CINXE.COM

Search results for: green fluorescent protein

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: green fluorescent protein</title> <meta name="description" content="Search results for: green fluorescent protein"> <meta name="keywords" content="green fluorescent protein"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="green fluorescent protein" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="green fluorescent protein"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4595</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: green fluorescent protein</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4595</span> Assessment of Green Fluorescent Protein Signal for Effective Monitoring of Recombinant Fermentation Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sani">I. Sani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdulhamid"> A. Abdulhamid</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bello"> F. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Isah%20M.%20Fakai"> Isah M. Fakai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research has focused on the application of green fluorescent protein (GFP) as a new technique for direct monitoring of fermentation processes involving cultured bacteria. To use GFP as a sensor for pH and oxygen, percentage ratio of red fluorescence to green (% R/G) was evaluated. Assessing the magnitude of the % R/G ratio in relation to low or high pH and oxygen concentration, the bacterial strains were cultivated under aerobic and anaerobic conditions. SCC1 strains of E. coli were grown in a 5 L laboratory fermenter, and during the fermentation, the pH and temperature were controlled at 7.0 and 370C respectively. Dissolved oxygen tension (DOT) was controlled between 15-100% by changing the agitation speed between 20-500 rpm respectively. Effect of reducing the DOT level from 100% to 15% was observed after 4.5 h fermentation. There was a growth arrest as indicated by the decrease in the OD650 at this time (4.5-5 h). The relative fluorescence (green) intensity was decreased from about 460 to 420 RFU. However, %R/G ratio was significantly increased from about 0.1% to about 0.25% when the DOT level was decreased to 15%. But when the DOT was changed to 100%, a little increase in the RF and decrease in the %R/G ratio were observed. Therefore, GFP can effectively detect and indicate any change in pH and oxygen level during fermentation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli%20SCC1" title="Escherichia coli SCC1">Escherichia coli SCC1</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation%20process" title=" fermentation process"> fermentation process</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein" title=" green fluorescent protein"> green fluorescent protein</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20fluorescence" title=" red fluorescence"> red fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/17962/assessment-of-green-fluorescent-protein-signal-for-effective-monitoring-of-recombinant-fermentation-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17962.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4594</span> Selection of Green Fluorescent Protein and mCherry Nanobodies Using the Yeast Surface Display Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavinia%20Ruta">Lavinia Ruta</a>, <a href="https://publications.waset.org/abstracts/search?q=Ileana%20Farcasanu"> Ileana Farcasanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The yeast surface display (YSD) technique enables the expression of proteins on yeast cell surfaces, facilitating the identification and isolation of proteins with targeted binding properties, such as nanobodies. Nanobodies, derived from camelid species, are single-domain antibody fragments renowned for their high affinity and specificity towards target proteins, making them valuable in research and potentially in therapeutics. Their advantages include a compact size (~15 kDa), robust stability, and the ability to target challenging epitopes. The project endeavors to establish and validate a platform for producing Green Fluorescent Protein (GFP) and mCherry nanobodies using the yeast surface display method. mCherry, a prevalent red fluorescent protein sourced from coral species, is commonly utilized as a genetic marker in biological studies due to its vibrant red fluorescence. The GFP-nanobody, a single variable domain of heavy-chain antibodies (VHH), exhibits specific binding to GFP, offering a potent means for isolating and engineering fluorescent protein fusions across various biological research domains. Both GFP and mCherry nanobodies find specific utility in cellular imaging and protein analysis applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=YSD" title="YSD">YSD</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobodies" title=" nanobodies"> nanobodies</a>, <a href="https://publications.waset.org/abstracts/search?q=GFP" title=" GFP"> GFP</a>, <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title=" Saccharomyces cerevisiae"> Saccharomyces cerevisiae</a> </p> <a href="https://publications.waset.org/abstracts/184472/selection-of-green-fluorescent-protein-and-mcherry-nanobodies-using-the-yeast-surface-display-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4593</span> The Response of Adaptive Mechanism of Fluorescent Proteins from Coral Species and Target Cell Properties on Signalling Capacity as Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Tugce%20Aksun%20Tumerkan">Elif Tugce Aksun Tumerkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent proteins (FPs) have become very popular since green fluorescent protein discovered from crystal jellyfish. It is known that Anthozoa species have a wide range of chromophore organisms, and the initial crystal structure for non-fluorescent chromophores obtained from the reef-building coral has been determined. There are also differently coloured pigments in non-bioluminescent Anthozoa zooxanthellate and azooxanthellate which are frequently members of the GFP-like protein family. The development of fluorescent proteins (FPs) and their applications is an outstanding example of basic science leading to practical biotechnological and medical applications. Fluorescent proteins have several applications in science and are used as important indicators in molecular biology and cell-based research. With rising interest in cell biology, FPs have used as biosensor indicators and probes in pharmacology and cell biology. Using fluorescent proteins in genetically encoded metabolite sensors has many advantages than chemical probes for metabolites such as easily introduced into any cell or organism in any sub-cellular localization and giving chance to fixing to fluoresce of different colours or characteristics. There are different factors effects to signalling mechanism when they used as a biosensor. While there are wide ranges of research have been done on the significance and applications of fluorescent proteins, the cell signalling response of FPs and target cell are less well understood. In this study, it was aimed to clarify the response of adaptive mechanisms of coral species such as pH, temperature and symbiotic relationship and target cells properties on the signalling capacity. Corals are a rich natural source of fluorescent proteins that change with environmental conditions such as light, heat stress and injury. Adaptation mechanism of coral species to these types of environmental variations is important factor due to FPs properties have affected by this mechanism. Since fluorescent proteins obtained from nature, their own ecological property like the symbiotic relationship is observed very commonly in coral species and living conditions have the impact on FPs efficiency. Target cell properties also have an effect on signalling and visualization. The dynamicity of detector that used for reading fluorescence and the level of background fluorescence are key parameters for the quality of the fluorescent signal. Among the factors, it can be concluded that coral species adaptive characteristics have the strongest effect on FPs signalling capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20biology" title=" cell biology"> cell biology</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20conditions" title=" environmental conditions"> environmental conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20protein" title=" fluorescent protein"> fluorescent protein</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20anemone" title=" sea anemone"> sea anemone</a> </p> <a href="https://publications.waset.org/abstracts/94010/the-response-of-adaptive-mechanism-of-fluorescent-proteins-from-coral-species-and-target-cell-properties-on-signalling-capacity-as-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4592</span> Functionalization of Carbon-Coated Iron Nanoparticles with Fluorescent Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Pershina">A. G. Pershina</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Postnikov"> P. S. Postnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Trusova"> M. E. Trusova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20O.