CINXE.COM

Search results for: phytoextraction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phytoextraction</title> <meta name="description" content="Search results for: phytoextraction"> <meta name="keywords" content="phytoextraction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phytoextraction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phytoextraction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 31</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phytoextraction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Chelator-assisted Phytoextraction of Nickel from Nickeliferous Lateritic Soil by Phyllanthus sp. nov. </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grecco%20M.%20Ante">Grecco M. Ante</a>, <a href="https://publications.waset.org/abstracts/search?q=Princess%20Rochelle%20O.%20Gan"> Princess Rochelle O. Gan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants that can absorb greater than 10,000 µg Ni/g dry mass in their stems and leaves are termed as ‘hypernickelophores’. Chelators are chemicals that make the metals in the soil more soluble, making them a potential enhancer for phytoextraction. This study aims to observe the effect of different concentrations of the chelating agent ethylene diamine tetraacetate (EDTA) on the metal uptake (or rate of phytoextraction) of Nickel by Phyllanthus sp. nov. The plant is found to be a hyperickelophore in normal conditions. The addition of EDTA increased the metal uptake of the plant. The increasing amount of the chelating agent causes a decrease in the phytoextraction of the plant but moves the onset of its peak of maximum nickel content in its tissue to an earlier time. The chelator-assisted phytoextraction of nickel by Phyllanthus sp. nov. is proven to be an efficient auxiliary mining operation for nickel laterite mines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytomining" title="phytomining">phytomining</a>, <a href="https://publications.waset.org/abstracts/search?q=Phyllanthus%20sp.%20nov." title=" Phyllanthus sp. nov."> Phyllanthus sp. nov.</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTA" title="EDTA">EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=laterite" title=" laterite"> laterite</a> </p> <a href="https://publications.waset.org/abstracts/33853/chelator-assisted-phytoextraction-of-nickel-from-nickeliferous-lateritic-soil-by-phyllanthus-sp-nov" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Potential of Two Pelargonium Species for EDTA-Assisted Phytoextraction of Cadmium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iram%20Gul">Iram Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Manzoor"> Maria Manzoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The enhanced phytoextraction techniques have been proposed for the remediation of heavy metals contaminated soil. Chelating agents enhance the availability of Cd, which is the main factor in the phytoremediation. This study was conducted to assessed the potential of two Pelargonium species (Pelargonium zonale, Pelargonium hortorum) in EDTA enhanced phytoextraction of Cd using pot experiment. Different doses of EDTA (0, 1, 2, 3, 4, 5 mmol kg-1) was used, and results showed that there was significant increase (approximately 2.1 folds) in the mobility of Cd at EDTA 5 mg kg-1 as compared to control. Both plants have TF and BCF more than 1 and have potential for the phytoextraction of Cd. However, the Pelargonium hortorum showed higher biomass and Cd uptake as compared to Pleragonium zonale. The maximum Cd accumulation in shoot and root of Pelargonium zonale was 484.4 and 264.41 mg kg-1 respectively at 2 mmol kg-1. However, the Pelargonium hortorum accumulate 996.9 and 350 mg kg-1 of Cd in shoot and root respectively at 4 mmol kg-1. Pelargonium hortorum uptake approximately 10.7 folds higher Cd concentration as compared to the Pelargonium zonale. Results revealed that P. hortorum performed better than P. zonal even at higher Cd and EDTA doses however toxicity and leaching potential of increased Cd and EDTA concentrations needs to be explored before field application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cadmium" title="Cadmium">Cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTA" title=" EDTA"> EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=Pelargonium" title=" Pelargonium"> Pelargonium</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a> </p> <a href="https://publications.waset.org/abstracts/70604/potential-of-two-pelargonium-species-for-edta-assisted-phytoextraction-of-cadmium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Effect of Edta in the Phytoextraction of Copper by Terminalia catappa (Talisay) Linnaeus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Marc%20G.%20Cabugsa">Ian Marc G. Cabugsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarine%20M.%20Hermita"> Zarine M. Hermita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytoextraction capability of T. catappa in contaminated soils was done in the improvised greenhouse. The plant samples were planted to the soil which contained different concentrations of copper. Chelating agent EDTA was added to observe the uptake and translocation of copper in the plant samples. Results showed a significant increase of copper accumulation with the addition of EDTA at 250 and 1250 mgˑkg-1 concentration of copper in the contaminated soils (p<0.05). While translocation of copper was observed in all treatments, translocation of copper is not significantly enhanced by the addition of EDTA (p>0.05). Uptake and translocation were not directly affected the presence of EDTA. Furthermore, this study suggests that the T. catappa is not a hyperaccumulator of copper, and there is no relationship observed between the length of the plant and the copper uptake in all treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chelating%20agent%20EDTA" title="chelating agent EDTA">chelating agent EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperaccumulator" title=" hyperaccumulator"> hyperaccumulator</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=terminalia%20catappa" title=" terminalia catappa"> terminalia catappa</a> </p> <a href="https://publications.waset.org/abstracts/17719/effect-of-edta-in-the-phytoextraction-of-copper-by-terminalia-catappa-talisay-linnaeus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Acetic Acid Assisted Phytoextraction of Chromium (Cr) by Energy Crop (Arundo donax L.) in Cr Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Iqbal">Muhammad Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Muhammad%20Tauqeer"> Hafiz Muhammad Tauqeer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Rafaqat"> Hamza Rafaqat</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed"> Muhammad Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Awais%20Irshad"> Muhammad Awais Irshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil pollution with chromium (Cr) has become one of the most important concerns due to its toxicity for humans. To date, various remediation approaches have been employed for the remediation and management of Cr contaminated soils. Phytoextraction is an eco-friendly and emerging remediation approach which has gained attention due to several advantages over conventional remediation approach. The use of energy crops for phytoremediation is an emerging trend worldwide. These energy crops have high tolerance against various environmental stresses, the potential to grow in diverse ecosystems and high biomass production make them a suitable candidate for phytoremediation of contaminated soils. The removal efficiency of plants in phytoextraction depends upon several soil and plant factors including solubility, bioavailability and metal speciation in soils. A pot scale experiment was conducted to evaluate the phytoextraction potential of Arundo donax L. with the application of acetic acid (A.A) in Cr contaminated soils. Plants were grown in pots filled with 5 kg soils for 90 days. After 30 days plants acclimatization in pot conditions, plants were treated with various levels of Cr (2.5 mM, 5 mM, 7.5 mM, 10 mM) and A.A (Cr 2.5 mM + A.A 2.5 mM, Cr 5 mM + A.A 2.5 mM, Cr 7.5 mM + A.A 2.5 mM, Cr 10 mM + A.A 2.5 mM). The application of A.A significantly increased metal uptake and in roots and shoots of A. donax. This increase was observed at Cr 7.5 mM + A.A 2.5 mM but at high concentrations, visual symptoms of Cr toxicity were observed on leaves. Similarly, A.A applications also affect the activities of key enzymes including catalase (CAT), superoxidase dismutase (SOD), and ascorbate peroxidase (APX) in leaves of A. donax. Based on results it is concluded that the applications of A.A acid for phytoextraction is an alternative approach for the management of Cr affected soils and synthetic chelators should be replaced with organic acids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid" title="acetic acid">acetic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20donax" title=" A. donax"> A. donax</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20crop" title=" energy