CINXE.COM

Search results for: MXene substrates

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: MXene substrates</title> <meta name="description" content="Search results for: MXene substrates"> <meta name="keywords" content="MXene substrates"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="MXene substrates" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="MXene substrates"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 547</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: MXene substrates</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Electrocatalytic Enhancement Mechanism of Dual-Atom and Single-Atom MXenes-Based Catalyst in Oxygen and Hydrogen Evolution Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhao.%20Xuerong%20Zheng.%20Andrey%20L.%20Rogach">Xin Zhao. Xuerong Zheng. Andrey L. Rogach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using single metal atoms has been considered an efficient way to develop new HER and OER catalysts. MXenes, a class of two-dimensional materials, have attracted tremendous interest as promising substrates for single-atom metal catalysts. However, there is still a lack of systematic investigations on the interaction mechanisms between various MXenes substrates and single atoms. Besides, due to the poor interaction between metal atoms and substrates resulting in low loading and stability, dual-atom MXenes-based catalysts have not been successfully synthesized. We summarized the electrocatalytic enhancement mechanism of three MXenes-based single-atom catalysts through experimental and theoretical results demonstrating the stronger hybridization between Co 3d and surface-terminated O 2p orbitals, optimizing the electronic structure of Co single atoms in the composite. This, in turn, lowers the OER and HER energy barriers and accelerates the catalytic kinetics in the case of the Co@V2CTx composite. The poor interaction between single atoms and substrates can be improved by a surface modification to synthesize dual-atom catalysts. The synergistic electronic structure enhances the stability and electrocatalytic activity of the catalyst. Our study provides guidelines for designing single-atom and dual-atom MXene-based electrocatalysts and sheds light on the origins of the catalytic activity of single-atoms on MXene substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-atom%20catalyst" title="dual-atom catalyst">dual-atom catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=single-atom%20catalyst" title=" single-atom catalyst"> single-atom catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=MXene%20substrates" title=" MXene substrates"> MXene substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a> </p> <a href="https://publications.waset.org/abstracts/167235/electrocatalytic-enhancement-mechanism-of-dual-atom-and-single-atom-mxenes-based-catalyst-in-oxygen-and-hydrogen-evolution-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> Implication of Multi-Walled Carbon Nanotubes on Polymer/MXene Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Aakyiir">Mathias Aakyiir</a>, <a href="https://publications.waset.org/abstracts/search?q=Qunhui%20Zheng"> Qunhui Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20Araby"> Sherif Araby</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Ma"> Jun Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MXene nanosheets stack in polymer matrices, while multi-walled carbon nanotubes (MWCNTs) entangle themselves when used to form composites. These challenges are addressed in this work by forming MXene/MWCNT hybrid nanofillers by electrostatic self-assembly and developing elastomer/MXene/MWCNTs nanocomposites using a latex compounding method. In a 3-phase nanocomposite, MWCNTs serve as bridges between MXene nanosheets, leading to nanocomposites with well-dispersed nanofillers. The high aspect ratio of MWCNTs and the interconnection role of MXene serve as a basis for forming nanocomposites of lower percolation threshold of electrical conductivity from the hybrid fillers compared with the 2-phase composites containing either MXene or MWCNTs only. This study focuses on discussing into detail the interfacial interaction of nanofillers and the elastomer matrix and the outstanding mechanical and functional properties of the resulting nanocomposites. The developed nanocomposites have potential applications in the automotive and aerospace industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastomers" title="elastomers">elastomers</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-walled%20carbon%20nanotubes" title=" multi-walled carbon nanotubes"> multi-walled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=MXenes" title=" MXenes"> MXenes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/116767/implication-of-multi-walled-carbon-nanotubes-on-polymermxene-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quan%20Li">Quan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongcai%20Shen"> Dongcai Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhengting%20Xiao"> Zhengting Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Liu%20Mingrui%20Wu"> Xin Liu Mingrui Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Licheng%20Liu"> Licheng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Li"> Qin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianguo%20Li"> Xianguo Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wentai%20Wang"> Wentai Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ². <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocatalytic%20N%E2%82%82%20oxidation" title="electrocatalytic N₂ oxidation">electrocatalytic N₂ oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrate%20production" title=" nitrate production"> nitrate production</a>, <a href="https://publications.waset.org/abstracts/search?q=CeO%E2%82%82" title=" CeO₂"> CeO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=MXene%20quantum%20dots" title=" MXene quantum dots"> MXene quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=double-shelled%20hollow%20spheres" title=" double-shelled hollow spheres"> double-shelled hollow spheres</a> </p> <a href="https://publications.waset.org/abstracts/185272/mxene-quantum-dots-decorated-double-shelled-ceo2-hollow-spheres-for-efficient-electrocatalytic-nitrogen-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">544</span> MXene-Based Self-Sensing of Damage in Fiber Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latha%20Nataraj">Latha Nataraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Henry"> Todd Henry</a>, <a href="https://publications.waset.org/abstracts/search?q=Micheal%20Wallock"> Micheal Wallock</a>, <a href="https://publications.waset.org/abstracts/search?q=Asha%20Hall"> Asha Hall</a>, <a href="https://publications.waset.org/abstracts/search?q=Christine%20Hatter"> Christine Hatter</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Anasori"> Babak Anasori</a>, <a href="https://publications.waset.org/abstracts/search?q=Yury%20Gogotsi"> Yury Gogotsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20sensing" title="damage sensing">damage sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20composites" title=" fiber composites"> fiber composites</a>, <a href="https://publications.waset.org/abstracts/search?q=MXene" title=" MXene"> MXene</a>, <a href="https://publications.waset.org/abstracts/search?q=self-sensing" title=" self-sensing"> self-sensing</a> </p> <a href="https://publications.waset.org/abstracts/107705/mxene-based-self-sensing-of-damage-in-fiber-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">543</span> MXene Mediated Layered 2D-3D-2D g-C3N4@WO3@Ti3C2 Multijunctional Heterostructure with Enhanced Photoelectrochemical and Photocatalytic Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lekgowa%20Collen%20Makola">Lekgowa Collen Makola</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecil%20Naphtaly%20Moro%20Ouma"> Cecil Naphtaly Moro Ouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Moeno"> Sharon Moeno</a>, <a href="https://publications.waset.org/abstracts/search?q=Langelihle%20Dlamini"> Langelihle Dlamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, advancement in the field of nanotechnology has evolved new strategies to address energy and environmental issues. Amongst the developing technologies, visible-light-driven