CINXE.COM

Search results for: Microfluidic system

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Microfluidic system</title> <meta name="description" content="Search results for: Microfluidic system"> <meta name="keywords" content="Microfluidic system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Microfluidic system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Microfluidic system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 8427</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Microfluidic system</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8427</span> Highly-Efficient Photoreaction Using Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shigenori%20Togashi">Shigenori Togashi</a>, <a href="https://publications.waset.org/search?q=Yukako%20Asano"> Yukako Asano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We developed an effective microfluidic device for photoreactions with low reflectance and good heat conductance. The performance of this microfluidic device was tested by carrying out a photoreactive synthesis of benzopinacol and acetone from benzophenone and 2-propanol. The yield reached 36% with an irradiation time of 469.2 s and was improved by more than 30% when compared to the values obtained by the batch method. Therefore, the microfluidic device was found to be effective for improving the yields of photoreactions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic%20device" title="Microfluidic device">Microfluidic device</a>, <a href="https://publications.waset.org/search?q=Photoreaction" title=" Photoreaction"> Photoreaction</a>, <a href="https://publications.waset.org/search?q=Benzophenone" title=" Benzophenone"> Benzophenone</a>, <a href="https://publications.waset.org/search?q=Black%20Aluminum%20Oxide" title=" Black Aluminum Oxide"> Black Aluminum Oxide</a>, <a href="https://publications.waset.org/search?q=Detection" title=" Detection"> Detection</a>, <a href="https://publications.waset.org/search?q=Yield%20Improvement." title=" Yield Improvement."> Yield Improvement.</a> </p> <a href="https://publications.waset.org/9998903/highly-efficient-photoreaction-using-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998903/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998903/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998903/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998903/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998903/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998903/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998903/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998903/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998903/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998903/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1827</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8426</span> Size Control of Nanoparticles Using a Microfluidic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shigenori%20Togashi"> Shigenori Togashi</a>, <a href="https://publications.waset.org/search?q=Erika%20Katayama"> Erika Katayama</a>, <a href="https://publications.waset.org/search?q=Mitsuhiro%20Matsuzawa"> Mitsuhiro Matsuzawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We have developed a microfluidic device system for the continuous producting of nanoparticles, and we have clarified the relationship between the mixing performance of reactors and the particle size. First, we evaluated the mixing performance of reactors by carring out the Villermaux&ndash;Dushman reaction and determined the experimental conditions for producing AgCl nanoparticles. Next, we produced AgCl nanoparticles and evaluated the mixing performance and the particle size. We found that as the mixing performance improves the size of produced particles decreases and the particle size distribution becomes sharper. We produced AgCl nanoparticles with a size of 86 nm using the microfluidic device that had the best mixing performance among the three reactors we tested in this study; the coefficient of variation (Cv) of the size distribution of the produced nanoparticles was 26.1%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic" title=" Microfluidic"> Microfluidic</a>, <a href="https://publications.waset.org/search?q=Mixing" title=" Mixing"> Mixing</a>, <a href="https://publications.waset.org/search?q=Nanoparticle" title=" Nanoparticle"> Nanoparticle</a>, <a href="https://publications.waset.org/search?q=Silver%20Chloride." title=" Silver Chloride."> Silver Chloride.</a> </p> <a href="https://publications.waset.org/16098/size-control-of-nanoparticles-using-a-microfluidic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16098/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16098/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16098/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16098/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16098/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16098/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16098/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16098/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16098/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16098/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2604</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8425</span> Fabrication of Microfluidic Device for Quantitative Monitoring of Algal Cell Behavior Using X-ray LIGA Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=J.%20Ruenin">J. Ruenin</a>, <a href="https://publications.waset.org/search?q=S.%20Sukprasong"> S. Sukprasong</a>, <a href="https://publications.waset.org/search?q=R.%20Phatthanakun"> R. Phatthanakun</a>, <a href="https://publications.waset.org/search?q=N.%20Chomnawang"> N. Chomnawang</a>, <a href="https://publications.waset.org/search?q=P.%20Kuntanawat"> P. Kuntanawat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, a simple microfluidic device for monitoring algal cell behavior is proposed. An array of algal microwells is fabricated by PDMS soft-lithography using X-ray LIGA mold, placed on a glass substrate. Two layers of replicated PDMS and substrate are attached by oxygen plasma bonding, creating a microchannel for the microfluidic system. Algal cell are loaded into the microfluidic device, which provides positive charge on the bottom surface of wells. Algal cells, which are negative charged, can be attracted to the bottom of the wells via electrostatic interaction. By varying the concentration of algal cells in the loading suspension, it is possible to obtain wells with a single cell. Liquid medium for cells monitoring are flown continuously over the wells, providing nutrient and waste exchange between the well and the main flow. This device could lead to the uncovering of the quantitative biology of the algae, which is a key to effective and extensive algal utilizations in the field of biotechnology, food industry and bioenergy research and developments.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Algal%20cells" title="Algal cells">Algal cells</a>, <a href="https://publications.waset.org/search?q=microfluidic%20device" title=" microfluidic device"> microfluidic device</a>, <a href="https://publications.waset.org/search?q=X-ray%20LIGA" title=" X-ray LIGA"> X-ray LIGA</a>, <a href="https://publications.waset.org/search?q=X-ray%0D%0Alithography" title=" X-ray lithography"> X-ray lithography</a>, <a href="https://publications.waset.org/search?q=metallic%20mold" title=" metallic mold"> metallic mold</a>, <a href="https://publications.waset.org/search?q=synchrotron%20light" title=" synchrotron light"> synchrotron light</a>, <a href="https://publications.waset.org/search?q=PDMS" title=" PDMS"> PDMS</a> </p> <a href="https://publications.waset.org/13109/fabrication-of-microfluidic-device-for-quantitative-monitoring-of-algal-cell-behavior-using-x-ray-liga-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13109/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13109/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13109/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13109/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13109/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13109/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13109/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13109/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13109/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13109/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2429</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8424</span> Integration of CMOS Biosensor into a Polymeric Lab-on-a-Chip System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Brettschneider"> T. Brettschneider</a>, <a href="https://publications.waset.org/search?q=C.%20Dorrer"> C. Dorrer</a>, <a href="https://publications.waset.org/search?q=H.