crop"> energy crop</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a> </p> <a href="https://publications.waset.org/abstracts/87656/acetic-acid-assisted-phytoextraction-of-chromium-cr-by-energy-crop-arundo-donax-l-in-cr-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Effects of Amino Bisphosphonic Acid on the Growth and Phytoextraction Efficiency of Salix schwerinii Grown in Ni-Contaminated Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsin">Muhammad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Md%20Abdus%20Salam"> Mir Md Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertti%20Pulkkinen"> Pertti Pulkkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil polluted with elevated level of nickel (Ni) concentration may cause severe hazards to humans and forest ecosystems, for example, by polluting underground water reserves, affecting food quality and by reducing agricultural productivity. The present study investigated the phytoextraction ability of Salix schwerinii, enhanced with an application of the N100 (11-amino-1-hydroxyundecylidene) chelate. N100 has proved to be a non-toxic, low risk of leaching, environmentally friendly and easily biodegradable chelate that has a potential for metal chelation. The Salix were grown in garden soil that was also amended with nickel (Ni; 150 mg kg⁻¹). Multiple doses of N100 were applied to the treatments as follows: Ni + N100 1.2 g and Ni+ N100 2.4 g. Furthermore, N100 doses were also repeated with the control soil. The effect of N100 on height growth, biomass, and the accumulation of Ni in Salix in polluted soils was studied. In this study, N100 application was found to be effective in enhancing height and biomass growth under polluted treatments. Total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the concentration of Ni in the Salix tissues. The total Ni concentrations in the soils amended with N100 increased substantially by up to 324% as compared to the control. The Ni translocation factor (TF) and bioconcentration factor (BF) values for S. schwerinii increased with the application of N100 as varied from 0.45–1.25 and 0.80‒1.50, respectively. This study revealed that S. schwerinii is suitable for the phytoextraction of Ni-contaminated soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bisphosphonic%20acid" title="bisphosphonic acid">bisphosphonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Salix" title=" Salix"> Salix</a> </p> <a href="https://publications.waset.org/abstracts/102043/effects-of-amino-bisphosphonic-acid-on-the-growth-and-phytoextraction-efficiency-of-salix-schwerinii-grown-in-ni-contaminated-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Interaction of between Cd and Zn in Barley (Hordeum vulgare L.) Plant for Phytoextraction Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Adilo%C4%9Flu">S. Adiloğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bellit%C3%BCrk"> K. Bellitürk</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Solmaz"> Y. Solmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adilo%C4%9Flu"> A. Adiloğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to remediation of the cadmium (Cd) pollution in agricultural soils by using barley (<em>Hordeum vulgare </em>L<em>.</em>) plant. For this purpose, a pot experiment was done in greenhouse conditions. Cadmium (100 mg/kg) as CdSO<sub>4</sub>.8H<sub>2</sub>O forms was applied to each pot and incubated during 30 days. Then Ethylenediamine tetraacetic acid (EDTA) chelate was applied to each pot at five doses (0, 3, 6, 8 and 10 mmol/kg) 20 days before harvesting time of the barley plants. The plants were harvested after two months planting. According to the pot experiment results, Cd and Zn amounts of barley plant increased with increasing EDTA application and Zn and Cd contents of barley 20,13 and 1,35 mg/kg for 0 mmol /kg EDTA; 58,61 and 113,24 mg/kg for 10 mmol/kg EDTA doses, respectively. On the other hand, Cd and Zn concentrations of experiment soil increased with EDTA application to the soil samples. Zinc and Cd concentrations of soil 0,31 and 0,021 mg/kg for 0 mmol /kg EDTA; 2,39 and 67,40 mg/kg for 10 mmol/kg EDTA doses, respectively. These increases were found to be statistically significant at the level of 1 %. According to the results of the pot experiment, some heavy metal especially Cd pollution of barley (<em>Hordeum vulgare </em>L<em>.</em>) plant province can be remediated by the phytoextraction method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barley" title="Barley">Barley</a>, <a href="https://publications.waset.org/abstracts/search?q=Hordeum%20vulgare%20L." title=" Hordeum vulgare L."> Hordeum vulgare L.</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/61817/interaction-of-between-cd-and-zn-in-barley-hordeum-vulgare-l-plant-for-phytoextraction-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Phytoremediation Potential of Tomato for Cd and Cr Removal from Polluted Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jahanshah%20Saleh">Jahanshah Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghasemi"> Hossein Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shahriari"> Ali Shahriari</a>, <a href="https://publications.waset.org/abstracts/search?q=Faezeh%20Alizadeh"> Faezeh Alizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaaghoob%20Hosseini"> Yaaghoob Hosseini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium and chromium are toxic to most organisms and different mechanisms have been developed for overcoming with the toxic effects of these heavy metals. We studied the uptake and distribution of cadmium and chromium in different organs of tomato (<em>Lycopersicon esculentum</em> L.) plants in nine heavy metal polluted soils in western Hormozgan province, Iran. The accumulation of chromium was in increasing pattern of fruit peel<edible all="" and="" bio-concentration="" but="" cadmium="" concentration="" detected="" determination="" examined="" factor="" for="" fruits.="" in="" more="" neither="" no="" nor="" not="" of="" p="" peel="" phytoextraction="" phytostabilization="" polluted="" pulp="" revealed="" roots.="" shoots="" showed="" soil.="" soils="" suitability="" suitable="" than="" that="" the="" tomato="" translocation="" was="" with=""> </edible> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytostabilization" title=" phytostabilization"> phytostabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a> </p> <a href="https://publications.waset.org/abstracts/61398/phytoremediation-potential-of-tomato-for-cd-and-cr-removal-from-polluted-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Assessment of Growth Variation and Phytoextraction Potential of Four Salix Varieties Grown in Zn Contaminated Soil Amended with Lime and Wood Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Md%20Abdus%20Salam">Mir Md Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsin"> Muhammad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertti%20Pulkkinen"> Pertti Pulkkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paavo%20Pelkonen"> Paavo Pelkonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soils contaminated with metals, e.g., copper (Cu), zinc (Zn) and nickel (Ni) are one of the main global environmental problems. Zn is an important element for plant growth, but excess levels may become a threat to plant survival. Soils polluted with metals may also pose risks and hazards to human health. Afforestation based on short rotation Salix crops may be a good solution for the reduction of metals toxicity levels in the soil and in ecosystem restoration of severely polluted sites. In a greenhouse experiment, plant growth and zinc (Zn) uptake by four Salix cultivars grown in Zn contaminated soils collected from a mining area in Finland were tested to assess their suitability for phytoextraction. The sequential extraction technique and inductively coupled plasma‒mass spectrometry (ICP–MS) were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The cultivars displayed resistance to heavily polluted soils throughout the whole experiment. After uptake, the total mean Zn concentrations ranged from 776 to 1823 mg kg⁻¹. The average uptake percentage of Zn across all cultivars and treatments ranged from 97 to 223%. Lime and wood ash addition showed a significant effect on plant dry biomass growth and metal uptake percentage of Zn in most of the cultivars. The results revealed that Salix cultivars have the potential to accumulate and take up significant amounts of Zn. Ecological restoration of polluted soils could be environmentally favorable in conjunction with economically profitable practices, such as forestry and bioenergy production. As such, the utilization of Salix for phytoextraction and bioenergy purposes is of considerable interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Salix" title=" Salix"> Salix</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20ash" title=" wood ash"> wood ash</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/102130/assessment-of-growth-variation-and-phytoextraction-potential-of-four-salix-varieties-grown-in-zn-contaminated-soil-amended-with-lime-and-wood-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Effects of Lime and N100 on the Growth and Phytoextraction Capability of a Willow Variety (S. Viminalis × S. Schwerinii × S. Dasyclados) Grown in Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Md.