CINXE.COM

Search results for: Timoshenko zig-zag model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Timoshenko zig-zag model</title> <meta name="description" content="Search results for: Timoshenko zig-zag model"> <meta name="keywords" content="Timoshenko zig-zag model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Timoshenko zig-zag model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Timoshenko zig-zag model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16828</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Timoshenko zig-zag model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16828</span> Free Vibration Analysis of Symmetric Sandwich Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibnorachid%20Zakaria">Ibnorachid Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Bikri%20Khalid"> El Bikri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Benamar%20Rhali"> Benamar Rhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Abdoun"> Farah Abdoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20vibration" title="linear vibration">linear vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich" title=" sandwich"> sandwich</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model" title=" Timoshenko zig-zag model"> Timoshenko zig-zag model</a> </p> <a href="https://publications.waset.org/abstracts/20383/free-vibration-analysis-of-symmetric-sandwich-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16827</span> Geometrically Linear Symmetric Free Vibration Analysis of Sandwich Beam </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibnorachid%20Zakaria">Ibnorachid Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Bikri%20Khalid"> El Bikri Khalid</a>, <a href="https://publications.waset.org/abstracts/search?q=Benamar%20Rhali"> Benamar Rhali</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Abdoun"> Farah Abdoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20vibration" title="linear vibration">linear vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich" title=" sandwich"> sandwich</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20deformation" title=" shear deformation"> shear deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model" title=" Timoshenko zig-zag model"> Timoshenko zig-zag model</a> </p> <a href="https://publications.waset.org/abstracts/19506/geometrically-linear-symmetric-free-vibration-analysis-of-sandwich-beam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16826</span> Modal Analysis of Small Frames using High Order Timoshenko Beams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chadi%20Azoury">Chadi Azoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Assad%20Kallassy"> Assad Kallassy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Rahme"> Pierre Rahme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the modal analysis of small frames. Firstly, we construct the 3D model using H8 elements and find the natural frequencies of the frame focusing our attention on the modes in the XY plane. Secondly, we construct the 2D model (plane stress model) using Q4 elements. We concluded that the results of both models are very close to each other’s. Then we formulate the stiffness matrix and the mass matrix of the 3-noded Timoshenko beam that is well suited for thick and short beams like in our case. Finally, we model the corners where the horizontal and vertical bar meet with a special matrix. The results of our new model (3-noded Timoshenko beam for the horizontal and vertical bars and a special element for the corners based on the Q4 elements) are very satisfying when performing the modal analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corner%20element" title="corner element">corner element</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20Timoshenko%20beam" title=" high-order Timoshenko beam"> high-order Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Guyan%20reduction" title=" Guyan reduction"> Guyan reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis%20of%20frames" title=" modal analysis of frames"> modal analysis of frames</a>, <a href="https://publications.waset.org/abstracts/search?q=rigid%20link" title="rigid link">rigid link</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20locking" title=" shear locking"> shear locking</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20short%20beams" title=" and short beams"> and short beams</a> </p> <a href="https://publications.waset.org/abstracts/24752/modal-analysis-of-small-frames-using-high-order-timoshenko-beams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16825</span> A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhiraj%20Biswas">Dhiraj Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaitali%20Ray"> Chaitali Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20laminate" title="hybrid laminate">hybrid laminate</a>, <a href="https://publications.waset.org/abstracts/search?q=Interlaminar%20stress" title=" Interlaminar stress"> Interlaminar stress</a>, <a href="https://publications.waset.org/abstracts/search?q=refined%20higher%20order%20zigzag%20theory" title=" refined higher order zigzag theory"> refined higher order zigzag theory</a>, <a href="https://publications.waset.org/abstracts/search?q=warping%20effect" title=" warping effect"> warping effect</a> </p> <a href="https://publications.waset.org/abstracts/93048/a-modified-refined-higher-order-zigzag-theory-for-stress-analysis-of-hybrid-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16824</span> Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Karmakar">Somnath Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chakraverty"> S. Chakraverty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title="Timoshenko beam">Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Eringen%27s%20nonlocal%20theory" title=" Eringen&#039;s nonlocal theory"> Eringen&#039;s nonlocal theory</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20quadrature%20method" title=" differential quadrature method"> differential quadrature method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonhomogeneous%20nanobeam" title=" nonhomogeneous nanobeam"> nonhomogeneous