photocatalysis is regarded as a sustainable approach for energy production and environmental detoxifications, where transition metal oxides (TMOs) and metal-free carbon-based semiconductors such as graphitic carbon nitride (CN) evidenced notable potential in this matter. Herein, g-C₃N₄@WO₃@Ti₃C₂Tx three-component multijunction photocatalyst was fabricated via facile ultrasonic-assisted self-assembly, followed by calcination to facilitate extensive integrations of the materials. A series of different Ti₃C₂ wt% loading in the g-C₃N4@WO₃@Ti₃C₂Tx were prepared and represented as 1-CWT, 3-CWT, 5-CWT, and 7-CWT corresponding to 1, 3, 5, and 7wt%, respectively. Systematic characterization using spectroscopic and microscopic techniques were employed to validate the successful preparation of the photocatalysts. Enhanced optoelectronic and photoelectrochemical properties were observed for the WO₃@Ti₃C2@g-C₃N4 heterostructure with respect to the individual materials. Photoluminescence spectra and Nyquist plots show restrained recombination rates and improved photocarrier conductivities, respectively, and this was credited to the synergistic coupling effect and the presence of highly conductive Ti₃C2 MXene. The strong interfacial contact surfaces upon the formation of the composite were confirmed using XPS. Multiple charge transfer mechanisms were proposed for the WO3@Ti3C₂@g-C3N4, which couples Z-scheme and Schottky-junction mediated with Ti3C2 MXene. Bode phase plots show improved charge carrier life-times upon the formation of the multijunctional photocatalyst. Moreover, transient photocurrent density of 7-CWT is 40 and seven (7) times higher compared to that of g-C₃N4 and WO3, correspondingly. Unlike in the traditional Z-Scheme, the formed ternary heterostructure possesses interfaces through the metallic 2D Ti₃C₂ MXene, which provided charge transfer channels for efficient photocarrier transfers with carrier concentrations (ND) of 17.49×1021 cm-3 and 4.86% photo-to-chemical conversion efficiency. The as-prepared ternary g-C₃N₄@WO₃@Ti₃C₂Tx exhibited excellent photoelectrochemical properties with reserved redox band potential potencies to facilitate efficient photo-oxidation and -reduction reactions. The fabricated multijunction photocatalyst exhibits potentials to be used in an extensive range of photocatalytic process vis., production of valuable hydrocarbons from CO₂, production of H₂, and degradation of a plethora of pollutants from wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title="photocatalysis">photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Z-scheme" title=" Z-scheme"> Z-scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=multijunction%20heterostructure" title=" multijunction heterostructure"> multijunction heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%E2%82%83C%E2%82%82%20MXene" title=" Ti₃C₂ MXene"> Ti₃C₂ MXene</a>, <a href="https://publications.waset.org/abstracts/search?q=g-C%E2%82%83N%E2%82%84" title=" g-C₃N₄"> g-C₃N₄</a> </p> <a href="https://publications.waset.org/abstracts/165521/mxene-mediated-layered-2d-3d-2d-g-c3n4-at-wo3-at-ti3c2-multijunctional-heterostructure-with-enhanced-photoelectrochemical-and-photocatalytic-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">542</span> Effects of Substrate Roughness on E-Cadherin Junction of Oral Keratinocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungpyo%20Kim">Sungpyo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changseok%20Oh"> Changseok Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ga-Young%20Lee"> Ga-Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Man%20Kim"> Hyun-Man Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intercellular junction of keratinocytes is crucial for epithelia to build an epithelial barrier. Junctional epithelium (JE) seals the interfaces between tooth and gingival tissue. Keratinocytes of JE attach to surfaces roughened by abrasion or erosion with aging. Thus behavior of oral keratinocytes on the rough substrates may help understand the epithelial seal of JE of which major intercellular junction is E-cadherin junction (ECJ). The present study investigated the influence of various substrate roughnesses on the development of ECJ between normal human gingival epithelial keratinocytes, HOK-16B cells. HOK-16B cells were slow in the development of ECJ on the rough substrates compared to on the smooth substrates. Furthermore, oral keratinocytes on the substrates of higher roughnesses were delayed in the development of E-cadherin junction than on the substrates of lower roughnesses. Delayed development of E-cadherin junction on the rough substrates was ascribed to the impaired spreading of cells and its higher JNK activity. Cells on the smooth substrates rapidly spread wide cytoplasmic extensions around cells. However, cells on the rough substrates slowly extended narrow cytoplasmic extensions of which number was limited due to the substrate irregularity. As these cytoplasmic extensions formed ECJ when met with the extensions of neighboring cells, thus, the present study demonstrated that a limited chance of contacts between cytoplasmic extensions due to the limited number of cytoplasmic extensions and slow development of cytoplasmic extensions brought about a delayed development of ECJ in oral keratinocytes on the rougher substrates. Sealing between cells was not complete because only part of cell membrane contributes to the formation of intercellular junction between cells on the substrates of higher roughnesses. Interestingly, inhibition of JNK activity promoted the development of ECJ on the rough substrates, of which mechanism remains to be studied further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substrate%20roughness" title="substrate roughness">substrate roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=E-cadherin%20junction" title=" E-cadherin junction"> E-cadherin junction</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20keratinocyte" title=" oral keratinocyte"> oral keratinocyte</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20spreading" title=" cell spreading"> cell spreading</a>, <a href="https://publications.waset.org/abstracts/search?q=JNK" title=" JNK"> JNK</a> </p> <a href="https://publications.waset.org/abstracts/65564/effects-of-substrate-roughness-on-e-cadherin-junction-of-oral-keratinocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> Production of Linamarase from Lactobacillus delbrueckii NRRL B-763</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ogbonnaya%20Nwokoro">Ogbonnaya Nwokoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20O.%20Anya"> Florence O. Anya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nutritional factors relating to the production of linamarase from Lactobacillus delbrueckii NRRL B–763 were investigated. The microorganism was cultivated in a medium containing 1% linamarin. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in the presence of salicin (522 U/ml) after 48 h while the lowest yield was observed with CM cellulose (38 U/ml) after 72 h. Enzyme was not produced in the presence of cellobiose. Among a variety of nitrogen substrates tested, peptone supported maximum enzyme production (412 U/ml) after 48 h. Lowest enzyme production was observed with urea (40 U/ml). Organic nitrogen substrates generally supported higher enzyme productivity than inorganic nitrogen substrates. Enzyme activity was observed in the presence of Mn2+ (% relative activity = 216) while Hg2+ was inhibitory (% relative activity = 28). Locally-formulated media were comparable to MRS broth in supporting linamarase production by the bacterium. Higher enzyme activity was produced in media with surfactant than in media without surfactant. The enzyme may be useful in enhanced degradation of cassava cyanide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linamarase" title="linamarase">linamarase</a>, <a href="https://publications.waset.org/abstracts/search?q=locally%20formulated%20media" title=" locally formulated media"> locally formulated media</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20substrates" title=" carbon substrates"> carbon substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20substrates" title=" nitrogen substrates"> nitrogen substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions "> metal ions </a> </p> <a href="https://publications.waset.org/abstracts/14419/production-of-linamarase-from-lactobacillus-delbrueckii-nrrl-b-763" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> Investigation of the Dielectric Response of Ppy/V₂c Mxene-Zns from First Principle Calculation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Chidi%20Ezika">Anthony Chidi Ezika</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbolahan%20Joseph%20Adekoya"> Gbolahan Joseph Adekoya</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Rotimi%20Sadiku"> Emmanuel Rotimi Sadiku</a>, <a href="https://publications.waset.org/abstracts/search?q=Yskandar%20Hamam"> Yskandar Hamam</a>, <a href="https://publications.waset.org/abstracts/search?q=Suprakas%20Sinha%20Ray"> Suprakas Sinha Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-energy-density polymer/ceramic composites require a high breakdown strength and dielectric constant. Interface polarization and electric percolation are responsible for the high dielectric constant. In order to create composite dielectrics, high conductivity ceramic particles are combined with polymers to increase the dielectric constant. In this study, bonding and the non-uniform distribution of charges in the ceramic/ceramic interface zone are investigated using density functional theory (DFT) modeling. This non-uniform distribution of charges is intended to improve the ceramic/ceramic interface's dipole polarization (dielectric response). The interfacial chemical bond formation can also improve the structural stability of the hybrid filler and, consequently, of the composite films. To comprehend the electron-transfer process, the density of state and electron localization function of the PPy with hybrid fillers are also studied. The polymer nanocomposite is anticipated to provide a suitable dielectric response for energy storage applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title="energy storage">energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=V%E2%82%82C%2F%20ZnS%20hybrid" title=" V₂C/ ZnS hybrid"> V₂C/ ZnS hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=MXene" title=" MXene"> MXene</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric" title=" dielectric"> dielectric</a> </p> <a href="https://publications.waset.org/abstracts/155604/investigation-of-the-dielectric-response-of-ppyv2c-mxene-zns-from-first-principle-calculation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> RhoA Regulates E-Cadherin Intercellular Junctions in Oral Squamous Carcinoma Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ga-Young%20Lee">Ga-Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Man%20Kim"> Hyun-Man Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modulation of the cell-cell junction is critical in epithelial-mesenchymal transition during tumorigenesis. As RhoA activity is known to be up-regulated to dissociate cell-cell junction by contracting acto-myosin complex in various cancer cells, the present study investigated if RhoA activity was also associated with the disruption of the cell-cell junction of oral cancer cells. We studied SCC-25 cells which are established from oral squamous cell carcinoma if their E-cadherin junction (ECJ) was under control of RhoA. Interestingly, development of ECJ of SCC-25 cells depended on the amount of fibronectin (FN) coated on the culture dishes. Seeded cells promptly aggregated to develop ECJ on the substrates coated with a low amount of FN, whereas they were retarded in the development of ECJ on the substrates coated with a high amount of FN. However, it was an unexpected finding that total RhoA activity was lower in the dissociated cells on the substrates of high FN than in the aggregated cells on the substrates of low FN. Treating the dissociated cells on the substrates of high FN with LPA, a RhoA activator, promoted the development to ECJ. In contrast, treating the aggregated cells on the substrates of low FN with Clostridium botulinum C3, a toxin decreasing RhoA activity, dissociated cells concomitant with the disruption of ECJ. Genetical knockdown of RhoA expression by transfecting RhoA siRNA also down-regulated the development of ECJ in SCC-25 cells. Furthermore, PMA, an activator of protein kinase C (PKC), down-regulated the development of ECJ junction of SCC-25 cells on the substrates coated with low FN. In contrast, GO6976, a PKC inhibitor, up-regulated the development of ECJ of SCC-25 cells with the activation of RhoA on the substrates coated with high FN. In conclusion, in the present study, we demonstrated unexpected results that the activation of RhoA promotes the development of ECJ, whereas the inhibition of RhoA retards the development of ECJ in SCC-25 cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=E-cadherin%20junction" title="E-cadherin junction">E-cadherin junction</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20squamous%20cell%20carcinoma" title=" oral squamous cell carcinoma"> oral squamous cell carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=PKC" title=" PKC"> PKC</a>, <a href="https://publications.waset.org/abstracts/search?q=RhoA" title=" RhoA"> RhoA</a>, <a href="https://publications.waset.org/abstracts/search?q=SCC-25" title=" SCC-25"> SCC-25</a> </p> <a href="https://publications.waset.org/abstracts/65493/rhoa-regulates-e-cadherin-intercellular-junctions-in-oral-squamous-carcinoma-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Identifying the Host Substrates for the Mycobacterial Virulence Factor Protein Kinase G</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saha%20Saradindu">Saha Saradindu</a>, <a href="https://publications.waset.org/abstracts/search?q=Das%20Payel"> Das Payel</a>, <a href="https://publications.waset.org/abstracts/search?q=Somdeb%20BoseDasgupta"> Somdeb BoseDasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuberculosis caused by Mycobacteria tuberculosis is a dreadful disease and more so with the advent of extreme and total drug-resistant species. Mycobacterial pathogenesis is an ever-changing paradigm from phagosome maturation block to phagosomal escape into macrophage cytosol and finally acid tolerance and survival inside the lysosome. Mycobacteria are adept at subverting the host immune response by highjacking host cell signaling and secreting virulence factors. One such virulence factor is a ser/thr kinase; Protein kinase G (PknG), which is known to prevent phagosome maturation. The host substrates of PknG, allowing successful pathogenesis still remain an enigma. Hence we carried out a comparative phosphoproteomic screen and identified a number of substrates phosphorylated by PknG. We characterized some of these substrates in vivo and in vitro and observed that PknG mediated phosphorylation of these substrates leads to reduced TNFa production as well as decreased response to TNFa induced macrophage necroptosis, thus enabling mycobacterial survival and proliferation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycobacteria" title="mycobacteria">mycobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=Protein%20kinase%20G" title=" Protein kinase G"> Protein kinase G</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoproteomics" title=" phosphoproteomics"> phosphoproteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=necroptosis" title=" necroptosis"> necroptosis</a> </p> <a href="https://publications.waset.org/abstracts/100666/identifying-the-host-substrates-for-the-mycobacterial-virulence-factor-protein-kinase-g" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> Generation of Charged Nanoparticles in the Gas Phase and their Contribution to Deposition of GaN Films and Nanostructures during Atmospheric Pressure Chemical Vapor Deposition </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin-Woo%20Park">Jin-Woo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Soo%20Lee"> Sung-Soo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Nong-Moon%20Hwang"> Nong-Moon Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generation of charged nanoparticles in the gas phase during the Chemical Vapor Deposition (CVD) process has been frequently reported with their subsequent deposition into films and nanostructures in many systems such as carbon, silicon and zinc oxide. The microstructure evolution of films and nanostructures is