%20Burlakova"> D. O. Burlakova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Sazonov"> A. E. Sazonov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Invention of magnetic-fluorescent nanocomposites is a rapidly developing area of research. The magnetic-fluorescent nanocomposite attractiveness is connected with the ability of simultaneous management and control of such nanocomposites by two independent methods based on different physical principles. These nanocomposites are applied for the solution of various essential scientific and experimental biomedical problems. The aim of this research is development of principle approach to nanobiohybrid structures with magnetic and fluorescent properties design. The surface of carbon-coated iron nanoparticles (Fe@C) were covalently modified by 4-carboxy benzenediazonium tosylate. Recombinant fluorescent protein TagGFP2 (Eurogen) was obtained in E. coli (Rosetta DE3) by standard laboratory techniques. Immobilization of TagGFP2 on the nanoparticles surface was provided by the carbodiimide activation. The amount of COOH-groups on the nanoparticle surface was estimated by elemental analysis (Elementar Vario Macro) and TGA-analysis (SDT Q600, TA Instruments. Obtained nanocomposites were analyzed by FTIR spectroscopy (Nicolet Thermo 5700) and fluorescence microscopy (AxioImager M1, Carl Zeiss). Amount of the protein immobilized on the modified nanoparticle surface was determined by fluorimetry (Cary Eclipse) and spectrophotometry (Unico 2800) with the help of preliminary obtained calibration plots. In the FTIR spectra of modified nanoparticles the adsorption band of –COOH group around 1700 cm-1 and bands in the region of 450-850 cm-1 caused by bending vibrations of benzene ring were observed. The calculated quantity of active groups on the surface was equal to 0,1 mmol/g of material. The carbodiimide activation of COOH-groups on nanoparticles surface results to covalent immobilization of TagGFP2 fluorescent protein (0.2 nmol/mg). The success of immobilization was proved by FTIR spectroscopy. Protein characteristic adsorption bands in the region of 1500-1600 cm-1 (amide I) were presented in the FTIR spectrum of nanocomposite. The fluorescence microscopy analysis shows that Fe@C-TagGFP2 nanocomposite possesses fluorescence properties. This fact confirms that TagGFP2 protein retains its conformation due to immobilization on nanoparticles surface. Magnetic-fluorescent nanocomposite was obtained as a result of unique design solution implementation – the fluorescent protein molecules were fixed to the surface of superparamagnetic carbon-coated iron nanoparticles using original diazonium salts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon-coated%20iron%20nanoparticles" title="carbon-coated iron nanoparticles">carbon-coated iron nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=diazonium%20salts" title=" diazonium salts"> diazonium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20protein" title=" fluorescent protein"> fluorescent protein</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a> </p> <a href="https://publications.waset.org/abstracts/7691/functionalization-of-carbon-coated-iron-nanoparticles-with-fluorescent-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4591</span> Rice Serine/Threonine Kinase 1 Is Required for the Stimulation of OsNug2 GTPase Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Bok%20Heo">Jae Bok Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Mi%20Lee"> Yun Mi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Rang%20Yun"> Hee Rang Yun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several GTPases are required for ribosome biogenesis and assembly. We recently characterized rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), belonging to the YlqF/YawG family of GTPases, as playing a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating the function of OsNug2, yeast two-hybrid screens were carried out using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a potential interacting protein candidate. In vitro pull down and bimolecular fluorescence complementation assays confirmed the interaction between OsNug2 and OsSTK1, and like green fluorescent protein-tagged OsNug2, green fluorescent protein-tagged OsSTK1 was targeted to the nucleus of Arabidopsis protoplasts. OsSTK1 was not found to affect the GTP-binding activity of OsNug2; however, when recombinant OsSTK1 was included in OsNug2 assay reaction mixtures, OsSTK1 increased the GTPase activity of OsNug2. To test whether OsSTK1 phosphorylates OsNug2 in vitro, a kinase assay was performed. OsSTK1 was found to have weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Yeast complementation testing resulted in a GAL::OsNug2(S209N) mutant-harboring yeast strain exhibiting a growth-defective phenotype on galactose medium at 39°C, divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of mutant OsNug2(S209N) was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings reported here indicate that OsSTK1 functions as a positive regulator protein of OsNug2 by enhancing the GTPase activity of OsNug2, and that the phosphorylation of serine 209 of OsNug2 is essential for the complete function of OsNug2 in ribosome biogenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OsSTK1" title="OsSTK1">OsSTK1</a>, <a href="https://publications.waset.org/abstracts/search?q=OsNug2" title=" OsNug2"> OsNug2</a>, <a href="https://publications.waset.org/abstracts/search?q=GTPase%20activity" title=" GTPase activity"> GTPase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=GTP%20binding%20activity" title=" GTP binding activity"> GTP binding activity</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorylation" title=" phosphorylation "> phosphorylation </a> </p> <a href="https://publications.waset.org/abstracts/14080/rice-serinethreonine-kinase-1-is-required-for-the-stimulation-of-osnug2-gtpase-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4590</span> Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Tugce%20Aksun%20Tumerkan">Elif Tugce Aksun Tumerkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Lowe"> Chris Lowe</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannah%20Krupa"> Hannah Krupa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20biology" title="cell biology">cell biology</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=staining%20agents" title=" staining agents"> staining agents</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS-page" title=" SDS-page"> SDS-page</a> </p> <a href="https://publications.waset.org/abstracts/94082/gene-expression-and-staining-agents-exploring-the-factors-that-influence-the-electrophoretic-properties-of-fluorescent-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4589</span> One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ghasemi">Mostafa Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Urquhart"> Andrew Urquhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dots" title="carbon dots">carbon dots</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20sensing" title=" pH sensing"> pH sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions%20sensor" title=" metal ions sensor"> metal ions sensor</a> </p> <a href="https://publications.waset.org/abstracts/176075/one-step-synthesis-of-fluorescent-carbon-dots-in-a-green-way-as-effective-fluorescent-probes-for-detection-of-iron-ions-and-ph-value" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4588</span> Sensitivity, Specificity and Efficiency Real-Time PCR Using SYBR Green Method to Determine Porcine and Bovine DNA Using Specific Primer Cytochrome B Gene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahlam%20Inayatullah%20Badrul%20Munir">Ahlam Inayatullah Badrul Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Husaini%20A.