CINXE.COM
Search results for: seismic stress
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: seismic stress</title> <meta name="description" content="Search results for: seismic stress"> <meta name="keywords" content="seismic stress"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="seismic stress" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="seismic stress"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4716</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: seismic stress</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4716</span> Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung">Woo Young Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Bu%20Seog%20Ju"> Bu Seog Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic" title="seismic">seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge" title=" bridge"> bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/47888/seismic-performance-evaluation-of-bridge-structures-using-3d-finite-element-methods-in-south-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4715</span> Seismic Safety Evaluation of Weir Structures Using the Finite and Infinite Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho%20Young%20Son">Ho Young Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Bu%20Seog%20Ju"> Bu Seog Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Woo%20Young%20Jung"> Woo Young Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the seismic safety evaluation of weir structure subjected to strong earthquake ground motions, as a flood defense structure in civil engineering structures. The seismic safety analysis procedure was illustrated through development of Finite Element (FE) and InFinite Element (IFE) method in ABAQUS platform. The IFE model was generated by CINPS4, 4-node linear one-way infinite model as a sold continuum infinite element in foundation areas of the weir structure and then nonlinear FE model using friction model for soil-structure interactions was applied in this study. In order to understand the complex behavior of weir structures, nonlinear time history analysis was carried out. Consequently, it was interesting to note that the compressive stress gave more vulnerability to the weir structure, in comparison to the tensile stress, during an earthquake. The stress concentration of the weir structure was shown at the connection area between the weir body and stilling basin area. The stress both tension and compression was reduced in IFE model rather than FE model of weir structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic" title="seismic">seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=weir" title=" weir"> weir</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20condition" title=" boundary condition"> boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/47886/seismic-safety-evaluation-of-weir-structures-using-the-finite-and-infinite-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4714</span> Statistical Physics Model of Seismic Activation Preceding a Major Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20S.%20Brox">Daniel S. Brox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20activation" title="seismic activation">seismic activation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20physics" title=" statistical physics"> statistical physics</a>, <a href="https://publications.waset.org/abstracts/search?q=geodynamics" title=" geodynamics"> geodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/192295/statistical-physics-model-of-seismic-activation-preceding-a-major-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4713</span> Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Vosoughifar">H. R. Vosoughifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Zeinab.%20Hosseininejad"> Seyedeh Zeinab. Hosseininejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahid%20Shabazi"> Nahid Shabazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mohialdin%20Hosseininejad"> Seyed Mohialdin Hosseininejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20bracing%20system" title="optimal bracing system">optimal bracing system</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20structure" title=" high-rise structure"> high-rise structure</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis%20%28FEA%29" title=" finite element analysis (FEA)"> finite element analysis (FEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20stress" title=" seismic stress"> seismic stress</a> </p> <a href="https://publications.waset.org/abstracts/45332/evaluating-the-seismic-stress-distribution-in-the-high-rise-structures-connections-with-optimal-bracing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4712</span> Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Moosavi">Nastaran Moosavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mokhtari"> Mohammad Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=p-impedance" title=" p-impedance"> p-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=s-impedance" title=" s-impedance"> s-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=post-stack%20seismic%20inversion" title=" post-stack seismic inversion"> post-stack seismic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stack%20seismic%20inversion" title=" pre-stack seismic inversion"> pre-stack seismic inversion</a> </p> <a href="https://publications.waset.org/abstracts/54295/application-of-post-stack-and-pre-stack-seismic-inversion-for-prediction-of-hydrocarbon-reservoirs-in-a-persian-gulf-gas-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4711</span> Dynamic Analysis of Double Deck Tunnel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Kwak">C. W. Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20J.%20Park"> I. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20I.%20Jang"> D. I. Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20deck%20tunnel" title="double deck tunnel">double deck tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=interim%20slab" title=" interim slab"> interim slab</a>, <a href="https://publications.waset.org/abstracts/search?q=3-dimensional%20dynamic%20numerical%20analysis" title=" 3-dimensional dynamic numerical analysis"> 3-dimensional dynamic numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20joint" title=" seismic joint "> seismic joint </a> </p> <a href="https://publications.waset.org/abstracts/33999/dynamic-analysis-of-double-deck-tunnel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4710</span> Finite Difference Method of the Seismic Analysis of Earth Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaoua%20Bouaicha">Alaoua Bouaicha</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahim%20Kahlouche"> Fahim Kahlouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Benouali"> Abdelhamid Benouali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earthquake" title="Earthquake">Earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=Numerical%20Analysis" title=" Numerical Analysis"> Numerical Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC2D" title=" FLAC2D"> FLAC2D</a>, <a href="https://publications.waset.org/abstracts/search?q=Displacement" title=" Displacement"> Displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=Embankment%20Dam" title=" Embankment Dam"> Embankment Dam</a>, <a href="https://publications.waset.org/abstracts/search?q=Pore%20Water%20Pressure" title=" Pore Water Pressure"> Pore Water Pressure</a> </p> <a href="https://publications.waset.org/abstracts/43538/finite-difference-method-of-the-seismic-analysis-of-earth-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4709</span> Seismicity and Source Parameter of Some Events in Abu Dabbab Area, Red Sea Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Mohamed%20Haggag">Hamed Mohamed Haggag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prior to 12 November 1955, no earthquakes have been reported from the Abu Dabbab area in the International Seismological Center catalogue (ISC). The largest earthquake in Abu Dabbab area occurred on November 12, 1955 with magnitude Mb 6.0. The closest station from the epicenter was at Helwan (about 700 km to the north), so the depth of this event is not constrained and no foreshocks or aftershocks were recorded. Two other earthquakes of magnitude Mb 4.5 and 5.2 took place in the same area on March 02, 1982 and July 02, 1984, respectively. Since the installation of Aswan Seismic Network stations in 1982, (250-300 km to the south-west of Abu Dabbab area) then the Egyptian Natoinal Seismic Network stations, it was possible to record some activity from Abu Dabbab area. The recorded earthquakes at Abu Dabbab area as recorded from 1982 to 2014 shows that the earthquake epicenters are distributed in the same direction of the main trends of the faults in the area, which is parallel to the Red Sea coast. The spectral analysis was made for some earthquakes. The source parameters, seismic moment (Mo), source dimension (r), stress drop (Δδ), and apparent stress (δ) are determined for these events. The spectral analysis technique was completed using MAG software program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abu%20Dabbab" title="Abu Dabbab">Abu Dabbab</a>, <a href="https://publications.waset.org/abstracts/search?q=seismicity" title=" seismicity"> seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20moment" title=" seismic moment"> seismic moment</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20parameter" title=" source parameter"> source parameter</a> </p> <a href="https://publications.waset.org/abstracts/35764/seismicity-and-source-parameter-of-some-events-in-abu-dabbab-area-red-sea-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4708</span> Comparison of Allowable Stress Method and Time History Response Analysis for Seismic Design of Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayuri%20Inoue">Sayuri Inoue</a>, <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura"> Naohiro Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsubasa%20Hamada"> Tsubasa Hamada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic design method of buildings is classified into two types: static design and dynamic design. The static design is a design method that exerts static force as seismic force and is a relatively simple design method created based on the experience of seismic motion in the past 100 years. At present, static design is used for most of the Japanese buildings. Dynamic design mainly refers to the time history response analysis. It is a comparatively difficult design method that input the earthquake motion assumed in the building model and examine the response. Currently, it is only used for skyscrapers and specific buildings. In the present design standard in Japan, it is good to use either the design method of the static design and the dynamic design in the medium and high-rise buildings. However, when actually designing middle and high-rise buildings by two kinds of design methods, the relatively simple static design method satisfies the criteria, but in the case of a little difficult dynamic design method, the criterion isn't often satisfied. This is because the dynamic design method was built with the intention of designing super high-rise buildings. In short, higher safety is required as compared with general buildings, and criteria become stricter. The authors consider applying the dynamic design method to general buildings designed by the static design method so far. The reason is that application of the dynamic design method is reasonable for buildings that are out of the conventional standard structural form such as emphasizing design. For the purpose, it is important to compare the design results when the criteria of both design methods are arranged side by side. In this study, we performed time history response analysis to medium-rise buildings that were actually designed with allowable stress method. Quantitative comparison between static design and dynamic design was conducted, and characteristics of both design methods were examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buildings" title="buildings">buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=allowable%20stress%20design" title=" allowable stress design"> allowable stress design</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history%20response%20analysis" title=" time history response analysis"> time history response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Japanese%20seismic%20code" title=" Japanese seismic code"> Japanese seismic code</a> </p> <a