%20Abdus%20Salam">Mir Md. Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsin"> Muhammad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertti%20Pulkkinen"> Pertti Pulkkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Paavo%20Pelkonen"> Paavo Pelkonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil and water pollution caused by extensive mining practices can adversely affect environmental components, such as humans, animals, and plants. Despite a generally positive contribution to society, mining practices have become a serious threat to biological systems. As metals do not degrade completely, they require immobilization, toxicity reduction, or removal. A greenhouse experiment was conducted to evaluate the effects of lime and N100 (11-amino-1-hydroxyundecylidene) chelate amendment on the growth and phytoextraction potential of the willow variety Klara (S. viminalis × S. schwerinii × S. dasyclados) grown in soils heavily contaminated with copper (Cu). The plants were irrigated with tap or processed water (mine wastewater). The sequential extraction technique and inductively coupled plasma-mass spectrometry (ICP-MS) tool were used to determine the extractable metals and evaluate the fraction of metals in the soil that could be potentially available for plant uptake. The results suggest that the combined effects of the contaminated soil and processed water inhibited growth parameter values. In contrast, the accumulation of Cu in the plant tissues was increased compared to the control. When the soil was supplemented with lime and N100; growth parameter and resistance capacity were significantly higher compared to unamended soil treatments, especially in the contaminated soil treatments. The combined lime- and N100-amended soil treatment produced higher growth rate of biomass, resistance capacity and phytoextraction efficiency levels relative to either the lime-amended or the N100-amended soil treatments. This study provides practical evidence of the efficient chelate-assisted phytoextraction capability of Klara and highlights its potential as a viable and inexpensive novel approach for in-situ remediation of Cu-contaminated soils and mine wastewaters. Abandoned agricultural, industrial and mining sites can also be utilized by a Salix afforestation program without conflict with the production of food crops. This kind of program may create opportunities for bioenergy production and economic development, but contamination levels should be examined before bioenergy products are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Klara" title=" Klara"> Klara</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=N100" title=" N100"> N100</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a> </p> <a href="https://publications.waset.org/abstracts/102041/effects-of-lime-and-n100-on-the-growth-and-phytoextraction-capability-of-a-willow-variety-s-viminalis-s-schwerinii-s-dasyclados-grown-in-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Phytoextraction of Copper and Zinc by Willow Varieties in a Pot Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Mohsin">Muhammad Mohsin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mir%20Md%20Abdus%20Salam"> Mir Md Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pertti%20Pulkkinen"> Pertti Pulkkinen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ari%20Pappinen"> Ari Pappinen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil and water contamination by heavy metals is a major challenging issue for the environment. Phytoextraction is an emerging, environmentally friendly and cost-efficient technology in which plants are used to eliminate pollutants from the soil and water. We aimed to assess the copper (Cu) and zinc (Zn) removal efficiency by two willow varieties such as Klara (S. viminalis x S. schwerinii x S. dasyclados) and Karin ((S.schwerinii x S. viminalis) x (S. viminalis x S.burjatica)) under different soil treatments (control/unpolluted, polluted, lime with polluted, wood ash with polluted). In 180 days of pot experiment, these willow varieties were grown in a highly polluted soil collected from Pyhasalmi mining area in Finland. The lime and wood ash were added to the polluted soil to improve the soil pH and observe their effects on metals accumulation in plant biomass. The Inductively Coupled Plasma Optical Emission Spectrometer (ELAN 6000 ICP-EOS, Perkin-Elmer Corporation) was used in this study to assess the heavy metals concentration in the plant biomass. The result shows that both varieties of willow have the capability to accumulate the considerable amount of Cu and Zn varying from 36.95 to 314.80 mg kg⁻¹ and 260.66 to 858.70 mg kg⁻¹, respectively. The application of lime and wood ash substantially affected the stimulation of the plant height, dry biomass and deposition of Cu and Zn into total plant biomass. Besides, the lime application appeared to upsurge Cu and Zn concentrations in the shoots and leaves in both willow varieties when planted in polluted soil. However, wood ash application was found more efficient to mobilize the metals in the roots of both varieties. The study recommends willow plantations to rehabilitate the Cu and Zn polluted soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20ash" title=" wood ash"> wood ash</a>, <a href="https://publications.waset.org/abstracts/search?q=willow" title=" willow"> willow</a> </p> <a href="https://publications.waset.org/abstracts/91392/phytoextraction-of-copper-and-zinc-by-willow-varieties-in-a-pot-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Assesment of the Economic Potential of Lead Contaminated Brownfield for Growth of Oil Producing Crop Like Helianthus annus (Sunflower)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahenaz%20Sidi">Shahenaz Sidi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Tank"> S. K. Tank</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When sparsely used industrial and commercial facilities are retired or abandoned, one of the biggest issues that arise is what to do with the remaining land. This land, referred to as a ‘Brownfield site’ or simply ‘Brownfield’ is often contaminated with waste and pollutants left behind by the defunct industrial facilities and factories that stand on the land. Phytoremediation has been proved a promising greener and cleaner technology in remediating the land unlike other chemical excavation methods. Helianthus annus is a hyper accumulator of lead. Helianthus annus can be used for remediation procedures in metal contaminated soils. It is a fast-growing crop which would favour soil stabilization. Its tough leaves and stems are rarely eaten by animals. The seeds (actively eaten by birds) have very low concentrations of potentially toxic elements, and represent low risk for the food web. The study is conducted to determine the phytoextraction potentials of the plant and the eventual seed harvesting and commercial oil production on remediated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brownfield" title="Brownfield">Brownfield</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=helianthus" title=" helianthus"> helianthus</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=commercial" title=" commercial"> commercial</a> </p> <a href="https://publications.waset.org/abstracts/37044/assesment-of-the-economic-potential-of-lead-contaminated-brownfield-for-growth-of-oil-producing-crop-like-helianthus-annus-sunflower" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> EDTA Enhanced Plant Growth, Antioxidant Defense System, and Phytoextraction of Copper by Brassica napus L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ume%20Habiba">Ume Habiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafaqat%20Ali"> Shafaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mujahid%20Farid"> Mujahid Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bilal%20Shakoor"> Muhammad Bilal Shakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper (Cu) is an essential micronutrient for normal plant growth and development, but in excess, it is also toxic to plants. The present study investigated the influence of ethylenediaminetetraacetic acid (EDTA) in enhancing Cu uptake and tolerance as well as the morphological and physiological responses of Brassica napus L. seedlings under Cu stress. Four-week-old seedlings were transferred to hydroponics containing Hoagland’s nutrient solution. After 2 weeks of transplanting, three levels (0, 50, and 100 μM) of Cu were applied with or without application of 2.5 mM EDTA and plants were further grown for 8 weeks in culture media. Results showed that Cu alone significantly decreased plant growth, biomass, photosynthetic