%20Rahman"> M. Husaini A. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Sukri%20Hassan"> Mohd Sukri Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Real-time PCR is a molecular biology technique that is currently being widely used for halal services to differentiating between porcine and bovine DNA. The useful of technique become very important for student or workers (who works in the laboratory) to learn how the technique could be run smoothly without fail. Same concept with conventional PCR, real-time PCR also needed DNA template, primer, enzyme polymerase, dNTP, and buffer. The difference is in real-time PCR, have additional component namely fluorescent dye. The most common use of fluorescent dye in real-time PCR is SYBR green. The purpose of this study was to find out how sensitive, specific and efficient real-time PCR technique was combined with SYBR green method and specific primers of CYT b. The results showed that real-time PCR technique using SYBR Green, capable of detecting porcine and bovine DNA concentrations up to 0.0001 µl/ng. The level of efficiency for both types of DNA was 91% (90-110). Not only that in specific primer CYT b bovine primer could detect only bovine DNA, and porcine primer could detect only porcine primer. So, from the study could be concluded that real-time PCR technique that was combined with specific primer CYT b and SYBR green method, was sensitive, specific and efficient to detect porcine and bovine DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title="sensitivity">sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=specificity" title=" specificity"> specificity</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20PCR" title=" real-time PCR"> real-time PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=SYBR%20green" title=" SYBR green"> SYBR green</a>, <a href="https://publications.waset.org/abstracts/search?q=Cytochrome%20b" title=" Cytochrome b"> Cytochrome b</a>, <a href="https://publications.waset.org/abstracts/search?q=porcine%20DNA" title=" porcine DNA"> porcine DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=bovine%20DNA" title=" bovine DNA"> bovine DNA</a> </p> <a href="https://publications.waset.org/abstracts/64026/sensitivity-specificity-and-efficiency-real-time-pcr-using-sybr-green-method-to-determine-porcine-and-bovine-dna-using-specific-primer-cytochrome-b-gene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4587</span> Novel Fluorescent High Density Polyethylene Composites for Fused Deposition Modeling 3D Printing in Packaging Security Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youssef%20R.%20Hassan">Youssef R. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20Hasanin"> Mohamed S. Hasanin</a>, <a href="https://publications.waset.org/abstracts/search?q=Reda%20M.%20Abdelhameed"> Reda M. Abdelhameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, innovations in packaging security features become more important to see the originality of packaging in industrial application. Luminescent 3d printing materials have been a promising property which can provides a unique opportunity for the design and application of 3D printing. Lack emission of terbium ions, as a source of green emission, in salt form prevent its uses in industrial applications, so searching about stable and highly emitter material become essential. Nowadays, metal organic frameworks (MOFs) play an important role in designing light emitter material. In this work, fluorescent high density polyethylene (FHDPE) composite filament with Tb-benzene 1,3,5-tricarboxylate (Tb-BTC) MOFs for 3D printing have been successfully developed.HDPE pellets were mixed with Tb-BTC and melting extrustion with single screw extruders. It was found that Tb-BTCuniformly dispersed in the HDPE matrix and significantly increased the crystallinity of PE, which not only maintained the good thermal property but also improved the mechanical properties of Tb-BTC@HDPE composites. Notably, the composite filaments emitted ultra-bright green light under UV lamp, and the fluorescence intensity increased as the content of Tb-BTC increased. Finally, several brightly luminescent exquisite articles could be manufactured by fused deposition modeling (FDM) 3D printer with these new fluorescent filaments. In this context, the development of novel fluorescent Tb-BTC@HDPE composites was combined with 3D printing technology to amplified the packaging Security Features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent" title=" fluorescent"> fluorescent</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a> </p> <a href="https://publications.waset.org/abstracts/158294/novel-fluorescent-high-density-polyethylene-composites-for-fused-deposition-modeling-3d-printing-in-packaging-security-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4586</span> Crystallography Trials of Escherichia coli Nitrate Transporter, NarU</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naureen%20Akhtar">Naureen Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The stability of the protein in detergent-containing solution is the key for its successful crystallisation. Fluorescence-detection size-exclusion chromatography (FSEC) is a potential approach for screening monodispersity as well as the stability of protein in a detergent-containing-solution. In this present study, covalently linked Green Fluorescent Protein (GFP) to bacterial nitrate transporter, NarU from Escherichia coli was studied for pre-crystallisation trials by FSEC. Immobilised metal ion affinity chromatography (IMAC) and gel filtration were employed for their purification. The main objectives of this study were over-expression, detergent screening and crystallisation of nitrate transporter proteins. This study could not produce enough proteins that could realistically be taken forward to achieve the objectives set for this particular research. In future work, different combinations of variables like vectors, tags, creation of mutant proteins, host cells, position of GFP (N- or C-terminal) and/or membrane proteins would be tried to determine the best combination as the principle of technique is still promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transporters" title="transporters">transporters</a>, <a href="https://publications.waset.org/abstracts/search?q=detergents" title=" detergents"> detergents</a>, <a href="https://publications.waset.org/abstracts/search?q=over-expression" title=" over-expression"> over-expression</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallography" title=" crystallography"> crystallography</a> </p> <a href="https://publications.waset.org/abstracts/15732/crystallography-trials-of-escherichia-coli-nitrate-transporter-naru" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4585</span> Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hawon%20Lee">Hawon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Pil%20Kim"> Young-Pil Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collagen" title="collagen">collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=ECM" title=" ECM"> ECM</a>, <a href="https://publications.waset.org/abstracts/search?q=FRET" title=" FRET"> FRET</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP" title=" MMP"> MMP</a> </p> <a