href="https://publications.waset.org/abstracts/99520/comparison-of-allowable-stress-method-and-time-history-response-analysis-for-seismic-design-of-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4707</span> Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Ruiz">Jose Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Velasquez"> Jose Velasquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Holger%20Lovon"> Holger Lovon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragility%20functions" title="fragility functions">fragility functions</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20buildings" title=" university buildings"> university buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20assessment" title=" loss assessment"> loss assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Montecarlo%20simulation" title=" Montecarlo simulation"> Montecarlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=latin%20hypercube" title=" latin hypercube"> latin hypercube</a> </p> <a href="https://publications.waset.org/abstracts/106519/seismic-loss-assessment-for-peruvian-university-buildings-with-simulated-fragility-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4706</span> Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Castaldo">Paolo Castaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Palazzo"> Bruno Palazzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Lodato"> Laura Lodato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP%20devices" title="FP devices">FP devices</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reliability" title=" seismic reliability"> seismic reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20robustness" title=" seismic robustness"> seismic robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a> </p> <a href="https://publications.waset.org/abstracts/55083/seizure-effects-of-fp-bearings-on-the-seismic-reliability-of-base-isolated-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4705</span> Seismic Vulnerability of Structures Designed in Accordance with the Allowable Stress Design and Load Resistant Factor Design Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Vafaei">Mohammadreza Vafaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirali%20Moradi"> Amirali Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophia%20C.%20Alih"> Sophia C. Alih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method selected for the design of structures not only can affect their seismic vulnerability but also can affect their construction cost. For the design of steel structures, two distinct methods have been introduced by existing codes, namely allowable stress design (ASD) and load resistant factor design (LRFD). This study investigates the effect of using the aforementioned design methods on the seismic vulnerability and construction cost of steel structures. Specifically, a 20-story building equipped with special moment resisting frame and an eccentrically braced system was selected for this study. The building was designed for three different intensities of peak ground acceleration including 0.2 g, 0.25 g, and 0.3 g using the ASD and LRFD methods. The required sizes of beams, columns, and braces were obtained using response spectrum analysis. Then, the designed frames were subjected to nine natural earthquake records which were scaled to the designed response spectrum. For each frame, the base shear, story shears, and inter-story drifts were calculated and then were compared. Results indicated that the LRFD method led to a more economical design for the frames. In addition, the LRFD method resulted in lower base shears and larger inter-story drifts when compared with the ASD method. It was concluded that the application of the LRFD method not only reduced the weights of structural elements but also provided a higher safety margin against seismic actions when compared with the ASD method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allowable%20stress%20design" title="allowable stress design">allowable stress design</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20resistant%20factor%20design" title=" load resistant factor design"> load resistant factor design</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20time%20history%20analysis" title=" nonlinear time history analysis"> nonlinear time history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20vulnerability" title=" seismic vulnerability"> seismic vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structures" title=" steel structures"> steel structures</a> </p> <a href="https://publications.waset.org/abstracts/71141/seismic-vulnerability-of-structures-designed-in-accordance-with-the-allowable-stress-design-and-load-resistant-factor-design-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4704</span> Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kahil%20Amar">Kahil Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukais%20Said"> Boukais Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Kezmane%20Ali"> Kezmane Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Naceur%20Eddine"> Hannachi Naceur Eddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamizi%20Mohand"> Hamizi Mohand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title="seismic performance">seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20method" title=" pushover method"> pushover method</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization%20of%20seismic%20motion" title=" characterization of seismic motion"> characterization of seismic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=harmfulness%20of%20the%20seismic" title=" harmfulness of the seismic"> harmfulness of the seismic</a> </p> <a href="https://publications.waset.org/abstracts/29929/introduction-of-the-harmfulness-of-the-seismic-signal-in-the-assessment-of-the-performance-of-reinforced-concrete-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4703</span> Seismic Design Approach for Areas with Low Seismicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogens%20Saberi">Mogens Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following article focuses on a new seismic design approach for Denmark. Denmark is located in a low seismic zone and up till now a general and very simplified