CINXE.COM
Search results for: carbon fiber reinforced polymer (CFRP)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: carbon fiber reinforced polymer (CFRP)</title> <meta name="description" content="Search results for: carbon fiber reinforced polymer (CFRP)"> <meta name="keywords" content="carbon fiber reinforced polymer (CFRP)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="carbon fiber reinforced polymer (CFRP)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="carbon fiber reinforced polymer (CFRP)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6056</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: carbon fiber reinforced polymer (CFRP)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6056</span> Strengthening Bridge Piers by Carbon Fiber Reinforced Polymer (CFRP): A Case Study for Thuan Phuoc Suspension Bridge in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lan%20Nguyen">Lan Nguyen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lam%20Cao%20Van"> Lam Cao Van</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thuan Phuoc is a suspension bridge built in Danang city, Vietnam. Because this bridge locates near the estuary, its structure has degraded rapidly. Many cracks have currently occurred on most of the concrete piers of the curved approach spans. This paper aims to present the results of diagnostic analysis of causes for cracks as well as some calculations for strengthening piers by carbon fiber reinforced polymer (CFRP). Besides, it describes how to use concrete nonlinear analysis software ATENA to diagnostically analyze cracks, strengthening designs. Basing on the results of studying the map of distributing crack on Thuan Phuoc bridge’s concrete piers is analyzed by the software ATENA is suitable for the real conditions and CFRP would be the best solution to strengthen piers in a sound and fast way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATENA" title="ATENA">ATENA</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20pier%20strengthening" title=" bridge pier strengthening"> bridge pier strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29" title=" carbon fiber reinforced polymer (CFRP)"> carbon fiber reinforced polymer (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20prediction%20analysis" title=" crack prediction analysis"> crack prediction analysis</a> </p> <a href="https://publications.waset.org/abstracts/54125/strengthening-bridge-piers-by-carbon-fiber-reinforced-polymer-cfrp-a-case-study-for-thuan-phuoc-suspension-bridge-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6055</span> Flexural Behavior of Heat-Damaged Concrete Beams Reinforced with Fiber Reinforced Polymer (FRP) Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Irshidat">Mohammad R. Irshidat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rami%20H.%20Haddad"> Rami H. Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanadi%20Al-Mahmoud"> Hanadi Al-Mahmoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reinforced concrete (RC) is the most common used material for construction in the world. In the past decades, fiber reinforced polymer (FRP) bars had been widely used to substitute the steel bars due to their high resistance to corrosion, high tensile capacity, and low weight in comparison with steel. Experimental studies on the behavior of FRP bar reinforced concrete beams had been carried out worldwide for a few decades. While the research on such structural members under elevated temperatures is still very limited. In this research, the flexural behavior of heat-damaged concrete beams reinforced with FRP bars is studied. Two types of FRP rebar namely, carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP), are used. The beams are subjected to four levels of temperature before tested to monitor their flexural behavior. The results are compared with other concrete beams reinforced with regular steel bars. The results show that the beams reinforced with CFRP bars and GFRP bars had higher flexural capacity than the beams reinforced with steel bars even if heated up to 400°C and 300°C, respectively. After that the beams reinforced with steel bars had the superiority. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20beams" title="concrete beams">concrete beams</a>, <a href="https://publications.waset.org/abstracts/search?q=FRP%20rebar" title=" FRP rebar"> FRP rebar</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20behavior" title=" flexural behavior"> flexural behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=heat-damaged" title=" heat-damaged"> heat-damaged</a> </p> <a href="https://publications.waset.org/abstracts/1470/flexural-behavior-of-heat-damaged-concrete-beams-reinforced-with-fiber-reinforced-polymer-frp-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6054</span> Behavior of Square Reinforced-Concrete Columns Strenghtened with Carbon Fiber Reinforced Polymers (CFRP) under Concentric Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dana%20Abed">Dana Abed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%60Tasim%20Abdel-Jaber"> Mu`Tasim Abdel-Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Shatarat"> Nasim Shatarat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims at investigating the influence of cross-sectional size on axial compressive capacity of carbon fiber reinforced polymer (CFRP) wrapped square reinforced concrete short columns. Three sets of columns were built for this purpose: 200x200x1200 mm; 250x250x1500 mm and 300x300x1800 mm. Each set includes a control column and a strengthened column with one layer of CFRP sheets. All columns were tested under the effect of pure axial compression load. The results of the study show that using CFRP sheets resulted in capacity enhancement of 37%, 32% and 27% for the 200×200, 250×250, and 300×300 mm, respectively. The results of the experimental program demonstrated that the percentage of improvement in strength decreased by increasing the cross-sectional size of the column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=columns" title=" columns"> columns</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric%20loading" title=" concentric loading"> concentric loading</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional" title=" cross-sectional"> cross-sectional</a> </p> <a href="https://publications.waset.org/abstracts/70781/behavior-of-square-reinforced-concrete-columns-strenghtened-with-carbon-fiber-reinforced-polymers-cfrp-under-concentric-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6053</span> Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20A.