nanobeam</a> </p> <a href="https://publications.waset.org/abstracts/153025/vibration-of-nonhomogeneous-timoshenko-nanobeam-resting-on-winkler-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16823</span> An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang">Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee"> Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous" title=" nanoporous"> nanoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young&#039;s modulus"> Young&#039;s modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a> </p> <a href="https://publications.waset.org/abstracts/65038/an-atomic-finite-element-model-for-mechanical-properties-of-graphene-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16822</span> Nonlinear Analysis of Shear Deformable Deep Beam Resting on Nonlinear Two-Parameter Random Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Seguini">M. Seguini</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nedjar"> D. Nedjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the nonlinear analysis of Timoshenko beam undergoing moderate large deflections and resting on nonlinear two-parameter random foundation is presented, taking into account the effects of shear deformation, beam’s properties variation and the spatial variability of soil characteristics. The finite element probabilistic analysis has been performed by using Timoshenko beam theory with the Von Kàrmàn nonlinear strain-displacement relationships combined to Vanmarcke theory and Monte Carlo simulations, which is implemented in a Matlab program. Numerical examples of the newly developed model is conducted to confirm the efficiency and accuracy of this later and the importance of accounting for the foundation second parameter (Winkler-Pasternak). Thus, the results obtained from the developed model are presented and compared with those available in the literature to examine how the consideration of the shear and spatial variability of soil’s characteristics affects the response of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title="nonlinear analysis">nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deflection" title=" large deflection"> large deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title=" Timoshenko beam"> Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Euler-Bernoulli%20beam" title=" Euler-Bernoulli beam"> Euler-Bernoulli beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Winkler%20foundation" title=" Winkler foundation"> Winkler foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasternak%20foundation" title=" Pasternak foundation"> Pasternak foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a> </p> <a href="https://publications.waset.org/abstracts/61881/nonlinear-analysis-of-shear-deformable-deep-beam-resting-on-nonlinear-two-parameter-random-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16821</span> Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Desmond%20Adair">Desmond Adair</a>, <a href="https://publications.waset.org/abstracts/search?q=Kairat%20Ismailov"> Kairat Ismailov</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Jaeger"> Martin Jaeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam&rsquo;s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model&rsquo;s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam" title="Timoshenko beam">Timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title=" variational iteration method"> variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=two-parameter%20elastic%20foundation%20model" title=" two-parameter elastic foundation model"> two-parameter elastic foundation model</a> </p> <a href="https://publications.waset.org/abstracts/95779/vibration-of-a-beam-on-an-elastic-foundation-using-the-variational-iteration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16820</span> Vibration Frequencies Analysis of Nanoporous Graphene Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee">Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang"> Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we use the atomic-scale finite element method to investigate the vibrational behavior of the armchair- and zigzag-structured nanoporous graphene layers with different size under the SFSF and CFFF boundary conditions. The fundamental frequencies computed for the graphene layers without pore are compared with the results of previous studies. We observe very good correspondence of our results with that of the other studies in all the considered cases. For the armchair- and zigzag-structured nanoporous graphene layers under the SFSF and CFFF boundary conditions, the frequencies decrease as the size of the nanopore increase. When the positions of the pore are symmetric with respect to the center of the graphene, the frequency of the zigzag pore graphene is higher than that of the armchair one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic-scale%20finite%20element%20method" title="atomic-scale finite element method">atomic-scale finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoporous" title=" nanoporous"> nanoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency" title=" natural frequency"> natural frequency</a> </p> <a href="https://publications.waset.org/abstracts/47277/vibration-frequencies-analysis-of-nanoporous-graphene-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16819</span> Investigation of Airship Motion Sensitivity to Geometric Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Han%20Ding">Han Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xiaoliang"> Wang Xiaoliang</a>, <a href="https://publications.waset.org/abstracts/search?q=Duan%20Dengping"> Duan Dengping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the process of airship design, the layout and the geometric shape of the hull and fins are crucial to the motion characteristics of the airship. In this paper, we obtained the quantification motion sensitivity of the airship to geometric parameters through turning circles and horizontal/vertical zigzag maneuvers by the parameterization of airship shape and building the dynamic model using Lagrangian approach and MATLAB Simulink program. In