closely related with the size distribution of charged nanoparticles. To confirm the generation of charged nanoparticles during GaN, the generation of GaN charged nanoparticles was examined in an atmospheric pressure CVD process using a Differential Mobility Analyser (DMA) combined with a Faraday Cup Electrometer (FCE). It was confirmed that GaN charged nanoparticles were generated under the condition where GaN nanostructures were synthesized on the bare and Au-coated Si substrates. In addition, the deposition behaviour depends strongly on the charge transfer rate of metal substrates. On the metal substrates of a lower CTR such as Mo, the deposition rate of GaN was much lower than on those of a higher CTR such as Fe. GaN nanowires tend to grow on the substrates of a lower CTR whereas GaN thin films tend to be deposited on the substrates of a higher CTR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20vapour%20deposition" title="chemical vapour deposition">chemical vapour deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20cluster%20model" title=" charged cluster model"> charged cluster model</a>, <a href="https://publications.waset.org/abstracts/search?q=generation%20of%20charged%20nanoparticles" title=" generation of charged nanoparticles"> generation of charged nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition%20behaviour" title=" deposition behaviour"> deposition behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=gan" title=" gan"> gan</a>, <a href="https://publications.waset.org/abstracts/search?q=charged%20transfer%20rate" title=" charged transfer rate"> charged transfer rate</a> </p> <a href="https://publications.waset.org/abstracts/2530/generation-of-charged-nanoparticles-in-the-gas-phase-and-their-contribution-to-deposition-of-gan-films-and-nanostructures-during-atmospheric-pressure-chemical-vapor-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Mishra">Bharat Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Awasthi"> Sanjay Kumar Awasthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kumar%20Rajak"> Raj Kumar Rajak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substrates" title="substrates">substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodes" title=" electrodes"> electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=membranes" title=" membranes"> membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=MFCs%20design" title=" MFCs design"> MFCs design</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage" title=" voltage"> voltage</a> </p> <a href="https://publications.waset.org/abstracts/77437/a-review-on-electrical-behavior-of-different-substrates-electrodes-and-membranes-in-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> Kinetics and Specificity of Drosophila melanogaster Molybdo-Flavoenzymes towards Their Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20S.%20Al%20Salhen">Khaled S. Al Salhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aldehyde oxidase (AO) and xanthine oxidoreductase (XOR) catalyze the oxidation of many different N-heterocyclic compounds as well as aliphatic and aromatic aldehydes to their corresponding lactam and carboxylic acids respectively. The present study examines the oxidation of dimethylamino-cinnamaldehyde (DMAC), vanillin and phenanthridine by AO and xanthine by XOR from Drosophila cytosol. Therefore, the results obtained in the present study showed the DMAC, vanillin and phenanthridine substrates used were found to be good substrates of Drosophila AO and xanthine is the preferred substrate for Drosophila XOR. Km values of AO substrates were observed with DMAC (50±5.4 µM), phenanthridine (80±9.1 µM) and vanillin (303±11.7 µM) respectively for Drosophila cytosol. The Km values for DMAC and phenanthridine were ~6 and ~4 fold lower than that for vanillin as a substrate. The Km for XOR with xanthine using NAD+ as an electron acceptor was 27±4.1 µM. Relatively low Vmax values were obtained with phenanthridine (1.78±0.38 nmol/min/mg protein) and DMAC (1.80±0.35 nmol/min/mg protein). The highest Vmax was obtained from Drosophila cytosol with vanillin (7.58±2.11 nmol/min/mg protein). It is concluded these results that AO and XOR in Drosophila were able to catalyse the biotransformation of numerous substrates of the well-characterised mammalian AO and XOR. The kinetic parameters have indicated that the activity of AO of Drosophila may be a significant factor the oxidation of aromatic aldehyde compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aldehyde%20oxidase" title="aldehyde oxidase">aldehyde oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthine%20oxidoreductase" title=" xanthine oxidoreductase"> xanthine oxidoreductase</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylamino-cinnamaldehyde" title=" dimethylamino-cinnamaldehyde"> dimethylamino-cinnamaldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=vanillin" title=" vanillin"> vanillin</a>, <a href="https://publications.waset.org/abstracts/search?q=phenanthridine" title=" phenanthridine"> phenanthridine</a>, <a href="https://publications.waset.org/abstracts/search?q=Drosophila%20melanogaster" title=" Drosophila melanogaster"> Drosophila melanogaster</a> </p> <a href="https://publications.waset.org/abstracts/20585/kinetics-and-specificity-of-drosophila-melanogaster-molybdo-flavoenzymes-towards-their-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Effects of Biocompatible Substrates on the Electrical Properties of Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Simchi">M. Simchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amiri"> M. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Rezvani"> E. Rezvani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Mirzaei"> I. Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Berahman"> M. Berahman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Simchi"> A. Simchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Fardmanesh"> M. Fardmanesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatible%20substrates" title="biocompatible substrates">biocompatible substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20resistance" title=" sheet resistance"> sheet resistance</a> </p> <a href="https://publications.waset.org/abstracts/119292/effects-of-biocompatible-substrates-on-the-electrical-properties-of-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Effect on Bandwidth of Using Double Substrates Based Metamaterial Planar Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smrity%20Dwivedi">Smrity Dwivedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper has revealed the effect of double substrates over a bandwidth performance for planar antennas. The used material has its own importance to get minimum return loss and improved directivity. The author has taken double substrates to enhance the efficiency in terms of gain of antenna. Metamaterial based antenna has its own specific structure which increased the performance of antenna. Improved return loss is -20 dB, and the voltage standing wave ratio (VSWR) is 1.2, which is better than single substrate having return loss of -15 dB and VSWR of 1.4. Complete results are obtained using commercial software CST microwave studio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CST%20microwave%20studio" title="CST microwave studio">CST microwave studio</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20loss" title=" return loss"> return loss</a>, <a href="https://publications.waset.org/abstracts/search?q=VSWR" title=" VSWR"> VSWR</a> </p> <a href="https://publications.waset.org/abstracts/64563/effect-on-bandwidth-of-using-double-substrates-based-metamaterial-planar-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> Herbal Based Fingerprint Powder Formulation for Latent Fingermark Visualization: Catechu (Kattha)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Thakur">Pallavi Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20K.%20Garg"> Rakesh K. Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Latent fingerprints are commonly encountered evidence at the scene of the crime. It is very important to decipher these fingerprints in order to explore their identity and a lot of research has been made on the visualization of latent fingermarks on various substrates by numerous researchers. During the past few years large number of powder formulations has been evolved for the development of latent fingermarks on different surfaces. This paper reports a new and simple fingerprint powder which is non-toxic and has been employed on different substrates successfully for the development and visualization of latent fingermarks upto the time period of twelve days in varying temperature conditions. In this study, a less expensive, simple and easily available catechu (kattha) powder has been used to decipher the latent fingermarks on different substrates namely glass, plastic, metal, aluminium foil, white paper, wall tile and wooden sheet. It is observed that it gives very clear results on all the mentioned substrates and can be successfully used for the development and visualization of twelve days old latent fingermarks in varying temperature conditions on wall tiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fingermarks" title="fingermarks">fingermarks</a>, <a href="https://publications.waset.org/abstracts/search?q=catechu" title=" catechu"> catechu</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=aged%20fingermarks" title=" aged fingermarks"> aged fingermarks</a> </p> <a href="https://publications.waset.org/abstracts/84923/herbal-based-fingerprint-powder-formulation-for-latent-fingermark-visualization-catechu-kattha" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Electrochemical Study of Copper–Tin Alloy Nucleation Mechanisms onto Different Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Hamla">Meriem Hamla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benaicha"> Mohamed Benaicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrine%20Derbal"> Sabrine Derbal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, several materials such as M/glass (M = Pt, Mo) were investigated to test their suitability for studying the early nucleation stages and growth of copper-tin clusters. It was found that most of these materials stand as good substrates to be used in the study of the nucleation and growth of electrodeposited Cu-Sn alloys from aqueous solution containing CuCl2, SnCl2 as electroactive species and Na3C6H5O7 as complexing agent. Among these substrates, Pt shows instantaneous models followed by 3D diffusion-limited growth. On the other hand, the electrodeposited copper-tin thin films onto Mo substrate followed progressive nucleation. The deposition mechanism of the Cu-Sn films has been studied using stationary electrochemical techniques (cyclic voltammetery (CV) and chronoamperometry (CA). The structural, morphological and compositional of characterization have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and EDAX techniques respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title="electrodeposition">electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=CuSn" title=" CuSn"> CuSn</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanism" title=" mechanism"> mechanism</a> </p> <a href="https://publications.waset.org/abstracts/31480/electrochemical-study-of-copper-tin-alloy-nucleation-mechanisms-onto-different-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> Age Related Changes in the Neural Substrates of Emotion Regulation: Mechanisms, Consequences, and Interventions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Mohammadi">Yasaman Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emotion regulation is a complex process that allows individuals to manage and modulate their emotional responses in order to adaptively respond to environmental demands. As individuals age, emotion regulation abilities may decline, leading to an increased vulnerability to mood disorders and other negative health outcomes. Advances in neuroimaging techniques have greatly enhanced our understanding of the neural substrates underlying emotion regulation and age-related changes in these neural systems. Additionally, genetic research has identified several candidate genes that may influence age-related changes in emotion regulation. In this paper, we review recent findings from neuroimaging and genetic research on age-related changes in the neural substrates of emotion regulation, highlighting the mechanisms and consequences of these changes. We also discuss potential interventions, including cognitive and behavioral approaches, that may be effective in mitigating age-related declines in emotion regulation. We propose that a better understanding of the mechanisms underlying age-related changes in emotion regulation may lead to the development of more targeted interventions aimed at promoting healthy emotional functioning in older adults. Overall, this paper highlights the importance of studying age-related changes in emotion regulation and provides a roadmap for future research in this field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emotion%20regulation" title="emotion regulation">emotion regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20substrates" title=" neural substrates"> neural substrates</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroimaging" title=" neuroimaging"> neuroimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20functioning" title=" emotional functioning"> emotional functioning</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20aging" title=" healthy aging"> healthy aging</a> </p> <a href="https://publications.waset.org/abstracts/166512/age-related-changes-in-the-neural-substrates-of-emotion-regulation-mechanisms-consequences-and-interventions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Experimental Investigation of the Static and Dynamic Behaviour of Double Lap Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20I.%20Beloufa">H. I. Beloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tarfaoui"> M. Tarfaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For many applications, adhesively bonded assemblies have gained an increasing interest in the industry due to several advantages over welding, riveting and bolting, such as reduction of stress concentrations, lightness, low cost and easy manufacturing. This work is largely concerned to show the effects of the loading rate of the adhesively bonded joints under different speed rates. The tensile tests were conducted at four different rates; static (5mm/min, 50mm/min) and dynamic tests (1m/s, and 10m/s). An attempt was made to determine the damage kinetic and a comparison between the use of aluminium and composite laminate substrates is introduced. Aluminum T6082 and glass/vinylester laminated composite Substrates were used to construct aluminum/aluminum and laminate/laminate specimens. The adhesive used in this study was Araldite 2015. The results showed the effects of the loading rate évolution on the double joint strength. The comparison of the results of static and dynamic tests showed a raise of the strength of the specimens while the load velocity is elevated. In the case of composite substrates double joint lap, the stiffness increased by more than 60% between static and dynamic tests. However, in the case of aluminum substrates, the rigidity improved about 28% from static to moderately high velocity loading. For both aluminum and composite double joint lap, the strength increased by approximately 25% when the tensile velocity is increased from 5 mm/min to 50 mm/min (static tests). Nevertheless, the tensile velocity is extended to 1m/s the strength increased by 13% and 25% respectively for composite and aluminum substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20lap%20joints" title=" double lap joints"> double lap joints</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20dynamic%20behavior" title=" static and dynamic behavior"> static and dynamic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20tests" title=" tensile tests"> tensile tests</a> </p> <a href="https://publications.waset.org/abstracts/88423/experimental-investigation-of-the-static-and-dynamic-behaviour-of-double-lap-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Investigation of the Mechanical Performance of Carbon Nanomembranes for Water Separation Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marinos%20Dimitropoulos">Marinos Dimitropoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Trakakis"> George Trakakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolaus%20Meyerbr%C3%B6ker"> Nikolaus