CINXE.COM
Search results for: Collision Avoidance
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Collision Avoidance</title> <meta name="description" content="Search results for: Collision Avoidance"> <meta name="keywords" content="Collision Avoidance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Collision Avoidance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Collision Avoidance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 494</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Collision Avoidance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> Analysis of Collision Avoidance System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gayathri%20Devi">N. Gayathri Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Batri"> K. Batri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advent of technology has increased the traffic hazards and the road accidents take place. Collision detection system in automobile aims at reducing or mitigating the severity of an accident. This project aims at avoiding Vehicle head on collision by means of collision detection algorithm. This collision detection algorithm predicts the collision and the avoidance or minimization have to be done within few seconds on confirmation. Under critical situation collision minimization is made possible by turning the vehicle to the desired turn radius so that collision impact can be reduced. In order to avoid the collision completely, the turning of the vehicle should be achieved at reduced speed in order to maintain the stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance%20system" title="collision avoidance system">collision avoidance system</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20collision" title=" time to collision"> time to collision</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20turn" title=" time to turn"> time to turn</a>, <a href="https://publications.waset.org/abstracts/search?q=turn%20radius" title=" turn radius"> turn radius</a> </p> <a href="https://publications.waset.org/abstracts/30106/analysis-of-collision-avoidance-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do%C4%9Fan%20Y%C4%B1ld%C4%B1z">Doğan Yıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=Aydan%20M%C3%BC%C5%9Ferref%20Erkmen"> Aydan Müşerref Erkmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title="model predictive control">model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20octocopter%20model" title=" nonlinear octocopter model"> nonlinear octocopter model</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20detection" title=" obstacle detection"> obstacle detection</a> </p> <a href="https://publications.waset.org/abstracts/150063/collision-avoidance-based-on-model-predictive-control-for-nonlinear-octocopter-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Qasim">Mohammed Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Dae%20Kim"> Kyoung-Dae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator’s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20potential%20function" title="artificial potential function">artificial potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20collision%20avoidance" title=" autonomous collision avoidance"> autonomous collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=teleoperation" title=" teleoperation"> teleoperation</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrotor" title=" quadrotor"> quadrotor</a> </p> <a href="https://publications.waset.org/abstracts/42043/super-ellipsoidal-potential-function-for-autonomous-collision-avoidance-of-a-teleoperated-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Collision Avoidance Maneuvers for Vessels Navigating through Traffic Separation Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aswin%20V.%20J.">Aswin V. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sreeja%20%20S."> Sreeja S.</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Harikumar"> R. Harikumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ship collision is one of the major concerns while navigating in the ocean. In congested sea routes where there are hectic offshore operations, ships are often forced to take close encounter maneuvers. Maritime rules for preventing collision at sea are defined in the International Regulations for Preventing Collision at Sea. Traffic Separation Schemes (TSS) are traffic management route systems ruled by International Maritime Organization (IMO), where the traffic lanes indicate the general direction of traffic flow. The Rule 10 of International Regulations for Preventing Collision at Sea prescribes the conduct of vessels while navigating through TSS. But no quantitative criteria regarding the procedures to detect and evaluate collision risk is specified in International Regulations for Preventing Collision at Sea. Most of the accidents that occur are due to operational errors affected by human factors such as lack of experience and loss of situational awareness. In open waters, the traffic density is less when compared to that in TSS, and hence the vessels can be operated in autopilot mode. A collision avoidance method that uses the possible obstacle trajectories in advance to predict “collision occurrence” and can generate suitable maneuvers for collision avoidance is presented in this paper. The suitable course and propulsion changes that can be used in a TSS considering International Regulations for Preventing Collision at Sea are found out for various obstacle scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title="collision avoidance">collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=maneuvers" title=" maneuvers"> maneuvers</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20trajectories" title=" obstacle