%20Suy"> H. Suy</a>, <a href="https://publications.waset.org/search?q=T.%20Braun"> T. Braun</a>, <a href="https://publications.waset.org/search?q=E.%20Jung"> E. Jung</a>, <a href="https://publications.waset.org/search?q=R.%20Hoofman"> R. Hoofman</a>, <a href="https://publications.waset.org/search?q=M.%20Br%C3%BCndel"> M. Br眉ndel</a>, <a href="https://publications.waset.org/search?q=R.%20Zengerle"> R. Zengerle</a>, <a href="https://publications.waset.org/search?q=F.%20L%C3%A4rmer"> F. L盲rmer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>We present an integration approach of a CMOS biosensor into a polymer based microfluidic environment suitable for mass production. It consists of a wafer-level-package for the silicon die and laser bonding process promoted by an intermediate hot melt foil to attach the sensor package to the microfluidic chip, without the need for dispensing of glues or underfiller. A very good condition of the sensing area was obtained after introducing a protection layer during packaging. A microfluidic flow cell was fabricated and shown to withstand pressures up to &Delta;p = 780 kPa without leakage. The employed biosensors were electrically characterized in a dry environment.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CMOS%20biosensor" title=" CMOS biosensor"> CMOS biosensor</a>, <a href="https://publications.waset.org/search?q=laser%20bonding" title=" laser bonding"> laser bonding</a>, <a href="https://publications.waset.org/search?q=silicon%20polymer%20integration" title=" silicon polymer integration"> silicon polymer integration</a>, <a href="https://publications.waset.org/search?q=wafer%20level%20packaging." title=" wafer level packaging."> wafer level packaging.</a> </p> <a href="https://publications.waset.org/16087/integration-of-cmos-biosensor-into-a-polymeric-lab-on-a-chip-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16087/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16087/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16087/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16087/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16087/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16087/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16087/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16087/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16087/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16087/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3029</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8423</span> Increase of Sensitivity in 3D Suspended Polymeric Microfluidic Platform through Lateral Misalignment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ehsan%20Yazdanpanah%20Moghadam">Ehsan Yazdanpanah Moghadam</a>, <a href="https://publications.waset.org/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a design of the suspended polymeric microfluidic platform is introduced that is fabricated with three polymeric layers. Changing the microchannel plane to be perpendicular to microcantilever plane, drastically decreases moment of inertia in that direction. In addition, the platform is made of polymer (around five orders of magnitude less compared to silicon). It causes significant increase in the sensitivity of the cantilever deflection. Next, although the dimensions of this platform are constant, by misaligning the embedded microchannels laterally in the suspended microfluidic platform, the sensitivity can be highly increased. The investigation is studied on four fluids including water, seawater, milk, and blood for flow ranges from low rate of 5 to 70 &micro;l/min to obtain the best design with the highest sensitivity. The best design in this study shows the sensitivity increases around 50% for water, seawater, milk, and blood at the flow rate of 70 &micro;l/min by just misaligning the embedded microchannels in the suspended polymeric microfluidic platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic" title="Microfluidic">Microfluidic</a>, <a href="https://publications.waset.org/search?q=biosensor" title=" biosensor"> biosensor</a>, <a href="https://publications.waset.org/search?q=MEMS." title=" MEMS."> MEMS.</a> </p> <a href="https://publications.waset.org/10008327/increase-of-sensitivity-in-3d-suspended-polymeric-microfluidic-platform-through-lateral-misalignment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008327/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008327/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008327/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008327/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008327/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008327/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008327/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008327/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008327/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008327/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">885</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8422</span> Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Virendra%20J.%20Majarikar">Virendra J. Majarikar</a>, <a href="https://publications.waset.org/search?q=Harikrishnan%20N.%20Unni"> Harikrishnan N. Unni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m<sup>3</sup> and 0 mol/m<sup>3</sup>, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=COMSOL" title="COMSOL">COMSOL</a>, <a href="https://publications.waset.org/search?q=electrokinetic" title=" electrokinetic"> electrokinetic</a>, <a href="https://publications.waset.org/search?q=electroosmotic" title=" electroosmotic"> electroosmotic</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=zeta%20potential." title=" zeta potential."> zeta potential.</a> </p> <a href="https://publications.waset.org/10007901/modeling-of-electrokinetic-mixing-in-lab-on-chip-microfluidic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007901/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007901/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007901/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007901/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007901/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007901/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007901/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007901/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007901/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007901/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1209</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8421</span> A Simplified, Fabrication-Friendly Acoustophoretic Model for Size Sensitive Particle Sorting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Karamzadeh">V. Karamzadeh</a>, <a href="https://publications.waset.org/search?q=J.%20Adhvaryu"> J. Adhvaryu</a>, <a href="https://publications.waset.org/search?q=A.%20Chandrasekaran"> A. Chandrasekaran</a>, <a href="https://publications.waset.org/search?q=M.%20Packirisamy"> M. Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Bulk Acoustic Wave (BAW) microfluidics, the throughput of particle sorting is dependent on the complex interplay between the geometric configuration of the channel, the size of the particles, and the properties of the fluid medium, which therefore calls for a detailed modeling and understanding of the fluid-particle interaction dynamics under an acoustic field, prior to designing the system. In this work, we propose a simplified Bulk acoustophoretic system that can be used for size dependent particle sorting. A Finite Element Method (FEM) based analytical model has been developed to study the dependence of particle sizes on channel parameters, and the sorting efficiency in a given fluid medium. Based on the results, the microfluidic system has been designed to take into account all the variables involved with the underlying physics, and has been fabricated using an additive manufacturing technique employing a commercial 3D printer, to generate a simple, cost-effective system that can be used for size sensitive particle sorting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/search?q=3D%20microfluidic%20chip" title=" 3D microfluidic chip"> 3D microfluidic chip</a>, <a href="https://publications.waset.org/search?q=acoustophoresis" title=" acoustophoresis"> acoustophoresis</a>, <a href="https://publications.waset.org/search?q=cell%20separation" title=" cell separation"> cell separation</a>, <a href="https://publications.waset.org/search?q=MEMS" title=" MEMS"> MEMS</a>, <a href="https://publications.waset.org/search?q=microfluidics." title=" microfluidics. "> microfluidics. </a> </p> <a href="https://publications.waset.org/10009049/a-simplified-fabrication-friendly-acoustophoretic-model-for-size-sensitive-particle-sorting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009049/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009049/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009049/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009049/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009049/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009049/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009049/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009049/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009049/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009049/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009049.