pigments, and gas exchange characteristics. Cu stress also reduced the activities of antioxidants, such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and catalase (CAT) along with protein contents. Cu toxicity increased the concentration of reactive oxygen species (ROS) as indicated by the increased production of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in both leaves and roots. The application of EDTA significantly alleviated Cu-induced toxic effects in B. napus, showing remarkable improvement in all these parameters. EDTA amendment increased the activity of antioxidant enzymes by decreasing the concentrations of MDA and H2O2 both in leaves and roots of B. napus. Although, EDTA amendment with Cu significantly increased Cu uptake in roots, stems, and leaves in decreasing order of concentration but increased the growth, photosynthetic parameters, and antioxidant enzymes. These results showed that the application of EDTA can be a useful strategy for phytoextraction of Cu by B. napus from contaminated soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTA" title=" EDTA"> EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=tolerance" title=" tolerance"> tolerance</a> </p> <a href="https://publications.waset.org/abstracts/17716/edta-enhanced-plant-growth-antioxidant-defense-system-and-phytoextraction-of-copper-by-brassica-napus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Phytoremediation of Chromium Using Vigna mungo, Vigna radiata and Cicer arietinum </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swarna%20Shikha">Swarna Shikha</a>, <a href="https://publications.waset.org/abstracts/search?q=Pammi%20Gauba"> Pammi Gauba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal pollution in water bodies and soil is a major and ever increasing environmental issue nowadays, and most conventional remediation approaches do not provide appropriate solutions. By using specially selected and engineered metal-accumulating plants for environmental clean-up is an emerging technology called as phytoremediation. The aim of this study was to find the effect of phytoextraction of Chromium in hydroponics culture by using Vigna mungo, Vigna radiata and Cicer arietinum. The plants were allowed to grow in static hydroponic culture at 0, 50, 250, 500 and 750 ppm concentrations of Chromium dichromate. The germination percentage was determined. It was found that the germination percentage of the seeds decreased with an increase in the concentration of the heavy metals. The maximum permissible limit of Cr for Vigna radiate and Cicer arietinum was 500 ppm and toxicity was observed whereas at even at 750 ppm no toxicity was observed in Vigna mungo. The main aim of our experiment was to study the impact of Chromium on all the three selected plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction%20%20metal-accumulation" title=" phytoextraction metal-accumulation"> phytoextraction metal-accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a> </p> <a href="https://publications.waset.org/abstracts/48104/phytoremediation-of-chromium-using-vigna-mungo-vigna-radiata-and-cicer-arietinum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Degradation of the Cu-DOM Complex by Bacteria: A Way to Increase Phytoextraction of Copper in a Vineyard Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justine%20Garraud">Justine Garraud</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Capiaux"> Hervé Capiaux</a>, <a href="https://publications.waset.org/abstracts/search?q=C%C3%A9cile%20Le%20Guern"> Cécile Le Guern</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Gaudin"> Pierre Gaudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A9mentine%20Lapie"> Clémentine Lapie</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Chaffron"> Samuel Chaffron</a>, <a href="https://publications.waset.org/abstracts/search?q=Erwan%20Delage"> Erwan Delage</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Lebeau"> Thierry Lebeau</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The repeated use of Bordeaux mixture (copper sulphate) and other chemical forms of copper (Cu) has led to its accumulation in wine-growing soils for more than a century, to the point of modifying the ecosystem of these soils. Phytoextraction of copper could progressively reduce the Cu load in these soils, and even to recycle copper (e.g. as a micronutrient in animal nutrition) by cultivating the extracting plants in the inter-row of the vineyards. Soil cleaning up usually requires several years because the chemical speciation of Cu in solution is mainly based on forms complexed with dissolved organic matter (DOM) that are not phytoavailable, unlike the "free" forms (Cu2+). Indeed, more than 98% of Cu in the solution is bound to DOM. The selection and inoculation of invineyardsoils in vineyard soils ofbacteria(bioaugmentation) able to degrade Cu-DOM complexes could increase the phytoavailable pool of Cu2+ in the soil solution (in addition to bacteria which first mobilize Cu in solution from the soil bearing phases) in order to increase phytoextraction performance. In this study, sevenCu-accumulating plants potentially usable in inter-row were tested for their Cu phytoextraction capacity in hydroponics (ray-grass, brown mustard, buckwheat, hemp, sunflower, oats, and chicory). Also, a bacterial consortium was tested: Pseudomonas sp. previously studied for its ability to mobilize Cu through the pyoverdine siderophore (complexing agent) and potentially to degrade Cu-DOM complexes, and a second bacterium (to be selected) able to promote the survival of Pseudomonas sp. following its inoculation in soil. Interaction network method was used based on the notions of co-occurrence and, therefore, of bacterial abundance found in the same soils. Bacteria from the EcoVitiSol project (Alsace, France) were targeted. The final step consisted of incoupling the bacterial consortium with the chosen plant in soil pots. The degradation of Cu-DOMcomplexes is measured on the basis of the absorption index at 254nm, which gives insight on the aromaticity of the DOM. The“free” Cu in solution (from the mobilization of Cu and/or the degradation of Cu-MOD complexes) is assessed by measuring pCu. Eventually, Cu accumulation in plants is measured by ICP-AES. The selection of the plant is currently being finalized. The interaction network method targeted the best positive interactions ofFlavobacterium sp. with Pseudomonassp. These bacteria are both PGPR (plant growth promoting rhizobacteria) with the ability to improve the plant growth and to mobilize Cu from the soil bearing phases (siderophores). Also, these bacteria are known to degrade phenolic groups, which are highly present in DOM. They could therefore contribute to the degradation of DOM-Cu. The results of the upcoming bacteria-plant coupling tests in pots will be also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complexes%20Cu-DOM" title="complexes Cu-DOM">complexes Cu-DOM</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaugmentation" title=" bioaugmentation"> bioaugmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoavailability" title=" phytoavailability"> phytoavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a> </p> <a href="https://publications.waset.org/abstracts/156066/degradation-of-the-cu-dom-complex-by-bacteria-a-way-to-increase-phytoextraction-of-copper-in-a-vineyard-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Phytoextraction of Heavy Metals in a Contaminated Site in Assam, India Using Indian Pennywort and Fenugreek: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinumani%20Choudhury">Chinumani Choudhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination is an alarming problem, which poses a serious risk to human health and the surrounding geology. Soils get contaminated with heavy metals due to the un-regularized industrial discharge of the toxic metal-rich effluents. Under such a condition, the remediation of the contaminated sites becomes imperative for a sustainable, safe, and healthy environment. Phytoextraction, which involves the removal of heavy metals from the soil through root absorption and uptake, is a viable remediation technique, which ensures extraction of the toxic inorganic compound available in the soil even at low concentrations. The soil present in the Silghat Region of Assam, India, is mostly contaminated with Zinc (Zn) and Lead (Pb), having concentrations as high as to cause a serious environmental problem if proper measures are not taken. In the present study, an extensive experimental study was carried out to understand the effectiveness of two commonly planted trees in Assam, namely, i) Indian Pennywort and ii) Fenugreek, in the removal of heavy metals from the contaminated soil. The basic characterization of the soil in the contaminated site of the Silghat region was performed and the field concentration of Zn and Pb was recorded. Various long-term laboratory pot tests were carried out by sowing the seeds of Indian Pennywort and Fenugreek in a soil, which was spiked, with a