%20Aljaberi">Mai A. Aljaberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20strengthening" title=" concrete strengthening"> concrete strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding%20failure" title=" debonding failure"> debonding failure</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding%20strain" title=" debonding strain"> debonding strain</a>, <a href="https://publications.waset.org/abstracts/search?q=U-wrap%20anchor" title=" U-wrap anchor"> U-wrap anchor</a> </p> <a href="https://publications.waset.org/abstracts/170520/evaluation-of-the-use-of-u-wrap-anchorage-systems-for-strengthening-concrete-members-reinforced-by-fiber-reinforced-polymer-laminate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6052</span> Shear Strengthening of RC T-Beams by Means of CFRP Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20A.%20Farghal">Omar A. Farghal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer" title="carbon fiber reinforced polymer">carbon fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=wrapping" title=" wrapping"> wrapping</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a> </p> <a href="https://publications.waset.org/abstracts/6324/shear-strengthening-of-rc-t-beams-by-means-of-cfrp-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6051</span> A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woo-tai%20Jung">Woo-tai Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-sup%20Park"> Jong-sup Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-yoon%20Kang"> Jae-yoon Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon-seoung%20Keum"> Moon-seoung Keum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29" title="carbon fiber reinforced polymer (CFRP)">carbon fiber reinforced polymer (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=tendon" title=" tendon"> tendon</a>, <a href="https://publications.waset.org/abstracts/search?q=anchor" title=" anchor"> anchor</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20property" title=" tensile property"> tensile property</a>, <a href="https://publications.waset.org/abstracts/search?q=bond%20strength" title=" bond strength"> bond strength</a> </p> <a href="https://publications.waset.org/abstracts/1828/a-fundamental-study-on-the-anchor-performance-of-non-surface-treated-multi-cfrp-tendons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6050</span> Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hana%27%20Al-Ghanim">Hana' Al-Ghanim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu%27tasim%20Abdel-Jaber"> Mu'tasim Abdel-Jaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Maha%20Alqam"> Maha Alqam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental investigation deals with shear strengthening of reinforced concrete (RC) deep beams using the externally bonded carbon fiber-reinforced polymer (CFRP) composites. The current study, therefore, evaluates the effectiveness of four various configurations for shear strengthening of deep beams with two different types of CFRP materials including sheets and laminates. For this purpose, a total of 10 specimens of deep beams were cast and tested. The shear performance of the strengthened beams is assessed with respect to the cracks’ formation, modes of failure, ultimate strength and the overall stiffness. The obtained results demonstrate the effectiveness of using the CFRP technique on enhancing the shear capacity of deep beams; however, the efficiency varies depending on the material used and the strengthening scheme adopted. Among the four investigated schemes, the highest increase in the ultimate strength is recorded by using the continuous wrap of two layers of CFRP sheets, exceeding a value of 86%, whereas an enhancement of about 36% is achieved by the inclined CFRP laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20beams" title="deep beams">deep beams</a>, <a href="https://publications.waset.org/abstracts/search?q=laminates" title=" laminates"> laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strengthening" title=" shear strengthening"> shear strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=sheets" title=" sheets"> sheets</a> </p> <a href="https://publications.waset.org/abstracts/55807/shear-strengthening-of-reinforced-concrete-deep-beams-using-carbon-fiber-reinforced-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6049</span> Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thamer%20Kubat">Thamer Kubat</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Al-Mahaidi"> Riadh Al-Mahaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shayan"> Ahmad Shayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29" title="carbon fiber reinforced polymer (CFRP)">carbon fiber reinforced polymer (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20%28FE%29" title=" finite element (FE)"> finite element (FE)</a>, <a href="https://publications.waset.org/abstracts/search?q=ATENA" title=" ATENA"> ATENA</a>, <a href="https://publications.waset.org/abstracts/search?q=confinement%20efficiency" title=" confinement efficiency"> confinement efficiency</a> </p> <a href="https://publications.waset.org/abstracts/166174/influence-of-alkali-aggregate-reaction-induced-expansion-level-on-confinement-efficiency-of-carbon-fiber-reinforcement-polymer-wrapping-applied-to-damaged-concrete-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6048</span> Using CFRP Sheets and Anchors on Sand-Lightweight Perlite Concrete to Evaluate the Flexural Behaviour of T-Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zaki">Mohammed Zaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayder%20Rasheed"> Hayder Rasheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper evaluates the flexural response of sand-lightweight Perlite concrete using full-scale reinforced concrete T beams strengthened and anchored with carbon fiber reinforced polymer (CFRP) materials. Four specimens were prepared with the same geometry, steel reinforcements, concrete properties, and span lengths. The anchored beams had a similar number of CFRP sheets but were secured utilizing different arrangements of CFRP fiber anchors. That will allow for effective and easily making comparisons to examine the flexural strengthening behavior of sand-lightweight Perlite concrete beams with anchors. The experimental outcomes were also compared with the numerical study and the comparisons were discussed. The test results showed an improvement in flexural behavior due to the use of CFRP sheets and anchors. Interestingly, the anchored beams recorded similar ultimate strength regardless of the number of CFRP fiber anchors used due to the failure by excessive wide cracks in the concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perlite%20concrete" title="perlite concrete">perlite concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20fiber%20anchors" title=" CFRP fiber anchors"> CFRP