the dynamics simulation program, the affection of geometric parameters to the mass, center of gravity, moments of inertia, product of inertia, added mass and the aerodynamic forces and moments have been considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airship" title="airship">airship</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20approach" title=" Lagrangian approach"> Lagrangian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=turning%20circles" title=" turning circles"> turning circles</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%2Fvertical%20zigzag%20maneuvers" title=" horizontal/vertical zigzag maneuvers"> horizontal/vertical zigzag maneuvers</a> </p> <a href="https://publications.waset.org/abstracts/40146/investigation-of-airship-motion-sensitivity-to-geometric-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16818</span> Vibration Analysis of Functionally Graded Engesser-Timoshenko Beams Subjected to Axial Load Located on a Continuous Elastic Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Karami%20Khorramabadi">M. Karami Khorramabadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Nezamabadi"> A. R. Nezamabadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies free vibration of functionally graded beams Subjected to Axial Load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. Applying the Hamilton's principle, the governing equation is established. Resulting equation is solved using the Euler's Equation. The effects of the constituent volume fractions and foundation coefficient on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=functionally%20graded%20beam" title="functionally graded beam">functionally graded beam</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibration" title=" free vibration"> free vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=Engesser-Timoshenko%20beam%20theory" title=" Engesser-Timoshenko beam theory"> Engesser-Timoshenko beam theory</a> </p> <a href="https://publications.waset.org/abstracts/15081/vibration-analysis-of-functionally-graded-engesser-timoshenko-beams-subjected-to-axial-load-located-on-a-continuous-elastic-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16817</span> Drug Delivery of Cyclophosphamide Functionalized Zigzag (8,0) CNT, Armchair (4,4) CNT, and Nanocone Complexes in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Keshavarz">Morteza Keshavarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, using density functional theory (DFT) thermodynamic stability and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized zigzag (8,0) CNT, armchair (4,4) CNT and nanocone complexes in water, for two attachment namely the sidewall and tip, is considered. Calculation of the total electronic energy (Et) and binding energy (Eb) of all complexes indicates that the most thermodynamic stability belongs to the sidewall-attachment of cyclophosphamide into functional nanocone. On the other hand, results from chemical hardness show that drug-functionalized zigzag (8,0) and armchair (4,4) complexes in the tip-attachment configuration possess the smallest and greatest chemical hardness, respectively. By computing the solvation energy, it is found that the solution of the drug and all complexes are spontaneous in water. Furthermore, chirality, type of nanovector (nanotube or nanocone), or attachment configuration have no effects on solvation energy of complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclophosphamide%20drug" title=" cyclophosphamide drug"> cyclophosphamide drug</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory%20%28DFT%29" title=" density functional theory (DFT) "> density functional theory (DFT) </a> </p> <a href="https://publications.waset.org/abstracts/36834/drug-delivery-of-cyclophosphamide-functionalized-zigzag-80-cnt-armchair-44-cnt-and-nanocone-complexes-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16816</span> Vibration Behavior of Nanoparticle Delivery in a Single-Walled Carbon Nanotube Using Nonlocal Timoshenko Beam Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haw-Long%20Lee">Haw-Long Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Win-Jin%20Chang"> Win-Jin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Ching%20Yang"> Yu-Ching Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, the coupled equation of motion for the dynamic displacement of a fullerene moving in a (10,10) single-walled carbon nanotube (SWCNT) is derived using nonlocal Timoshenko beam theory, including the effects of rotary inertia and shear deformation. The effects of confined stiffness between the fullerene and nanotube, foundation stiffness, and nonlocal parameter on the dynamic behavior are analyzed using the Runge-Kutta Method. The numerical solution is in agreement with the analytical result for the special case. The numerical results show that increasing the confined stiffness and foundation stiffness decrease the dynamic displacement of SWCNT. However, the dynamic displacement increases with increasing the nonlocal parameter. In addition, result using the Euler beam theory and the Timoshenko beam theory are compared. It can be found that ignoring the effects of rotary inertia and shear deformation leads to an underestimation of the displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube" title="single-walled carbon nanotube">single-walled carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle%20delivery" title=" nanoparticle delivery"> nanoparticle delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonlocal%20Timoshenko%20beam%20theory" title=" Nonlocal Timoshenko beam theory"> Nonlocal Timoshenko beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=Runge-Kutta%20Method" title=" Runge-Kutta Method"> Runge-Kutta Method</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20der%20Waals%20force" title=" Van der Waals force"> Van der Waals force</a> </p> <a href="https://publications.waset.org/abstracts/65037/vibration-behavior-of-nanoparticle-delivery-in-a-single-walled-carbon-nanotube-using-nonlocal-timoshenko-beam-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16815</span> Evaluation of Dynamic Behavior of a Rotor-Bearing System in