approach has been used to accommodate the effect of seismic loading. The current used method is presented and it is found that the approach is on the unsafe side for many building types in Denmark. The damages during time due to earth quake is presented and a seismic map for Denmark is developed and presented. Furthermore, a new design approach is suggested and compared to the existing one. The new approach is relatively simple but captures the effect of seismic loading more realistic than the existing one. The new approach is believed to the incorporated in the Danish Deign Code for building structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20seismicity" title="low seismicity">low seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20design%20approach" title=" new design approach"> new design approach</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=Denmark" title=" Denmark"> Denmark</a> </p> <a href="https://publications.waset.org/abstracts/59411/seismic-design-approach-for-areas-with-low-seismicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4702</span> Evaluation of Duncan-Chang Deformation Parameters of Granular Fill Materials Using Non-Invasive Seismic Wave Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Pegah">Ehsan Pegah</a>, <a href="https://publications.waset.org/abstracts/search?q=Huabei%20Liu"> Huabei Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterizing the deformation properties of fill materials in a wide stress range always has been an important issue in geotechnical engineering. The hyperbolic Duncan-Chang model is a very popular model of stress-strain relationship that captures the nonlinear deformation of granular geomaterials in a very tractable manner. It consists of a particular set of the model parameters, which are generally measured from an extensive series of laboratory triaxial tests. This practice is both time-consuming and costly, especially in large projects. In addition, undesired effects caused by soil disturbance during the sampling procedure also may yield a large degree of uncertainty in the results. Accordingly, non-invasive geophysical seismic approaches may be utilized as the appropriate alternative surveys for measuring the model parameters based on the seismic wave velocities. To this end, the conventional seismic refraction profiles were carried out in the test sites with the granular fill materials to collect the seismic waves information. The acquired shot gathers are processed, from which the P- and S-wave velocities can be derived. The P-wave velocities are extracted from the Seismic Refraction Tomography (SRT) technique while S-wave velocities are obtained by the Multichannel Analysis of Surface Waves (MASW) method. The velocity values were then utilized with the equations resulting from the rigorous theories of elasticity and soil mechanics to evaluate the Duncan-Chang model parameters. The derived parameters were finally compared with those from laboratory tests to validate the reliability of the results. The findings of this study may confidently serve as the useful references for determination of nonlinear deformation parameters of granular fill geomaterials. Those are environmentally friendly and quite economic, which can yield accurate results under the actual in-situ conditions using the surface seismic methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Duncan-Chang%20deformation%20parameters" title="Duncan-Chang deformation parameters">Duncan-Chang deformation parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20fill%20materials" title=" granular fill materials"> granular fill materials</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20waves%20velocity" title=" seismic waves velocity"> seismic waves velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=multichannel%20analysis%20of%20surface%20waves" title=" multichannel analysis of surface waves"> multichannel analysis of surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20refraction%20tomography" title=" seismic refraction tomography"> seismic refraction tomography</a> </p> <a href="https://publications.waset.org/abstracts/106481/evaluation-of-duncan-chang-deformation-parameters-of-granular-fill-materials-using-non-invasive-seismic-wave-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4701</span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4700</span> Seismic Performance Evaluation of Existing Building Using Structural Information Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byungmin%20Cho">Byungmin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongchul%20Lee"> Dongchul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Taejin%20Kim"> Taejin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minhee%20Lee"> Minhee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The procedure for the seismic retrofit of existing buildings includes the seismic evaluation. In the evaluation step, it is assessed whether the buildings have satisfactory performance against seismic load. Based on the results of that, the buildings are upgraded. To evaluate seismic performance of the buildings, it usually goes through the model transformation from elastic analysis to inelastic analysis. However, when the data is not delivered through the interwork, engineers should manually input the data. In this process, since it leads to inaccuracy and loss of information, the results of the analysis become less accurate. Therefore, in this study, the process for the seismic evaluation of existing buildings using structural information modeling is suggested. This structural information modeling makes the work economic and accurate. To this end, it is determined which part of the process could be computerized through the investigation of the process for the seismic evaluation based on ASCE 41. The structural information modeling process is developed to apply to the seismic evaluation using Perform 3D program usually used for the nonlinear response history analysis. To validate this process, the seismic performance of an existing building is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20building" title="existing building">existing building</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20information%20modeling" title=" structural information modeling"> structural information modeling</a> </p> <a href="https://publications.waset.org/abstracts/31008/seismic-performance-evaluation-of-existing-building-using-structural-information-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4699</span> A Numerical Study on the Seismic Performance of Built-Up Battened Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sophia%20C.