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1067</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8420</span> 3D Scaffolds Fabricated by Microfluidic Device for Rat Cardiomyocytes Observation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chih-Wei%20Chao">Chih-Wei Chao</a>, <a href="https://publications.waset.org/search?q=Jiashing%20Yu"> Jiashing Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>To mimic the natural circumstances of cell growth in an organism, we present three-dimensional (3D) scaffolds fabricated by microfluidics for cultivation. This work investigates the cellular behaviors of rat cardiomyocytes in gelatin 3D scaffolds compared to those on 2D control, such as proliferation, viability and morphology. We found that the scaffolds may induce skeletal differentiation of H9c2 cells.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic%20device" title="Microfluidic device">Microfluidic device</a>, <a href="https://publications.waset.org/search?q=H9c2" title=" H9c2"> H9c2</a>, <a href="https://publications.waset.org/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a>, <a href="https://publications.waset.org/search?q=3D%20scaffolds." title=" 3D scaffolds."> 3D scaffolds.</a> </p> <a href="https://publications.waset.org/9999682/3d-scaffolds-fabricated-by-microfluidic-device-for-rat-cardiomyocytes-observation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999682/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999682/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999682/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999682/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999682/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999682/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999682/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999682/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999682/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999682/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2068</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8419</span> Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ane%20Larrea">Ane Larrea</a>, <a href="https://publications.waset.org/search?q=Victor%20Sebastian"> Victor Sebastian</a>, <a href="https://publications.waset.org/search?q=Manuel%20Arruebo"> Manuel Arruebo</a>, <a href="https://publications.waset.org/search?q=Jesus%20Santamaria"> Jesus Santamaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidics" title="Microfluidics">Microfluidics</a>, <a href="https://publications.waset.org/search?q=magnetic%20nanoparticles" title=" magnetic nanoparticles"> magnetic nanoparticles</a>, <a href="https://publications.waset.org/search?q=continuous%0D%0Aproduction" title=" continuous production"> continuous production</a>, <a href="https://publications.waset.org/search?q=nanomaterials." title=" nanomaterials."> nanomaterials.</a> </p> <a href="https://publications.waset.org/10001650/microfluidic-continuous-approaches-to-produce-magnetic-nanoparticles-with-homogeneous-size-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001650/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001650/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001650/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001650/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001650/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001650/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001650/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001650/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001650/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001650/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2987</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8418</span> Microfluidic Paper-Based Electrochemical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ahmad%20Manbohi">Ahmad Manbohi</a>, <a href="https://publications.waset.org/search?q=Seyyed%20Hamid%20Ahmadi"> Seyyed Hamid Ahmadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A low-cost paper-based microfluidic device (PAD) for the multiplex electrochemical determination of glucose, uric acid, and dopamine in biological fluids was developed. Using wax printing, PAD containing a central zone, six channels, and six detection zones was fabricated, and the electrodes were printed on detection zones using pre-made electrodes template. For each analyte, two detection zones were used. The carbon working electrode was coated with chitosan-BSA (and enzymes for glucose and uric acid). To detect glucose and uric acid, enzymatic reactions were employed. These reactions involve enzyme-catalyzed redox reactions of the analytes and produce free electrons for electrochemical measurement. Calibration curves were linear (R<sup>&sup2;</sup> &gt; 0.980) in the range of 0-80 mM for glucose, 0.09&ndash;0.9 mM for dopamine, and 0&ndash;50 mM for uric acid, respectively. Blood samples were successfully analyzed by the proposed method.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multiplex" title="Multiplex">Multiplex</a>, <a href="https://publications.waset.org/search?q=microfluidic%20paper-based%20electrochemical%20biosensors" title=" microfluidic paper-based electrochemical biosensors"> microfluidic paper-based electrochemical biosensors</a>, <a href="https://publications.waset.org/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/search?q=biological%20fluids." title=" biological fluids. "> biological fluids. </a> </p> <a href="https://publications.waset.org/10008143/microfluidic-paper-based-electrochemical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008143/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008143/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008143/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008143/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008143/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008143/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008143/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008143/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008143/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008143/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1608</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8417</span> Formation of Round Channel for Microfluidic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Zahra">A. Zahra</a>, <a href="https://publications.waset.org/search?q=G.%20de%20Cesare">G. de Cesare</a>, <a href="https://publications.waset.org/search?q=D.%20Caputo"> D. Caputo</a>, <a href="https://publications.waset.org/search?q=A.%20Nascetti"> A. Nascetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shapemicrofluidic channel, which is based on reflow of positive photoresist AZ&reg; 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lab-on-Chip" title="Lab-on-Chip">Lab-on-Chip</a>, <a href="https://publications.waset.org/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/search?q=Reflow" title=" Reflow"> Reflow</a>, <a href="https://publications.waset.org/search?q=Round%20microfluidic%20channel." title=" Round microfluidic channel."> Round microfluidic channel.</a> </p> <a href="https://publications.waset.org/9998716/formation-of-round-channel-for-microfluidic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998716/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998716/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998716/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998716/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998716/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998716/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998716/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998716/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998716/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998716/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3023</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8416</span> Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Patricia%20B.%20Cruz">Patricia B. Cruz</a>, <a href="https://publications.waset.org/search?q=Catrina%20Jean%20G.