12867v1-abstract-full" style="display: none;"> We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO-Virgo-KAGRA (LVK) network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received in low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum--likelihood NITRATES pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15-350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10$^{-3}$ Hz, we compute the GW--BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.12867v1-abstract-full').style.display = 'none'; document.getElementById('2407.12867v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">50 pages, 10 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08653">arXiv:2407.08653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.08653">pdf</a>, <a href="https://arxiv.org/format/2407.08653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> An infrared census of R Coronae Borealis Stars II -- Spectroscopic classifications and implications for the rate of low-mass white dwarf mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V+R">Viraj R. Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tisserand%2C+P">Patrick Tisserand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashley%2C+M+C+B">Michael C. B. Ashley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bildsten%2C+L">Lars Bildsten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clayton%2C+G+C">Geoffrey C. Clayton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+C+C">Courtney C. Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Earley%2C+N">Nicholas Earley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hankins%2C+M+J">Matthew J. Hankins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hall%2C+X">Xander Hall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamberts%2C+A">Astrid Lamberts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lau%2C+R+M">Ryan M. Lau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McKenna%2C+D">Dan McKenna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+A">Anna Moore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ofek%2C+E+O">Eran O. Ofek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+R+M">Roger M. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soria%2C+R">Roberto Soria</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soon%2C+J">Jamie Soon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Travouillon%2C+T">Tony Travouillon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08653v1-abstract-short" style="display: inline;"> We present results from a systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, using data from the Palomar Gattini IR (PGIR) survey. R Coronae Borealis stars are dusty, erratic variable stars presumably formed from the merger of a He-core and a CO-core white dwarf (WD). PGIR is a 30 cm $J$-band telescope with a 25 deg$^{2}$ camera that surveys 18000 deg$^{2}$ of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08653v1-abstract-full').style.display = 'inline'; document.getElementById('2407.08653v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08653v1-abstract-full" style="display: none;"> We present results from a systematic infrared (IR) census of R Coronae Borealis (RCB) stars in the Milky Way, using data from the Palomar Gattini IR (PGIR) survey. R Coronae Borealis stars are dusty, erratic variable stars presumably formed from the merger of a He-core and a CO-core white dwarf (WD). PGIR is a 30 cm $J$-band telescope with a 25 deg$^{2}$ camera that surveys 18000 deg$^{2}$ of the northern sky ($未&gt;-28^{o}$) at a cadence of 2 days. Using PGIR J-band lightcurves for $\sim$60 million stars together with mid-IR colors from WISE, we selected a sample of 530 candidate RCB stars. We obtained near-IR spectra for these candidates and identified 53 RCB stars in our sample. Accounting for our selection criteria, we find that there are a total of $\approx350^{+150}_{-100}$ RCB stars in the Milky Way. Assuming typical RCB lifetimes, this corresponds to an RCB formation rate of 0.8 - 5 $\times$ 10$^{-3}$ yr$^{-1}$, consistent with observational and theoretical estimates of the He-CO WD merger rate. We searched for quasi-periodic pulsations in the PGIR lightcurves of RCB stars and present pulsation periods for 16 RCB stars. We also examined high-cadenced TESS lightcurves for RCB and the chemically similar, but dustless hydrogen-deficient carbon (dLHdC) stars. We find that dLHdC stars show variations on timescales shorter than RCB stars, suggesting that they may have lower masses than RCB stars. Finally, we identified 3 new spectroscopically confirmed and 12 candidate Galactic DY Per type stars - believed to be colder cousins of RCB stars - doubling the sample of Galactic DY Per type stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08653v1-abstract-full').style.display = 'none'; document.getElementById('2407.08653v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in PASP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12403">arXiv:2405.12403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12403">pdf</a>, <a href="https://arxiv.org/format/2405.12403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Searching for gravitational wave optical counterparts with the Zwicky Transient Facility: summary of O4a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+V">Vaidehi Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V+R">Viraj R. Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R+D">Robert D. Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waratkar%2C+G">Gaurav Waratkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laz%2C+T+J+d">Theophile Jegou du Laz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anumarlapudi%2C+A">Akash Anumarlapudi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toivonen%2C+A">Andrew Toivonen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wold%2C+A">Avery Wold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salgundi%2C+A">Anirudh Salgundi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suresh%2C+A">Aswin Suresh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12403v1-abstract-short" style="display: inline;"> During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network (IGWN), the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star-black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (FAR &lt; 1 per year) BNS and NSBH candida&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12403v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12403v1-abstract-full" style="display: none;"> During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network (IGWN), the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star-black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (FAR &lt; 1 per year) BNS and NSBH candidates in O4a. Our follow-up campaigns relied on both target-of-opportunity observations (ToO) and re-weighting of the nominal survey schedule to maximize coverage. We describe the toolkit we have been developing, Fritz, an instance of SkyPortal, instrumental in coordinating and managing our telescope scheduling, candidate vetting, and follow-up observations through a user-friendly interface. ZTF covered a total of 2841 deg$^2$ within the skymaps of the high-significance GW events, reaching a median depth of g~20.2 mag. We circulated 15 candidates, but found no viable KN counterpart to any of the GW events. Based on the ZTF non-detections of the high-significance events in O4a, we used a Bayesian approach, nimbus, to quantify the posterior probability of KN model parameters that are consistent with our non-detections. Our analysis favors KNe with initial absolute magnitude fainter than -16 mag. The joint posterior probability of a GW170817-like KN associated with all our O4a follow-ups was 64%. Additionally, we use a survey simulation software, simsurvey, to determine that our combined filtered efficiency to detect a GW170817-like KN is 36%, when considering the 5 confirmed astrophysical events in O3 (1 BNS and 4 NSBH), along with our O4a follow-ups. Following Kasliwal et al. (2020), we derived joint constraints on the underlying KN luminosity function based on our O3 and O4a follow-ups, determining that no more than 76% of KNe fading at 1 mag/day can peak at a magnitude brighter than -17.5 mag. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12403v1-abstract-full').style.display = 'none'; document.getElementById('2405.12403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.03743">arXiv:2405.03743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.03743">pdf</a>, <a href="https://arxiv.org/format/2405.03743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The TRGB-SBF Project. I. A Tip of the Red Giant Branch Distance to the Fornax Cluster with JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tully%2C+R+B">R. Brent Tully</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cohen%2C+Y">Yotam Cohen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Makarov%2C+D+I">Dmitry I. Makarov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Makarova%2C+L+N">Lidia N. Makarova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jensen%2C+J+B">Joseph B. Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blakeslee%2C+J+P">John P. Blakeslee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cantiello%2C+M">Michele Cantiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kourkchi%2C+E">Ehsan Kourkchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raimondo%2C+G">Gabriella Raimondo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.03743v3-abstract-short" style="display: inline;"> Differences between the local value of the Hubble constant measured via the distance ladder versus the value inferred from the cosmic microwave background with the assumption of the standard $螞$CDM model have reached over 5$蟽$ significance. To determine if this discrepancy is due to new physics or more mundane systematic errors, it is essential to remove as many sources of systematic uncertainty a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03743v3-abstract-full').style.display = 'inline'; document.getElementById('2405.03743v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.03743v3-abstract-full" style="display: none;"> Differences between the local value of the Hubble constant measured via the distance ladder versus the value inferred from the cosmic microwave background with the assumption of the standard $螞$CDM model have reached over 5$蟽$ significance. To determine if this discrepancy is due to new physics or more mundane systematic errors, it is essential to remove as many sources of systematic uncertainty as possible by developing high-precision distance ladders that are independent of the traditional Cepheid and Type Ia supernovae route. Here we present JWST observations of three early-type Fornax Cluster galaxies, the first of fourteen observations from a Cycle 2 JWST program. Our modest integration times allow us to measure highly precise tip of the red giant branch (TRGB) distances, and will also be used to perform measurements of Surface Brightness Fluctuations (SBF). From these three galaxies, we determine an average TRGB distance modulus to the Fornax Cluster of $渭$ = 31.424 $\pm$ 0.077 mag, or D = 19.3 $\pm$ 0.7 Mpc. With eleven more scheduled observations in nearby elliptical galaxies, our program will allow us set the zero point of the SBF scale to better than 2$\%$ for more distant measurements, charting a path towards a high-precision measurement of $H_{0}$ that is independent of the traditional Cepheid-SN Ia distance ladder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.03743v3-abstract-full').style.display = 'none'; document.getElementById('2405.03743v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08038">arXiv:2404.08038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08038">pdf</a>, <a href="https://arxiv.org/format/2404.08038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad630e">10.3847/1538-4357/ad630e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Small Magellanic Cloud Cepheids Observed with the Hubble Space Telescope Provide a New Anchor for the SH0ES Distance Ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Breuval%2C+L">Louise Breuval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macri%2C+L+M">Lucas M. Macri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Romaniello%2C+M">Martino Romaniello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murakami%2C+Y+S">Yukei S. Murakami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Daniel Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soszy%C5%84ski%2C+I">Igor Soszy艅ski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08038v2-abstract-short" style="display: inline;"> We present phase-corrected photometric measurements of 88 Cepheid variables in the core of the Small Magellanic Cloud (SMC), the first sample obtained with the Hubble Space Telescope&#39;s (HST) Wide Field Camera 3, in the same homogeneous photometric system as past measurements of all Cepheids on the SH0ES distance ladder. We limit the sample to the inner core and model the geometry to reduce errors&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08038v2-abstract-full').style.display = 'inline'; document.getElementById('2404.08038v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08038v2-abstract-full" style="display: none;"> We present phase-corrected photometric measurements of 88 Cepheid variables in the core of the Small Magellanic Cloud (SMC), the first sample obtained with the Hubble Space Telescope&#39;s (HST) Wide Field Camera 3, in the same homogeneous photometric system as past measurements of all Cepheids on the SH0ES distance ladder. We limit the sample to the inner core and model the geometry to reduce errors in prior studies due to the nontrivial depth of this cloud. Without crowding present in ground-based studies, we obtain an unprecedentedly low dispersion of 0.102 mag for a period-luminosity (P-L) relation in the SMC, approaching the width of the Cepheid instability strip. The new geometric distance to 15 late-type detached eclipsing binaries in the SMC offers a rare opportunity to improve the foundation of the distance ladder, increasing the number of calibrating galaxies from three to four. With the SMC as the only anchor, we find H$_0\!=\!74.1 \pm 2.1$ km/s/Mpc. Combining these four geometric distances with our HST photometry of SMC Cepheids, we obtain H$_0\!=\!73.17 \pm 0.86$ km/s/Mpc. By including the SMC in the distance ladder, we also double the range where the metallicity ([Fe/H]) dependence of the Cepheid P-L relation can be calibrated, and we find $纬= -0.234 \pm 0.052$ mag/dex. Our local measurement of H$_0$ based on Cepheids and Type Ia supernovae shows a 5.8$蟽$ tension with the value inferred from the cosmic microwave background assuming a Lambda cold dark matter ($螞$CDM) cosmology, reinforcing the possibility of physics beyond $螞$CDM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08038v2-abstract-full').style.display = 'none'; document.getElementById('2404.08038v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ. Data Tables are available at: https://github.com/lbreuval/SMC_Cepheids_HST</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal (2024), 973, 30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08165">arXiv:2403.08165</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08165">pdf</a>, <a href="https://arxiv.org/format/2403.08165">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad527a">10.3847/2041-8213/ad527a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SN 2023zaw: an ultra-stripped, nickel-poor supernova from a low-mass progenitor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+S">Sam Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aubert%2C+M">Marie Aubert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brennan%2C+S+J">Sean J. Brennan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Connor%2C+B">B. O&#39;Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+J">Jim Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M">Matthew Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammerstein%2C+E">Erica Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Haynie%2C+A">Annastasia Haynie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kleiser%2C+I">Io Kleiser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+Z">Zeren Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahabal%2C+A+A">Ashish A. Mahabal</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08165v3-abstract-short" style="display: inline;"> We present SN 2023zaw $-$ a sub-luminous ($\mathrm{M_r} = -16.7$ mag) and rapidly-evolving supernova ($\mathrm{t_{1/2,r}} = 4.9$ days), with the lowest nickel mass ($\approx0.002$ $\mathrm{M_\odot}$) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad He I and Ca NIR emission lines with velocities of $\sim10\ 000 - 12\ 000$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08165v3-abstract-full').style.display = 