CINXE.COM

Log-normal distribution - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Log-normal distribution - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"395bc102-66dc-486e-9e58-52e7da909a4d","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Log-normal_distribution","wgTitle":"Log-normal distribution","wgCurRevisionId":1258737699,"wgRevisionId":1258737699,"wgArticleId":102476,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","CS1 errors: periodical ignored","Articles with short description","Short description matches Wikidata","All articles with unsourced statements","Articles with unsourced statements from March 2012","Articles with unsourced statements from February 2021","Articles with unsourced statements from January 2023","Articles with unsourced statements from February 2011","Commons category link from Wikidata","Continuous distributions", "Normal distribution","Exponential family distributions","Infinitely divisible probability distributions","Non-Newtonian calculus"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Log-normal_distribution","wgRelevantArticleId":102476,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"Lognormal_distribution","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgInternalRedirectTargetUrl":"/wiki/Log-normal_distribution", "wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q826116","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Log-normal-pdfs.png/1200px-Log-normal-pdfs.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1145"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Log-normal-pdfs.png/800px-Log-normal-pdfs.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="763"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Log-normal-pdfs.png/640px-Log-normal-pdfs.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="611"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Log-normal distribution - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Log-normal_distribution"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Log-normal_distribution&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Log-normal_distribution"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Log-normal_distribution rootpage-Log-normal_distribution skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Log-normal+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Log-normal+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Log-normal+distribution" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Log-normal+distribution" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Generation_and_parameters" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generation_and_parameters"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Generation and parameters</span> </div> </a> <ul id="toc-Generation_and_parameters-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probability_density_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_density_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Probability density function</span> </div> </a> <ul id="toc-Probability_density_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Cumulative_distribution_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cumulative_distribution_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Cumulative distribution function</span> </div> </a> <ul id="toc-Cumulative_distribution_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multivariate_log-normal" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multivariate_log-normal"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Multivariate log-normal</span> </div> </a> <ul id="toc-Multivariate_log-normal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characteristic_function_and_moment_generating_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Characteristic_function_and_moment_generating_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.5</span> <span>Characteristic function and moment generating function</span> </div> </a> <ul id="toc-Characteristic_function_and_moment_generating_function-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Probability_in_different_domains" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probability_in_different_domains"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Probability in different domains</span> </div> </a> <ul id="toc-Probability_in_different_domains-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Probabilities_of_functions_of_a_log-normal_variable" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Probabilities_of_functions_of_a_log-normal_variable"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Probabilities of functions of a log-normal variable</span> </div> </a> <ul id="toc-Probabilities_of_functions_of_a_log-normal_variable-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Geometric_or_multiplicative_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Geometric_or_multiplicative_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Geometric or multiplicative moments</span> </div> </a> <ul id="toc-Geometric_or_multiplicative_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arithmetic_moments" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arithmetic_moments"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>Arithmetic moments</span> </div> </a> <ul id="toc-Arithmetic_moments-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mode,_median,_quantiles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mode,_median,_quantiles"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Mode, median, quantiles</span> </div> </a> <ul id="toc-Mode,_median,_quantiles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partial_expectation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partial_expectation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.6</span> <span>Partial expectation</span> </div> </a> <ul id="toc-Partial_expectation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conditional_expectation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conditional_expectation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.7</span> <span>Conditional expectation</span> </div> </a> <ul id="toc-Conditional_expectation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Alternative_parameterizations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Alternative_parameterizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8</span> <span>Alternative parameterizations</span> </div> </a> <ul id="toc-Alternative_parameterizations-sublist" class="vector-toc-list"> <li id="toc-Examples_for_re-parameterization" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Examples_for_re-parameterization"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.8.1</span> <span>Examples for re-parameterization</span> </div> </a> <ul id="toc-Examples_for_re-parameterization-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Multiple,_reciprocal,_power" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiple,_reciprocal,_power"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.9</span> <span>Multiple, reciprocal, power</span> </div> </a> <ul id="toc-Multiple,_reciprocal,_power-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiplication_and_division_of_independent,_log-normal_random_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiplication_and_division_of_independent,_log-normal_random_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.10</span> <span>Multiplication and division of independent, log-normal random variables</span> </div> </a> <ul id="toc-Multiplication_and_division_of_independent,_log-normal_random_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multiplicative_central_limit_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiplicative_central_limit_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.11</span> <span>Multiplicative central limit theorem</span> </div> </a> <ul id="toc-Multiplicative_central_limit_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Other" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Other"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.12</span> <span>Other</span> </div> </a> <ul id="toc-Other-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Related_distributions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Related distributions</span> </div> </a> <ul id="toc-Related_distributions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Statistical_inference" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Statistical_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Statistical inference</span> </div> </a> <button aria-controls="toc-Statistical_inference-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Statistical inference subsection</span> </button> <ul id="toc-Statistical_inference-sublist" class="vector-toc-list"> <li id="toc-Estimation_of_parameters" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Estimation_of_parameters"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Estimation of parameters</span> </div> </a> <ul id="toc-Estimation_of_parameters-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Interval_estimates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Interval_estimates"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Interval estimates</span> </div> </a> <ul id="toc-Interval_estimates-sublist" class="vector-toc-list"> <li id="toc-Prediction_intervals" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Prediction_intervals"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.1</span> <span>Prediction intervals</span> </div> </a> <ul id="toc-Prediction_intervals-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Confidence_interval_for_eμ" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Confidence_interval_for_eμ"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.2</span> <span>Confidence interval for <i>e<sup>μ</sup></i></span> </div> </a> <ul id="toc-Confidence_interval_for_eμ-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Confidence_interval_for_E(X)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Confidence_interval_for_E(X)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.3</span> <span>Confidence interval for E(X)</span> </div> </a> <ul id="toc-Confidence_interval_for_E(X)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Confidence_interval_for_comparing_two_log_normals" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Confidence_interval_for_comparing_two_log_normals"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.4</span> <span>Confidence interval for comparing two log normals</span> </div> </a> <ul id="toc-Confidence_interval_for_comparing_two_log_normals-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Extremal_principle_of_entropy_to_fix_the_free_parameter_σ" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Extremal_principle_of_entropy_to_fix_the_free_parameter_σ"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Extremal principle of entropy to fix the free parameter <i>σ</i></span> </div> </a> <ul id="toc-Extremal_principle_of_entropy_to_fix_the_free_parameter_σ-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Heavy-tailness_of_the_Log-Normal" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Heavy-tailness_of_the_Log-Normal"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Heavy-tailness of the Log-Normal</span> </div> </a> <ul id="toc-Heavy-tailness_of_the_Log-Normal-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Occurrence_and_applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Occurrence_and_applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Occurrence and applications</span> </div> </a> <button aria-controls="toc-Occurrence_and_applications-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Occurrence and applications subsection</span> </button> <ul id="toc-Occurrence_and_applications-sublist" class="vector-toc-list"> <li id="toc-Human_behavior" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Human_behavior"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Human behavior</span> </div> </a> <ul id="toc-Human_behavior-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Biology_and_medicine" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Biology_and_medicine"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Biology and medicine</span> </div> </a> <ul id="toc-Biology_and_medicine-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Chemistry" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Chemistry"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Chemistry</span> </div> </a> <ul id="toc-Chemistry-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hydrology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hydrology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Hydrology</span> </div> </a> <ul id="toc-Hydrology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Social_sciences_and_demographics" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Social_sciences_and_demographics"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Social sciences and demographics</span> </div> </a> <ul id="toc-Social_sciences_and_demographics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Technology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Technology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.6</span> <span>Technology</span> </div> </a> <ul id="toc-Technology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Log-normal distribution</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 26 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-26" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">26 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%BD%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D0%BD%D0%BE_%D1%80%D0%B0%D0%B7%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5" title="Логнормално разпределение – Bulgarian" lang="bg" hreflang="bg" data-title="Логнормално разпределение" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Distribuci%C3%B3_log-normal" title="Distribució log-normal – Catalan" lang="ca" hreflang="ca" data-title="Distribució log-normal" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Logaritmicko-norm%C3%A1ln%C3%AD_rozd%C4%9Blen%C3%AD" title="Logaritmicko-normální rozdělení – Czech" lang="cs" hreflang="cs" data-title="Logaritmicko-normální rozdělení" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Logarithmische_Normalverteilung" title="Logarithmische Normalverteilung – German" lang="de" hreflang="de" data-title="Logarithmische Normalverteilung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Distribuci%C3%B3n_log-normal" title="Distribución log-normal – Spanish" lang="es" hreflang="es" data-title="Distribución log-normal" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AA%D9%88%D8%B2%DB%8C%D8%B9_%D9%84%D8%A7%DA%AF-%D9%86%D8%B1%D9%85%D8%A7%D9%84" title="توزیع لاگ-نرمال – Persian" lang="fa" hreflang="fa" data-title="توزیع لاگ-نرمال" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Loi_log-normale" title="Loi log-normale – French" lang="fr" hreflang="fr" data-title="Loi log-normale" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Distribuci%C3%B3n_lognormal" title="Distribución lognormal – Galician" lang="gl" hreflang="gl" data-title="Distribución lognormal" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A1%9C%EA%B7%B8_%EC%A0%95%EA%B7%9C_%EB%B6%84%ED%8F%AC" title="로그 정규 분포 – Korean" lang="ko" hreflang="ko" data-title="로그 정규 분포" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Distribuzione_lognormale" title="Distribuzione lognormale – Italian" lang="it" hreflang="it" data-title="Distribuzione lognormale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%AA%D7%A4%D7%9C%D7%92%D7%95%D7%AA_%D7%9C%D7%95%D7%92-%D7%A0%D7%95%D7%A8%D7%9E%D7%9C%D7%99%D7%AA" title="התפלגות לוג-נורמלית – Hebrew" lang="he" hreflang="he" data-title="התפלגות לוג-נורמלית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Log-norm%C3%A1lis_eloszl%C3%A1s" title="Log-normális eloszlás – Hungarian" lang="hu" hreflang="hu" data-title="Log-normális eloszlás" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lognormale_verdeling" title="Lognormale verdeling – Dutch" lang="nl" hreflang="nl" data-title="Lognormale verdeling" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%AF%BE%E6%95%B0%E6%AD%A3%E8%A6%8F%E5%88%86%E5%B8%83" title="対数正規分布 – Japanese" lang="ja" hreflang="ja" data-title="対数正規分布" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Rozk%C5%82ad_logarytmicznie_normalny" title="Rozkład logarytmicznie normalny – Polish" lang="pl" hreflang="pl" data-title="Rozkład logarytmicznie normalny" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Distribui%C3%A7%C3%A3o_log-normal" title="Distribuição log-normal – Portuguese" lang="pt" hreflang="pt" data-title="Distribuição log-normal" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%BD%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%80%D0%B0%D1%81%D0%BF%D1%80%D0%B5%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5" title="Логнормальное распределение – Russian" lang="ru" hreflang="ru" data-title="Логнормальное распределение" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Shp%C3%ABrndarja_log-normale" title="Shpërndarja log-normale – Albanian" lang="sq" hreflang="sq" data-title="Shpërndarja log-normale" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Logaritemsko_normalna_porazdelitev" title="Logaritemsko normalna porazdelitev – Slovenian" lang="sl" hreflang="sl" data-title="Logaritemsko normalna porazdelitev" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Sebaran_Log-normal" title="Sebaran Log-normal – Sundanese" lang="su" hreflang="su" data-title="Sebaran Log-normal" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Log-normaalijakauma" title="Log-normaalijakauma – Finnish" lang="fi" hreflang="fi" data-title="Log-normaalijakauma" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Lognormalf%C3%B6rdelning" title="Lognormalfördelning – Swedish" lang="sv" hreflang="sv" data-title="Lognormalfördelning" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Log-normal_da%C4%9F%C4%B1l%C4%B1m" title="Log-normal dağılım – Turkish" lang="tr" hreflang="tr" data-title="Log-normal dağılım" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%BD%D0%BE%D1%80%D0%BC%D0%B0%D0%BB%D1%8C%D0%BD%D0%B8%D0%B9_%D1%80%D0%BE%D0%B7%D0%BF%D0%BE%D0%B4%D1%96%D0%BB" title="Логнормальний розподіл – Ukrainian" lang="uk" hreflang="uk" data-title="Логнормальний розподіл" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E5%B0%8D%E6%95%B8%E6%AD%A3%E6%85%8B%E5%88%86%E4%BD%88" title="對數正態分佈 – Cantonese" lang="yue" hreflang="yue" data-title="對數正態分佈" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AF%B9%E6%95%B0%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83" title="对数正态分布 – Chinese" lang="zh" hreflang="zh" data-title="对数正态分布" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q826116#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Log-normal_distribution" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Log-normal_distribution" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Log-normal_distribution"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Log-normal_distribution&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Log-normal_distribution"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Log-normal_distribution&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Log-normal_distribution" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Log-normal_distribution" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Log-normal_distribution&amp;oldid=1258737699" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Log-normal_distribution&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Log-normal_distribution&amp;id=1258737699&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLog-normal_distribution"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLog-normal_distribution"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Log-normal_distribution&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Log-normal_distribution&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Log-normal_distribution" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q826116" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Lognormal_distribution&amp;redirect=no" class="mw-redirect" title="Lognormal distribution">Lognormal distribution</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability distribution</div> <style data-mw-deduplicate="TemplateStyles:r1257001546">.mw-parser-output .infobox-subbox{padding:0;border:none;margin:-3px;width:auto;min-width:100%;font-size:100%;clear:none;float:none;background-color:transparent}.mw-parser-output .infobox-3cols-child{margin:auto}.mw-parser-output .infobox .navbar{font-size:100%}@media screen{html.skin-theme-clientpref-night .mw-parser-output .infobox-full-data:not(.notheme)>div:not(.notheme)[style]{background:#1f1f23!important;color:#f8f9fa}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .infobox-full-data:not(.notheme) div:not(.notheme){background:#1f1f23!important;color:#f8f9fa}}@media(min-width:640px){body.skin--responsive .mw-parser-output .infobox-table{display:table!important}body.skin--responsive .mw-parser-output .infobox-table>caption{display:table-caption!important}body.skin--responsive .mw-parser-output .infobox-table>tbody{display:table-row-group}body.skin--responsive .mw-parser-output .infobox-table tr{display:table-row!important}body.skin--responsive .mw-parser-output .infobox-table th,body.skin--responsive .mw-parser-output .infobox-table td{padding-left:inherit;padding-right:inherit}}</style><style data-mw-deduplicate="TemplateStyles:r1247679731">.mw-parser-output .ib-prob-dist{border-collapse:collapse;width:20em}.mw-parser-output .ib-prob-dist td,.mw-parser-output .ib-prob-dist th{border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ib-prob-dist .infobox-subheader{text-align:left}.mw-parser-output .ib-prob-dist-image{background:var(--background-color-neutral,#eaecf0);font-weight:bold;text-align:center}</style><table class="infobox infobox-table ib-prob-dist"><caption class="infobox-title">Log-normal distribution</caption><tbody><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Probability density function</div><span typeof="mw:File"><a href="/wiki/File:Log-normal-pdfs.png" class="mw-file-description" title="Plot of the Lognormal PDF"><img alt="Plot of the Lognormal PDF" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Log-normal-pdfs.png/300px-Log-normal-pdfs.png" decoding="async" width="300" height="286" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/89/Log-normal-pdfs.png/450px-Log-normal-pdfs.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/89/Log-normal-pdfs.png/600px-Log-normal-pdfs.png 2x" data-file-width="1552" data-file-height="1481" /></a></span><br /><small>Identical parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8260e0b7db3b377710a5275c1657f20ee1735f63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.563ex; height:2.176ex;" alt="{\displaystyle \ \mu \ }"></span> but differing parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span></small></td></tr><tr><td colspan="4" class="infobox-image"> <div class="ib-prob-dist-image">Cumulative distribution function</div><span typeof="mw:File"><a href="/wiki/File:Log-normal-cdfs.png" class="mw-file-description" title="Plot of the Lognormal CDF"><img alt="Plot of the Lognormal CDF" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Log-normal-cdfs.png/300px-Log-normal-cdfs.png" decoding="async" width="300" height="283" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Log-normal-cdfs.png/450px-Log-normal-cdfs.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Log-normal-cdfs.png/600px-Log-normal-cdfs.png 2x" data-file-width="1592" data-file-height="1504" /></a></span><br /><small><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu =0\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mn>0</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu =0\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f328e7286a778242e340049db82e656e15a686fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.824ex; height:2.676ex;" alt="{\displaystyle \ \mu =0\ }"></span></small></td></tr><tr><th scope="row" class="infobox-label">Notation</th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \operatorname {Lognormal} \left(\ \mu ,\,\sigma ^{2}\ \right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \operatorname {Lognormal} \left(\ \mu ,\,\sigma ^{2}\ \right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d399777fa57273886b432f528135143b2cc597c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.936ex; height:3.343ex;" alt="{\displaystyle \ \operatorname {Lognormal} \left(\ \mu ,\,\sigma ^{2}\ \right)\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameters</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu \in (\ -\infty ,+\infty \ )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mtext>&#xA0;</mtext> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mtext>&#xA0;</mtext> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu \in (\ -\infty ,+\infty \ )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04fd6b178060954f7b6fe88e3d86e402de336f38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.704ex; height:2.843ex;" alt="{\displaystyle \ \mu \in (\ -\infty ,+\infty \ )\ }"></span> (logarithm of <a href="/wiki/Location_parameter" title="Location parameter">location</a>), <br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma &gt;0\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> <mo>&gt;</mo> <mn>0</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma &gt;0\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c359548e94e2288bf11593aa2398e3047db6831" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.752ex; height:2.176ex;" alt="{\displaystyle \ \sigma &gt;0\ }"></span> (logarithm of <a href="/wiki/Scale_parameter" title="Scale parameter">scale</a>)</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Support_(mathematics)" title="Support (mathematics)">Support</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ x\in (\ 0,+\infty \ )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mtext>&#xA0;</mtext> <mn>0</mn> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mtext>&#xA0;</mtext> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ x\in (\ 0,+\infty \ )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/172ce2da3ac05d91219015cbb6642a2d110f8dbd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.631ex; height:2.843ex;" alt="{\displaystyle \ x\in (\ 0,+\infty \ )\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Probability_density_function" title="Probability density function">PDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\frac {1}{\ x\sigma {\sqrt {2\pi \ }}\ }}\ \exp \left(-{\frac {\left(\ln x-\mu \ \right)^{2}}{2\sigma ^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\frac {1}{\ x\sigma {\sqrt {2\pi \ }}\ }}\ \exp \left(-{\frac {\left(\ln x-\mu \ \right)^{2}}{2\sigma ^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3496c13256744a487141ec0a5fc3643eb1f77eb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.437ex; height:7.509ex;" alt="{\displaystyle \ {\frac {1}{\ x\sigma {\sqrt {2\pi \ }}\ }}\ \exp \left(-{\frac {\left(\ln x-\mu \ \right)^{2}}{2\sigma ^{2}}}\right)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\frac {\ 1\ }{2}}\left[1+\operatorname {erf} \left({\frac {\ \ln x-\mu \ }{\sigma {\sqrt {2\ }}}}\right)\right]=\Phi \left({\frac {\ln(x)-\mu }{\sigma }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mn>1</mn> <mtext>&#xA0;</mtext> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mtext>&#xA0;</mtext> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\frac {\ 1\ }{2}}\left[1+\operatorname {erf} \left({\frac {\ \ln x-\mu \ }{\sigma {\sqrt {2\ }}}}\right)\right]=\Phi \left({\frac {\ln(x)-\mu }{\sigma }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c51991c6608ba25efced3e0a4107e57c9b0c42d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:45.687ex; height:6.676ex;" alt="{\displaystyle \ {\frac {\ 1\ }{2}}\left[1+\operatorname {erf} \left({\frac {\ \ln x-\mu \ }{\sigma {\sqrt {2\ }}}}\right)\right]=\Phi \left({\frac {\ln(x)-\mu }{\sigma }}\right)}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Quantile_function" title="Quantile function">Quantile</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \exp \left(\mu +{\sqrt {2\sigma ^{2}}}\operatorname {erf} ^{-1}(2p-1)\right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mrow> <msup> <mi>erf</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \exp \left(\mu +{\sqrt {2\sigma ^{2}}}\operatorname {erf} ^{-1}(2p-1)\right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e96a516ca1ec52b97e6fc5ddb3fce9eb904f14ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:31.509ex; height:4.843ex;" alt="{\displaystyle \ \exp \left(\mu +{\sqrt {2\sigma ^{2}}}\operatorname {erf} ^{-1}(2p-1)\right)\ }"></span> <br /><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =\exp(\mu +\sigma \Phi ^{-1}(p))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <msup> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =\exp(\mu +\sigma \Phi ^{-1}(p))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f730d10b42f7c10a3625457178db052bea3d800" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.376ex; height:3.176ex;" alt="{\displaystyle =\exp(\mu +\sigma \Phi ^{-1}(p))}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_value" title="Expected value">Mean</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \exp \left(\ \mu +{\frac {\sigma ^{2}}{2}}\ \right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \exp \left(\ \mu +{\frac {\sigma ^{2}}{2}}\ \right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff0a1c206987c9941fda520b0fda98af85b5268f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.146ex; height:6.343ex;" alt="{\displaystyle \ \exp \left(\ \mu +{\frac {\sigma ^{2}}{2}}\ \right)\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Median" title="Median">Median</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \exp(\ \mu \ )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \exp(\ \mu \ )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26cbcffbfa136b2fb3eacc5bc879d9204b1c8f42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.473ex; height:2.843ex;" alt="{\displaystyle \ \exp(\ \mu \ )\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \exp \left(\ \mu -\sigma ^{2}\ \right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \exp \left(\ \mu -\sigma ^{2}\ \right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08452cbe245900f6b7872b80a7ae468699c1030a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:15.019ex; height:3.343ex;" alt="{\displaystyle \ \exp \left(\ \mu -\sigma ^{2}\ \right)\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Variance" title="Variance">Variance</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \left[\ \exp(\sigma ^{2})-1\ \right]\ \exp \left(2\ \mu +\sigma ^{2}\right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mrow> <mo>]</mo> </mrow> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \left[\ \exp(\sigma ^{2})-1\ \right]\ \exp \left(2\ \mu +\sigma ^{2}\right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32a3c017965f320e31686d9dca9506e857b83166" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.192ex; height:3.343ex;" alt="{\displaystyle \ \left[\ \exp(\sigma ^{2})-1\ \right]\ \exp \left(2\ \mu +\sigma ^{2}\right)\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Skewness" title="Skewness">Skewness</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \left[\ \exp \left(\sigma ^{2}\right)+2\ \right]{\sqrt {\exp(\sigma ^{2})-1\;}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow> <mo>[</mo> <mrow> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mtext>&#xA0;</mtext> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mspace width="thickmathspace" /> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \left[\ \exp \left(\sigma ^{2}\right)+2\ \right]{\sqrt {\exp(\sigma ^{2})-1\;}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1657430133ee87501a9b184a9f8cd9f01d00fa12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:31.631ex; height:4.843ex;" alt="{\displaystyle \ \left[\ \exp \left(\sigma ^{2}\right)+2\ \right]{\sqrt {\exp(\sigma ^{2})-1\;}}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">Excess kurtosis</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ 1\ \exp \left(4\ \sigma ^{2}\right)+2\ \exp \left(3\ \sigma ^{2}\right)+3\ \exp \left(2\sigma ^{2}\right)-6\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mn>1</mn> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>4</mn> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>3</mn> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mn>3</mn> <mtext>&#xA0;</mtext> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>6</mn> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ 1\ \exp \left(4\ \sigma ^{2}\right)+2\ \exp \left(3\ \sigma ^{2}\right)+3\ \exp \left(2\sigma ^{2}\right)-6\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79f0d65f3e6732589dbd7d7c6a9451f5610cd338" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:46.085ex; height:3.343ex;" alt="{\displaystyle \ 1\ \exp \left(4\ \sigma ^{2}\right)+2\ \exp \left(3\ \sigma ^{2}\right)+3\ \exp \left(2\sigma ^{2}\right)-6\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Information_entropy" class="mw-redirect" title="Information entropy">Entropy</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \log _{2}\left(\ {\sqrt {2\pi \ }}\ \sigma \ e^{\mu +{\tfrac {1}{2}}}\ \right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \log _{2}\left(\ {\sqrt {2\pi \ }}\ \sigma \ e^{\mu +{\tfrac {1}{2}}}\ \right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e91fcf2352e4403ce3795f9c7058372f5adee50e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.902ex; height:6.176ex;" alt="{\displaystyle \ \log _{2}\left(\ {\sqrt {2\pi \ }}\ \sigma \ e^{\mu +{\tfrac {1}{2}}}\ \right)\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Moment-generating_function" title="Moment-generating function">MGF</a></th><td colspan="3" class="infobox-data"> &#8194;defined only for numbers with a<br /> &#8194;non-positive real part, see text</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">CF</a></th><td colspan="3" class="infobox-data"> &#8194;representation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sum _{n=0}^{\infty }{\frac {\ (i\ t)^{n}\ }{n!}}e^{\ n\mu +n^{2}\sigma ^{2}/2}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mi>i</mi> <mtext>&#xA0;</mtext> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;</mtext> <mi>n</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sum _{n=0}^{\infty }{\frac {\ (i\ t)^{n}\ }{n!}}e^{\ n\mu +n^{2}\sigma ^{2}/2}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4f75c743409fbb0a1390bd5634197d24c3728b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.925ex; height:6.843ex;" alt="{\displaystyle \ \sum _{n=0}^{\infty }{\frac {\ (i\ t)^{n}\ }{n!}}e^{\ n\mu +n^{2}\sigma ^{2}/2}\ }"></span><br /> &#8194;is asymptotically divergent, but adequate<br /> &#8194;for most numerical purposes</td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Fisher_information" title="Fisher information">Fisher information</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\begin{pmatrix}{\frac {1}{\ \sigma ^{2}\ }}&amp;0\\0&amp;{\frac {2}{\ \sigma ^{2}\ }}\end{pmatrix}}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\begin{pmatrix}{\frac {1}{\ \sigma ^{2}\ }}&amp;0\\0&amp;{\frac {2}{\ \sigma ^{2}\ }}\end{pmatrix}}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1168f75d050f4a5819e6fe1f924d7e5bde2c301" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:15.842ex; height:8.176ex;" alt="{\displaystyle \ {\begin{pmatrix}{\frac {1}{\ \sigma ^{2}\ }}&amp;0\\0&amp;{\frac {2}{\ \sigma ^{2}\ }}\end{pmatrix}}\ }"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">Method of moments</a></th><td colspan="3" class="infobox-data"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu =\log \left({\frac {\operatorname {\mathbb {E} } [X]\ }{\ {\sqrt {{\frac {\ \operatorname {Var} [X]~~}{\ \operatorname {\mathbb {E} } [X]^{2}\ }}+1\ }}\ }}\right)\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> </mrow> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> </mrow> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu =\log \left({\frac {\operatorname {\mathbb {E} } [X]\ }{\ {\sqrt {{\frac {\ \operatorname {Var} [X]~~}{\ \operatorname {\mathbb {E} } [X]^{2}\ }}+1\ }}\ }}\right)\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55074cffa7b5b5f102b010be57837a25279bf580" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:30.231ex; height:13.176ex;" alt="{\displaystyle \ \mu =\log \left({\frac {\operatorname {\mathbb {E} } [X]\ }{\ {\sqrt {{\frac {\ \operatorname {Var} [X]~~}{\ \operatorname {\mathbb {E} } [X]^{2}\ }}+1\ }}\ }}\right)\ ,}"></span> <br /><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma ={\sqrt {\log \left({\frac {\ \operatorname {Var} [X]~~}{\ \operatorname {\mathbb {E} } [X]^{2}\ }}+1\ \right)\ }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mtext>&#xA0;</mtext> <mtext>&#xA0;</mtext> </mrow> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">E</mi> </mrow> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma ={\sqrt {\log \left({\frac {\ \operatorname {Var} [X]~~}{\ \operatorname {\mathbb {E} } [X]^{2}\ }}+1\ \right)\ }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46349b67d9ab6239b10e582d5c92ad410254a97e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.946ex; height:7.509ex;" alt="{\displaystyle \ \sigma ={\sqrt {\log \left({\frac {\ \operatorname {Var} [X]~~}{\ \operatorname {\mathbb {E} } [X]^{2}\ }}+1\ \right)\ }}}"></span></td></tr><tr><th scope="row" class="infobox-label"><a href="/wiki/Expected_shortfall" title="Expected shortfall">Expected shortfall</a></th><td colspan="3" class="infobox-data"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\frac {1}{2}}e^{\mu +{\frac {\sigma ^{2}}{2}}}{\frac {\ 1+\operatorname {erf} \left({\frac {\sigma }{\ {\sqrt {2\ }}\ }}+\operatorname {erf} ^{-1}(2p-1)\right)\ }{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mn>1</mn> <mo>+</mo> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C3;<!-- σ --></mi> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>+</mo> <msup> <mi>erf</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mrow> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\frac {1}{2}}e^{\mu +{\frac {\sigma ^{2}}{2}}}{\frac {\ 1+\operatorname {erf} \left({\frac {\sigma }{\ {\sqrt {2\ }}\ }}+\operatorname {erf} ^{-1}(2p-1)\right)\ }{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d37c56f5c487d2c26cc03264019eb265cbf54d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:40.739ex; height:8.009ex;" alt="{\displaystyle \ {\frac {1}{2}}e^{\mu +{\frac {\sigma ^{2}}{2}}}{\frac {\ 1+\operatorname {erf} \left({\frac {\sigma }{\ {\sqrt {2\ }}\ }}+\operatorname {erf} ^{-1}(2p-1)\right)\ }{p}}}"></span><sup id="cite_ref-norton_1-0" class="reference"><a href="#cite_note-norton-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <br /><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ =e^{\mu +{\frac {\sigma ^{2}}{2}}}{\frac {1}{1-p}}(1-\Phi (\Phi ^{-1}(p)-\sigma ))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <msup> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ =e^{\mu +{\frac {\sigma ^{2}}{2}}}{\frac {1}{1-p}}(1-\Phi (\Phi ^{-1}(p)-\sigma ))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9e498ad131a88eb8fde258ce308276a5cf2aff6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:36.133ex; height:6.009ex;" alt="{\displaystyle \ =e^{\mu +{\frac {\sigma ^{2}}{2}}}{\frac {1}{1-p}}(1-\Phi (\Phi ^{-1}(p)-\sigma ))}"></span></td></tr></tbody></table> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, a <b>log-normal</b> (or <b>lognormal</b>) <b>distribution</b> is a continuous <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> of a <a href="/wiki/Random_variable" title="Random variable">random variable</a> whose <a href="/wiki/Logarithm" title="Logarithm">logarithm</a> is <a href="/wiki/Normal_distribution" title="Normal distribution">normally distributed</a>. Thus, if the random variable <span class="texhtml mvar" style="font-style:italic;">X</span> is log-normally distributed, then <span class="nowrap"> <span class="texhtml"><i>Y</i> = ln(<i>X</i>)</span> </span> has a normal distribution.