fiber anchors</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20concrete" title=" lightweight concrete"> lightweight concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=full-scale%20T-beams" title=" full-scale T-beams"> full-scale T-beams</a> </p> <a href="https://publications.waset.org/abstracts/167039/using-cfrp-sheets-and-anchors-on-sand-lightweight-perlite-concrete-to-evaluate-the-flexural-behaviour-of-t-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6047</span> Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thamer%20Kubat">Thamer Kubat</a>, <a href="https://publications.waset.org/abstracts/search?q=Riadh%20Al%20Mahiadi"> Riadh Al Mahiadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Shayan"> Ahmad Shayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATENA" title="ATENA">ATENA</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29" title=" carbon fiber reinforced polymer (CFRP)"> carbon fiber reinforced polymer (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=confinement%20efficiency" title=" confinement efficiency"> confinement efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20%28FE%29" title=" finite element (FE)"> finite element (FE)</a> </p> <a href="https://publications.waset.org/abstracts/160404/influence-of-aar-induced-expansion-level-on-confinement-efficiency-of-cfrp-wrapping-applied-to-damaged-circular-concrete-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6046</span> EMI Shielding in Carbon Based Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukul%20Kumar%20Srivastava">Mukul Kumar Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Basu"> Sumit Basu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon fiber reinforced polymer (CFRP) composites find wide use in the space and aerospace industries primarily due to their favourable strength-to-weight ratios. However, in spite of the impressive mechanical properties, their ability to shield sophisticated electronics from electromagnetic interference (EMI) is rather limited. As a result, metallic wire meshes or metal foils are often embedded in CFRP composites to provide adequate EMI shielding. This comes at additional manufacturing cost, increased weight and, particularly in cases of aluminium, increased risk of galvanic corrosion in the presence of moisture. In this work, we will explore ways of enhancing EMI shielding of CFRP laminates in the 8-12 GHz range (the so-called X-band), without compromising their mechanical and fracture properties, through minimal modifications to their current well-established fabrication protocol. The computational-experimental study of EMI shielding in CFRP laminates will focus on the effects of incorporating multiwalled carbon nanotubes (MWCNT) and conducting nanoparticles in different ways in the resin and/or carbon fibers. We will also explore the possibility of utilising the excellent absorbing properties of MWCNT reinforced polymer foams to enhance the overall EMI shielding capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMI%20shielding" title="EMI shielding">EMI shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=X-band" title=" X-band"> X-band</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP" title=" CFRP"> CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNT" title=" MWCNT"> MWCNT</a> </p> <a href="https://publications.waset.org/abstracts/168355/emi-shielding-in-carbon-based-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6045</span> A Study on the Non-Destructive Test Characterization of Carbon Fiber Reinforced Plastics Using Thermo-Graphic Camera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin">Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee"> Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Ho%20Kim"> Tae Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Sun%20Lee"> Yoon Sun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-destructive testing and evaluation techniques for assessing the integrity of composite structures are essential to both reduce manufacturing costs and out of service time of transport means due to maintenance. In this study, Analyze into non-destructive test characterization of carbon fiber reinforced plastics(CFRP) internal and external defects using thermo-graphic camera and transient thermography method. non-destructive testing were characterized by defect size(∅8,∅10,∅12,∅14) and depth(1.2mm,2.4mm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Non-Destructive%20Test%20%28NDT%29" title="Non-Destructive Test (NDT)">Non-Destructive Test (NDT)</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20characteristic" title=" thermal characteristic"> thermal characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=thermographic%20camera" title=" thermographic camera"> thermographic camera</a>, <a href="https://publications.waset.org/abstracts/search?q=Carbon%20Fiber%20Reinforced%20Plastics%28CFRP%29." title=" Carbon Fiber Reinforced Plastics(CFRP)."> Carbon Fiber Reinforced Plastics(CFRP).</a> </p> <a href="https://publications.waset.org/abstracts/20078/a-study-on-the-non-destructive-test-characterization-of-carbon-fiber-reinforced-plastics-using-thermo-graphic-camera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6044</span> Determination of Fatigue Limit in Post Impacted Carbon Fiber Reinforced Epoxy Polymer (CFRP) Specimens Using Self Heating Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Sudevan">Deepika Sudevan</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Rozycki"> Patrick Rozycki</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Gornet"> Laurent Gornet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the experimental identification of the fatigue limit for pristine and impacted Carbon Fiber Reinforced Epoxy polymer (CFRP) woven composites based on the relatively new self-heating methodology for composites. CFRP composites of [0/90]8 and quasi isotropic configurations prepared using hand-layup technique are subjected to low energy impacts (20 J energy) simulating a barely visible impact damage (BVID). Runway debris strike, tool drop or hailstone impact can cause a BVID on an aircraft fuselage made of carbon composites and hence understanding the post-impact fatigue response of CFRP laminates is of immense importance to the aerospace community. The BVID zone on the specimens is characterized using X-ray Tomography technique. Both pristine and impacted specimens are subjected to several blocks of constant amplitude (CA) fatigue loading keeping R-ratio a constant but with increments in the mean loading stress after each block. The number of loading cycles in each block is a subjective parameter and it varies for pristine and impacted CFRP specimens. To monitor the temperature evolution during fatigue