%20Valenzuela"> Catrina Jean G. Valenzuela</a>, <a href="https://publications.waset.org/search?q=Analyn%20N.%20Yumang"> Analyn N. Yumang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers&rsquo; main objective was to create a miniature system that quantifies and detect patients&rsquo; urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R<sup>2</sup> of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume &ndash; sample and reagents combined, compared to the VITROS Analyzer per five test samples.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chronic%20kidney%20disease" title="Chronic kidney disease">Chronic kidney disease</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=linear%20regression" title=" linear regression"> linear regression</a>, <a href="https://publications.waset.org/search?q=VITROS%20analyzer" title=" VITROS analyzer"> VITROS analyzer</a>, <a href="https://publications.waset.org/search?q=urinary%20albumin." title=" urinary albumin."> urinary albumin.</a> </p> <a href="https://publications.waset.org/10011180/liquid-chromatography-microfluidics-for-detection-and-quantification-of-urine-albumin-using-linear-regression-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011180/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011180/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011180/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011180/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011180/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011180/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011180/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011180/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011180/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011180/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">871</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8415</span> Electroviscous Effects in Low Reynolds Number Flow through a Microfluidic Contraction with Rectangular Cross-Section</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Malcolm%20R%20Davidson">Malcolm R Davidson</a>, <a href="https://publications.waset.org/search?q=Ram%20P.%20Bharti"> Ram P. Bharti</a>, <a href="https://publications.waset.org/search?q=Petar%20Liovic"> Petar Liovic</a>, <a href="https://publications.waset.org/search?q=Dalton%20J.E.%20Harvie"> Dalton J.E. Harvie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrokinetic flow resistance (electroviscous effect) is predicted for steady state, pressure-driven liquid flow at low Reynolds number in a microfluidic contraction of rectangular cross-section. Calculations of the three dimensional flow are performed in parallel using a finite volume numerical method. The channel walls are assumed to carry a uniform charge density and the liquid is taken to be a symmetric 1:1 electrolyte. Predictions are presented for a single set of flow and electrokinetic parameters. It is shown that the magnitude of the streaming potential gradient and the charge density of counter-ions in the liquid is greater than that in corresponding two-dimensional slit-like contraction geometry. The apparent viscosity is found to be very close to the value for a rectangular channel of uniform cross-section at the chosen Reynolds number (Re = 0.1). It is speculated that the apparent viscosity for the contraction geometry will increase as the Reynolds number is reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contraction" title="Contraction">Contraction</a>, <a href="https://publications.waset.org/search?q=Electroviscous" title=" Electroviscous"> Electroviscous</a>, <a href="https://publications.waset.org/search?q=Microfluidic" title=" Microfluidic"> Microfluidic</a>, <a href="https://publications.waset.org/search?q=Numerical." title="Numerical.">Numerical.</a> </p> <a href="https://publications.waset.org/8940/electroviscous-effects-in-low-reynolds-number-flow-through-a-microfluidic-contraction-with-rectangular-cross-section" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8940/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8940/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8940/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8940/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8940/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8940/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8940/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8940/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8940/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8940/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1781</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8414</span> Behavior of Droplets in Microfluidic System with T-Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Guellati">A. Guellati</a>, <a href="https://publications.waset.org/search?q=F-M%20Lounis"> F-M Lounis</a>, <a href="https://publications.waset.org/search?q=N.%20Guemras"> N. Guemras</a>, <a href="https://publications.waset.org/search?q=K.%20Daoud"> K. Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn&#39;t allow regular out-flows due to the fact that the continuous phase doesn&#39;t adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic%20system" title="Microfluidic system">Microfluidic system</a>, <a href="https://publications.waset.org/search?q=micro%20droplets%20generation" title=" micro droplets generation"> micro droplets generation</a>, <a href="https://publications.waset.org/search?q=T-junction." title=" T-junction."> T-junction.</a> </p> <a href="https://publications.waset.org/9998647/behavior-of-droplets-in-microfluidic-system-with-t-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998647/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998647/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998647/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998647/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998647/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998647/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998647/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998647/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998647/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998647/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1619</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8413</span> Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=John%20Cleary">John Cleary</a>, <a href="https://publications.waset.org/search?q=Conor%20Slater"> Conor Slater</a>, <a href="https://publications.waset.org/search?q=Dermot%20Diamond"> Dermot Diamond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic" title="Microfluidic">Microfluidic</a>, <a href="https://publications.waset.org/search?q=phosphate" title=" phosphate"> phosphate</a>, <a href="https://publications.waset.org/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/search?q=wastewater." title=" wastewater."> wastewater.</a> </p> <a href="https://publications.waset.org/1403/analysis-of-phosphate-in-wastewater-using-an-autonomous-microfluidics-based-analyser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1403/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1403/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1403/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1403/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1403/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1403/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1403/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1403/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1403/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1403/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2117</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8412</span> Electrode Engineering for On-Chip Liquid Driving by Using Electrokinetic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/search?q=Aysan%20Madanpasandi"> Aysan Madanpasandi</a>, <a href="https://publications.waset.org/search?q=Behrooz%20Zare%20Desari"> Behrooz Zare Desari</a>, <a href="https://publications.waset.org/search?q=Seyedmohammad%20Mousavi"> Seyedmohammad Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>High lamination in microchannel is one of the main challenges in on-chip components like micro total analyzer systems and lab-on-a-chips. Electro-osmotic force is highly effective in chip-scale. This research proposes a microfluidic-based micropump for low ionic strength solutions. Narrow microchannels are designed to generate an efficient electroosmotic flow near the walls. Microelectrodes are embedded in the lateral sides and actuated by low electric potential to generate pumping effect inside the channel. Based on the simulation study, the fluid velocity increases by increasing the electric potential amplitude. We achieve a net flow velocity of 100 &micro;m/s, by applying +/- 2 V to the electrode structures. Our proposed low voltage design is of interest in conventional lab-on-a-chip applications.