CINXE.COM
Positive-definite function - Encyclopedia of Mathematics
<!DOCTYPE html> <html class="client-nojs" lang="en" dir="ltr"> <head> <meta charset="UTF-8"/> <title>Positive-definite function - Encyclopedia of Mathematics</title> <script>document.documentElement.className="client-js";RLCONF={"wgBreakFrames":!1,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c7a6522b1503df9b8382a2ef","wgCSPNonce":!1,"wgCanonicalNamespace":"","wgCanonicalSpecialPageName":!1,"wgNamespaceNumber":0,"wgPageName":"Positive-definite_function","wgTitle":"Positive-definite function","wgCurRevisionId":55150,"wgRevisionId":55150,"wgArticleId":8070,"wgIsArticle":!0,"wgIsRedirect":!1,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["TeX auto","TeX done"],"wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Positive-definite_function","wgRelevantArticleId":8070,"wgIsProbablyEditable":!1,"wgRelevantPageIsProbablyEditable":!1,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgMjSize":100}; RLSTATE={"site.styles":"ready","noscript":"ready","user.styles":"ready","user":"ready","user.options":"loading"};RLPAGEMODULES=["ext.MjCDN","site","mediawiki.page.startup","mediawiki.page.ready"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.implement("user.options@1hzgi",function($,jQuery,require,module){/*@nomin*/mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); });});</script> <script async="" src="/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=springereom"></script> <link rel="stylesheet" href="/skins/springereom/main-ltr.css?486a0" media="screen"/> <meta name="generator" content="MediaWiki 1.35.13"/> <link rel="shortcut icon" href="/favicon.ico"/> <link rel="search" type="application/opensearchdescription+xml" href="/opensearch_desc.php" title="Encyclopedia of Mathematics (en)"/> <link rel="EditURI" type="application/rsd+xml" href="https://encyclopediaofmath.org/api.php?action=rsd"/> <!--[if lt IE 7]><style type="text/css">body{behavior:url("/skins/springereom/csshover.min.htc")}</style><![endif]--> <!--[if lt IE 9]><script src="/resources/lib/html5shiv/html5shiv.js"></script><![endif]--> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject page-Positive-definite_function rootpage-Positive-definite_function skin-springereom action-view"><div id="OuterShell"><div id="InnerShell"><a id="top"></a> <div id="head" class="noprint"> <div id="headInner"> <a id="mainpagelink" href="/" > </a> <div id="p-personal"> <ul> <li id="pt-anonlogin"><a href="/index.php?title=Special:UserLogin&returnto=Positive-definite+function">Log in</a></li> </ul> </div> <!-- 0 --> <div id="p-search"> <form action="/index.php" id="searchform"> <input type='hidden' name="title" value="Special:Search"/> <div id="simpleSearch"> <input id="searchInput" name="search" type="text" value="" /> <button id="searchButton" type='submit' name='button' ><img src="/skins/springereom/images/search-rtl.png" alt="Search"/></button> </div> </form> </div> <!-- /0 --> <p id="MetaLogos"> <a href="http://www.springer.com" id="Springercom"><span>www.springer.com</span></a> <a href="http://www.euro-math-soc.eu/" id="Euromathsoc"><span>The European Mathematical Society</span></a> </p> </div> </div> <div id="ContentShell"> <div id="mw-panel" class="noprint"> <!