very high dosage of Zn and Pb. The tests were carried out for different concentration of a particular heavy metal and the individual effectiveness in the absorption of the heavy metal by the plants were studied. The concentration of the soil was monitored regularly to assess the rate of depletion and the simultaneous uptake of the heavy metal from the soil to the plant. The amount of heavy metal uptake by the plant was also quantified by analyzing the plant sample at the end of the testing period. Finally, the study throws light on the applicability of the studied plants in the field for effective remediation of the contaminated sites of Assam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title="phytoextraction">phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-metals" title=" heavy-metals"> heavy-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20pennywort" title=" Indian pennywort"> Indian pennywort</a>, <a href="https://publications.waset.org/abstracts/search?q=fenugreek" title=" fenugreek"> fenugreek</a> </p> <a href="https://publications.waset.org/abstracts/127760/phytoextraction-of-heavy-metals-in-a-contaminated-site-in-assam-india-using-indian-pennywort-and-fenugreek-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Phytotreatment of Polychlorinated Biphenyls Contaminated Soil by Chromolaena odorata L. King and Robinson</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20O.%20Anyasi">R. O. Anyasi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Atagana"> H. I. Atagana </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, phytoextraction ability of a weed on Aroclor 1254 was studied under greenhouse conditions. Chromolaena odorata plants were transplanted into soil containing 100, 200, and 500 ppm of Aroclor in 1L pots. The experiments were watered daily at 70 % moisture field capacity. Parameters such as fully expanded leaves per plant, shoot length, leaf chlorophyll content as well as root length at harvest were measured. PCB was not phytotoxic to C. odorata growth but plants in the 500 ppm treatment only showed diminished growth at the sixth week. Percentage increases in height of plant were 45.9, 39.4 and 40.0 for 100, 200 and 500 ppm treatments respectively. Such decreases were observed in the leaf numbers, root length and leaf chlorophyll concentration. The control sample showed 48.3 % increase in plant height which was not significant from the treated samples, an indication that C. odorata could survive such PCB concentration and could be used to remediate contaminated soil. Mean total PCB absorbed by C. odorata plant was between 6.40 and 64.60 ppm per kilogram of soil, leading to percentage PCB absorption of 0.03 and 17.03 % per kilogram of contaminated soil. PCBs were found mostly in the root tissues of the plants, and the Bioaccumulation factor were between 0.006-0.38. Total PCB absorbed by the plant increases as the concentration of the compound is increased. With these high BAF ensured, C. odorata could serve as a promising candidate plant in phytoextraction of PCB from a PCB-contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20restoration" title=" soil restoration"> soil restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=polychlorinated%20biphenyls%20%28PCB%29" title=" polychlorinated biphenyls (PCB)"> polychlorinated biphenyls (PCB)</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=aroclor" title=" aroclor"> aroclor</a> </p> <a href="https://publications.waset.org/abstracts/22505/phytotreatment-of-polychlorinated-biphenyls-contaminated-soil-by-chromolaena-odorata-l-king-and-robinson" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Species Selection for Phytoremediation of Barium Polluted Flooded Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fabio%20R.%20Pires">Fabio R. Pires</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20R.%20C.%20C.%20Ribeiro"> Paulo R. C. C. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20G.%20Viana"> Douglas G. Viana</a>, <a href="https://publications.waset.org/abstracts/search?q=Robson%20Bonomo"> Robson Bonomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20B.%20Egreja%20Filho"> Fernando B. Egreja Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Cargnelutti%20Filho"> Alberto Cargnelutti Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20%20F.%20Martins"> Luiz F. Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20B.%20S.%20Cruz"> Leila B. S. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20C.%20P.%20Nascimento"> Mauro C. P. Nascimento</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of barite (BaSO₄) as a weighting agent in drilling fluids for oil and gas activities makes barium a potential contaminant in the case of spills onto flooded soils, where barium sulfate solubility is increased due to low redox conditions. In order to select plants able to remove barium in such scenarios, seven plant species were evaluated on barium phytoextraction capacity: Brachiaria arrecta; Cyperus cf. papyrus; Eleocharis acutangula; Eleocharis interstincta; Nephrolepsis cf. rivularis; Paspalum conspersum and Typha domingensis. Plants were grown in pots with 13 kg of soil each, and exposed to six barium concentrations (established with BaCl₂): 0; 2.5; 5.0; 10.0; 30.0; 65.0 mg kg-1. To simulate flooding conditions, every pot was manteined with a thin irrigation water depth over soil surface (~1.0 cm). Treatments were carried out in triplicate, and pots were distributed randomly inside the greenhouse. Biometric and chemical analyses were performed throughout the experiment, including Ba²⁺ accumulation in shoots and roots. The highest amount of barium was observed in T. domingensis biomass, followed by C. cf. papyrus. However, the latter exported most of the barium to shoot, especially in higher BaCl₂ doses, while the former accumulated barium preferentially in roots. Thus, barium removal with C. cf. papyrus could be achieved by simply harvesting aerial biomass. The amount of barium in C. cf. papyrus was a consequence of high biomass production rather than barium concentration in plant tissues, whereas T. domingensis showed high barium concentration in plant tissues and high biomass production as well. These results make T. domingensis and C. cf. papyrus potential candidates to be applied in phytoremediation schemes to remove barium from flooded soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barium%20sulfate" title="barium sulfate">barium sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=cyperus" title=" cyperus"> cyperus</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20fluids" title=" drilling fluids"> drilling fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Typha" title=" Typha"> Typha</a> </p> <a href="https://publications.waset.org/abstracts/62305/species-selection-for-phytoremediation-of-barium-polluted-flooded-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Changes in Physicochemical Characteristics of a Serpentine Soil and in Root Architecture of a Hyperaccumulating Plant Cropped with a Legume</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramez%20F.%20Saad">Ramez F. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Kobaissi"> Ahmad Kobaissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Amiaud"> Bernard Amiaud</a>, <a href="https://publications.waset.org/abstracts/search?q=Julien%20Ruelle"> Julien Ruelle</a>, <a href="https://publications.waset.org/abstracts/search?q=Emile%20Benizri"> Emile Benizri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agromining is a new technology that establishes agricultural systems on ultramafic soils in order to produce valuable metal compounds such as nickel (Ni), with the final aim of restoring a soil's agricultural functions. But ultramafic soils are characterized by low fertility levels and this can limit yields of hyperaccumulators and metal phytoextraction. The objectives of the present work were to test if the association of a hyperaccumulating plant (Alyssum murale) and a Fabaceae (Vicia sativa var. Prontivesa) could induce changes in physicochemical characteristics of a serpentine soil and in root architecture of a hyperaccumulating plant then lead to efficient agromining practices through soil quality improvement. Based on standard agricultural systems, consisting in the association of legumes and another crop such as wheat or rape, a three-month rhizobox experiment was carried out to study the effect of the co-cropping (Co) or rotation (Ro) of a hyperaccumulating plant (Alyssum murale) with a legume (Vicia sativa) and incorporating legume biomass to soil, in comparison with mineral fertilization (FMo), on the structure and physicochemical properties of an ultramafic soil and on root architecture. All parameters measured (biomass, C and N contents, and taken-up Ni) on Alyssum murale conducted in co-cropping system showed the highest values followed by the mineral fertilization and rotation (Co > FMo > Ro), except for root nickel yield for which rotation was better than the mineral fertilization (Ro > FMo). The rhizosphere soil of