loading, thermocouples are pasted on the CFRP specimens at specific locations. The fatigue limit is determined by two strategies, first is by considering the stabilized temperature in every block and second is by considering the change in the temperature slope per block. The results show that both strategies can be adopted to determine the fatigue limit in both pristine and impacted CFRP composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20limit" title=" fatigue limit"> fatigue limit</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20impact" title=" low energy impact"> low energy impact</a>, <a href="https://publications.waset.org/abstracts/search?q=self-heating" title=" self-heating"> self-heating</a>, <a href="https://publications.waset.org/abstracts/search?q=WRM" title=" WRM"> WRM</a> </p> <a href="https://publications.waset.org/abstracts/54473/determination-of-fatigue-limit-in-post-impacted-carbon-fiber-reinforced-epoxy-polymer-cfrp-specimens-using-self-heating-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6043</span> Experimental Investigation of Damaged Reinforced Concrete Beams Repaired with Carbon Fibre Reinforced Polymer (CFRP) Strip under Impact Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Al-Farttoosi">M. Al-Farttoosi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Rafiq"> M. Y. Rafiq</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Summerscales"> J. Summerscales</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Williams"> C. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many buildings and bridges are damaged due to impact loading, explosions, terrorist attacks and wars. Most of the damaged structures members such as beams, columns and slabs are not totally failed and it can be repaired. Nowadays, carbon fibre reinforced polymer CFRP has been wildly used in strengthening and retrofitting the structures members. CFRP can rector the load carrying capacity of the damaged structures members to make them serviceable. An experimental investigation was conducted to investigate the impact behaviour of the damaged beams repaired with CFRP. The tested beams had different degrees of damage and near surface mounted technique NSM was used to install the CFRP. A heavy drop weight impact test machine was used to conduct the experimental work. The study investigated the impact strength, stiffness, cracks and deflection of the CFRP repaired beams. The results show that CFRP significantly increased the impact resistance of the damaged beams. CFRP increased the damaged beams stiffness and reduced the deflection. The results showed that the NSM technique is more effective in repairing beams and preventing the debonding of the CFRP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damaged" title="damaged">damaged</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=repaired" title=" repaired"> repaired</a> </p> <a href="https://publications.waset.org/abstracts/35978/experimental-investigation-of-damaged-reinforced-concrete-beams-repaired-with-carbon-fibre-reinforced-polymer-cfrp-strip-under-impact-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6042</span> Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Ortes">Faruk Ortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Baris%20Sayin"> Baris Sayin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarik%20Serhat%20Bozkurt"> Tarik Serhat Bozkurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Cemil%20Akcay"> Cemil Akcay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title="numerical model">numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=FEA" title=" FEA"> FEA</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20beam" title=" RC beam"> RC beam</a>, <a href="https://publications.waset.org/abstracts/search?q=NSM%20technique" title=" NSM technique"> NSM technique</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20rod" title=" CFRP rod"> CFRP rod</a>, <a href="https://publications.waset.org/abstracts/search?q=filling%20material" title=" filling material"> filling material</a> </p> <a href="https://publications.waset.org/abstracts/38365/numerical-simulation-of-structural-behavior-of-nsm-cfrp-strengthened-rc-beams-using-finite-element-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6041</span> A Study on the Comparatison of Mechanical and Thermal Properties According to Laminated Orientation of CFRP through Bending Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin">Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee"> Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In rapid industrial development has increased the demand for high-strength and lightweight materials. Thus, various CFRP (Carbon Fiber Reinforced Plastics) with composite materials are being used. The design variables of CFRP are its lamination direction, order, and thickness. Thus, the hardness and strength of CFRP depend much on their design variables. In this paper, the lamination direction of CFRP was used to produce a symmetrical ply [0°/0°, -15°/+15°, -30°/+30°, -45°/+45°, -60°/+60°, -75°/+75°, and 90°/90°] and an asymmetrical ply [0°/15°, 0°/30°, 0°/45°, 0°/60° 0°/75°, and 0°/90°]. The bending flexure stress of the CFRP specimen was evaluated through a bending test. Its thermal property was measured using an infrared camera. The symmetrical specimen and the asymmetrical specimen were analyzed. The results showed that the asymmetrical specimen increased the bending loads according to the increase in the orientation angle; and from 0°, the symmetrical specimen showed a tendency opposite the asymmetrical tendency because the tensile force of fiber differs at the vertical direction of its load. Also, the infrared camera showed that the thermal property had a trend similar to that of the mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbon%20Fiber%20Reinforced%20Plastic%20%28CFRP%29" title="Carbon Fiber Reinforced Plastic (CFRP)">Carbon Fiber Reinforced Plastic (CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20test" title=" bending test"> bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20camera" title=" infrared camera"> infrared camera</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a> </p> <a href="https://publications.waset.org/abstracts/21385/a-study-on-the-comparatison-of-mechanical-and-thermal-properties-according-to-laminated-orientation-of-cfrp-through-bending-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6040</span> Experimental Investigation on the Anchor Behavior of Planar Clamping Anchor for Carbon Fiber-Reinforced Polymer Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongyu%20Duo">Yongyu Duo</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaogang%20Liu"> Xiaogang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingrui%20Yue"> Qingrui