-- navigation --> <div class="portal" id='p-navigation'> <h5>Navigation</h5> <div class="body"> <ul> <li id="n-mainpage-description"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z">Main page</a></li> <li id="n-Pages-A-Z"><a href="/wiki/Special:AllPages">Pages A-Z</a></li> <li id="n-StatProb-Collection"><a href="/wiki/Category:Statprob">StatProb Collection</a></li> <li id="n-recentchanges"><a href="/wiki/Special:RecentChanges" title="A list of recent changes in the wiki [r]" accesskey="r">Recent changes</a></li> <li id="n-currentevents"><a href="/wiki/Encyclopedia_of_Mathematics:Current_events" title="Find background information on current events">Current events</a></li> <li id="n-randompage"><a href="/wiki/Special:Random" title="Load a random page [x]" accesskey="x">Random page</a></li> <li id="n-help"><a href="/wiki/Help:Contents" title="The place to find out">Help</a></li> <li id="n-Project-talk"><a href="/wiki/Talk:EoM:This_project">Project talk</a></li> <li id="n-Request-account"><a href="/wiki/Special:RequestAccount">Request account</a></li> </ul> </div> </div> <!-- /navigation --> <!-- SEARCH --> <!-- /SEARCH --> <!-- TOOLBOX --> <div class="portal" id='p-tb'> <h5>Tools</h5> <div class="body"> <ul> <li id="t-whatlinkshere"><a href="/wiki/Special:WhatLinksHere/Positive-definite_function" title="A list of all wiki pages that link here [j]" accesskey="j">What links here</a></li> <li id="t-recentchangeslinked"><a href="/wiki/Special:RecentChangesLinked/Positive-definite_function" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k">Related changes</a></li> <li id="t-specialpages"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q">Special pages</a></li> <li id="t-print"><a href="javascript:print();" rel="alternate" title="Printable version of this page [p]" accesskey="p">Printable version</a></li> <li id="t-permalink"><a href="/index.php?title=Positive-definite_function&oldid=55150" title="Permanent link to this revision of the page">Permanent link</a></li> <li id="t-info"><a href="/index.php?title=Positive-definite_function&action=info" title="More information about this page">Page information</a></li> </ul> </div> </div> <!-- /TOOLBOX --> <!-- LANGUAGES --> <!-- /LANGUAGES --> </div> <!-- content --> <div id="content"> <div id="ContentNavigation" class="noprint"> <div id="left-navigation"> <!-- 0 --> <div id="p-namespaces" class="springereomTabs"> <h5>Namespaces</h5> <ul> <li id="ca-nstab-main" class="selected"><a href="/wiki/Positive-definite_function" title="View the content page [c]" accesskey="c"><span>Page</span></a></li> <li id="ca-talk" class="new"><a href="/index.php?title=Talk:Positive-definite_function&action=edit&redlink=1" title="Discussion about the content page [t]" accesskey="t"><span>Discussion</span></a></li> </ul> </div> <!-- /0 --> <!-- 1 --> <div id="p-variants" class="springereomMenu emptyPortlet"> <h5><span>Variants</span><a href="#"></a></h5> <div class="menu"> <ul> </ul> </div> </div> <!-- /1 --> </div> <div id="right-navigation"> <!-- 0 --> <div id="p-views" class="springereomTabs"> <h5>Views</h5> <ul> <li id="ca-view" class="selected"><a href="/wiki/Positive-definite_function" ><span>View</span></a></li> <li id="ca-viewsource"><a href="/index.php?title=Positive-definite_function&action=edit" title="This page is protected. You can view its source [e]" accesskey="e"><span>View source</span></a></li> <li id="ca-history" class="collapsible"><a href="/index.php?title=Positive-definite_function&action=history" title="Past revisions of this page [h]" accesskey="h"><span>History</span></a></li> </ul> </div> <!-- /0 --> <!-- 1 --> <div id="p-cactions" class="springereomMenu emptyPortlet"> <h5><span>Actions</span><a href="#"></a></h5> <div class="menu"> <ul> </ul> </div> </div> <!-- /1 --> </div> </div> <div id="InnerContent"> <div id="mw-js-message" style="display:none;"></div> <!-- firstHeading --> <h1 id="firstHeading" class="firstHeading">Positive-definite function</h1> <!-- /firstHeading --> <!-- bodyContent --> <div id="bodyContent"> <!-- tagline --> <div id="siteSub">From Encyclopedia of Mathematics</div> <!-- /tagline --> <!-- subtitle --> <div id="contentSub"></div> <!-- /subtitle --> <!