'inline'; document.getElementById('2403.08165v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08165v3-abstract-full" style="display: none;"> We present SN 2023zaw $-$ a sub-luminous ($\mathrm{M_r} = -16.7$ mag) and rapidly-evolving supernova ($\mathrm{t_{1/2,r}} = 4.9$ days), with the lowest nickel mass ($\approx0.002$ $\mathrm{M_\odot}$) measured among all stripped-envelope supernovae discovered to date. The photospheric spectra are dominated by broad He I and Ca NIR emission lines with velocities of $\sim10\ 000 - 12\ 000$ $\mathrm{km\ s^{-1}}$. The late-time spectra show prominent narrow He I emission lines at $\sim$1000$\ \mathrm{km\ s^{-1}}$, indicative of interaction with He-rich circumstellar material. SN 2023zaw is located in the spiral arm of a star-forming galaxy. We perform radiation-hydrodynamical and analytical modeling of the lightcurve by fitting with a combination of shock-cooling emission and nickel decay. The progenitor has a best-fit envelope mass of $\approx0.2$ $\mathrm{M_\odot}$ and an envelope radius of $\approx50$ $\mathrm{R_\odot}$. The extremely low nickel mass and low ejecta mass ($\approx0.5$ $\mathrm{M_\odot}$) suggest an ultra-stripped SN, which originates from a mass-losing low mass He-star (ZAMS mass $&lt;$ 10 $\mathrm{M_\odot}$) in a close binary system. This is a channel to form double neutron star systems, whose merger is detectable with LIGO. SN 2023zaw underscores the existence of a previously undiscovered population of extremely low nickel mass ($&lt; 0.005$ $\mathrm{M_\odot}$) stripped-envelope supernovae, which can be explored with deep and high-cadence transient surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08165v3-abstract-full').style.display = 'none'; document.getElementById('2403.08165v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Letters, July 2024, Volume 969, Issue 1, id.L11, 18 pp </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.03004">arXiv:2403.03004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.03004">pdf</a>, <a href="https://arxiv.org/format/2403.03004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Ultralight vector dark matter search using data from the KAGRA O3GK run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abouelfettouh%2C+I">I. Abouelfettouh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a> , et al. (1778 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.03004v1-abstract-short" style="display: inline;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we prese&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'inline'; document.getElementById('2403.03004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.03004v1-abstract-full" style="display: none;"> Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for $U(1)_{B-L}$ gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the $U(1)_{B-L}$ gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.03004v1-abstract-full').style.display = 'none'; document.getElementById('2403.03004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300250 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16470">arXiv:2401.16470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16470">pdf</a>, <a href="https://arxiv.org/ps/2401.16470">ps</a>, <a href="https://arxiv.org/format/2401.16470">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> AT2019pim: A Luminous Orphan Afterglow from a Moderately Relativistic Outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fausnaugh%2C+M">Michael Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">Gavin P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">Eric Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolin%2C+B">Bryce Bolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frederiks%2C+D">Dmitry Frederiks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamburg%2C+R">Rachel Hamburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jayaraman%2C+R">Rahul Jayaraman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kool%2C+E+C">Erik C. Kool</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S">Shrinivas Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R">Russ Laher</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16470v1-abstract-short" style="display: inline;"> Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultra-relativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first secu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16470v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16470v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16470v1-abstract-full" style="display: none;"> Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultra-relativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first secure example of this phenomenon to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising (t ~ 2 hr), luminous (M_UV,peak ~ -24.4 mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing strong limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of Gamma_0 ~ 30-50, significantly lower than in any well-observed GRB and consistent with the theoretically-predicted &#34;dirty fireball&#34; scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-Gamma, off-axis from a classical high-Gamma jet core. This event represents a milestone in orphan afterglow searches, demonstrating that luminous afterglows with weak or no detectable gamma-ray radiation exist in nature and can be discovered by high-cadence optical surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16470v1-abstract-full').style.display = 'none'; document.getElementById('2401.16470v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15148">arXiv:2401.15148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15148">pdf</a>, <a href="https://arxiv.org/format/2401.15148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449350">10.1051/0004-6361/202449350 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopic observations of progenitor activity 100 days before a Type Ibn supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brennan%2C+S+J">S. J. Brennan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">J. Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irani%2C+I">I. Irani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P">P. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">K. K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">K. De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fransson%2C+C">C. Fransson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">A. Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gkini%2C+A">A. Gkini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K+R">K. R. Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunnan%2C+R">R. Lunnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">D. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qin%2C+Y">YJ. Qin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">R. Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wise%2C+J">J. Wise</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yan%2C+L">L. Yan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zimmerman%2C+E+A">E. A. Zimmerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruch%2C+R+J">R. J. Bruch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">R. Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A+J">A. J. Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">C. Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+B">B. Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">V. Karambelkar</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15148v4-abstract-short" style="display: inline;"> Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible due to an inherent lack of knowledge as to which stars will go supernova and when they will explode. In this letter, we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq in the preceding 150 days before the He-rich progenitor exploded as a Type Ibn super&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15148v4-abstract-full').style.display = 'inline'; document.getElementById('2401.15148v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15148v4-abstract-full" style="display: none;"> Obtaining spectroscopic observations of the progenitors of core-collapse supernovae is often unfeasible due to an inherent lack of knowledge as to which stars will go supernova and when they will explode. In this letter, we present photometric and spectroscopic observations of the progenitor activity of SN 2023fyq in the preceding 150 days before the He-rich progenitor exploded as a Type Ibn supernova. The progenitor of SN 2023fyq shows an exponential rise in flux prior to core-collapse. Complex He I emission line features are observed, with a P-Cygni like profile, as well as an evolving broad base with velocities on the order of 10,000 km/s, possibly due to electron scattering. The luminosity and evolution of SN 2023fyq are consistent with a faint Type Ibn, reaching a peak r-band magnitude of 18.1 mag, although there is some uncertainty in the distance to the host, NGC 4388, located in the Virgo cluster. We present additional evidence of asymmetric He-rich material being present prior to the explosion of SN 2023fyq, as well as after, suggesting this material has survived the ejecta-CSM interaction. Broad [O I] and the Ca II triplet lines are observed at late phases, confirming that SN 2023fyq was a genuine supernova rather than a non-terminal interacting transient. SN 2023fyq provides insight into the final moments of a massive star&#39;s life, highlighting that the progenitor is likely highly unstable before core-collapse. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15148v4-abstract-full').style.display = 'none'; document.getElementById('2401.15148v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 5 Figures, accepted to A&amp;A Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 684, L18 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15142">arXiv:2401.15142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.15142">pdf</a>, <a href="https://arxiv.org/format/2401.15142">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> PHANGS-JWST: Data Processing Pipeline and First Full Public Data Release </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+T+G">Thomas G. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J+C">Janice C. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larson%2C+K+L">Kirsten L. Larson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leroy%2C+A+K">Adam K. Leroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sandstrom%2C+K">Karin Sandstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schinnerer%2C+E">Eva Schinnerer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thilker%2C+D+A">David A. Thilker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belfiore%2C+F">Francesco Belfiore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egorov%2C+O+V">Oleg V. Egorov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosolowsky%2C+E">Erik Rosolowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sutter%2C+J">Jessica Sutter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DePasquale%2C+J">Joseph DePasquale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pagan%2C+A">Alyssa Pagan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+T+A">Travis A. Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+A+T">Ashley T. Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">Frank Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boquien%2C+M">M茅d茅ric Boquien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+Y">Yixian Cao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chastenet%2C+J">J茅r茅my Chastenet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chevance%2C+M">M茅lanie Chevance</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chown%2C+R">Ryan Chown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deger%2C+S">Sinan Deger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eibensteiner%2C+C">Cosima Eibensteiner</a> , et al. (33 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15142v3-abstract-short" style="display: inline;"> The exquisite angular resolution and sensitivity of JWST is opening a new window for our understanding of the Universe. In nearby galaxies, JWST observations are revolutionizing our understanding of the first phases of star formation and the dusty interstellar medium. Nineteen local galaxies spanning a range of properties and morphologies across the star-forming main sequence have been observed as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15142v3-abstract-full').style.display = 'inline'; document.getElementById('2401.15142v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15142v3-abstract-full" style="display: none;"> The exquisite angular resolution and sensitivity of JWST is opening a new window for our understanding of the Universe. In nearby galaxies, JWST observations are revolutionizing our understanding of the first phases of star formation and the dusty interstellar medium. Nineteen local galaxies spanning a range of properties and morphologies across the star-forming main sequence have been observed as part of the PHANGS-JWST Cycle 1 Treasury program at spatial scales of $\sim$5-50pc. Here, we describe pjpipe, an image processing pipeline developed for the PHANGS-JWST program that wraps around and extends the official JWST pipeline. We release this pipeline to the community as it contains a number of tools generally useful for JWST NIRCam and MIRI observations. Particularly for extended sources, pjpipe products provide significant improvements over mosaics from the MAST archive in terms of removing instrumental noise in NIRCam data, background flux matching, and calibration of relative and absolute astrometry. We show that slightly smoothing F2100W MIRI data to 0.9&#34; (degrading the resolution by about 30 percent) reduces the noise by a factor of $\approx$3. We also present the first public release (DR1.1.0) of the pjpipe processed eight-band 2-21 $渭$m imaging for all nineteen galaxies in the PHANGS-JWST Cycle 1 Treasury program. An additional 55 galaxies will soon follow from a new PHANGS-JWST Cycle 2 Treasury program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15142v3-abstract-full').style.display = 'none'; document.getElementById('2401.15142v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">49 pages (27 in Appendices), 54 Figures (39 in Appendices), 3 Tables. Accepted for publication in ApJS. Updated to match accepted version. Data available at https://archive.stsci.edu/hlsp/phangs/phangs-jwst</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04777">arXiv:2401.04777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04777">pdf</a>, <a href="https://arxiv.org/format/2401.04777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad2f2b">10.3847/1538-4357/ad2f2b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconnaissance with JWST of the J-region Asymptotic Giant Branch in Distance Ladder Galaxies: From Irregular Luminosity Functions to Approximation of the Hubble Constant </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Siyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D+M">Daniel M. Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuval%2C+L">Louise Breuval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+C+D">Caroline D. Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04777v2-abstract-short" style="display: inline;"> We study stars in the J-regions of the asymptotic giant branch (JAGB) of near-infrared color magnitude diagrams in the maser host NGC 4258 and 4 hosts of 6 Type Ia supernovae (SN Ia): NGC 1448, NGC 1559, NGC 5584, and NGC 5643. These clumps of stars are readily apparent near $1.0&lt;F150W-F277W&lt;1.5$ and $m_{F150W}$=22-25 mag with James Webb Space Telescope NIRCam photometry. Various methods have been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04777v2-abstract-full').style.display = 'inline'; document.getElementById('2401.04777v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04777v2-abstract-full" style="display: none;"> We study stars in the J-regions of the asymptotic giant branch (JAGB) of near-infrared color magnitude diagrams in the maser host NGC 4258 and 4 hosts of 6 Type Ia supernovae (SN Ia): NGC 1448, NGC 1559, NGC 5584, and NGC 5643. These clumps of stars are readily apparent near $1.0&lt;F150W-F277W&lt;1.5$ and $m_{F150W}$=22-25 mag with James Webb Space Telescope NIRCam photometry. Various methods have been proposed to assign an apparent reference magnitude for this recently proposed standard candle, including the mode, median, sigma-clipped mean or a modeled luminosity function parameter. We test the consistency of these by measuring intra-host variations, finding differences of up to $\sim$0.2 mag that significantly exceed statistical uncertainties. Brightness differences appear intrinsic, and are further amplified by the non-uniform shape of the JAGB luminosity function, also apparent in the LMC and SMC. We follow a &#39;many methods&#39; approach to consistently measure JAGB magnitudes and distances to the SN Ia host sample calibrated by NGC 4258. We find broad agreement with distances measured from Cepheids, tip of the red giant branch (TRGB), and Miras. However, the SN host mean distance estimated via the JAGB method necessary to estimate $H_0$ differs by $\sim$0.19 mag amongst the above definitions, a result of different levels of luminosity function asymmetry. The methods yield a full range of $71-78$ km s$^{-1}$ Mpc$^{-1}$, i.e., a fiducial result of $H_0=74.7\pm2.1$ (stat) $\pm$2.3 (sys) ($\pm$3.1 if combined in quadrature) km s$^{-1}$ Mpc$^{-1}$, with systematic errors limited by the differences in methods. Future work may seek to further standardize and refine this promising tool, making it more competitive with established distance indicators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04777v2-abstract-full').style.display = 'none'; document.getElementById('2401.04777v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 21 figures, 8 tables, Accepted by ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 966 20 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04776">arXiv:2401.04776</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04776">pdf</a>, <a href="https://arxiv.org/format/2401.04776">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Tip of the Red Giant Branch Distances with JWST: An Absolute Calibration in NGC 4258 and First Applications to Type Ia Supernova Hosts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">Rachael Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Siyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Makarov%2C+D+I">Dmitry I. Makarov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Makarova%2C+L+N">Lidia N. Makarova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tully%2C+R+B">R. Brent Tully</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+R+I">Richard I. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuval%2C+L">Louise Breuval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dolphin%2C+A">Andrew Dolphin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karachentsev%2C+I+D">Igor D. Karachentsev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macri%2C+L+M">Lucas M. Macri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Daniel Scolnic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04776v2-abstract-short" style="display: inline;"> The tip of the red giant branch (TRGB) allows for the measurement of precise and accurate distances to nearby galaxies, based on the brightest ascent of low-mass red giant branch stars before they undergo the helium flash. With the advent of JWST, there is great promise to utilize the technique to measure galaxy distances out to at least 50 Mpc, significantly further than HST&#39;s reach of 20 Mpc. Ho&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04776v2-abstract-full').style.display = 'inline'; document.getElementById('2401.04776v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04776v2-abstract-full" style="display: none;"> The tip of the red giant branch (TRGB) allows for the measurement of precise and accurate distances to nearby galaxies, based on the brightest ascent of low-mass red giant branch stars before they undergo the helium flash. With the advent of JWST, there is great promise to utilize the technique to measure galaxy distances out to at least 50 Mpc, significantly further than HST&#39;s reach of 20 Mpc. However, with any standard candle, it is first necessary to provide an absolute reference. Here we use Cycle 1 data to provide an absolute calibration in the F090W filter. F090W is most similar to the F814W filter commonly used for TRGB measurements with HST, which had been adopted by the community due to minimal dependence from the underlying metallicities and ages of stars. The imaging we use was taken in the outskirts of NGC 4258, which has a direct geometrical distance measurement from the Keplerian motion of its water megamaser. Utilizing several measurement techniques, we find $M_{TRGB}^{F090W}$ = -4.362 $\pm$ 0.033 (stat) $\pm$ 0.045 (sys) mag (Vega) for the metal-poor TRGB. We also perform measurements of the TRGB in two Type Ia supernova hosts, NGC 1559, and NGC 5584. We find good agreement between our TRGB distances and previous distance determinations to these galaxies from Cepheids ($螖$ = 0.01 $\pm$ 0.06 mag), with these differences being too small to explain the Hubble tension ($\sim$0.17 mag). As a final bonus, we showcase the serendipitous discovery of a faint dwarf galaxy near NGC 5584. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04776v2-abstract-full').style.display = 'none'; document.getElementById('2401.04776v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, accepted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04773">arXiv:2401.04773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04773">pdf</a>, <a href="https://arxiv.org/format/2401.04773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> JWST Observations Reject Unrecognized Crowding of Cepheid Photometry as an Explanation for the Hubble Tension at 8 sigma Confidence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macri%2C+L+M">Lucas M. Macri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dolphin%2C+A">Andrew Dolphin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuval%2C+L">Louise Breuval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perrin%2C+M">Marshall Perrin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+R+I">Richard I. Anderson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04773v1-abstract-short" style="display: inline;"> We present high-definition observations with the James Webb Space Telescope of &gt;1000 Cepheids in a geometric anchor of the distance ladder, NGC4258, and in 5 hosts of 8 SNe~Ia, a far greater sample than previous studies with JWST. These galaxies individually contain the largest samples of Cepheids, an average of &gt;150 each, producing the strongest statistical comparison to those previously measured&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04773v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04773v1-abstract-full" style="display: none;"> We present high-definition observations with the James Webb Space Telescope of &gt;1000 Cepheids in a geometric anchor of the distance ladder, NGC4258, and in 5 hosts of 8 SNe~Ia, a far greater sample than previous studies with JWST. These galaxies individually contain the largest samples of Cepheids, an average of &gt;150 each, producing the strongest statistical comparison to those previously measured with the Hubble Space Telescope in the NIR. They also span the distance range of those used to determine the Hubble constant with HST, allowing us to search for a distance-dependent bias in HST measurements. The superior resolution of JWST negates crowding noise, the largest source of variance in the NIR Cepheid Period-Luminosity relations (Leavitt laws) measured with HST. Together with the use of two-epochs to constrain Cepheid phases and three filters to remove reddening, we reduce the dispersion in the Cepheid PL relations by a factor of 2.5. We find no significant difference in the mean distance measurements determined from HST and JWST, with a formal difference of -0.01+/-0.03 mag. This result is independent of zeropoints and analysis variants including metallicity dependence, local crowding, choice of filters, and relation slope. We can reject the hypothesis of unrecognized crowding of Cepheid photometry from HST that grows with distance as the cause of the ``Hubble Tension&#39;&#39; at 8.2 sigma, i.e., greater confidence than that of the Hubble Tension itself. We conclude that errors in photometric measurements of Cepheids across the distance ladder do not significantly contribute to the Tension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04773v1-abstract-full').style.display = 'none'; document.getElementById('2401.04773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJ Letters, accepted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04630">arXiv:2312.04630</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.04630">pdf</a>, <a href="https://arxiv.org/format/2312.04630">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Hubble Space Telescope Search for r-Process Nucleosynthesis in Gamma-ray Burst Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rastinejad%2C+J+C">J. C. Rastinejad</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+W">W. Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A+J">A. J. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N+R">N. R. Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilpatrick%2C+C+D">C. D. Kilpatrick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fruchter%2C+A+S">A. S. Fruchter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhirombhakdi%2C+K">K. Bhirombhakdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Covino%2C+S">S. Covino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fynbo%2C+J+P+U">J. P. U. Fynbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Halevi%2C+G">G. Halevi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">D. H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heintz%2C+K+E">K. E. Heintz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jakobsson%2C+P">P. Jakobsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">G. P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malesani%2C+D+B">D. B. Malesani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melandri%2C+A">A. Melandri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">B. D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milvang-Jensen%2C+B">B. Milvang-Jensen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pian%2C+E">E. Pian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pugliese%2C+G">G. Pugliese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+A">A. Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Siegel%2C+D+M">D. M. Siegel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singh%2C+P">P. Singh</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04630v2-abstract-short" style="display: inline;"> The existence of a secondary (in addition to compact object mergers) source of heavy element ($r$-process) nucleosynthesis, the core-collapse of rapidly-rotating and highly-magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature of $r$-process enrichment, a late-time ($\gtrsim 40$ days post-burst) distinct red color&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04630v2-abstract-full').style.display = 'inline'; document.getElementById('2312.04630v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04630v2-abstract-full" style="display: none;"> The existence of a secondary (in addition to compact object mergers) source of heavy element ($r$-process) nucleosynthesis, the core-collapse of rapidly-rotating and highly-magnetized massive stars, has been suggested by both simulations and indirect observational evidence. Here, we probe a predicted signature of $r$-process enrichment, a late-time ($\gtrsim 40$ days post-burst) distinct red color, in observations of GRB-supernovae (GRB-SNe) which are linked to these massive star progenitors. We present optical to near-IR color measurements of four GRB-SNe at $z \lesssim 0.4$, extending out to $&gt; 500$ days post-burst, obtained with the Hubble Space Telescope and large-aperture ground-based telescopes. Comparison of our observations to models indicates that GRBs 030329, 100316D and 130427A are consistent with both no enrichment and producing $0.01 - 0.15 M_{\odot}$ of $r$-process material if there is a low amount of mixing between the inner $r$-process ejecta and outer SN layers. GRB 190829A is not consistent with any models with $r$-process enrichment $\geq 0.01 M_{\odot}$. Taken together the sample of GRB-SNe indicates color diversity at late times. Our derived yields from GRB-SNe may be underestimated due to $r$-process material hidden in the SN ejecta (potentially due to low mixing fractions) or the limits of current models in measuring $r$-process mass. We conclude with recommendations for future search strategies to observe and probe the full distribution of $r$-process produced by GRB-SNe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04630v2-abstract-full').style.display = 'none'; document.getElementById('2312.04630v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmission after comments. Accepted to ApJ. 36 pages, 7 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14397">arXiv:2310.14397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14397">pdf</a>, <a href="https://arxiv.org/format/2310.14397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the Ordinary Broad-lined Type Ic SN 2023pel from the Energetic GRB 230812B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Connor%2C+B+M">Brendan M. O&#39;Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">Sarah Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guessoum%2C+N">Nidhal Guessoum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hussenot-Desenonges%2C+T">Thomas Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hello%2C+P">Patrice Hello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammerstein%2C+E">Erica Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+M+C">M. Coleman Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutta%2C+A">Anirban Dutta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jaodand%2C+A+D">Amruta D. Jaodand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14397v2-abstract-short" style="display: inline;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 230812B, and its associated supernova (SN) SN 2023pel. The proximity ($z = 0.36$) and high energy ($E_{纬, \rm{iso}} \sim 10^{53}$ erg) make it an important event to study as a probe of the connection between massive star core-collapse and relativistic jet formation. With a phenomenological power-law model for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14397v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14397v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14397v2-abstract-full" style="display: none;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 230812B, and its associated supernova (SN) SN 2023pel. The proximity ($z = 0.36$) and high energy ($E_{纬, \rm{iso}} \sim 10^{53}$ erg) make it an important event to study as a probe of the connection between massive star core-collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peak $r$-band magnitude of $M_r = -19.46 \pm 0.18$ mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN of $M_{\rm{Ni}} = 0.38 \pm 0.01$ $\rm{M_\odot}$, and a peak bolometric luminosity of $L_{\rm{bol}} \sim 1.3 \times 10^{43}$ $\rm{erg}$ $\rm{s^{-1}}$. We confirm SN 2023pel&#39;s classification as a broad-lined Type Ic SN with a spectrum taken 15.5 days after its peak in $r$ band, and derive a photospheric expansion velocity of $v_{\rm{ph}} = 11,300 \pm 1,600$ $\rm{km}$ $\rm{s^{-1}}$ at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta mass $M_{\rm{ej}} = 1.0 \pm 0.6$ $\rm{M_\odot}$ and kinetic energy $E_{\rm{KE}} = 1.3^{+3.3}_{-1.2} \times10^{51}$ $\rm{erg}$. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness and $E_{纬, \rm{iso}}$ for their associated GRBs, across a broad range of 7 orders of magnitude, provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14397v2-abstract-full').style.display = 'none'; document.getElementById('2310.14397v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 Figures, 1 Table, Accepted to ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14310">arXiv:2310.14310</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14310">pdf</a>, <a href="https://arxiv.org/format/2310.14310">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Multi-band analyses of the bright GRB 230812B and the associated SN2023pel </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hussenot-Desenonges%2C+T">T. Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wouters%2C+T">T. Wouters</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guessoum%2C+N">N. Guessoum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abdi%2C+I">I. Abdi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abulwfa%2C+A">A. Abulwfa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adami%2C+C">C. Adami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+J+F+A">J. F. Ag眉铆 Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">T. Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aivazyan%2C+V">V. Aivazyan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akl%2C+D">D. Akl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andrade%2C+C+M">C. M. Andrade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">S. Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ata%2C+S+A">S. A. Ata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Avanzo%2C+P">P. D&#39;Avanzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Azzam%2C+Y+A">Y. A. Azzam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baransky%2C+A">A. Baransky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basa%2C+S">S. Basa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blazek%2C+M">M. Blazek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bendjoya%2C+P">P. Bendjoya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beradze%2C+S">S. Beradze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boumis%2C+P">P. Boumis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">M. Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brivio%2C+R">R. Brivio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buat%2C+V">V. Buat</a> , et al. (87 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14310v2-abstract-short" style="display: inline;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of obs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14310v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14310v2-abstract-full" style="display: none;"> GRB~230812B is a bright and relatively nearby ($z =0.36$) long gamma-ray burst (GRB) that has generated significant interest in the community and has thus been observed over the entire electromagnetic spectrum. We report over 80 observations in X-ray, ultraviolet, optical, infrared, and sub-millimeter bands from the GRANDMA (Global Rapid Advanced Network for Multi-messenger Addicts) network of observatories and from observational partners. Adding complementary data from the literature, we then derive essential physical parameters associated with the ejecta and external properties (i.e. the geometry and environment) of the GRB and compare with other analyses of this event. We spectroscopically confirm the presence of an associated supernova, SN2023pel, and we derive a photospheric expansion velocity of v $\sim$ 17$\times10^3$ km s$^{-1}$. We analyze the photometric data first using empirical fits of the flux and then with full Bayesian Inference. We again strongly establish the presence of a supernova in the data, with a maximum (pseudo-)bolometric luminosity of $5.75 \times 10^{42}$ erg/s, at $15.76^{+0.81}_{-1.21}$ days (in the observer frame) after the trigger, with a half-max time width of 22.0 days. We compare these values with those of SN1998bw, SN2006aj, and SN2013dx. Our best-fit model favours a very low density environment ($\log_{10}({n_{\rm ISM}/{\rm cm}^{-3}}) = -2.38^{+1.45}_{-1.60}$) and small values for the jet&#39;s core angle $胃_{\rm core} = 1.54^{+1.02}_{-0.81} \ \rm{deg}$ and viewing angle $胃_{\rm obs} = 0.76^{+1.29}_{-0.76} \ \rm{deg}$. GRB 230812B is thus one of the best observed afterglows with a distinctive supernova bump. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14310v2-abstract-full').style.display = 'none'; document.getElementById('2310.14310v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.13666">arXiv:2308.13666</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.13666">pdf</a>, <a href="https://arxiv.org/format/2308.13666">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A Joint Fermi-GBM and Swift-BAT Analysis of Gravitational-Wave Candidates from the Third Gravitational-wave Observing Run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fletcher%2C+C">C. Fletcher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wood%2C+J">J. Wood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamburg%2C+R">R. Hamburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Veres%2C+P">P. Veres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hui%2C+C+M">C. M. Hui</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bissaldi%2C+E">E. Bissaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Briggs%2C+M+S">M. S. Briggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">E. Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cleveland%2C+W+H">W. H. Cleveland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giles%2C+M+M">M. M. Giles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldstein%2C+A">A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hristov%2C+B+A">B. A. Hristov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kocevski%2C+D">D. Kocevski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lesage%2C+S">S. Lesage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mailyan%2C+B">B. Mailyan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Malacaria%2C+C">C. Malacaria</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poolakkil%2C+S">S. Poolakkil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=von+Kienlin%2C+A">A. von Kienlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilson-Hodge%2C+C+A">C. A. Wilson-Hodge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Team%2C+T+F+G+B+M">The Fermi Gamma-ray Burst Monitor Team</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crnogor%C4%8Devi%C4%87%2C+M">M. Crnogor膷evi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=DeLaunay%2C+J">J. DeLaunay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tohuvavohu%2C+A">A. Tohuvavohu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caputo%2C+R">R. Caputo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a> , et al. (1674 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.13666v1-abstract-short" style="display: inline;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'inline'; document.getElementById('2308.13666v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.13666v1-abstract-full" style="display: none;"> We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM on-board triggers and sub-threshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma-rays from binary black hole mergers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.13666v1-abstract-full').style.display = 'none'; document.getElementById('2308.13666v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03822">arXiv:2308.03822</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03822">pdf</a>, <a href="https://arxiv.org/format/2308.03822">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for Eccentric Black Hole Coalescences during the Third Observing Run of LIGO and Virgo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abac%2C+A+G">A. G. Abac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adamcewicz%2C+C">C. Adamcewicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguilar%2C+I">I. Aguilar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a> , et al. (1750 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03822v1-abstract-short" style="display: inline;"> Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03822v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03822v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03822v1-abstract-full" style="display: none;"> Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass $M&gt;70$ $M_\odot$) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities $0 &lt; e \leq 0.3$ at $0.33$ Gpc$^{-3}$ yr$^{-1}$ at 90\% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03822v1-abstract-full').style.display = 'none'; document.getElementById('2308.03822v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2300080 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.15806">arXiv:2307.15806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.15806">pdf</a>, <a href="https://arxiv.org/format/2307.15806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Crowded No More: The Accuracy of the Hubble Constant Tested with High Resolution Observations of Cepheids by JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dolphin%2C+A">Andrew Dolphin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macri%2C+L+M">Lucas M. Macri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breuval%2C+L">Louise Breuval</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perrin%2C+M">Marshall Perrin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+R+I">Richard I. Anderson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.15806v1-abstract-short" style="display: inline;"> High-resolution JWST observations can test confusion-limited HST observations for a photometric bias that could affect extragalactic Cepheids and the determination of the Hubble constant. We present JWST NIRCAM observations in two epochs and three filters of &gt;330 Cepheids in NGC4258 (which has a 1.5% maser-based geometric distance) and in NGC5584 (host of SNIa 2007af), near the median distance of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15806v1-abstract-full').style.display = 'inline'; document.getElementById('2307.15806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.15806v1-abstract-full" style="display: none;"> High-resolution JWST observations can test confusion-limited HST observations for a photometric bias that could affect extragalactic Cepheids and the determination of the Hubble constant. We present JWST NIRCAM observations in two epochs and three filters of &gt;330 Cepheids in NGC4258 (which has a 1.5% maser-based geometric distance) and in NGC5584 (host of SNIa 2007af), near the median distance of the SH0ES HST SNIa host sample and with the best leverage among them to detect such a bias. JWST provides far superior source separation from line-of-sight companions than HST in the NIR to largely negate confusion or crowding noise at these wavelengths, where extinction is minimal. The result is a remarkable &gt;2.5x reduction in the dispersion of the Cepheid P-L relations, from 0.45 to 0.17 mag, improving individual Cepheid precision from 20% to 7%. Two-epoch photometry confirmed identifications, tested JWST photometric stability, and constrained Cepheid phases. The P-L relation intercepts are in very good agreement, with differences (JWST-HST) of 0.00+/-0.03 and 0.02+/-0.03 mag for NGC4258 and NGC5584, respectively. The difference in the determination of H_0 between HST and JWST from these intercepts is 0.02+/-0.04 mag, insensitive to JWST zeropoints or count-rate non-linearity thanks to error cancellation between rungs. We explore a broad range of analysis variants (including passband combinations, phase corrections, measured detector offsets, and crowding levels) indicating robust baseline results. These observations provide the strongest evidence yet that systematic errors in HST Cepheid photometry do not play a significant role in the present Hubble Tension. Upcoming JWST observations of &gt;12 SNIa hosts should further refine the local measurement of the Hubble constant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.15806v1-abstract-full').style.display = 'none'; document.getElementById('2307.15806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to ApJ, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11080">arXiv:2307.11080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11080">pdf</a>, <a href="https://arxiv.org/format/2307.11080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Chemical Distribution of the Dynamical Ejecta in the Neutron Star Merger GW170817 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pang%2C+P+T+H">Peter T. H. Pang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dietrich%2C+T">Tim Dietrich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+B">Brian Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hussenot-Desenonges%2C+T">Thomas Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laz%2C+T+J+d">Theophile Jegou du Laz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kunert%2C+N">Nina Kunert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Markin%2C+I">Ivan Markin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mooley%2C+K">Kunal Mooley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nedora%2C+V">Vsevolod Nedora</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neuweiler%2C+A">Anna Neuweiler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11080v1-abstract-short" style="display: inline;"> GW170817 and its associated electromagnetic counterpart AT2017gfo continue to be a treasure trove as observations and modeling continue. Recent precision astrometry of AT2017gfo with the Hubble Space Telescope combined with previous constraints from Very Long Baseline Interferometry (VLBI) constraints narrowed down the inclination angle to 19-25 deg (90\% confidence). This paper explores how the i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11080v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11080v1-abstract-full" style="display: none;"> GW170817 and its associated electromagnetic counterpart AT2017gfo continue to be a treasure trove as observations and modeling continue. Recent precision astrometry of AT2017gfo with the Hubble Space Telescope combined with previous constraints from Very Long Baseline Interferometry (VLBI) constraints narrowed down the inclination angle to 19-25 deg (90\% confidence). This paper explores how the inclusion of precise inclination information can reveal new insights about the ejecta properties, in particular, about the composition of the dynamical ejecta of AT2017gfo. Our analysis relies on updated kilonova modeling, which includes state-of-the-art heating rates, thermalization efficiencies, and opacities and is parameterized by $\bar{Y}_{\rm e,dyn}$, the average electron fraction of the dynamical ejecta component. Using this model, we incorporate the latest inclination angle constraint of AT2017gfo into a light curve fitting framework to derive updated parameter estimates. Our results suggest that the viewing angle of the observer is pointed towards the lanthanide-poor ($Y_{\rm e,dyn}\gtrsim0.25$), squeezed polar dynamical ejecta component, which can explain the early blue emission observed in the light curve of AT2017gfo. In contrast to a recent claim of spherical ejecta powering AT2017gfo, our study indicates that the composition of the dynamical ejecta has a strong angular dependence, with a lanthanide-rich ($Y_{\rm e,dyn}\lesssim0.25$), tidal component distributed around the merger plane with a half-opening angle of $35^\circ$. The inclination angle constraint reduces $\bar{Y}_{\rm e,dyn}$ from $0.24$ to $0.22$, with values $0.17\lesssim Y_{\rm e, dyn} \lesssim0.41$ enabling the robust production of $r$-process elements up to the $3^{\rm rd}$ peak in the tidal dynamical ejecta. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11080v1-abstract-full').style.display = 'none'; document.getElementById('2307.11080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09213">arXiv:2307.09213</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09213">pdf</a>, <a href="https://arxiv.org/format/2307.09213">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad7257">10.3847/1538-4357/ad7257 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine-directed gravitational-wave counterpart discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sravan%2C+N">Niharika Sravan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09213v3-abstract-short" style="display: inline;"> Joint observations in electromagnetic and gravitational waves shed light on the physics of objects and surrounding environments with extreme gravity that are otherwise unreachable via siloed observations in each messenger. However, such detections remain challenging due to the rapid and faint nature of counterparts. Protocols for discovery and inference still rely on human experts manually inspect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09213v3-abstract-full').style.display = 'inline'; document.getElementById('2307.09213v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09213v3-abstract-full" style="display: none;"> Joint observations in electromagnetic and gravitational waves shed light on the physics of objects and surrounding environments with extreme gravity that are otherwise unreachable via siloed observations in each messenger. However, such detections remain challenging due to the rapid and faint nature of counterparts. Protocols for discovery and inference still rely on human experts manually inspecting survey alert streams and intuiting optimal usage of limited follow-up resources. Strategizing an optimal follow-up program requires adaptive sequential decision-making given evolving light curve data that (i) maximizes a global objective despite incomplete information and (ii) is robust to stochasticity introduced by detectors/observing conditions. Reinforcement learning (RL) approaches allow agents to implicitly learn the physics/detector dynamics and the behavior policy that maximize a designated objective through experience. To demonstrate the utility of such an approach for the kilonova follow-up problem, we train a toy RL agent for the goal of maximizing follow-up photometry for the true kilonova among several contaminant transient light curves. In a simulated environment where the agent learns online, it achieves 3x higher accuracy compared to a random strategy. However, it is surpassed by human agents by up to a factor of 2. This is likely because our hypothesis function (Q that is linear in state-action features) is an insufficient representation of the optimal behavior policy. More complex agents could perform at par or surpass human experts. Agents like these could pave the way for machine-directed software infrastructure to efficiently respond to next generation detectors, for conducting science inference and optimally planning expensive follow-up observations, scalably and with demonstrable performance guarantees. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09213v3-abstract-full').style.display = 'none'; document.getElementById('2307.09213v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to the Astrophysical Journal; DOI: 10.3847/1538-4357/ad7257</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10103">arXiv:2306.10103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.10103">pdf</a>, <a href="https://arxiv.org/format/2306.10103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acf4fb">10.3847/1538-4357/acf4fb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Standardized Luminosity of the Tip of the Red Giant Branch utilizing Multiple Fields in NGC 4258 and the CATs Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">Siyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">Adam G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">Dan Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+J">Jiaxi Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">Stefano Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+W">Wenlong Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">Rachael Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+R+I">Richard I. Anderson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10103v1-abstract-short" style="display: inline;"> The Tip of the Red Giant Branch provides a luminous standard candle for calibrating distance ladders that reach Type Ia supernova (SN Ia) hosts. However, recent work reveals that tip measurements vary at the $\sim$ 0.1 mag level for different stellar populations and locations within a host, which may lead to inconsistencies along the distance ladder. We pursue a calibration of the tip using 11 Hub&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10103v1-abstract-full').style.display = 'inline'; document.getElementById('2306.10103v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10103v1-abstract-full" style="display: none;"> The Tip of the Red Giant Branch provides a luminous standard candle for calibrating distance ladders that reach Type Ia supernova (SN Ia) hosts. However, recent work reveals that tip measurements vary at the $\sim$ 0.1 mag level for different stellar populations and locations within a host, which may lead to inconsistencies along the distance ladder. We pursue a calibration of the tip using 11 Hubble Space Telescope fields around the maser host, NGC 4258, that is consistent with SN Ia hosts by standardizing tip measurements via their contrast ratios. We find $F814W$-band tips that exhibit a full 0.3 mag range and 0.1 mag dispersion. We do not find any correlation between HI column density and the apparent tip to 0.04 $\pm$ 0.03 mag/cm$^{-2}$. We search for a tip-contrast relation (TCR) and measure the TCR within the fields of NGC 4258 of $-0.015\pm0.008$ mag/$R$, where $R$ is the contrast ratio. This value is consistent with the TCR originally discovered in the GHOSTS sample (Wu et al. 2022) of $-0.023\pm0.005$ mag/R. Combining these measurements, we find a global TCR of $-0.021\pm0.004$ mag/R and a calibration of $M_I^{TRGB} = -4.025 \pm 0.035 - (R-4)\times0.021$ mag. We also use stellar models to simulate single age and metallicity stellar populations with [Fe/H] from $-2.0$ to $-0.7$ and ages from 3 Gyr to 12 Gyr and reconstruct the global TCR found here to a factor of $\sim$ 2. This work is combined in a companion analysis with tip measurements of nearby SN Ia hosts to measure $H_0$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10103v1-abstract-full').style.display = 'none'; document.getElementById('2306.10103v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 12 figures, 3 tables. Submitted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 956 32 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09234">arXiv:2306.09234</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09234">pdf</a>, <a href="https://arxiv.org/format/2306.09234">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acfcb1">10.3847/1538-4357/acfcb1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Updated observing scenarios and multi-messenger implications for the International Gravitational-wave Network&#39;s O4 and O5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kiendrebeogo%2C+R+W">R. Weizmann Kiendrebeogo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Farah%2C+A+M">Amanda M. Farah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foley%2C+E+M">Emily M. Foley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gray%2C+A">Abigail Gray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kunert%2C+N">Nina Kunert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Puecher%2C+A">Anna Puecher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toivonen%2C+A">Andrew Toivonen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=VandenBerg%2C+R+O">R. Oliver VandenBerg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dietrich%2C+T">Tim Dietrich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kam%2C+S+Z">S. Zacharie Kam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pang%2C+P+T+H">Peter T. H. Pang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singer%2C+L+P">Leo P. Singer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sravan%2C+N">Niharika Sravan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09234v4-abstract-short" style="display: inline;"> An advanced LIGO and Virgo&#39;s third observing run brought another binary neutron star merger (BNS) and the first neutron-star black hole mergers. While no confirmed kilonovae were identified in conjunction with any of these events, continued improvements of analyses surrounding GW170817 allow us to project constraints on the Hubble Constant ($H_0$), the Galactic enrichment from $r$-process nucleosy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09234v4-abstract-full').style.display = 'inline'; document.getElementById('2306.09234v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09234v4-abstract-full" style="display: none;"> An advanced LIGO and Virgo&#39;s third observing run brought another binary neutron star merger (BNS) and the first neutron-star black hole mergers. While no confirmed kilonovae were identified in conjunction with any of these events, continued improvements of analyses surrounding GW170817 allow us to project constraints on the Hubble Constant ($H_0$), the Galactic enrichment from $r$-process nucleosynthesis, and ultra-dense matter possible from forthcoming events. Here, we describe the expected constraints based on the latest expected event rates from the international gravitational-wave network (IGWN) and analyses of GW170817. We show the expected detection rate of gravitational waves and their counterparts, as well as how sensitive potential constraints are to the observed numbers of counterparts. We intend this analysis as support for the community when creating scientifically driven electromagnetic follow-up proposals. During the next observing run O4, we predict an annual detection rate of electromagnetic counterparts from BNS of $0.43^{+0.58}_{-0.26}$ ($1.97^{+2.68}_{-1.2}$) for the Zwicky Transient Facility (Rubin Observatory). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09234v4-abstract-full').style.display = 'none'; document.getElementById('2306.09234v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal , 2023, 958, 158 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.04698">arXiv:2306.04698</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.04698">pdf</a>, <a href="https://arxiv.org/format/2306.04698">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad595f">10.3847/1538-4357/ad595f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing pre-supernova mass loss in double-peaked Type Ibc supernovae from the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irani%2C+I">I. Irani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+S">Shing-Chi Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+S">Samantha Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+J">Jim Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbarino%2C+C">C. Barbarino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dugas%2C+A">Alison Dugas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helou%2C+G">George Helou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J">Josiah Purdum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.04698v3-abstract-short" style="display: inline;"> Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium (CSM). Such&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04698v3-abstract-full').style.display = 'inline'; document.getElementById('2306.04698v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.04698v3-abstract-full" style="display: none;"> Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium (CSM). Such an early peak is common for double-peaked Type IIb SNe with an extended Hydrogen envelope but is uncommon for normal Type Ibc SNe with very compact progenitors. In this paper, we systematically study a sample of 14 double-peaked Type Ibc SNe out of 475 Type Ibc SNe detected by the Zwicky Transient Facility. The rate of these events is ~ 3-9 % of Type Ibc SNe. A strong correlation is seen between the peak brightness of the first and the second peak. We perform a holistic analysis of this sample&#39;s photometric and spectroscopic properties. We find that six SNe have ejecta mass less than 1.5 Msun. Based on the nebular spectra and lightcurve properties, we estimate that the progenitor masses for these are less than ~ 12 Msun. The rest have an ejecta mass &gt; 2.4 Msun and a higher progenitor mass. This sample suggests that the SNe with low progenitor masses undergo late-time binary mass transfer. Meanwhile, the SNe with higher progenitor masses are consistent with wave-driven mass loss or pulsation-pair instability-driven mass loss simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.04698v3-abstract-full').style.display = 'none'; document.getElementById('2306.04698v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00108">arXiv:2305.00108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00108">pdf</a>, <a href="https://arxiv.org/format/2305.00108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acdee1">10.3847/1538-4365/acdee1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A data science platform to enable time-domain astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nir%2C+G">Guy Nir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">Sarah Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laz%2C+T+J+d">Theophile Jegou du Laz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Walt%2C+S">St茅fan van der Walt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crellin-Quick%2C+A">Arien Crellin-Quick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Culino%2C+T">Thomas Culino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duev%2C+D+A">Dmitry A. Duev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldstein%2C+D+A">Daniel A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+B+F">Brian F. Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lilleboe%2C+J">Jada Lilleboe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+K+M">Kyung Min Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singer%2C+L+P">Leo P. Singer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">Richard Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kostadinova%2C+I">Ivona Kostadinova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiendrebeogo%2C+R+W">R. Weizmann Kiendrebeogo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jenkins%2C+S">Sydney Jenkins</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00108v2-abstract-short" style="display: inline;"> SkyPortal is an open-source software package designed to efficiently discover interesting transients, manage follow-up, perform characterization, and visualize the results. By enabling fast access to archival and catalog data, cross-matching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, a SkyPortal-based platform has been oper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00108v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00108v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00108v2-abstract-full" style="display: none;"> SkyPortal is an open-source software package designed to efficiently discover interesting transients, manage follow-up, perform characterization, and visualize the results. By enabling fast access to archival and catalog data, cross-matching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, a SkyPortal-based platform has been operating at scale for 2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. While SkyPortal emphasizes rich user experiences (UX) across common frontend workflows, recognizing that scientific inquiry is increasingly performed programmatically, SkyPortal also surfaces an extensive and well-documented API system. From backend and frontend software to data science analysis tools and visualization frameworks, the SkyPortal design emphasizes the re-use and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance, SkyPortal now leverages ChatGPT large-language models (LLMs) to automatically generate and surface source-level human-readable summaries. With the imminent re-start of the next-generation of gravitational wave detectors, SkyPortal now also includes dedicated multi-messenger features addressing the requirements of rapid multi-messenger follow-up: multi-telescope management, team/group organizing interfaces, and cross-matching of multi-messenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for the newcomers to the field. (abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00108v2-abstract-full').style.display = 'none'; document.getElementById('2305.00108v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08393">arXiv:2304.08393</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08393">pdf</a>, <a href="https://arxiv.org/format/2304.08393">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1670 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08393v1-abstract-short" style="display: inline;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08393v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08393v1-abstract-full" style="display: none;"> Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08393v1-abstract-full').style.display = 'none'; document.getElementById('2304.08393v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LIGO-P2200031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06693">arXiv:2304.06693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06693">pdf</a>, <a href="https://arxiv.org/format/2304.06693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> CATS: The Hubble Constant from Standardized TRGB and Type Ia Supernova Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">D. Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">A. G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+J">J. Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">S. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">G. S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">R. Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">S. Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+R">R. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">S. Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ke%2C+X">X. Ke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06693v1-abstract-short" style="display: inline;"> The Tip of the Red Giant Branch (TRGB) provides a luminous standard candle for constructing distance ladders to measure the Hubble constant. In practice its measurements via edge-detection response (EDR) are complicated by the apparent fuzziness of the tip and the multi-peak landscape of the EDR. As a result, it can be difficult to replicate due to a case-by-case measurement process. Previously we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06693v1-abstract-full').style.display = 'inline'; document.getElementById('2304.06693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06693v1-abstract-full" style="display: none;"> The Tip of the Red Giant Branch (TRGB) provides a luminous standard candle for constructing distance ladders to measure the Hubble constant. In practice its measurements via edge-detection response (EDR) are complicated by the apparent fuzziness of the tip and the multi-peak landscape of the EDR. As a result, it can be difficult to replicate due to a case-by-case measurement process. Previously we optimized an unsupervised algorithm, Comparative Analysis of TRGBs (CATs), to minimize the variance among multiple halo fields per host without reliance on individualized choices, achieving state-of-the-art $\sim$ $&lt;$ 0.05 mag distance measures for optimal data. Further, we found an empirical correlation at 5$蟽$ confidence in the GHOSTS halo survey between our measurements of the tip and their contrast ratios (ratio of stars 0.5 mag just below and above the tip), useful for standardizing the apparent tips at different host locations. Here, we apply this algorithm to an expanded sample of SN Ia hosts to standardize these to multiple fields in the geometric anchor, NGC 4258. In concert with the Pantheon$+$ SN Ia sample, this analysis produces a (baseline) result of $H_0= 73.22 \pm 2.06$ km/s/Mpc. The largest difference in $H_0$ between this and similar studies employing the TRGB derives from corrections for SN survey differences and local flows used in most recent SN Ia compilations but which were absent in earlier studies. SN-related differences total $\sim$ 2.0 km/s/Mpc. A smaller share, $\sim$ 1.4 km/s/Mpc, results from the inhomogeneity of the TRGB calibration across the distance ladder. We employ a grid of 108 variants around the optimal TRGB algorithm and find the median of variants is $72.94\pm1.98$ km/s/Mpc with an additional uncertainty due to algorithm choices of 0.83 km/s/Mpc. None of these TRGB variants result in $H_0$ less than 71.6 km/s/Mpc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06693v1-abstract-full').style.display = 'none'; document.getElementById('2304.06693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJL, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12849">arXiv:2303.12849</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12849">pdf</a>, <a href="https://arxiv.org/format/2303.12849">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/accf97">10.3847/2041-8213/accf97 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Sensitive Search for Supernova Emission Associated with the Extremely Energetic and Nearby GRB 221009A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Connor%2C+B+O">Brendan O&#39; Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dittmann%2C+A+J">Alexander J. Dittmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barway%2C+S">Sudhanshu Barway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammerstein%2C+E">Erica Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holt%2C+I">Isiah Holt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dichiara%2C+S">Simone Dichiara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+M+C">M. Coleman Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soon%2C+J">Jaime Soon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soria%2C+R">Roberto Soria</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Durbak%2C+J">Joseph Durbak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gillanders%2C+J+H">James H. Gillanders</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laha%2C+S">Sibasish Laha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moore%2C+A+M">Anna M. Moore</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12849v3-abstract-short" style="display: inline;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 221009A. Due to the extreme rarity of being both nearby ($z = 0.151$) and highly energetic ($E_{纬,\mathrm{iso}} \geq 10^{54}$ erg), GRB 221009A offers a unique opportunity to probe the connection between massive star core collapse and relativistic jet formation across a very broad range of $纬$-ray properties.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12849v3-abstract-full').style.display = 'inline'; document.getElementById('2303.12849v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12849v3-abstract-full" style="display: none;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 221009A. Due to the extreme rarity of being both nearby ($z = 0.151$) and highly energetic ($E_{纬,\mathrm{iso}} \geq 10^{54}$ erg), GRB 221009A offers a unique opportunity to probe the connection between massive star core collapse and relativistic jet formation across a very broad range of $纬$-ray properties. Adopting a phenomenological power-law model for the afterglow and host galaxy estimates from high-resolution Hubble Space Telescope imaging, we use Bayesian model comparison techniques to determine the likelihood of an associated SN contributing excess flux to the optical light curve. Though not conclusive, we find moderate evidence ($K_{\rm{Bayes}}=10^{1.2}$) for the presence of an additional component arising from an associated supernova, SN 2022xiw, and find that it must be substantially fainter ($&lt;$ 67% as bright at the 99% confidence interval) than SN 1998bw. Given the large and uncertain line-of-sight extinction, we attempt to constrain the supernova parameters ($M_{\mathrm{Ni}}$, $M_{\mathrm{ej}}$, and $E_{\mathrm{KE}}$) under several different assumptions with respect to the host galaxy&#39;s extinction. We find properties that are broadly consistent with previous GRB-associated SNe: $M_{\rm{Ni}}=0.05$ - $0.25 \, \rm{M_\odot}$, $M_{\rm{ej}}=3.5$ - $11.1 \, \rm{M_\odot}$, and $E_{\rm{KE}} = (1.6$ - $5.2) \times 10^{52} \, \rm{erg}$. We note that these properties are weakly constrained due to the faintness of the supernova with respect to the afterglow and host emission, but we do find a robust upper limit on the $M_{\rm{Ni}}$ of $M_{\rm{Ni}}&lt;0.36\, \rm{M_\odot}$. Given the tremendous range in isotropic gamma-ray energy release exhibited by GRBs (7 orders of magnitude), the SN emission appears to be decoupled from the central engine in these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12849v3-abstract-full').style.display = 'none'; document.getElementById('2303.12849v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, accepted to ApJL, 4 tables, 5 figures. Updated abstract in Preview</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09226">arXiv:2302.09226</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09226">pdf</a>, <a href="https://arxiv.org/format/2302.09226">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad11df">10.3847/1538-4357/ad11df <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Collapsars as Sites of r-process Nucleosynthesis: Systematic Near-Infrared Follow-up of Type Ic-BL Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+J">Jennifer Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balasubramanian%2C+A">Arvind Balasubramanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Omand%2C+C">Conor Omand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahiwale%2C+A">Aishwarya Dahiwale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav Kashyap Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J">Jacob Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Metzger%2C+B+D">Brian D. Metzger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">Nikhil Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schweyer%2C+T">Tassilo Schweyer</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09226v2-abstract-short" style="display: inline;"> One of the open questions following the discovery of GW170817 is whether neutron star mergers are the only astrophysical sites capable of producing $r$-process elements. Simulations have shown that 0.01-0.1M$_\odot$ of $r$-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both neutron star&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09226v2-abstract-full').style.display = 'inline'; document.getElementById('2302.09226v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09226v2-abstract-full" style="display: none;"> One of the open questions following the discovery of GW170817 is whether neutron star mergers are the only astrophysical sites capable of producing $r$-process elements. Simulations have shown that 0.01-0.1M$_\odot$ of $r$-process material could be generated in the outflows originating from the accretion disk surrounding the rapidly rotating black hole that forms as a remnant to both neutron star mergers and collapsing massive stars associated with long-duration gamma-ray bursts (collapsars). The hallmark signature of $r$-process nucleosynthesis in the binary neutron star merger GW170817 was its long-lasting near-infrared emission, thus motivating a systematic photometric study of the light curves of broadlined stripped-envelope (Ic-BL) supernovae (SNe) associated with collapsars. We present the first systematic study of 25 SNe Ic-BL -- including 18 observed with the Zwicky Transient Facility and 7 from the literature -- in the optical/near-infrared bands to determine what quantity of $r$-process material, if any, is synthesized in these explosions. Using semi-analytic models designed to account for $r$-process production in SNe Ic-BL, we perform light curve fitting to derive constraints on the $r$-process mass for these SNe. We also perform independent light curve fits to models without $r$-process. We find that the $r$-process-free models are a better fit to the light curves of the objects in our sample. Thus we find no compelling evidence of $r$-process enrichment in any of our objects. Further high-cadence infrared photometric studies and nebular spectroscopic analysis would be sensitive to smaller quantities of $r$-process ejecta mass or indicate whether all collapsars are completely devoid of $r$-process nucleosynthesis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09226v2-abstract-full').style.display = 'none'; document.getElementById('2302.09226v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">37 pages, 8 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ, 962, 68 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.07906">arXiv:2302.07906</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.07906">pdf</a>, <a href="https://arxiv.org/format/2302.07906">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A structured jet explains the extreme GRB 221009A </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=O%27Connor%2C+B">B. O&#39;Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Troja%2C+E">E. Troja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryan%2C+G">G. Ryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beniamini%2C+P">P. Beniamini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Eerten%2C+H">H. van Eerten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Granot%2C+J">J. Granot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dichiara%2C+S">S. Dichiara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ricci%2C+R">R. Ricci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lipunov%2C+V">V. Lipunov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gillanders%2C+J+H">J. H. Gillanders</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gill%2C+R">R. Gill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+M">M. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">I. Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Becerra%2C+R+L">R. L. Becerra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Butler%2C+N+R">N. R. Butler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chasovnikov%2C+A">A. Chasovnikov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Durbak%2C+J">J. Durbak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Francile%2C+C">C. Francile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammerstein%2C+E">E. Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M">M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.07906v1-abstract-short" style="display: inline;"> Long duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Due to its enormous energy ($E_\textrm{iso}\!\approx$10$^{55}$ erg) and proximity ($z\!\approx$0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multi-wavelength observatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07906v1-abstract-full').style.display = 'inline'; document.getElementById('2302.07906v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.07906v1-abstract-full" style="display: none;"> Long duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars. Among them, GRB 221009A is by far the brightest burst ever observed. Due to its enormous energy ($E_\textrm{iso}\!\approx$10$^{55}$ erg) and proximity ($z\!\approx$0.15), GRB 221009A is an exceptionally rare event that pushes the limits of our theories. We present multi-wavelength observations covering the first three months of its afterglow evolution. The X-ray brightness decays as a power-law with slope $\approx\!t^{-1.66}$, which is not consistent with standard predictions for jetted emission. We attribute this behavior to a shallow energy profile of the relativistic jet. A similar trend is observed in other energetic GRBs, suggesting that the most extreme explosions may be powered by structured jets launched by a common central engine. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.07906v1-abstract-full').style.display = 'none'; document.getElementById('2302.07906v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted version. 53 pages, 9 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.12789">arXiv:2301.12789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.12789">pdf</a>, <a href="https://arxiv.org/format/2301.12789">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb048">10.3847/1538-4357/acb048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A nearby isolated dwarf: star formation and structure of ESO 006-001 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Makarova%2C+L+N">Lidia N. Makarova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tully%2C+R+B">R. Brent Tully</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lambert%2C+T+S">Trystan S. Lambert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sharina%2C+M+E">Margarita E. Sharina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B盲rbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kraan-Korteweg%2C+R+C">Ren茅e C. Kraan-Korteweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.12789v1-abstract-short" style="display: inline;"> Observations with the Hubble Space Telescope unexpectedly revealed that the dwarf galaxy ESO 006-001 is a near neighbor to the Local Group at a distance of 2.70 +- 0.11 Mpc. The stellar population in the galaxy is well resolved into individual stars to a limit of M I ~ -0.5 mag. The dominant population is older than 12 Gyr yet displays a significant range in metallicity of -2 &lt; [Fe/H] &lt; -1, as evi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12789v1-abstract-full').style.display = 'inline'; document.getElementById('2301.12789v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.12789v1-abstract-full" style="display: none;"> Observations with the Hubble Space Telescope unexpectedly revealed that the dwarf galaxy ESO 006-001 is a near neighbor to the Local Group at a distance of 2.70 +- 0.11 Mpc. The stellar population in the galaxy is well resolved into individual stars to a limit of M I ~ -0.5 mag. The dominant population is older than 12 Gyr yet displays a significant range in metallicity of -2 &lt; [Fe/H] &lt; -1, as evidenced by a Red Giant Branch with substantial width. Superimposed on the dominant population are stars on the Main Sequence with ages less than 100 Myr and Helium burning Blue Loop stars with ages of several hundred Myr. ESO 006-001 is an example of a transition dwarf; a galaxy dominated by old stars but one that has experienced limited recent star formation in a swath near the center. No H i gas is detected at the location of the optical galaxy in spite of the evidence for young stars. Intriguingly, an H i cloud with a similar redshift is detected 9 kpc away in projection. Otherwise, ESO 006-001 is a galaxy in isolation with its nearest known neighbor IC 3104, itself a dwarf, at a distance of ~ 500 kpc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.12789v1-abstract-full').style.display = 'none'; document.getElementById('2301.12789v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, accepted at ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.02049">arXiv:2301.02049</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.02049">pdf</a>, <a href="https://arxiv.org/format/2301.02049">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3463">10.1093/mnras/stad3463 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bayesian model selection for GRB 211211A through multi-wavelength analyses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kunert%2C+N">Nina Kunert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">Sarah Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nedora%2C+V">Vsevolod Nedora</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pang%2C+P+T+H">Peter T. H. Pang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M">Michael Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tews%2C+I">Ingo Tews</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+J">Jennifer Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hussenot-Desenonges%2C+T">Thomas Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+B">Brian Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laz%2C+T+J+d">Theophile Jegou du Laz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pilloix%2C+M">Meili Pilloix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiendrebeogo%2C+W">Weizmann Kiendrebeogo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dietrich%2C+T">Tim Dietrich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.02049v2-abstract-short" style="display: inline;"> Although GRB 211211A is one of the closest gamma-ray bursts (GRBs), its classification is challenging because of its partially inconclusive electromagnetic signatures. In this paper, we investigate four different astrophysical scenarios as possible progenitors for GRB~211211A: a binary neutron-star merger, a black-hole--neutron-star merger, a core-collapse supernova, and an r-process enriched core&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02049v2-abstract-full').style.display = 'inline'; document.getElementById('2301.02049v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.02049v2-abstract-full" style="display: none;"> Although GRB 211211A is one of the closest gamma-ray bursts (GRBs), its classification is challenging because of its partially inconclusive electromagnetic signatures. In this paper, we investigate four different astrophysical scenarios as possible progenitors for GRB~211211A: a binary neutron-star merger, a black-hole--neutron-star merger, a core-collapse supernova, and an r-process enriched core collapse of a rapidly rotating massive star (a collapsar). We perform a large set of Bayesian multi-wavelength analyses based on different models describing these scenarios and priors to investigate which astrophysical scenarios and processes might be related to GRB~211211A. Our analysis supports previous studies in which the presence of an additional component, likely related to $r$-process nucleosynthesis, is required to explain the observed light curves of GRB~211211A, as it can not solely be explained as a GRB afterglow. Fixing the distance to about $350~\rm Mpc$, namely the distance of the possible host galaxy SDSS J140910.47+275320.8, we find a statistical preference for a binary neutron-star merger scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.02049v2-abstract-full').style.display = 'none'; document.getElementById('2301.02049v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-22-32364 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 527, Issue 2, January 2024, Pages 3900-3911 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00881">arXiv:2301.00881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.00881">pdf</a>, <a href="https://arxiv.org/format/2301.00881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acaeac">10.3847/2041-8213/acaeac <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PHANGS-JWST First Results: The Dust Filament Network of NGC 628 and its Relation to Star Formation Activity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Thilker%2C+D+A">David A. Thilker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J+C">Janice C. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deger%2C+S">Sinan Deger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+A+T">Ashley T. Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">Frank Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boquien%2C+M">M茅d茅ric Boquien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+Y">Yixian Cao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chevance%2C+M">M茅lanie Chevance</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egorov%2C+O+V">Oleg V. Egorov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glover%2C+S+C+O">Simon C. O. Glover</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grasha%2C+K">Kathryn Grasha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henshaw%2C+J+D">Jonathan D. Henshaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klessen%2C+R+S">Ralf S. Klessen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koch%2C+E">Eric Koch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kruijssen%2C+J+M+D">J. M. Diederik Kruijssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leroy%2C+A+K">Adam K. Leroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lessing%2C+R+A">Ryan A. Lessing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meidt%2C+S+E">Sharon E. Meidt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pinna%2C+F">Francesca Pinna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Querejeta%2C+M">Miguel Querejeta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosolowsky%2C+E">Erik Rosolowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sandstrom%2C+K+M">Karin M. Sandstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schinnerer%2C+E">Eva Schinnerer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+R+J">Rowan J. Smith</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00881v1-abstract-short" style="display: inline;"> PHANGS-JWST mid-infrared (MIR) imaging of nearby spiral galaxies has revealed ubiquitous filaments of dust emission in intricate detail. We present a pilot study to systematically map the dust filament network (DFN) at multiple scales between 25-400 pc in NGC 628. MIRI images at 7.7, 10, 11.3 and 21$渭$m of NGC 628 are used to generate maps of the filaments in emission, while PHANGS-HST B-band imag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00881v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00881v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00881v1-abstract-full" style="display: none;"> PHANGS-JWST mid-infrared (MIR) imaging of nearby spiral galaxies has revealed ubiquitous filaments of dust emission in intricate detail. We present a pilot study to systematically map the dust filament network (DFN) at multiple scales between 25-400 pc in NGC 628. MIRI images at 7.7, 10, 11.3 and 21$渭$m of NGC 628 are used to generate maps of the filaments in emission, while PHANGS-HST B-band imaging yields maps of dust attenuation features. We quantify the correspondence between filaments traced by MIR thermal continuum / polycyclic aromatic hydrocarbon (PAH) emission and filaments detected via extinction / scattering of visible light; the fraction of MIR flux contained in the DFN; and the fraction of HII regions, young star clusters and associations within the DFN. We examine the dependence of these quantities with the physical scale at which the DFN is extracted. With our highest resolution DFN maps (25 pc filament width), we find that filaments in emission and attenuation are co-spatial in 40% of sight lines, often exhibiting detailed morphological agreement; that ~30% of the MIR flux is associated with the DFN; and that 75-80% of HII regions and 60% of star clusters younger than 5 Myr are contained within the DFN. However, the DFN at this scale is anti-correlated with looser associations of stars younger than 5 Myr identified using PHANGS-HST near-UV imaging. We discuss the impact of these findings for studies of star formation and the ISM, and the broad range of new investigations enabled with multi-scale maps of the DFN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00881v1-abstract-full').style.display = 'none'; document.getElementById('2301.00881v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 14 figures, accepted for publication as part of PHANGS-JWST ApJL Focus Issue</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09652">arXiv:2212.09652</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09652">pdf</a>, <a href="https://arxiv.org/format/2212.09652">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aca973">10.3847/2041-8213/aca973 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PHANGS-JWST First Results: Stellar Feedback-Driven Excitation and Dissociation of Molecular Gas in the Starburst Ring of NGC 1365? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Daizhong Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schinnerer%2C+E">Eva Schinnerer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+Y">Yixian Cao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leroy%2C+A">Adam Leroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Usero%2C+A">Antonio Usero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosolowsky%2C+E">Erik Rosolowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kruijssen%2C+J+M+D">J. M. Diederik Kruijssen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chevance%2C+M">M茅lanie Chevance</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glover%2C+S+C+O">Simon C. O. Glover</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sormani%2C+M+C">Mattia C. Sormani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolatto%2C+A+D">Alberto D. Bolatto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+J">Jiayi Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stuber%2C+S+K">Sophia K. Stuber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Teng%2C+Y">Yu-Hsuan Teng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">Frank Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Be%C5%A1li%C4%87%2C+I">Ivana Be拧li膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grasha%2C+K">Kathryn Grasha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henshaw%2C+J+D">Jonathan D. Henshaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+A+T">Ashley. T. Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brok%2C+J+S+d">Jakob S. den Brok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saito%2C+T">Toshiki Saito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watkins%2C+E+J">Elizabeth J. Watkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pan%2C+H">Hsi-An Pan</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09652v1-abstract-short" style="display: inline;"> We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS-JWST imaging with new ALMA multi-J CO (1-0, 2-1 and 4-3) and [CI](1-0) map&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09652v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09652v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09652v1-abstract-full" style="display: none;"> We compare embedded young massive star clusters (YMCs) to (sub-)millimeter line observations tracing the excitation and dissociation of molecular gas in the starburst ring of NGC 1365. This galaxy hosts one of the strongest nuclear starbursts and richest populations of YMCs within 20 Mpc. Here we combine near-/mid-IR PHANGS-JWST imaging with new ALMA multi-J CO (1-0, 2-1 and 4-3) and [CI](1-0) mapping, which we use to trace CO excitation via R42 = I_CO(4-3)/I_CO(2-1) and R21 = I_CO(2-1)/I_CO(1-0) and dissociation via RCICO = I_[CI](1-0)/I_CO(2-1) at 330 pc resolution. We find that the gas flowing into the starburst ring from northeast to southwest appears strongly affected by stellar feedback, showing decreased excitation (lower R42) and increased signatures of dissociation (higher RCICO) in the downstream regions. There, radiative transfer modeling suggests that the molecular gas density decreases and temperature and [CI/CO] abundance ratio increase. We compare R42 and RCICO with local conditions across the regions and find that both correlate with near-IR 2 um emission tracing the YMCs and with both PAH (11.3 um) and dust continuum (21 um) emission. In general, RCICO exhibits ~ 0.1 dex tighter correlations than R42, suggesting CI to be a more sensitive tracer of changing physical conditions in the NGC 1365 starburst than CO (4-3). Our results are consistent with a scenario where gas flows into the two arm regions along the bar, becomes condensed/shocked, forms YMCs, and then these YMCs heat and dissociate the gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09652v1-abstract-full').style.display = 'none'; document.getElementById('2212.09652v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures and 2 tables in total (12 pages and 6 figures in main text). Accepted as part of a PHANGS-JWST Focus Issue to appear in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03478">arXiv:2212.03478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03478">pdf</a>, <a href="https://arxiv.org/format/2212.03478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3284">10.1093/mnras/stac3284 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Peekaboo: the extremely metal poor dwarf galaxy HIPASS J1131-31 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Karachentsev%2C+I+D">I. D. Karachentsev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Makarova%2C+L+N">L. N. Makarova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">G. S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tully%2C+R+B">R. B. Tully</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kniazev%2C+A+Y">A. Y. Kniazev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03478v1-abstract-short" style="display: inline;"> The dwarf irregular galaxy HIPASS J1131-31 was discovered as a source of HI emission at low redshift in such close proximity of a bright star that we call it Peekaboo. The galaxy resolves into stars in images with Hubble Space Telescope, leading to a distance estimate of 6.8+-0.7 Mpc. Spectral optical observations with the Southern African Large Telescope reveal HIPASS J1131-31 to be one of the mo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03478v1-abstract-full').style.display = 'inline'; document.getElementById('2212.03478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03478v1-abstract-full" style="display: none;"> The dwarf irregular galaxy HIPASS J1131-31 was discovered as a source of HI emission at low redshift in such close proximity of a bright star that we call it Peekaboo. The galaxy resolves into stars in images with Hubble Space Telescope, leading to a distance estimate of 6.8+-0.7 Mpc. Spectral optical observations with the Southern African Large Telescope reveal HIPASS J1131-31 to be one of the most extremely metal-poor galaxies known with the gas-phase oxygen abundance 12+log(O/H) = 6.99+-0.16 dex via the direct [OIII] 4363 line method and 6.87+-0.07 dex from the two strong line empirical methods. The red giant branch of the system is tenuous compared with the prominence of the features of young populations in the color-magnitude diagram, inviting speculation that star formation in the galaxy only began in the last few Gyr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03478v1-abstract-full').style.display = 'none'; document.getElementById('2212.03478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02667">arXiv:2212.02667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02667">pdf</a>, <a href="https://arxiv.org/format/2212.02667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acaaae">10.3847/2041-8213/acaaae <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The PHANGS-JWST Treasury Survey: Star Formation, Feedback, and Dust Physics at High Angular resolution in Nearby GalaxieS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J+C">Janice C. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sandstrom%2C+K+M">Karin M. Sandstrom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leroy%2C+A+K">Adam K. Leroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thilker%2C+D+A">David A. Thilker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schinnerer%2C+E">Eva Schinnerer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosolowsky%2C+E">Erik Rosolowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Larson%2C+K+L">Kirsten L. Larson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egorov%2C+O+V">Oleg V. Egorov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+T+G">Thomas G. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schmidt%2C+J">Judy Schmidt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emsellem%2C+E">Eric Emsellem</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+A+T">Ashley T. Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belfiore%2C+F">Francesco Belfiore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beslic%2C+I">Ivana Beslic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">Frank Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanc%2C+G+A">Guillermo A. Blanc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolatto%2C+A+D">Alberto D. Bolatto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boquien%2C+M">Mederic Boquien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brok%2C+J+d">Jakob den Brok</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+Y">Yixian Cao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandar%2C+R">Rupali Chandar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chastenet%2C+J">Jeremy Chastenet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chevance%2C+M">Melanie Chevance</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiang%2C+I">I-Da Chiang</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02667v1-abstract-short" style="display: inline;"> The PHANGS collaboration has been building a reference dataset for the multi-scale, multi-phase study of star formation and the interstellar medium in nearby galaxies. With the successful launch and commissioning of JWST, we can now obtain high-resolution infrared imaging to probe the youngest stellar populations and dust emission on the scales of star clusters and molecular clouds ($\sim$5-50 pc)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02667v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02667v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02667v1-abstract-full" style="display: none;"> The PHANGS collaboration has been building a reference dataset for the multi-scale, multi-phase study of star formation and the interstellar medium in nearby galaxies. With the successful launch and commissioning of JWST, we can now obtain high-resolution infrared imaging to probe the youngest stellar populations and dust emission on the scales of star clusters and molecular clouds ($\sim$5-50 pc). In Cycle 1, PHANGS is conducting an 8-band imaging survey from 2-21$渭$m of 19 nearby spiral galaxies. CO(2-1) mapping, optical integral field spectroscopy, and UV-optical imaging for all 19 galaxies have been obtained through large programs with ALMA, VLT/MUSE, and Hubble. PHANGS-JWST enables a full inventory of star formation, accurate measurement of the mass and age of star clusters, identification of the youngest embedded stellar populations, and characterization of the physical state of small dust grains. When combined with Hubble catalogs of $\sim$10,000 star clusters, MUSE spectroscopic mapping of $\sim$20,000 HII regions, and $\sim$12,000 ALMA-identified molecular clouds, it becomes possible to measure the timescales and efficiencies of the earliest phases of star formation and feedback, build an empirical model of the dependence of small dust grain properties on local ISM conditions, and test our understanding of how dust-reprocessed starlight traces star formation activity, all across a diversity of galactic environments. Here we describe the PHANGS-JWST Treasury survey, present the remarkable imaging obtained in the first few months of science operations, and provide context for the initial results presented in the first series of PHANGS-JWST publications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02667v1-abstract-full').style.display = 'none'; document.getElementById('2212.02667v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Re-submitted after addressing minor comments from referee. To be published as part of PHANGS-JWST ApJL Focus Issue</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.01477">arXiv:2212.01477</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.01477">pdf</a>, <a href="https://arxiv.org/format/2212.01477">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3120">10.1093/mnras/stad3120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for subsolar-mass black hole binaries in the second part of Advanced LIGO&#39;s and Advanced Virgo&#39;s third observing run </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=The+LIGO+Scientific+Collaboration"> The LIGO Scientific Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+Virgo+Collaboration"> the Virgo Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=the+KAGRA+Collaboration"> the KAGRA Collaboration</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abbott%2C+R">R. Abbott</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abe%2C+H">H. Abe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acernese%2C+F">F. Acernese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhicary%2C+S">S. Adhicary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+N">N. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adhikari%2C+R+X">R. X. Adhikari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adkins%2C+V+K">V. K. Adkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adya%2C+V+B">V. B. Adya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Affeldt%2C+C">C. Affeldt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agarwal%2C+D">D. Agarwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Agathos%2C+M">M. Agathos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aguiar%2C+O+D">O. D. Aguiar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aiello%2C+L">L. Aiello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ain%2C+A">A. Ain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ajith%2C+P">P. Ajith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Akutsu%2C+T">T. Akutsu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albanesi%2C+S">S. Albanesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alfaidi%2C+R+A">R. A. Alfaidi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=All%C3%A9n%C3%A9%2C+C">C. All茅n茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allocca%2C+A">A. Allocca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Altin%2C+P+A">P. A. Altin</a> , et al. (1680 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.01477v2-abstract-short" style="display: inline;"> We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01477v2-abstract-full').style.display = 'inline'; document.getElementById('2212.01477v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.01477v2-abstract-full" style="display: none;"> We describe a search for gravitational waves from compact binaries with at least one component with mass 0.2 $M_\odot$ -- $1.0 M_\odot$ and mass ratio $q \geq 0.1$ in Advanced LIGO and Advanced Virgo data collected between 1 November 2019, 15:00 UTC and 27 March 2020, 17:00 UTC. No signals were detected. The most significant candidate has a false alarm rate of 0.2 $\mathrm{yr}^{-1}$. We estimate the sensitivity of our search over the entirety of Advanced LIGO&#39;s and Advanced Virgo&#39;s third observing run, and present the most stringent limits to date on the merger rate of binary black holes with at least one subsolar-mass component. We use the upper limits to constrain two fiducial scenarios that could produce subsolar-mass black holes: primordial black holes (PBH) and a model of dissipative dark matter. The PBH model uses recent prescriptions for the merger rate of PBH binaries that include a rate suppression factor to effectively account for PBH early binary disruptions. If the PBHs are monochromatically distributed, we can exclude a dark matter fraction in PBHs $f_\mathrm{PBH} \gtrsim 0.6$ (at 90% confidence) in the probed subsolar-mass range. However, if we allow for broad PBH mass distributions we are unable to rule out $f_\mathrm{PBH} = 1$. For the dissipative model, where the dark matter has chemistry that allows a small fraction to cool and collapse into black holes, we find an upper bound $f_{\mathrm{DBH}} &lt; 10^{-5}$ on the fraction of atomic dark matter collapsed into black holes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.01477v2-abstract-full').style.display = 'none'; document.getElementById('2212.01477v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">https://dcc.ligo.org/P2200139</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00811">arXiv:2212.00811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.00811">pdf</a>, <a href="https://arxiv.org/format/2212.00811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/aca6e4">10.3847/2041-8213/aca6e4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PHANGS-JWST First Results: A statistical view on bubble evolution in NGC628 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Watkins%2C+E+J">Elizabeth J. Watkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+A">Ashley Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henny%2C+K+F">Kiana F. Henny</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+H">Hwihyun Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kreckel%2C+K">Kathryn Kreckel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meidt%2C+S+E">Sharon E. Meidt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klessen%2C+R+S">Ralf S. Klessen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glover%2C+S+C+O">Simon C. O. Glover</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+T+G">Thomas G. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keller%2C+B+W">B. W. Keller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leroy%2C+A+K">Adam K. Leroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosolowsky%2C+E+W">Erik W. Rosolowsky</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boquien%2C+M">Mederic Boquien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">Gagandeep S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Belfiore%2C+F">Francesco Belfiore</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bigiel%2C+F">Frank Bigiel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanc%2C+G">Guillermo Blanc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+Y">Yixian Cao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandar%2C+R">Rupali Chandar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+N+M">Ness Mayker Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chevance%2C+M">M茅lanie Chevance</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Congiu%2C+E">Enrico Congiu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dale%2C+D+A">Daniel A. Dale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deger%2C+S">Sinan Deger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egorov%2C+O">Oleg Egorov</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00811v1-abstract-short" style="display: inline;"> The first JWST observations of nearby galaxies have unveiled a rich population of bubbles that trace the stellar feedback mechanisms responsible for their creation. Studying these bubbles therefore allows us to chart the interaction between stellar feedback and the interstellar medium, and the larger galactic flows needed to regulate star formation processes globally. We present the first catalog&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00811v1-abstract-full').style.display = 'inline'; document.getElementById('2212.00811v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00811v1-abstract-full" style="display: none;"> The first JWST observations of nearby galaxies have unveiled a rich population of bubbles that trace the stellar feedback mechanisms responsible for their creation. Studying these bubbles therefore allows us to chart the interaction between stellar feedback and the interstellar medium, and the larger galactic flows needed to regulate star formation processes globally. We present the first catalog of bubbles in NGC628, visually identified using MIRI F770W PHANGS-JWST observations, and use them to statistically evaluate bubble characteristics. We classify 1694 structures as bubbles with radii between 6-552 pc. Of these, 31% contain at least one smaller bubble at their edge, indicating that previous generations of star formation have a local impact on where new stars form. On large scales, most bubbles lie near a spiral arm, and their radii increase downstream compared to upstream. Furthermore, bubbles are elongated in a similar direction to the spiral arm ridge-line. These azimuthal trends demonstrate that star formation is intimately connected to the spiral arm passage. Finally, the bubble size distribution follows a power-law of index $p=-2.2\pm0.1$, which is slightly shallower than the theoretical value by 1-3.5$蟽$ that did not include bubble mergers. The fraction of bubbles identified within the shells of larger bubbles suggests that bubble merging is a common process. Our analysis therefore allows us to quantify the number of star-forming regions that are influenced by an earlier generation, and the role feedback processes have in setting the global star formation rate. With the full PHANGS-JWST sample, we can do this for more galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00811v1-abstract-full').style.display = 'none'; document.getElementById('2212.00811v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages total, 13 Figures and 1 Table. Accepted for publication in ApJL as part of a PHANGS-JWST First Results Focus issue</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16530">arXiv:2211.16530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16530">pdf</a>, <a href="https://arxiv.org/format/2211.16530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05465-8">10.1038/s41586-022-05465-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A very luminous jet from the disruption of a star by a massive black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+W">Wenbin Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sagues-Carracedo%2C+A">Ana Sagues-Carracedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barway%2C+S">Sudhanshu Barway</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16530v1-abstract-short" style="display: inline;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jett&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16530v1-abstract-full" style="display: none;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jetted TDE to date is Swift J1644+57, which was discovered in gamma-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical discovery of AT2022cmc, a rapidly fading source at cosmological distance (redshift z=1.19325) whose unique lightcurve transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-rays, sub-millimeter, and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron &#34;afterglow&#34;, likely launched by a SMBH with spin $a \gtrsim 0.3$. Using 4 years of Zwicky Transient Facility (ZTF) survey data, we calculate a rate of $0.02 ^{+ 0.04 }_{- 0.01 }$ Gpc$^{-3}$ yr$^{-1}$ for on-axis jetted TDEs based on the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations. Correcting for the beaming angle effects, this rate confirms that about 1% of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'none'; document.getElementById('2211.16530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.06354">arXiv:2211.06354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.06354">pdf</a>, <a href="https://arxiv.org/format/2211.06354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acdd7b">10.3847/1538-4357/acdd7b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comparative Analysis of TRGBs (CATs) from Unsupervised, Multi-Halo-Field Measurements: Contrast is Key </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+J">J. Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Scolnic%2C+D">D. Scolnic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riess%2C+A+G">A. G. Riess</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+G+S">G. S. Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">R. Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casertano%2C+S">S. Casertano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ke%2C+X">X. Ke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+S">S. Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.06354v1-abstract-short" style="display: inline;"> The Tip of the Red Giant Branch (TRGB) is an apparent discontinuity in the color-magnitude diagram (CMD) along the giant branch due to the end of the red giant evolutionary phase and is used to measure distances in the local universe. In practice, the tip is often fuzzy and its localization via edge detection response (EDR) relies on several methods applied on a case-by-case basis. It is hard to e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06354v1-abstract-full').style.display = 'inline'; document.getElementById('2211.06354v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.06354v1-abstract-full" style="display: none;"> The Tip of the Red Giant Branch (TRGB) is an apparent discontinuity in the color-magnitude diagram (CMD) along the giant branch due to the end of the red giant evolutionary phase and is used to measure distances in the local universe. In practice, the tip is often fuzzy and its localization via edge detection response (EDR) relies on several methods applied on a case-by-case basis. It is hard to evaluate how individual choices affect a distance estimation using only a single host field while also avoiding confirmation bias. To devise a standardized approach, we compare unsupervised, algorithmic analyses of the TRGB in multiple halo fields per galaxy, up to 11 fields for a single host and 50 fields across 10 galaxies, using high signal-to-noise stellar photometry obtained by the GHOSTS survey with the Hubble Space Telescope. We first optimize methods for the lowest field-to-field dispersion including spatial filtering to remove star forming regions, smoothing and weighting of the luminosity function, selection of the RGB by color, and tip selection based on the number of likely RGB stars and the ratio of stars above versus below the tip ($R$). We find $R$, which we call the tip `contrast&#39;, to be the most important indicator of the quality of EDR measurements; we find that field-to-field EDR repeatability varies from 0.3 mag to $\leq$ 0.05 mag for $R=4$ to 7, respectively, though less than half the fields reach the higher quality. Further, we find that $R$, which varies with the age/metallicity of the stellar population based on models, correlates with the magnitude of the tip (and after accounting for low internal extinction), i.e., a tip-contrast relation with slope of $-0.023\pm0.0046$ mag/ratio, a $\sim 5蟽$ result that improves standardization of the TRGB. We discuss the value of consistent TRGB standardization across rungs for robust distance ladder measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.06354v1-abstract-full').style.display = 'none'; document.getElementById('2211.06354v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ. Comments welcomed</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Anand%2C+S&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10