Alyssum murale in co-cropping had larger soil particles size and better aggregates stability than other treatments. Using geostatistics, co-cropped Alyssum murale showed a greater root surface area spatial distribution. Moreover, co-cropping and rotation-induced lower soil DTPA-extractable nickel concentrations than other treatments, but higher pH values. Alyssum murale co-cropped with a legume showed a higher biomass production, improved soil physical characteristics and enhanced nickel phytoextraction. This study showed that the introduction of a legume into Ni agromining systems could improve yields of dry biomass of the hyperaccumulating plant used and consequently, the yields of Ni. Our strategy can decrease the need to apply fertilizers and thus minimizes the risk of nitrogen leaching and underground water pollution. Co-cropping of Alyssum murale with the legume showed a clear tendency to increase nickel phytoextraction and plant biomass in comparison to rotation treatment and fertilized mono-culture. In addition, co-cropping improved soil physical characteristics and soil structure through larger and more stabilized aggregates. It is, therefore, reasonable to conclude that the use of legumes in Ni-agromining systems could be a good strategy to reduce chemical inputs and to restore soil agricultural functions. Improving the agromining system by the replacement of inorganic fertilizers could simultaneously be a safe way of rehabilitating degraded soils and a method to restore soil quality and functions leading to the recovery of ecosystem services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20association" title="plant association">plant association</a>, <a href="https://publications.waset.org/abstracts/search?q=legumes" title=" legumes"> legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperaccumulating%20plants" title=" hyperaccumulating plants"> hyperaccumulating plants</a>, <a href="https://publications.waset.org/abstracts/search?q=ultramafic%20soil%20physicochemical%20properties" title=" ultramafic soil physicochemical properties"> ultramafic soil physicochemical properties</a> </p> <a href="https://publications.waset.org/abstracts/87186/changes-in-physicochemical-characteristics-of-a-serpentine-soil-and-in-root-architecture-of-a-hyperaccumulating-plant-cropped-with-a-legume" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhritilekha%20Deka">Dhritilekha Deka</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20Patwa"> Deepak Patwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20K."> Ravi K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Archana%20M.%20Nair"> Archana M. Nair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title="phytoextraction">phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=chrysopogon%20zizanioides" title=" chrysopogon zizanioides"> chrysopogon zizanioides</a>, <a href="https://publications.waset.org/abstracts/search?q=bioaccumulation%20factor" title=" bioaccumulation factor"> bioaccumulation factor</a> </p> <a href="https://publications.waset.org/abstracts/172191/phytoremediation-of-heavy-metals-by-the-perennial-tussock-chrysopogon-zizanioides-grown-on-zn-and-cd-contaminated-soil-amended-with-biochar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Phytoremediation of Zn-Contaminated Soils by Malva Sylvestris</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelouahab%20Diafat">Abdelouahab Diafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Meribai%20Abdelmalek"> Meribai Abdelmalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Bahloul"> Ahmed Bahloul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> phytoremediation is the use of plants to remove or degrade organic or inorganic contaminants from soil and water this work aims to study the potential effect of malva sylvestris for the phytoremediation of soils contaminated by Zn. plants were grown in pots containing soil artificially contaminated with Zn at concentrations of 100, 200, and 300 mg/kg. the results obtained show that the Zn concentrations used have a negative effect on the growth of this plant the search for the metal carried out by the technique of atomic absorption spectrometry shows that this plant accumulates a small quantity of this metal. it can be concluded that the malva sylvestris plant tolerates Zn contaminated soils but it is not considered as a zinc hyperaccumulator plant <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremidiation" title="phytoremidiation">phytoremidiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Zn-contaminated%20soils" title=" Zn-contaminated soils"> Zn-contaminated soils</a>, <a href="https://publications.waset.org/abstracts/search?q=Malva%20Sylvestris" title=" Malva Sylvestris"> Malva Sylvestris</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a> </p> <a href="https://publications.waset.org/abstracts/159945/phytoremediation-of-zn-contaminated-soils-by-malva-sylvestris" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Chaturvedi">Ritu Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayank%20Varun"> Mayank Varun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Paul"> M. S. Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytostabilization" title=" phytostabilization"> phytostabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=reactive%20oxygen%20species" title=" reactive oxygen species"> reactive oxygen species</a> </p> <a href="https://publications.waset.org/abstracts/63409/effect-of-vesicular-arbuscular-mycorrhiza-on-phytoremedial-potential-and-physiological-changes-in-solanum-melongena-plants-grown-under-heavy-metal-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Efficacy of Pisum sativum and Arbuscular Mycorrhizal Symbiosis for Phytoextraction of Heavy Metalloids from Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ritu%20Chaturvedi">Ritu Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Paul"> Manoj Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pot experiment was conducted to investigate the effect of Arbuscular mycorrhizal fungus (AMF) on metal(loid) uptake and accumulation efficiency of Pisum sativum along with physiological and biochemical response. Plants were grown in soil spiked with 50 and 100 mg kg-1 Pb, 25 and 50 mg kg-1 Cd, 50 and 100 mg kg-1 As and a combination of all three metal(loid)s. A parallel set was maintained and inoculated with arbuscular mycorrhizal fungus for comparison. After 60 days, plants were harvested and analysed for metal(loid) content. A steady increase in metal(loid) accumulation was observed on increment of metal(loid) dose and also on AMF inoculation. Plant height, biomass, chlorophyll, carotenoid and carbohydrate content reduced upon metal(loid) exposure. Increase in enzymatic (CAT, SOD and APX) and nonenzymatic (Proline) defence proteins was observed on metal(loid) exposure. AMF inoculation leads to an increase in plant height, biomass, chlorophyll, carotenoids, carbohydrate and enzymatic defence proteins (p≤0.001) under study; whereas proline content was reduced. Considering the accumulation efficiency and adaptive response of plants and alleviation of stress by AMF, this symbiosis can be applied for on-site remediation of Pb and Cd contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title="heavy metal">heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=mycorrhiza" title=" mycorrhiza"> mycorrhiza</a>, <a href="https://publications.waset.org/abstracts/search?q=pea" title=" pea"> pea</a>, <a href="https://publications.waset.org/abstracts/search?q=phyroremediation" title=" phyroremediation"> phyroremediation</a> </p> <a href="https://publications.waset.org/abstracts/83049/efficacy-of-pisum-sativum-and-arbuscular-mycorrhizal-symbiosis-for-phytoextraction-of-heavy-metalloids-from-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Potential of Salvia sclarea L. for Phytoremediation of Soils Contaminated with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20R.%20Angelova">Violina R. Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Radka%20V.%20Ivanova"> Radka V. Ivanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Givko%20M.%20Todorov"> Givko M. Todorov</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov"> Krasimir I. Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A field study was conducted to evaluate the efficacy of <em>Salvia sclarea </em>L. for phytoremediation of contaminated soils. The experiment was performed on an agricultural fields contaminated by the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The content of heavy metals in different parts of <em>Salvia sclarea </em>L. (roots, stems, leaves and inflorescences) was determined by ICP. The essential oil of the <em>Salvia sclarea </em>L. was obtained by steam distillation in laboratory conditions and was analyzed for heavy metals and its chemical composition was determined. <em>Salvia sclarea </em>L. is a plant which is tolerant to heavy metals and can be grown on contaminated soils. Based on the obtained results and using the most common criteria, <em>Salvia sclarea </em>L. can be classified as Pb hyperaccumulator and Cd and Zn accumulators, therefore, this plant has suitable potential for the phytoremediation of heavy metal contaminated soils. Favorable is also the fact that heavy metals do not influence the development of the <em>Salvia sclarea </em>L., as well as on the quality and quantity of the essential oil. For clary sage oil obtained from the processing of clary sage grown on highly contaminated soils, its key odour-determining ingredients meet the quality requirements of the European Pharmacopoeia and BS ISO 7609 regarding Bulgarian clary sage oil and/or have values that are close to the limits of these standards. The possibility of further industrial processing will make <em>Salvia sclarea </em>L. an economically interesting crop for farmers of phytoextraction technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clary%20sage" title="clary sage">clary sage</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20soils" title=" polluted soils"> polluted soils</a> </p> <a href="https://publications.waset.org/abstracts/55508/potential-of-salvia-sclarea-l-for-phytoremediation-of-soils-contaminated-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Perifanova-Nemska"> Mariana Perifanova-Nemska</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Ivanov"> Krasimir Ivanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=castor%20bean" title="castor bean">castor bean</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=polluted%20soils" title=" polluted soils"> polluted soils</a> </p> <a href="https://publications.waset.org/abstracts/42571/potential-of-castor-bean-ricinus-communis-l-for-phytoremediation-of-soils-contaminated-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Ghnaya">Tahar Ghnaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Majda%20Mnasri"> Majda Mnasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanen%20Zaier"> Hanen Zaier</a>, <a href="https://publications.waset.org/abstracts/search?q=Rim%20Ghabriche"> Rim Ghabriche</a>, <a href="https://publications.waset.org/abstracts/search?q=Chedly%20Abdelly"> Chedly Abdelly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cd" title="Cd">Cd</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20sativa" title=" Medicago sativa"> Medicago sativa</a>, <a href="https://publications.waset.org/abstracts/search?q=Arbuscular%20mycorrhizal" title=" Arbuscular mycorrhizal"> Arbuscular mycorrhizal</a> </p> <a href="https://publications.waset.org/abstracts/21956/nitrogen-fixing-rhizobacteria-rhizobium-mililoti-2011-enhances-the-tolerance-and-the-accumulation-of-cadmium-in-medicago-sativa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Bioprospecting for Indigenous Ruderal Plants with Potentials for Phytoremediation of Soil Heavy Metals in the Southern Guinea Savanna of North Western Nigeria </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunday%20Paul%20Bako">Sunday Paul Bako</a>, <a href="https://publications.waset.org/abstracts/search?q=Augustine%20Uwanekwu%20Ezealor"> Augustine Uwanekwu Ezealor</a>, <a href="https://publications.waset.org/abstracts/search?q=Yahuza%20Tanimu"> Yahuza Tanimu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a study to evaluate the response of indigenous ruderal plants to the metal deposition regime imposed by anthropogenic modification in the Southern Guinea Savanna of north Western Nigeria during the dry and wet seasons, herbaceous plants and samples of soils were collected in three 5m by 5m quadrats laid around the environs of the Kaduna Refinery and Petrochemical Company and the banks of River Kaduna. Heavy metal concentration (Cd, Ni, Cr, Cu, Fe, Mn and Zn) in soil and plant samples was determined using Energy Dispersive X-ray Fluorescence. Concentrations of heavy metals in soils were generally observed to be higher during the wet season in both locations although the differences were not statistically significant (P > 0.05). Concentrations of Cd, Zn, Cr, Cu and Ni in all the plants observed were found to be below levels described as phytotoxic to plants. However, above ‘normal’ concentrations of Cr was observed in most of the plant species sampled. The concentrations of Cr, Cu, Ni and Zn in soils around the KRPC and RKB were found to be above the acceptable limits. Although no hyper accumulator plant species was encountered in this study, twenty (20) plant species were identified to have high bioconcentration (BCF > 1.0) of Cd and Cu, which indicated tolerance of these plants to excessive or phytotoxic concentrations of these metals. In addition, they generally produce high above ground biomass, due to rapid vegetative growth. These are likely species for phytoextraction. Elevated concentration of metals in both soil and plant materials may cause a decrease in biodiversity due to direct toxicity. There are also risks to humans and other animals due to bioaccumulation across the food chain. There are further possibilities of further evaluating and genetically improving metal tolerance traits in some of these plant species in relation to their potential use in phytoremediation programmes in metal polluted sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioprospecting" title="bioprospecting">bioprospecting</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/28570/bioprospecting-for-indigenous-ruderal-plants-with-potentials-for-phytoremediation-of-soil-heavy-metals-in-the-southern-guinea-savanna-of-north-western-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Selection of Lead Mobilizing Bacteria from Contaminated Soils and Their Potential in Promoting Plant Growth through Plant Growth Promoting Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Manzoor">Maria Manzoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Iram%20Gul"> Iram Gul</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacterial strains were isolated from contaminated soil collected from Rawalpindi and Islamabad. The strains were investigated for lead resistance and their effect on Pb solubility and PGPR activity. Incubation experiments were carried for inoculated and unoculated soil containing different levels of Pb. Results revealed that few stains (BTM-4, BTM-11, BTM-14) were able to tolerate Pb up to 600 mg L-1, whereas five strains (BTM-3, BTM-6, BTM-10, BTM-21 and BTM-24) showed significant increase in solubility of Pb when compared to all other strains and control. The CaCl2 extractable Pb was increased by 13.6, 6.8, 4.4 and 2.4 folds compared to un-inoculated control soil at increased soil Pb concentration (500, 1000, 1500 and 200 mg kg-1, respectively). The selected bacterial strains (11) were further investigated for plant growth promotion activity through PGPR assays including. Germination and root elongation assays were also conducted under elevated metal concentration in controlled conditions to elucidate the effects of microbial strains upon plant growth and development. The results showed that all the strains tested in this study, produced significantly varying concentrations of IAA, siderophores and gibberellic acid along with ability to phosphorus solubilization index (PSI). The results of germination and root elongation assay further confirmed the beneficial role of the microbial strains in elevating metal stress through PGPR activity. Among all tested strains, BTM-10 significantly improved plant growth. 1.3 and 2.7 folds increase in root and shoot length was observed when compared to control. Which may be attributed to presence of important plant growth promoting enzymes (IAA 74.6 μg/ml; GA 19.23 μg/ml; Sidrophore units 49% and PSI 1.3 cm). The outcome of this study indicates that these Pb tolerant and solubilizing strains may have the potential for plant growth promotion under metal stress and can be used as mediator when coupled with heavy metal hyperaccumulator plants for phytoremediation of Pb contaminated soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pb%20resistant%20bacteria" title="Pb resistant bacteria">Pb resistant bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb%20mobilizing%20bacteria" title=" Pb mobilizing bacteria"> Pb mobilizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Phytoextraction%20of%20Pb" title=" Phytoextraction of Pb"> Phytoextraction of Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPR%20activity%20of%20bacteria" title=" PGPR activity of bacteria"> PGPR activity of bacteria</a> </p> <a href="https://publications.waset.org/abstracts/70496/selection-of-lead-mobilizing-bacteria-from-contaminated-soils-and-their-potential-in-promoting-plant-growth-through-plant-growth-promoting-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Phytoremediation Potential of Enhanced Tobacco BAC F3 in Soil Contaminated with Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Violina%20Angelova">Violina Angelova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A comparative study has been carried out into the impact of organic meliorants on the uptake of heavy metals, micro and macroelements and the phytoremediation potential of enhanced tobacco BAC F3. The