<sup id="cite_ref-:1_2-0" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_3-0" class="reference"><a href="#cite_note-:2-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Equivalently, if <span class="texhtml mvar" style="font-style:italic;">Y</span> has a normal distribution, then the <a href="/wiki/Exponential_function" title="Exponential function">exponential function</a> of <span class="texhtml mvar" style="font-style:italic;">Y</span>, <span class="nowrap"> <span class="texhtml"><i>X</i> = exp(<i>Y</i>)</span> ,</span> has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and <a href="/wiki/Engineering" title="Engineering">engineering</a> sciences, as well as <a href="/wiki/Medicine" title="Medicine">medicine</a>, <a href="/wiki/Economics" title="Economics">economics</a> and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics). </p><p>The distribution is occasionally referred to as the <b>Galton distribution</b> or <b>Galton's distribution</b>, after <a href="/wiki/Francis_Galton" title="Francis Galton">Francis Galton</a>.<sup id="cite_ref-JKB_4-0" class="reference"><a href="#cite_note-JKB-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> The log-normal distribution has also been associated with other names, such as <a href="/wiki/Donald_MacAlister#log-normal" title="Donald MacAlister">McAlister</a>, <a href="/wiki/Gibrat%27s_law" title="Gibrat&#39;s law">Gibrat</a> and <a href="/wiki/Cobb%E2%80%93Douglas" class="mw-redirect" title="Cobb–Douglas">Cobb–Douglas</a>.<sup id="cite_ref-JKB_4-1" class="reference"><a href="#cite_note-JKB-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p><p>A log-normal process is the statistical realization of the multiplicative <a href="/wiki/Mathematical_product" class="mw-redirect" title="Mathematical product">product</a> of many <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a> <a href="/wiki/Random_variable" title="Random variable">random variables</a>, each of which is positive. This is justified by considering the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a> in the log domain (sometimes called <a href="/wiki/Gibrat%27s_law" title="Gibrat&#39;s law">Gibrat's law</a>). The log-normal distribution is the <a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">maximum entropy probability distribution</a> for a random variate <span class="texhtml mvar" style="font-style:italic;">X</span>—for which the mean and variance of <span class="texhtml">ln(<i>X</i>)</span> are specified.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=1" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Generation_and_parameters">Generation and parameters</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=2" title="Edit section: Generation and parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ Z\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>Z</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ Z\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/175e98486f427d21166a91a0e1bf6607150d182a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.842ex; height:2.176ex;" alt="{\displaystyle \ Z\ }"></span> be a <a href="/wiki/Normal_distribution#Standard_normal_distribution" title="Normal distribution">standard normal variable</a>, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> be two real numbers, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma &gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma &gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/762ecd0f0905dd0d4d7a07f80fa8bfb324b9b021" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.591ex; height:2.176ex;" alt="{\displaystyle \sigma &gt;0}"></span>. Then, the distribution of the random variable </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=e^{\mu +\sigma Z}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <mi>Z</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=e^{\mu +\sigma Z}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f28880971cb6d8b20b541b4943e518f190528bf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.792ex; height:2.676ex;" alt="{\displaystyle X=e^{\mu +\sigma Z}}"></span></dd></dl> <p>is called the log-normal distribution with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>. These are the <a href="/wiki/Expected_value" title="Expected value">expected value</a> (or <a href="/wiki/Mean" title="Mean">mean</a>) and <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> of the variable's natural <a href="/wiki/Logarithm" title="Logarithm">logarithm</a>, <i>not</i> the expectation and standard deviation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ X\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>X</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ X\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc3f6c335ba3fd217820a6dd6cd310c49a39d08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.141ex; height:2.176ex;" alt="{\displaystyle \ X\ }"></span> itself. </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Lognormal_Distribution.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Lognormal_Distribution.svg/330px-Lognormal_Distribution.svg.png" decoding="async" width="330" height="244" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Lognormal_Distribution.svg/495px-Lognormal_Distribution.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4e/Lognormal_Distribution.svg/660px-Lognormal_Distribution.svg.png 2x" data-file-width="629" data-file-height="465" /></a><figcaption>Relation between normal and log-normal distribution. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ Y=\mu +\sigma Z\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>Y</mi> <mo>=</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <mi>Z</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ Y=\mu +\sigma Z\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16acf7ffded2254c78cfb2a0fbf66bc80391e6e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.285ex; height:2.676ex;" alt="{\displaystyle \ Y=\mu +\sigma Z\ }"></span> is normally distributed, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ X\sim e^{Y}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ X\sim e^{Y}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0c035bb8302179f1f4485218f00336e5931faa1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.809ex; height:2.676ex;" alt="{\displaystyle \ X\sim e^{Y}\ }"></span> is log-normally distributed.</figcaption></figure> <p>This relationship is true regardless of the base of the logarithmic or exponential function: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \log _{a}(X)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \log _{a}(X)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79d037d5a8117ed312a3ef12281365666edfe4c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.411ex; height:2.843ex;" alt="{\displaystyle \ \log _{a}(X)\ }"></span> is normally distributed, then so is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \log _{b}(X)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msub> <mi>log</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \log _{b}(X)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ce699f758d747f309db2f1e6d9846453922dd7c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.247ex; height:2.843ex;" alt="{\displaystyle \ \log _{b}(X)\ }"></span> for any two positive numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ a,b\neq 1~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ a,b\neq 1~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74f2778186f5ce515b60541fa2d8ad041bdc1604" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.33ex; height:2.676ex;" alt="{\displaystyle \ a,b\neq 1~.}"></span> Likewise, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ e^{Y}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ e^{Y}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b1e443d4fef746788b995d717cbfbfcf5d6cc50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.731ex; height:2.676ex;" alt="{\displaystyle \ e^{Y}\ }"></span> is log-normally distributed, then so is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ a^{Y}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ a^{Y}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1acf1335a220edf0c225cb17c70826ad30b186b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.524ex; height:3.009ex;" alt="{\displaystyle \ a^{Y}\ ,}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0&lt;a\neq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>&lt;</mo> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0&lt;a\neq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1be67e475dacb968ed2a92f7d9374e67c4991227" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.752ex; height:2.676ex;" alt="{\displaystyle 0&lt;a\neq 1}"></span>. </p><p>In order to produce a distribution with desired mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{X}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{X}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bfe6d3f115b8d6cb595119ea9bc7962a11db65a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.034ex; height:2.176ex;" alt="{\displaystyle \mu _{X}}"></span> and variance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma _{X}^{2}\ ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mtext>&#xA0;</mtext> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma _{X}^{2}\ ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0b77bf24f3807b5c91552842683286cd5716280" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:4.768ex; height:3.176ex;" alt="{\displaystyle \ \sigma _{X}^{2}\ ,}"></span> one uses <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu =\ln \left({\frac {\mu _{X}^{2}}{\ {\sqrt {\mu _{X}^{2}+\sigma _{X}^{2}\ }}\ }}\right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu =\ln \left({\frac {\mu _{X}^{2}}{\ {\sqrt {\mu _{X}^{2}+\sigma _{X}^{2}\ }}\ }}\right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e4be50a035ec3dd4a80585c0eac5e6de47e601e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:25.404ex; height:10.509ex;" alt="{\displaystyle \ \mu =\ln \left({\frac {\mu _{X}^{2}}{\ {\sqrt {\mu _{X}^{2}+\sigma _{X}^{2}\ }}\ }}\right)\ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma ^{2}=\ln \left(1+{\frac {\ \sigma _{X}^{2}\ }{\mu _{X}^{2}}}\right)~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mtext>&#xA0;</mtext> </mrow> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma ^{2}=\ln \left(1+{\frac {\ \sigma _{X}^{2}\ }{\mu _{X}^{2}}}\right)~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/688ca1db3b2d617ca73ea383482e5dfb05caecc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.872ex; height:7.509ex;" alt="{\displaystyle \ \sigma ^{2}=\ln \left(1+{\frac {\ \sigma _{X}^{2}\ }{\mu _{X}^{2}}}\right)~.}"></span> </p><p>Alternatively, the "multiplicative" or "geometric" parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu ^{*}=e^{\mu }\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu ^{*}=e^{\mu }\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75f9e2d9074a9fa1772e4d98ac4bba531e1dc041" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.023ex; height:2.843ex;" alt="{\displaystyle \ \mu ^{*}=e^{\mu }\ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma ^{*}=e^{\sigma }\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma ^{*}=e^{\sigma }\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93496bb0f907e05b896f5d12c3e433442ac4f56f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.9ex; height:2.343ex;" alt="{\displaystyle \ \sigma ^{*}=e^{\sigma }\ }"></span> can be used. They have a more direct interpretation: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \mu ^{*}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \mu ^{*}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1c8ac7c9f5bf3fe8ed5e60697f2ba0535e9edcd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.617ex; height:2.843ex;" alt="{\displaystyle \ \mu ^{*}\ }"></span> is the <i><b><a href="/wiki/Median" title="Median">median</a></b></i> of the distribution, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma ^{*}\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma ^{*}\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a77df7f918a3a0d73c4852bbabedebbf5f376ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.546ex; height:2.343ex;" alt="{\displaystyle \ \sigma ^{*}\ }"></span> is useful for determining "scatter" intervals, see below. </p> <div class="mw-heading mw-heading3"><h3 id="Probability_density_function">Probability density function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=3" title="Edit section: Probability density function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A positive random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ X\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>X</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ X\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc3f6c335ba3fd217820a6dd6cd310c49a39d08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.141ex; height:2.176ex;" alt="{\displaystyle \ X\ }"></span> is log-normally distributed (i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ X\sim \operatorname {Lognormal} \left(\ \mu ,\sigma ^{2}\ \right)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mtext>&#xA0;</mtext> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ X\sim \operatorname {Lognormal} \left(\ \mu ,\sigma ^{2}\ \right)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6660778741a0008c77513902651dd67789d3871c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.241ex; height:3.343ex;" alt="{\displaystyle \ X\sim \operatorname {Lognormal} \left(\ \mu ,\sigma ^{2}\ \right)\ }"></span>), if the natural logarithm of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ X\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>X</mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ X\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc3f6c335ba3fd217820a6dd6cd310c49a39d08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.141ex; height:2.176ex;" alt="{\displaystyle \ X\ }"></span> is normally distributed with mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and variance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \sigma ^{2}\ :}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>:</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \sigma ^{2}\ :}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8b2124cde3fe52f72b984bb1384d15452b852ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.838ex; height:2.676ex;" alt="{\displaystyle \ \sigma ^{2}\ :}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(X)\sim {\mathcal {N}}(\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(X)\sim {\mathcal {N}}(\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1b92c953f2ecbfccfb70cfa5e80fa3b71ac06b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.732ex; height:3.176ex;" alt="{\displaystyle \ln(X)\sim {\mathcal {N}}(\mu ,\sigma ^{2})}"></span></dd></dl> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Phi \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Phi \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cceb6296aeb0b11e9529b1efa8aab6e651147a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.839ex; height:2.176ex;" alt="{\displaystyle \ \Phi \ }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \varphi \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \varphi \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/783cc6d0a6afcecc3e2c31fbb82b40d0616c05b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.681ex; height:2.176ex;" alt="{\displaystyle \ \varphi \ }"></span> be respectively the cumulative probability distribution function and the probability density function of the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ {\mathcal {N}}(\ 0,1\ )\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mtext>&#xA0;</mtext> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mtext>&#xA0;</mtext> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ {\mathcal {N}}(\ 0,1\ )\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83414e55cf4ea8ea7b4e1d3f489ee8fee859a172" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.766ex; height:3.009ex;" alt="{\displaystyle \ {\mathcal {N}}(\ 0,1\ )\ }"></span> standard normal distribution, then we have that<sup id="cite_ref-:1_2-1" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-JKB_4-2" class="reference"><a href="#cite_note-JKB-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> the <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> of the log-normal distribution is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}f_{X}(x)&amp;={\frac {\rm {d}}{{\rm {d}}x}}\ \operatorname {\mathbb {P} _{\mathit {X}}} \,\!{\bigl [}\ X\leq x\ {\bigr ]}\\[6pt]&amp;={\frac {\rm {d}}{{\rm {d}}x}}\ \operatorname {\mathbb {P} _{\mathit {X}}} \,\!{\bigl [}\ \ln X\leq \ln x\ {\bigr ]}\\[6pt]&amp;={\frac {\rm {d}}{{\rm {d}}x}}\operatorname {\Phi } \!\!\left({\frac {\ \ln x-\mu \ }{\sigma }}\right)\\[6pt]&amp;=\operatorname {\varphi } \!\left({\frac {\ln x-\mu }{\sigma }}\right){\frac {\rm {d}}{{\rm {d}}x}}\left({\frac {\ \ln x-\mu \ }{\sigma }}\right)\\[6pt]&amp;=\operatorname {\varphi } \!\left({\frac {\ \ln x-\mu \ }{\sigma }}\right){\frac {1}{\ \sigma \ x\ }}\\[6pt]&amp;={\frac {1}{\ x\ \sigma {\sqrt {2\ \pi \ }}\ }}\exp \left(-{\frac {\ (\ln x-\mu )^{2}\ }{2\ \sigma ^{2}}}\right)~.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">X</mi> </mrow> </mrow> </msub> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">X</mi> </mrow> </mrow> </msub> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">[</mo> </mrow> </mrow> <mtext>&#xA0;</mtext> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mi>&#x03C6;<!-- φ --></mi> </mrow> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mtext>&#xA0;</mtext> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> <mtext>&#xA0;</mtext> <mi>x</mi> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mtext>&#xA0;</mtext> <mi>x</mi> <mtext>&#xA0;</mtext> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mtext>&#xA0;</mtext> <mi>&#x03C0;<!-- π --></mi> <mtext>&#xA0;</mtext> </msqrt> </mrow> <mtext>&#xA0;</mtext> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mtext>&#xA0;</mtext> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mtext>&#xA0;</mtext> </mrow> <mrow> <mn>2</mn> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mtext>&#xA0;</mtext> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}f_{X}(x)&amp;={\frac {\rm {d}}{{\rm {d}}x}}\ \operatorname {\mathbb {P} _{\mathit {X}}} \,\!{\bigl [}\ X\leq x\ {\bigr ]}\\[6pt]&amp;={\frac {\rm {d}}{{\rm {d}}x}}\ \operatorname {\mathbb {P} _{\mathit {X}}} \,\!{\bigl [}\ \ln X\leq \ln x\ {\bigr ]}\\[6pt]&amp;={\frac {\rm {d}}{{\rm {d}}x}}\operatorname {\Phi } \!\!\left({\frac {\ \ln x-\mu \ }{\sigma }}\right)\\[6pt]&amp;=\operatorname {\varphi } \!\left({\frac {\ln x-\mu }{\sigma }}\right){\frac {\rm {d}}{{\rm {d}}x}}\left({\frac {\ \ln x-\mu \ }{\sigma }}\right)\\[6pt]&amp;=\operatorname {\varphi } \!\left({\frac {\ \ln x-\mu \ }{\sigma }}\right){\frac {1}{\ \sigma \ x\ }}\\[6pt]&amp;={\frac {1}{\ x\ \sigma {\sqrt {2\ \pi \ }}\ }}\exp \left(-{\frac {\ (\ln x-\mu )^{2}\ }{2\ \sigma ^{2}}}\right)~.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10dc2a3d559ddc86174a24365d121314f6131cf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -21.671ex; width:44.005ex; height:44.509ex;" alt="{\displaystyle {\begin{aligned}f_{X}(x)&amp;={\frac {\rm {d}}{{\rm {d}}x}}\ \operatorname {\mathbb {P} _{\mathit {X}}} \,\!{\bigl [}\ X\leq x\ {\bigr ]}\\[6pt]&amp;={\frac {\rm {d}}{{\rm {d}}x}}\ \operatorname {\mathbb {P} _{\mathit {X}}} \,\!{\bigl [}\ \ln X\leq \ln x\ {\bigr ]}\\[6pt]&amp;={\frac {\rm {d}}{{\rm {d}}x}}\operatorname {\Phi } \!\!\left({\frac {\ \ln x-\mu \ }{\sigma }}\right)\\[6pt]&amp;=\operatorname {\varphi } \!\left({\frac {\ln x-\mu }{\sigma }}\right){\frac {\rm {d}}{{\rm {d}}x}}\left({\frac {\ \ln x-\mu \ }{\sigma }}\right)\\[6pt]&amp;=\operatorname {\varphi } \!\left({\frac {\ \ln x-\mu \ }{\sigma }}\right){\frac {1}{\ \sigma \ x\ }}\\[6pt]&amp;={\frac {1}{\ x\ \sigma {\sqrt {2\ \pi \ }}\ }}\exp \left(-{\frac {\ (\ln x-\mu )^{2}\ }{2\ \sigma ^{2}}}\right)~.\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Cumulative_distribution_function">Cumulative distribution function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=4" title="Edit section: Cumulative distribution function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{X}(x)=\Phi \left({\frac {(\ln x)-\mu }{\sigma }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{X}(x)=\Phi \left({\frac {(\ln x)-\mu }{\sigma }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29095d9cbd6539833d549c59149b9fc5bd06339b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:25.394ex; height:6.343ex;" alt="{\displaystyle F_{X}(x)=\Phi \left({\frac {(\ln x)-\mu }{\sigma }}\right)}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \Phi \ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \Phi \ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cceb6296aeb0b11e9529b1efa8aab6e651147a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.839ex; height:2.176ex;" alt="{\displaystyle \ \Phi \ }"></span> is the cumulative distribution function of the standard normal distribution (i.e., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ \operatorname {\mathcal {N}} (\ 0,\ 1)\ }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mtext>&#xA0;</mtext> <mn>0</mn> <mo>,</mo> <mtext>&#xA0;</mtext> <mn>1</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ \operatorname {\mathcal {N}} (\ 0,\ 1)\ }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42ca15d9274da562ab7724e9193dc113b6fac7ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.153ex; height:3.009ex;" alt="{\displaystyle \ \operatorname {\mathcal {N}} (\ 0,\ 1)\ }"></span>). </p><p>This may also be expressed as follows:<sup id="cite_ref-:1_2-2" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)\right]={\frac {1}{2}}\operatorname {erfc} \left(-{\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mn>1</mn> <mo>+</mo> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>erfc</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)\right]={\frac {1}{2}}\operatorname {erfc} \left(-{\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7373f66d2a24f5817a8bc2f2f44836941b79118" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:46.791ex; height:6.509ex;" alt="{\displaystyle {\frac {1}{2}}\left[1+\operatorname {erf} \left({\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)\right]={\frac {1}{2}}\operatorname {erfc} \left(-{\frac {\ln x-\mu }{\sigma {\sqrt {2}}}}\right)}"></span></dd></dl> <p>where <span style="font-size:120%"><span class="texhtml">erfc</span></span> is the <a href="/wiki/Complementary_error_function" class="mw-redirect" title="Complementary error function">complementary error function</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Multivariate_log-normal">Multivariate log-normal</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=5" title="Edit section: Multivariate log-normal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {X}}\sim {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">X</mi> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BC;<!-- μ --></mi> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">&#x03A3;<!-- Σ --></mi> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {X}}\sim {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f68a7228540f7ae0eaf24737f822bed65c276575" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.395ex; height:3.009ex;" alt="{\displaystyle {\boldsymbol {X}}\sim {\mathcal {N}}({\boldsymbol {\mu }},\,{\boldsymbol {\Sigma }})}"></span> is a <a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">multivariate normal distribution</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y_{i}=\exp(X_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y_{i}=\exp(X_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87ba8de606b15c819f3d279c76ade97f7ecf9e58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.334ex; height:2.843ex;" alt="{\displaystyle Y_{i}=\exp(X_{i})}"></span> has a multivariate log-normal distribution.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The exponential is applied elementwise to the random vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {X}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">X</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {X}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/899e933d518eefcbbd0c48512cc7887ee117d040" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.215ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {X}}}"></span>. The mean of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\boldsymbol {Y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">Y</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\boldsymbol {Y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/026ecbeeef99cb5ee8eaef9ec2f59bf7a8fce8fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.036ex; height:2.176ex;" alt="{\displaystyle {\boldsymbol {Y}}}"></span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [{\boldsymbol {Y}}]_{i}=e^{\mu _{i}+{\frac {1}{2}}\Sigma _{ii}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">Y</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [{\boldsymbol {Y}}]_{i}=e^{\mu _{i}+{\frac {1}{2}}\Sigma _{ii}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/488f8b7b6e5331b3d4b257c87b40752a01ee6293" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.443ex; height:4.009ex;" alt="{\displaystyle \operatorname {E} [{\boldsymbol {Y}}]_{i}=e^{\mu _{i}+{\frac {1}{2}}\Sigma _{ii}},}"></span></dd></dl> <p>and its <a href="/wiki/Covariance_matrix" title="Covariance matrix">covariance matrix</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} [{\boldsymbol {Y}}]_{ij}=e^{\mu _{i}+\mu _{j}+{\frac {1}{2}}(\Sigma _{ii}+\Sigma _{jj})}(e^{\Sigma _{ij}}-1).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">Y</mi> </mrow> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} [{\boldsymbol {Y}}]_{ij}=e^{\mu _{i}+\mu _{j}+{\frac {1}{2}}(\Sigma _{ii}+\Sigma _{jj})}(e^{\Sigma _{ij}}-1).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11b3d9175a3f442f40eb4687f58014c3efdfa7d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.837ex; height:4.176ex;" alt="{\displaystyle \operatorname {Var} [{\boldsymbol {Y}}]_{ij}=e^{\mu _{i}+\mu _{j}+{\frac {1}{2}}(\Sigma _{ii}+\Sigma _{jj})}(e^{\Sigma _{ij}}-1).}"></span></dd></dl> <p>Since the multivariate log-normal distribution is not widely used, the rest of this entry only deals with the <a href="/wiki/Univariate_distribution" title="Univariate distribution">univariate distribution</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Characteristic_function_and_moment_generating_function">Characteristic function and moment generating function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=6" title="Edit section: Characteristic function and moment generating function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>All moments of the log-normal distribution exist and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +n^{2}\sigma ^{2}/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +n^{2}\sigma ^{2}/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ec49bbb5852b6e735f0a6a49468771db326b7bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.996ex; height:3.509ex;" alt="{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +n^{2}\sigma ^{2}/2}}"></span></dd></dl> <p>This can be derived by letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z={\tfrac {\ln(x)-(\mu +n\sigma ^{2})}{\sigma }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>n</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z={\tfrac {\ln(x)-(\mu +n\sigma ^{2})}{\sigma }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cadf7a6ab2c73ee906f76ece5d7a2eff61e8097b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.2ex; height:4.176ex;" alt="{\displaystyle z={\tfrac {\ln(x)-(\mu +n\sigma ^{2})}{\sigma }}}"></span> within the integral. However, the log-normal distribution is not determined by its moments.<sup id="cite_ref-Heyde_8-0" class="reference"><a href="#cite_note-Heyde-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> This implies that it cannot have a defined moment generating function in a neighborhood of zero.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> Indeed, the expected value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [e^{tX}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mi>X</mi> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [e^{tX}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0379eb85a8f71d1d2e06107ba42758bc26c355b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.186ex; height:3.176ex;" alt="{\displaystyle \operatorname {E} [e^{tX}]}"></span> is not defined for any positive value of the argument <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span>, since the defining integral diverges. </p><p>The <a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [e^{itX}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>t</mi> <mi>X</mi> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [e^{itX}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33bdf53bdb972f0154a057c687c9545db5e7ff7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.753ex; height:3.176ex;" alt="{\displaystyle \operatorname {E} [e^{itX}]}"></span> is defined for real values of <span class="texhtml"><i>t</i></span>, but is not defined for any complex value of <span class="texhtml"><i>t</i></span> that has a negative imaginary part, and hence the characteristic function is not <a href="/wiki/Analytic_function" title="Analytic function">analytic</a> at the origin. Consequently, the characteristic function of the log-normal distribution cannot be represented as an infinite convergent series.<sup id="cite_ref-Holgate_10-0" class="reference"><a href="#cite_note-Holgate-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> In particular, its Taylor <a href="/wiki/Formal_series" class="mw-redirect" title="Formal series">formal series</a> diverges: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }{\frac {(it)^{n}}{n!}}e^{n\mu +n^{2}\sigma ^{2}/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mi>t</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }{\frac {(it)^{n}}{n!}}e^{n\mu +n^{2}\sigma ^{2}/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6733a3f8e5325d8f77495404c70168cdaa7cfab9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.054ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }{\frac {(it)^{n}}{n!}}e^{n\mu +n^{2}\sigma ^{2}/2}}"></span></dd></dl> <p>However, a number of alternative <a href="/wiki/Divergent_series" title="Divergent series">divergent series</a> representations have been obtained.<sup id="cite_ref-Holgate_10-1" class="reference"><a href="#cite_note-Holgate-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Barakat_11-0" class="reference"><a href="#cite_note-Barakat-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Barouch_12-0" class="reference"><a href="#cite_note-Barouch-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Leipnik_13-0" class="reference"><a href="#cite_note-Leipnik-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>A closed-form formula for the characteristic function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd7776ed1f48fe8d39d9852e6ed6aa8a61a93d28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.169ex; height:2.843ex;" alt="{\displaystyle \varphi (t)}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65658b7b223af9e1acc877d848888ecdb4466560" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\displaystyle t}"></span> in the domain of convergence is not known. A relatively simple approximating formula is available in closed form, and is given by<sup id="cite_ref-Asmussen_14-0" class="reference"><a href="#cite_note-Asmussen-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (t)\approx {\frac {\exp \left(-{\frac {W^{2}(-it\sigma ^{2}e^{\mu })+2W(-it\sigma ^{2}e^{\mu })}{2\sigma ^{2}}}\right)}{\sqrt {1+W(-it\sigma ^{2}e^{\mu })}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>t</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>W</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>t</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <mi>W</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>t</mi> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (t)\approx {\frac {\exp \left(-{\frac {W^{2}(-it\sigma ^{2}e^{\mu })+2W(-it\sigma ^{2}e^{\mu })}{2\sigma ^{2}}}\right)}{\sqrt {1+W(-it\sigma ^{2}e^{\mu })}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/943de3767423ad4dc55d86c1a8a090a70506e036" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.602ex; height:10.176ex;" alt="{\displaystyle \varphi (t)\approx {\frac {\exp \left(-{\frac {W^{2}(-it\sigma ^{2}e^{\mu })+2W(-it\sigma ^{2}e^{\mu })}{2\sigma ^{2}}}\right)}{\sqrt {1+W(-it\sigma ^{2}e^{\mu })}}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> is the <a href="/wiki/Lambert_W_function" title="Lambert W function">Lambert W function</a>. This approximation is derived via an asymptotic method, but it stays sharp all over the domain of convergence of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=7" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Probabilities_of_log_normal.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Probabilities_of_log_normal.png/220px-Probabilities_of_log_normal.png" decoding="async" width="220" height="709" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/af/Probabilities_of_log_normal.png/330px-Probabilities_of_log_normal.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/af/Probabilities_of_log_normal.png/440px-Probabilities_of_log_normal.png 2x" data-file-width="816" data-file-height="2628" /></a><figcaption>a. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8a6208ec717213d4317e666f1ae872e00620a0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.155ex; height:2.009ex;" alt="{\displaystyle y}"></span> is a log-normal variable with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =1,\sigma =0.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mn>0.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =1,\sigma =0.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c13231b6f8be3cd163edbca85ecdd5b2341d5171" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.096ex; height:2.676ex;" alt="{\displaystyle \mu =1,\sigma =0.5}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p(\sin y&gt;0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> <mo stretchy="false">(</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>y</mi> <mo>&gt;</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p(\sin y&gt;0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aef1b69b54b91029cae332e187dd5ed0ee69f412" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:11.727ex; height:2.843ex;" alt="{\displaystyle p(\sin y&gt;0)}"></span> is computed by transforming to the normal variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=\ln y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=\ln y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e659eb94c8baee9b640f8cbf8f379c0d1503350" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.91ex; height:2.509ex;" alt="{\displaystyle x=\ln y}"></span>, then integrating its density over the domain defined by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin e^{x}&gt;0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msup> <mo>&gt;</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin e^{x}&gt;0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0af4dc8ec13b4cc4111f7f70e78049c7f93f978" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.76ex; height:2.343ex;" alt="{\displaystyle \sin e^{x}&gt;0}"></span> (blue regions), using the numerical method of ray-tracing.<sup id="cite_ref-Das_15-0" class="reference"><a href="#cite_note-Das-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> b &amp; c. The pdf and cdf of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bef72df24eb14edf9eef7d1c2b1c5a702b34f50" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.398ex; height:2.509ex;" alt="{\displaystyle \sin y}"></span> of the log-normal variable can also be computed in this way.</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Probability_in_different_domains">Probability in different domains</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=8" title="Edit section: Probability in different domains"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The probability content of a log-normal distribution in any arbitrary domain can be computed to desired precision by first transforming the variable to normal, then numerically integrating using the ray-trace method.<sup id="cite_ref-Das_15-1" class="reference"><a href="#cite_note-Das-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> (<a rel="nofollow" class="external text" href="https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions">Matlab code</a>) </p> <div class="mw-heading mw-heading3"><h3 id="Probabilities_of_functions_of_a_log-normal_variable">Probabilities of functions of a log-normal variable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=9" title="Edit section: Probabilities of functions of a log-normal variable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Since the probability of a log-normal can be computed in any domain, this means that the cdf (and consequently pdf and inverse cdf) of any function of a log-normal variable can also be computed.<sup id="cite_ref-Das_15-2" class="reference"><a href="#cite_note-Das-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> (<a rel="nofollow" class="external text" href="https://www.mathworks.com/matlabcentral/fileexchange/84973-integrate-and-classify-normal-distributions">Matlab code</a>) </p> <div class="mw-heading mw-heading3"><h3 id="Geometric_or_multiplicative_moments">Geometric or multiplicative moments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=10" title="Edit section: Geometric or multiplicative moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Geometric_mean" title="Geometric mean">geometric or multiplicative mean</a> of the log-normal distribution is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GM} [X]=e^{\mu }=\mu ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>GM</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {GM} [X]=e^{\mu }=\mu ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9445c2ca179a4932cdadf4b511c0348c3449a4ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.189ex; height:2.843ex;" alt="{\displaystyle \operatorname {GM} [X]=e^{\mu }=\mu ^{*}}"></span>. It equals the median. The <a href="/wiki/Geometric_standard_deviation" title="Geometric standard deviation">geometric or multiplicative standard deviation</a> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GSD} [X]=e^{\sigma }=\sigma ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>GSD</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {GSD} [X]=e^{\sigma }=\sigma ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d39b3e467b86b861d3c19285f10f6d7dc8ec923" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.004ex; height:2.843ex;" alt="{\displaystyle \operatorname {GSD} [X]=e^{\sigma }=\sigma ^{*}}"></span>.