Operating Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hadi%20Jalali">Mohammad Hadi Jalali</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Shahriari"> Behrooz Shahriari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ghayour"> Mostafa Ghayour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ziaei-Rad"> Saeed Ziaei-Rad</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Yousefi"> Shahram Yousefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most flexible rotors can be considered as beam-like structures. In many cases, rotors are modeled as one-dimensional bodies, made basically of beam-like shafts with rigid bodies attached to them. This approach is typical of rotor dynamics, both analytical and numerical, and several rotor dynamic codes, based on the finite element method, follow this trend. In this paper, a finite element model based on Timoshenko beam elements is utilized to analyze the lateral dynamic behavior of a certain rotor-bearing system in operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=Timoshenko%20beam%20elements" title=" Timoshenko beam elements"> Timoshenko beam elements</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20deflection%20shape" title=" operational deflection shape"> operational deflection shape</a>, <a href="https://publications.waset.org/abstracts/search?q=unbalance%20response" title=" unbalance response"> unbalance response</a> </p> <a href="https://publications.waset.org/abstracts/14182/evaluation-of-dynamic-behavior-of-a-rotor-bearing-system-in-operating-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16814</span> Nonlocal Beam Models for Free Vibration Analysis of Double-Walled Carbon Nanotubes with Various End Supports</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20Safaei">Babak Safaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ghanbari"> Ahmad Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Rahmani"> Arash Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the free vibration characteristics of double-walled carbon nanotubes (DWCNTs) are investigated. The small-scale effects are taken into account using the Eringen’s nonlocal elasticity theory. The nonlocal elasticity equations are implemented into the different classical beam theories namely as Euler-Bernoulli beam theory (EBT), Timoshenko beam theory (TBT), Reddy beam theory (RBT), and Levinson beam theory (LBT) to analyze the free vibrations of DWCNTs in which each wall of the nanotubes is considered as individual beam with van der Waals interaction forces. Generalized differential quadrature (GDQ) method is utilized to discretize the governing differential equations of each nonlocal beam model along with four commonly used boundary conditions. Then molecular dynamics (MD) simulation is performed for a series of armchair and zigzag DWCNTs with different aspect ratios and boundary conditions, the results of which are matched with those of nonlocal beam models to extract the appropriate values of the nonlocal parameter corresponding to each type of chirality, nonlocal beam model and boundary condition. It is found that the present nonlocal beam models with their proposed correct values of nonlocal parameter have good capability to predict the vibrational behavior of DWCNTs, especially for higher aspect ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double-walled%20carbon%20nanotubes" title="double-walled carbon nanotubes">double-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20continuum%20elasticity" title=" nonlocal continuum elasticity"> nonlocal continuum elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibrations" title=" free vibrations"> free vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20differential%20quadrature%20method" title=" generalized differential quadrature method"> generalized differential quadrature method</a> </p> <a href="https://publications.waset.org/abstracts/41557/nonlocal-beam-models-for-free-vibration-analysis-of-double-walled-carbon-nanotubes-with-various-end-supports" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16813</span> Periareolar Zigzag Incision in the Conservative Surgical Treatment of Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beom-Seok%20Ko">Beom-Seok Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoo-Seok%20Kim"> Yoo-Seok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo-Sung%20Lim"> Woo-Sung Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ku-Sang%20Kim"> Ku-Sang Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Ah%20Kim"> Hyun-Ah Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Sun%20Lee"> Jin-Sun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Bok%20Lee"> An-Bok Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Gu%20Bong"> Jin-Gu Bong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Hyun%20Kim"> Tae-Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sei-Hyun%20Ahn"> Sei-Hyun Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Breast conserving surgery (BCS) followed by radiation therapy is today standard therapy for early breast cancer. It is safe therapeutic procedure in early breast cancers, because it provides the same level of overall survival as mastectomy. There are a number of different types of incisions used to BCS. Avoiding scars on the breast is women’s desire. Numerous minimal approaches have evolved due to this concern. Periareolar incision is often used when the small tumor relatively close to the nipple. But periareolar incision has a disadvantages include limited exposure of the surgical field. In plastic surgery, various methods such as zigzag incisions have been recommended to achieve satisfactory esthetic results. Periareolar zigzag incision has the advantage of not only good surgical field but also contributed to better surgical scars. The purpose of this study was to evaluate the oncological safety of procedures by studying the status of the surgical margins of the excised tumor specimen and reduces the need for further surgery. Methods: Between January 2016 and September 2016, 148 women with breast cancer underwent BCS or mastectomy by the same surgeon in ASAN medical center. Patients with exclusion criteria were