href="https://publications.waset.org/abstracts/72824/visualizing-matrix-metalloproteinase-2-activity-using-extracellular-matrix-immobilized-fluorescence-resonance-energy-transfer-bioprobe-in-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4584</span> In vitro Protein Folding and Stability Using Thermostable Exoshells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siddharth%20Deshpande">Siddharth Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihar%20Masurkar"> Nihar Masurkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vallerinteavide%20Mavelli%20Girish"> Vallerinteavide Mavelli Girish</a>, <a href="https://publications.waset.org/abstracts/search?q=Malan%20Desai"> Malan Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chester%20Drum"> Chester Drum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Folding and stabilization of recombinant proteins remain a consistent challenge for industrial and therapeutic applications. Proteins derived from thermophilic bacteria often have superior expression and stability qualities. To develop a generalizable approach to protein folding and stabilization, we tested the hypothesis that wrapping a thermostable exoshell around a protein substrate would aid folding and impart thermostable qualities to the internalized substrate. To test the effect of internalizing a protein within a thermostable exoshell (tES), we tested in vitro folding and stability using green fluorescent protein (GFPuv), horseradish peroxidase (HRP) and renilla luciferase (rLuc). The 8nm interior volume of a thermostable ferritin assembly was engineered to accommodate foreign proteins and either present a positive, neutral or negative interior charge environment. We further engineered the tES complex to reversibly assemble and disassemble with pH titration. Template proteins were expressed as inclusion bodies and an in vitro folding protocol was developed that forced proteins to fold inside a single tES. Functional yield was improved 100-fold, 100-fold and 150-fold with use of tES for GFPuv, HRP and rLuc respectively and was highly dependent on the internal charge environment of the tES. After folding, functional proteins could be released from the tES folding cavity using size exclusion chromatography at pH 5.8. Internalized proteins were tested for improved stability against thermal, organic, urea and guanidine denaturation. Our results demonstrated that thermostable exoshells can efficiently refold and stabilize inactive aggregates into functional proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermostable%20shell" title="thermostable shell">thermostable shell</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20folding" title=" in vitro folding"> in vitro folding</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20yield" title=" functional yield"> functional yield</a> </p> <a href="https://publications.waset.org/abstracts/72637/in-vitro-protein-folding-and-stability-using-thermostable-exoshells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4583</span> Synthesis, Characterization and Bioactivity of Methotrexate Conjugated Fluorescent Carbon Nanoparticles in vitro Model System Using Human Lung Carcinoma Cell Lines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Matin">Abdul Matin</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ajmal"> Muhammad Ajmal</a>, <a href="https://publications.waset.org/abstracts/search?q=Uzma%20Yunus"> Uzma Yunus</a>, <a href="https://publications.waset.org/abstracts/search?q=Noaman-ul%20Haq"> Noaman-ul Haq</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20M.%20Shohaib"> Hafiz M. Shohaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambreen%20G.%20Muazzam"> Ambreen G. Muazzam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanoparticles (CNPs) have unique properties that are useful for the diagnosis and treatment of cancer due to their precise properties like small size (ideal for delivery within the body) stability in solvent and tunable surface chemistry for targeted delivery. Here, highly fluorescent, monodispersed and water-soluble CNPs were synthesized directly from a suitable carbohydrate source (glucose and sucrose) by one-step acid assisted ultrasonic treatment at 35 KHz for 4 hours. This method is green, simple, rapid and economical and can be used for large scale production and applications. The average particle sizes of CNPs are less than 10nm and they emit bright and colorful green-blue fluorescence under the irradiation of UV-light at 365nm. The CNPs were characterized by scanning electron microscopy, fluorescent spectrophotometry, Fourier transform infrared spectrophotometry, ultraviolet-visible spectrophotometry and TGA analysis. Fluorescent CNPs were used as fluorescent probe and nano-carriers for anticancer drug. Functionalized CNPs (with ethylene diamine) were attached with anticancer drug-Methotrexate. In vitro bioactivity and biocompatibility of CNPs-drug conjugates was evaluated by LDH assay and Sulforhodamine B assay using human lung carcinoma cell lines (H157). Our results reveled that CNPs showed biocompatibility and CNPs-anticancer drug conjugates have shown potent cytotoxic effects and high antitumor activities in lung cancer cell lines. CNPs are proved to be excellent substitute for conventional drug delivery cargo systems and anticancer therapeutics in vitro. Our future studies will be more focused on using the same nanoparticles in vivo model system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanoparticles" title="carbon nanoparticles">carbon nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanoparticles-methotrexate%20conjugates" title=" carbon nanoparticles-methotrexate conjugates"> carbon nanoparticles-methotrexate conjugates</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20lung%20carcinoma%20cell%20lines" title=" human lung carcinoma cell lines"> human lung carcinoma cell lines</a>, <a href="https://publications.waset.org/abstracts/search?q=lactate%20dehydrogenase" title=" lactate dehydrogenase"> lactate dehydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a> </p> <a href="https://publications.waset.org/abstracts/42526/synthesis-characterization-and-bioactivity-of-methotrexate-conjugated-fluorescent-carbon-nanoparticles-in-vitro-model-system-using-human-lung-carcinoma-cell-lines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4582</span> Reflector Arrangement Effect on Ultraviolet Lamp Performance by CFX Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=William%20Sidharta">William Sidharta</a>, <a href="https://publications.waset.org/abstracts/search?q=Chin-Tu%20Lu"> Chin-Tu Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent ultraviolet lamp generates ultraviolet light which is commonly used in industrial field with certain purposes especially for curing process. Due to the value of inefficiency, there are changes in energy from electrical energy to the heat energy and this would make a defect on the industrial product caused by high temperature of lamp tube during ultraviolet light emission. The condition of industrial scale is further worsening, since commonly using dozens of fluorescent ultraviolet lamps to support huge production process and then it will generates much more heat energy. The maximum temperature of fluorescent ultraviolet lamp will get affected by arranging the lamp tube reflector and this study presents CFX simulation results of the maximum lamp tube temperature with some different reflector arrangements on purely natural convection phenomena. There exists certain spaces value of the reflector and the lamp tube to obtaining lower maximum temperature of the fluorescent ultraviolet lamp. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFX%20simulation" title="CFX simulation">CFX simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20UV%20lamp" title=" fluorescent UV lamp"> fluorescent UV lamp</a>, <a href="https://publications.waset.org/abstracts/search?q=lamp%20tube%20reflector" title=" lamp tube reflector"> lamp tube reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20light" title=" UV light "> UV light </a> </p> <a href="https://publications.waset.org/abstracts/25442/reflector-arrangement-effect-on-ultraviolet-lamp-performance-by-cfx-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4581</span> Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Laptinskiy">K. A. Laptinskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Burikov"> S. A. Burikov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Vervald"> A. M. Vervald</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Dolenko"> S. A. Dolenko</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20A.%20Dolenko"> T. A. Dolenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title=" data aggregation"> data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/14494/using-artificial-neural-networks-for-optical-imaging-of-fluorescent-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">710</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4580</span> Effect of Extrusion Processing Parameters on Protein in Banana Flour Extrudates: Characterisation Using Fourier-Transform Infrared Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surabhi%20Pandey">Surabhi Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavuluri%20Srinivasa%20Rao"> Pavuluri Srinivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extrusion processing is a high-temperature short time (HTST) treatment which can improve protein quality and digestibility together with retaining active nutrients. In-vitro protein digestibility of plant protein-based foods is generally enhanced by extrusion. The current study aimed to investigate the effect of extrusion cooking on in-vitro protein digestibility (IVPD) and conformational modification of protein in green banana flour extrudates. Green banana flour was extruded through a co-rotating twin-screw extruder varying the moisture content, barrel temperature, screw speed in the range of 10-20 %, 60-80 °C, 200-300 rpm, respectively, at constant feed rate. Response surface methodology was used to optimise the result for IVPD. Fourier-transform infrared spectroscopy (FTIR) analysis provided a convenient and powerful means to monitor interactions and changes in functional and conformational properties of extrudates. Results showed that protein digestibility was highest in extrudate produced at 80°C, 250 rpm and 15% feed moisture. FTIR analysis was done for the optimised sample having highest IVPD. FTIR analysis showed that there were no changes in primary structure of protein while the secondary protein structure changed. In order to explain this behaviour, infrared spectroscopy analysis was carried out, mainly in the amide I and II regions. Moreover, curve fitting analysis showed the conformational changes produced in the flour due to protein denaturation. The quantitative analysis of the changes in the amide I and II regions provided information about the modifications produced in banana flour extrudates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrusion" title="extrusion">extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20conformation" title=" protein conformation"> protein conformation</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20banana%20flour" title=" raw banana flour"> raw banana flour</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS-PAGE%20method" title=" SDS-PAGE method"> SDS-PAGE method</a> </p> <a href="https://publications.waset.org/abstracts/80370/effect-of-extrusion-processing-parameters-on-protein-in-banana-flour-extrudates-characterisation-using-fourier-transform-infrared-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4579</span> Fluorescent Analysis of Gold Nanoclusters-Wool Keratin Addition to Copper Ions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao%20Xing">Yao Xing</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Ling%20Liu"> Hong Ling Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Dong%20Yu"> Wei Dong Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increase of global population, it is of importance for the safe water supply, while, the water-monitoring method with the capability of rapidness, low-cost, green and robustness remains unsolved. In this paper, gold nanoclusters-wool keratin is added into copper ions measured by fluorescent method in order to probe copper ions in aqueous solution. The fluorescent results show that gold nanoclusters-wool keratin exhibits high stability of pHs, while it is sensitive to temperature and time. Based on Gauss fitting method, the results exhibit that the slope of gold nanoclusters-wool keratin with pH resolution under acidic condition is higher compared to it under alkaline solutions. Besides, gold nanoclusters-wool keratin added into copper ions shows a fluorescence turn-off response transferring from red to blue under UV light, leading to the dramatically decreased fluorescent intensity of gold nanoclusters-wool keratin solution located at 690 nm. Moreover, the limited concentration of copper ions tested by gold nanoclusters-wool keratin system is around 1 µmol/L, which meets the need of detection standards. The fitting slope of Stern-Volmer plot at low concentration of copper ions is larger than it at high concentrations, which indicates that aggregated gold nanoclusters are from small amounts to large numbers with the increasing concentration of copper ions. It is expected to provide novel method and materials for copper ions testing with low cost, high efficiency, and easy operability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoclusters" title="gold nanoclusters">gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20ions" title=" copper ions"> copper ions</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20keratin" title=" wool keratin"> wool keratin</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/87828/fluorescent-analysis-of-gold-nanoclusters-wool-keratin-addition-to-copper-ions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4578</span> Evaluation of Real Time PCR Methods for Food Safety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Sakalar">Ergun Sakalar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Bilgic"> Kubra Bilgic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last decades, real-time PCR has become a reliable tool preferred to use in many laboratories for pathogen detection. This technique allows for monitoring target amplification via fluorescent molecules besides admit of quantitative analysis by enabling of convert outcomes of thermal cycling to digital data. Sensitivity and traceability of real-time PCR are based on measuring of fluorescence that appears only when fluorescent reporter dye bound to specific target DNA.The fluorescent reporter systems developed for this purpose are divided into two groups. The first group consists of intercalator fluorescence dyes such as SYBR Green, EvaGreen which binds to double-stranded DNA. On the other hand, the second group includes fluorophore-labeled oligonucleotide probes that are separated into three subgroups due to differences in mechanism of action; initial primer-probes such as Cyclicons, Angler®, Amplifluor®, LUX™, Scorpions, and the second one hydrolysis probes like TaqMan, Snake assay, finally hybridization probes, for instance, Molecular Beacons, Hybprobe/FRET, HyBeacon™, MGB-Eclipse, ResonSense®, Yin-Yang, MGB-Pleiades. In addition nucleic acid analogues, an increase of probe affinity to target site is also employed with fluorescence-labeled probes. Consequently, abundant real-time PCR detection chemistries are chosen by researcher according to the field of application, mechanism of action, advantages, and proper structures of primer/probes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20dye" title="fluorescent dye">fluorescent dye</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20probes" title=" molecular probes"> molecular probes</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acid%20analogues" title=" nucleic acid analogues"> nucleic acid analogues</a> </p> <a href="https://publications.waset.org/abstracts/53082/evaluation-of-real-time-pcr-methods-for-food-safety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4577</span> Detection