-- jumpto --> <div id="jump-to-nav"> Jump to: <a href="#mw-head">navigation</a>, <a href="#p-search">search</a> </div> <!-- /jumpto --> <!-- bodycontent --> <div id="mw-content-text" lang="en" dir="ltr" class="mw-content-ltr"><div class="mw-parser-output"><p><br /> A complex-valued function $ \phi $ on a group $ G $ satisfying </p><p>$$ \sum _ {i,j= 1 } ^ { m } \alpha _ {i} \overline \alpha \; _ {j} \phi ( x _ {j} ^ {-1} x _ {i} ) \geq 0 $$ </p><p>for all choices $ x _ {1} \dots x _ {m} \in G $, $ \alpha _ {1} \dots \alpha _ {m} \in \mathbf C $. The set of positive-definite functions on $ G $ forms a cone in the space $ M( G) $ of all bounded functions on $ G $ which is closed with respect to the operations of multiplication and complex conjugation. </p><p>The reason for distinguishing this class of functions is that positive-definite functions define positive functionals (cf. <a href="/wiki/Positive_functional" title="Positive functional">Positive functional</a>) on the group algebra $ \mathbf C G $ and unitary representations of the group $ G $( cf. <a href="/wiki/Unitary_representation" title="Unitary representation">Unitary representation</a>). More precisely, let $ \phi : G \rightarrow \mathbf C $ be any function and let $ l _ \phi : \mathbf C G\rightarrow \mathbf C $ be the functional given by </p><p>$$ l _ \phi \left ( \sum _ {g \in G } \alpha _ {g} g \right ) = \ \sum _ {g \in G } \phi ( g) \alpha _ {g} ; $$ </p><p>then for $ l _ \phi $ to be positive it is necessary and sufficient that $ \phi $ be a positive-definite function. Further, $ l _ \phi $ defines a $ * $- representation of the algebra $ \mathbf C G $ on a Hilbert space $ H _ \phi $, and therefore a unitary representation $ \pi _ \phi $ of the group $ G $, where $ \phi ( g) = ( \pi _ \phi ( g) \xi , \xi ) $ for some $ \xi \in H _ \phi $. Conversely, for any representation $ \pi $ and any vector $ \xi \in H _ \phi $, the function $ g \rightarrow ( \pi ( g) \xi , \xi ) $ is a positive-definite function. </p><p>If $ G $ is a topological group, the representation $ \pi _ \phi $ is weakly continuous if and only if the positive-definite function is continuous. If $ G $ is locally compact, continuous positive-definite functions are in one-to-one correspondence with the positive functionals on $ L _ {1} ( G) $. </p><p>For commutative locally compact groups, the class of continuous positive-definite functions coincides with the class of Fourier transforms of finite positive regular Borel measures on the dual group. There is an analogue of this assertion for compact groups: A continuous function $ \phi $ on a compact group $ G $ is a positive-definite function if and only if its Fourier transform $ \widehat \phi ( b) $ takes positive (operator) values on each element of the dual object, i.e. </p><p>$$ \int\limits _ { G } \phi ( g) ( \sigma ( g) \xi , \xi ) dg \geq 0 $$ </p><p>for any representation $ \sigma $ and any vector $ \xi \in H _ \sigma $, where $ H _ \sigma $ is the space of $ \sigma $. </p> <h4><span class="mw-headline" id="References">References</span></h4> <table><tbody><tr><td valign="top">[1]</td> <td valign="top"> E. Hewitt, K.A. Ross, "Abstract harmonic analysis" , <b>2</b> , Springer (1979)</td></tr><tr><td valign="top">[2]</td> <td valign="top"> M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)</td></tr></tbody></table> <h4><span class="mw-headline" id="Comments">Comments</span></h4> <p>The representations of $ \mathbf C G $ associated to positive functionals $ l $ mentioned above are cyclic representations. A cyclic representation of a $ C ^ {*} $- algebra $ {\mathcal A} $ is a representation $ \rho : {\mathcal A} \rightarrow B( H) $, the $ C ^ {*} $- algebra of bounded operators on the