excluded from this study if they had a bilateral breast cancer or underwent resection of the other tumors or taken axillary dissection or performed other incision methods. Periareolar zigzag incision was performed and excision margins of the specimen were identified frozen sections and paraffin-embedded or permanent sections in all patients in this study. We retrospectively analyzed tumor characteristics, the operative time, size of specimen, the distance from the tumor to nipple. Results: A total of 148 patients were reviewed, 72 included in the final analysis, 76 excluded. The mean age of the patients was 52.6 (range 25-19 years), median tumor size was 1.6 cm (range, 0.2-8.8), median tumor distance from the nipple was 4.0 cm (range, 1.0-9.0), median excised specimen sized was 5.1 cm (range, 2.8-15.0), median operation time was 70.0 minute (range, 39-138). All patients were discharged with no sign of infection or skin necrosis. Free resection margin was confirmed by frozen biopsy and permanent biopsy in all samples. There were no patients underwent reoperation. Conclusions: We suggest that periareolar zigzag incision can provide a good surgical field to remove a relatively large tumor and may provide cosmetically good outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periareolar%20zigzag%20incision" title="periareolar zigzag incision">periareolar zigzag incision</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20conserving%20surgery" title=" breast conserving surgery"> breast conserving surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=resection%20margin" title=" resection margin"> resection margin</a> </p> <a href="https://publications.waset.org/abstracts/58468/periareolar-zigzag-incision-in-the-conservative-surgical-treatment-of-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16812</span> Flutter Control Analysis of an Aircraft Wing Using Carbon Nanotubes Reinforced Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timothee%20Gidenne">Timothee Gidenne</a>, <a href="https://publications.waset.org/abstracts/search?q=Xia%20Pinqi"> Xia Pinqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an investigation of the use of carbon nanotubes (CNTs) reinforced polymer as an actuator for an active flutter suppression to counter the flutter phenomena is conducted. The goal of this analysis is to establish a link between the behavior of the control surface and the actuators to demonstrate the veracity of using such a suppression system for the aeronautical field. A preliminary binary flutter model using simplified unsteady aerodynamics is developed to study the behavior of the wing while reaching the flutter speed and when the control system suppresses the flutter phenomena. The Timoshenko beam theory for bilayer materials is used to match the response of the control surface with the CNTs reinforced polymer (CNRP) actuators. According to Timoshenko theory, results show a good and realistic response for such a purpose. Even if the results are still preliminary, they show evidence of the potential use of CNRP for control surface actuation for the small-scale and lightweight system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuators" title="actuators">actuators</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroelastic" title=" aeroelastic"> aeroelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=aeroservoelasticity" title=" aeroservoelasticity"> aeroservoelasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter" title=" flutter"> flutter</a>, <a href="https://publications.waset.org/abstracts/search?q=flutter%20suppression" title=" flutter suppression"> flutter suppression</a> </p> <a href="https://publications.waset.org/abstracts/114981/flutter-control-analysis-of-an-aircraft-wing-using-carbon-nanotubes-reinforced-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16811</span> Ecological Effect on Aphid Population in Safflower Crop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jan%20M.%20Mari">Jan M. Mari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safflower is a renowned drought tolerant oil seed crop. Previously its flowers were used for cooking and herbal medicines in China and it was cultivated by small growers for his personal needs of oil. A field study was conducted at experimental field, faculty of crop protection, Sindh Agricultural University Tandojam, during winter, 2012-13, to observe ecological effect on aphid population in safflower crop. Aphid population gradually increased with the growth of safflower. It developed with maximum aphid per leaf on 3rd week of February and it decreased in March as crop matured. A non-significant interaction was found with temperature of aphid, zigzag and hoverfly, respectively and a highly significant interaction with temperature was found with 7-spotted, lacewing, 9-spotted, and Brumus, respectively. The data revealed the overall mean population of zigzag was highest, followed by 9-spotted, 7-spotted, lace wing, hover fly and Brumus, respectively. In initial time the predator and prey ratio indicated that there was not a big difference between predator and prey ratio. After January 1st, the population of aphid increased suddenly until 18th February and it established a significant difference between predator prey ratios. After that aphid population started decreasing and it affected ratio between pest and predators. It is concluded that biotic factors, 7-spotted, zigzag, 9-spotted Brumus and lacewing exhibited a strong and positive correlation with aphid population. It is suggested that aphid pest should be monitored regularly and before reaching economic threshold level augmentation of natural enemies may be managed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aphid" title="aphid">aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology" title=" ecology"> ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a> </p> <a href="https://publications.waset.org/abstracts/13421/ecological-effect-on-aphid-population-in-safflower-crop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16810</span> Effect of the Poisson’s Ratio on the Behavior of Epoxy Microbeam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tahmasebipour">Mohammad Tahmasebipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Salarpour"> Hosein Salarpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers suggest that variations in Poisson’s ratio affect the behavior of Timoshenko micro beam. Therefore, in this study, two epoxy Timoshenko micro beams with different dimensions were modeled using the finite element method considering all boundary conditions and initial conditions that govern the problem. The effect of Poisson’s ratio on the resonant frequency, maximum deflection, and maximum rotation of the micro beams was examined. The analyses suggest that an increased Poisson’s ratio reduces the maximum rotation and the maximum rotation and increases the resonant frequency. Results were consistent with those obtained using the couple stress, classical, and strain gradient elasticity theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbeam" title="microbeam">microbeam</a>, <a href="https://publications.waset.org/abstracts/search?q=microsensor" title=" microsensor"> microsensor</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=poisson%E2%80%99s%20ratio" title=" poisson’s ratio"> poisson’s ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20behavior" title=" static behavior"> static behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/28163/effect-of-the-poissons-ratio-on-the-behavior-of-epoxy-microbeam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16809</span> Static and Dynamic Analysis of Timoshenko Microcantilever Using the Finite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tahmasebipour">Mohammad Tahmasebipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Salarpour"> Hosein Salarpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro cantilevers are one of the components used in the manufacture of micro-electromechanical systems. Epoxy microcantilevers have a variety of applications in the manufacture of micro-sensors and micro-actuators. In this paper, the Timoshenko Micro cantilever was statically and dynamically analyzed using the finite element method. First, all boundary conditions and initial conditions governing micro cantilevers were considered. The effect of size on the deflection, angle of rotation, natural frequencies, and mode shapes were then analyzed and evaluated under different frequencies. It was observed that an increased micro cantilever thickness reduces the deflection, rotation, and resonant frequency. A good agreement was observed between our results and those obtained by the couple stress theory, the classical theory, and the strain gradient elasticity theory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microcantilever" title="microcantilever">microcantilever</a>, <a href="https://publications.waset.org/abstracts/search?q=microsensor%3B%20epoxy" title=" microsensor; epoxy"> microsensor; epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20behavior" title=" dynamic behavior"> dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20behavior" title=" static behavior"> static behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/28159/static-and-dynamic-analysis-of-timoshenko-microcantilever-using-the-finite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16808</span> Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdur%20Rosyid">Abdur Rosyid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Madany"> Mohamed El-Madany</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohanad%20Alata"> Mohanad Alata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotordynamic" title="rotordynamic">rotordynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=timoshenko%20beam" title=" timoshenko beam"> timoshenko beam</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20solid%20elements" title=" 3D solid elements"> 3D solid elements</a>, <a href="https://publications.waset.org/abstracts/search?q=Guyan%20reduction%20method" title=" Guyan reduction method "> Guyan reduction method </a> </p> <a href="https://publications.waset.org/abstracts/2730/reduction-of-rotor-bearing-support-finite-element-model-through-substructuring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16807</span> Critical Buckling Load of Carbon Nanotube with Non-Local Timoshenko Beam Using the Differential Transform Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayeb%20Bensattalah">Tayeb Bensattalah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Zidour"> Mohamed Zidour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ait%20Amar%20Meziane"> Mohamed Ait Amar Meziane</a>, <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Hassaine%20Daouadji"> Tahar Hassaine Daouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahed%20Tounsi"> Abdelouahed Tounsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the Differential Transform Method (DTM) is employed to predict and to analysis the non-local critical buckling loads of carbon nanotubes with various end conditions and the non-local Timoshenko beam described by single differential equation. The equation differential of buckling of the nanobeams is derived via a non-local theory and the solution for non-local critical buckling loads is finding by the DTM. The DTM is introduced briefly. It can easily be applied to linear or nonlinear problems and it reduces the size of computational work. Influence of boundary conditions, the chirality of carbon nanotube and aspect ratio on non-local critical buckling loads are studied and discussed. Effects of nonlocal parameter, ratios L/d, the chirality of single-walled carbon nanotube, as well as the boundary conditions on buckling of CNT are investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20conditions" title="boundary conditions">boundary conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=buckling" title=" buckling"> buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=non-local" title=" non-local"> non-local</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20transform%20method" title=" differential transform method"> differential transform method</a> </p> <a href="https://publications.waset.org/abstracts/81382/critical-buckling-load-of-carbon-nanotube-with-non-local-timoshenko-beam-using-the-differential-transform-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16806</span> Forced Vibration of a Planar Curved Beam on Pasternak Foundation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akif%20Kutlu">Akif Kutlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Merve%20Ermis"> Merve Ermis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihal%20Eratl%C4%B1"> Nihal Eratlı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20H.