Yue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anchor plays a critical role in the utilization of the tensile strength of carbon fiber-reinforced polymer (CFRP) plate when it is applied for the prestressed retrofitted and cable structures. In this paper, the anchor behavior of planar clamping anchor (PCA) under different interface treatment forms and normal pressures was investigated by the uniaxial static tensile test. Two interface treatment forms were adopted, including pure friction and the coupling action of friction and bonding. The results indicated that the load-bearing capacity of PCA could be obviously improved by the coupling action of friction and bonding compared with the action of pure friction. Under the normal pressure of 11 MPa, 22 MPa, and 33 MPa, the load-bearing capacity of PCA was enhanced by 164.61%, 68.40%, and 52.78%, respectively, and the tensile strength of the CFRP plate was fully exploited when the normal pressure reached 44 MPa. In addition, the experimental coefficient of static friction between the galling CFRP plate and a sandblasted steel plate was in the range of 0.28-0.30, corresponding to various normal pressure. Moreover, the failure mode was determined by the interface treatment form and normal pressure. The research in this paper has important guiding significance to optimize the design of the mechanical clamping anchor, contributing to promoting the application of CFRP plate in reinforcement and cable structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PCA" title="PCA">PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP%20plate" title=" CFRP plate"> CFRP plate</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20treatment%20form" title=" interface treatment form"> interface treatment form</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20pressure" title=" normal pressure"> normal pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20action" title=" coupling action"> coupling action</a> </p> <a href="https://publications.waset.org/abstracts/164507/experimental-investigation-on-the-anchor-behavior-of-planar-clamping-anchor-for-carbon-fiber-reinforced-polymer-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6039</span> Machine Learning Prediction of Compressive Damage and Energy Absorption in Carbon Fiber-Reinforced Polymer Tubular Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milad%20Abbasi">Milad Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon fiber-reinforced polymer (CFRP) composite structures are increasingly being utilized in the automotive industry due to their lightweight and specific energy absorption capabilities. Although it is impossible to predict composite mechanical properties directly using theoretical methods, various research has been conducted so far in the literature for accurate simulation of CFRP structures' energy-absorbing behavior. In this research, axial compression experiments were carried out on hand lay-up unidirectional CFRP composite tubes. The fabrication method allowed the authors to extract the material properties of the CFRPs using ASTM D3039, D3410, and D3518 standards. A neural network machine learning algorithm was then utilized to build a robust prediction model to forecast the axial compressive properties of CFRP tubes while reducing high-cost experimental efforts. The predicted results have been compared with the experimental outcomes in terms of load-carrying capacity and energy absorption capability. The results showed high accuracy and precision in the prediction of the energy-absorption capacity of the CFRP tubes. This research also demonstrates the effectiveness and challenges of machine learning techniques in the robust simulation of composites' energy-absorption behavior. Interestingly, the proposed method considerably condensed numerical and experimental efforts in the simulation and calibration of CFRP composite tubes subjected to compressive loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP%20composite%20tubes" title="CFRP composite tubes">CFRP composite tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=crushing%20behavior" title=" crushing behavior"> crushing behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/152801/machine-learning-prediction-of-compressive-damage-and-energy-absorption-in-carbon-fiber-reinforced-polymer-tubular-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6038</span> Effect of Temperature Condition in Extracting Carbon Fibers on Mechanical Properties of Injection Molded Polypropylene Reinforced by Recycled Carbon Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shota%20Nagata">Shota Nagata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuya%20Okubo"> Kazuya Okubo</a>, <a href="https://publications.waset.org/abstracts/search?q=Toru%20Fujii"> Toru Fujii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to investigate the proper condition in extracting carbon fibers as the reinforcement of composite molded by injection method. Recycled carbon fibers were extracted from wasted CFRP by pyrolyzing epoxy matrix of CFRP under air atmosphere at different temperature conditions 400, 600 and 800°C in this study. Recycled carbon fiber reinforced polypropylene (RCF/PP) pellets were prepared using twin screw extruder. The RCF/PP specimens were molded into dumbbell shaped specimens using injection molding machine. The tensile strength of recycled carbon fiber was decreased with rising pyrolysis temperature from 400 to 800°C. However, superior mechanical properties of tensile strength, tensile modulus and fracture strain of RCF/PP specimen were obtained when the extracting temperature was 600°C. Almost fibers in RCF/PP specimens were aligned in the mold filling direction in this study when the extracting temperature was 600°C. To discuss the results, the failure mechanisms of RCF/PP specimens was shown schematically. Finally, it was concluded that the temperature condition at 600°C should be selected in extracting carbon fibers as the reinforcement of RCF/PP composite molded by injection method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20carbon%20fiber" title=" recycled carbon fiber"> recycled carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title=" injection molding"> injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20orientation" title=" fiber orientation"> fiber orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mechanism" title=" failure mechanism"> failure mechanism</a> </p> <a href="https://publications.waset.org/abstracts/21408/effect-of-temperature-condition-in-extracting-carbon-fibers-on-mechanical-properties-of-injection-molded-polypropylene-reinforced-by-recycled-carbon-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6037</span> A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee">Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin"> Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Ho%20Ko"> Sun