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Integration" title="Integration">Integration</a>, <a href="https://publications.waset.org/search?q=electrokinetic" title=" electrokinetic"> electrokinetic</a>, <a href="https://publications.waset.org/search?q=on-chip" title=" on-chip"> on-chip</a>, <a href="https://publications.waset.org/search?q=fluid%20pumping" title=" fluid pumping"> fluid pumping</a>, <a href="https://publications.waset.org/search?q=microfluidic." title=" microfluidic. "> microfluidic. </a> </p> <a href="https://publications.waset.org/10007738/electrode-engineering-for-on-chip-liquid-driving-by-using-electrokinetic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007738/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007738/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007738/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007738/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007738/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007738/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007738/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007738/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007738/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007738/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">844</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8411</span> Microfluidic Manipulation for Biomedical and Biohealth Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Reza%20Hadjiaghaie%20Vafaie">Reza Hadjiaghaie Vafaie</a>, <a href="https://publications.waset.org/search?q=Sevda%20Givtaj"> Sevda Givtaj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Automation and control of biological samples and solutions at the microscale is a major advantage for biochemistry analysis and biological diagnostics. Despite the known potential of miniaturization in biochemistry and biomedical applications, comparatively little is known about fluid automation and control at the microscale. Here, we study the electric field effect inside a fluidic channel and proper electrode structures with different patterns proposed to form forward, reversal, and rotational flows inside the channel. The simulation results confirmed that the ac electro-thermal flow is efficient for the control and automation of high-conductive solutions. In this research, the fluid pumping and mixing effects were numerically studied by solving physic-coupled electric, temperature, hydrodynamic, and concentration fields inside a microchannel. From an experimental point of view, the electrode structures are deposited on a silicon substrate and bonded to a PDMS microchannel to form a microfluidic chip. The motions of fluorescent particles in pumping and mixing modes were captured by using a CCD camera. By measuring the frequency response of the fluid and exciting the electrodes with the proper voltage, the fluid motions (including pumping and mixing effects) are observed inside the channel through the CCD camera. Based on the results, there is good agreement between the experimental and simulation studies.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidic" title="Microfluidic">Microfluidic</a>, <a href="https://publications.waset.org/search?q=nano%2Fmicro%20actuator" title=" nano/micro actuator"> nano/micro actuator</a>, <a href="https://publications.waset.org/search?q=AC%20electrothermal" title=" AC electrothermal"> AC electrothermal</a>, <a href="https://publications.waset.org/search?q=Reynolds%20number" title=" Reynolds number"> Reynolds number</a>, <a href="https://publications.waset.org/search?q=micropump" title=" micropump"> micropump</a>, <a href="https://publications.waset.org/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/search?q=microfabrication" title=" microfabrication"> microfabrication</a>, <a href="https://publications.waset.org/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a>, <a href="https://publications.waset.org/search?q=biomedical%20applications." title=" biomedical applications."> biomedical applications.</a> </p> <a href="https://publications.waset.org/10013705/microfluidic-manipulation-for-biomedical-and-biohealth-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013705/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013705/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013705/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013705/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013705/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013705/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013705/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013705/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013705/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013705/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8410</span> Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elif%20Gencturk">Elif Gencturk</a>, <a href="https://publications.waset.org/search?q=Ekin%20Yurdakul"> Ekin Yurdakul</a>, <a href="https://publications.waset.org/search?q=Ahmet%20Y.%20Celik"> Ahmet Y. Celik</a>, <a href="https://publications.waset.org/search?q=Senol%20Mutlu"> Senol Mutlu</a>, <a href="https://publications.waset.org/search?q=Kutlu%20O.%20Ulgen"> Kutlu O. Ulgen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield. &nbsp;</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=COP" title="COP">COP</a>, <a href="https://publications.waset.org/search?q=HMF" title=" HMF"> HMF</a>, <a href="https://publications.waset.org/search?q=ribosome%20biogenesis" title=" ribosome biogenesis"> ribosome biogenesis</a>, <a href="https://publications.waset.org/search?q=thermoplastic%20microbioreactor" title=" thermoplastic microbioreactor"> thermoplastic microbioreactor</a>, <a href="https://publications.waset.org/search?q=yeast." title=" yeast."> yeast.</a> </p> <a href="https://publications.waset.org/10010500/application-of-thermoplastic-microbioreactor-to-the-single-cell-study-of-budding-yeast-to-decipher-the-effect-of-5-hydroxymethylfurfural-on-growth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010500/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010500/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010500/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010500/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010500/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010500/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010500/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010500/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010500/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010500/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8409</span> Integrated Flavor Sensor Using Microbead Array</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ziba%20Omidi">Ziba Omidi</a>, <a href="https://publications.waset.org/search?q=Min-Ki%20Kim"> Min-Ki Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research presents the design, fabrication and application of a flavor sensor for an integrated electronic tongue and electronic nose that can allow rapid characterization of multi-component mixtures in a solution. The odor gas and liquid are separated using hydrophobic porous membrane in micro fluidic channel. The sensor uses an array composed of microbeads in micromachined cavities localized on silicon wafer. Sensing occurs via colorimetric and fluorescence changes to receptors and indicator molecules that are attached to termination sites on the polymeric microbeads. As a result, the sensor array system enables simultaneous and near-real-time analyses using small samples and reagent volumes with the capacity to incorporate significant redundancies. One of the key parts of the system is a passive pump driven only by capillary force. The hydrophilic surface of the fluidic structure draws the sample into the sensor array without any moving mechanical parts. Since there is no moving mechanical component in the structure, the size of the fluidic structure can be compact and the fabrication becomes simple when compared to the device including active microfluidic components. These factors should make the proposed system inexpensive to mass-produce, portable and compatible with biomedical applications.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Optical%20Sensor" title="Optical Sensor">Optical Sensor</a>, <a href="https://publications.waset.org/search?q=Semiconductor%20manufacturing" title=" Semiconductor manufacturing"> Semiconductor manufacturing</a>, <a href="https://publications.waset.org/search?q=Smell%20sensor" title=" Smell sensor"> Smell sensor</a>, <a href="https://publications.waset.org/search?q=Taste%20sensor." title=" Taste sensor."> Taste sensor.