Meyerbröker</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Dalpke"> Raphael Dalpke</a>, <a href="https://publications.waset.org/abstracts/search?q=Polina%20Angelova"> Polina Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Schnieders"> Albert Schnieders</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Pavlou"> Christos Pavlou</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Kostaras"> Christos Kostaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Costas%20Galiotis"> Costas Galiotis</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Dassios"> Konstantinos Dassios</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intended for purifying water, water separation technologies are widely employed in a variety of contemporary household and industrial applications. Ultrathin Carbon Nanomembranes (CNMs) offer a highly selective, fast-flow, energy-efficient water separation technology intended for demanding water treatment applications as a technological replacement for biological filtration membranes. The membranes are two-dimensional (2D) materials with sub-nm functional pores and a thickness of roughly 1 nm; they may be generated in large quantities on porous supporting substrates and have customizable properties. The purpose of this work was to investigate and analyze the mechanical characteristics of CNMs and their substrates in order to ensure the structural stability of the membrane during operation. Contrary to macro-materials, it is difficult to measure the mechanical properties of membranes that are only a few nanometers thick. The membranes were supported on atomically flat substrates as well as suspended over patterned substrates, and their inherent mechanical properties were tested with atomic force microscopy. Quantitative experiments under nanomechanical loading, nanoindentation, and nano fatigue demonstrated the membranes' potential for usage in water separation applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanomembranes" title="carbon nanomembranes">carbon nanomembranes</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM" title=" AFM"> AFM</a> </p> <a href="https://publications.waset.org/abstracts/165834/investigation-of-the-mechanical-performance-of-carbon-nanomembranes-for-water-separation-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Plasma Engineered Nanorough Substrates for Stem Cells in vitro Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Macgregor-Ramiasa">Melanie Macgregor-Ramiasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Isabel%20Hopp"> Isabel Hopp</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20Murray"> Patricia Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20Vasilev"> Krasimir Vasilev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cells based therapies are one of the greatest promises of new-age medicine due to their potential to help curing most dreaded conditions such as cancer, diabetes and even auto-immune disease. However, establishing suitable in vitro culture materials allowing to control the fate of stem cells remain a challenge. Amongst the factor influencing stem cell behavior, substrate chemistry and nanotopogaphy are particularly critical. In this work, we used plasma assisted surface modification methods to produce model substrates with tailored nanotopography and controlled chemistry. Three different sizes of gold nanoparticles were bound to amine rich plasma polymer layers to produce homogeneous and gradient surface nanotopographies. The outer chemistry of the substrate was kept constant for all substrates by depositing a thin layer of our patented biocompatible polyoxazoline plasma polymer on top of the nanofeatures. For the first time, protein adsorption and stem cell behaviour (mouse kidney stem cells and mesenchymal stem cells) were evaluated on nanorough plasma deposited polyoxazoline thin films. Compared to other nitrogen rich coatings, polyoxazoline plasma polymer supports the covalent binding of proteins. Moderate surface nanoroughness, in both size and density, triggers cell proliferation. In association with polyoxazoline coating, cell proliferation is further enhanced on nanorough substrates. Results are discussed in term of substrates wetting properties. These findings provide valuable insights on the mechanisms governing the interactions between stem cells and their growth support. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotopography" title="nanotopography">nanotopography</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiation" title=" differentiation"> differentiation</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymer" title=" plasma polymer"> plasma polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=oxazoline" title=" oxazoline"> oxazoline</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/57005/plasma-engineered-nanorough-substrates-for-stem-cells-in-vitro-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Characterization of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juthamath%20Komvongsa">Juthamath Komvongsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bancha%20Mahong"> Bancha Mahong</a>, <a href="https://publications.waset.org/abstracts/search?q=Kannika%20Phasai"> Kannika Phasai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukanya%20Luang"> Sukanya Luang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Seong%20Jeon"> Jong-Seong Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Ketudat-Cairns"> James Ketudat-Cairns</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Os9BGlu31 is a rice transglucosidase that transfers glucosyl moieties to various acceptors such as carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has not been reported to date. Methanolic extracts of rice bran and flag leaves were found to contain substrates to which Os9BGlu31 could transfer glucose from 4-nitrophenyl β -D-glucopyranoside donor. The semi-purified substrate from rice bran was found to contain oleic acid and linoleic acid and the pure fatty acids were found to act as acceptor substrates for Os9BGlu31 transglucosidase to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than stearic acid (18:0), and had both higher kcat and higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. This transglucosidase reaction is reversible, Os9bglu31 knockout rice lines of flag leaves were found to have higher amounts of fatty acid glucose esters than wild type control lines, these data conclude that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid" title="fatty acid">fatty acid</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20glucose%20ester" title=" fatty acid glucose ester"> fatty acid glucose ester</a>, <a href="https://publications.waset.org/abstracts/search?q=transglucosidase" title=" transglucosidase"> transglucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20flag%20leaf" title=" rice flag leaf"> rice flag leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=homologous%20knockout%20lines" title=" homologous knockout lines"> homologous knockout lines</a>, <a href="https://publications.waset.org/abstracts/search?q=tandam%20mass%20spectrometry" title=" tandam mass spectrometry"> tandam mass spectrometry</a> </p> <a href="https://publications.waset.org/abstracts/42160/characterization-of-fatty-acid-glucose-esters-as-os9bglu31-transglucosidase-substrates-in-rice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Effects of Stiffness on Endothelial Cells Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Forough%20Ataollahi">Forough Ataollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Pramanik"> Sumit Pramanik</a>, <a href="https://publications.waset.org/abstracts/search?q=Belinda%20Pingguan-Murphy"> Belinda Pingguan-Murphy</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Abu%20Bakar%20Bin%20Wan%20Abas"> Wan Abu Bakar Bin Wan Abas</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Azuan%20Bin%20Abu%20Osman"> Noor Azuan Bin Abu Osman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endothelium proliferation is an important process in cardiovascular homeostasis and can be regulated by extracellular environment, as cells can actively sense mechanical environment. In this study, we evaluated endothelial cell proliferation on PDMS/alumina (Al2O3) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 5% and 10% Al2O3 at curing temperature 