Ho Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20plastic%28CFRP%29" title="carbon fiber reinforced plastic(CFRP)">carbon fiber reinforced plastic(CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-impregnation" title=" pre-impregnation"> pre-impregnation</a>, <a href="https://publications.waset.org/abstracts/search?q=laminating%20method" title=" laminating method"> laminating method</a>, <a href="https://publications.waset.org/abstracts/search?q=interlaminar%20shear%20strength%20%28ILSS%29" title=" interlaminar shear strength (ILSS)"> interlaminar shear strength (ILSS)</a> </p> <a href="https://publications.waset.org/abstracts/21484/a-study-on-the-interlaminar-shear-strength-of-carbon-fiber-reinforced-plastics-depending-on-the-lamination-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6036</span> Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.-G.%20Herrmann">H.-G. Herrmann</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Schwarz"> M. Schwarz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Summa"> J. Summa</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Grossmann"> F. Grossmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed. <p align="left"> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defect%20evaluation" title="defect evaluation">defect evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=EMAT" title=" EMAT"> EMAT</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20testing" title=" mechanical testing"> mechanical testing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a> </p> <a href="https://publications.waset.org/abstracts/67647/non-destructive-testing-for-evaluation-of-defects-and-interfaces-in-metal-carbon-fiber-reinforced-polymer-hybrids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6035</span> Effect of Different Carbon Fabric Orientations on the Fracture Properties of Carbon Fabric Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Halim">S. F. Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20F.%20Naguib"> H. F. Naguib</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Lawandy"> S. N. Lawandy</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Hegazy"> R. S. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Baheg"> M. N. Baheg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main drawbacks of the traditional carbon fabric reinforced epoxy resin (CFRP) are low strain failure, delamination between composites layers, and low impact resistance due to the brittleness of epoxy resin. The aim of this study is to enhance the fracture properties of the CFRP composites laminates via the variation of composite's designs. A series of composites were fabricated in which bidirectional (00/900) carbon fabric (CF) layers were laid inside the resin matrix with orientation codes as F1 [(00, 900)/ (00, 900)], F2 [(900, 00)/ (00, 900)] and F3 [(00,900)/ (900, 00). The mechanical and dynamic properties of the composites were estimated. In addition, the morphology of samples surface was examined by scanning electron microscope (SEM) after impact fracture. The results revealed that the CFRP properties could be tailored fitting specific applications by controlling the fabric orientation inside the CFRP composite design. F2 orientation [(900, 00)/ (00.900)] showed the highest tensile and flexural strength values. On the other hand, the impact strength values of composites were in the order F1 > F2 > F3. The storage modulus, loss modulus, and glass transition temperature Tg values obtained from the dynamic mechanical analysis (DMA) examination was in the order F1 > F2 > F3. The variation in the properties of the composite was clearly explained by the SEM micrographs as the failure of F3 orientation properties was referred to as the complete breakage of the CF layers upon fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title="carbon fiber">carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP" title=" CFRP"> CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resins" title=" epoxy resins"> epoxy resins</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength"> flexural strength</a> </p> <a href="https://publications.waset.org/abstracts/124057/effect-of-different-carbon-fabric-orientations-on-the-fracture-properties-of-carbon-fabric-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6034</span> Dynamic Damage Analysis of Carbon Fiber Reinforced Polymer Composite Confinement Vessels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamal%20Hammad">Kamal Hammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Fedorenko"> Alexey Fedorenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Sergeichev"> Ivan Sergeichev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses analytical modeling, experimental testing, and explicit numerical simulations to evaluate failure and spall damage in Carbon Fiber-Reinforced Polymer (CFRP) composite confinement vessels. It investigates the response of composite materials to explosive loading dynamic impact, revealing varied failure modes. Hashin damage was used to model inplane failure, while the Virtual Crack Closure Technique (VCCT) modeled inter-laminar damage. Results show moderate agreement between simulations and experiments regarding free surface velocity and failure stresses, with discrepancies due to wire alignment imperfections and wave reverberations in the experimental test. The findings can improve design and risk-reduction strategies in high-risk scenarios, leading to enhanced safety and economic efficiency in material assessment and structural design processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit" title="explicit">explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=spall" title=" spall"> spall</a>, <a href="https://publications.waset.org/abstracts/search?q=damage" title=" damage"> damage</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP" title=" CFRP"> CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=vessels" title=" vessels"> vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=explosive" title=" explosive"> explosive</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=impact" title=" impact"> impact</a>, <a href="https://publications.waset.org/abstracts/search?q=Hashin" title=" Hashin"> Hashin</a>, <a href="https://publications.waset.org/abstracts/search?q=VCCT" title=" VCCT"> VCCT</a> </p> <a href="https://publications.waset.org/abstracts/186985/dynamic-damage-analysis-of-carbon-fiber-reinforced-polymer-composite-confinement-vessels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6033</span> Novel CFRP