</a> </p> <a href="https://publications.waset.org/9998876/integrated-flavor-sensor-using-microbead-array" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998876/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998876/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998876/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998876/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998876/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998876/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998876/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998876/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998876/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998876/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1711</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8408</span> Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Muhammad%20Waseem%20Ashraf">Muhammad Waseem Ashraf</a>, <a href="https://publications.waset.org/search?q=Shahzadi%20Tayyaba"> Shahzadi Tayyaba</a>, <a href="https://publications.waset.org/search?q=Nitin%20Afzulpurkar"> Nitin Afzulpurkar</a>, <a href="https://publications.waset.org/search?q=Asim%20Nisar"> Asim Nisar</a>, <a href="https://publications.waset.org/search?q=Adisorn%20Tuantranont"> Adisorn Tuantranont</a>, <a href="https://publications.waset.org/search?q=Erik%20L%20J%20Bohez"> Erik L J Bohez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2脳2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 渭L/min is obtained at 150 V for 2脳2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2脳2 microneedle array. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Coupled%20multifield" title="Coupled multifield">Coupled multifield</a>, <a href="https://publications.waset.org/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/search?q=hollow%20silicon%20microneedle" title=" hollow silicon microneedle"> hollow silicon microneedle</a>, <a href="https://publications.waset.org/search?q=transdermal%20drug%20delivery." title=" transdermal drug delivery."> transdermal drug delivery.</a> </p> <a href="https://publications.waset.org/8091/coupled-multifield-analysis-of-piezoelectrically-actuated-microfluidic-device-for-transdermal-drug-delivery-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8091/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8091/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8091/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8091/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8091/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8091/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8091/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8091/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8091/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8091/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1854</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8407</span> Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Srinivas%20Bathini">Srinivas Bathini</a>, <a href="https://publications.waset.org/search?q=Duraichelvan%20Raju"> Duraichelvan Raju</a>, <a href="https://publications.waset.org/search?q=Simona%20Badilescu"> Simona Badilescu</a>, <a href="https://publications.waset.org/search?q=Muthukumaran%20Packirisamy"> Muthukumaran Packirisamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Exosomes" title="Exosomes">Exosomes</a>, <a href="https://publications.waset.org/search?q=gold%20nano-islands" title=" gold nano-islands"> gold nano-islands</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=plasmonic%20biosensing." title=" plasmonic biosensing. "> plasmonic biosensing. </a> </p> <a href="https://publications.waset.org/10009022/microfluidic-plasmonic-bio-sensing-of-exosomes-by-using-a-gold-nano-island-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009022/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009022/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009022/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009022/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009022/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009022/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009022/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009022/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009022/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009022/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1466</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8406</span> Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Akan%20C.%20Offong">Akan C. Offong</a>, <a href="https://publications.waset.org/search?q=E.%20J.%20Anthony"> E. J. Anthony</a>, <a href="https://publications.waset.org/search?q=Vasilije%20Manovic"> Vasilije Manovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A modified steady-state numerical model is developed for the electrochemical reduction of CO<sub>2</sub> to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm<sup>2</sup>), FE-faradaic efficiency (~98%) and conversion (~80%) for CO<sub>2</sub> electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF<sub>4</sub>]) electrolyte, on CD, FE and CO<sub>2</sub> conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF<sub>4</sub>]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO<sub>2</sub> mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO<sub>2</sub> conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H<sub>2 </sub>formations. However, H<sub>2</sub> formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO<sub>2</sub> flow rate increases, CD, FE and CO<sub>2</sub> conversion increases.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carbon%20dioxide" title="Carbon dioxide">Carbon dioxide</a>, <a href="https://publications.waset.org/search?q=electro-chemical%20reduction" title=" electro-chemical reduction"> electro-chemical reduction</a>, <a href="https://publications.waset.org/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/search?q=ionic%20liquids" title=" ionic liquids"> ionic liquids</a>, <a href="https://publications.waset.org/search?q=modelling." title=" modelling."> modelling.</a> </p> <a href="https://publications.waset.org/10010700/modelling-and-simulating-co2-electro-reduction-to-formic-acid-using-microfluidic-electrolytic-cells-the-influence-of-bi-sn-catalyst-and-1-ethyl-3-methyl-imidazolium-tetra-fluoroborate-electrolyte-on-cell-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10010700/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10010700/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10010700/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10010700/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10010700/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10010700/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10010700/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10010700/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10010700/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10010700/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10010700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1098</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8405</span> Onset Velocity Profiles Evolution in Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C%C4%83t%C4%83lin%20M%C4%83rculescu">C膬t膬lin M膬rculescu</a>, <a href="https://publications.waset.org/search?q=Andrei%20Avram"> Andrei Avram</a>, <a href="https://publications.waset.org/search?q=C%C4%83t%C4%83lin%20P%C3%A2rvulescu"> C膬t膬lin P芒rvulescu</a>, <a href="https://publications.waset.org/search?q=Marioara%20Avram"> Marioara Avram</a>, <a href="https://publications.waset.org/search?q=C%C4%83t%C4%83lin%20Mihai%20B%C4%83lan"> C膬t膬lin Mihai B膬lan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present microfluidic study is emphasizing the flow behavior within a Y shape micro-bifurcation in two similar flow configurations. We report here a numerical and experimental investigation on the velocity profiles evolution and secondary flows, manifested at different Reynolds numbers (Re) and for two different boundary conditions. The experiments are performed using special designed setup based on optical microscopic devices. With this setup, direct visualizations and quantitative measurements of the path-lines are obtained. A Micro-PIV measurement system is used to obtain velocity profiles distributions in a spatial evolution in the main flows domains. The experimental data is compared with numerical simulations performed with commercial computational code FLUENT in a 3D geometry with the same dimensions as the experimental one. The numerical flow patterns are found to be in good agreement with the experimental manifestations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Micro-PIV" title=" Micro-PIV"> Micro-PIV</a>, <a href="https://publications.waset.org/search?q=numerical%20investigations" title=" numerical investigations"> numerical investigations</a>, <a href="https://publications.waset.org/search?q=secondary%20flows" title=" secondary flows"> secondary flows</a>, <a href="https://publications.waset.org/search?q=velocity%20profiles." title=" velocity profiles."