50˚C for 4 h and then characterized by mechanical, structural and morphological analyses. Higher stiffness was found in the composites compared to the pure PDMS substrate. Cell proliferation of the cultured bovine aortic endothelial cells on substrate materials were evaluated via Resazurin assay and 1, 1’-Dioctadecyl-1, 3, 3, 3’, 3’-Tetramethylindocarbocyanine Perchlorate-Acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The results revealed that stiffer substrates promote more endothelial cells proliferation to the less stiff substrates. Therefore, this study firmly hypothesizes that the stiffness elevates endothelial cells proliferation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stiffness" title="stiffness">stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=bovine%20aortic%20endothelial%20cells" title=" bovine aortic endothelial cells"> bovine aortic endothelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=extra%20cellular%20matrix" title=" extra cellular matrix"> extra cellular matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular" title=" vascular"> vascular</a> </p> <a href="https://publications.waset.org/abstracts/4843/effects-of-stiffness-on-endothelial-cells-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> Wetting Properties of Silver Based Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Weltsch">Zoltán Weltsch</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zsef%20Hlinka"> József Hlinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Eszter%20K%C3%B3kai"> Eszter Kókai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=soldering" title=" soldering"> soldering</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20solubility" title=" solid solubility"> solid solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependence" title=" temperature dependence"> temperature dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting" title=" wetting"> wetting</a> </p> <a href="https://publications.waset.org/abstracts/25730/wetting-properties-of-silver-based-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> The Effect of Microwave Radiation on Biogas Production Efficiency Using Different Plant Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present work was to assess the impact of using electromagnetic microwave radiation as a means of stimulating the thermal conditions in anaerobic reactors on biomethanation efficiency of different plant substrates, as measured by the quantity and quality of the resultant biogas. Using electromagnetic microwave radiation to maintain optimal thermal conditions during biomethanation allows for achievement of much higher technological effects in comparison with a conventional heating system. After subjecting different plant substrates to fermentation in the model fermentation chambers, the largest improvements in regard to biogas production efficiency and biogas quality were recorded in the series with corn silage and grass silage. In the first case, the quantity of methane produced in the microwave-stimulated technological system exceeded by 15.26% the quantities produced in reactors heated conventionally. When grass silage was utilized as the organic substrate in the process of biomethanation, anaerobic reactors treated with microwave radiation produced 12.62% more methane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwave%20radiation" title="microwave radiation">microwave radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a> </p> <a href="https://publications.waset.org/abstracts/3545/the-effect-of-microwave-radiation-on-biogas-production-efficiency-using-different-plant-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Surface Enhanced Infrared Absorption for Detection of Ultra Trace of 3,4- Methylene Dioxy- Methamphetamine (MDMA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Ben%20Jaber">Sultan Ben Jaber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical properties of molecules exhibit dramatic changes when adsorbed close to nano-structure metallic surfaces such as gold and silver nanomaterial. This phenomena opened a wide range of research to improve conventional spectroscopies efficiency. A well-known technique that has an intensive focus of study is surface-enhanced Raman spectroscopy (SERS), as since the first observation of SERS phenomena, researchers have published a great number of articles about the potential mechanisms behind this effect as well as developing materials to maximize the enhancement. Infrared and Raman spectroscopy are complementary techniques; thus, surface-enhanced infrared absorption (SEIRA) also shows a noticeable enhancement of molecules in the mid-IR excitation on nonmetallic structure substrates. In the SEIRA, vibrational modes that gave change in dipole moments perpendicular to the nano-metallic substrate enhanced 200 times greater than the free molecule’s modes. SEIRA spectroscopy is promising for the characterization and identification of adsorbed molecules on metallic surfaces, especially at trace levels. IR reflection-absorption spectroscopy (IRAS) is a well-known technique for measuring IR spectra of adsorbed molecules on metallic surfaces. However, SEIRA spectroscopy sensitivity is up to 50 times higher than IRAS. SEIRA enhancement has been observed for a wide range of molecules adsorbed on metallic substrates such as Au, Ag, Pd, Pt, Al, and Ni, but Au and Ag substrates exhibited the highest enhancement among the other mentioned substrates. In this work, trace levels of 3,4-methylenedioxymethamphetamine (MDMA) have been detected using gold nanoparticles (AuNPs) substrates with surface-enhanced infrared absorption (SEIRA). AuNPs were first prepared and washed, then mixed with different concentrations of MDMA samples. The process of fabricating the substrate prior SEIRA measurements included mixing of AuNPs and MDMA samples followed by vigorous stirring. The stirring step is particularly crucial, as stirring allows molecules to be robustly adsorbed on AuNPs. Thus, remarkable SEIRA was observed for MDMA samples even at trace levels, showing the rigidity of our approach to preparing SEIRA substrates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface-enhanced%20infrared%20absorption%20%28SEIRA%29" title="surface-enhanced infrared absorption (SEIRA)">surface-enhanced infrared absorption (SEIRA)</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles%20%28AuNPs%29" title=" gold nanoparticles (AuNPs)"> gold nanoparticles (AuNPs)</a>, <a href="https://publications.waset.org/abstracts/search?q=amphetamines" title=" amphetamines"> amphetamines</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20dioxy-%20methamphetamine%20%28MDMA%29" title=" methylene dioxy- methamphetamine (MDMA)"> methylene dioxy- methamphetamine (MDMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=enhancement%20factor" title=" enhancement factor"> enhancement factor</a> </p> <a href="https://publications.waset.org/abstracts/172568/surface-enhanced-infrared-absorption-for-detection-of-ultra-trace-of-34-methylene-dioxy-methamphetamine-mdma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> Gas Aggregation and Nanobubbles Stability on Substrates Influenced by Surface Wettability: A Molecular Dynamics Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsu-Hsu%20Yen">Tsu-Hsu Yen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interfacial gas adsorption presents a frequent challenge and opportunity for micro-/nano-fluidic operation. In this study, we investigate the wettability, gas accumulation, and nanobubble formation on various homogeneous surface conditions by using MD simulation, including a series of 3D and quasi-2D argon-water-solid systems simulation. To precisely determine the wettability on various substrates, several indicators were calculated. Among these wettability indicators, the water PMF (potential of mean force) has the most correlation tendency with interfacial water molecular orientation than depletion layer width and droplet contact angle. The results reveal that the aggregation of argon molecules on substrates not only depending on the level of hydrophobicity but also determined by the competition between gas-solid and water-solid interaction as well as water molecular structure near the surface. In addition, the surface nanobubble is always observed coexisted with the gas