%20Alih">Sophia C. Alih</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Vafaei"> Mohammadreza Vafaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnoud%20Rahimi%20Mansour"> Farnoud Rahimi Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Hajarul%20Falahi%20Abdul%20Halim"> Nur Hajarul Falahi Abdul Halim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Built-up columns have been widely employed by practice engineers in the design and construction of buildings and bridges. However, failures have been observed in this type of columns in previous seismic events. This study analyses the performance of built-up columns with different configurations of battens when it is subjected to seismic loads. Four columns with different size of battens were simulated and subjected to three different intensities of axial load along with a lateral cyclic load. Results indicate that the size of battens influences significantly the seismic behavior of columns. Lower shear capacity of battens results in higher ultimate strength and ductility for built-up columns. It is observed that intensity of axial load has a significant effect on the ultimate strength of columns, but it is less influential on the yield strength. For a given drift value, the stress level in the centroid of smaller size battens is significantly more than that of larger size battens signifying damage concentration in battens rather than chords. It is concluded that design of battens for shear demand lower than code specified values only slightly reduces initial stiffness of columns; however, it improves seismic performance of battened columns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=battened%20column" title="battened column">battened column</a>, <a href="https://publications.waset.org/abstracts/search?q=built-up%20column" title=" built-up column"> built-up column</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20behavior" title=" cyclic behavior"> cyclic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20column" title=" steel column"> steel column</a> </p> <a href="https://publications.waset.org/abstracts/71139/a-numerical-study-on-the-seismic-performance-of-built-up-battened-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4698</span> Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Yamanturk">Kaan Yamanturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihan%20Dogruoz"> Cihan Dogruoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake" title="maximum considered earthquake">maximum considered earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20resisting%20frame" title=" moment resisting frame"> moment resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolator" title=" seismic isolator"> seismic isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a> </p> <a href="https://publications.waset.org/abstracts/109879/application-of-seismic-isolators-in-kutahya-city-hospital-project-utilizing-double-friction-pendulum-type-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4697</span> Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fu-Pei%20Hsiao">Fu-Pei Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Chung%20Tu"> Fung-Chung Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chiu"> Chien-Kuo Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title="seismic assessment">seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reduction%20factor" title=" seismic reduction factor"> seismic reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20seismic%20ratio" title=" residual seismic ratio"> residual seismic ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=post-earthquake" title=" post-earthquake"> post-earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/43183/study-on-seismic-assessment-of-earthquake-damaged-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4696</span> Accurate Algorithm for Selecting Ground Motions Satisfying Code Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Ha">S. J. Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Baik"> S. J. Baik</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Kim"> T. O. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Han"> S. W. Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For computing the seismic responses of structures, current seismic design provisions permit response history analyses (RHA) that can be used without limitations in height, seismic design category, and building irregularity. In order to obtain accurate seismic responses using RHA, it is important to use adequate input ground motions. Current seismic design provisions provide criteria for selecting ground motions. In this study, the accurate and computationally efficient algorithm is proposed for accurately selecting ground motions that satisfy the requirements specified in current seismic design provisions. The accuracy of the proposed algorithm is verified using single-degree-of-freedom systems with various natural periods and yield strengths. This study shows that the mean seismic responses obtained from RHA with seven and ten ground motions selected using the proposed algorithm produce errors within 20% and 13%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20history%20analysis" title=" response history analysis"> response history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a> </p> <a href="https://publications.waset.org/abstracts/55643/accurate-algorithm-for-selecting-ground-motions-satisfying-code-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4695</span> Water Ingress into Underground Mine Voids in the Central Rand Goldfields Area, South Africa-Fluid Induced Seismicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artur%20Cichowicz">Artur Cichowicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The last active mine in the Central Rand Goldfields area (50 km x 15 km) ceased operations in 2008. This resulted in the closure of the pumping stations, which