> velocity profiles.</a> </p> <a href="https://publications.waset.org/16060/onset-velocity-profiles-evolution-in-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16060/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16060/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16060/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16060/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16060/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16060/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16060/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16060/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16060/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16060/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1865</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8404</span> Numerical Investigation of Thermally Triggered Release Kinetics of Double Emulsion for Drug Delivery Using Phase Change Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yong%20Ren">Yong Ren</a>, <a href="https://publications.waset.org/search?q=Yaping%20Zhang"> Yaping Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A numerical model has been developed to investigate the thermally triggered release kinetics for drug delivery using phase change material as shell of microcapsules. Biocompatible material n-Eicosane is used as demonstration. PCM shell of microcapsule will remain in solid form after the drug is taken, so the drug will be encapsulated by the shell, and will not be released until the target body part of lesion is exposed to external heat source, which will thermally trigger the release kinetics, leading to solid-to-liquid phase change. The findings can lead to better understanding on the key effects influencing the phase change process for drug delivery applications. The facile approach to release drug from core/shell structure of microcapsule can be well integrated with organic solvent free fabrication of microcapsules, using double emulsion as template in microfluidic aqueous two phase system.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Phase%20change%20material" title="Phase change material">Phase change material</a>, <a href="https://publications.waset.org/search?q=drug%20release%20kinetics" title=" drug release kinetics"> drug release kinetics</a>, <a href="https://publications.waset.org/search?q=double%0D%0Aemulsion" title=" double emulsion"> double emulsion</a>, <a href="https://publications.waset.org/search?q=microfluidics." title=" microfluidics."> microfluidics.</a> </p> <a href="https://publications.waset.org/10001293/numerical-investigation-of-thermally-triggered-release-kinetics-of-double-emulsion-for-drug-delivery-using-phase-change-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001293/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001293/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001293/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001293/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001293/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001293/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001293/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001293/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001293/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001293/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2417</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8403</span> Customer Value Creation by CRM System in Electronic Device Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hideki.Kobayashi">Hideki.Kobayashi</a>, <a href="https://publications.waset.org/search?q=Hiroshi.Osada">Hiroshi.Osada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The service industry accounts for about 70% of GDP of Japan, and the importance of the service innovation is pointed out. The importance of the system use and the support service increases in the information system that is one of the service industries. However, because the system is not used enough, the purpose for which it was originally intended cannot often be achieved in the CRM system. To promote the use of the system, the effective service method is needed. It is thought that the service model's making and the clarification of the success factors are necessary to improve the operation service of the CRM system. In this research the model of the operation service in the CRM system is made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Information%20system" title="Information system">Information system</a>, <a href="https://publications.waset.org/search?q=Operation%20service" title=" Operation service"> Operation service</a>, <a href="https://publications.waset.org/search?q=Serviceinnovation" title=" Serviceinnovation"> Serviceinnovation</a>, <a href="https://publications.waset.org/search?q=Solution" title=" Solution"> Solution</a> </p> <a href="https://publications.waset.org/15788/customer-value-creation-by-crm-system-in-electronic-device-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15788/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15788/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15788/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15788/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15788/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15788/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15788/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15788/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15788/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15788/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1316</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8402</span> Geometrical Based Unequal Droplet Splitting Using Microfluidic Y-Junction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bahram%20Talebjedi">Bahram Talebjedi</a>, <a href="https://publications.waset.org/search?q=Amirmohammad%20Sattari"> Amirmohammad Sattari</a>, <a href="https://publications.waset.org/search?q=Ahmed%20Zoher%20Sihorwala"> Ahmed Zoher Sihorwala</a>, <a href="https://publications.waset.org/search?q=Mina%20Hoorfar"> Mina Hoorfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Among different droplet manipulations, controlled droplet-splitting is of great significance due to its ability to increase throughput and operational capability. Furthermore, unequal droplet-splitting can provide greater flexibility and a wider range of dilution factors. In this study, we developed two-dimensional, time-dependent complex fluid dynamics simulations to model droplet formation in a flow focusing device, followed by splitting in a Y-shaped junction with sub-channels of unequal widths. From the results obtained from the numerical study, we correlated the diameters of the droplets in the sub-channels to the Weber number, thereby demarcating the droplet splitting and non-splitting regimes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Microfluidics" title="Microfluidics">Microfluidics</a>, <a href="https://publications.waset.org/search?q=unequal%20droplet%20splitting" title=" unequal droplet splitting"> unequal droplet splitting</a>, <a href="https://publications.waset.org/search?q=two%20phase%20flow" title=" two phase flow"> two phase flow</a>, <a href="https://publications.waset.org/search?q=flow%20focusing%20device." title=" flow focusing device."> flow focusing device.