Hilbert space $ H $, such that there is a vector $ \xi \in H $ such that the closure of $ \{ {A \xi } : {A \in {\mathcal A} } \} $ is all of $ H $. These are the basic components of any representation. Indeed, if $ \rho $ is non-degenerate, i.e. $ \{ {\xi \in H } : {\rho ( A) ( \xi ) = 0 \textrm{ for all } A \in {\mathcal A} } \} = 0 $, then $ \rho $ is a direct sum of cyclic representations. Cf. also <a href="/wiki/Cyclic_module" title="Cyclic module">Cyclic module</a> for an analogous concept in ring and module theory. </p><p>The cyclic representation associated to a positive functional $ l $ on $ {\mathcal A} $ is a suitably completed quotient of the regular representation. More precisely, the construction is as follows. Define an inner product on $ {\mathcal A} $ by </p><p>$$ \langle A, B \rangle = l ( A ^ {*} B ) , $$ </p><p>and define a left ideal of $ {\mathcal A} $ by </p><p>$$ {\mathcal I} = \{ {A \in {\mathcal A} } : {l( A ^ {*} A ) = 0 } \} . $$ </p><p>The inner product just defined descends to define an inner product on the quotient space $ {\mathcal A} / {\mathcal I} $. Now complete this space to obtain a Hilbert space $ H _ {l} $, and define the representation $ \pi _ {l} $ by: </p><p>$$ \pi _ {l} ( A) ([ B ]) \simeq [ AB], $$ </p><p>where $ [ B] $ denotes the class of $ B \in {\mathcal A} $ in $ {\mathcal A} / {\mathcal I} \subset H _ {l} $. The operator $ \pi _ {l} ( A) $ extends to a bounded operator on $ H _ {l} $. </p><p>If $ {\mathcal A} $ contains an identity, then the class of that identity is a cyclic vector for $ \pi _ {l} $. If $ {\mathcal A} $ does not contain an identity, such is first adjoined to obtain a $ C ^ {*} $- algebra $ {\mathcal A} tilde $ and the construction is repeated for $ {\mathcal A} tilde $. To prove that then the class of 1 is cyclic for $ {\mathcal A} $( not just $ {\mathcal A} tilde $) one uses an approximate identity for $ {\mathcal I} $, i.e. a <a href="/wiki/Net_(directed_set)" title="Net (directed set)">net (directed set)</a> $ \{ E _ \alpha \} $ of positive elements $ E _ \alpha \in {\mathcal I} $ such that $ \| E _ \alpha \| \leq 1 $, $ \alpha \leq \beta $ implies $ E _ \alpha \leq E _ \beta $ and $ \lim\limits _ \alpha \| AE _ \alpha - A \| = 0 $ for all $ A \in {\mathcal I} $. Such approximate identities always exist. See e.g. <a href="#References">[1]</a>, vol. 1, p. 321 and <a href="#References">[a5]</a>, Sects. 2.2.3, 2.3.1 and 2.3.3 for more details on all this. </p><p>A positive functional on a $ C ^ {*} $- algebra of norm 1 is often called a state, especially in the theoretical physics literature. </p> <h4><span class="mw-headline" id="References_2">References</span></h4> <table><tbody><tr><td valign="top">[a1]</td> <td valign="top"> S. Bochner, "Lectures on Fourier integrals" , Princeton Univ. Press (1959) (Translated from German)</td></tr><tr><td valign="top">[a2]</td> <td valign="top"> W. Rudin, "Fourier analysis on groups" , Wiley (1962)</td></tr><tr><td valign="top">[a3]</td> <td valign="top"> H. Reiter, "Classical harmonic analysis and locally compact groups" , Clarendon Press (1968)</td></tr><tr><td valign="top">[a4]</td> <td valign="top"> J. Dixmier, "<img src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073890/p07389087.png" /> algebras" , North-Holland (1977) (Translated from French)</td></tr><tr><td valign="top">[a5]</td> <td valign="top"> O. Bratteli, D.W. Robinson, "Operator algebras and quantum statistical mechanics" , <b>1</b> , Springer (1979)</td></tr></tbody></table> <!