Adhesive Joints and Structures for Offshore Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Abusrea">M. R. Abusrea</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiyi%20Jiang"> Shiyi Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dingding%20Chen"> Dingding Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Arakawa"> Kazuo Arakawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel wind-lens turbine designs can augment power output. Vacuum-Assisted Resin Transfer Molding (VARTM) is used to form large and complex structures from a Carbon Fiber Reinforced Polymer (CFRP) composite. Typically, wind-lens turbine structures are fabricated in segments, and then bonded to form the final structure. This paper introduces five new adhesive joints, divided into two groups: One is constructed between dry carbon and CFRP fabrics, and the other is constructed with two dry carbon fibers. All joints and CFRP fabrics were made in our laboratory using VARTM manufacturing techniques. Specimens were prepared for tensile testing to measure joint performance. The results showed that the second group of joints achieved a higher tensile strength than the first group. On the other hand, the tensile fracture behavior of the two groups showed the same pattern of crack originating near the joint ends followed by crack propagation until fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joints" title="adhesive joints">adhesive joints</a>, <a href="https://publications.waset.org/abstracts/search?q=CFRP" title=" CFRP"> CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=VARTM" title=" VARTM"> VARTM</a>, <a href="https://publications.waset.org/abstracts/search?q=resin%20transfer%20molding" title=" resin transfer molding "> resin transfer molding </a> </p> <a href="https://publications.waset.org/abstracts/29575/novel-cfrp-adhesive-joints-and-structures-for-offshore-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6032</span> Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usama%20Mohamed%20Ahamed">Usama Mohamed Ahamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=bond" title=" bond"> bond</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20weather%20and%20carbon%20fiber" title=" hot weather and carbon fiber"> hot weather and carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymers" title=" carbon fiber reinforced polymers"> carbon fiber reinforced polymers</a> </p> <a href="https://publications.waset.org/abstracts/169015/effect-of-concrete-strength-on-the-bond-between-carbon-fiber-reinforced-polymer-and-concrete-in-hot-weather" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6031</span> Fire Resistance Capacity of Reinforced Concrete Member Strengthened by Fiber Reinforced Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soo-Yeon%20Seo">Soo-Yeon Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Wook%20Lim"> Jong-Wook Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Se-Ki%20Song"> Se-Ki Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, FRP (Fiber Reinforced Polymer) materials have been widely used for reinforcement of building structural members. However, since the FRP and the epoxy material for attaching it have very low resistance to heat, there is a problem in application where high temperature is an issue. In this paper, the resistance performance of FRP member made of carbon fiber at high temperature was investigated through experiment under temperature change. As a result, epoxy encapsulating FRP is damaged at not high temperatures, and the fibers are degraded. Therefore, when reinforcing a structure using FRP, a separate refractory heat treatment is necessary. The use of a 30 mm thick calcium silicate board as a fireproofing method can protect FRP up to 600ᵒC outside temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FRP%20%28Fiber%20Reinforced%20Polymer%29" title="FRP (Fiber Reinforced Polymer)">FRP (Fiber Reinforced Polymer)</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment%20under%20temperature%20change" title=" experiment under temperature change"> experiment under temperature change</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20silicate%20board" title=" calcium silicate board"> calcium silicate board</a> </p> <a href="https://publications.waset.org/abstracts/78913/fire-resistance-capacity-of-reinforced-concrete-member-strengthened-by-fiber-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6030</span> Experimental Investigation of Low Strength Concrete (LSC) Beams Using Carbon Fiber Reinforce Polymer (CFRP) Wrap</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Furqan%20Farooq">Furqan Farooq</a>, <a href="https://publications.waset.org/abstracts/search?q=Arslan%20Akbar"> Arslan Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sana%20Gul"> Sana Gul </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inadequate design of seismic structures and use of Low Strength Concrete (LSC) remains the major aspect of structure failure. Parametric investigation (LSC) beams based on experimental work using externally applied Carbon Fiber Reinforce Polymer (CFRP) warp in flexural behavior is studied. The ambition is to know the behavior of beams under loading condition, and its strengthening enhancement after inducing crack is studied, Moreover comparison of results using abacus software is studied. Results show significant enhancement in load carrying capacity, experimental work is compared with abacus software. The research is based on the conclusion that various existing structure but inadequacy in seismic design could increase the load carrying capacity by applying CFRP techniques, which not only strengthened but also provide them to resist even larger potential earthquake by improving its strength as well as ductility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title="seismic design">seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber" title=" carbon fiber"> carbon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a> </p> <a href="https://publications.waset.org/abstracts/81438/experimental-investigation-of-low-strength-concrete-lsc-beams-using-carbon-fiber-reinforce-polymer-cfrp-wrap" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6029</span> Thermo-Mechanical Characterization of MWCNTs-Modified Epoxy Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dehghan">M. Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Al-Mahaidi"> R. Al-Mahaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sbarski"> I. Sbarski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An industrial epoxy adhesive used in Carbon Fiber Reinforced Polymer (CFRP)-strengthening systems was modified by dispersing multi-walled carbon nanotubes (MWCNTs). Nanocomposites were fabricated using solvent-assisted dispersion method and ultrasonic mixing. Thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and tensile tests were conducted to study the effect of nanotubes dispersion on the thermal and mechanical properties of the epoxy composite. Experimental results showed a substantial enhancement in the decomposition temperature and tensile properties of epoxy composite, while, the glass transition temperature (Tg) was slightly reduced due to the solvent effect. The morphology of the epoxy nanocomposites was investigated by SEM. It was proved that using solvent improves the nanotubes dispersion. However, at contents higher than 2 wt. %, nanotubes started to re-bundle in the epoxy matrix which negatively affected the final properties of epoxy composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer" title="carbon fiber reinforced polymer">carbon fiber reinforced polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotube" title=" multi-walled carbon nanotube"> multi-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=DMA" title=" DMA"> DMA</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a> </p> <a href="https://publications.waset.org/abstracts/2485/thermo-mechanical-characterization-of-mwcnts-modified-epoxy-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6028</span> Electromagnetic Interference Shielding Characteristics for Stainless Wire Mesh and Number of Plies of Carbon Fiber Reinforced Plastic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Sang%20Lee">Min Sang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Jae%20Shin"> Hee Jae Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=In%20Pyo%20Cha"> In Pyo Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Kyung%20Yoon"> Hyun Kyung Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong%20Woo%20Hong"> Seong Woo Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Jae%20Yu"> Min Jae Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Gun%20Kim"> Hong Gun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Ku%20Kwac"> Lee Ku Kwac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the electromagnetic shielding characteristics of an up-to-date typical carbon filler material, carbon fiber used with a metal mesh were investigated. Carbon fiber 12k-prepregs, where carbon fibers were impregnated with epoxy, were laminated with wire meshes, vacuum bag-molded and hardened to manufacture hybrid-type specimens, with which an electromagnetic shield test was performed in accordance with ASTM D4935-10, through which was known as the most excellent reproducibility is obtainable among electromagnetic shield tests. In addition, glass fiber prepress whose electromagnetic shielding effect were known as insignificant were laminated and formed with wire meshes to verify the validity of the electromagnetic shield effect of wire meshes in order to confirm the electromagnetic shielding effect of metal meshes corresponding existing carbon fiber 12k-prepregs. By grafting carbon fibers, on which studies are being actively underway in the environmental aspects and electromagnetic shielding effect, with hybrid-type wire meshes that were analyzed through the tests, in this study, the applicability and possibility are proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carbon%20Fiber%20Reinforced%20Plastic%28CFRP%29" title="Carbon Fiber Reinforced Plastic(CFRP)">Carbon Fiber Reinforced Plastic(CFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=Glass%20Fiber%20Reinforced%20Plastic%28GFRP%29" title=" Glass Fiber Reinforced Plastic(GFRP)"> Glass Fiber Reinforced Plastic(GFRP)</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20wire%20mesh" title=" stainless wire mesh"> stainless wire mesh</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20shielding" title=" electromagnetic shielding"> electromagnetic shielding</a> </p> <a href="https://publications.waset.org/abstracts/20071/electromagnetic-interference-shielding-characteristics-for-stainless-wire-mesh-and-number-of-plies-of-carbon-fiber-reinforced-plastic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6027</span> Shear Behaviour of RC Deep Beams with Openings Strengthened with Carbon Fiber Reinforced Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mannal%20Tariq">Mannal Tariq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction industry is making progress at a high pace. The trend of the world is getting more biased towards the high rise buildings. Deep beams are one of the most common elements in modern construction having small span to depth ratio. Deep beams are mostly used as transfer girders. This experimental study consists of 16 reinforced concrete (RC) deep beams. These beams were divided into two groups; A and B. Groups A and B consist of eight beams each, having 381 mm (15 in) and 457 mm (18 in) depth respectively. Each group was further subdivided into four sub groups each consisting of two identical beams. Each subgroup was comprised of solid/control beam (without opening), opening above neutral axis (NA), at NA and below NA. Except for control beams, all beams with openings were strengthened with carbon fibre reinforced polymer (CFRP) vertical strips. These eight groups differ from each other based on depth and location of openings. For testing sake, all beams have been loaded with two symmetrical point loads. All beams have been designed based on strut and tie model concept. The outcome of experimental investigation elaborates the difference in the shear behaviour of deep beams based on depth and location of circular openings variation. 457 mm (18 in) deep beam with openings above NA show the highest strength and 381 mm (15 in) deep beam with openings below NA show the least strength. CFRP sheets played a vital role in increasing the shear capacity of beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFRP" title="CFRP">CFRP</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20beams" title=" deep beams"> deep beams</a>, <a href="https://publications.waset.org/abstracts/search?q=openings%20in%20deep%20beams" title=" openings in deep beams"> openings in deep beams</a>, <a href="https://publications.waset.org/abstracts/search?q=strut%20and%20tie%20modal" title=" strut and tie modal"> strut and tie modal</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20behaviour" title=" shear behaviour"> shear behaviour</a> </p> <a href="https://publications.waset.org/abstracts/70797/shear-behaviour-of-rc-deep-beams-with-openings-strengthened-with-carbon-fiber-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=201">201</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=202">202</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=carbon%20fiber%20reinforced%20polymer%20%28CFRP%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>