of Latent Fingerprints Recovered from Arson Simulation by a Novel Fluorescent Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somayeh%20Khanjani">Somayeh Khanjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Nabavi"> Samaneh Nabavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Jalili"> Shirin Jalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Khara"> Afshin Khara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fingerprints are area source of ubiquitous evidence and consequential for establishing identity. The detection and subsequent development of fingerprints are thus inevitable in criminal investigations. This becomes a difficult task in the case of certain extreme conditions like fire. A fire scene may be accidental or arson. The evidence subjected to fire is generally overlooked as there is a misconception that they are damaged. There are several scientific approaches to determine whether the fire was deliberate or not. In such as scenario, fingerprints may be most critical to link the perpetrator to the crime. The reason for this may be the destructive nature of fire. Fingerprints subjected to fire are exposed to high temperatures, soot deposition, electromagnetic radiation, and subsequent water force. It is believed that these phenomena damage the fingerprint. A novel fluorescent and a pre existing small particle reagent were investigated for the same. Zinc carbonates based fluorescent small particle reagent was capable of developing latent fingerprints exposed to a maximum temperature of 800 ̊C. Fluorescent SPR may prove very useful in such cases. Fluorescent SPR reagent based on zinc carbonate is a potential method for developing fingerprints from arson sites. The method is cost effective and non hazardous. This formulation is suitable for developing fingerprints exposed to fire/ arson. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingerprint" title="fingerprint">fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20particle%20reagent%20%28SPR%29" title=" small particle reagent (SPR)"> small particle reagent (SPR)</a>, <a href="https://publications.waset.org/abstracts/search?q=arson" title=" arson"> arson</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20fluorescent" title=" novel fluorescent "> novel fluorescent </a> </p> <a href="https://publications.waset.org/abstracts/28086/detection-of-latent-fingerprints-recovered-from-arson-simulation-by-a-novel-fluorescent-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4576</span> Green Construction in EGYPT</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Anwar">Hanan A. Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces green building construction in Egypt with different concepts and practices. The following study includes green building applied definition, guidelines, regulations and Standards. Evaluation of cost/benefit of green construction methods and green construction rating systems are presented. Relevant case studies will be reviewed. Four sites will be included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20construction" title="green construction">green construction</a>, <a href="https://publications.waset.org/abstracts/search?q=ecofreindly" title=" ecofreindly"> ecofreindly</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sufficient%20town" title=" self-sufficient town"> self-sufficient town</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20neutral%20atmosphere" title=" carbon neutral atmosphere"> carbon neutral atmosphere</a> </p> <a href="https://publications.waset.org/abstracts/21630/green-construction-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4575</span> Albumin-Induced Turn-on Fluorescence in Molecular Engineered Fluorescent Probe for Biomedical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raja%20Chinnappan">Raja Chinnappan</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20Alanazi"> Huda Alanazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanmugam%20Easwaramoorthi"> Shanmugam Easwaramoorthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanveer%20Mir"> Tanveer Mir</a>, <a href="https://publications.waset.org/abstracts/search?q=Balamurugan%20Kanagasabai"> Balamurugan Kanagasabai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Yaqinuddin"> Ahmed Yaqinuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandhanasamy%20Devanesan"> Sandhanasamy Devanesan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20S.%20AlSalhi"> Mohamad S. AlSalhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Serum albumin (SA) is a highly rich water-soluble protein in plasma. It is known to maintain the living organisms' health and help to maintain the proper liver function, kidney function, and plasma osmolality in the body. Low levels of serum albumin are an indication of liver failure and chronic hepatitis. Therefore, it is important to have a low-cost, accurate and rapid method. In this study, we designed a fluorescent probe, triphenylamine rhodanine-3-acetic acid (mRA), which triggers the fluorescence signal upon binding with serum albumin (SA). mRA is a bifunctional molecule with twisted intramolecular charge transfer (TICT)-induced emission characteristics. An aqueous solution of mRA has an insignificant fluorescence signal; however, when mRA binds to SA, it undergoes TICT and turns on the fluorescence emission. A SA dose-dependent fluorescence signal was performed, and the limit of detection was found to be less than ng/mL. The specific binding of SA was tested from the cross-reactivity study using similar structural or functional proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=serum%20albumin" title="serum albumin">serum albumin</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20sensing%20probe" title=" fluorescent sensing probe"> fluorescent sensing probe</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20diseases" title=" liver diseases"> liver diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20intramolecular%20charge%20transfer" title=" twisted intramolecular charge transfer"> twisted intramolecular charge transfer</a> </p> <a href="https://publications.waset.org/abstracts/193364/albumin-induced-turn-on-fluorescence-in-molecular-engineered-fluorescent-probe-for-biomedical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4574</span> The Application of Green Technology to Residential Architecture in Hangzhou</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huiru%20Chen">Huiru Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuran%20Zhang"> Xuran Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, the residential architecture in China are still causing high energy consumption and high pollution during their whole life cycle, which can be backward compared with the developed countries. The aim of this paper is to discuss the application of green technology to residential architecture in Hangzhou. This article will start with the development of green buildings, then analyzes the use status of green technology in Hangzhou from several specific measures. Analysis of the typical existing green residential buildings in Hangzhou is an attempt to form a preliminary Hangzhou’s green technology application strategy system. Through research, it has been found that the application of green technology in Hangzhou has changed from putting green to the facade, to the combination of the preservation of the traditional green concept and the modern green technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application" title="application">application</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title=" green technology"> green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangzhou" title=" Hangzhou"> Hangzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20architecture" title=" residential architecture"> residential architecture</a> </p> <a href="https://publications.waset.org/abstracts/92930/the-application-of-green-technology-to-residential-architecture-in-hangzhou" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4573</span> Green Synthesis of Red-Fluorescent Gold Nanoclusters: Characterization and Application for Breast Cancer Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agn%C4%97%20Mikalauskait%C4%97">Agnė Mikalauskaitė</a>, <a href="https://publications.waset.org/abstracts/search?q=Renata%20Karpicz"> Renata Karpicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Vitalijus%20Karabanovas"> Vitalijus Karabanovas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ar%C5%ABnas%20Jagminas"> Arūnas Jagminas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of biocompatible precursors for the synthesis and stabilization of fluorescent gold nanoclusters (NCs) with strong red photoluminescence creates an important link between natural sciences and nanotechnology. Herein, we report the cost-effective synthesis of Au nanoclusters by templating and reduction of chloroauric acid with the cheap amino acid food supplements. This synthesis under the optimized conditions leads to the formation of biocompatible Au NCs having good stability and intense red photoluminescence, peaked at 680 to 705 nm, with a quantum yield (QY) of ≈7% and the average lifetime of up to several µs. The composition and luminescent properties of the obtained NCs were compared with ones formed via well-known bovine serum albumin reduction approach. Our findings implied that synthesized Au NCs tend to accumulate in more tumorigenic breast cancer cells (line MDA-MB-213) and after dialysis can be prospective for bio imagining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoclusters" title="gold nanoclusters">gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins" title=" proteins"> proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20chemistry" title=" materials chemistry"> materials chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=red-photoluminescence" title=" red-photoluminescence"> red-photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=bioimaging" title=" bioimaging"> bioimaging</a> </p> <a href="https://publications.waset.org/abstracts/62262/green-synthesis-of-red-fluorescent-gold-nanoclusters-characterization-and-application-for-breast-cancer-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4572</span> Paper-Based Detection Using Synthetic Gene Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20Funk">Vanessa Funk</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Blum"> Steven Blum</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Cole"> Stephanie Cole</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Maciel"> Jorge Maciel</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Lux"> Matthew Lux</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell-free%20lysates" title="cell-free lysates">cell-free lysates</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20circuits" title=" gene circuits"> gene circuits</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro" title=" in vitro"> in vitro</a> </p> <a href="https://publications.waset.org/abstracts/71047/paper-based-detection-using-synthetic-gene-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71047.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4571</span> Plant Regeneration via Somatic Embryogenesis and Agrobacterium-Mediated Transformation in Alfalfa (Medicago sativa L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarwan%20Dhir">Sarwan Dhir</a>, <a href="https://publications.waset.org/abstracts/search?q=Suma%20Basak"> Suma Basak</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipika%20Parajulee"> Dipika Parajulee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alfalfa is renowned for its nutritional and biopharmaceutical value as a perennial forage legume. However, establishing a rapid plant regeneration protocol using somatic embryogenesis and efficient transformation frequency are the crucial prerequisites for gene editing in alfalfa. This study was undertaken to establish and improve the protocol for somatic embryogenesis and subsequent plant regeneration. The experiments were conducted in response to natural sensitivity using various antibiotics such as cefotaxime, carbenicillin, gentamycin, hygromycin, and kanamycin. Using 3-week-old leaf tissue, somatic embryogenesis was initiated on Gamborg’s B5 basal (B5H) medium supplemented with 3% maltose, 0.9µM Kinetin, and 4.5µM 2,4-D. Embryogenic callus (EC) obtained from the B5H medium exhibited a high rate of somatic embryo formation (97.9%) after 3 weeks when the cultures were placed in the dark. Different developmental stages of somatic embryos and cotyledonary stages were then transferred to Murashige and Skoog’s (MS) basal medium under light, resulting in a 94% regeneration rate of plantlets. Our results indicate that leaf segments can grow (tolerate) up to 450 mg/L of cefotaxime and 400 mg/L of carbenicillin in the culture medium. However, the survival threshold for hygromycin at 12.5 mg/L, kanamycin at 250 mg/L, gentamycin at 50 mg/L, and timentin (300 mg/L). The experiment to improve the protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector was also conducted. The vector contains two reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene (HPT), all driven under the CaMV 35s promoter. Various transformation parameters were optimized using 3-week-old in vitro-grown plantlets. The different parameters such as types of explant, leaf ages, preculture days, segment sizes, wounding types, bacterial concentrations, infection periods, co-cultivation periods, different concentrations of acetosyringone, silver nitrate, and calcium chloride were optimized for transient gene expression. The transient gene expression was confirmed via histochemical GUS and GFP visualization under fluorescent microscopy. The data were analyzed based on the semi-quantitative observation of the percentage and number of blue GUS spots on different days of agro-infection. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old leaf segments wounded using a scalpel blade of 11 size- after 3 days of post-incubation at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of bacterial-leaf segment co-cultivation, with the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. Our results suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The stable gene expression in the putative transgenic tissue was confirmed using PCR amplification of both marker genes, indicating that gene expression in explants was not solely due to Agrobacterium, but also from transformed cells. The improved protocol could be used for generating transgenic alfalfa plants using genome editing techniques such as CRISPR/Cas9. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa%20l.%20%28Alfalfa%29" title="Medicago sativa l. (Alfalfa)">Medicago sativa l. (Alfalfa)</a>, <a href="https://publications.waset.org/abstracts/search?q=agrobacterium%20tumefaciens" title=" agrobacterium tumefaciens"> agrobacterium tumefaciens</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-glucuronidase" title=" β-glucuronidase"> β-glucuronidase</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein" title=" green fluorescent protein"> green fluorescent protein</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20gene" title=" transient gene"> transient gene</a> </p> <a href="https://publications.waset.org/abstracts/193468/plant-regeneration-via-somatic-embryogenesis-and-agrobacterium-mediated-transformation-in-alfalfa-medicago-sativa-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4570</span> Lentil Protein Fortification in Cranberry Squash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Devi%20A">Sandhya Devi A</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protein content of the cranberry squash (protein: 0g) may be increased by extracting protein from the lentils (9 g), which is particularly linked to a lower risk of developing heart disease. Using the technique of alkaline extraction from the lentils flour, protein may be extracted. Alkaline extraction of protein from lentil flour was optimized utilizing response surface approach in order to maximize both protein content and yield. Cranberry squash may be taken if a protein fortification syrup is prepared and processed into the squash. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20extraction" title="alkaline extraction">alkaline extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cranberry%20squash" title=" cranberry squash"> cranberry squash</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20fortification" title=" protein fortification"> protein fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a> </p> <a href="https://publications.waset.org/abstracts/153178/lentil-protein-fortification-in-cranberry-squash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4569</span> Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Dagang">A. N. Dagang</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20I.%20Ismail"> E. I. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zakaria"> Z. Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20antenna" title="plasma antenna">plasma antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20tube" title=" fluorescent tube"> fluorescent tube</a>, <a href="https://publications.waset.org/abstracts/search?q=CST" title=" CST"> CST</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20parameters" title=" plasma parameters"> plasma parameters</a> </p> <a href="https://publications.waset.org/abstracts/52421/plasma-properties-effect-on-fluorescent-tube-plasma-antenna-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4568</span> Advanced Real-Time Fluorescence Imaging System for Rat&#039;s Femoral Vein Thrombosis Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sang%20Hun%20Park">Sang Hun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Gyu%20Song"> Chul Gyu Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artery and vein occlusion changes observed in patients and experimental animals are unexplainable symptoms. As the fat accumulated in cardiovascular ruptures, it causes vascular blocking. Likewise, early detection of cardiovascular disease can be useful for treatment. In this study, we used the mouse femoral occlusion model to observe the arterial and venous occlusion changes without darkroom. We observed the femoral arterial flow pattern changes by proposed fluorescent imaging system using an animal model of thrombosis. We adjusted the near-infrared light source current in order to control the intensity of the fluorescent substance light. We got the clear fluorescent images and femoral artery flow pattern were measured by a 5-minute interval. The result showed that the fluorescent substance flowing in the femoral arteries were accumulated in thrombus as time passed, and the fluorescence of other vessels gradually decreased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thrombus" title="thrombus">thrombus</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=femoral" title=" femoral"> femoral</a>, <a href="https://publications.waset.org/abstracts/search?q=arteries" title=" arteries"> arteries</a> </p> <a href="https://publications.waset.org/abstracts/40585/advanced-real-time-fluorescence-imaging-system-for-rats-femoral-vein-thrombosis-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4567</span> Hydration of Protein-RNA Recognition Sites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amita%20Barik">Amita Barik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Prasad%20Bahadur"> Ranjit Prasad Bahadur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the role of water molecules in 89 protein-RNA complexes taken from the Protein Data Bank. Those with tRNA and single-stranded RNA are less hydrated than with duplex or ribosomal proteins. Protein-RNA interfaces are hydrated less than protein-DNA interfaces, but more than protein-protein interfaces. Majority of the waters at protein-RNA interfaces makes multiple H-bonds; however, a fraction does not make any. Those making Hbonds have preferences for the polar groups of RNA than its partner protein. The spatial distribution of waters makes interfaces with ribosomal proteins and single-stranded RNA relatively ‘dry’ than interfaces with tRNA and duplex RNA. In contrast to protein-DNA interfaces, mainly due to the presence of the 2’OH, the ribose in protein-RNA interfaces is hydrated more than the phosphate or the bases. The minor groove in protein-RNA interfaces is hydrated more than the major groove, while in protein-DNA interfaces it is reverse. The strands make the highest number of water-mediated H-bonds per unit interface area followed by the helices and the non-regular structures. The preserved waters at protein-RNA interfaces make higher number of H-bonds than the other waters. Preserved waters contribute toward the affinity in protein-RNA recognition and should be carefully treated while engineering protein-RNA interfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=h-bonds" title="h-bonds">h-bonds</a>, <a href="https://publications.waset.org/abstracts/search?q=minor-major%20grooves" title=" minor-major grooves"> minor-major grooves</a>, <a href="https://publications.waset.org/abstracts/search?q=preserved%20water" title=" preserved water"> preserved water</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-RNA%20interfaces" title=" protein-RNA interfaces"> protein-RNA interfaces</a> </p> <a href="https://publications.waset.org/abstracts/42932/hydration-of-protein-rna-recognition-sites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4566</span> Developing a Novel Fluorescent Sensor for Detecting Analytes in an Aqueous Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varshith%20Kotagiri">Varshith Kotagiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Li"> Lei Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent sensors are organic fluorophores that detect specific analytes with quantitative fluorescence intensity changes. They have offered impressive benefits compared with instrumental techniques, such as low cost, high selectivity, and rapid responses. One issue that limits the fluorescent sensors for further application is their poor solubility in the aqueous medium, where most targeted analytes, including metal ions, inorganic anions, and neutral biomolecules, are readily soluble. When fluorescent sensors are utilized to detect these analytes, a heterogeneous phase is formed. In most cases, an extra water-miscible organic solvent is needed as an additive to facilitate the sensing process, which complicates the measurement operations and produces more organic waste. We aim to resolve this issue by skillful molecular design to introduce a hydrophilic side chain to the fluorescent sensor, increasing its water solubility and facilitating its sensing process to analytes, like various protons, fluoride ions, and copper ions, in an aqueous medium. Simultaneously, its sensitivity and selectivity will be retained. This work will simplify the sensing operations and reduce the amount of organic waste produced during the measurement. This strategy will additionally be of broad interest to the chemistry community, as it introduces the idea of modifying the molecular structure to apply an initial hydrophobic compound under hydrophilic conditions in a feasible way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20fluorescent%20sensor" title="organic fluorescent sensor">organic fluorescent sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=analytes" title=" analytes"> analytes</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous%20medium" title=" aqueous medium"> aqueous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=phenanthroimidazole" title=" phenanthroimidazole"> phenanthroimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic%20side%20chain" title=" hydrophilic side chain"> hydrophilic side chain</a> </p> <a href="https://publications.waset.org/abstracts/195039/developing-a-novel-fluorescent-sensor-for-detecting-analytes-in-an-aqueous-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/195039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=153">153</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=154">154</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=green%20fluorescent%20protein&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10