-- NewPP limit report Cached time: 20241125233036 Cache expiry: 86400 Dynamic content: false Complications: [] CPU time usage: 0.009 seconds Real time usage: 0.013 seconds Preprocessor visited node count: 60/1000000 Post鈥恊xpand include size: 126/2097152 bytes Template argument size: 8/2097152 bytes Highest expansion depth: 5/40 Expensive parser function count: 0/100 Unstrip recursion depth: 0/20 Unstrip post鈥恊xpand size: 0/5000000 bytes --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1.666 1 -total 94.23% 1.570 2 Template:TEX --> <!-- Saved in parser cache with key mediawiki:pcache:idhash:8070-0!canonical and timestamp 20241125233036 and revision id 55150 --> </div><div id="citeRevision" class="springerCitation"><strong>How to Cite This Entry:</strong><br /> Positive-definite function. <i>Encyclopedia of Mathematics.</i> URL: http://encyclopediaofmath.org/index.php?title=Positive-definite_function&oldid=55150</div><div id="originalIsbn" class="springerCitation">This article was adapted from an original article by V.S. Shul'man (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. <a href="http://encyclopediaofmath.org/index.php?title=Positive-definite_function&oldid=19269">See original article</a></div></div> <!-- /bodycontent --> <!-- printfooter --> <div class="printfooter"> Retrieved from "<a dir="ltr" href="https://encyclopediaofmath.org/index.php?title=Positive-definite_function&oldid=55150">https://encyclopediaofmath.org/index.php?title=Positive-definite_function&oldid=55150</a>" </div> <!-- /printfooter --> <!-- catlinks --> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:Categories" title="Special:Categories">Categories</a>: <ul><li><a href="/wiki/Category:TeX_auto" title="Category:TeX auto">TeX auto</a></li><li><a href="/wiki/Category:TeX_done" title="Category:TeX done">TeX done</a></li></ul></div></div> <!-- /catlinks --> <div class="visualClear"></div> <!-- debughtml --> <!-- /debughtml --> </div> <!-- /bodyContent --> </div> </div> </div> <div id="footer"> <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 January 2024, at 20:29.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="/wiki/Encyclopedia_of_Mathematics:Privacy_policy" title="Encyclopedia of Mathematics:Privacy policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Encyclopedia_of_Mathematics:About" class="mw-redirect" title="Encyclopedia of Mathematics:About">About Encyclopedia of Mathematics</a></li> <li id="footer-places-disclaimer"><a href="/wiki/Encyclopedia_of_Mathematics:General_disclaimer" title="Encyclopedia of Mathematics:General disclaimer">Disclaimers</a></li> </ul> <ul id="footer-icons"> <li><a href="/index.php/Encyclopedia_of_Mathematics:Copyrights">Copyrights</a> </li> <li> <a href="/index.php/Encyclopedia_of_Mathematics:Legal">Impressum-Legal</a></li> </ul> <div style="clear:both"></div> <span class="manage-cookies"><a class="optanon-show-settings">Manage Cookies</a></span> </div> <!-- fixalpha --> <script type="<br /> <b>Warning</b>: Undefined array key "jsmimetype" in <b>/var/www/html/includes/skins/QuickTemplate.php</b> on line <b>99</b><br /> "> if ( window.isMSIE55 ) fixalpha(); </script> <!-- /fixalpha --> <!--[if IE 7]> <style type="text/css"> #DLhot .rahmen {zoom:1;} </style><![endif]--> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgPageParseReport":{"limitreport":{"cputime":"0.009","walltime":"0.013","ppvisitednodes":{"value":60,"limit":1000000},"postexpandincludesize":{"value":126,"limit":2097152},"templateargumentsize":{"value":8,"limit":2097152},"expansiondepth":{"value":5,"limit":40},"expensivefunctioncount":{"value":0,"limit":100},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":0,"limit":5000000},"timingprofile":["100.00% 1.666 1 -total"," 94.23% 1.570 2 Template:TEX"]},"cachereport":{"timestamp":"20241125233036","ttl":86400,"transientcontent":false}}});mw.config.set({"wgBackendResponseTime":71});});</script></div> </div> </body> </html>