<sup id="cite_ref-ReferenceA_16-0" class="reference"><a href="#cite_note-ReferenceA-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p><p>By analogy with the arithmetic statistics, one can define a geometric variance, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GVar} [X]=e^{\sigma ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>GVar</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {GVar} [X]=e^{\sigma ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a8446c1bc836c47f03e578df8e5971015871417" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.102ex; height:3.509ex;" alt="{\displaystyle \operatorname {GVar} [X]=e^{\sigma ^{2}}}"></span>, and a <a href="/wiki/Coefficient_of_variation#Log-normal_data" title="Coefficient of variation">geometric coefficient of variation</a>,<sup id="cite_ref-ReferenceA_16-1" class="reference"><a href="#cite_note-ReferenceA-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {GCV} [X]=e^{\sigma }-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>GCV</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {GCV} [X]=e^{\sigma }-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/521d8430003df46e507169d1e2fd3ee976b4105e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.877ex; height:2.843ex;" alt="{\displaystyle \operatorname {GCV} [X]=e^{\sigma }-1}"></span>, has been proposed. This term was intended to be <i>analogous</i> to the coefficient of variation, for describing multiplicative variation in log-normal data, but this definition of GCV has no theoretical basis as an estimate of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CV} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CV</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CV} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d5455da15e231c252c84a8390aade81336fc790" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.421ex; height:2.176ex;" alt="{\displaystyle \operatorname {CV} }"></span> itself (see also <a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">Coefficient of variation</a>). </p><p>Note that the geometric mean is smaller than the arithmetic mean. This is due to the <a href="/wiki/AM%E2%80%93GM_inequality" title="AM–GM inequality">AM–GM inequality</a> and is a consequence of the logarithm being a <a href="/wiki/Concave_function" title="Concave function">concave function</a>. In fact, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]=e^{\mu +{\frac {1}{2}}\sigma ^{2}}=e^{\mu }\cdot {\sqrt {e^{\sigma ^{2}}}}=\operatorname {GM} [X]\cdot {\sqrt {\operatorname {GVar} [X]}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </msqrt> </mrow> <mo>=</mo> <mi>GM</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>GVar</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]=e^{\mu +{\frac {1}{2}}\sigma ^{2}}=e^{\mu }\cdot {\sqrt {e^{\sigma ^{2}}}}=\operatorname {GM} [X]\cdot {\sqrt {\operatorname {GVar} [X]}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e16c0e50545da50c815d65794d7589b9bf513be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:51.205ex; height:5.343ex;" alt="{\displaystyle \operatorname {E} [X]=e^{\mu +{\frac {1}{2}}\sigma ^{2}}=e^{\mu }\cdot {\sqrt {e^{\sigma ^{2}}}}=\operatorname {GM} [X]\cdot {\sqrt {\operatorname {GVar} [X]}}.}"></span><sup id="cite_ref-Acoustic_Stimuli_Revisited_2016_18-0" class="reference"><a href="#cite_note-Acoustic_Stimuli_Revisited_2016-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>In finance, the term <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-{\frac {1}{2}}\sigma ^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-{\frac {1}{2}}\sigma ^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7eb38e2f48456c820bf84ab317a286f42e9c5c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.87ex; height:3.509ex;" alt="{\displaystyle e^{-{\frac {1}{2}}\sigma ^{2}}}"></span> is sometimes interpreted as a <a href="/wiki/Convexity_correction" class="mw-redirect" title="Convexity correction">convexity correction</a>. From the point of view of <a href="/wiki/Stochastic_calculus" title="Stochastic calculus">stochastic calculus</a>, this is the same correction term as in <a href="/wiki/It%C5%8D%27s_lemma#Geometric_Brownian_motion" class="mw-redirect" title="Itō&#39;s lemma">Itō's lemma for geometric Brownian motion</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Arithmetic_moments">Arithmetic moments</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=11" title="Edit section: Arithmetic moments"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For any real or complex number <span class="texhtml"><i>n</i></span>, the <span class="texhtml"><i>n</i></span>-th <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moment</a> of a log-normally distributed variable <span class="texhtml"><i>X</i></span> is given by<sup id="cite_ref-JKB_4-3" class="reference"><a href="#cite_note-JKB-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +{\frac {1}{2}}n^{2}\sigma ^{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +{\frac {1}{2}}n^{2}\sigma ^{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4b6efe7347f26a8054654edcdfb03eb8b28bbf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.502ex; height:4.009ex;" alt="{\displaystyle \operatorname {E} [X^{n}]=e^{n\mu +{\frac {1}{2}}n^{2}\sigma ^{2}}.}"></span></dd></dl> <p>Specifically, the arithmetic mean, expected square, arithmetic variance, and arithmetic standard deviation of a log-normally distributed variable <span class="texhtml"><i>X</i></span> are respectively given by:<sup id="cite_ref-:1_2-3" class="reference"><a href="#cite_note-:1-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} [X]&amp;=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}},\\[4pt]\operatorname {E} [X^{2}]&amp;=e^{2\mu +2\sigma ^{2}},\\[4pt]\operatorname {Var} [X]&amp;=\operatorname {E} [X^{2}]-\operatorname {E} [X]^{2}=(\operatorname {E} [X])^{2}(e^{\sigma ^{2}}-1)=e^{2\mu +\sigma ^{2}}(e^{\sigma ^{2}}-1),\\[4pt]\operatorname {SD} [X]&amp;={\sqrt {\operatorname {Var} [X]}}=\operatorname {E} [X]{\sqrt {e^{\sigma ^{2}}-1}}=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}{\sqrt {e^{\sigma ^{2}}-1}},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mi>SD</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </msqrt> </mrow> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} [X]&amp;=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}},\\[4pt]\operatorname {E} [X^{2}]&amp;=e^{2\mu +2\sigma ^{2}},\\[4pt]\operatorname {Var} [X]&amp;=\operatorname {E} [X^{2}]-\operatorname {E} [X]^{2}=(\operatorname {E} [X])^{2}(e^{\sigma ^{2}}-1)=e^{2\mu +\sigma ^{2}}(e^{\sigma ^{2}}-1),\\[4pt]\operatorname {SD} [X]&amp;={\sqrt {\operatorname {Var} [X]}}=\operatorname {E} [X]{\sqrt {e^{\sigma ^{2}}-1}}=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}{\sqrt {e^{\sigma ^{2}}-1}},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b59e2bead4a03f70fcf34a610106ae8704959a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.505ex; width:64.164ex; height:20.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {E} [X]&amp;=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}},\\[4pt]\operatorname {E} [X^{2}]&amp;=e^{2\mu +2\sigma ^{2}},\\[4pt]\operatorname {Var} [X]&amp;=\operatorname {E} [X^{2}]-\operatorname {E} [X]^{2}=(\operatorname {E} [X])^{2}(e^{\sigma ^{2}}-1)=e^{2\mu +\sigma ^{2}}(e^{\sigma ^{2}}-1),\\[4pt]\operatorname {SD} [X]&amp;={\sqrt {\operatorname {Var} [X]}}=\operatorname {E} [X]{\sqrt {e^{\sigma ^{2}}-1}}=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}{\sqrt {e^{\sigma ^{2}}-1}},\end{aligned}}}"></span></dd></dl> <p>The arithmetic <a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">coefficient of variation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CV} [X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CV</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CV} [X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89fe40c7a2788b7bb2797aeda4b90c1f53be8ce0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.695ex; height:2.843ex;" alt="{\displaystyle \operatorname {CV} [X]}"></span> is the ratio <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\operatorname {SD} [X]}{\operatorname {E} [X]}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>SD</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mrow> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\operatorname {SD} [X]}{\operatorname {E} [X]}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb1c3719bd3e6716f973e3ab735e695e19df4a66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.32ex; height:4.843ex;" alt="{\displaystyle {\tfrac {\operatorname {SD} [X]}{\operatorname {E} [X]}}}"></span>. For a log-normal distribution it is equal to<sup id="cite_ref-:2_3-1" class="reference"><a href="#cite_note-:2-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CV} [X]={\sqrt {e^{\sigma ^{2}}-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CV</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CV} [X]={\sqrt {e^{\sigma ^{2}}-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cad386f192fe53b9e0525951f5423f46e03e36d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:19.855ex; height:4.843ex;" alt="{\displaystyle \operatorname {CV} [X]={\sqrt {e^{\sigma ^{2}}-1}}.}"></span></dd></dl> <p>This estimate is sometimes referred to as the "geometric CV" (GCV),<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> due to its use of the geometric variance. Contrary to the arithmetic standard deviation, the arithmetic coefficient of variation is independent of the arithmetic mean. </p><p>The parameters <span class="texhtml"><i>μ</i></span> and <span class="texhtml"><i>σ</i></span> can be obtained, if the arithmetic mean and the arithmetic variance are known: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mu &amp;=\ln \left({\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {E} [X^{2}]}}}\right)=\ln \left({\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {Var} [X]+\operatorname {E} [X]^{2}}}}\right),\\[4pt]\sigma ^{2}&amp;=\ln \left({\frac {\operatorname {E} [X^{2}]}{\operatorname {E} [X]^{2}}}\right)=\ln \left(1+{\frac {\operatorname {Var} [X]}{\operatorname {E} [X]^{2}}}\right).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03BC;<!-- μ --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msqrt> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <msqrt> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mrow> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mrow> <mrow> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mu &amp;=\ln \left({\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {E} [X^{2}]}}}\right)=\ln \left({\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {Var} [X]+\operatorname {E} [X]^{2}}}}\right),\\[4pt]\sigma ^{2}&amp;=\ln \left({\frac {\operatorname {E} [X^{2}]}{\operatorname {E} [X]^{2}}}\right)=\ln \left(1+{\frac {\operatorname {Var} [X]}{\operatorname {E} [X]^{2}}}\right).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ede6a785b6ed56d35a478e9927963cea65ba96e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.505ex; width:49.311ex; height:16.176ex;" alt="{\displaystyle {\begin{aligned}\mu &amp;=\ln \left({\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {E} [X^{2}]}}}\right)=\ln \left({\frac {\operatorname {E} [X]^{2}}{\sqrt {\operatorname {Var} [X]+\operatorname {E} [X]^{2}}}}\right),\\[4pt]\sigma ^{2}&amp;=\ln \left({\frac {\operatorname {E} [X^{2}]}{\operatorname {E} [X]^{2}}}\right)=\ln \left(1+{\frac {\operatorname {Var} [X]}{\operatorname {E} [X]^{2}}}\right).\end{aligned}}}"></span></dd></dl> <p>A probability distribution is not uniquely determined by the moments <span class="texhtml">E[<i>X</i><sup><i>n</i></sup>] = e<sup><i>nμ</i> + <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>&#8288;</span><i>n</i><sup>2</sup><i>σ</i><sup>2</sup></sup></span> for <span class="texhtml"><i>n</i> ≥ 1</span>. That is, there exist other distributions with the same set of moments.<sup id="cite_ref-JKB_4-4" class="reference"><a href="#cite_note-JKB-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> In fact, there is a whole family of distributions with the same moments as the log-normal distribution.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2012)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Mode,_median,_quantiles"><span id="Mode.2C_median.2C_quantiles"></span>Mode, median, quantiles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=12" title="Edit section: Mode, median, quantiles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Comparison_mean_median_mode.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Comparison_mean_median_mode.svg/280px-Comparison_mean_median_mode.svg.png" decoding="async" width="280" height="210" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/de/Comparison_mean_median_mode.svg/420px-Comparison_mean_median_mode.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/de/Comparison_mean_median_mode.svg/560px-Comparison_mean_median_mode.svg.png 2x" data-file-width="512" data-file-height="384" /></a><figcaption>Comparison of <a href="/wiki/Mean" title="Mean">mean</a>, <a href="/wiki/Median" title="Median">median</a> and <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> of two log-normal distributions with different <a href="/wiki/Skewness" title="Skewness">skewness</a>.</figcaption></figure> <p>The <a href="/wiki/Mode_(statistics)" title="Mode (statistics)">mode</a> is the point of global maximum of the probability density function. In particular, by solving the equation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\ln f)'=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>f</mi> <msup> <mo stretchy="false">)</mo> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\ln f)'=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/381bbe52c7caeb8f9570316e05d4686ea192ff95" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.36ex; height:3.009ex;" alt="{\displaystyle (\ln f)&#039;=0}"></span>, we get that: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Mode} [X]=e^{\mu -\sigma ^{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Mode</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Mode} [X]=e^{\mu -\sigma ^{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/696ae3ee691abe8666911db6b83228e86d685f85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.995ex; height:3.509ex;" alt="{\displaystyle \operatorname {Mode} [X]=e^{\mu -\sigma ^{2}}.}"></span></dd></dl> <p>Since the <a href="/wiki/Logarithm_transformation" class="mw-redirect" title="Logarithm transformation">log-transformed</a> variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=\ln X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=\ln X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55025bac0098995f281804a9ec37e22027af1d86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.178ex; height:2.176ex;" alt="{\displaystyle Y=\ln X}"></span> has a normal distribution, and quantiles are preserved under monotonic transformations, the quantiles of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{X}(\alpha )=e^{\mu +\sigma q_{\Phi }(\alpha )}=\mu ^{*}(\sigma ^{*})^{q_{\Phi }(\alpha )},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{X}(\alpha )=e^{\mu +\sigma q_{\Phi }(\alpha )}=\mu ^{*}(\sigma ^{*})^{q_{\Phi }(\alpha )},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88deb2beb3d16d702584061ed5ee4cf6a7b6fb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.602ex; height:3.343ex;" alt="{\displaystyle q_{X}(\alpha )=e^{\mu +\sigma q_{\Phi }(\alpha )}=\mu ^{*}(\sigma ^{*})^{q_{\Phi }(\alpha )},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q_{\Phi }(\alpha )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q_{\Phi }(\alpha )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f191baa04077412d76630710ddeef397b37d0a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.753ex; height:2.843ex;" alt="{\displaystyle q_{\Phi }(\alpha )}"></span> is the quantile of the standard normal distribution. </p><p>Specifically, the median of a log-normal distribution is equal to its multiplicative mean,<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Med} [X]=e^{\mu }=\mu ^{*}~.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Med</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mtext>&#xA0;</mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Med} [X]=e^{\mu }=\mu ^{*}~.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ca3cf66c48a40e98cfbbad81df359a85e2898f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.917ex; height:2.843ex;" alt="{\displaystyle \operatorname {Med} [X]=e^{\mu }=\mu ^{*}~.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Partial_expectation">Partial expectation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=13" title="Edit section: Partial expectation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The partial expectation of a random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> with respect to a threshold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(k)=\int _{k}^{\infty }xf_{X}(x\mid X&gt;k)\,dx.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>x</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>&gt;</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(k)=\int _{k}^{\infty }xf_{X}(x\mid X&gt;k)\,dx.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e351e627ea05b75f73d7ada7de7f405576715cdd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.008ex; height:5.843ex;" alt="{\displaystyle g(k)=\int _{k}^{\infty }xf_{X}(x\mid X&gt;k)\,dx.}"></span></dd></dl> <p>Alternatively, by using the definition of <a href="/wiki/Conditional_expectation" title="Conditional expectation">conditional expectation</a>, it can be written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(k)=\operatorname {E} [X\mid X&gt;k]P(X&gt;k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>&gt;</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>&gt;</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(k)=\operatorname {E} [X\mid X&gt;k]P(X&gt;k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcc597040aafacac51656980faecab241210cd32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.163ex; height:2.843ex;" alt="{\displaystyle g(k)=\operatorname {E} [X\mid X&gt;k]P(X&gt;k)}"></span>. For a log-normal random variable, the partial expectation is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(k)=\int _{k}^{\infty }xf_{X}(x\mid X&gt;k)\,dx=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}\,\Phi \!\left({\frac {\mu +\sigma ^{2}-\ln k}{\sigma }}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </msubsup> <mi>x</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>&gt;</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mspace width="thinmathspace" /> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mspace width="negativethinmathspace" /> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>k</mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(k)=\int _{k}^{\infty }xf_{X}(x\mid X&gt;k)\,dx=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}\,\Phi \!\left({\frac {\mu +\sigma ^{2}-\ln k}{\sigma }}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/533a86dbaa387973efeaa76154517b9f1f2d703f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:59.803ex; height:6.343ex;" alt="{\displaystyle g(k)=\int _{k}^{\infty }xf_{X}(x\mid X&gt;k)\,dx=e^{\mu +{\tfrac {1}{2}}\sigma ^{2}}\,\Phi \!\left({\frac {\mu +\sigma ^{2}-\ln k}{\sigma }}\right)}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aed80a2011a3912b028ba32a52dfa57165455f24" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Phi }"></span> is the <a href="/wiki/Normal_cumulative_distribution_function" class="mw-redirect" title="Normal cumulative distribution function">normal cumulative distribution function</a>. The derivation of the formula is provided in the <a href="/wiki/Talk:Log-normal_distribution" title="Talk:Log-normal distribution">Talk page</a>. The partial expectation formula has applications in <a href="/wiki/Insurance" title="Insurance">insurance</a> and <a href="/wiki/Economics" title="Economics">economics</a>, it is used in solving the partial differential equation leading to the <a href="/wiki/Black%E2%80%93Scholes_formula" class="mw-redirect" title="Black–Scholes formula">Black–Scholes formula</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Conditional_expectation">Conditional expectation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=14" title="Edit section: Conditional expectation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The conditional expectation of a log-normal random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>—with respect to a threshold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span>—is its partial expectation divided by the cumulative probability of being in that range: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}E[X\mid X&lt;k]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\ln(k)-\mu -\sigma ^{2}}{\sigma }}\right]}{\Phi \left[{\frac {\ln(k)-\mu }{\sigma }}\right]}}\\[8pt]E[X\mid X\geqslant k]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\mu +\sigma ^{2}-\ln(k)}{\sigma }}\right]}{1-\Phi \left[{\frac {\ln(k)-\mu }{\sigma }}\right]}}\\[8pt]E[X\mid X\in [k_{1},k_{2}]]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\ln(k_{2})-\mu -\sigma ^{2}}{\sigma }}\right]-\Phi \left[{\frac {\ln(k_{1})-\mu -\sigma ^{2}}{\sigma }}\right]}{\Phi \left[{\frac {\ln(k_{2})-\mu }{\sigma }}\right]-\Phi \left[{\frac {\ln(k_{1})-\mu }{\sigma }}\right]}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="1.1em 1.1em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>E</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>&lt;</mo> <mi>k</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>E</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>&#x2A7E;<!-- ⩾ --></mo> <mi>k</mi> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>E</mi> <mo stretchy="false">[</mo> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">[</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> <mi>&#x03C3;<!-- σ --></mi> </mfrac> </mrow> <mo>]</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}E[X\mid X&lt;k]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\ln(k)-\mu -\sigma ^{2}}{\sigma }}\right]}{\Phi \left[{\frac {\ln(k)-\mu }{\sigma }}\right]}}\\[8pt]E[X\mid X\geqslant k]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\mu +\sigma ^{2}-\ln(k)}{\sigma }}\right]}{1-\Phi \left[{\frac {\ln(k)-\mu }{\sigma }}\right]}}\\[8pt]E[X\mid X\in [k_{1},k_{2}]]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\ln(k_{2})-\mu -\sigma ^{2}}{\sigma }}\right]-\Phi \left[{\frac {\ln(k_{1})-\mu -\sigma ^{2}}{\sigma }}\right]}{\Phi \left[{\frac {\ln(k_{2})-\mu }{\sigma }}\right]-\Phi \left[{\frac {\ln(k_{1})-\mu }{\sigma }}\right]}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/183bad844b619e2b3e49c9a51d7021120b124865" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -18.671ex; width:63.889ex; height:38.509ex;" alt="{\displaystyle {\begin{aligned}E[X\mid X&lt;k]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\ln(k)-\mu -\sigma ^{2}}{\sigma }}\right]}{\Phi \left[{\frac {\ln(k)-\mu }{\sigma }}\right]}}\\[8pt]E[X\mid X\geqslant k]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\mu +\sigma ^{2}-\ln(k)}{\sigma }}\right]}{1-\Phi \left[{\frac {\ln(k)-\mu }{\sigma }}\right]}}\\[8pt]E[X\mid X\in [k_{1},k_{2}]]&amp;=e^{\mu +{\frac {\sigma ^{2}}{2}}}\cdot {\frac {\Phi \left[{\frac {\ln(k_{2})-\mu -\sigma ^{2}}{\sigma }}\right]-\Phi \left[{\frac {\ln(k_{1})-\mu -\sigma ^{2}}{\sigma }}\right]}{\Phi \left[{\frac {\ln(k_{2})-\mu }{\sigma }}\right]-\Phi \left[{\frac {\ln(k_{1})-\mu }{\sigma }}\right]}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Alternative_parameterizations">Alternative parameterizations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=15" title="Edit section: Alternative parameterizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div><p> In addition to the characterization by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ,\sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ,\sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d89a7381d3e0a26af97c80f7f003f03595e74645" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.765ex; height:2.176ex;" alt="{\displaystyle \mu ,\sigma }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ^{*},\sigma ^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ^{*},\sigma ^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/584417f6136aa66cdcdb2035648904b4cf3190a6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.875ex; height:2.843ex;" alt="{\displaystyle \mu ^{*},\sigma ^{*}}"></span>, here are multiple ways how the log-normal distribution can be parameterized. <a href="/wiki/ProbOnto" title="ProbOnto">ProbOnto</a>, the knowledge base and ontology of <a href="/wiki/Probability_distribution" title="Probability distribution">probability distributions</a><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> lists seven such forms: </p><figure typeof="mw:File/Thumb"><a href="/wiki/File:LogNormal17.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/LogNormal17.jpg/400px-LogNormal17.jpg" decoding="async" width="400" height="195" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/10/LogNormal17.jpg/600px-LogNormal17.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/10/LogNormal17.jpg/800px-LogNormal17.jpg 2x" data-file-width="1130" data-file-height="550" /></a><figcaption>Overview of parameterizations of the log-normal distributions.</figcaption></figure> <ul><li>LogNormal1(μ,σ) with <a href="/wiki/Mean" title="Mean">mean</a>, μ, and <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a>, σ, both on the log-scale <sup id="cite_ref-Forbes_24-0" class="reference"><a href="#cite_note-Forbes-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {\sigma }})={\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left[-{\frac {(\ln x-\mu )^{2}}{2\sigma ^{2}}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BC;<!-- μ --></mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {\sigma }})={\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left[-{\frac {(\ln x-\mu )^{2}}{2\sigma ^{2}}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d254929914b40b8fa2329e6a02fa53353ed7fa07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:41.273ex; height:7.509ex;" alt="{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {\sigma }})={\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left[-{\frac {(\ln x-\mu )^{2}}{2\sigma ^{2}}}\right]}"></span></dd></dl></li> <li>LogNormal2(μ,υ) with mean, μ, and variance, υ, both on the log-scale <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {v}})={\frac {1}{x{\sqrt {v}}{\sqrt {2\pi }}}}\exp \left[-{\frac {(\ln x-\mu )^{2}}{2v}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BC;<!-- μ --></mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>v</mi> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>v</mi> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {v}})={\frac {1}{x{\sqrt {v}}{\sqrt {2\pi }}}}\exp \left[-{\frac {(\ln x-\mu )^{2}}{2v}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47756e2ba5dcec56108d985f54ced5802726cb2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.73ex; height:7.509ex;" alt="{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {v}})={\frac {1}{x{\sqrt {v}}{\sqrt {2\pi }}}}\exp \left[-{\frac {(\ln x-\mu )^{2}}{2v}}\right]}"></span></dd></dl></li> <li>LogNormal3(m,σ) with <a href="/wiki/Median" title="Median">median</a>, m, on the natural scale and standard deviation, σ, on the log-scale<sup id="cite_ref-Forbes_24-1" class="reference"><a href="#cite_note-Forbes-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {\sigma }})={\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\sigma ^{2}}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">m</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>ln</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {\sigma }})={\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\sigma ^{2}}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f81ab16e30f347597540cda86ccb2702b0be5f85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:40.599ex; height:7.509ex;" alt="{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {\sigma }})={\frac {1}{x\sigma {\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\sigma ^{2}}}\right]}"></span></dd></dl></li> <li>LogNormal4(m,cv) with median, m, and <a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">coefficient of variation</a>, cv, both on the natural scale <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {cv}})={\frac {1}{x{\sqrt {\ln(cv^{2}+1)}}{\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\ln(cv^{2}+1)}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">m</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">c</mi> <mi mathvariant="bold-italic">v</mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>ln</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {cv}})={\frac {1}{x{\sqrt {\ln(cv^{2}+1)}}{\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\ln(cv^{2}+1)}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34339307b7039935ae1071b1fb0ca1a04b51e0a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:56.604ex; height:7.509ex;" alt="{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {cv}})={\frac {1}{x{\sqrt {\ln(cv^{2}+1)}}{\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\ln(cv^{2}+1)}}\right]}"></span></dd></dl></li> <li>LogNormal5(μ,τ) with mean, μ, and precision, τ, both on the log-scale<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {\tau }})={\sqrt {\frac {\tau }{2\pi }}}{\frac {1}{x}}\exp \left[-{\frac {\tau }{2}}(\ln x-\mu )^{2}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03BC;<!-- μ --></mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">&#x03C4;<!-- τ --></mi> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi>&#x03C4;<!-- τ --></mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </msqrt> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C4;<!-- τ --></mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {\tau }})={\sqrt {\frac {\tau }{2\pi }}}{\frac {1}{x}}\exp \left[-{\frac {\tau }{2}}(\ln x-\mu )^{2}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ded50fe9521e9c21996167b6261b45fa2270849" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:41.677ex; height:6.343ex;" alt="{\displaystyle P(x;{\boldsymbol {\mu }},{\boldsymbol {\tau }})={\sqrt {\frac {\tau }{2\pi }}}{\frac {1}{x}}\exp \left[-{\frac {\tau }{2}}(\ln x-\mu )^{2}\right]}"></span></dd></dl></li> <li>LogNormal6(m,σ<sub>g</sub>) with median, m, and <a href="/wiki/Geometric_standard_deviation" title="Geometric standard deviation">geometric standard deviation</a>, σ<sub>g</sub>, both on the natural scale<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {\sigma _{g}}})={\frac {1}{x\ln(\sigma _{g}){\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\ln ^{2}(\sigma _{g})}}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">m</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">g</mi> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>ln</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>m</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msup> <mi>ln</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {\sigma _{g}}})={\frac {1}{x\ln(\sigma _{g}){\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\ln ^{2}(\sigma _{g})}}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5d63692975723d89e040953aefd71ec18822b86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.882ex; height:7.509ex;" alt="{\displaystyle P(x;{\boldsymbol {m}},{\boldsymbol {\sigma _{g}}})={\frac {1}{x\ln(\sigma _{g}){\sqrt {2\pi }}}}\exp \left[-{\frac {\ln ^{2}(x/m)}{2\ln ^{2}(\sigma _{g})}}\right]}"></span></dd></dl></li> <li>LogNormal7(μ<sub>N</sub>,σ<sub>N</sub>) with mean, μ<sub>N</sub>, and standard deviation, σ<sub>N</sub>, both on the natural scale<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x;{\boldsymbol {\mu _{N}}},{\boldsymbol {\sigma _{N}}})={\frac {1}{x{\sqrt {2\pi \ln \left(1+\sigma _{N}^{2}/\mu _{N}^{2}\right)}}}}\exp \left(-{\frac {{\Big [}\ln x-\ln {\frac {\mu _{N}}{\sqrt {1+\sigma _{N}^{2}/\mu _{N}^{2}}}}{\Big ]}^{2}}{2\ln(1+\sigma _{N}^{2}/\mu _{N}^{2})}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> </msub> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold-italic">&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold-italic">N</mi> </mrow> </msub> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">[</mo> </mrow> </mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <msqrt> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x;{\boldsymbol {\mu _{N}}},{\boldsymbol {\sigma _{N}}})={\frac {1}{x{\sqrt {2\pi \ln \left(1+\sigma _{N}^{2}/\mu _{N}^{2}\right)}}}}\exp \left(-{\frac {{\Big [}\ln x-\ln {\frac {\mu _{N}}{\sqrt {1+\sigma _{N}^{2}/\mu _{N}^{2}}}}{\Big ]}^{2}}{2\ln(1+\sigma _{N}^{2}/\mu _{N}^{2})}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c50f543829dadcdbc41b007ca74be9029c563e56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:72.987ex; height:13.843ex;" alt="{\displaystyle P(x;{\boldsymbol {\mu _{N}}},{\boldsymbol {\sigma _{N}}})={\frac {1}{x{\sqrt {2\pi \ln \left(1+\sigma _{N}^{2}/\mu _{N}^{2}\right)}}}}\exp \left(-{\frac {{\Big [}\ln x-\ln {\frac {\mu _{N}}{\sqrt {1+\sigma _{N}^{2}/\mu _{N}^{2}}}}{\Big ]}^{2}}{2\ln(1+\sigma _{N}^{2}/\mu _{N}^{2})}}\right)}"></span></dd></dl></li></ul> <div class="mw-heading mw-heading4"><h4 id="Examples_for_re-parameterization">Examples for re-parameterization</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=16" title="Edit section: Examples for re-parameterization"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider the situation when one would like to run a model using two different optimal design tools, for example PFIM<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> and PopED.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> The former supports the LN2, the latter LN7 parameterization, respectively. Therefore, the re-parameterization is required, otherwise the two tools would produce different results. </p><p>For the transition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {LN2} (\mu ,v)\to \operatorname {LN7} (\mu _{N},\sigma _{N})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>LN2</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>LN7</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {LN2} (\mu ,v)\to \operatorname {LN7} (\mu _{N},\sigma _{N})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b57a6de2e1c6e133b1d88f9090d0e93b2aa8e5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.658ex; height:2.843ex;" alt="{\displaystyle \operatorname {LN2} (\mu ,v)\to \operatorname {LN7} (\mu _{N},\sigma _{N})}"></span> following formulas hold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu _{N}=\exp(\mu +v/2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu _{N}=\exp(\mu +v/2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbeae4089532c4e0562fd01740114549afb2f76e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.248ex; height:2.843ex;" alt="{\textstyle \mu _{N}=\exp(\mu +v/2)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sigma _{N}=\exp(\mu +v/2){\sqrt {\exp(v)-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>=</mo> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sigma _{N}=\exp(\mu +v/2){\sqrt {\exp(v)-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6da6aabb604b607ec8d317ceea541b7f82f910bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.99ex; height:3.343ex;" alt="{\textstyle \sigma _{N}=\exp(\mu +v/2){\sqrt {\exp(v)-1}}}"></span>. </p><p>For the transition <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {LN7} (\mu _{N},\sigma _{N})\to \operatorname {LN2} (\mu ,v)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>LN7</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>LN2</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>v</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {LN7} (\mu _{N},\sigma _{N})\to \operatorname {LN2} (\mu ,v)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80be213d3c8a410035598bdd72dc84cdb2399eca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.658ex; height:2.843ex;" alt="{\displaystyle \operatorname {LN7} (\mu _{N},\sigma _{N})\to \operatorname {LN2} (\mu ,v)}"></span> following formulas hold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu =\ln \left(\mu _{N}/{\sqrt {1+\sigma _{N}^{2}/\mu _{N}^{2}}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu =\ln \left(\mu _{N}/{\sqrt {1+\sigma _{N}^{2}/\mu _{N}^{2}}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0a87e2a4b06d5766b8cfef10b3eb7307ec3f74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:27.072ex; height:4.843ex;" alt="{\textstyle \mu =\ln \left(\mu _{N}/{\sqrt {1+\sigma _{N}^{2}/\mu _{N}^{2}}}\right)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle v=\ln(1+\sigma _{N}^{2}/\mu _{N}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>v</mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle v=\ln(1+\sigma _{N}^{2}/\mu _{N}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da1eeb2fcdeb9fd07bc91295dc8ac2590144af7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.252ex; height:3.176ex;" alt="{\textstyle v=\ln(1+\sigma _{N}^{2}/\mu _{N}^{2})}"></span>. </p><p>All remaining re-parameterisation formulas can be found in the specification document on the project website.<sup id="cite_ref-probontoWebsite_30-0" class="reference"><a href="#cite_note-probontoWebsite-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Multiple,_reciprocal,_power"><span id="Multiple.2C_reciprocal.2C_power"></span>Multiple, reciprocal, power</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=17" title="Edit section: Multiple, reciprocal, power"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Multiplication by a constant: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c08a8fc58091f7804e20c5b9052f31893d430dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.598ex; height:3.176ex;" alt="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle aX\sim \operatorname {Lognormal} (\mu +\ln a,\ \sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>a</mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle aX\sim \operatorname {Lognormal} (\mu +\ln a,\ \sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2e4a8af99ad2973635cd66fd4660d9d27e20a0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.805ex; height:3.176ex;" alt="{\displaystyle aX\sim \operatorname {Lognormal} (\mu +\ln a,\ \sigma ^{2})}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a&gt;0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&gt;</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a&gt;0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47586c689085690d15621968c72a61073b32357e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.138ex; height:2.176ex;" alt="{\displaystyle a&gt;0.}"></span></li> <li>Reciprocal: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c08a8fc58091f7804e20c5b9052f31893d430dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.598ex; height:3.176ex;" alt="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Lognormal} (-\mu ,\ \sigma ^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mi>X</mi> </mfrac> </mstyle> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Lognormal} (-\mu ,\ \sigma ^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c53c2ed61fdb1d2a6fc8989ce5666138782a547" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:25.889ex; height:3.509ex;" alt="{\displaystyle {\tfrac {1}{X}}\sim \operatorname {Lognormal} (-\mu ,\ \sigma ^{2}).}"></span></li> <li>Power: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c08a8fc58091f7804e20c5b9052f31893d430dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.598ex; height:3.176ex;" alt="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{a}\sim \operatorname {Lognormal} (a\mu ,\ a^{2}\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msup> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mtext>&#xA0;</mtext> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{a}\sim \operatorname {Lognormal} (a\mu ,\ a^{2}\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f615ae4c73722b82cb5c75632359e29368be2d22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.811ex; height:3.176ex;" alt="{\displaystyle X^{a}\sim \operatorname {Lognormal} (a\mu ,\ a^{2}\sigma ^{2})}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a\neq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>&#x2260;<!