soil used as part of this experiment was sampled from the vicinity of the Non-Ferrous-Metal Works near Plovdiv, Bulgaria. The pot experiment carried out consisted of a randomized, complete block design containing nine treatments and three replications (27 pots). The treatments consisted of a control (with no organic meliorants) and compost and vermicompost meliorants (added at 5%, 10%, 15%, and 30%, and recalculated based on their dry soil weight). Upon reaching commercial ripeness, the tobacco plants were gathered. Heavy metals, micro and macroelement contents in roots, stems, and leaves of tobacco were analyzed by the method of the microwave mineralization. To determine the elements in the samples, inductively coupled emission spectrometry (Jobin Yvon Emission - JY 38 S, France) was used. The distribution of the heavy metals, micro, and macroelements in the organs of the enhanced tobacco has a selective character and depended above all on the parts of the plants and the element that was examined. Pb, Zn, Cu, Fe, Mn, P and Mg distribution in tobacco decreases in the following order: roots > leaves > stems, and for Cd, K, and Ca - leaves > roots > stems. The high concentration of Cd in the leaves and the high translocation factor indicate the possibility of enhanced tobacco to be used in phytoextraction. Tested organic amendments significantly influenced the uptake of heavy metals, micro and macroelements by the roots, stems, and leaves of tobacco. A correlation was found between the quantity of the mobile forms and the uptake of Pb, Zn, and Cd by the enhanced tobacco. The compost and vermicompost treatments significantly reduced heavy metals concentration in leaves and increased uptake of K, Ca and Mg. The 30% compost and 30% vermicompost treatments led to the maximal reduction of heavy metals in enhanced tobacco BAC F3. The addition of compost and vermicompost further reduces the ability to digest the heavy metals in the leaves, and phytoremediation potential of enhanced tobacco BAC F3. Acknowledgment: The financial support by the Bulgarian National Science Fund Project DFNI Н04/9 is greatly appreciated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title="heavy metals">heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20and%20macroelements" title=" micro and macroelements"> micro and macroelements</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20tobacco%20BAC%20F3" title=" enhanced tobacco BAC F3"> enhanced tobacco BAC F3</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20meliorants" title=" organic meliorants"> organic meliorants</a> </p> <a href="https://publications.waset.org/abstracts/107337/phytoremediation-potential-of-enhanced-tobacco-bac-f3-in-soil-contaminated-with-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> EDTA Assisted Phytoremediation of Cadmium by Enhancing Growth and Antioxidant Defense System in Brassica napus L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mujahid%20Farid">Mujahid Farid</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafaqat%20Ali"> Shafaqat Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bilal%20Shakoor"> Muhammad Bilal Shakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metals pollution of soil is a prevalent global problem and oilseed rape (Brassica napus L.) are considered useful for the restoration of metal contaminated soils. Phytoextraction is an in-situ environment-friendly technique for the clean-up of contaminated soils. Response to cadmium (Cd) toxicity in combination with a chelator, Ethylenediamminetetraacetic acid (EDTA) was studied in oilseed rape grown hydroponically in greenhouse conditions under three levels of Cd (0, 10, and 50 µM) and two levels of EDTA (0 and 2.5 mM). Cd decreased plant growth, biomass and chlorophyll concentrations while the application of EDTA enhanced plant growth by reducing Cd-induced effects in Cd-stressed plants. Significant decrease in photosynthetic parameters was found by the Cd alone. Addition of EDTA improved the net photosynthetic and gas exchange capacity of plants under Cd stress. Cd at 10 and 50 μM significantly increased electrolyte leakage, the production of hydrogen peroxidase (H2O2) and malondialdehyde (MDA) and a significant reduction was observed in the activities of catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), and superoxide dismutase under Cd stress plants. Application of EDTA at the rate of 2.5 mM alone and with combination of Cd increased the antioxidant enzymes activities and reduced the electrolyte leakage and production of H2O2 and MDA. Oilseed rape (Brassica napus L.) actively accumulated Cd in roots, stems and leaves and the addition of EDTA boosted the uptake and accumulation of Cd in oil seed rape by dissociating Cd in culture media. The present results suggest that under 8 weeks Cd-induced stress, application of EDTA significantly improve plant growth, chlorophyll content, photosynthetic, gas exchange capacity, improving enzymes activities and increased the metal uptake in roots, stems and leaves of oilseed rape (Brassica napus L.) respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title="antioxidant enzymes">antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium" title=" cadmium"> cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=chelator" title=" chelator"> chelator</a>, <a href="https://publications.waset.org/abstracts/search?q=EDTA" title=" EDTA"> EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=oilseed%20rape" title=" oilseed rape"> oilseed rape</a> </p> <a href="https://publications.waset.org/abstracts/9336/edta-assisted-phytoremediation-of-cadmium-by-enhancing-growth-and-antioxidant-defense-system-in-brassica-napus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Phytoextraction of Some Heavy Metals from Artificially Polluted soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kareem%20Kalo%20Qassim">Kareem Kalo Qassim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20A.%20M.%20Mezori"> Hassan A. M. Mezori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The bioaccumulation of heavy metals in the environment has become a matter of public interest because it persists in the soil longer than other components of the biosphere. Bioremediation has emerged as the ideal alternative environmentally friendly and ecological sound technology for removing pollutants from polluted sites. Phytoremediation is an attractive remediation technology that makes use of plants to remove contaminants from the environment. A pot experiment was conducted under lath house conditions to evaluate the ability of plants (H. Annuus, S. Bicolor, and Z. Mays) to phytoextract heavy metals from artificially polluted soils by different concentrations of Cadmium, Lead, and Copper (0, 100, 200, 200 + EDTA). The Seed germination was influenced by the presence of heavy metals and inhibition increased by increasing the heavy metals concentration. A significant difference was observed in the effect of lead and copper. Generally, the length of root, shoot, and intact plant was reduced by all the concentrations used in the experiments. The root system was affected more than the shoot system of the same plants. All heavy metals concentrations caused a reduction in the dry weight and chlorophyll content of all tested plant species; the reduction was increased by increasing the concentration of all heavy metals, especially when EDTA was added. The Bioaccumulation of heavy metals concentration of all the tested plants increased by increasing the concentration. The highest accumulation of cadmium was (81.77mg kg⁻¹), and copper was ( 65.07 mg kg⁻¹) in S. bicolor, while lead-in H. annuus was (60.74 mg kg⁻¹). The order of accumulation of heavy metals in all the tested plant species in the root system and the intact plant was as follows: H. annuus ˃ S. bicolor ˃ Z. mays and shoot system was: H. annuus ˃ Z. mays ˃ S. bicolor. The highest TF of cadmium was (0.41) in H. annuus; lead was (0.72) in Z. mays and S. bicolor, and copper was (0.44) in Z. mays. The tested plant species varied in their response to the heavy metals and the inhibition was concentration depended. In general, the roots system was more affected by heavy metals toxicity than the shoots system; the roots system accumulated more heavy metals in the roots than the shoots system. The addition of EDTA to the last concentration of heavy metals facilitated the availably and absorption of heavy metals from the polluted soil by all tested plant species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoextyraction" title="phytoextyraction">phytoextyraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=translocation" title=" translocation"> translocation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a> </p> <a href="https://publications.waset.org/abstracts/147204/phytoextraction-of-some-heavy-metals-from-artificially-polluted-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phytoextraction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phytoextraction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10