%20Omurtag"> Mehmet H. Omurtag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curved%20beam" title="curved beam">curved beam</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20foundation" title=" elastic foundation"> elastic foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/73716/forced-vibration-of-a-planar-curved-beam-on-pasternak-foundation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16805</span> Seismic Performance of Reinforced Concrete Frame Structure Based on Plastic Rotation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kahil%20Amar">Kahil Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Meziani%20Faroudja"> Meziani Faroudja</a>, <a href="https://publications.waset.org/abstracts/search?q=Khelil%20Nacim"> Khelil Nacim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principal objective of this study is the evaluation of the seismic performance of reinforced concrete frame structures, taking into account of the behavior laws, reflecting the real behavior of materials, using CASTEM2000 software. A finite element model used is based in modified Takeda model with Timoshenko elements for columns and beams. This model is validated on a Vecchio experimental reinforced concrete (RC) frame model. Then, a study focused on the behavior of a RC frame with three-level and three-story in order to visualize the positioning the plastic hinge (plastic rotation), determined from the curvature distribution along the elements. The results obtained show that the beams of the 1<sup>st</sup> and 2<sup>nd</sup> level developed a very large plastic rotations, or these rotations exceed the values corresponding to CP (Collapse prevention with cp q<sub>CP </sub>= 0.02 rad), against those developed at the 3<sup>rd</sup> level, are between IO and LS (Immediate occupancy and life Safety with q<sub>IO </sub>= 0.005 rad and rad q<sub>LS </sub>= 0.01 respectively), so the beams of first and second levels submit a very significant damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title="seismic performance">seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20level" title=" performance level"> performance level</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20analysis" title=" pushover analysis"> pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20rotation" title=" plastic rotation"> plastic rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20hinge" title=" plastic hinge"> plastic hinge</a> </p> <a href="https://publications.waset.org/abstracts/109328/seismic-performance-of-reinforced-concrete-frame-structure-based-on-plastic-rotation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16804</span> Flexural Analysis of Symmetric Laminated Composite Timoshenko Beams under Harmonic Forces: An Analytical Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Hjaji">Mohammed Ali Hjaji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.K.%20El-Senussi"> A.K. El-Senussi</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20H.%20Eshtewi"> Said H. Eshtewi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flexural dynamic response of symmetric laminated composite beams subjected to general transverse harmonic forces is investigated. The dynamic equations of motion and associated boundary conditions based on the first order shear deformation are derived through the use of Hamilton’s principle. The influences of shear deformation, rotary inertia, Poisson’s ratio and fibre orientation are incorporated in the present formulation. The resulting governing flexural equations for symmetric composite Timoshenko beams are exactly solved and the closed form solutions for steady state flexural response are then obtained for cantilever and simply supported boundary conditions. The applicability of the analytical closed-form solution is demonstrated via several examples with various transverse harmonic loads and symmetric cross-ply and angle-ply laminates. Results based on the present solution are assessed and validated against other well established finite element solutions and exact solutions available in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20response" title=" flexural response"> flexural response</a>, <a href="https://publications.waset.org/abstracts/search?q=harmonic%20forces" title=" harmonic forces"> harmonic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20laminated%20beams" title=" symmetric laminated beams"> symmetric laminated beams</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20response" title=" steady state response"> steady state response</a> </p> <a href="https://publications.waset.org/abstracts/18423/flexural-analysis-of-symmetric-laminated-composite-timoshenko-beams-under-harmonic-forces-an-analytical-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16803</span> Soil-Structure Interaction Models for the Reinforced Foundation System – A State-of-the-Art Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashwini%20V.%20Chavan">Ashwini V. Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukhanand%20S.%20Bhosale"> Sukhanand S. Bhosale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model.’ The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20foundation" title=" reinforced foundation"> reinforced foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil" title=" soft soil"> soft soil</a> </p> <a href="https://publications.waset.org/abstracts/140460/soil-structure-interaction-models-for-the-reinforced-foundation-system-a-state-of-the-art-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16802</span> Coupled Flexural-Lateral-Torsional of Shear Deformable Thin-Walled Beams with Asymmetric Cross-Section–Closed Form Exact Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Hjaji">Mohammed Ali Hjaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdi%20Mohareb"> Magdi Mohareb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops the exact solutions for coupled flexural-lateral-torsional static response of thin-walled asymmetric open members subjected to general loading. Using the principle of stationary total potential energy, the governing differential equations of equilibrium are formulated as well as the associated boundary conditions. The formulation is based on a generalized Timoshenko-Vlasov beam theory and accounts for the effects of shear deformation due to bending and warping, and captures the effects of flexural–torsional coupling due to cross-section asymmetry. Closed-form solutions are developed for cantilever and simply supported beams under various forces. In order to demonstrate the validity and the accuracy of this solution, numerical examples are presented and compared with well-established ABAQUS finite element solutions and other numerical results available in the literature. In addition, the results are compared against non-shear deformable beam theories in order to demonstrate the shear deformation effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20cross-section" title="asymmetric cross-section">asymmetric cross-section</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural-lateral-torsional%20response" title=" flexural-lateral-torsional response"> flexural-lateral-torsional response</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlasov-Timoshenko%20beam%20theory" title=" Vlasov-Timoshenko beam theory"> Vlasov-Timoshenko beam theory</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form%20solution" title=" closed form solution"> closed form solution</a> </p> <a href="https://publications.waset.org/abstracts/13320/coupled-flexural-lateral-torsional-of-shear-deformable-thin-walled-beams-with-asymmetric-cross-section-closed-form-exact-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16801</span> Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pilafkan">R. Pilafkan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaffash%20Irzarahimi"> M. Kaffash Irzarahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Asbaghian%20Namin"> S. F. Asbaghian Namin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen&rsquo;s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biaxial%20buckling" title="biaxial buckling">biaxial buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=single-layered%20graphene%20sheets" title=" single-layered graphene sheets"> single-layered graphene sheets</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20elasticity" title=" nonlocal elasticity"> nonlocal elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20plate%20theory" title=" classical plate theory"> classical plate theory</a> </p> <a href="https://publications.waset.org/abstracts/56460/biaxial-buckling-of-single-layer-graphene-sheet-based-on-nonlocal-plate-model-and-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16800</span> Molecular Junctions between Graphene Strips: Electronic and Transport Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Belayadi">Adel Belayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mougari"> Ahmed Mougari</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Bourahla"> Boualem Bourahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular junctions are currently considered a promising style in the miniaturization of electronic devices. In this contribution, we provide a tight-binding model to investigate the quantum transport properties across-molecular junctions sandwiched between 2D-graphene nanoribbons in the zigzag direction. We investigate, in particular, the effect of embedded atoms such as Gold and Silicon across the molecular junction. The results exhibit a resonance behavior in terms of incident Fermi levels, depending on the molecular junction type. Additionally, the transport properties under a perpendicular magnetic field exhibit an oscillation for the transmittance versus the magnetic field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20junction" title="molecular junction">molecular junction</a>, <a href="https://publications.waset.org/abstracts/search?q=2D-graphene%20nanoribbons" title=" 2D-graphene nanoribbons"> 2D-graphene nanoribbons</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20transport%20properties" title=" quantum transport properties"> quantum transport properties</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/157729/molecular-junctions-between-graphene-strips-electronic-and-transport-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16799</span> Thermomechanical Effects and Nanoscale Ripples in Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roderick%20Melnik">Roderick Melnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Prabhakar"> Sanjay Prabhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relaxed state of graphene nanostructures due to externally applied tensile stress along both the armchair and zigzag directions are analyzed in detail. The results, obtained with the Finite Element Method (FEM), demonstrate that the amplitude of ripple waves in such nanostructures increases with temperature. Details of the multi-scale multi-physics computational procedure developed for this analysis are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title="nanostructures">nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=coupled%20processes" title=" coupled processes"> coupled processes</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-aided%20design" title=" computer-aided design"> computer-aided design</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnological%20applications" title=" nanotechnological applications"> nanotechnological applications</a> </p> <a href="https://publications.waset.org/abstracts/3549/thermomechanical-effects-and-nanoscale-ripples-in-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=560">560</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=561">561</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Timoshenko%20zig-zag%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10