-- ≠ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a\neq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c4be4ca48aafe304408dc86889e3c578a7be30f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.138ex; height:2.676ex;" alt="{\displaystyle a\neq 0.}"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Multiplication_and_division_of_independent,_log-normal_random_variables"><span id="Multiplication_and_division_of_independent.2C_log-normal_random_variables"></span>Multiplication and division of independent, log-normal random variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=18" title="Edit section: Multiplication and division of independent, log-normal random variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If two <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a>, log-normal variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f70b2694445a5901b24338a2e7a7e58f02a72a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ad47c14b8a092f182512e76c96638aea6e3bea1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.979ex; height:2.509ex;" alt="{\displaystyle X_{2}}"></span> are multiplied [divided], the product [ratio] is again log-normal, with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\mu _{1}+\mu _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\mu _{1}+\mu _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a94f01934f43180e55fd6c60c80c2a9f4cefb538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.252ex; height:2.509ex;" alt="{\displaystyle \mu =\mu _{1}+\mu _{2}}"></span> [<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\mu _{1}-\mu _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\mu _{1}-\mu _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0cf5b32496b3473135448b548ca1aaeb546cf8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.252ex; height:2.509ex;" alt="{\displaystyle \mu =\mu _{1}-\mu _{2}}"></span>] and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}=\sigma _{1}^{2}+\sigma _{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}=\sigma _{1}^{2}+\sigma _{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90fda1167d13dce4bbff4038f2e01077489ef1a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.093ex; height:3.343ex;" alt="{\displaystyle \sigma ^{2}=\sigma _{1}^{2}+\sigma _{2}^{2}}"></span>. This is easily generalized to the product of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> such variables. </p><p>More generally, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{j}\sim \operatorname {Lognormal} (\mu _{j},\sigma _{j}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{j}\sim \operatorname {Lognormal} (\mu _{j},\sigma _{j}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/716b3b7beaa8e122d0a848092319968194a90344" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.361ex; height:3.509ex;" alt="{\displaystyle X_{j}\sim \operatorname {Lognormal} (\mu _{j},\sigma _{j}^{2})}"></span> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> independent, log-normally distributed variables, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=\textstyle \prod _{j=1}^{n}X_{j}\sim \operatorname {Lognormal} {\Big (}\textstyle \sum _{j=1}^{n}\mu _{j},\ \sum _{j=1}^{n}\sigma _{j}^{2}{\Big )}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mtext>&#xA0;</mtext> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=\textstyle \prod _{j=1}^{n}X_{j}\sim \operatorname {Lognormal} {\Big (}\textstyle \sum _{j=1}^{n}\mu _{j},\ \sum _{j=1}^{n}\sigma _{j}^{2}{\Big )}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9968221e2045e4f3481ec1e8c1bbc038797b99d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:49.881ex; height:4.843ex;" alt="{\displaystyle Y=\textstyle \prod _{j=1}^{n}X_{j}\sim \operatorname {Lognormal} {\Big (}\textstyle \sum _{j=1}^{n}\mu _{j},\ \sum _{j=1}^{n}\sigma _{j}^{2}{\Big )}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Multiplicative_central_limit_theorem"><span class="anchor" id="Multiplicative_Central_Limit_Theorem"></span>Multiplicative central limit theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=19" title="Edit section: Multiplicative central limit theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Gibrat%27s_law" title="Gibrat&#39;s law">Gibrat's law</a></div> <p>The geometric or multiplicative mean of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> independent, identically distributed, positive random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af4a0955af42beb5f85aa05fb8c07abedc13990d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.724ex; height:2.509ex;" alt="{\displaystyle X_{i}}"></span> shows, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0d55d9b32f6fa8fab6a84ea444a6b5a24bb45e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.333ex; height:1.843ex;" alt="{\displaystyle n\to \infty }"></span>, approximately a log-normal distribution with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =E[\ln(X_{i})]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>E</mi> <mo stretchy="false">[</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =E[\ln(X_{i})]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2a724b374b7dbb96f1b3a40018c88d0011d859e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.042ex; height:2.843ex;" alt="{\displaystyle \mu =E[\ln(X_{i})]}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}={\mbox{var}}[\ln(X_{i})]/n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>var</mtext> </mstyle> </mrow> <mo stretchy="false">[</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}={\mbox{var}}[\ln(X_{i})]/n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8cb61e99822586c483b382dd80770ed7df53680d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.108ex; height:3.176ex;" alt="{\displaystyle \sigma ^{2}={\mbox{var}}[\ln(X_{i})]/n}"></span>, assuming <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span> is finite. </p><p>In fact, the random variables do not have to be identically distributed. It is enough for the distributions of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(X_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(X_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6f43cf1bf401537a5b6b1cb7dedea2d4fa2ae20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.473ex; height:2.843ex;" alt="{\displaystyle \ln(X_{i})}"></span> to all have finite variance and satisfy the other conditions of any of the many variants of the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>. </p><p>This is commonly known as <a href="/wiki/Gibrat%27s_law" title="Gibrat&#39;s law">Gibrat's law</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Other">Other</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=20" title="Edit section: Other"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A set of data that arises from the log-normal distribution has a symmetric <a href="/wiki/Lorenz_curve" title="Lorenz curve">Lorenz curve</a> (see also <a href="/wiki/Lorenz_asymmetry_coefficient" title="Lorenz asymmetry coefficient">Lorenz asymmetry coefficient</a>).<sup id="cite_ref-EcolgyArticle_31-0" class="reference"><a href="#cite_note-EcolgyArticle-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> </p><p>The harmonic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>, geometric <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> and arithmetic <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> means of this distribution are related;<sup id="cite_ref-Rossman1990_32-0" class="reference"><a href="#cite_note-Rossman1990-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> such relation is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H={\frac {G^{2}}{A}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>A</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H={\frac {G^{2}}{A}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffc5402a99bd6fe40d0dc047f7ed3c9d6d5eef8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.526ex; height:5.843ex;" alt="{\displaystyle H={\frac {G^{2}}{A}}.}"></span></dd></dl> <p>Log-normal distributions are <a href="/wiki/Infinite_divisibility_(probability)" title="Infinite divisibility (probability)">infinitely divisible</a>,<sup id="cite_ref-OlofThorin1978LNInfDivi_33-0" class="reference"><a href="#cite_note-OlofThorin1978LNInfDivi-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> but they are not <a href="/wiki/Stable_distribution" title="Stable distribution">stable distributions</a>, which can be easily drawn from.<sup id="cite_ref-Gao_34-0" class="reference"><a href="#cite_note-Gao-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Related_distributions">Related distributions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=21" title="Edit section: Related distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim {\mathcal {N}}(\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim {\mathcal {N}}(\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e49a012c102388008a926ef3e2e28d099d539751" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.983ex; height:3.176ex;" alt="{\displaystyle X\sim {\mathcal {N}}(\mu ,\sigma ^{2})}"></span> is a <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \exp(X)\sim \operatorname {Lognormal} (\mu ,\sigma ^{2}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>exp</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exp(X)\sim \operatorname {Lognormal} (\mu ,\sigma ^{2}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/97328d8a9edc37d6d62c2d056df41979eca84840" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.606ex; height:3.176ex;" alt="{\displaystyle \exp(X)\sim \operatorname {Lognormal} (\mu ,\sigma ^{2}).}"></span></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c08a8fc58091f7804e20c5b9052f31893d430dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.598ex; height:3.176ex;" alt="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"></span> is distributed log-normally, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln(X)\sim {\mathcal {N}}(\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln(X)\sim {\mathcal {N}}(\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1b92c953f2ecbfccfb70cfa5e80fa3b71ac06b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.732ex; height:3.176ex;" alt="{\displaystyle \ln(X)\sim {\mathcal {N}}(\mu ,\sigma ^{2})}"></span> is a normal random variable.</li> <li>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{j}\sim \operatorname {Lognormal} (\mu _{j},\sigma _{j}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{j}\sim \operatorname {Lognormal} (\mu _{j},\sigma _{j}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/716b3b7beaa8e122d0a848092319968194a90344" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.361ex; height:3.509ex;" alt="{\displaystyle X_{j}\sim \operatorname {Lognormal} (\mu _{j},\sigma _{j}^{2})}"></span> be independent log-normally distributed variables with possibly varying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> parameters, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Y=\sum _{j=1}^{n}X_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Y=\sum _{j=1}^{n}X_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56637ca4806beda63934012a76114bfb55fb93d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:13.557ex; height:3.509ex;" alt="{\textstyle Y=\sum _{j=1}^{n}X_{j}}"></span>. The distribution of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> has no closed-form expression, but can be reasonably approximated by another log-normal distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cc6b75e09a8aa3f04d8584b11db534f88fb56bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.68ex; height:2.176ex;" alt="{\displaystyle Z}"></span> at the right tail.<sup id="cite_ref-Asmussen2_35-0" class="reference"><a href="#cite_note-Asmussen2-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup> Its probability density function at the neighborhood of 0 has been characterized<sup id="cite_ref-Gao_34-1" class="reference"><a href="#cite_note-Gao-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup> and it does not resemble any log-normal distribution. A commonly used approximation due to L.F. Fenton (but previously stated by R.I. Wilkinson and mathematically justified by Marlow<sup id="cite_ref-Marlow_36-0" class="reference"><a href="#cite_note-Marlow-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup>) is obtained by matching the mean and variance of another log-normal distribution: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sigma _{Z}^{2}&amp;=\ln \!\left[{\frac {\sum e^{2\mu _{j}+\sigma _{j}^{2}}(e^{\sigma _{j}^{2}}-1)}{(\sum e^{\mu _{j}+\sigma _{j}^{2}/2})^{2}}}+1\right],\\\mu _{Z}&amp;=\ln \!\left[\sum e^{\mu _{j}+\sigma _{j}^{2}/2}\right]-{\frac {\sigma _{Z}^{2}}{2}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2211;<!-- ∑ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mo>&#x2211;<!-- ∑ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>[</mo> <mrow> <mo>&#x2211;<!-- ∑ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sigma _{Z}^{2}&amp;=\ln \!\left[{\frac {\sum e^{2\mu _{j}+\sigma _{j}^{2}}(e^{\sigma _{j}^{2}}-1)}{(\sum e^{\mu _{j}+\sigma _{j}^{2}/2})^{2}}}+1\right],\\\mu _{Z}&amp;=\ln \!\left[\sum e^{\mu _{j}+\sigma _{j}^{2}/2}\right]-{\frac {\sigma _{Z}^{2}}{2}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc943ff6dcd032b6a82e022dd853316e4e77307" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:35.83ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\sigma _{Z}^{2}&amp;=\ln \!\left[{\frac {\sum e^{2\mu _{j}+\sigma _{j}^{2}}(e^{\sigma _{j}^{2}}-1)}{(\sum e^{\mu _{j}+\sigma _{j}^{2}/2})^{2}}}+1\right],\\\mu _{Z}&amp;=\ln \!\left[\sum e^{\mu _{j}+\sigma _{j}^{2}/2}\right]-{\frac {\sigma _{Z}^{2}}{2}}.\end{aligned}}}"></span> In the case that all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca3cb1ef7c9f25e85e1957e4eb58a72fa16a0066" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.834ex; height:2.843ex;" alt="{\displaystyle X_{j}}"></span> have the same variance parameter <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{j}=\sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{j}=\sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c74a1ee09c7ce4bc56587a4a293d2d04e4444a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.665ex; height:2.343ex;" alt="{\displaystyle \sigma _{j}=\sigma }"></span>, these formulas simplify to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sigma _{Z}^{2}&amp;=\ln \!\left[(e^{\sigma ^{2}}-1){\frac {\sum e^{2\mu _{j}}}{(\sum e^{\mu _{j}})^{2}}}+1\right],\\\mu _{Z}&amp;=\ln \!\left[\sum e^{\mu _{j}}\right]+{\frac {\sigma ^{2}}{2}}-{\frac {\sigma _{Z}^{2}}{2}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2211;<!-- ∑ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mo>&#x2211;<!-- ∑ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mspace width="negativethinmathspace" /> <mrow> <mo>[</mo> <mrow> <mo>&#x2211;<!-- ∑ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sigma _{Z}^{2}&amp;=\ln \!\left[(e^{\sigma ^{2}}-1){\frac {\sum e^{2\mu _{j}}}{(\sum e^{\mu _{j}})^{2}}}+1\right],\\\mu _{Z}&amp;=\ln \!\left[\sum e^{\mu _{j}}\right]+{\frac {\sigma ^{2}}{2}}-{\frac {\sigma _{Z}^{2}}{2}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e3403a57bdac83cd433bc61aacd2206067d27bc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.974ex; margin-bottom: -0.197ex; width:34.821ex; height:13.509ex;" alt="{\displaystyle {\begin{aligned}\sigma _{Z}^{2}&amp;=\ln \!\left[(e^{\sigma ^{2}}-1){\frac {\sum e^{2\mu _{j}}}{(\sum e^{\mu _{j}})^{2}}}+1\right],\\\mu _{Z}&amp;=\ln \!\left[\sum e^{\mu _{j}}\right]+{\frac {\sigma ^{2}}{2}}-{\frac {\sigma _{Z}^{2}}{2}}.\end{aligned}}}"></span></li></ul> <p>For a more accurate approximation, one can use the <a href="/wiki/Monte_Carlo_method" title="Monte Carlo method">Monte Carlo method</a> to estimate the cumulative distribution function, the pdf and the right tail.<sup id="cite_ref-BotLec2017_37-0" class="reference"><a href="#cite_note-BotLec2017-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AGL2016_38-0" class="reference"><a href="#cite_note-AGL2016-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> </p><p>The sum of correlated log-normally distributed random variables can also be approximated by a log-normal distribution<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2021)">citation needed</span></a></i>&#93;</sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}S_{+}&amp;=\operatorname {E} \left[\sum _{i}X_{i}\right]=\sum _{i}\operatorname {E} [X_{i}]=\sum _{i}e^{\mu _{i}+\sigma _{i}^{2}/2}\\\sigma _{Z}^{2}&amp;=1/S_{+}^{2}\,\sum _{i,j}\operatorname {cor} _{ij}\sigma _{i}\sigma _{j}\operatorname {E} [X_{i}]\operatorname {E} [X_{j}]=1/S_{+}^{2}\,\sum _{i,j}\operatorname {cor} _{ij}\sigma _{i}\sigma _{j}e^{\mu _{i}+\sigma _{i}^{2}/2}e^{\mu _{j}+\sigma _{j}^{2}/2}\\\mu _{Z}&amp;=\ln \left(S_{+}\right)-\sigma _{Z}^{2}/2\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>[</mo> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mspace width="thinmathspace" /> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>cor</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mspace width="thinmathspace" /> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>cor</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}S_{+}&amp;=\operatorname {E} \left[\sum _{i}X_{i}\right]=\sum _{i}\operatorname {E} [X_{i}]=\sum _{i}e^{\mu _{i}+\sigma _{i}^{2}/2}\\\sigma _{Z}^{2}&amp;=1/S_{+}^{2}\,\sum _{i,j}\operatorname {cor} _{ij}\sigma _{i}\sigma _{j}\operatorname {E} [X_{i}]\operatorname {E} [X_{j}]=1/S_{+}^{2}\,\sum _{i,j}\operatorname {cor} _{ij}\sigma _{i}\sigma _{j}e^{\mu _{i}+\sigma _{i}^{2}/2}e^{\mu _{j}+\sigma _{j}^{2}/2}\\\mu _{Z}&amp;=\ln \left(S_{+}\right)-\sigma _{Z}^{2}/2\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8ce906d9079b01314fe41adcaab5b630462d164" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:75.535ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}S_{+}&amp;=\operatorname {E} \left[\sum _{i}X_{i}\right]=\sum _{i}\operatorname {E} [X_{i}]=\sum _{i}e^{\mu _{i}+\sigma _{i}^{2}/2}\\\sigma _{Z}^{2}&amp;=1/S_{+}^{2}\,\sum _{i,j}\operatorname {cor} _{ij}\sigma _{i}\sigma _{j}\operatorname {E} [X_{i}]\operatorname {E} [X_{j}]=1/S_{+}^{2}\,\sum _{i,j}\operatorname {cor} _{ij}\sigma _{i}\sigma _{j}e^{\mu _{i}+\sigma _{i}^{2}/2}e^{\mu _{j}+\sigma _{j}^{2}/2}\\\mu _{Z}&amp;=\ln \left(S_{+}\right)-\sigma _{Z}^{2}/2\end{aligned}}}"></span> </p> <ul><li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c08a8fc58091f7804e20c5b9052f31893d430dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.598ex; height:3.176ex;" alt="{\displaystyle X\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"></span> then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6da22f3c54e0cc4d40f0a5ef44b27ee36cb1569e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.827ex; height:2.343ex;" alt="{\displaystyle X+c}"></span> is said to have a <i>Three-parameter log-normal</i> distribution with support <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in (c,+\infty )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>,</mo> <mo>+</mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in (c,+\infty )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/325b07f5a012969475c05bce74d25141dc82e865" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.152ex; height:2.843ex;" alt="{\displaystyle x\in (c,+\infty )}"></span>.<sup id="cite_ref-Sangal1970_39-0" class="reference"><a href="#cite_note-Sangal1970-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X+c]=\operatorname {E} [X]+c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X+c]=\operatorname {E} [X]+c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bccff99c9c6a0829010eafc025c7a24c33fe6e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.506ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [X+c]=\operatorname {E} [X]+c}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} [X+c]=\operatorname {Var} [X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>+</mo> <mi>c</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} [X+c]=\operatorname {Var} [X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc3cc065bfe4de4faaf4facb23f8fa2891ea72c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.127ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} [X+c]=\operatorname {Var} [X]}"></span>.</li> <li>The log-normal distribution is a special case of the semi-bounded <a href="/wiki/Johnson%27s_SU-distribution" title="Johnson&#39;s SU-distribution">Johnson's SU-distribution</a>.<sup id="cite_ref-Johnson1949_40-0" class="reference"><a href="#cite_note-Johnson1949-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup></li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\mid Y\sim \operatorname {Rayleigh} (Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Rayleigh</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\mid Y\sim \operatorname {Rayleigh} (Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a64810465165066c96919bcd87a3bbf65ecc8186" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.253ex; height:2.843ex;" alt="{\displaystyle X\mid Y\sim \operatorname {Rayleigh} (Y)}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Lognormal</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57862f49db834dec0c769a6e89a0dab61559882a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.391ex; height:3.176ex;" alt="{\displaystyle Y\sim \operatorname {Lognormal} (\mu ,\sigma ^{2})}"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X\sim \operatorname {Suzuki} (\mu ,\sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>&#x223C;<!-- ∼ --></mo> <mi>Suzuki</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X\sim \operatorname {Suzuki} (\mu ,\sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0f24cc579afa881a66a738370a77f0a0ef77b7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.437ex; height:2.843ex;" alt="{\displaystyle X\sim \operatorname {Suzuki} (\mu ,\sigma )}"></span> (<a href="/w/index.php?title=Suzuki_distribution&amp;action=edit&amp;redlink=1" class="new" title="Suzuki distribution (page does not exist)">Suzuki distribution</a>).</li> <li>A substitute for the log-normal whose integral can be expressed in terms of more elementary functions<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> can be obtained based on the <a href="/wiki/Logistic_distribution" title="Logistic distribution">logistic distribution</a> to get an approximation for the <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">CDF</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x;\mu ,\sigma )=\left[\left({\frac {e^{\mu }}{x}}\right)^{\pi /(\sigma {\sqrt {3}})}+1\right]^{-1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>;</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <mi>x</mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>3</mn> </msqrt> </mrow> <mo stretchy="false">)</mo> </mrow> </msup> <mo>+</mo> <mn>1</mn> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x;\mu ,\sigma )=\left[\left({\frac {e^{\mu }}{x}}\right)^{\pi /(\sigma {\sqrt {3}})}+1\right]^{-1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e28d7a1ba703b5e772530f62f55f314b9ba007bc" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.441ex; height:8.009ex;" alt="{\displaystyle F(x;\mu ,\sigma )=\left[\left({\frac {e^{\mu }}{x}}\right)^{\pi /(\sigma {\sqrt {3}})}+1\right]^{-1}.}"></span> This is a <a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">log-logistic distribution</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Statistical_inference">Statistical inference</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=22" title="Edit section: Statistical inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Estimation_of_parameters">Estimation of parameters</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=23" title="Edit section: Estimation of parameters"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For determining the <a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">maximum likelihood</a> estimators of the log-normal distribution parameters <i>μ</i> and <i>σ</i>, we can use the <a href="/wiki/Normal_distribution#Estimation_of_parameters" title="Normal distribution">same procedure</a> as for the <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>. Note that <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\mu ,\sigma )=\prod _{i=1}^{n}{\frac {1}{x_{i}}}\varphi _{\mu ,\sigma }(\ln x_{i}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mfrac> </mrow> <msub> <mi>&#x03C6;<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(\mu ,\sigma )=\prod _{i=1}^{n}{\frac {1}{x_{i}}}\varphi _{\mu ,\sigma }(\ln x_{i}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd89d33becbd9cf42a69f4e8b77f73cc128c9a6b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.631ex; height:6.843ex;" alt="{\displaystyle L(\mu ,\sigma )=\prod _{i=1}^{n}{\frac {1}{x_{i}}}\varphi _{\mu ,\sigma }(\ln x_{i}),}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is the density function of the normal distribution <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">N</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/863304aaa42a945f2f07d79facc3d2eebc845ce7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.062ex; width:8.966ex; height:3.176ex;" alt="{\displaystyle {\mathcal {N}}(\mu ,\sigma ^{2})}"></span>. Therefore, the log-likelihood function is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell (\mu ,\sigma \mid x_{1},x_{2},\ldots ,x_{n})=-\sum _{i}\ln x_{i}+\ell _{N}(\mu ,\sigma \mid \ln x_{1},\ln x_{2},\dots ,\ln x_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell (\mu ,\sigma \mid x_{1},x_{2},\ldots ,x_{n})=-\sum _{i}\ln x_{i}+\ell _{N}(\mu ,\sigma \mid \ln x_{1},\ln x_{2},\dots ,\ln x_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1be1592bd473fc8b85aa0fb02e1ec788ef67fb8c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:69.669ex; height:5.509ex;" alt="{\displaystyle \ell (\mu ,\sigma \mid x_{1},x_{2},\ldots ,x_{n})=-\sum _{i}\ln x_{i}+\ell _{N}(\mu ,\sigma \mid \ln x_{1},\ln x_{2},\dots ,\ln x_{n}).}"></span> </p><p>Since the first term is constant with regard to <i>μ</i> and <i>σ</i>, both logarithmic likelihood functions, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x2113;<!-- ℓ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f066e981e530bacc07efc6a10fa82deee985929e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.97ex; height:2.176ex;" alt="{\displaystyle \ell }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ell _{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x2113;<!-- ℓ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ell _{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3adc0cc904b2fcad44c27d9c5509f1f14ddadd37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.661ex; height:2.509ex;" alt="{\displaystyle \ell _{N}}"></span>, reach their maximum with the same <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>. Hence, the maximum likelihood estimators are identical to those for a normal distribution for the observations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \ln x_{1},\ln x_{2},\dots ,\ln x_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \ln x_{1},\ln x_{2},\dots ,\ln x_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac1a01da51f796f5c0a60c6b2a382584fce33d45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.412ex; height:2.843ex;" alt="{\displaystyle \ln x_{1},\ln x_{2},\dots ,\ln x_{n})}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad {\widehat {\sigma }}^{2}={\frac {\sum _{i}\left(\ln x_{i}-{\widehat {\mu }}\right)^{2}}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad {\widehat {\sigma }}^{2}={\frac {\sum _{i}\left(\ln x_{i}-{\widehat {\mu }}\right)^{2}}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82932d2a009062ea383213d66c441debd4f623a8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:41.299ex; height:6.176ex;" alt="{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad {\widehat {\sigma }}^{2}={\frac {\sum _{i}\left(\ln x_{i}-{\widehat {\mu }}\right)^{2}}{n}}.}"></span> </p><p>For finite <i>n</i>, the estimator for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is unbiased, but the one for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> is biased. As for the normal distribution, an unbiased estimator for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> can be obtained by replacing the denominator <i>n</i> by <i>n</i>−1 in the equation for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\sigma }}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\sigma }}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5afe69bbdc03070ef019f43fe451b847d2acf1ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.843ex;" alt="{\displaystyle {\widehat {\sigma }}^{2}}"></span>. </p><p>When the individual values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1},x_{2},\ldots ,x_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1},x_{2},\ldots ,x_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8694289524164f895d6665f163e14c4dc5ec648d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.528ex; height:2.009ex;" alt="{\displaystyle x_{1},x_{2},\ldots ,x_{n}}"></span> are not available, but the sample's mean <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/466e03e1c9533b4dab1b9949dad393883f385d80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.009ex;" alt="{\displaystyle {\bar {x}}}"></span> and <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> <i>s</i> is, then the <a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">Method of moments</a> can be used. The corresponding parameters are determined by the following formulas, obtained from solving the equations for the expectation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44dd294aa33c0865f58e2b1bdaf44ebe911dbf93" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.857ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [X]}"></span> and variance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} [X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} [X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79297a808478243e9aab0b27dd1ab583c0f877d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.091ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} [X]}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\ln \left({\frac {\bar {x}}{\sqrt {1+{\widehat {\sigma }}^{2}/{\bar {x}}^{2}}}}\right),\qquad \sigma ^{2}=\ln \left(1+{{\widehat {\sigma }}^{2}}/{\bar {x}}^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <msqrt> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="2em" /> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\ln \left({\frac {\bar {x}}{\sqrt {1+{\widehat {\sigma }}^{2}/{\bar {x}}^{2}}}}\right),\qquad \sigma ^{2}=\ln \left(1+{{\widehat {\sigma }}^{2}}/{\bar {x}}^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1aa40db73816305447d6f4cbd2ae635e928490b" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:50.057ex; height:10.509ex;" alt="{\displaystyle \mu =\ln \left({\frac {\bar {x}}{\sqrt {1+{\widehat {\sigma }}^{2}/{\bar {x}}^{2}}}}\right),\qquad \sigma ^{2}=\ln \left(1+{{\widehat {\sigma }}^{2}}/{\bar {x}}^{2}\right).}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Interval_estimates">Interval estimates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=24" title="Edit section: Interval estimates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Reference_range#Log-normal_distribution" title="Reference range">Reference range §&#160;Log-normal distribution</a></div> <p>The most efficient way to obtain <a href="/wiki/Interval_estimate" class="mw-redirect" title="Interval estimate">interval estimates</a> when analyzing log-normally distributed data consists of applying the well-known methods based on the normal distribution to logarithmically transformed data and then to back-transform results if appropriate. </p> <div class="mw-heading mw-heading4"><h4 id="Prediction_intervals">Prediction intervals</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=25" title="Edit section: Prediction intervals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A basic example is given by <a href="/wiki/Prediction_interval" title="Prediction interval">prediction intervals</a>: For the normal distribution, the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mu -\sigma ,\mu +\sigma ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mu -\sigma ,\mu +\sigma ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55c87cf54494c57f8aa41a35e60cf1f4ba837fa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.471ex; height:2.843ex;" alt="{\displaystyle [\mu -\sigma ,\mu +\sigma ]}"></span> contains approximately two thirds (68%) of the probability (or of a large sample), and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mu -2\sigma ,\mu +2\sigma ]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mn>2</mn> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mu -2\sigma ,\mu +2\sigma ]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1cb2f1b03c720b317b0fcf7e012a9bba1a3f418e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.796ex; height:2.843ex;" alt="{\displaystyle [\mu -2\sigma ,\mu +2\sigma ]}"></span> contain 95%. Therefore, for a log-normal distribution, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mu ^{*}/\sigma ^{*},\mu ^{*}\cdot \sigma ^{*}]=[\mu ^{*}{}^{\times }\!\!/\sigma ^{*}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>,</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mu ^{*}/\sigma ^{*},\mu ^{*}\cdot \sigma ^{*}]=[\mu ^{*}{}^{\times }\!\!/\sigma ^{*}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90bfe33d3e1ec78fd21196427394f5f4fe5e1836" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.982ex; height:2.843ex;" alt="{\displaystyle [\mu ^{*}/\sigma ^{*},\mu ^{*}\cdot \sigma ^{*}]=[\mu ^{*}{}^{\times }\!\!/\sigma ^{*}]}"></span> contains 2/3, and <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mu ^{*}/(\sigma ^{*})^{2},\mu ^{*}\cdot (\sigma ^{*})^{2}]=[\mu ^{*}{}^{\times }\!\!/(\sigma ^{*})^{2}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mu ^{*}/(\sigma ^{*})^{2},\mu ^{*}\cdot (\sigma ^{*})^{2}]=[\mu ^{*}{}^{\times }\!\!/(\sigma ^{*})^{2}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721c476ec6cdb74bed626ea73e2e5f44bff32d84" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.573ex; height:3.176ex;" alt="{\displaystyle [\mu ^{*}/(\sigma ^{*})^{2},\mu ^{*}\cdot (\sigma ^{*})^{2}]=[\mu ^{*}{}^{\times }\!\!/(\sigma ^{*})^{2}]}"></span> contains 95% of the probability. Using estimated parameters, then approximately the same percentages of the data should be contained in these intervals. </p> <div class="mw-heading mw-heading4"><h4 id="Confidence_interval_for_eμ"><span id="Confidence_interval_for_e.CE.BC"></span>Confidence interval for <i>e<sup>μ</sup></i></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=26" title="Edit section: Confidence interval for eμ"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Using the principle, note that a <a href="/wiki/Confidence_interval" title="Confidence interval">confidence interval</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\widehat {\mu }}\pm q\cdot {\widehat {\mathop {se} }}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x00B1;<!-- ± --></mo> <mi>q</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-OP"> <mi>s</mi> <mi>e</mi> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\widehat {\mu }}\pm q\cdot {\widehat {\mathop {se} }}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38626a249b1d579a2af15d2d64ec382789448e60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.618ex; height:2.843ex;" alt="{\displaystyle [{\widehat {\mu }}\pm q\cdot {\widehat {\mathop {se} }}]}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathop {se} ={\widehat {\sigma }}/{\sqrt {n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-OP"> <mi>s</mi> <mi>e</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathop {se} ={\widehat {\sigma }}/{\sqrt {n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c39ef64cb23f0d77b6fb0969746c53ddee69251e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.095ex; height:3.009ex;" alt="{\displaystyle \mathop {se} ={\widehat {\sigma }}/{\sqrt {n}}}"></span> is the standard error and <i>q</i> is the 97.5% quantile of a <a href="/wiki/Student%27s_t-distribution" title="Student&#39;s t-distribution">t distribution</a> with <i>n-1</i> degrees of freedom. Back-transformation leads to a confidence interval for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ^{*}=e^{\mu }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ^{*}=e^{\mu }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fd58ff2956fb3e609960cfabceba23464fa4e2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.861ex; height:2.843ex;" alt="{\displaystyle \mu ^{*}=e^{\mu }}"></span> (the median), is: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [{\widehat {\mu }}^{*}{}^{\times }\!\!/(\operatorname {sem} ^{*})^{q}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x00D7;<!-- × --></mo> </mrow> </msup> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msup> <mi>sem</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [{\widehat {\mu }}^{*}{}^{\times }\!\!/(\operatorname {sem} ^{*})^{q}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b9c1579089d540825002f6a247b9991d2d87936" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.395ex; height:3.009ex;" alt="{\displaystyle [{\widehat {\mu }}^{*}{}^{\times }\!\!/(\operatorname {sem} ^{*})^{q}]}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {sem} ^{*}=({\widehat {\sigma }}^{*})^{1/{\sqrt {n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>sem</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>n</mi> </msqrt> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {sem} ^{*}=({\widehat {\sigma }}^{*})^{1/{\sqrt {n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2a701413dde6b94e4af350d605ada06fe43746f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.462ex; height:3.343ex;" alt="{\displaystyle \operatorname {sem} ^{*}=({\widehat {\sigma }}^{*})^{1/{\sqrt {n}}}}"></span> </p> <div class="mw-heading mw-heading4"><h4 id="Confidence_interval_for_E(X)"><span id="Confidence_interval_for_E.28X.29"></span>Confidence interval for E(X)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=27" title="Edit section: Confidence interval for E(X)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The literature discusses several options for calculating the <a href="/wiki/Confidence_interval" title="Confidence interval">confidence interval</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> (the mean of the log-normal distribution). These include <a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">bootstrap</a> as well as various other methods.