previously maintained the underground water level in the mining voids. As a direct consequence of the water being allowed to flood the mine voids, seismic activity has increased directly beneath the populated area of Johannesburg. Monitoring of seismicity in the area has been on-going for over five years using the network of 17 strong ground motion sensors. The objective of the project is to improve strategies for mine closure. The evolution of the seismicity pattern was investigated in detail. Special attention was given to seismic source parameters such as magnitude, scalar seismic moment and static stress drop. Most events are located within historical mine boundaries. The seismicity pattern shows a strong relationship between the presence of the mining void and high levels of seismicity; no seismicity migration patterns were observed outside the areas of old mining. Seven years after the pumping stopped, the evolution of the seismicity has indicated that the area is not yet in equilibrium. The level of seismicity in the area appears to not be decreasing over time since the number of strong events, with Mw magnitudes above 2, is still as high as it was when monitoring began over five years ago. The average rate of seismic deformation is 1.6x1013 Nm/year. Constant seismic deformation was not observed over the last 5 years. The deviation from the average is in the order of 6x10^13 Nm/year, which is a significant deviation. The variation of cumulative seismic moment indicates that a constant deformation rate model is not suitable. Over the most recent five year period, the total cumulative seismic moment released in the Central Rand Basin was 9.0x10^14 Nm. This is equivalent to one earthquake of magnitude 3.9. This is significantly less than what was experienced during the mining operation. Characterization of seismicity triggered by a rising water level in the area can be achieved through the estimation of source parameters. Static stress drop heavily influences ground motion amplitude, which plays an important role in risk assessments of potential seismic hazards in inhabited areas. The observed static stress drop in this study varied from 0.05 MPa to 10 MPa. It was found that large static stress drops could be associated with both small and large events. The temporal evolution of the inter-event time provides an understanding of the physical mechanisms of earthquake interaction. Changes in the characteristics of the inter-event time are produced when a stress change is applied to a group of faults in the region. Results from this study indicate that the fluid-induced source has a shorter inter-event time in comparison to a random distribution. This behaviour corresponds to a clustering of events, in which short recurrence times tend to be close to each other, forming clusters of events. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inter-event%20time" title="inter-event time">inter-event time</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20induced%20seismicity" title=" fluid induced seismicity"> fluid induced seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20closure" title=" mine closure"> mine closure</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20parameters%20of%20seismic%20source" title=" spectral parameters of seismic source"> spectral parameters of seismic source</a> </p> <a href="https://publications.waset.org/abstracts/37688/water-ingress-into-underground-mine-voids-in-the-central-rand-goldfields-area-south-africa-fluid-induced-seismicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4694</span> The Necessity of Retrofitting for Masonry Buildings in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20G%C3%BCler">Soner Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel"> Eylem Güzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry buildings constitute major part of building stock in Turkey. Masonry buildings were built up especially in rural areas and underdeveloped regions due to economic reasons. Almost all of these masonry buildings are not designed and detailed according to any design guidelines by designers. As a result of this, masonry buildings were totally collapsed or heavily damaged when subjected to destructive earthquake effects. Thus, these masonry buildings that were built up in our country must be retrofitted to improve their seismic performance. In this study, new seismic retrofitting techniques that is easy to apply and low-cost are summarized and the importance of seismic retrofitting is also emphasized for existing masonry buildings in Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20buildings" title="masonry buildings">masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20effects" title=" earthquake effects"> earthquake effects</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting%20techniques" title=" seismic retrofitting techniques"> seismic retrofitting techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/31789/the-necessity-of-retrofitting-for-masonry-buildings-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4693</span> Seismic Data Scaling: Uncertainties, Potential and Applications in Workstation Interpretation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankur%20Mundhra">Ankur Mundhra</a>, <a href="https://publications.waset.org/abstracts/search?q=Shubhadeep%20Chakraborty"> Shubhadeep Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20R.%20Singh"> Y. R. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20Das"> Vishal Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic data scaling affects the dynamic range of a data and with present day lower costs of storage and higher reliability of Hard Disk data, scaling is not suggested. However, in dealing with data of different vintages, which perhaps were processed in 16 bits or even 8 bits and are need to be processed with 32 bit available data, scaling is performed. Also, scaling amplifies low amplitude events in deeper region which disappear due to high amplitude shallow events that saturate amplitude scale. We have focused on significance of scaling data to aid interpretation. This study elucidates a proper seismic loading procedure in workstations without using default preset parameters as available in most software suites. Differences and distribution of amplitude values at different depth for seismic data are probed in this exercise. Proper loading parameters are identified and associated steps are explained that needs to be taken care of while loading data. Finally, the exercise interprets the un-certainties which might arise when correlating scaled and unscaled versions of seismic data with synthetics. As, seismic well tie correlates the seismic reflection events with well markers, for our study it is used to identify regions which are enhanced and/or affected by scaling parameter(s). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clipping" title="clipping">clipping</a>, <a href="https://publications.waset.org/abstracts/search?q=compression" title=" compression"> compression</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20scaling" title=" seismic scaling"> seismic scaling</a> </p> <a href="https://publications.waset.org/abstracts/24110/seismic-data-scaling-uncertainties-potential-and-applications-in-workstation-interpretation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4692</span> Preliminary Seismic Hazard Mapping of Papua New Guinea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Ghasemi">Hadi Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Leonard"> Mark Leonard</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiliopoulos%20Spiro"> Spiliopoulos Spiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Cummins"> Phil Cummins</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Moihoi"> Mathew Moihoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Taranu"> Felix Taranu</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Buri"> Eric Buri</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Mckee"> Chris Mckee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the level of seismic hazard in terms of Peak Ground Acceleration (PGA) was calculated for return period of 475 years, using modeled seismic sources and assigned ground-motion equations. The calculations were performed for bedrock site conditions (Vs30=760 m/s). From the results it is evident that the seismic hazard reaches its maximum level (i.e. PGA≈1g for 475 yr return period) at the Huon Peninsula and southern New Britain regions. Disaggregation analysis revealed that moderate to large earthquakes occurring along the New Britain Trench mainly control the level of hazard at these locations. The open-source computer program OpenQuake developed by Global Earthquake Model foundation was used for the seismic hazard computations. It should be emphasized that the presented results are still preliminary and should not be interpreted as our final assessment of seismic hazard in PNG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20seismic%20hazard%20assessment" title="probabilistic seismic hazard assessment">probabilistic seismic hazard assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Papua%20New%20Guinea" title=" Papua New Guinea"> Papua New Guinea</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20code" title=" building code"> building code</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenQuake" title=" OpenQuake"> OpenQuake</a> </p> <a href="https://publications.waset.org/abstracts/21189/preliminary-seismic-hazard-mapping-of-papua-new-guinea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4691</span> Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaegu%20Choi">Jaegu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Mean%20Koo"> Jae-Mean Koo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Sung%20Seok"> Chang-Sung Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungwoo%20Moon"> Byungwoo Moon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reverse%20cyclic%20loading" title="reverse cyclic loading">reverse cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=j-r%20curve" title=" j-r curve"> j-r curve</a>, <a href="https://publications.waset.org/abstracts/search?q=ESG%20specimen" title=" ESG specimen"> ESG specimen</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20plastic%20displacement" title=" incremental plastic displacement"> incremental plastic displacement</a> </p> <a href="https://publications.waset.org/abstracts/52074/study-on-effect-of-reverse-cyclic-loading-on-fracture-resistance-curve-of-equivalent-stress-gradient-esg-specimen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4690</span> SMRF Seismic Response: Unequal Beam Depths</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Babak%20H.%20Mamaqani">Babak H. Mamaqani</a>, <a href="https://publications.waset.org/abstracts/search?q=Alimohammad%20Entezarmahdi"> Alimohammad Entezarmahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are many researches on parameters affecting seismic behavior of steel moment frames. Great deal of these researches considers cover plate connections with or without haunch and direct beam to column connection for exterior columns. Also there are experimental results for interior connections with equal beam depth on both sides but not much research has been performed on the seismic behavior of joints with unequal beam depth. Based on previous experimental results, a series of companion analyses have been set up considering different beam height and connection detailing configuration to investigate the seismic behavior of the connections. Results of this study indicate that when the differences between beams height on both side increases, use of haunch connection system leads to significant improvement in the seismic response whereas other configurations did not provide satisfying results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20modeling" title="analytical modeling">analytical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Haunch%20connection" title=" Haunch connection"> Haunch connection</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=unequal%20beam%20depth" title=" unequal beam depth"> unequal beam depth</a> </p> <a href="https://publications.waset.org/abstracts/5887/smrf-seismic-response-unequal-beam-depths" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4689</span> Behaviour of Reinforced Concrete Infilled Frames under Seismic Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Badla">W. Badla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A significant portion of the buildings