</a> </p> <a href="https://publications.waset.org/10012038/geometrical-based-unequal-droplet-splitting-using-microfluidic-y-junction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10012038/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10012038/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10012038/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10012038/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10012038/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10012038/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10012038/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10012038/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10012038/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10012038/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10012038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">773</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8401</span> Characterization of the Dispersion Phenomenon in an Optical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=An-Shik%20Yang">An-Shik Yang</a>, <a href="https://publications.waset.org/search?q=Chin-Ting%20Kuo"> Chin-Ting Kuo</a>, <a href="https://publications.waset.org/search?q=Yung-Chun%20Yang"> Yung-Chun Yang</a>, <a href="https://publications.waset.org/search?q=Wen-Hsin%20Hsieh"> Wen-Hsin Hsieh</a>, <a href="https://publications.waset.org/search?q=Chiang-Ho%20Cheng"> Chiang-Ho Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical biosensors have become a powerful detection and analysis tool for wide-ranging applications in biomedical research, pharmaceuticals and environmental monitoring. This study carried out the computational fluid dynamics (CFD)-based simulations to explore the dispersion phenomenon in the micro channel of an optical biosensor. The predicted time sequences of concentration contours were utilized to better understand the dispersion development occurred in different geometric shapes of micro channels. The simulation results showed the surface concentrations at the sensing probe (with the best performance of a grating coupler) in respect of time to appraise the dispersion effect and therefore identify the design configurations resulting in minimum dispersion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CFD%20simulations" title="CFD simulations">CFD simulations</a>, <a href="https://publications.waset.org/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/search?q=microfluidic" title=" microfluidic"> microfluidic</a>, <a href="https://publications.waset.org/search?q=optical%0D%0Awaveguide%20sensors." title=" optical waveguide sensors."> optical waveguide sensors.</a> </p> <a href="https://publications.waset.org/10001625/characterization-of-the-dispersion-phenomenon-in-an-optical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001625/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001625/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001625/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001625/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001625/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001625/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001625/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001625/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001625/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001625/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2035</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8400</span> A System to Adapt Techniques of Text Summarizing to Polish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Marcin%20Ciura">Marcin Ciura</a>, <a href="https://publications.waset.org/search?q=Damian%20Grund"> Damian Grund</a>, <a href="https://publications.waset.org/search?q=S"> S</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper describes a system, in which various methods of text summarizing can be adapted to Polish. A structure of the system is presented. A modular construction of the system and access to the system via the Internet are signaled.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Automatic%20summary%20generation" title="Automatic summary generation">Automatic summary generation</a>, <a href="https://publications.waset.org/search?q=linguistic%20analysis" title=" linguistic analysis"> linguistic analysis</a>, <a href="https://publications.waset.org/search?q=text%20generation." title="text generation.">text generation.</a> </p> <a href="https://publications.waset.org/8227/a-system-to-adapt-techniques-of-text-summarizing-to-polish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8227/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8227/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8227/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8227/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8227/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8227/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8227/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8227/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8227/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8227/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1548</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8399</span> The Hybrid Dimming Control System for Solar Charging Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Won-Yong%20Chae">A. Won-Yong Chae</a>, <a href="https://publications.waset.org/search?q=B.%20Hyung-Nam%20Kim"> B. Hyung-Nam Kim</a>, <a href="https://publications.waset.org/search?q=C.%20Kyoung-Jun%20Lee"> C. Kyoung-Jun Lee</a>, <a href="https://publications.waset.org/search?q=D.%20Hee-Je%20Kim"> D. Hee-Je Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The renewable energy has been attracting attention as a new alternative energy due to the problem of environmental pollution and resource depletion. In particular, daylighting and PV system are regarded as the solutions. In this paper, the hybrid dimming control system supplied by solar cell and daylighting system was designed. Daylighting system is main source and PV system is spare source. PV system operates the LED lamp which supports daylighting system because daylighting system is unstable due to the variation of irradiance. In addition, PV system has a role charging batteries. Battery charging has a benefit that PV system operate LED lamp in the bad weather. However, LED lamp always can`t turn on that-s why dimming control system was designed. In particular, the solar charging robot was designed to check the interior irradiance intensity. These systems and the application of the solar charging robot are expected to contribute developing alternative energy in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Daylighting%20system" title="Daylighting system">Daylighting system</a>, <a href="https://publications.waset.org/search?q=PV%20system" title=" PV system"> PV system</a>, <a href="https://publications.waset.org/search?q=LED%20lamp" title=" LED lamp"> LED lamp</a>, <a href="https://publications.waset.org/search?q=Suntracking%20robot." title=" Suntracking robot."> Suntracking robot.</a> </p> <a href="https://publications.waset.org/12693/the-hybrid-dimming-control-system-for-solar-charging-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12693/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12693/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12693/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12693/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12693/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12693/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12693/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12693/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12693/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12693/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1807</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8398</span> Incentive Pay System and Economy Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Viktorie%20Jane%C4%8Dkov%C3%A1">Viktorie Jane膷kov谩</a>, <a href="https://publications.waset.org/search?q=Petr%20%C5%A0napka"> Petr 艩napka</a>, <a href="https://publications.waset.org/search?q=Marie%20Miku%C5%A1ov%C3%A1"> Marie Miku拧ov谩</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to initiate an analytical account of the issues of compliance with economy condition for incentive pay system application in an enterprise. Economy is considered one of the conditions for effective incentive pay system application another condition being the achievement of desired efficiency level of the incentive pay system application. Bonus pay system is discussed as an example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cost%20analysis" title="Cost analysis">Cost analysis</a>, <a href="https://publications.waset.org/search?q=economy" title=" economy"> economy</a>, <a href="https://publications.waset.org/search?q=incentive%20pay%20system." title=" incentive pay system."> incentive pay system.</a> </p> <a href="https://publications.waset.org/8684/incentive-pay-system-and-economy-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8684/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8684/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8684/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8684/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8684/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8684/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8684/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8684/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8684/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8684/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1555</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=280">280</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=281">281</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Microfluidic%20system&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10