<sup id="cite_ref-Olsson2005_42-0" class="reference"><a href="#cite_note-Olsson2005-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Cox Method<sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> proposes to plug-in the estimators <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad S^{2}={\frac {\sum _{i}\left(\ln x_{i}-{\widehat {\mu }}\right)^{2}}{n-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mi>n</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad S^{2}={\frac {\sum _{i}\left(\ln x_{i}-{\widehat {\mu }}\right)^{2}}{n-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3b60f16bcc6af7c9890f41a642fb9e308ff3902" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:40.844ex; height:6.343ex;" alt="{\displaystyle {\widehat {\mu }}={\frac {\sum _{i}\ln x_{i}}{n}},\qquad S^{2}={\frac {\sum _{i}\left(\ln x_{i}-{\widehat {\mu }}\right)^{2}}{n-1}}}"></span> </p><p>and use them to construct <a href="/wiki/Confidence_interval#Approximate_confidence_intervals" title="Confidence interval">approximate confidence intervals</a> in the following way: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CI(E(X)):e^{\left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>I</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>:</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CI(E(X)):e^{\left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a23f01628ceedf1417bf4a0641f7d4c7c32f421" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.031ex; height:6.343ex;" alt="{\displaystyle CI(E(X)):e^{\left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}}"></span> </p> <style data-mw-deduplicate="TemplateStyles:r1214851843">.mw-parser-output .hidden-begin{box-sizing:border-box;width:100%;padding:5px;border:none;font-size:95%}.mw-parser-output .hidden-title{font-weight:bold;line-height:1.6;text-align:left}.mw-parser-output .hidden-content{text-align:left}@media all and (max-width:500px){.mw-parser-output .hidden-begin{width:auto!important;clear:none!important;float:none!important}}</style><div class="hidden-begin mw-collapsible mw-collapsed" style="border:1px #aaa solid; width:100%"><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">[Proof]</div><div class="hidden-content mw-collapsible-content" style=""> <p>We know that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E(X)=e^{\mu +{\frac {\sigma ^{2}}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E(X)=e^{\mu +{\frac {\sigma ^{2}}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7917c0fe50edf7f3171e97eaa81d75b62497fc21" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.649ex; height:4.509ex;" alt="{\displaystyle E(X)=e^{\mu +{\frac {\sigma ^{2}}{2}}}}"></span>. Also, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\mu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0771ade78a4446e1f7bf6900e637b788c0cbad92" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.019ex; width:1.43ex; height:2.843ex;" alt="{\displaystyle {\widehat {\mu }}}"></span> is a normal distribution with parameters: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\mu }}\sim N\left(\mu ,{\frac {\sigma ^{2}}{n}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>&#x223C;<!-- ∼ --></mo> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mu }}\sim N\left(\mu ,{\frac {\sigma ^{2}}{n}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb13b0072a9338474bbebbcbe5cbb11b98fa4906" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:16.039ex; height:6.343ex;" alt="{\displaystyle {\widehat {\mu }}\sim N\left(\mu ,{\frac {\sigma ^{2}}{n}}\right)}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b6401d5d0155afb1406770d1eb80badce4e08ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{2}}"></span> has a <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distribution</a>, which is <a href="/wiki/Chi-squared_distribution#Related_distributions" title="Chi-squared distribution">approximately</a> normally distributed (via <a href="/wiki/Central_limit_theorem" title="Central limit theorem">CLT</a>), with <a href="/wiki/Variance#Distribution_of_the_sample_variance" title="Variance">parameters</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{2}{\dot {\sim }}N\left(\sigma ^{2},{\frac {2\sigma ^{4}}{n-1}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x223C;<!-- ∼ --></mo> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{2}{\dot {\sim }}N\left(\sigma ^{2},{\frac {2\sigma ^{4}}{n-1}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44807e8d1228094c0f41e2ef1b3754330633f679" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:19.908ex; height:6.343ex;" alt="{\displaystyle S^{2}{\dot {\sim }}N\left(\sigma ^{2},{\frac {2\sigma ^{4}}{n-1}}\right)}"></span>. Hence, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {S^{2}}{2}}{\dot {\sim }}N\left({\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{4}}{2(n-1)}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x223C;<!-- ∼ --></mo> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {S^{2}}{2}}{\dot {\sim }}N\left({\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{4}}{2(n-1)}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ae48f303627dc19faa4e74de2055222cb1248f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:24.552ex; height:6.509ex;" alt="{\displaystyle {\frac {S^{2}}{2}}{\dot {\sim }}N\left({\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{4}}{2(n-1)}}\right)}"></span>. </p><p>Since the sample mean and variance are independent, and the sum of normally distributed variables is <a href="/wiki/Normal_distribution#Operations_on_two_independent_normal_variables" title="Normal distribution">also normal</a>, we get that: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\mu }}+{\frac {S^{2}}{2}}{\dot {\sim }}N\left(\mu +{\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{2}}{n}}+{\frac {\sigma ^{4}}{2(n-1)}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x223C;<!-- ∼ --></mo> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\mu }}+{\frac {S^{2}}{2}}{\dot {\sim }}N\left(\mu +{\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{2}}{n}}+{\frac {\sigma ^{4}}{2(n-1)}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d10e135b52517bd17e86d118b39cf20973b684ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:39.108ex; height:6.509ex;" alt="{\displaystyle {\widehat {\mu }}+{\frac {S^{2}}{2}}{\dot {\sim }}N\left(\mu +{\frac {\sigma ^{2}}{2}},{\frac {\sigma ^{2}}{n}}+{\frac {\sigma ^{4}}{2(n-1)}}\right)}"></span> Based on the above, standard <a href="/wiki/Normal_distribution#Confidence_intervals" title="Normal distribution">confidence intervals</a> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu +{\frac {\sigma ^{2}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu +{\frac {\sigma ^{2}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c468ee63827ea0bdb9cbdff994b86d518d9c089e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.463ex; height:5.676ex;" alt="{\displaystyle \mu +{\frac {\sigma ^{2}}{2}}}"></span> can be constructed (using a <a href="/wiki/Pivotal_quantity" title="Pivotal quantity">Pivotal quantity</a>) as: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a60440e4b8718f85198b0bbe4f8e665bb1002c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.38ex; height:7.676ex;" alt="{\displaystyle {\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}}"></span> And since confidence intervals are preserved for monotonic transformations, we get that: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CI\left(E(X)=e^{\mu +{\frac {\sigma ^{2}}{2}}}\right):e^{\left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>:</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CI\left(E(X)=e^{\mu +{\frac {\sigma ^{2}}{2}}}\right):e^{\left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38b73486827299574fc27eaef6ad9216bc95dc51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.115ex; height:8.009ex;" alt="{\displaystyle CI\left(E(X)=e^{\mu +{\frac {\sigma ^{2}}{2}}}\right):e^{\left({\hat {\mu }}+{\frac {S^{2}}{2}}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S^{2}}{n}}+{\frac {S^{4}}{2(n-1)}}}}\right)}}"></span> </p><p>As desired. </p><p><br /> </p> </div></div> <p><br /> Olsson 2005, proposed a "modified Cox method" by replacing <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1-{\frac {\alpha }{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1-{\frac {\alpha }{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6e1be72c4b09dd940afa11ecbabb56e22a39e3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.104ex; height:3.176ex;" alt="{\displaystyle z_{1-{\frac {\alpha }{2}}}}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{n-1,1-{\frac {\alpha }{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{n-1,1-{\frac {\alpha }{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36ac2e5f824e32c2b912bc7a712aaed9dc3f9f61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.407ex; height:3.509ex;" alt="{\displaystyle t_{n-1,1-{\frac {\alpha }{2}}}}"></span>, which seemed to provide better coverage results for small sample sizes.<sup id="cite_ref-Olsson2005_42-2" class="reference"><a href="#cite_note-Olsson2005-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: Section 3.4">&#58;&#8202;Section 3.4&#8202;</span></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Confidence_interval_for_comparing_two_log_normals">Confidence interval for comparing two log normals</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=28" title="Edit section: Confidence interval for comparing two log normals"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Comparing two log-normal distributions can often be of interest, for example, from a treatment and control group (e.g., in an <a href="/wiki/A/B_testing" title="A/B testing">A/B test</a>). We have samples from two independent log-normal distributions with parameters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mu _{1},\sigma _{1}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mu _{1},\sigma _{1}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04ad62720670862eadc8aa0d2daf86577f290fc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.684ex; height:3.176ex;" alt="{\displaystyle (\mu _{1},\sigma _{1}^{2})}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mu _{2},\sigma _{2}^{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mu _{2},\sigma _{2}^{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f40887314ee18d7c9b1c1aa28fdc562fe44344a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.684ex; height:3.176ex;" alt="{\displaystyle (\mu _{2},\sigma _{2}^{2})}"></span>, with sample sizes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee784b70e772f55ede5e6e0bdc929994bff63413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/840e456e3058bc0be28e5cf653b170cdbfcc3be4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.449ex; height:2.009ex;" alt="{\displaystyle n_{2}}"></span> respectively. </p><p>Comparing the medians of the two can easily be done by taking the log from each and then constructing straightforward confidence intervals and transforming it back to the exponential scale. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CI(e^{\mu _{1}-\mu _{2}}):e^{\left({\hat {\mu }}_{1}-{\hat {\mu }}_{2}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n}}+{\frac {S_{2}^{2}}{n}}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>I</mi> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> <mo>:</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>n</mi> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CI(e^{\mu _{1}-\mu _{2}}):e^{\left({\hat {\mu }}_{1}-{\hat {\mu }}_{2}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n}}+{\frac {S_{2}^{2}}{n}}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e030f1442f96c3fa88109adacf5e90f61f65e124" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.585ex; height:6.843ex;" alt="{\displaystyle CI(e^{\mu _{1}-\mu _{2}}):e^{\left({\hat {\mu }}_{1}-{\hat {\mu }}_{2}\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n}}+{\frac {S_{2}^{2}}{n}}}}\right)}}"></span> </p><p>These CI are what's often used in epidemiology for calculation the CI for <a href="/wiki/Relative-risk" class="mw-redirect" title="Relative-risk">relative-risk</a> and <a href="/wiki/Odds-ratio" class="mw-redirect" title="Odds-ratio">odds-ratio</a>.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> The way it is done there is that we have two approximately Normal distributions (e.g., p1 and p2, for RR), and we wish to calculate their ratio.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> </p><p>However, the ratio of the expectations (means) of the two samples might also be of interest, while requiring more work to develop. The ratio of their means is: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}=e^{(\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2})}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}=e^{(\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2})}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/884cde97b34e74c0e90690c4efbe8107d0b94a20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:37.654ex; height:10.176ex;" alt="{\displaystyle {\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}=e^{(\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2})}}"></span> </p><p>Plugin in the estimators to each of these parameters yields also a log normal distribution, which means that the Cox Method, discussed above, could similarly be used for this use-case: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CI\left({\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}\right):e^{\left(({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>:</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CI\left({\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}\right):e^{\left(({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e69b8c8e362ee91838e818599a9b52d9c3588d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:75.055ex; height:10.843ex;" alt="{\displaystyle CI\left({\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}\right):e^{\left(({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}}"></span> </p><p><br /> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214851843"><div class="hidden-begin mw-collapsible mw-collapsed" style="border:1px #aaa solid; width:100%"><div class="hidden-title skin-nightmode-reset-color" style="text-align:center;">[Proof]</div><div class="hidden-content mw-collapsible-content" style=""> <p>To construct a confidence interval for this ratio, we first note that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {\mu }}_{1}-{\hat {\mu }}_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {\mu }}_{1}-{\hat {\mu }}_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb9aae532f442268ce170189c8e41abfaf1ec06c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.752ex; height:2.676ex;" alt="{\displaystyle {\hat {\mu }}_{1}-{\hat {\mu }}_{2}}"></span> follows a normal distribution, and that both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/538341b0169fdfc5e11c0009affc03c17efb70d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.576ex; height:3.176ex;" alt="{\displaystyle S_{1}^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{2}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{2}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/162588281d3e68c8754882166f8566153ebcda2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.576ex; height:3.176ex;" alt="{\displaystyle S_{2}^{2}}"></span> has a <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distribution</a>, which is <a href="/wiki/Chi-squared_distribution#Related_distributions" title="Chi-squared distribution">approximately</a> normally distributed (via <a href="/wiki/Central_limit_theorem" title="Central limit theorem">CLT</a>, with the relevant <a href="/wiki/Variance#Distribution_of_the_sample_variance" title="Variance">parameters</a>). </p><p>This means that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\sim N\left((\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2}),{\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x223C;<!-- ∼ --></mo> <mi>N</mi> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\sim N\left((\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2}),{\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4280b8f3c263109055553a584d4664c19c0e272b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:94.086ex; height:7.509ex;" alt="{\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\sim N\left((\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2}),{\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}"></span> </p><p>Based on the above, standard <a href="/wiki/Normal_distribution#Confidence_intervals" title="Normal distribution">confidence intervals</a> can be constructed (using a <a href="/wiki/Pivotal_quantity" title="Pivotal quantity">Pivotal quantity</a>) as: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cae980936522cab77d3b1d1933d2ea3811698121" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:70.524ex; height:7.509ex;" alt="{\displaystyle ({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}}"></span> And since confidence intervals are preserved for monotonic transformations, we get that: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CI\left({\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}\right):e^{\left(({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>I</mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>:</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>&#x00B1;<!-- ± --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03B1;<!-- α --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CI\left({\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}\right):e^{\left(({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e69b8c8e362ee91838e818599a9b52d9c3588d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:75.055ex; height:10.843ex;" alt="{\displaystyle CI\left({\frac {E(X_{1})}{E(X_{2})}}={\frac {e^{\mu _{1}+{\frac {\sigma _{1}^{2}}{2}}}}{e^{\mu _{2}+{\frac {\sigma _{2}^{2}}{2}}}}}\right):e^{\left(({\hat {\mu }}_{1}-{\hat {\mu }}_{2}+{\frac {1}{2}}S_{1}^{2}-{\frac {1}{2}}S_{2}^{2})\pm z_{1-{\frac {\alpha }{2}}}{\sqrt {{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}\right)}}"></span> </p><p>As desired. </p> </div></div> <p>It's worth noting that naively using the <a href="/wiki/Maximum_likelihood_estimation" title="Maximum likelihood estimation">MLE</a> in the ratio of the two expectations to create a <a href="/wiki/Ratio_estimator" title="Ratio estimator">ratio estimator</a> will lead to a <a href="/wiki/Consistency_(statistics)" title="Consistency (statistics)">consistent</a>, yet biased, point-estimation (we use the fact that the estimator of the ratio is a log normal distribution)<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup>: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E\left[{\frac {{\widehat {E}}(X_{1})}{{\widehat {E}}(X_{2})}}\right]=E\left[e^{({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2})+{\frac {1}{2}}(S_{1}^{2}-S_{2}^{2})}\right]=e^{(\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2})+{\frac {1}{2}}\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mi>E</mi> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BC;<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E\left[{\frac {{\widehat {E}}(X_{1})}{{\widehat {E}}(X_{2})}}\right]=E\left[e^{({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2})+{\frac {1}{2}}(S_{1}^{2}-S_{2}^{2})}\right]=e^{(\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2})+{\frac {1}{2}}\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d691e4ea97cb627ead3fe0137ba424367fc29fa2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:82.01ex; height:8.676ex;" alt="{\displaystyle E\left[{\frac {{\widehat {E}}(X_{1})}{{\widehat {E}}(X_{2})}}\right]=E\left[e^{({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2})+{\frac {1}{2}}(S_{1}^{2}-S_{2}^{2})}\right]=e^{(\mu _{1}-\mu _{2})+{\frac {1}{2}}(\sigma _{1}^{2}-\sigma _{2}^{2})+{\frac {1}{2}}\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Extremal_principle_of_entropy_to_fix_the_free_parameter_σ"><span id="Extremal_principle_of_entropy_to_fix_the_free_parameter_.CF.83"></span>Extremal principle of entropy to fix the free parameter <i>σ</i></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=29" title="Edit section: Extremal principle of entropy to fix the free parameter σ"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In applications, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> is a parameter to be determined. For growing processes balanced by production and dissipation, the use of an extremal principle of Shannon entropy shows that<sup id="cite_ref-bai_50-0" class="reference"><a href="#cite_note-bai-50"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ={\frac {1}{\sqrt {6}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>6</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ={\frac {1}{\sqrt {6}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d815a4e3d3df3348876abf6751ca317d9421e330" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:8.363ex; height:6.176ex;" alt="{\displaystyle \sigma ={\frac {1}{\sqrt {6}}}}"></span> </p><p>This value can then be used to give some scaling relation between the inflexion point and maximum point of the log-normal distribution.<sup id="cite_ref-bai_50-1" class="reference"><a href="#cite_note-bai-50"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> This relationship is determined by the base of natural logarithm, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e=2.718\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>e</mi> <mo>=</mo> <mn>2.718</mn> <mo>&#x2026;<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e=2.718\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7518451f7860ee0d559926ff47f678db0de1a9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.589ex; height:2.176ex;" alt="{\displaystyle e=2.718\ldots }"></span>, and exhibits some geometrical similarity to the minimal surface energy principle. These scaling relations are useful for predicting a number of growth processes (epidemic spreading, droplet splashing, population growth, swirling rate of the bathtub vortex, distribution of language characters, velocity profile of turbulences, etc.). For example, the log-normal function with such <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span> fits well with the size of secondarily produced droplets during droplet impact <sup id="cite_ref-wu_51-0" class="reference"><a href="#cite_note-wu-51"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> and the spreading of an epidemic disease.<sup id="cite_ref-Wang_52-0" class="reference"><a href="#cite_note-Wang-52"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p><p>The value <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sigma =1{\big /}{\sqrt {6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo fence="true" stretchy="true" symmetric="true" maxsize="1.2em" minsize="1.2em">/</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>6</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sigma =1{\big /}{\sqrt {6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fefa55e5870b428d15027ad1db2d97f6feae414" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.033ex; height:3.343ex;" alt="{\textstyle \sigma =1{\big /}{\sqrt {6}}}"></span> is used to provide a probabilistic solution for the Drake equation.<sup id="cite_ref-Bloetscher_53-0" class="reference"><a href="#cite_note-Bloetscher-53"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Heavy-tailness_of_the_Log-Normal">Heavy-tailness of the Log-Normal</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=30" title="Edit section: Heavy-tailness of the Log-Normal"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Whether a Log-Normal can be considered or not a true heavy-tail distribution is still debated. The main reason is that its variance is always finite, differently from what happen with certain Pareto distributions, for instance. However a recent study has shown how it is possible to create a Log-Normal distribution with infinite variance using Robinson Non-Standard Analysis.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Occurrence_and_applications">Occurrence and applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=31" title="Edit section: Occurrence and applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The log-normal distribution is important in the description of natural phenomena. Many natural growth processes are driven by the accumulation of many small percentage changes which become additive on a log scale. Under appropriate regularity conditions, the distribution of the resulting accumulated changes will be increasingly well approximated by a log-normal, as noted in the section above on "<a href="#Multiplicative_Central_Limit_Theorem">Multiplicative Central Limit Theorem</a>". This is also known as <a href="/wiki/Gibrat%27s_law" title="Gibrat&#39;s law">Gibrat's law</a>, after Robert Gibrat (1904–1980) who formulated it for companies.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> If the rate of accumulation of these small changes does not vary over time, growth becomes independent of size. Even if this assumption is not true, the size distributions at any age of things that grow over time tends to be log-normal.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2023)">citation needed</span></a></i>&#93;</sup> Consequently, <a href="/wiki/Reference_ranges" class="mw-redirect" title="Reference ranges">reference ranges</a> for measurements in healthy individuals are more accurately estimated by assuming a log-normal distribution than by assuming a symmetric distribution about the mean.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (January 2023)">citation needed</span></a></i>&#93;</sup> </p><p>A second justification is based on the observation that fundamental natural laws imply multiplications and divisions of positive variables. Examples are the simple gravitation law connecting masses and distance with the resulting force, or the formula for equilibrium concentrations of chemicals in a solution that connects concentrations of educts and products. Assuming log-normal distributions of the variables involved leads to consistent models in these cases. </p><p>Specific examples are given in the following subsections.<sup id="cite_ref-:0_56-0" class="reference"><a href="#cite_note-:0-56"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> contains a review and table of log-normal distributions from geology, biology, medicine, food, ecology, and other areas.<sup id="cite_ref-:4_57-0" class="reference"><a href="#cite_note-:4-57"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> is a review article on log-normal distributions in neuroscience, with annotated bibliography. </p> <div class="mw-heading mw-heading3"><h3 id="Human_behavior">Human behavior</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=32" title="Edit section: Human behavior"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>The length of comments posted in Internet discussion forums follows a log-normal distribution.<sup id="cite_ref-:3_58-0" class="reference"><a href="#cite_note-:3-58"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup></li> <li>Users' dwell time on online articles (jokes, news etc.) follows a log-normal distribution.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup></li> <li>The length of <a href="/wiki/Chess" title="Chess">chess</a> games tends to follow a log-normal distribution.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup></li> <li>Onset durations of acoustic comparison stimuli that are matched to a standard stimulus follow a log-normal distribution.<sup id="cite_ref-Acoustic_Stimuli_Revisited_2016_18-1" class="reference"><a href="#cite_note-Acoustic_Stimuli_Revisited_2016-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Biology_and_medicine">Biology and medicine</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=33" title="Edit section: Biology and medicine"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Measures of size of living tissue (length, skin area, weight).<sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup></li> <li>Incubation period of diseases.<sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup></li> <li>Diameters of banana leaf spots, powdery mildew on barley.<sup id="cite_ref-:0_56-1" class="reference"><a href="#cite_note-:0-56"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup></li> <li>For highly communicable epidemics, such as SARS in 2003, if public intervention control policies are involved, the number of hospitalized cases is shown to satisfy the log-normal distribution with no free parameters if an entropy is assumed and the standard deviation is determined by the principle of maximum rate of <a href="/wiki/Entropy_production" title="Entropy production">entropy production</a>.<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup></li> <li>The length of inert appendages (hair, claws, nails, teeth) of biological specimens, in the direction of growth.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2011)">citation needed</span></a></i>&#93;</sup></li> <li>The normalised RNA-Seq readcount for any genomic region can be well approximated by log-normal distribution.</li> <li>The <a href="/wiki/Pacific_Biosciences" title="Pacific Biosciences">PacBio</a> sequencing read length follows a log-normal distribution.<sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup></li> <li>Certain physiological measurements, such as blood pressure of adult humans (after separation on male/female subpopulations).<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup></li> <li>Several <a href="/wiki/Pharmacokinetics" title="Pharmacokinetics">pharmacokinetic</a> variables, such as <a href="/wiki/Cmax_(pharmacology)" title="Cmax (pharmacology)">C<sub>max</sub></a>, <a href="/wiki/Biological_half-life" title="Biological half-life">elimination half-life</a> and the <a href="/wiki/Elimination_rate_constant" title="Elimination rate constant">elimination rate constant</a>.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup></li> <li>In neuroscience, the distribution of firing rates across a population of neurons is often approximately log-normal. This has been first observed in the cortex and striatum <sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> and later in hippocampus and entorhinal cortex,<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> and elsewhere in the brain.<sup id="cite_ref-:4_57-1" class="reference"><a href="#cite_note-:4-57"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup> Also, intrinsic gain distributions and synaptic weight distributions appear to be log-normal<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> as well.</li> <li>Neuron densities in the cerebral cortex, due to the noisy cell division process during neurodevelopment.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup></li> <li>In operating-rooms management, the distribution of <a href="/wiki/Predictive_methods_for_surgery_duration" title="Predictive methods for surgery duration">surgery duration</a>.</li> <li>In the size of avalanches of fractures in the cytoskeleton of living cells, showing log-normal distributions, with significantly higher size in cancer cells than healthy ones.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Chemistry">Chemistry</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=34" title="Edit section: Chemistry"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Particle_size_distribution" class="mw-redirect" title="Particle size distribution">Particle size distributions</a> and <a href="/wiki/Molar_mass_distribution" title="Molar mass distribution">molar mass distributions</a>.</li> <li>The concentration of rare elements in minerals.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup></li> <li>Diameters of crystals in ice cream, oil drops in mayonnaise, pores in cocoa press cake.<sup id="cite_ref-:0_56-2" class="reference"><a href="#cite_note-:0-56"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup></li></ul> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:FitLogNormDistr.tif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/FitLogNormDistr.tif/lossy-page1-220px-FitLogNormDistr.tif.jpg" decoding="async" width="220" height="164" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f0/FitLogNormDistr.tif/lossy-page1-330px-FitLogNormDistr.tif.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f0/FitLogNormDistr.tif/lossy-page1-440px-FitLogNormDistr.tif.jpg 2x" data-file-width="623" data-file-height="465" /></a><figcaption>Fitted cumulative log-normal distribution to annually maximum 1-day rainfalls, see <a href="/wiki/Distribution_fitting" class="mw-redirect" title="Distribution fitting">distribution fitting</a> </figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Hydrology">Hydrology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=35" title="Edit section: Hydrology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In <a href="/wiki/Hydrology" title="Hydrology">hydrology</a>, the log-normal distribution is used to analyze extreme values of such variables as monthly and annual maximum values of daily rainfall and river discharge volumes.<sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup></li></ul> <dl><dd><dl><dd>The image on the right, made with <a href="/wiki/CumFreq" title="CumFreq">CumFreq</a>, illustrates an example of fitting the log-normal distribution to ranked annually maximum one-day rainfalls showing also the 90% <a href="/wiki/Confidence_belt" class="mw-redirect" title="Confidence belt">confidence belt</a> based on the <a href="/wiki/Binomial_distribution" title="Binomial distribution">binomial distribution</a>.<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup></dd></dl></dd></dl> <dl><dd><dl><dd>The rainfall data are represented by <a href="/wiki/Plotting_position" class="mw-redirect" title="Plotting position">plotting positions</a> as part of a <a href="/wiki/Cumulative_frequency_analysis" title="Cumulative frequency analysis">cumulative frequency analysis</a>.</dd></dl></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Social_sciences_and_demographics">Social sciences and demographics</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=36" title="Edit section: Social sciences and demographics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In <a href="/wiki/Economics" title="Economics">economics</a>, there is evidence that the <a href="/wiki/Income" title="Income">income</a> of 97%–99% of the population is distributed log-normally.<sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> (The distribution of higher-income individuals follows a <a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto distribution</a>).<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup></li> <li>If an income distribution follows a log-normal distribution with standard deviation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>, then the <a href="/wiki/Gini_coefficient" title="Gini coefficient">Gini coefficient</a>, commonly use to evaluate income inequality, can be computed as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=\operatorname {erf} \left({\frac {\sigma }{2}}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mi>erf</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C3;<!-- σ --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=\operatorname {erf} \left({\frac {\sigma }{2}}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/050f58ceb781781fce54a6d12e8ea1389089e27f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.522ex; height:4.843ex;" alt="{\displaystyle G=\operatorname {erf} \left({\frac {\sigma }{2}}\right)}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {erf} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>erf</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {erf} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a8ee8591a5cc9057c9c646d1d07b848c1d68e81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.153ex; width:2.809ex; height:2.176ex;" alt="{\displaystyle \operatorname {erf} }"></span> is the <a href="/wiki/Error_function" title="Error function">error function</a>, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=2\Phi \left({\frac {\sigma }{\sqrt {2}}}\right)-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mn>2</mn> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C3;<!-- σ --></mi> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=2\Phi \left({\frac {\sigma }{\sqrt {2}}}\right)-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b2d9606af752a9a180d98dade729c0d7e2633df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.511ex; height:6.509ex;" alt="{\displaystyle G=2\Phi \left({\frac {\sigma }{\sqrt {2}}}\right)-1}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Phi (x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A6;<!-- Φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Phi (x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79e4f01c93494fbb5dcd75761f4468121b00b294" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.817ex; height:2.843ex;" alt="{\displaystyle \Phi (x)}"></span> is the cumulative distribution function of a standard normal distribution.</li> <li>In <a href="/wiki/Finance" title="Finance">finance</a>, in particular the <a href="/wiki/Black%E2%80%93Scholes_model" title="Black–Scholes model">Black–Scholes model</a>, changes in the <i>logarithm</i> of exchange rates, price indices, and stock market indices are assumed normal<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> (these variables behave like compound interest, not like simple interest, and so are multiplicative). However, some mathematicians such as <a href="/wiki/Benoit_Mandelbrot" title="Benoit Mandelbrot">Benoit Mandelbrot</a> have argued <sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> that <a href="/wiki/L%C3%A9vy_skew_alpha-stable_distribution" class="mw-redirect" title="Lévy skew alpha-stable distribution">log-Lévy distributions</a>, which possesses <a href="/wiki/Heavy_tails" class="mw-redirect" title="Heavy tails">heavy tails</a> would be a more appropriate model, in particular for the analysis for <a href="/wiki/Stock_market_crash" title="Stock market crash">stock market crashes</a>. Indeed, stock price distributions typically exhibit a <a href="/wiki/Fat_tail" class="mw-redirect" title="Fat tail">fat tail</a>.<sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> The fat tailed distribution of changes during stock market crashes invalidate the assumptions of the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>.</li> <li>In <a href="/wiki/Scientometrics" title="Scientometrics">scientometrics</a>, the number of citations to journal articles and patents follows a discrete log-normal distribution.<sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Historical_urban_community_sizes" title="Historical urban community sizes">City sizes</a> (population) satisfy Gibrat's Law.<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> The growth process of city sizes is proportionate and invariant with respect to size. From the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a> therefore, the log of city size is normally distributed.</li> <li>The number of sexual partners appears to be best described by a log-normal distribution.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading3"><h3 id="Technology">Technology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=37" title="Edit section: Technology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>In <a href="/wiki/Reliability_(statistics)" title="Reliability (statistics)">reliability</a> analysis, the log-normal distribution is often used to model times to repair a maintainable system.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup></li> <li>In <a href="/wiki/Wireless_communication" class="mw-redirect" title="Wireless communication">wireless communication</a>, "the local-mean power expressed in logarithmic values, such as dB or neper, has a normal (i.e., Gaussian) distribution."<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> Also, the random obstruction of radio signals due to large buildings and hills, called <a href="/wiki/Fading" title="Fading">shadowing</a>, is often modeled as a log-normal distribution.</li> <li>Particle size distributions produced by comminution with random impacts, such as in <a href="/wiki/Ball_mill" title="Ball mill">ball milling</a>.