enrichment layer. The water structure adjacent to water-gas and water-solid interfaces also plays an important factor in gas out-flux and gas aggregation, respectively. The quasi-2D simulation shows that only a slight difference in the curved argon-water interface from the plane interface which suggests no noticeable obstructing effect on gas outflux from the gas-water interfacial water networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20aggregation" title="gas aggregation">gas aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20nanobubble" title=" interfacial nanobubble"> interfacial nanobubble</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/120507/gas-aggregation-and-nanobubbles-stability-on-substrates-influenced-by-surface-wettability-a-molecular-dynamics-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> Influence of Organic Supplements on Shoot Multiplication Efficiency of Phaius tankervilleae var. alba</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Punjansing">T. Punjansing</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nakkuntod"> M. Nakkuntod</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Homchan"> S. Homchan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Inthima"> P. Inthima</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kongbangkerd"> A. Kongbangkerd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of organic supplements on growth and multiplication efficiency of <em>Phaius tankervilleae </em>var. <em>alba</em> seedlings was investigated. 12 week-old seedlings were cultured on half-strength semi-solid Murashige and Skoog (MS) medium supplemented with 30 g/L sucrose, 8 g/L agar and various concentrations of coconut water (0, 50, 100, 150 and 200 mL/L) combined with potato extract (0, 25 and 50 g/L) and the pH was adjusted to 5.8 prior to autoclaving. The cultures were then kept under constant photoperiod (16 h light: 8 h dark) at 25 &plusmn; 2 &deg;C for 12 weeks. The highest number of shoots (3.0 shoots/explant) was obtained when cultured on the medium added with 50 ml/L coconut water and 50 g/L potato extract whereas the highest number of leaves (5.9 leaves/explant) and roots (6.1 roots/explant) could receive on the medium supplemented with 150 ml/L coconut water and 50 g/L potato extract. with 150 ml/L coconut water and 50 g/L potato extract. Additionally, plantlets of<em> P</em>. <em>tankervilleae </em>var. <em>alba</em> were transferred to grow into seven different substrates i.e. soil, sand, coconut husk chip, soil-sand mix (1: 1), soil-coconut husk chip mix (1: 1), sand-coconut husk chip mix (1: 1) and soil-sand-coconut husk chip mix (1: 1: 1) for four weeks. The results found that acclimatized plants showed 100% of survivals when sand, coconut husk chip and sand-coconut husk chip mix are used as substrates. The number of leaves induced by sand-coconut husk chip mix was significantly higher than that planted in other substrates (<em>P</em> &gt; 0.05). Meanwhile, no significant difference in new shoot formation among these substrates was observed (<em>P</em> &lt; 0.05). This precursory developing protocol was likely to be applied for more large scale of plant production as well as conservation of germplasm of this orchid species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20supplements" title="organic supplements">organic supplements</a>, <a href="https://publications.waset.org/abstracts/search?q=acclimatization" title=" acclimatization"> acclimatization</a>, <a href="https://publications.waset.org/abstracts/search?q=Phaius%20tankervilleae%20var.%20alba" title=" Phaius tankervilleae var. alba"> Phaius tankervilleae var. alba</a>, <a href="https://publications.waset.org/abstracts/search?q=orchid" title=" orchid"> orchid</a> </p> <a href="https://publications.waset.org/abstracts/95318/influence-of-organic-supplements-on-shoot-multiplication-efficiency-of-phaius-tankervilleae-var-alba" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> The Tribological Behaviors of Vacuum Gas Nitriding Titanium and Steel Substrates at Different Process Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hikmet%20Cicek">Hikmet Cicek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal nitrides show excellence tribological properties and they used for especially on machine parts. In this work, the vacuum gas nitriding proses were applied to the titanium, D2 and 52100 steel substrates at three different proses temperatures (500 °C, 600°C and 700 °C). Structural, mechanical and tribological properties of the samples were characterized. X-Ray diffractometer, scanning electron microscope and energy dispersive spectroscopy analyses were conducted to determine structural properties. Microhardness test and pin-on-disc wear test were made to observe tribological properties. Coefficient of friction, wear rate and wear traces were examined comparatively. According to the test results, the process temperature very effective parameter for the vacuum gas nitriding method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20nitriding" title="gas nitriding">gas nitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=tribology" title=" tribology"> tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=coating" title=" coating"> coating</a> </p> <a href="https://publications.waset.org/abstracts/90195/the-tribological-behaviors-of-vacuum-gas-nitriding-titanium-and-steel-substrates-at-different-process-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> The Influence of Substrate and Temperature on the Growth of Phytophthora palmivora of Cocoa Black Pod Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhaida%20Salleh">Suhaida Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Tee%20Yei%20Kheng"> Tee Yei Kheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black pod is the most commonly destructive disease of cacao (Theobroma cacao) which cause major losses to global production of cocoa beans. The genus of Phytophthora is the important pathogen of this disease worldwide. The species of P. megakarya causes black pod disease in West Africa, whereas P. capsici and P. citrophthora cause the incident in Central and South America. In Malaysia, this disease is caused by P. palmivora which infect all stages of pod development including flower cushion, cherelle, immature and mature pods. This pathogen destroys up to 10% of trees yearly through stem cankers and causes 20 to 30% pod damages through black pod rot. Since P. palmivora has a high impact on cocoa yield, it is crucial to identify some of the abiotic factors that can constrain their growth. In an effort to evaluate the effect of different substrates and temperatures to the growth of P. palmivora, a laboratory study was done under a different range of temperatures. Different substrate for the growth of P. palmivora were used which are corn meal agar (CMA) media and detached pod of cocoa. An agar plug of seven days old of P. palmivora growth was transferred on both substrates and incubated at 24, 27, 30, 33 and 36ᵒC, respectively. The diameter of lesion on pod and the cultural growth of pathogen was recorded for 7 consecutive days. The optimum incubation temperature of P. palmivora on both substrates is at 27ᵒC. However, the growth tends to be inhibited as the temperature increases. No lesion developed on pod surface incubated at 36ᵒC and only a small lesion observed at 33ᵒC. The sporulation with the formation of white mycelial growth on pod surface was only visible at optimum temperature, 27ᵒC. On CMA, the pathogen grew over the entire range of temperatures tested. The study is, therefore, concluded that P. palmivora grow the best at temperature of 27ᵒC on both substrates and their growth begin to inhibit when the temperature rises to more than 27ᵒC. The growth pattern of this pathogen is similar on both pod surface and cultural media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa" title="cocoa">cocoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Phytophthora%20palmivora" title=" Phytophthora palmivora"> Phytophthora palmivora</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/96838/the-influence-of-substrate-and-temperature-on-the-growth-of-phytophthora-palmivora-of-cocoa-black-pod-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=MXene%20substrates&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10