constructed in Algeria is structural frames with infill panels which are usually considered as non structural components and are neglected in the analysis. However, these masonry panels tend to influence the structural response. Thus, these structures can be regarded as seismic risk buildings, although in the Algerian seismic code there is little guidance on the seismic evaluation of infilled frame buildings. In this study, three RC frames with 2, 4, and 8 story and subjected to three recorded Algerian accelerograms are studied. The diagonal strut approach is adopted for modeling the infill panels and a fiber model is used to model RC members. This paper reports on the seismic evaluation of RC frames with brick infill panels. The results obtained show that the masonry panels enhance the load lateral capacity of the buildings and the infill panel configuration influences the response of the structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title="seismic design">seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frames" title=" RC frames"> RC frames</a>, <a href="https://publications.waset.org/abstracts/search?q=infill%20panels" title=" infill panels"> infill panels</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20dynamic%20analysis" title=" non linear dynamic analysis"> non linear dynamic analysis</a> </p> <a href="https://publications.waset.org/abstracts/21693/behaviour-of-reinforced-concrete-infilled-frames-under-seismic-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4688</span> Expected Present Value of Losses in the Computation of Optimum Seismic Design Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Garc%C3%ADa-P%C3%A9rez">J. García-Pérez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approach to compute optimum seismic design parameters is presented. It is based on the optimization of the expected present value of the total cost, which includes the initial cost of structures as well as the cost due to earthquakes. Different types of seismicity models are considered, including one for characteristic earthquakes. Uncertainties are included in some variables to observe the influence on optimum values. Optimum seismic design coefficients are computed for three different structural types representing high, medium and low rise buildings, located near and far from the seismic sources. Ordinary and important structures are considered in the analysis. The results of optimum values show an important influence of seismicity models as well as of uncertainties on the variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=importance%20factors" title="importance factors">importance factors</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20parameters" title=" optimum parameters"> optimum parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20losses" title=" seismic losses"> seismic losses</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20risk" title=" seismic risk"> seismic risk</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20cost" title=" total cost"> total cost</a> </p> <a href="https://publications.waset.org/abstracts/50007/expected-present-value-of-losses-in-the-computation-of-optimum-seismic-design-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4687</span> Estimation of Source Parameters and Moment Tensor Solution through Waveform Modeling of 2013 Kishtwar Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shveta%20Puri">Shveta Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Jyoti%20Pandey"> Shiv Jyoti Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Bhat"> G. M. Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Raina"> Neha Raina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> TheJammu and Kashmir region of the Northwest Himalaya had witnessed many devastating earthquakes in the recent past and has remained unexplored for any kind of seismic investigations except scanty records of the earthquakes that occurred in this region in the past. In this study, we have used local seismic data of year 2013 that was recorded by the network of Broadband Seismographs in J&K. During this period, our seismic stations recorded about 207 earthquakes including two moderate events of Mw 5.7 on 1st May, 2013 and Mw 5.1 of 2nd August, 2013.We analyzed the events of Mw 3-4.6 and the main events only (for minimizing the error) for source parameters, b value and sense of movement through waveform modeling for understanding seismotectonic and seismic hazard of the region. It has been observed that most of the events are bounded between 32.9° N – 33.3° N latitude and 75.4° E – 76.1° E longitudes, Moment Magnitude (Mw) ranges from Mw 3 to 5.7, Source radius (r), from 0.21 to 3.5 km, stress drop, from 1.90 bars to 71.1 bars and Corner frequency, from 0.39 – 6.06 Hz. The b-value for this region was found to be 0.83±0 from these events which are lower than the normal value (b=1), indicating the area is under high stress. The travel time inversion and waveform inversion method suggest focal depth up to 10 km probably above the detachment depth of the Himalayan region. Moment tensor solution of the (Mw 5.1, 02:32:47 UTC) main event of 2ndAugust suggested that the source fault is striking at 295° with dip of 33° and rake value of 85°. It was found that these events form intense clustering of small to moderate events within a narrow zone between Panjal Thrust and Kishtwar Window. Moment tensor solution of the main events and their aftershocks indicating thrust type of movement is occurring in this region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=b-value" title="b-value">b-value</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20tensor" title=" moment tensor"> moment tensor</a>, <a href="https://publications.waset.org/abstracts/search?q=seismotectonics" title=" seismotectonics"> seismotectonics</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20parameters" title=" source parameters"> source parameters</a> </p> <a href="https://publications.waset.org/abstracts/60685/estimation-of-source-parameters-and-moment-tensor-solution-through-waveform-modeling-of-2013-kishtwar-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=157">157</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20stress&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>