<sup id="cite_ref-87" class="reference"><a href="#cite_note-87"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/File_size" title="File size">file size</a> distribution of publicly available audio and video data files (<a href="/wiki/MIME_types" class="mw-redirect" title="MIME types">MIME types</a>) follows a log-normal distribution over five <a href="/wiki/Orders_of_magnitude" class="mw-redirect" title="Orders of magnitude">orders of magnitude</a>.<sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup></li> <li>File sizes of 140 million files on personal computers running the Windows OS, collected in 1999.<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:3_58-1" class="reference"><a href="#cite_note-:3-58"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup></li> <li>Sizes of text-based emails (1990s) and multimedia-based emails (2000s).<sup id="cite_ref-:3_58-2" class="reference"><a href="#cite_note-:3-58"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup></li> <li>In computer networks and <a href="/wiki/Internet_traffic" title="Internet traffic">Internet traffic</a> analysis, log-normal is shown as a good statistical model to represent the amount of traffic per unit time. This has been shown by applying a robust statistical approach on a large groups of real Internet traces. In this context, the log-normal distribution has shown a good performance in two main use cases: (1) predicting the proportion of time traffic will exceed a given level (for service level agreement or link capacity estimation) i.e. link dimensioning based on bandwidth provisioning and (2) predicting 95th percentile pricing.<sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup></li> <li>in <a href="/wiki/Physical_test" title="Physical test">physical testing</a> when the test produces a time-to-failure of an item under specified conditions, the data is often best analyzed using a lognormal distribution.<sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=38" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Heavy-tailed_distribution" title="Heavy-tailed distribution">Heavy-tailed distribution</a></li> <li><a href="/wiki/Log-distance_path_loss_model" title="Log-distance path loss model">Log-distance path loss model</a></li> <li><a href="/wiki/Modified_lognormal_power-law_distribution" title="Modified lognormal power-law distribution">Modified lognormal power-law distribution</a></li> <li><a href="/wiki/Fading" title="Fading">Fading</a></li></ul> <p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=39" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text">The Cox Method was quoted as “personal communication” in Land, 1971,<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> and was also given in CitationZhou and Gao (1997)<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> and Olsson 2005<sup id="cite_ref-Olsson2005_42-1" class="reference"><a href="#cite_note-Olsson2005-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: Section 3.3">&#58;&#8202;Section 3.3&#8202;</span></sup></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text">The issue is that we don't know how to do it directly, so we take their logs, and then use the <a href="/wiki/Delta_method" title="Delta method">delta method</a> to say that their logs is itself (approximately) normal. This trick allows us to pretend that their exp was log normal, and use that approximation to build the CI. Notice that in the RR case, the median and the mean in the base distribution (i.e., before taking the log), is actually identical (since they are originally normal, and not log normal). E.g., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {p}}_{1}{\dot {\sim }}N(p_{1},p_{1}(1-p1)/n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x223C;<!-- ∼ --></mo> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>N</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {p}}_{1}{\dot {\sim }}N(p_{1},p_{1}(1-p1)/n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b14657ce864277fc63815a7090e07894135db08b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:24.367ex; height:2.843ex;" alt="{\displaystyle {\hat {p}}_{1}{\dot {\sim }}N(p_{1},p_{1}(1-p1)/n)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle log({\hat {p}}_{1}){\dot {\sim }}N(log(p_{1}),(1-p1)/(p_{1}*n))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x223C;<!-- ∼ --></mo> <mo>&#x02D9;<!-- ˙ --></mo> </mover> </mrow> </mrow> <mi>N</mi> <mo stretchy="false">(</mo> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle log({\hat {p}}_{1}){\dot {\sim }}N(log(p_{1}),(1-p1)/(p_{1}*n))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f153b8b496f417ace56a7600b861123b5527b812" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.774ex; height:2.843ex;" alt="{\displaystyle log({\hat {p}}_{1}){\dot {\sim }}N(log(p_{1}),(1-p1)/(p_{1}*n))}"></span> Hence, building a CI based on the log and than back-transform will give us <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CI(p_{1}):e^{log({\hat {p}}_{1})\pm (1-{\hat {p}}_{1})/({\hat {p}}_{1}*n))}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>I</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>:</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x00B1;<!-- ± --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CI(p_{1}):e^{log({\hat {p}}_{1})\pm (1-{\hat {p}}_{1})/({\hat {p}}_{1}*n))}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eb97ee4422c2b668b3b7026759d9257508ddfa9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.336ex; height:3.509ex;" alt="{\displaystyle CI(p_{1}):e^{log({\hat {p}}_{1})\pm (1-{\hat {p}}_{1})/({\hat {p}}_{1}*n))}}"></span>. So while we expect the CI to be for the median, in this case, it's actually also for the mean in the original distribution. i.e., if the original <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {p}}_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {p}}_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c39907b12d79c0fcf7638de78a9e5fab428551ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-left: -0.089ex; width:2.503ex; height:2.676ex;" alt="{\displaystyle {\hat {p}}_{1}}"></span> was log-normal, we'd expect that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[{\hat {p}}_{1}]=e^{log(p_{1})+1/2*(1-p1)/(p_{1}*n)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo>&#x2217;<!-- ∗ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>p</mi> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2217;<!-- ∗ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[{\hat {p}}_{1}]=e^{log(p_{1})+1/2*(1-p1)/(p_{1}*n)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3f7318a7ef62498010b80b435b5793839fd85a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.075ex; height:3.343ex;" alt="{\displaystyle E[{\hat {p}}_{1}]=e^{log(p_{1})+1/2*(1-p1)/(p_{1}*n)}}"></span>. But in practice, we KNOW that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E[{\hat {p}}_{1}]=e^{log(p_{1})}=p_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo stretchy="false">[</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>p</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo stretchy="false">(</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E[{\hat {p}}_{1}]=e^{log(p_{1})}=p_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ea7b95a1e85e8f3a89f40a021349b461859f70e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.234ex; height:3.343ex;" alt="{\displaystyle E[{\hat {p}}_{1}]=e^{log(p_{1})}=p_{1}}"></span>. Hence, the approximation we have is in the second step (of the delta method), but the CI are actually for the expectation (not just the median). This is because we are starting from a base distribution that is normal, and then using another approximation after the log again to normal. This means that a big approximation part of the CI is from the delta method.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">The bias can be partially minimized by using: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\widehat {\left[{\frac {E(X_{1})}{E(X_{2})}}\right]}}=\left[{\frac {{\widehat {E}}(X_{1})}{{\widehat {E}}(X_{2})}}\right]{\frac {2}{\widehat {\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}}}=\left[e^{({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2})+{\frac {1}{2}}(S_{1}^{2}-S_{2}^{2})}\right]{\frac {2}{{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>E</mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>[</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">)</mo> </mrow> </msup> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msubsup> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\widehat {\left[{\frac {E(X_{1})}{E(X_{2})}}\right]}}=\left[{\frac {{\widehat {E}}(X_{1})}{{\widehat {E}}(X_{2})}}\right]{\frac {2}{\widehat {\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}}}=\left[e^{({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2})+{\frac {1}{2}}(S_{1}^{2}-S_{2}^{2})}\right]{\frac {2}{{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/25c22f1c8adacddf8c56c5a1757c0fe498308472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:106.471ex; height:11.509ex;" alt="{\displaystyle {\widehat {\left[{\frac {E(X_{1})}{E(X_{2})}}\right]}}=\left[{\frac {{\widehat {E}}(X_{1})}{{\widehat {E}}(X_{2})}}\right]{\frac {2}{\widehat {\left({\frac {\sigma _{1}^{2}}{n_{1}}}+{\frac {\sigma _{2}^{2}}{n_{2}}}+{\frac {\sigma _{1}^{4}}{2(n_{1}-1)}}+{\frac {\sigma _{2}^{4}}{2(n_{2}-1)}}\right)}}}=\left[e^{({\widehat {\mu }}_{1}-{\widehat {\mu }}_{2})+{\frac {1}{2}}(S_{1}^{2}-S_{2}^{2})}\right]{\frac {2}{{\frac {S_{1}^{2}}{n_{1}}}+{\frac {S_{2}^{2}}{n_{2}}}+{\frac {S_{1}^{4}}{2(n_{1}-1)}}+{\frac {S_{2}^{4}}{2(n_{2}-1)}}}}}"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=40" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-norton-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-norton_1-0">^</a></b></span> <span class="reference-text"> <style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFNortonKhokhlovUryasev2019" class="citation journal cs1">Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019). <a rel="nofollow" class="external text" href="http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf">"Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/Annals_of_Operations_Research" title="Annals of Operations Research">Annals of Operations Research</a></i>. <b>299</b> (1–2). Springer: 1281–1315. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1811.11301">1811.11301</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10479-019-03373-1">10.1007/s10479-019-03373-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:254231768">254231768</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20210418151110/http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2021-04-18<span class="reference-accessdate">. Retrieved <span class="nowrap">2023-02-27</span></span> &#8211; via stonybrook.edu.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annals+of+Operations+Research&amp;rft.atitle=Calculating+CVaR+and+bPOE+for+common+probability+distributions+with+application+to+portfolio+optimization+and+density+estimation&amp;rft.volume=299&amp;rft.issue=1%E2%80%932&amp;rft.pages=1281-1315&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1811.11301&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A254231768%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10479-019-03373-1&amp;rft.aulast=Norton&amp;rft.aufirst=Matthew&amp;rft.au=Khokhlov%2C+Valentyn&amp;rft.au=Uryasev%2C+Stan&amp;rft_id=http%3A%2F%2Furyasev.ams.stonybrook.edu%2Fwp-content%2Fuploads%2F2019%2F10%2FNorton2019_CVaR_bPOE.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:1-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:1_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/LogNormalDistribution.html">"Log Normal Distribution"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft.atitle=Log+Normal+Distribution&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLogNormalDistribution.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:2-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm">"1.3.6.6.9. Lognormal Distribution"</a>. <i>www.itl.nist.gov</i>. U.S. <a href="/wiki/National_Institute_of_Standards_and_Technology" title="National Institute of Standards and Technology">National Institute of Standards and Technology</a> (NIST)<span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-13</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.itl.nist.gov&amp;rft.atitle=1.3.6.6.9.+Lognormal+Distribution&amp;rft_id=https%3A%2F%2Fwww.itl.nist.gov%2Fdiv898%2Fhandbook%2Feda%2Fsection3%2Feda3669.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-JKB-4"><span class="mw-cite-backlink">^ <a href="#cite_ref-JKB_4-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-JKB_4-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-JKB_4-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-JKB_4-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-JKB_4-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsonKotzBalakrishnan1994" class="citation cs2">Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), "14: Lognormal Distributions", <i>Continuous univariate distributions. Vol. 1</i>, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd&#160;ed.), New York: <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-471-58495-7" title="Special:BookSources/978-0-471-58495-7"><bdi>978-0-471-58495-7</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1299979">1299979</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=14%3A+Lognormal+Distributions&amp;rft.btitle=Continuous+univariate+distributions.+Vol.+1&amp;rft.place=New+York&amp;rft.series=Wiley+Series+in+Probability+and+Mathematical+Statistics%3A+Applied+Probability+and+Statistics&amp;rft.edition=2nd&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=1994&amp;rft.isbn=978-0-471-58495-7&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1299979%23id-name%3DMR&amp;rft.aulast=Johnson&amp;rft.aufirst=Norman+L.&amp;rft.au=Kotz%2C+Samuel&amp;rft.au=Balakrishnan%2C+N.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFParkBera2009" class="citation journal cs1">Park, Sung Y.; Bera, Anil K. (2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160307144515/http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf">"Maximum entropy autoregressive conditional heteroskedasticity model"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of Econometrics</i>. <b>150</b> (2): 219–230, esp. Table 1, p. 221. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.511.9750">10.1.1.511.9750</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jeconom.2008.12.014">10.1016/j.jeconom.2008.12.014</a>. Archived from <a rel="nofollow" class="external text" href="http://www.wise.xmu.edu.cn/Master/Download/..%5C..%5CUploadFiles%5Cpaper-masterdownload%5C2009519932327055475115776.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-06-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Econometrics&amp;rft.atitle=Maximum+entropy+autoregressive+conditional+heteroskedasticity+model&amp;rft.volume=150&amp;rft.issue=2&amp;rft.pages=219-230%2C+esp.+Table+1%2C+p.+221&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.511.9750%23id-name%3DCiteSeerX&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jeconom.2008.12.014&amp;rft.aulast=Park&amp;rft.aufirst=Sung+Y.&amp;rft.au=Bera%2C+Anil+K.&amp;rft_id=http%3A%2F%2Fwww.wise.xmu.edu.cn%2FMaster%2FDownload%2F..%255C..%255CUploadFiles%255Cpaper-masterdownload%255C2009519932327055475115776.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTarmast2001" class="citation conference cs1">Tarmast, Ghasem (2001). <a rel="nofollow" class="external text" href="https://isi.cbs.nl/iamamember/CD2/pdf/329.PDF"><i>Multivariate Log–Normal Distribution</i></a> <span class="cs1-format">(PDF)</span>. ISI Proceedings: 53rd Session. Seoul. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130719214220/http://isi.cbs.nl/iamamember/CD2/pdf/329.PDF">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2013-07-19.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Multivariate+Log%E2%80%93Normal+Distribution&amp;rft.place=Seoul&amp;rft.date=2001&amp;rft.aulast=Tarmast&amp;rft.aufirst=Ghasem&amp;rft_id=http%3A%2F%2Fisi.cbs.nl%2Fiamamember%2FCD2%2Fpdf%2F329.PDF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalliwell2015" class="citation conference cs1">Halliwell, Leigh (2015). <a rel="nofollow" class="external text" href="http://www.casact.org/pubs/forum/15spforum/Halliwell.pdf"><i>The Lognormal Random Multivariate</i></a> <span class="cs1-format">(PDF)</span>. Casualty Actuarial Society E-Forum, Spring 2015. Arlington, VA. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150930111908/http://www.casact.org/pubs/forum/15spforum/Halliwell.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2015-09-30.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=The+Lognormal+Random+Multivariate&amp;rft.place=Arlington%2C+VA&amp;rft.date=2015&amp;rft.aulast=Halliwell&amp;rft.aufirst=Leigh&amp;rft_id=http%3A%2F%2Fwww.casact.org%2Fpubs%2Fforum%2F15spforum%2FHalliwell.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Heyde-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Heyde_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeyde2010" class="citation cs2">Heyde, CC. (2010), "On a Property of the Lognormal Distribution", <i>Journal of the Royal Statistical Society, Series B</i>, vol.&#160;25, no.&#160;2, pp.&#160;392–393, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4419-5823-5_6">10.1007/978-1-4419-5823-5_6</a></span>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4419-5822-8" title="Special:BookSources/978-1-4419-5822-8"><bdi>978-1-4419-5822-8</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Royal+Statistical+Society%2C+Series+B&amp;rft.atitle=On+a+Property+of+the+Lognormal+Distribution&amp;rft.volume=25&amp;rft.issue=2&amp;rft.pages=392-393&amp;rft.date=2010&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4419-5823-5_6&amp;rft.isbn=978-1-4419-5822-8&amp;rft.aulast=Heyde&amp;rft.aufirst=CC.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBillingsley2012" class="citation book cs1">Billingsley, Patrick (2012). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/780289503"><i>Probability and Measure</i></a> (Anniversary&#160;ed.). Hoboken, N.J.: Wiley. p.&#160;415. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-118-12237-2" title="Special:BookSources/978-1-118-12237-2"><bdi>978-1-118-12237-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/780289503">780289503</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability+and+Measure&amp;rft.place=Hoboken%2C+N.J.&amp;rft.pages=415&amp;rft.edition=Anniversary&amp;rft.pub=Wiley&amp;rft.date=2012&amp;rft_id=info%3Aoclcnum%2F780289503&amp;rft.isbn=978-1-118-12237-2&amp;rft.aulast=Billingsley&amp;rft.aufirst=Patrick&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F780289503&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Holgate-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Holgate_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Holgate_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolgate1989" class="citation journal cs1">Holgate, P. (1989). "The lognormal characteristic function, vol. 18, pp. 4539–4548, 1989". <i>Communications in Statistics - Theory and Methods</i>. <b>18</b> (12): 4539–4548. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03610928908830173">10.1080/03610928908830173</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Statistics+-+Theory+and+Methods&amp;rft.atitle=The+lognormal+characteristic+function%2C+vol.+18%2C+pp.+4539%E2%80%934548%2C+1989&amp;rft.volume=18&amp;rft.issue=12&amp;rft.pages=4539-4548&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1080%2F03610928908830173&amp;rft.aulast=Holgate&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Barakat-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-Barakat_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarakat1976" class="citation journal cs1">Barakat, R. (1976). "Sums of independent lognormally distributed random variables". <i>Journal of the Optical Society of America</i>. <b>66</b> (3): 211–216. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1976JOSA...66..211B">1976JOSA...66..211B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1364%2FJOSA.66.000211">10.1364/JOSA.66.000211</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Optical+Society+of+America&amp;rft.atitle=Sums+of+independent+lognormally+distributed+random+variables&amp;rft.volume=66&amp;rft.issue=3&amp;rft.pages=211-216&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.1364%2FJOSA.66.000211&amp;rft_id=info%3Abibcode%2F1976JOSA...66..211B&amp;rft.aulast=Barakat&amp;rft.aufirst=R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Barouch-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-Barouch_12-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarouchKaufmanGlasser1986" class="citation journal cs1">Barouch, E.; Kaufman, GM.; Glasser, ML. (1986). <a rel="nofollow" class="external text" href="http://dspace.mit.edu/bitstream/handle/1721.1/48703/onsumsoflognorma00baro.pdf">"On sums of lognormal random variables"</a> <span class="cs1-format">(PDF)</span>. <i>Studies in Applied Mathematics</i>. <b>75</b> (1): 37–55. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fsapm198675137">10.1002/sapm198675137</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/1721.1%2F48703">1721.1/48703</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Studies+in+Applied+Mathematics&amp;rft.atitle=On+sums+of+lognormal+random+variables&amp;rft.volume=75&amp;rft.issue=1&amp;rft.pages=37-55&amp;rft.date=1986&amp;rft_id=info%3Ahdl%2F1721.1%2F48703&amp;rft_id=info%3Adoi%2F10.1002%2Fsapm198675137&amp;rft.aulast=Barouch&amp;rft.aufirst=E.&amp;rft.au=Kaufman%2C+GM.&amp;rft.au=Glasser%2C+ML.&amp;rft_id=http%3A%2F%2Fdspace.mit.edu%2Fbitstream%2Fhandle%2F1721.1%2F48703%2Fonsumsoflognorma00baro.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Leipnik-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Leipnik_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLeipnik1991" class="citation journal cs1">Leipnik, Roy B. (January 1991). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/services/aop-cambridge-core/content/view/F1563B5AD8918EF2CD51092F82EB0B73/S0334270000006901a.pdf/div-class-title-on-lognormal-random-variables-i-the-characteristic-function-div.pdf">"On Lognormal Random Variables: I – The Characteristic Function"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of the Australian Mathematical Society, Series B</i>. <b>32</b> (3): 327–347. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0334270000006901">10.1017/S0334270000006901</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Australian+Mathematical+Society%2C+Series+B&amp;rft.atitle=On+Lognormal+Random+Variables%3A+I+%E2%80%93+The+Characteristic+Function&amp;rft.volume=32&amp;rft.issue=3&amp;rft.pages=327-347&amp;rft.date=1991-01&amp;rft_id=info%3Adoi%2F10.1017%2FS0334270000006901&amp;rft.aulast=Leipnik&amp;rft.aufirst=Roy+B.&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fservices%2Faop-cambridge-core%2Fcontent%2Fview%2FF1563B5AD8918EF2CD51092F82EB0B73%2FS0334270000006901a.pdf%2Fdiv-class-title-on-lognormal-random-variables-i-the-characteristic-function-div.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Asmussen-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Asmussen_14-0">^</a></b></span> <span class="reference-text">S. Asmussen, J.L. Jensen, L. Rojas-Nandayapa (2016). "On the Laplace transform of the Lognormal distribution", <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s11009-014-9430-7">Methodology and Computing in Applied Probability 18 (2), 441-458.</a> <a rel="nofollow" class="external text" href="http://data.imf.au.dk/publications/thiele/2013/math-thiele-2013-06.pdf">Thiele report 6 (13).</a></span> </li> <li id="cite_note-Das-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Das_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Das_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Das_15-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDas2021" class="citation journal cs1">Das, Abhranil (2021). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419883">"A method to integrate and classify normal distributions"</a>. <i>Journal of Vision</i>. <b>21</b> (10): 1. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2012.14331">2012.14331</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1167%2Fjov.21.10.1">10.1167/jov.21.10.1</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419883">8419883</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/34468706">34468706</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Vision&amp;rft.atitle=A+method+to+integrate+and+classify+normal+distributions&amp;rft.volume=21&amp;rft.issue=10&amp;rft.pages=1&amp;rft.date=2021&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8419883%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F34468706&amp;rft_id=info%3Aarxiv%2F2012.14331&amp;rft_id=info%3Adoi%2F10.1167%2Fjov.21.10.1&amp;rft.aulast=Das&amp;rft.aufirst=Abhranil&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC8419883&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-ReferenceA-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-ReferenceA_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ReferenceA_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKirkwood1979" class="citation journal cs1">Kirkwood, Thomas BL (Dec 1979). "Geometric means and measures of dispersion". <i>Biometrics</i>. <b>35</b> (4): 908–9. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2530139">2530139</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrics&amp;rft.atitle=Geometric+means+and+measures+of+dispersion&amp;rft.volume=35&amp;rft.issue=4&amp;rft.pages=908-9&amp;rft.date=1979-12&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2530139%23id-name%3DJSTOR&amp;rft.aulast=Kirkwood&amp;rft.aufirst=Thomas+BL&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLimpertStahelAbbt2001" class="citation journal cs1">Limpert, E; Stahel, W; Abbt, M (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">"Lognormal distributions across the sciences: keys and clues"</a>. <i>BioScience</i>. <b>51</b> (5): 341–352. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">10.1641/0006-3568(2001)051&#91;0341:LNDATS&#93;2.0.CO&#59;2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BioScience&amp;rft.atitle=Lognormal+distributions+across+the+sciences%3A+keys+and+clues&amp;rft.volume=51&amp;rft.issue=5&amp;rft.pages=341-352&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2&amp;rft.aulast=Limpert&amp;rft.aufirst=E&amp;rft.au=Stahel%2C+W&amp;rft.au=Abbt%2C+M&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1641%252F0006-3568%25282001%2529051%255B0341%253ALNDATS%255D2.0.CO%253B2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Acoustic_Stimuli_Revisited_2016-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-Acoustic_Stimuli_Revisited_2016_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Acoustic_Stimuli_Revisited_2016_18-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHeil_P2017" class="citation journal cs1">Heil P, Friedrich B (2017). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216879">"Onset-Duration Matching of Acoustic Stimuli Revisited: Conventional Arithmetic vs. Proposed Geometric Measures of Accuracy and Precision"</a>. <i>Frontiers in Psychology</i>. <b>7</b>: 2013. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3389%2Ffpsyg.2016.02013">10.3389/fpsyg.2016.02013</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5216879">5216879</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28111557">28111557</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Frontiers+in+Psychology&amp;rft.atitle=Onset-Duration+Matching+of+Acoustic+Stimuli+Revisited%3A+Conventional+Arithmetic+vs.+Proposed+Geometric+Measures+of+Accuracy+and+Precision&amp;rft.volume=7&amp;rft.pages=2013&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5216879%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F28111557&amp;rft_id=info%3Adoi%2F10.3389%2Ffpsyg.2016.02013&amp;rft.aulast=Heil+P&amp;rft.aufirst=Friedrich+B&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5216879&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Sawant, S.; Mohan, N. (2011) <a rel="nofollow" class="external text" href="http://pharmasug.org/proceedings/2011/PO/PharmaSUG-2011-PO08.pdf">"FAQ: Issues with Efficacy Analysis of Clinical Trial Data Using SAS"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110824094357/http://pharmasug.org/proceedings/2011/PO/PharmaSUG-2011-PO08.pdf">Archived</a> 24 August 2011 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, <i>PharmaSUG2011</i>, Paper PO08</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchiff2014" class="citation journal cs1">Schiff, MH; et&#160;al. (2014). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112421">"Head-to-head, randomised, crossover study of oral versus subcutaneous methotrexate in patients with rheumatoid arthritis: drug-exposure limitations of oral methotrexate at doses &gt;=15 mg may be overcome with subcutaneous administration"</a>. <i>Ann Rheum Dis</i>. <b>73</b> (8): 1–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1136%2Fannrheumdis-2014-205228">10.1136/annrheumdis-2014-205228</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112421">4112421</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24728329">24728329</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ann+Rheum+Dis&amp;rft.atitle=Head-to-head%2C+randomised%2C+crossover+study+of+oral+versus+subcutaneous+methotrexate+in+patients+with+rheumatoid+arthritis%3A+drug-exposure+limitations+of+oral+methotrexate+at+doses+%3E%3D15+mg+may+be+overcome+with+subcutaneous+administration&amp;rft.volume=73&amp;rft.issue=8&amp;rft.pages=1-3&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4112421%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F24728329&amp;rft_id=info%3Adoi%2F10.1136%2Fannrheumdis-2014-205228&amp;rft.aulast=Schiff&amp;rft.aufirst=MH&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4112421&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDalyBourke2000" class="citation book cs1">Daly, Leslie E.; Bourke, Geoffrey Joseph (2000). <i>Interpretation and Uses of Medical Statistics</i>. Vol.&#160;46 (5th&#160;ed.). Oxford, UK: Wiley-Blackwell. p.&#160;89. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9780470696750">10.1002/9780470696750</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-632-04763-5" title="Special:BookSources/978-0-632-04763-5"><bdi>978-0-632-04763-5</bdi></a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1059583">1059583</a></span>;</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Interpretation+and+Uses+of+Medical+Statistics&amp;rft.place=Oxford%2C+UK&amp;rft.pages=89&amp;rft.edition=5th&amp;rft.pub=Wiley-Blackwell&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC1059583%23id-name%3DPMC&amp;rft_id=info%3Adoi%2F10.1002%2F9780470696750&amp;rft.isbn=978-0-632-04763-5&amp;rft.aulast=Daly&amp;rft.aufirst=Leslie+E.&amp;rft.au=Bourke%2C+Geoffrey+Joseph&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;journal=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span> print edition. Online eBook <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780470696750" title="Special:BookSources/9780470696750">9780470696750</a></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.probonto.org">"ProbOnto"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">1 July</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=ProbOnto&amp;rft_id=http%3A%2F%2Fwww.probonto.org&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSwatGrenonWimalaratne2016" class="citation journal cs1">Swat, MJ; Grenon, P; Wimalaratne, S (2016). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013898">"ProbOnto: ontology and knowledge base of probability distributions"</a>. <i>Bioinformatics</i>. <b>32</b> (17): 2719–21. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbioinformatics%2Fbtw170">10.1093/bioinformatics/btw170</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013898">5013898</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27153608">27153608</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bioinformatics&amp;rft.atitle=ProbOnto%3A+ontology+and+knowledge+base+of+probability+distributions&amp;rft.volume=32&amp;rft.issue=17&amp;rft.pages=2719-21&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5013898%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F27153608&amp;rft_id=info%3Adoi%2F10.1093%2Fbioinformatics%2Fbtw170&amp;rft.aulast=Swat&amp;rft.aufirst=MJ&amp;rft.au=Grenon%2C+P&amp;rft.au=Wimalaratne%2C+S&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5013898&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Forbes-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-Forbes_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Forbes_24-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Forbes et al. Probability Distributions (2011), John Wiley &amp; Sons, Inc.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">Lunn, D. (2012). The BUGS book: a practical introduction to Bayesian analysis. Texts in statistical science. CRC Press.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLimpertStahelAbbt2001" class="citation journal cs1">Limpert, E.; Stahel, W. A.; Abbt, M. (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">"Log-normal distributions across the sciences: Keys and clues"</a>. <i>BioScience</i>. <b>51</b> (5): 341–352. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">10.1641/0006-3568(2001)051&#91;0341:LNDATS&#93;2.0.CO&#59;2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BioScience&amp;rft.atitle=Log-normal+distributions+across+the+sciences%3A+Keys+and+clues&amp;rft.volume=51&amp;rft.issue=5&amp;rft.pages=341-352&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2&amp;rft.aulast=Limpert&amp;rft.aufirst=E.&amp;rft.au=Stahel%2C+W.+A.&amp;rft.au=Abbt%2C+M.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1641%252F0006-3568%25282001%2529051%255B0341%253ALNDATS%255D2.0.CO%253B2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNyberg2012" class="citation journal cs1">Nyberg, J.; et&#160;al. (2012). "PopED - An extended, parallelized, population optimal design tool". <i>Comput Methods Programs Biomed</i>. <b>108</b> (2): 789–805. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cmpb.2012.05.005">10.1016/j.cmpb.2012.05.005</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/22640817">22640817</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comput+Methods+Programs+Biomed&amp;rft.atitle=PopED+-+An+extended%2C+parallelized%2C+population+optimal+design+tool&amp;rft.volume=108&amp;rft.issue=2&amp;rft.pages=789-805&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1016%2Fj.cmpb.2012.05.005&amp;rft_id=info%3Apmid%2F22640817&amp;rft.aulast=Nyberg&amp;rft.aufirst=J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRetoutDuffullMentré2001" class="citation journal cs1">Retout, S; Duffull, S; Mentré, F (2001). "Development and implementation of the population Fisher information matrix for the evaluation of population pharmacokinetic designs". <i>Comp Meth Pro Biomed</i>. <b>65</b> (2): 141–151. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0169-2607%2800%2900117-6">10.1016/S0169-2607(00)00117-6</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/11275334">11275334</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Comp+Meth+Pro+Biomed&amp;rft.atitle=Development+and+implementation+of+the+population+Fisher+information+matrix+for+the+evaluation+of+population+pharmacokinetic+designs&amp;rft.volume=65&amp;rft.issue=2&amp;rft.pages=141-151&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1016%2FS0169-2607%2800%2900117-6&amp;rft_id=info%3Apmid%2F11275334&amp;rft.aulast=Retout&amp;rft.aufirst=S&amp;rft.au=Duffull%2C+S&amp;rft.au=Mentr%C3%A9%2C+F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text">The PopED Development Team (2016). PopED Manual, Release version 2.13. Technical report, Uppsala University.</span> </li> <li id="cite_note-probontoWebsite-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-probontoWebsite_30-0">^</a></b></span> <span class="reference-text">ProbOnto website, URL: <a rel="nofollow" class="external free" href="http://probonto.org">http://probonto.org</a></span> </li> <li id="cite_note-EcolgyArticle-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-EcolgyArticle_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDamgaardWeiner2000" class="citation journal cs1">Damgaard, Christian; Weiner, Jacob (2000). "Describing inequality in plant size or fecundity". <i>Ecology</i>. <b>81</b> (4): 1139–1142. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1890%2F0012-9658%282000%29081%5B1139%3ADIIPSO%5D2.0.CO%3B2">10.1890/0012-9658(2000)081&#91;1139:DIIPSO&#93;2.0.CO&#59;2</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Ecology&amp;rft.atitle=Describing+inequality+in+plant+size+or+fecundity&amp;rft.volume=81&amp;rft.issue=4&amp;rft.pages=1139-1142&amp;rft.date=2000&amp;rft_id=info%3Adoi%2F10.1890%2F0012-9658%282000%29081%5B1139%3ADIIPSO%5D2.0.CO%3B2&amp;rft.aulast=Damgaard&amp;rft.aufirst=Christian&amp;rft.au=Weiner%2C+Jacob&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Rossman1990-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-Rossman1990_32-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRossman1990" class="citation journal cs1">Rossman, Lewis A (July 1990). "Design stream flows based on harmonic means". <i>Journal of Hydraulic Engineering</i>. <b>116</b> (7): 946–950. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1061%2F%28ASCE%290733-9429%281990%29116%3A7%28946%29">10.1061/(ASCE)0733-9429(1990)116:7(946)</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Hydraulic+Engineering&amp;rft.atitle=Design+stream+flows+based+on+harmonic+means&amp;rft.volume=116&amp;rft.issue=7&amp;rft.pages=946-950&amp;rft.date=1990-07&amp;rft_id=info%3Adoi%2F10.1061%2F%28ASCE%290733-9429%281990%29116%3A7%28946%29&amp;rft.aulast=Rossman&amp;rft.aufirst=Lewis+A&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-OlofThorin1978LNInfDivi-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-OlofThorin1978LNInfDivi_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThorin1977" class="citation journal cs1">Thorin, Olof (1977). "On the infinite divisibility of the lognormal distribution". <i>Scandinavian Actuarial Journal</i>. <b>1977</b> (3): 121–148. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03461238.1977.10405635">10.1080/03461238.1977.10405635</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0346-1238">0346-1238</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scandinavian+Actuarial+Journal&amp;rft.atitle=On+the+infinite+divisibility+of+the+lognormal+distribution&amp;rft.volume=1977&amp;rft.issue=3&amp;rft.pages=121-148&amp;rft.date=1977&amp;rft_id=info%3Adoi%2F10.1080%2F03461238.1977.10405635&amp;rft.issn=0346-1238&amp;rft.aulast=Thorin&amp;rft.aufirst=Olof&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Gao-34"><span class="mw-cite-backlink">^ <a href="#cite_ref-Gao_34-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Gao_34-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGao2009" class="citation journal cs1">Gao, Xin (2009). <a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2009%2F630857">"Asymptotic Behavior of Tail Density for Sum of Correlated Lognormal Variables"</a>. <i>International Journal of Mathematics and Mathematical Sciences</i>. <b>2009</b>: 1–28. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1155%2F2009%2F630857">10.1155/2009/630857</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Mathematics+and+Mathematical+Sciences&amp;rft.atitle=Asymptotic+Behavior+of+Tail+Density+for+Sum+of+Correlated+Lognormal+Variables&amp;rft.volume=2009&amp;rft.pages=1-28&amp;rft.date=2009&amp;rft_id=info%3Adoi%2F10.1155%2F2009%2F630857&amp;rft.aulast=Gao&amp;rft.aufirst=Xin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1155%252F2009%252F630857&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Asmussen2-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Asmussen2_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAsmussenRojas-Nandayapa2008" class="citation journal cs1">Asmussen, S.; Rojas-Nandayapa, L. (2008). <a rel="nofollow" class="external text" href="https://hal.archives-ouvertes.fr/hal-00595951/file/PEER_stage2_10.1016%252Fj.spl.2008.03.035.pdf">"Asymptotics of Sums of Lognormal Random Variables with Gaussian Copula"</a> <span class="cs1-format">(PDF)</span>. <i>Statistics and Probability Letters</i>. <b>78</b> (16): 2709–2714. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.spl.2008.03.035">10.1016/j.spl.2008.03.035</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+and+Probability+Letters&amp;rft.atitle=Asymptotics+of+Sums+of+Lognormal+Random+Variables+with+Gaussian+Copula&amp;rft.volume=78&amp;rft.issue=16&amp;rft.pages=2709-2714&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1016%2Fj.spl.2008.03.035&amp;rft.aulast=Asmussen&amp;rft.aufirst=S.&amp;rft.au=Rojas-Nandayapa%2C+L.&amp;rft_id=https%3A%2F%2Fhal.archives-ouvertes.fr%2Fhal-00595951%2Ffile%2FPEER_stage2_10.1016%25252Fj.spl.2008.03.035.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Marlow-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Marlow_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarlow1967" class="citation journal cs1">Marlow, NA. (Nov 1967). "A normal limit theorem for power sums of independent normal random variables". <i>Bell System Technical Journal</i>. <b>46</b> (9): 2081–2089. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fj.1538-7305.1967.tb04244.x">10.1002/j.1538-7305.1967.tb04244.x</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bell+System+Technical+Journal&amp;rft.atitle=A+normal+limit+theorem+for+power+sums+of+independent+normal+random+variables&amp;rft.volume=46&amp;rft.issue=9&amp;rft.pages=2081-2089&amp;rft.date=1967-11&amp;rft_id=info%3Adoi%2F10.1002%2Fj.1538-7305.1967.tb04244.x&amp;rft.aulast=Marlow&amp;rft.aufirst=NA.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-BotLec2017-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-BotLec2017_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBotevL&#39;Ecuyer2017" class="citation conference cs1">Botev, Z. I.; L'Ecuyer, P. (2017). "Accurate computation of the right tail of the sum of dependent log-normal variates". <i>2017 Winter Simulation Conference (WSC), 3rd–6th Dec 2017</i>. Las Vegas, NV, USA: IEEE. pp.&#160;1880–1890. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1705.03196">1705.03196</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FWSC.2017.8247924">10.1109/WSC.2017.8247924</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-5386-3428-8" title="Special:BookSources/978-1-5386-3428-8"><bdi>978-1-5386-3428-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Accurate+computation+of+the+right+tail+of+the+sum+of+dependent+log-normal+variates&amp;rft.btitle=2017+Winter+Simulation+Conference+%28WSC%29%2C+3rd%E2%80%936th+Dec+2017&amp;rft.place=Las+Vegas%2C+NV%2C+USA&amp;rft.pages=1880-1890&amp;rft.pub=IEEE&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1705.03196&amp;rft_id=info%3Adoi%2F10.1109%2FWSC.2017.8247924&amp;rft.isbn=978-1-5386-3428-8&amp;rft.aulast=Botev&amp;rft.aufirst=Z.+I.&amp;rft.au=L%27Ecuyer%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-AGL2016-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-AGL2016_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAsmussenGoffardLaub2016" class="citation arxiv cs1">Asmussen, A.; Goffard, P.-O.; Laub, P. J. (2016). "Orthonormal polynomial expansions and lognormal sum densities". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1601.01763v1">1601.01763v1</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.PR">math.PR</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Orthonormal+polynomial+expansions+and+lognormal+sum+densities&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1601.01763v1&amp;rft.aulast=Asmussen&amp;rft.aufirst=A.&amp;rft.au=Goffard%2C+P.-O.&amp;rft.au=Laub%2C+P.+J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Sangal1970-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sangal1970_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSangalBiswas1970" class="citation journal cs1">Sangal, B.; Biswas, A. (1970). "The 3-Parameter Lognormal Distribution Applications in Hydrology". <i>Water Resources Research</i>. <b>6</b> (2): 505–515. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1029%2FWR006i002p00505">10.1029/WR006i002p00505</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Water+Resources+Research&amp;rft.atitle=The+3-Parameter+Lognormal+Distribution+Applications+in+Hydrology&amp;rft.volume=6&amp;rft.issue=2&amp;rft.pages=505-515&amp;rft.date=1970&amp;rft_id=info%3Adoi%2F10.1029%2FWR006i002p00505&amp;rft.aulast=Sangal&amp;rft.aufirst=B.&amp;rft.au=Biswas%2C+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Johnson1949-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Johnson1949_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson1949" class="citation journal cs1"><a href="/wiki/Norman_Lloyd_Johnson" title="Norman Lloyd Johnson">Johnson, N. L.</a> (1949). "Systems of Frequency Curves Generated by Methods of Translation". <i><a href="/wiki/Biometrika" title="Biometrika">Biometrika</a></i>. <b>36</b> (1/2): 149–176. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2332539">10.2307/2332539</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2332539">2332539</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/18132090">18132090</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Biometrika&amp;rft.atitle=Systems+of+Frequency+Curves+Generated+by+Methods+of+Translation&amp;rft.volume=36&amp;rft.issue=1%2F2&amp;rft.pages=149-176&amp;rft.date=1949&amp;rft_id=info%3Apmid%2F18132090&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2332539%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F2332539&amp;rft.aulast=Johnson&amp;rft.aufirst=N.+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSwamee2002" class="citation journal cs1">Swamee, P. K. (2002). "Near Lognormal Distribution". <i>Journal of Hydrologic Engineering</i>. <b>7</b> (6): 441–444. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1061%2F%28ASCE%291084-0699%282002%297%3A6%28441%29">10.1061/(ASCE)1084-0699(2002)7:6(441)</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Hydrologic+Engineering&amp;rft.atitle=Near+Lognormal+Distribution&amp;rft.volume=7&amp;rft.issue=6&amp;rft.pages=441-444&amp;rft.date=2002&amp;rft_id=info%3Adoi%2F10.1061%2F%28ASCE%291084-0699%282002%297%3A6%28441%29&amp;rft.aulast=Swamee&amp;rft.aufirst=P.+K.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Olsson2005-42"><span class="mw-cite-backlink">^ <a href="#cite_ref-Olsson2005_42-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Olsson2005_42-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Olsson2005_42-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text">Olsson, Ulf. "Confidence intervals for the mean of a log-normal distribution." Journal of Statistics Education 13.1 (2005).<a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/pdf/10.1080/10691898.2005.11910638">pdf</a> <a rel="nofollow" class="external text" href="https://jse.amstat.org/v13n1/olsson.html">html</a></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text">user10525, How do I calculate a confidence interval for the mean of a log-normal data set?, URL (version: 2022-12-18): <a rel="nofollow" class="external free" href="https://stats.stackexchange.com/q/33395">https://stats.stackexchange.com/q/33395</a></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text">Land, C. E. (1971), “Confidence intervals for linear functions ofthe normal mean and variance,” Annals of Mathematical Statistics, 42, 1187–1205.</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text">Zhou, X-H., and Gao, S. (1997), “Confidence intervals for the log-normal mean,” Statistics in Medicine, 16, 783–790.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module8-CategoricalData/PH717-Module8-CategoricalData5.html?fbclid=IwY2xjawFeH3JleHRuA2FlbQIxMAABHbmxa15uyyzJuzEwh9PIUr_m2Jsc9NGiPuS6IwfA36Ca5r1wV1EoPEz3MQ_aem_03PRd_jlRfbsnr6xCPkZmw">Confidence Intervals for Risk Ratios and Odds Ratios</a></span> </li> <li id="cite_note-bai-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-bai_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bai_50-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWuLiBai2017" class="citation journal cs1">Wu, Ziniu; Li, Juan; Bai, Chenyuan (2017). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fe19020056">"Scaling Relations of Lognormal Type Growth Process with an Extremal Principle of Entropy"</a>. <i>Entropy</i>. <b>19</b> (56): 1–14. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017Entrp..19...56W">2017Entrp..19...56W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fe19020056">10.3390/e19020056</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Entropy&amp;rft.atitle=Scaling+Relations+of+Lognormal+Type+Growth+Process+with+an+Extremal+Principle+of+Entropy&amp;rft.volume=19&amp;rft.issue=56&amp;rft.pages=1-14&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.3390%2Fe19020056&amp;rft_id=info%3Abibcode%2F2017Entrp..19...56W&amp;rft.aulast=Wu&amp;rft.aufirst=Ziniu&amp;rft.au=Li%2C+Juan&amp;rft.au=Bai%2C+Chenyuan&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fe19020056&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-wu-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-wu_51-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWu2003" class="citation journal cs1">Wu, Zi-Niu (2003). "Prediction of the size distribution of secondary ejected droplets by crown splashing of droplets impinging on a solid wall". <i>Probabilistic Engineering Mechanics</i>. <b>18</b> (3): 241–249. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2003PEngM..18..241W">2003PEngM..18..241W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0266-8920%2803%2900028-6">10.1016/S0266-8920(03)00028-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Probabilistic+Engineering+Mechanics&amp;rft.atitle=Prediction+of+the+size+distribution+of+secondary+ejected+droplets+by+crown+splashing+of+droplets+impinging+on+a+solid+wall&amp;rft.volume=18&amp;rft.issue=3&amp;rft.pages=241-249&amp;rft.date=2003&amp;rft_id=info%3Adoi%2F10.1016%2FS0266-8920%2803%2900028-6&amp;rft_id=info%3Abibcode%2F2003PEngM..18..241W&amp;rft.aulast=Wu&amp;rft.aufirst=Zi-Niu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Wang-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-Wang_52-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangWuWangHu2013" class="citation journal cs1">Wang, WenBin; Wu, ZiNiu; Wang, ChunFeng; Hu, RuiFeng (2013). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111546">"Modelling the spreading rate of controlled communicable epidemics through an entropy-based thermodynamic model"</a>. <i>Science China Physics, Mechanics and Astronomy</i>. <b>56</b> (11): 2143–2150. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1304.5603">1304.5603</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013SCPMA..56.2143W">2013SCPMA..56.2143W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11433-013-5321-0">10.1007/s11433-013-5321-0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1674-7348">1674-7348</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111546">7111546</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/32288765">32288765</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+China+Physics%2C+Mechanics+and+Astronomy&amp;rft.atitle=Modelling+the+spreading+rate+of+controlled+communicable+epidemics+through+an+entropy-based+thermodynamic+model&amp;rft.volume=56&amp;rft.issue=11&amp;rft.pages=2143-2150&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7111546%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2013SCPMA..56.2143W&amp;rft_id=info%3Aarxiv%2F1304.5603&amp;rft.issn=1674-7348&amp;rft_id=info%3Adoi%2F10.1007%2Fs11433-013-5321-0&amp;rft_id=info%3Apmid%2F32288765&amp;rft.aulast=Wang&amp;rft.aufirst=WenBin&amp;rft.au=Wu%2C+ZiNiu&amp;rft.au=Wang%2C+ChunFeng&amp;rft.au=Hu%2C+RuiFeng&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC7111546&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-Bloetscher-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-Bloetscher_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBloetscher2019" class="citation journal cs1">Bloetscher, Frederick (2019). "Using predictive Bayesian Monte Carlo- Markov Chain methods to provide a probabilistic solution for the Drake equation". <i>Acta Astronautica</i>. <b>155</b>: 118–130. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019AcAau.155..118B">2019AcAau.155..118B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.actaastro.2018.11.033">10.1016/j.actaastro.2018.11.033</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117598888">117598888</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Acta+Astronautica&amp;rft.atitle=Using+predictive+Bayesian+Monte+Carlo-+Markov+Chain+methods+to+provide+a+probabilistic+solution+for+the+Drake+equation&amp;rft.volume=155&amp;rft.pages=118-130&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117598888%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.actaastro.2018.11.033&amp;rft_id=info%3Abibcode%2F2019AcAau.155..118B&amp;rft.aulast=Bloetscher&amp;rft.aufirst=Frederick&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCococcioniFioriniPagano2023" class="citation journal cs1">Cococcioni, Marco; Fiorini, Francesco; Pagano, Michele (2023-04-06). <a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmath11071758">"Modelling Heavy Tailed Phenomena Using a LogNormal Distribution Having a Numerically Verifiable Infinite Variance"</a>. <i>Mathematics</i>. <b>11</b> (7): 1758. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmath11071758">10.3390/math11071758</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2227-7390">2227-7390</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematics&amp;rft.atitle=Modelling+Heavy+Tailed+Phenomena+Using+a+LogNormal+Distribution+Having+a+Numerically+Verifiable+Infinite+Variance&amp;rft.volume=11&amp;rft.issue=7&amp;rft.pages=1758&amp;rft.date=2023-04-06&amp;rft_id=info%3Adoi%2F10.3390%2Fmath11071758&amp;rft.issn=2227-7390&amp;rft.aulast=Cococcioni&amp;rft.aufirst=Marco&amp;rft.au=Fiorini%2C+Francesco&amp;rft.au=Pagano%2C+Michele&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.3390%252Fmath11071758&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSutton1997" class="citation journal cs1">Sutton, John (Mar 1997). "Gibrat's Legacy". <i>Journal of Economic Literature</i>. <b>32</b> (1): 40–59. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2729692">2729692</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Economic+Literature&amp;rft.atitle=Gibrat%27s+Legacy&amp;rft.volume=32&amp;rft.issue=1&amp;rft.pages=40-59&amp;rft.date=1997-03&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2729692%23id-name%3DJSTOR&amp;rft.aulast=Sutton&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:0-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_56-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_56-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLimpertStahelAbbt2001" class="citation journal cs1">Limpert, Eckhard; Stahel, Werner A.; Abbt, Markus (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">"Log-normal Distributions across the Sciences: Keys and Clues"</a>. <i>BioScience</i>. <b>51</b> (5): 341. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">10.1641/0006-3568(2001)051&#91;0341:LNDATS&#93;2.0.CO&#59;2</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0006-3568">0006-3568</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BioScience&amp;rft.atitle=Log-normal+Distributions+across+the+Sciences%3A+Keys+and+Clues&amp;rft.volume=51&amp;rft.issue=5&amp;rft.pages=341&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2&amp;rft.issn=0006-3568&amp;rft.aulast=Limpert&amp;rft.aufirst=Eckhard&amp;rft.au=Stahel%2C+Werner+A.&amp;rft.au=Abbt%2C+Markus&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1641%252F0006-3568%25282001%2529051%255B0341%253ALNDATS%255D2.0.CO%253B2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:4-57"><span class="mw-cite-backlink">^ <a href="#cite_ref-:4_57-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:4_57-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuzsákiMizuseki2017" class="citation journal cs1">Buzsáki, György; Mizuseki, Kenji (2017-01-06). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051294">"The log-dynamic brain: how skewed distributions affect network operations"</a>. <i>Nature Reviews. Neuroscience</i>. <b>15</b> (4): 264–278. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fnrn3687">10.1038/nrn3687</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1471-003X">1471-003X</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4051294">4051294</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/24569488">24569488</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Reviews.+Neuroscience&amp;rft.atitle=The+log-dynamic+brain%3A+how+skewed+distributions+affect+network+operations&amp;rft.volume=15&amp;rft.issue=4&amp;rft.pages=264-278&amp;rft.date=2017-01-06&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4051294%23id-name%3DPMC&amp;rft.issn=1471-003X&amp;rft_id=info%3Apmid%2F24569488&amp;rft_id=info%3Adoi%2F10.1038%2Fnrn3687&amp;rft.aulast=Buzs%C3%A1ki&amp;rft.aufirst=Gy%C3%B6rgy&amp;rft.au=Mizuseki%2C+Kenji&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4051294&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-:3-58"><span class="mw-cite-backlink">^ <a href="#cite_ref-:3_58-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:3_58-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:3_58-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPawel2013" class="citation journal cs1">Pawel, Sobkowicz; et&#160;al. (2013). "Lognormal distributions of user post lengths in Internet discussions - a consequence of the Weber-Fechner law?". <i>EPJ Data Science</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=EPJ+Data+Science&amp;rft.atitle=Lognormal+distributions+of+user+post+lengths+in+Internet+discussions+-+a+consequence+of+the+Weber-Fechner+law%3F&amp;rft.date=2013&amp;rft.aulast=Pawel&amp;rft.aufirst=Sobkowicz&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYinLuoLeeWang2013" class="citation conference cs1">Yin, Peifeng; Luo, Ping; Lee, Wang-Chien; Wang, Min (2013). <a rel="nofollow" class="external text" href="http://mldm.ict.ac.cn/platform/pweb/academicDetail.htm?id=16"><i>Silence is also evidence: interpreting dwell time for recommendation from psychological perspective</i></a>. ACM International Conference on KDD.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Silence+is+also+evidence%3A+interpreting+dwell+time+for+recommendation+from+psychological+perspective&amp;rft.date=2013&amp;rft.aulast=Yin&amp;rft.aufirst=Peifeng&amp;rft.au=Luo%2C+Ping&amp;rft.au=Lee%2C+Wang-Chien&amp;rft.au=Wang%2C+Min&amp;rft_id=http%3A%2F%2Fmldm.ict.ac.cn%2Fplatform%2Fpweb%2FacademicDetail.htm%3Fid%3D16&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://chess.stackexchange.com/questions/2506/what-is-the-average-length-of-a-game-of-chess/4899#4899">"What is the average length of a game of chess?"</a>. <i>chess.stackexchange.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">14 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=chess.stackexchange.com&amp;rft.atitle=What+is+the+average+length+of+a+game+of+chess%3F&amp;rft_id=http%3A%2F%2Fchess.stackexchange.com%2Fquestions%2F2506%2Fwhat-is-the-average-length-of-a-game-of-chess%2F4899%234899&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHuxley1932" class="citation book cs1">Huxley, Julian S. (1932). <i>Problems of relative growth</i>. London. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-61114-3" title="Special:BookSources/978-0-486-61114-3"><bdi>978-0-486-61114-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/476909537">476909537</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Problems+of+relative+growth&amp;rft.pub=London&amp;rft.date=1932&amp;rft_id=info%3Aoclcnum%2F476909537&amp;rft.isbn=978-0-486-61114-3&amp;rft.aulast=Huxley&amp;rft.aufirst=Julian+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><b><a href="#cite_ref-62">^</a></b></span> <span class="reference-text">Sartwell, Philip E. "The distribution of incubation periods of infectious disease." <i>American journal of hygiene</i> 51 (1950): 310-318.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFS._K._ChanYu2006" class="citation journal cs1">S. K. Chan, Jennifer; Yu, Philip L. H. (2006). "Modelling SARS data using threshold geometric process". <i>Statistics in Medicine</i>. <b>25</b> (11): 1826–1839. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fsim.2376">10.1002/sim.2376</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/16345017">16345017</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:46599163">46599163</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+in+Medicine&amp;rft.atitle=Modelling+SARS+data+using+threshold+geometric+process&amp;rft.volume=25&amp;rft.issue=11&amp;rft.pages=1826-1839&amp;rft.date=2006&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A46599163%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F16345017&amp;rft_id=info%3Adoi%2F10.1002%2Fsim.2376&amp;rft.aulast=S.+K.+Chan&amp;rft.aufirst=Jennifer&amp;rft.au=Yu%2C+Philip+L.+H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-64">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOnoAsaiHamada2013" class="citation journal cs1">Ono, Yukiteru; Asai, Kiyoshi; Hamada, Michiaki (2013-01-01). <a rel="nofollow" class="external text" href="https://academic.oup.com/bioinformatics/article/29/1/119/273243">"PBSIM: PacBio reads simulator—toward accurate genome assembly"</a>. <i>Bioinformatics</i>. <b>29</b> (1): 119–121. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fbioinformatics%2Fbts649">10.1093/bioinformatics/bts649</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1367-4803">1367-4803</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23129296">23129296</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Bioinformatics&amp;rft.atitle=PBSIM%3A+PacBio+reads+simulator%E2%80%94toward+accurate+genome+assembly&amp;rft.volume=29&amp;rft.issue=1&amp;rft.pages=119-121&amp;rft.date=2013-01-01&amp;rft.issn=1367-4803&amp;rft_id=info%3Apmid%2F23129296&amp;rft_id=info%3Adoi%2F10.1093%2Fbioinformatics%2Fbts649&amp;rft.aulast=Ono&amp;rft.aufirst=Yukiteru&amp;rft.au=Asai%2C+Kiyoshi&amp;rft.au=Hamada%2C+Michiaki&amp;rft_id=https%3A%2F%2Facademic.oup.com%2Fbioinformatics%2Farticle%2F29%2F1%2F119%2F273243&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMakuchD.H._FreemanM.F._Johnson1979" class="citation journal cs1">Makuch, Robert W.; D.H. Freeman; M.F. Johnson (1979). "Justification for the lognormal distribution as a model for blood pressure". <i>Journal of Chronic Diseases</i>. <b>32</b> (3): 245–250. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0021-9681%2879%2990070-5">10.1016/0021-9681(79)90070-5</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/429469">429469</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Chronic+Diseases&amp;rft.atitle=Justification+for+the+lognormal+distribution+as+a+model+for+blood+pressure&amp;rft.volume=32&amp;rft.issue=3&amp;rft.pages=245-250&amp;rft.date=1979&amp;rft_id=info%3Adoi%2F10.1016%2F0021-9681%2879%2990070-5&amp;rft_id=info%3Apmid%2F429469&amp;rft.aulast=Makuch&amp;rft.aufirst=Robert+W.&amp;rft.au=D.H.+Freeman&amp;rft.au=M.F.+Johnson&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaceyKeenePritchardBye1997" class="citation journal cs1">Lacey, L. F.; Keene, O. N.; Pritchard, J. F.; Bye, A. (1997-01-01). <a rel="nofollow" class="external text" href="https://www.tandfonline.com/doi/full/10.1080/10543409708835177">"Common noncompartmental pharmacokinetic variables: are they normally or log-normally distributed?"</a>. <i>Journal of Biopharmaceutical Statistics</i>. <b>7</b> (1): 171–178. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F10543409708835177">10.1080/10543409708835177</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1054-3406">1054-3406</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9056596">9056596</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Biopharmaceutical+Statistics&amp;rft.atitle=Common+noncompartmental+pharmacokinetic+variables%3A+are+they+normally+or+log-normally+distributed%3F&amp;rft.volume=7&amp;rft.issue=1&amp;rft.pages=171-178&amp;rft.date=1997-01-01&amp;rft.issn=1054-3406&amp;rft_id=info%3Apmid%2F9056596&amp;rft_id=info%3Adoi%2F10.1080%2F10543409708835177&amp;rft.aulast=Lacey&amp;rft.aufirst=L.+F.&amp;rft.au=Keene%2C+O.+N.&amp;rft.au=Pritchard%2C+J.+F.&amp;rft.au=Bye%2C+A.&amp;rft_id=https%3A%2F%2Fwww.tandfonline.com%2Fdoi%2Ffull%2F10.1080%2F10543409708835177&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchelerSchumann2006" class="citation conference cs1">Scheler, Gabriele; Schumann, Johann (2006-10-08). <i>Diversity and stability in neuronal output rates</i>. 36th Society for Neuroscience Meeting, Atlanta.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.btitle=Diversity+and+stability+in+neuronal+output+rates&amp;rft.date=2006-10-08&amp;rft.aulast=Scheler&amp;rft.aufirst=Gabriele&amp;rft.au=Schumann%2C+Johann&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMizusekiBuzsáki2013" class="citation journal cs1">Mizuseki, Kenji; Buzsáki, György (2013-09-12). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804159">"Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex"</a>. <i>Cell Reports</i>. <b>4</b> (5): 1010–1021. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.celrep.2013.07.039">10.1016/j.celrep.2013.07.039</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2211-1247">2211-1247</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804159">3804159</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23994479">23994479</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cell+Reports&amp;rft.atitle=Preconfigured%2C+skewed+distribution+of+firing+rates+in+the+hippocampus+and+entorhinal+cortex&amp;rft.volume=4&amp;rft.issue=5&amp;rft.pages=1010-1021&amp;rft.date=2013-09-12&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3804159%23id-name%3DPMC&amp;rft.issn=2211-1247&amp;rft_id=info%3Apmid%2F23994479&amp;rft_id=info%3Adoi%2F10.1016%2Fj.celrep.2013.07.039&amp;rft.aulast=Mizuseki&amp;rft.aufirst=Kenji&amp;rft.au=Buzs%C3%A1ki%2C+Gy%C3%B6rgy&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3804159&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWohrerHumphriesMachens2013" class="citation journal cs1">Wohrer, Adrien; Humphries, Mark D.; Machens, Christian K. (2013-04-01). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985929">"Population-wide distributions of neural activity during perceptual decision-making"</a>. <i>Progress in Neurobiology</i>. <b>103</b>: 156–193. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.pneurobio.2012.09.004">10.1016/j.pneurobio.2012.09.004</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1873-5118">1873-5118</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5985929">5985929</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23123501">23123501</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Progress+in+Neurobiology&amp;rft.atitle=Population-wide+distributions+of+neural+activity+during+perceptual+decision-making&amp;rft.volume=103&amp;rft.pages=156-193&amp;rft.date=2013-04-01&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5985929%23id-name%3DPMC&amp;rft.issn=1873-5118&amp;rft_id=info%3Apmid%2F23123501&amp;rft_id=info%3Adoi%2F10.1016%2Fj.pneurobio.2012.09.004&amp;rft.aulast=Wohrer&amp;rft.aufirst=Adrien&amp;rft.au=Humphries%2C+Mark+D.&amp;rft.au=Machens%2C+Christian+K.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5985929&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFScheler2017" class="citation journal cs1">Scheler, Gabriele (2017-07-28). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639933">"Logarithmic distributions prove that intrinsic learning is Hebbian"</a>. <i>F1000Research</i>. <b>6</b>: 1222. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.12688%2Ff1000research.12130.2">10.12688/f1000research.12130.2</a></span>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5639933">5639933</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29071065">29071065</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=F1000Research&amp;rft.atitle=Logarithmic+distributions+prove+that+intrinsic+learning+is+Hebbian&amp;rft.volume=6&amp;rft.pages=1222&amp;rft.date=2017-07-28&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5639933%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F29071065&amp;rft_id=info%3Adoi%2F10.12688%2Ff1000research.12130.2&amp;rft.aulast=Scheler&amp;rft.aufirst=Gabriele&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5639933&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMorales-Gregoriovan_Meegenvan_Albada2023" class="citation journal cs1">Morales-Gregorio, Aitor; van Meegen, Alexander; van Albada, Sacha (2023). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438924">"Ubiquitous lognormal distribution of neuron densities in mammalian cerebral cortex"</a>. <i>Cerebral Cortex</i>. <b>33</b> (16): 9439–9449. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fcercor%2Fbhad160">10.1093/cercor/bhad160</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10438924">10438924</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/37409647">37409647</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Cerebral+Cortex&amp;rft.atitle=Ubiquitous+lognormal+distribution+of+neuron+densities+in+mammalian+cerebral+cortex&amp;rft.volume=33&amp;rft.issue=16&amp;rft.pages=9439-9449&amp;rft.date=2023&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10438924%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F37409647&amp;rft_id=info%3Adoi%2F10.1093%2Fcercor%2Fbhad160&amp;rft.aulast=Morales-Gregorio&amp;rft.aufirst=Aitor&amp;rft.au=van+Meegen%2C+Alexander&amp;rft.au=van+Albada%2C+Sacha&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC10438924&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPolizziLaperrousazPerez-RecheNicolini2018" class="citation journal cs1">Polizzi, Stefano; Laperrousaz, Bastien; Perez-Reche, Francisco J; Nicolini, Franck E; Satta, Véronique Maguer; Arneodo, Alain; Argoul, Françoise (2018-05-29). <a rel="nofollow" class="external text" href="https://iopscience.iop.org/article/10.1088/1367-2630/aac3c7">"A minimal rupture cascade model for living cell plasticity"</a>. <i>New Journal of Physics</i>. <b>20</b> (5): 053057. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018NJPh...20e3057P">2018NJPh...20e3057P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F1367-2630%2Faac3c7">10.1088/1367-2630/aac3c7</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2164%2F10561">2164/10561</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1367-2630">1367-2630</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=New+Journal+of+Physics&amp;rft.atitle=A+minimal+rupture+cascade+model+for+living+cell+plasticity&amp;rft.volume=20&amp;rft.issue=5&amp;rft.pages=053057&amp;rft.date=2018-05-29&amp;rft_id=info%3Ahdl%2F2164%2F10561&amp;rft.issn=1367-2630&amp;rft_id=info%3Adoi%2F10.1088%2F1367-2630%2Faac3c7&amp;rft_id=info%3Abibcode%2F2018NJPh...20e3057P&amp;rft.aulast=Polizzi&amp;rft.aufirst=Stefano&amp;rft.au=Laperrousaz%2C+Bastien&amp;rft.au=Perez-Reche%2C+Francisco+J&amp;rft.au=Nicolini%2C+Franck+E&amp;rft.au=Satta%2C+V%C3%A9ronique+Maguer&amp;rft.au=Arneodo%2C+Alain&amp;rft.au=Argoul%2C+Fran%C3%A7oise&amp;rft_id=https%3A%2F%2Fiopscience.iop.org%2Farticle%2F10.1088%2F1367-2630%2Faac3c7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAhrens1954" class="citation journal cs1">Ahrens, L. H. (1954-02-01). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1016/0016-7037%2854%2990040-X">"The lognormal distribution of the elements (A fundamental law of geochemistry and its subsidiary)"</a>. <i>Geochimica et Cosmochimica Acta</i>. <b>5</b> (2): 49–73. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1954GeCoA...5...49A">1954GeCoA...5...49A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0016-7037%2854%2990040-X">10.1016/0016-7037(54)90040-X</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0016-7037">0016-7037</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Geochimica+et+Cosmochimica+Acta&amp;rft.atitle=The+lognormal+distribution+of+the+elements+%28A+fundamental+law+of+geochemistry+and+its+subsidiary%29&amp;rft.volume=5&amp;rft.issue=2&amp;rft.pages=49-73&amp;rft.date=1954-02-01&amp;rft.issn=0016-7037&amp;rft_id=info%3Adoi%2F10.1016%2F0016-7037%2854%2990040-X&amp;rft_id=info%3Abibcode%2F1954GeCoA...5...49A&amp;rft.aulast=Ahrens&amp;rft.aufirst=L.+H.&amp;rft_id=https%3A%2F%2Fdx.doi.org%2F10.1016%2F0016-7037%252854%252990040-X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOosterbaan1994" class="citation book cs1">Oosterbaan, R.J. (1994). <a rel="nofollow" class="external text" href="http://www.waterlog.info/pdf/freqtxt.pdf">"6: Frequency and Regression Analysis"</a> <span class="cs1-format">(PDF)</span>. In Ritzema, H.P. (ed.). <a rel="nofollow" class="external text" href="https://archive.org/details/drainageprincipl0000unse/page/175"><i>Drainage Principles and Applications, Publication 16</i></a>. Wageningen, The Netherlands: International Institute for Land Reclamation and Improvement (ILRI). pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/drainageprincipl0000unse/page/175">175–224</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-90-70754-33-4" title="Special:BookSources/978-90-70754-33-4"><bdi>978-90-70754-33-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=6%3A+Frequency+and+Regression+Analysis&amp;rft.btitle=Drainage+Principles+and+Applications%2C+Publication+16&amp;rft.place=Wageningen%2C+The+Netherlands&amp;rft.pages=175-224&amp;rft.pub=International+Institute+for+Land+Reclamation+and+Improvement+%28ILRI%29&amp;rft.date=1994&amp;rft.isbn=978-90-70754-33-4&amp;rft.aulast=Oosterbaan&amp;rft.aufirst=R.J.&amp;rft_id=http%3A%2F%2Fwww.waterlog.info%2Fpdf%2Ffreqtxt.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.waterlog.info/cumfreq.htm">CumFreq, free software for distribution fitting</a></span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-76">^</a></b></span> <span class="reference-text">Clementi, Fabio; <a href="/wiki/Mauro_Gallegati" title="Mauro Gallegati">Gallegati, Mauro</a> (2005) <a rel="nofollow" class="external text" href="http://ideas.repec.org/p/wpa/wuwpmi/0505006.html">"Pareto's law of income distribution: Evidence for Germany, the United Kingdom, and the United States"</a>, EconWPA</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWataru2002" class="citation conference cs1">Wataru, Souma (2002-02-22). "Physics of Personal Income". In Takayasu, Hideki (ed.). <i>Empirical Science of Financial Fluctuations: The Advent of Econophysics</i>. Springer. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/0202388">cond-mat/0202388</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-4-431-66993-7">10.1007/978-4-431-66993-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=conference&amp;rft.atitle=Physics+of+Personal+Income&amp;rft.btitle=Empirical+Science+of+Financial+Fluctuations%3A+The+Advent+of+Econophysics&amp;rft.pub=Springer&amp;rft.date=2002-02-22&amp;rft_id=info%3Aarxiv%2Fcond-mat%2F0202388&amp;rft_id=info%3Adoi%2F10.1007%2F978-4-431-66993-7&amp;rft.aulast=Wataru&amp;rft.aufirst=Souma&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-78">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlackScholes1973" class="citation journal cs1">Black, F.; Scholes, M. (1973). "The Pricing of Options and Corporate Liabilities". <i>Journal of Political Economy</i>. <b>81</b> (3): 637. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1086%2F260062">10.1086/260062</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:154552078">154552078</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Political+Economy&amp;rft.atitle=The+Pricing+of+Options+and+Corporate+Liabilities&amp;rft.volume=81&amp;rft.issue=3&amp;rft.pages=637&amp;rft.date=1973&amp;rft_id=info%3Adoi%2F10.1086%2F260062&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A154552078%23id-name%3DS2CID&amp;rft.aulast=Black&amp;rft.aufirst=F.&amp;rft.au=Scholes%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-79">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMandelbrot2004" class="citation book cs1">Mandelbrot, Benoit (2004). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9w15j-Ka0vgC"><i>The (mis-)Behaviour of Markets</i></a>. Basic Books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780465043552" title="Special:BookSources/9780465043552"><bdi>9780465043552</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+%28mis-%29Behaviour+of+Markets&amp;rft.pub=Basic+Books&amp;rft.date=2004&amp;rft.isbn=9780465043552&amp;rft.aulast=Mandelbrot&amp;rft.aufirst=Benoit&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9w15j-Ka0vgC&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-80">^</a></b></span> <span class="reference-text">Bunchen, P., <i>Advanced Option Pricing</i>, University of Sydney coursebook, 2007</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-81">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFThelwallWilson2014" class="citation journal cs1">Thelwall, Mike; Wilson, Paul (2014). "Regression for citation data: An evaluation of different methods". <i>Journal of Informetrics</i>. <b>8</b> (4): 963–971. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.08877">1510.08877</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.joi.2014.09.011">10.1016/j.joi.2014.09.011</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8338485">8338485</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Informetrics&amp;rft.atitle=Regression+for+citation+data%3A+An+evaluation+of+different+methods&amp;rft.volume=8&amp;rft.issue=4&amp;rft.pages=963-971&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1510.08877&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8338485%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.joi.2014.09.011&amp;rft.aulast=Thelwall&amp;rft.aufirst=Mike&amp;rft.au=Wilson%2C+Paul&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSheridanOnodera2020" class="citation journal cs1">Sheridan, Paul; Onodera, Taku (2020). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809396">"A Preferential Attachment Paradox: How Preferential Attachment Combines with Growth to Produce Networks with Log-normal In-degree Distributions"</a>. <i>Scientific Reports</i>. <b>8</b> (1): 2811. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1703.06645">1703.06645</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41598-018-21133-2">10.1038/s41598-018-21133-2</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809396">5809396</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29434232">29434232</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=A+Preferential+Attachment+Paradox%3A+How+Preferential+Attachment+Combines+with+Growth+to+Produce+Networks+with+Log-normal+In-degree+Distributions&amp;rft.volume=8&amp;rft.issue=1&amp;rft.pages=2811&amp;rft.date=2020&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5809396%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F29434232&amp;rft_id=info%3Aarxiv%2F1703.06645&amp;rft_id=info%3Adoi%2F10.1038%2Fs41598-018-21133-2&amp;rft.aulast=Sheridan&amp;rft.aufirst=Paul&amp;rft.au=Onodera%2C+Taku&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5809396&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEeckhout2004" class="citation journal cs1">Eeckhout, Jan (2004). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3592829">"Gibrat's Law for (All) Cities"</a>. <i>American Economic Review</i>. <b>94</b> (5): 1429–1451. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1257%2F0002828043052303">10.1257/0002828043052303</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3592829">3592829</a> &#8211; via JSTOR.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Economic+Review&amp;rft.atitle=Gibrat%27s+Law+for+%28All%29+Cities&amp;rft.volume=94&amp;rft.issue=5&amp;rft.pages=1429-1451&amp;rft.date=2004&amp;rft_id=info%3Adoi%2F10.1257%2F0002828043052303&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3592829%23id-name%3DJSTOR&amp;rft.aulast=Eeckhout&amp;rft.aufirst=Jan&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3592829&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKault1996" class="citation journal cs1">Kault, David (1996). <a rel="nofollow" class="external text" href="https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1097-0258(19960130)15:2%3C221::AID-SIM148%3E3.0.CO;2-Q">"The Shape of the Distribution of the Number of Sexual Partners"</a>. <i>Statistics in Medicine</i>. <b>15</b> (2): 221–230. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F%28SICI%291097-0258%2819960130%2915%3A2%3C221%3A%3AAID-SIM148%3E3.0.CO%3B2-Q">10.1002/(SICI)1097-0258(19960130)15:2&#60;221::AID-SIM148&#62;3.0.CO&#59;2-Q</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/8614756">8614756</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Statistics+in+Medicine&amp;rft.atitle=The+Shape+of+the+Distribution+of+the+Number+of+Sexual+Partners&amp;rft.volume=15&amp;rft.issue=2&amp;rft.pages=221-230&amp;rft.date=1996&amp;rft_id=info%3Adoi%2F10.1002%2F%28SICI%291097-0258%2819960130%2915%3A2%3C221%3A%3AAID-SIM148%3E3.0.CO%3B2-Q&amp;rft_id=info%3Apmid%2F8614756&amp;rft.aulast=Kault&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1002%2F%28SICI%291097-0258%2819960130%2915%3A2%253C221%3A%3AAID-SIM148%253E3.0.CO%3B2-Q&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFO&#39;ConnorKleyner2011" class="citation book cs1">O'Connor, Patrick; Kleyner, Andre (2011). <i>Practical Reliability Engineering</i>. John Wiley &amp; Sons. p.&#160;35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-97982-2" title="Special:BookSources/978-0-470-97982-2"><bdi>978-0-470-97982-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Practical+Reliability+Engineering&amp;rft.pages=35&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2011&amp;rft.isbn=978-0-470-97982-2&amp;rft.aulast=O%27Connor&amp;rft.aufirst=Patrick&amp;rft.au=Kleyner%2C+Andre&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120113201345/http://wireless.per.nl/reference/chaptr03/shadow/shadow.htm">"Shadowing"</a>. <i>www.WirelessCommunication.NL</i>. Archived from <a rel="nofollow" class="external text" href="http://wireless.per.nl/reference/chaptr03/shadow/shadow.htm">the original</a> on January 13, 2012.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.WirelessCommunication.NL&amp;rft.atitle=Shadowing&amp;rft_id=http%3A%2F%2Fwireless.per.nl%2Freference%2Fchaptr03%2Fshadow%2Fshadow.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-87">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDexterTanner1972" class="citation journal cs1">Dexter, A. R.; Tanner, D. W. (July 1972). <a rel="nofollow" class="external text" href="https://www.nature.com/articles/physci238031a0">"Packing Densities of Mixtures of Spheres with Log-normal Size Distributions"</a>. <i>Nature Physical Science</i>. <b>238</b> (80): 31–32. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1972NPhS..238...31D">1972NPhS..238...31D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fphysci238031a0">10.1038/physci238031a0</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2058-1106">2058-1106</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Physical+Science&amp;rft.atitle=Packing+Densities+of+Mixtures+of+Spheres+with+Log-normal+Size+Distributions&amp;rft.volume=238&amp;rft.issue=80&amp;rft.pages=31-32&amp;rft.date=1972-07&amp;rft.issn=2058-1106&amp;rft_id=info%3Adoi%2F10.1038%2Fphysci238031a0&amp;rft_id=info%3Abibcode%2F1972NPhS..238...31D&amp;rft.aulast=Dexter&amp;rft.aufirst=A.+R.&amp;rft.au=Tanner%2C+D.+W.&amp;rft_id=https%3A%2F%2Fwww.nature.com%2Farticles%2Fphysci238031a0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><b><a href="#cite_ref-88">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrosKaczorMarkovic2012" class="citation journal cs1">Gros, C; Kaczor, G.; Markovic, D (2012). "Neuropsychological constraints to human data production on a global scale". <i>The European Physical Journal B</i>. <b>85</b> (28): 28. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1111.6849">1111.6849</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012EPJB...85...28G">2012EPJB...85...28G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1140%2Fepjb%2Fe2011-20581-3">10.1140/epjb/e2011-20581-3</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:17404692">17404692</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+European+Physical+Journal+B&amp;rft.atitle=Neuropsychological+constraints+to+human+data+production+on+a+global+scale&amp;rft.volume=85&amp;rft.issue=28&amp;rft.pages=28&amp;rft.date=2012&amp;rft_id=info%3Aarxiv%2F1111.6849&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A17404692%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1140%2Fepjb%2Fe2011-20581-3&amp;rft_id=info%3Abibcode%2F2012EPJB...85...28G&amp;rft.aulast=Gros&amp;rft.aufirst=C&amp;rft.au=Kaczor%2C+G.&amp;rft.au=Markovic%2C+D&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><b><a href="#cite_ref-89">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDouceurBolosky1999" class="citation journal cs1">Douceur, John R.; Bolosky, William J. (1999-05-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F301464.301480">"A large-scale study of file-system contents"</a>. <i>ACM SIGMETRICS Performance Evaluation Review</i>. <b>27</b> (1): 59–70. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F301464.301480">10.1145/301464.301480</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0163-5999">0163-5999</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ACM+SIGMETRICS+Performance+Evaluation+Review&amp;rft.atitle=A+large-scale+study+of+file-system+contents&amp;rft.volume=27&amp;rft.issue=1&amp;rft.pages=59-70&amp;rft.date=1999-05-01&amp;rft_id=info%3Adoi%2F10.1145%2F301464.301480&amp;rft.issn=0163-5999&amp;rft.aulast=Douceur&amp;rft.aufirst=John+R.&amp;rft.au=Bolosky%2C+William+J.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1145%252F301464.301480&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-90">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAlamsarParisisCleggZakhleniuk2019" class="citation arxiv cs1">Alamsar, Mohammed; Parisis, George; Clegg, Richard; Zakhleniuk, Nickolay (2019). "On the Distribution of Traffic Volumes in the Internet and its Implications". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1902.03853">1902.03853</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.NI">cs.NI</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=On+the+Distribution+of+Traffic+Volumes+in+the+Internet+and+its+Implications&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1902.03853&amp;rft.aulast=Alamsar&amp;rft.aufirst=Mohammed&amp;rft.au=Parisis%2C+George&amp;rft.au=Clegg%2C+Richard&amp;rft.au=Zakhleniuk%2C+Nickolay&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-91">^</a></b></span> <span class="reference-text">ASTM D3654, Standard Test Method for Shear Adhesion on Pressure-Sensitive Tapesw</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-92">^</a></b></span> <span class="reference-text">ASTM D4577, Standard Test Method for Compression Resistance of a container Under Constant Load&gt;\</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=41" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCrowShimizu1988" class="citation cs2">Crow, Edwin L.; Shimizu, Kunio, eds. (1988), <i>Lognormal Distributions, Theory and Applications</i>, Statistics: Textbooks and Monographs, vol.&#160;88, New York: Marcel Dekker, Inc., pp.&#160;xvi+387, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8247-7803-3" title="Special:BookSources/978-0-8247-7803-3"><bdi>978-0-8247-7803-3</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0939191">0939191</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a>&#160;<a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&amp;q=an:0644.62014">0644.62014</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Lognormal+Distributions%2C+Theory+and+Applications&amp;rft.place=New+York&amp;rft.series=Statistics%3A+Textbooks+and+Monographs&amp;rft.pages=xvi%2B387&amp;rft.pub=Marcel+Dekker%2C+Inc.&amp;rft.date=1988&amp;rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0644.62014%23id-name%3DZbl&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0939191%23id-name%3DMR&amp;rft.isbn=978-0-8247-7803-3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></li> <li>Aitchison, J. and Brown, J.A.C. (1957) <i>The Lognormal Distribution</i>, Cambridge University Press.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLimpertStahelAbbt2001" class="citation journal cs1">Limpert, E; Stahel, W; Abbt, M (2001). <a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">"Lognormal distributions across the sciences: keys and clues"</a>. <i>BioScience</i>. <b>51</b> (5): 341–352. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2">10.1641/0006-3568(2001)051&#91;0341:LNDATS&#93;2.0.CO&#59;2</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=BioScience&amp;rft.atitle=Lognormal+distributions+across+the+sciences%3A+keys+and+clues&amp;rft.volume=51&amp;rft.issue=5&amp;rft.pages=341-352&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1641%2F0006-3568%282001%29051%5B0341%3ALNDATS%5D2.0.CO%3B2&amp;rft.aulast=Limpert&amp;rft.aufirst=E&amp;rft.au=Stahel%2C+W&amp;rft.au=Abbt%2C+M&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1641%252F0006-3568%25282001%2529051%255B0341%253ALNDATS%255D2.0.CO%253B2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHolgate1989" class="citation journal cs1">Holgate, P. (1989). "The lognormal characteristic function". <i>Communications in Statistics - Theory and Methods</i>. <b>18</b> (12): 4539–4548. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F03610928908830173">10.1080/03610928908830173</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Communications+in+Statistics+-+Theory+and+Methods&amp;rft.atitle=The+lognormal+characteristic+function&amp;rft.volume=18&amp;rft.issue=12&amp;rft.pages=4539-4548&amp;rft.date=1989&amp;rft_id=info%3Adoi%2F10.1080%2F03610928908830173&amp;rft.aulast=Holgate&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrooksCorsonDonal1994" class="citation journal cs1">Brooks, Robert; Corson, Jon; <a href="/wiki/Jimbo_Wales" class="mw-redirect" title="Jimbo Wales">Donal, Wales</a> (1994). "The Pricing of Index Options When the Underlying Assets All Follow a Lognormal Diffusion". <i>Advances in Futures and Options Research</i>. <b>7</b>. <a href="/wiki/SSRN_(identifier)" class="mw-redirect" title="SSRN (identifier)">SSRN</a>&#160;<a rel="nofollow" class="external text" href="https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5735">5735</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Futures+and+Options+Research&amp;rft.atitle=The+Pricing+of+Index+Options+When+the+Underlying+Assets+All+Follow+a+Lognormal+Diffusion&amp;rft.volume=7&amp;rft.date=1994&amp;rft_id=https%3A%2F%2Fpapers.ssrn.com%2Fsol3%2Fpapers.cfm%3Fabstract_id%3D5735%23id-name%3DSSRN&amp;rft.aulast=Brooks&amp;rft.aufirst=Robert&amp;rft.au=Corson%2C+Jon&amp;rft.au=Donal%2C+Wales&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ALog-normal+distribution" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Log-normal_distribution&amp;action=edit&amp;section=42" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Log-normal_distribution" class="extiw" title="commons:Category:Log-normal distribution">Log-normal distribution</a></span>.</div></div> </div> <ul><li><a rel="nofollow" class="external text" href="https://stat.ethz.ch/~stahel/talks/lognormal.pdf">The normal distribution is the log-normal distribution</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r886047488"></div><div role="navigation" class="navbox" aria-labelledby="Probability_distributions_(list)" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_distributions" title="Template:Probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_distributions" title="Template talk:Probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_distributions" title="Special:EditPage/Template:Probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Probability_distributions_(list)" style="font-size:114%;margin:0 4em"><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distributions</a> (<a href="/wiki/List_of_probability_distributions" title="List of probability distributions">list</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Discrete <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">with finite <br />support</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benford%27s_law" title="Benford&#39;s law">Benford</a></li> <li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli</a></li> <li><a href="/wiki/Beta-binomial_distribution" title="Beta-binomial distribution">Beta-binomial</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial</a></li> <li><a href="/wiki/Categorical_distribution" title="Categorical distribution">Categorical</a></li> <li><a href="/wiki/Hypergeometric_distribution" title="Hypergeometric distribution">Hypergeometric</a> <ul><li><a href="/wiki/Negative_hypergeometric_distribution" title="Negative hypergeometric distribution">Negative</a></li></ul></li> <li><a href="/wiki/Poisson_binomial_distribution" title="Poisson binomial distribution">Poisson binomial</a></li> <li><a href="/wiki/Rademacher_distribution" title="Rademacher distribution">Rademacher</a></li> <li><a href="/wiki/Soliton_distribution" title="Soliton distribution">Soliton</a></li> <li><a href="/wiki/Discrete_uniform_distribution" title="Discrete uniform distribution">Discrete uniform</a></li> <li><a href="/wiki/Zipf%27s_law" title="Zipf&#39;s law">Zipf</a></li> <li><a href="/wiki/Zipf%E2%80%93Mandelbrot_law" title="Zipf–Mandelbrot law">Zipf–Mandelbrot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with infinite <br />support</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beta_negative_binomial_distribution" title="Beta negative binomial distribution">Beta negative binomial</a></li> <li><a href="/wiki/Borel_distribution" title="Borel distribution">Borel</a></li> <li><a href="/wiki/Conway%E2%80%93Maxwell%E2%80%93Poisson_distribution" title="Conway–Maxwell–Poisson distribution">Conway–Maxwell–Poisson</a></li> <li><a href="/wiki/Discrete_phase-type_distribution" title="Discrete phase-type distribution">Discrete phase-type</a></li> <li><a href="/wiki/Delaporte_distribution" title="Delaporte distribution">Delaporte</a></li> <li><a href="/wiki/Extended_negative_binomial_distribution" title="Extended negative binomial distribution">Extended negative binomial</a></li> <li><a href="/wiki/Flory%E2%80%93Schulz_distribution" title="Flory–Schulz distribution">Flory–Schulz</a></li> <li><a href="/wiki/Gauss%E2%80%93Kuzmin_distribution" title="Gauss–Kuzmin distribution">Gauss–Kuzmin</a></li> <li><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric</a></li> <li><a href="/wiki/Logarithmic_distribution" title="Logarithmic distribution">Logarithmic</a></li> <li><a href="/wiki/Mixed_Poisson_distribution" title="Mixed Poisson distribution">Mixed Poisson</a></li> <li><a href="/wiki/Negative_binomial_distribution" title="Negative binomial distribution">Negative binomial</a></li> <li><a href="/wiki/(a,b,0)_class_of_distributions" title="(a,b,0) class of distributions">Panjer</a></li> <li><a href="/wiki/Parabolic_fractal_distribution" title="Parabolic fractal distribution">Parabolic fractal</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson</a></li> <li><a href="/wiki/Skellam_distribution" title="Skellam distribution">Skellam</a></li> <li><a href="/wiki/Yule%E2%80%93Simon_distribution" title="Yule–Simon distribution">Yule–Simon</a></li> <li><a href="/wiki/Zeta_distribution" title="Zeta distribution">Zeta</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Continuous <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />bounded interval</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arcsine_distribution" title="Arcsine distribution">Arcsine</a></li> <li><a href="/wiki/ARGUS_distribution" title="ARGUS distribution">ARGUS</a></li> <li><a href="/wiki/Balding%E2%80%93Nichols_model" title="Balding–Nichols model">Balding–Nichols</a></li> <li><a href="/wiki/Bates_distribution" title="Bates distribution">Bates</a></li> <li><a href="/wiki/Beta_distribution" title="Beta distribution">Beta</a> <ul><li><a href="/wiki/Generalized_beta_distribution" title="Generalized beta distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Beta_rectangular_distribution" title="Beta rectangular distribution">Beta rectangular</a></li> <li><a href="/wiki/Continuous_Bernoulli_distribution" title="Continuous Bernoulli distribution">Continuous Bernoulli</a></li> <li><a href="/wiki/Irwin%E2%80%93Hall_distribution" title="Irwin–Hall distribution">Irwin–Hall</a></li> <li><a href="/wiki/Kumaraswamy_distribution" title="Kumaraswamy distribution">Kumaraswamy</a></li> <li><a href="/wiki/Logit-normal_distribution" title="Logit-normal distribution">Logit-normal</a></li> <li><a href="/wiki/Noncentral_beta_distribution" title="Noncentral beta distribution">Noncentral beta</a></li> <li><a href="/wiki/PERT_distribution" title="PERT distribution">PERT</a></li> <li><a href="/wiki/Raised_cosine_distribution" title="Raised cosine distribution">Raised cosine</a></li> <li><a href="/wiki/Reciprocal_distribution" title="Reciprocal distribution">Reciprocal</a></li> <li><a href="/wiki/Triangular_distribution" title="Triangular distribution">Triangular</a></li> <li><a href="/wiki/U-quadratic_distribution" title="U-quadratic distribution">U-quadratic</a></li> <li><a href="/wiki/Continuous_uniform_distribution" title="Continuous uniform distribution">Uniform</a></li> <li><a href="/wiki/Wigner_semicircle_distribution" title="Wigner semicircle distribution">Wigner semicircle</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported on a <br />semi-infinite <br />interval</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Benini_distribution" title="Benini distribution">Benini</a></li> <li><a href="/wiki/Benktander_type_I_distribution" title="Benktander type I distribution">Benktander 1st kind</a></li> <li><a href="/wiki/Benktander_type_II_distribution" title="Benktander type II distribution">Benktander 2nd kind</a></li> <li><a href="/wiki/Beta_prime_distribution" title="Beta prime distribution">Beta prime</a></li> <li><a href="/wiki/Burr_distribution" title="Burr distribution">Burr</a></li> <li><a href="/wiki/Chi_distribution" title="Chi distribution">Chi</a></li> <li><a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">Chi-squared</a> <ul><li><a href="/wiki/Noncentral_chi-squared_distribution" title="Noncentral chi-squared distribution">Noncentral</a></li> <li><a href="/wiki/Inverse-chi-squared_distribution" title="Inverse-chi-squared distribution">Inverse</a> <ul><li><a href="/wiki/Scaled_inverse_chi-squared_distribution" title="Scaled inverse chi-squared distribution">Scaled</a></li></ul></li></ul></li> <li><a href="/wiki/Dagum_distribution" title="Dagum distribution">Dagum</a></li> <li><a href="/wiki/Davis_distribution" title="Davis distribution">Davis</a></li> <li><a href="/wiki/Erlang_distribution" title="Erlang distribution">Erlang</a> <ul><li><a href="/wiki/Hyper-Erlang_distribution" title="Hyper-Erlang distribution">Hyper</a></li></ul></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential</a> <ul><li><a href="/wiki/Hyperexponential_distribution" title="Hyperexponential distribution">Hyperexponential</a></li> <li><a href="/wiki/Hypoexponential_distribution" title="Hypoexponential distribution">Hypoexponential</a></li> <li><a href="/wiki/Exponential-logarithmic_distribution" title="Exponential-logarithmic distribution">Logarithmic</a></li></ul></li> <li><a href="/wiki/F-distribution" title="F-distribution"><i>F</i></a> <ul><li><a href="/wiki/Noncentral_F-distribution" title="Noncentral F-distribution">Noncentral</a></li></ul></li> <li><a href="/wiki/Folded_normal_distribution" title="Folded normal distribution">Folded normal</a></li> <li><a href="/wiki/Fr%C3%A9chet_distribution" title="Fréchet distribution">Fréchet</a></li> <li><a href="/wiki/Gamma_distribution" title="Gamma distribution">Gamma</a> <ul><li><a href="/wiki/Generalized_gamma_distribution" title="Generalized gamma distribution">Generalized</a></li> <li><a href="/wiki/Inverse-gamma_distribution" title="Inverse-gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Gamma/Gompertz_distribution" title="Gamma/Gompertz distribution">gamma/Gompertz</a></li> <li><a href="/wiki/Gompertz_distribution" title="Gompertz distribution">Gompertz</a> <ul><li><a href="/wiki/Shifted_Gompertz_distribution" title="Shifted Gompertz distribution">Shifted</a></li></ul></li> <li><a href="/wiki/Half-logistic_distribution" title="Half-logistic distribution">Half-logistic</a></li> <li><a href="/wiki/Half-normal_distribution" title="Half-normal distribution">Half-normal</a></li> <li><a href="/wiki/Hotelling%27s_T-squared_distribution" title="Hotelling&#39;s T-squared distribution">Hotelling's <i>T</i>-squared</a></li> <li><a href="/wiki/Inverse_Gaussian_distribution" title="Inverse Gaussian distribution">Inverse Gaussian</a> <ul><li><a href="/wiki/Generalized_inverse_Gaussian_distribution" title="Generalized inverse Gaussian distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov</a></li> <li><a href="/wiki/L%C3%A9vy_distribution" title="Lévy distribution">Lévy</a></li> <li><a href="/wiki/Log-Cauchy_distribution" title="Log-Cauchy distribution">Log-Cauchy</a></li> <li><a href="/wiki/Log-Laplace_distribution" title="Log-Laplace distribution">Log-Laplace</a></li> <li><a href="/wiki/Log-logistic_distribution" title="Log-logistic distribution">Log-logistic</a></li> <li><a class="mw-selflink selflink">Log-normal</a></li> <li><a href="/wiki/Log-t_distribution" title="Log-t distribution">Log-t</a></li> <li><a href="/wiki/Lomax_distribution" title="Lomax distribution">Lomax</a></li> <li><a href="/wiki/Matrix-exponential_distribution" title="Matrix-exponential distribution">Matrix-exponential</a></li> <li><a href="/wiki/Maxwell%E2%80%93Boltzmann_distribution" title="Maxwell–Boltzmann distribution">Maxwell–Boltzmann</a></li> <li><a href="/wiki/Maxwell%E2%80%93J%C3%BCttner_distribution" title="Maxwell–Jüttner distribution">Maxwell–Jüttner</a></li> <li><a href="/wiki/Mittag-Leffler_distribution" title="Mittag-Leffler distribution">Mittag-Leffler</a></li> <li><a href="/wiki/Nakagami_distribution" title="Nakagami distribution">Nakagami</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto</a></li> <li><a href="/wiki/Phase-type_distribution" title="Phase-type distribution">Phase-type</a></li> <li><a href="/wiki/Poly-Weibull_distribution" title="Poly-Weibull distribution">Poly-Weibull</a></li> <li><a href="/wiki/Rayleigh_distribution" title="Rayleigh distribution">Rayleigh</a></li> <li><a href="/wiki/Relativistic_Breit%E2%80%93Wigner_distribution" title="Relativistic Breit–Wigner distribution">Relativistic Breit–Wigner</a></li> <li><a href="/wiki/Rice_distribution" title="Rice distribution">Rice</a></li> <li><a href="/wiki/Truncated_normal_distribution" title="Truncated normal distribution">Truncated normal</a></li> <li><a href="/wiki/Type-2_Gumbel_distribution" title="Type-2 Gumbel distribution">type-2 Gumbel</a></li> <li><a href="/wiki/Weibull_distribution" title="Weibull distribution">Weibull</a> <ul><li><a href="/wiki/Discrete_Weibull_distribution" title="Discrete Weibull distribution">Discrete</a></li></ul></li> <li><a href="/wiki/Wilks%27s_lambda_distribution" title="Wilks&#39;s lambda distribution">Wilks's lambda</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">supported <br />on the whole <br />real line</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy</a></li> <li><a href="/wiki/Generalized_normal_distribution#Version_1" title="Generalized normal distribution">Exponential power</a></li> <li><a href="/wiki/Fisher%27s_z-distribution" title="Fisher&#39;s z-distribution">Fisher's <i>z</i></a></li> <li><a href="/wiki/Kaniadakis_Gaussian_distribution" title="Kaniadakis Gaussian distribution">Kaniadakis κ-Gaussian</a></li> <li><a href="/wiki/Gaussian_q-distribution" title="Gaussian q-distribution">Gaussian <i>q</i></a></li> <li><a href="/wiki/Generalized_normal_distribution" title="Generalized normal distribution">Generalized normal</a></li> <li><a href="/wiki/Generalised_hyperbolic_distribution" title="Generalised hyperbolic distribution">Generalized hyperbolic</a></li> <li><a href="/wiki/Geometric_stable_distribution" title="Geometric stable distribution">Geometric stable</a></li> <li><a href="/wiki/Gumbel_distribution" title="Gumbel distribution">Gumbel</a></li> <li><a href="/wiki/Holtsmark_distribution" title="Holtsmark distribution">Holtsmark</a></li> <li><a href="/wiki/Hyperbolic_secant_distribution" title="Hyperbolic secant distribution">Hyperbolic secant</a></li> <li><a href="/wiki/Johnson%27s_SU-distribution" title="Johnson&#39;s SU-distribution">Johnson's <i>S<sub>U</sub></i></a></li> <li><a href="/wiki/Landau_distribution" title="Landau distribution">Landau</a></li> <li><a href="/wiki/Laplace_distribution" title="Laplace distribution">Laplace</a> <ul><li><a href="/wiki/Asymmetric_Laplace_distribution" title="Asymmetric Laplace distribution">Asymmetric</a></li></ul></li> <li><a href="/wiki/Logistic_distribution" title="Logistic distribution">Logistic</a></li> <li><a href="/wiki/Noncentral_t-distribution" title="Noncentral t-distribution">Noncentral <i>t</i></a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal (Gaussian)</a></li> <li><a href="/wiki/Normal-inverse_Gaussian_distribution" title="Normal-inverse Gaussian distribution">Normal-inverse Gaussian</a></li> <li><a href="/wiki/Skew_normal_distribution" title="Skew normal distribution">Skew normal</a></li> <li><a href="/wiki/Slash_distribution" title="Slash distribution">Slash</a></li> <li><a href="/wiki/Stable_distribution" title="Stable distribution">Stable</a></li> <li><a href="/wiki/Student%27s_t-distribution" title="Student&#39;s t-distribution">Student's <i>t</i></a></li> <li><a href="/wiki/Tracy%E2%80%93Widom_distribution" title="Tracy–Widom distribution">Tracy–Widom</a></li> <li><a href="/wiki/Variance-gamma_distribution" title="Variance-gamma distribution">Variance-gamma</a></li> <li><a href="/wiki/Voigt_profile" title="Voigt profile">Voigt</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">with support <br />whose type varies</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Generalized_chi-squared_distribution" title="Generalized chi-squared distribution">Generalized chi-squared</a></li> <li><a href="/wiki/Generalized_extreme_value_distribution" title="Generalized extreme value distribution">Generalized extreme value</a></li> <li><a href="/wiki/Generalized_Pareto_distribution" title="Generalized Pareto distribution">Generalized Pareto</a></li> <li><a href="/wiki/Marchenko%E2%80%93Pastur_distribution" title="Marchenko–Pastur distribution">Marchenko–Pastur</a></li> <li><a href="/wiki/Kaniadakis_Exponential_distribution" class="mw-redirect" title="Kaniadakis Exponential distribution">Kaniadakis <i>κ</i>-exponential</a></li> <li><a href="/wiki/Kaniadakis_Gamma_distribution" title="Kaniadakis Gamma distribution">Kaniadakis <i>κ</i>-Gamma</a></li> <li><a href="/wiki/Kaniadakis_Weibull_distribution" title="Kaniadakis Weibull distribution">Kaniadakis <i>κ</i>-Weibull</a></li> <li><a href="/wiki/Kaniadakis_Logistic_distribution" class="mw-redirect" title="Kaniadakis Logistic distribution">Kaniadakis <i>κ</i>-Logistic</a></li> <li><a href="/wiki/Kaniadakis_Erlang_distribution" title="Kaniadakis Erlang distribution">Kaniadakis <i>κ</i>-Erlang</a></li> <li><a href="/wiki/Q-exponential_distribution" title="Q-exponential distribution"><i>q</i>-exponential</a></li> <li><a href="/wiki/Q-Gaussian_distribution" title="Q-Gaussian distribution"><i>q</i>-Gaussian</a></li> <li><a href="/wiki/Q-Weibull_distribution" title="Q-Weibull distribution"><i>q</i>-Weibull</a></li> <li><a href="/wiki/Shifted_log-logistic_distribution" title="Shifted log-logistic distribution">Shifted log-logistic</a></li> <li><a href="/wiki/Tukey_lambda_distribution" title="Tukey lambda distribution">Tukey lambda</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Mixed <br />univariate</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">continuous-<br />discrete</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Rectified_Gaussian_distribution" title="Rectified Gaussian distribution">Rectified Gaussian</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Multivariate <br />(joint)</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="nobold"><i>Discrete: </i></span></li> <li><a href="/wiki/Ewens%27s_sampling_formula" title="Ewens&#39;s sampling formula">Ewens</a></li> <li><a href="/wiki/Multinomial_distribution" title="Multinomial distribution">Multinomial</a> <ul><li><a href="/wiki/Dirichlet-multinomial_distribution" title="Dirichlet-multinomial distribution">Dirichlet</a></li> <li><a href="/wiki/Negative_multinomial_distribution" title="Negative multinomial distribution">Negative</a></li></ul></li> <li><span class="nobold"><i>Continuous: </i></span></li> <li><a href="/wiki/Dirichlet_distribution" title="Dirichlet distribution">Dirichlet</a> <ul><li><a href="/wiki/Generalized_Dirichlet_distribution" title="Generalized Dirichlet distribution">Generalized</a></li></ul></li> <li><a href="/wiki/Multivariate_Laplace_distribution" title="Multivariate Laplace distribution">Multivariate Laplace</a></li> <li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Multivariate normal</a></li> <li><a href="/wiki/Multivariate_stable_distribution" title="Multivariate stable distribution">Multivariate stable</a></li> <li><a href="/wiki/Multivariate_t-distribution" title="Multivariate t-distribution">Multivariate <i>t</i></a></li> <li><a href="/wiki/Normal-gamma_distribution" title="Normal-gamma distribution">Normal-gamma</a> <ul><li><a href="/wiki/Normal-inverse-gamma_distribution" title="Normal-inverse-gamma distribution">Inverse</a></li></ul></li> <li><span class="nobold"><i><a href="/wiki/Random_matrix" title="Random matrix">Matrix-valued: </a></i></span></li> <li><a href="/wiki/Lewandowski-Kurowicka-Joe_distribution" title="Lewandowski-Kurowicka-Joe distribution">LKJ</a></li> <li><a href="/wiki/Matrix_normal_distribution" title="Matrix normal distribution">Matrix normal</a></li> <li><a href="/wiki/Matrix_t-distribution" title="Matrix t-distribution">Matrix <i>t</i></a></li> <li><a href="/wiki/Matrix_gamma_distribution" title="Matrix gamma distribution">Matrix gamma</a> <ul><li><a href="/wiki/Inverse_matrix_gamma_distribution" title="Inverse matrix gamma distribution">Inverse</a></li></ul></li> <li><a href="/wiki/Wishart_distribution" title="Wishart distribution">Wishart</a> <ul><li><a href="/wiki/Normal-Wishart_distribution" title="Normal-Wishart distribution">Normal</a></li> <li><a href="/wiki/Inverse-Wishart_distribution" title="Inverse-Wishart distribution">Inverse</a></li> <li><a href="/wiki/Normal-inverse-Wishart_distribution" title="Normal-inverse-Wishart distribution">Normal-inverse</a></li> <li><a href="/wiki/Complex_Wishart_distribution" title="Complex Wishart distribution">Complex</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Directional_statistics" title="Directional statistics">Directional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Univariate (circular) <a href="/wiki/Directional_statistics" title="Directional statistics">directional</a></i></span></dt> <dd><a href="/wiki/Circular_uniform_distribution" title="Circular uniform distribution">Circular uniform</a></dd> <dd><a href="/wiki/Von_Mises_distribution" title="Von Mises distribution">Univariate von Mises</a></dd> <dd><a href="/wiki/Wrapped_normal_distribution" title="Wrapped normal distribution">Wrapped normal</a></dd> <dd><a href="/wiki/Wrapped_Cauchy_distribution" title="Wrapped Cauchy distribution">Wrapped Cauchy</a></dd> <dd><a href="/wiki/Wrapped_exponential_distribution" title="Wrapped exponential distribution">Wrapped exponential</a></dd> <dd><a href="/wiki/Wrapped_asymmetric_Laplace_distribution" title="Wrapped asymmetric Laplace distribution">Wrapped asymmetric Laplace</a></dd> <dd><a href="/wiki/Wrapped_L%C3%A9vy_distribution" title="Wrapped Lévy distribution">Wrapped Lévy</a></dd> <dt><span class="nobold"><i>Bivariate (spherical)</i></span></dt> <dd><a href="/wiki/Kent_distribution" title="Kent distribution">Kent</a></dd> <dt><span class="nobold"><i>Bivariate (toroidal)</i></span></dt> <dd><a href="/wiki/Bivariate_von_Mises_distribution" title="Bivariate von Mises distribution">Bivariate von Mises</a></dd> <dt><span class="nobold"><i>Multivariate</i></span></dt> <dd><a href="/wiki/Von_Mises%E2%80%93Fisher_distribution" title="Von Mises–Fisher distribution">von Mises–Fisher</a></dd> <dd><a href="/wiki/Bingham_distribution" title="Bingham distribution">Bingham</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Degenerate_distribution" title="Degenerate distribution">Degenerate</a> <br />and <a href="/wiki/Singular_distribution" title="Singular distribution">singular</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <dl><dt><span class="nobold"><i>Degenerate</i></span></dt> <dd><a href="/wiki/Dirac_delta_function" title="Dirac delta function">Dirac delta function</a></dd> <dt><span class="nobold"><i>Singular</i></span></dt> <dd><a href="/wiki/Cantor_distribution" title="Cantor distribution">Cantor</a></dd></dl> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Families</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Circular_distribution" title="Circular distribution">Circular</a></li> <li><a href="/wiki/Compound_Poisson_distribution" title="Compound Poisson distribution">Compound Poisson</a></li> <li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential</a></li> <li><a href="/wiki/Natural_exponential_family" title="Natural exponential family">Natural exponential</a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale</a></li> <li><a href="/wiki/Maximum_entropy_probability_distribution" title="Maximum entropy probability distribution">Maximum entropy</a></li> <li><a href="/wiki/Mixture_distribution" title="Mixture distribution">Mixture</a></li> <li><a href="/wiki/Pearson_distribution" title="Pearson distribution">Pearson</a></li> <li><a href="/wiki/Tweedie_distribution" title="Tweedie distribution">Tweedie</a></li> <li><a href="/wiki/Wrapped_distribution" title="Wrapped distribution">Wrapped</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Probability_distributions" title="Category:Probability distributions">Category</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <a href="https://commons.wikimedia.org/wiki/Category:Probability_distributions" class="extiw" title="commons:Category:Probability distributions">Commons</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q826116#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4221613-8">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85078134">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007536256605171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐4pcp9 Cached time: 20241122140518 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.611 seconds Real time usage: 2.001 seconds Preprocessor visited node count: 9503/1000000 Post‐expand include size: 270724/2097152 bytes Template argument size: 10793/2097152 bytes Highest expansion depth: 20/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 332617/5000000 bytes Lua time usage: 0.804/10.000 seconds Lua memory usage: 7752205/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1372.168 1 -total 48.38% 663.891 2 Template:Reflist 30.75% 421.943 54 Template:Cite_journal 10.21% 140.064 1 Template:Short_description 10.15% 139.322 4 Template:Navbox 10.01% 137.372 1 Template:ProbDistributions 7.89% 108.323 2 Template:Pagetype 6.11% 83.840 5 Template:Citation_needed 5.30% 72.663 5 Template:Fix 4.02% 55.156 1 Template:Commons_category --> <!-- Saved in parser cache with key enwiki:pcache:idhash:102476-0!canonical and timestamp 20241122140518 and revision id 1258737699. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Log-normal_distribution&amp;oldid=1258737699">https://en.wikipedia.org/w/index.php?title=Log-normal_distribution&amp;oldid=1258737699</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Continuous_distributions" title="Category:Continuous distributions">Continuous distributions</a></li><li><a href="/wiki/Category:Normal_distribution" title="Category:Normal distribution">Normal distribution</a></li><li><a href="/wiki/Category:Exponential_family_distributions" title="Category:Exponential family distributions">Exponential family distributions</a></li><li><a href="/wiki/Category:Infinitely_divisible_probability_distributions" title="Category:Infinitely divisible probability distributions">Infinitely divisible probability distributions</a></li><li><a href="/wiki/Category:Non-Newtonian_calculus" title="Category:Non-Newtonian calculus">Non-Newtonian calculus</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2012" title="Category:Articles with unsourced statements from March 2012">Articles with unsourced statements from March 2012</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2021" title="Category:Articles with unsourced statements from February 2021">Articles with unsourced statements from February 2021</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_January_2023" title="Category:Articles with unsourced statements from January 2023">Articles with unsourced statements from January 2023</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2011" title="Category:Articles with unsourced statements from February 2011">Articles with unsourced statements from February 2011</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 21 November 2024, at 09:45<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Log-normal_distribution&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-xqqpl","wgBackendResponseTime":187,"wgPageParseReport":{"limitreport":{"cputime":"1.611","walltime":"2.001","ppvisitednodes":{"value":9503,"limit":1000000},"postexpandincludesize":{"value":270724,"limit":2097152},"templateargumentsize":{"value":10793,"limit":2097152},"expansiondepth":{"value":20,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":332617,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1372.168 1 -total"," 48.38% 663.891 2 Template:Reflist"," 30.75% 421.943 54 Template:Cite_journal"," 10.21% 140.064 1 Template:Short_description"," 10.15% 139.322 4 Template:Navbox"," 10.01% 137.372 1 Template:ProbDistributions"," 7.89% 108.323 2 Template:Pagetype"," 6.11% 83.840 5 Template:Citation_needed"," 5.30% 72.663 5 Template:Fix"," 4.02% 55.156 1 Template:Commons_category"]},"scribunto":{"limitreport-timeusage":{"value":"0.804","limit":"10.000"},"limitreport-memusage":{"value":7752205,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-4pcp9","timestamp":"20241122140518","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Log-normal distribution","url":"https:\/\/en.wikipedia.org\/wiki\/Log-normal_distribution","sameAs":"http:\/\/www.wikidata.org\/entity\/Q826116","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q826116","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-10-11T12:54:54Z","dateModified":"2024-11-21T09:45:14Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/89\/Log-normal-pdfs.png","headline":"probability distribution"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10