trajectories"> obstacle trajectories</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20separation%20scheme" title=" traffic separation scheme"> traffic separation scheme</a> </p> <a href="https://publications.waset.org/abstracts/145379/collision-avoidance-maneuvers-for-vessels-navigating-through-traffic-separation-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> An Online Priority-Configuration Algorithm for Obstacle Avoidance of the Unmanned Air Vehicles Swarm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lihua%20Zhu">Lihua Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianfeng%20Du"> Jianfeng Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Wang"> Yu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiqiang%20Wu"> Zhiqiang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Collision avoidance problems of a swarm of unmanned air vehicles (UAVs) flying in an obstacle-laden environment are investigated in this paper. Given that the UAV swarm needs to adapt to the obstacle distribution in dynamic operation, a priority configuration is designed to guide the UAVs to pass through the obstacles in turn. Based on the collision cone approach and the prediction of the collision time, a collision evaluation model is established to judge the urgency of the imminent collision of each UAV, and the evaluation result is used to assign the priority of each UAV to further instruct them going through the obstacles in descending order. At last, the simulation results provide the promising validation in terms of the efficiency and scalability of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UAV%20swarm" title="UAV swarm">UAV swarm</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20environment" title=" complex environment"> complex environment</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20priority%20design" title=" online priority design"> online priority design</a> </p> <a href="https://publications.waset.org/abstracts/93689/an-online-priority-configuration-algorithm-for-obstacle-avoidance-of-the-unmanned-air-vehicles-swarm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Orefice">M. Orefice</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Di%20Vito"> V. Di Vito </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADS-B%20Based%20Application" title="ADS-B Based Application">ADS-B Based Application</a>, <a href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance" title=" Collision Avoidance"> Collision Avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=RPAS" title=" RPAS"> RPAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiral%20Geometry." title=" Spiral Geometry."> Spiral Geometry.</a> </p> <a href="https://publications.waset.org/abstracts/46909/aircraft-automatic-collision-avoidance-using-spiral-geometric-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> Multi Object Tracking for Predictive Collision Avoidance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruk%20Gebregziabher">Bruk Gebregziabher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The safe and efficient operation of Autonomous Mobile Robots (AMRs) in complex environments, such as manufacturing, logistics, and agriculture, necessitates accurate multiobject tracking and predictive collision avoidance. This paper presents algorithms and techniques for addressing these challenges using Lidar sensor data, emphasizing ensemble Kalman filter. The developed predictive collision avoidance algorithm employs the data provided by lidar sensors to track multiple objects and predict their velocities and future positions, enabling the AMR to navigate safely and effectively. A modification to the dynamic windowing approach is introduced to enhance the performance of the collision avoidance system. The overall system architecture encompasses object detection, multi-object tracking, and predictive collision avoidance control. The experimental results, obtained from both simulation and real-world data, demonstrate the effectiveness of the proposed methods in various scenarios, which lays the foundation for future research on global planners, other controllers, and the integration of additional sensors. This thesis contributes to the ongoing development of safe and efficient autonomous systems in complex and dynamic environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20mobile%20robots" title="autonomous mobile robots">autonomous mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-object%20tracking" title=" multi-object tracking"> multi-object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20collision%20avoidance" title=" predictive collision avoidance"> predictive collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20Kalman%20filter" title=" ensemble Kalman filter"> ensemble Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=lidar%20sensors" title=" lidar sensors"> lidar sensors</a> </p> <a href="https://publications.waset.org/abstracts/169056/multi-object-tracking-for-predictive-collision-avoidance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yao-Hong%20Tsai">Yao-Hong Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle" title="unmanned aerial vehicle">unmanned aerial vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a> </p> <a href="https://publications.waset.org/abstracts/99181/vision-based-collision-avoidance-for-unmanned-aerial-vehicles-by-recurrent-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Starlink Satellite Collision Probability Simulation Based on Simplified Geometry Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toby%20Li">Toby Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Zhu"> Julian Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a model based on a simplified geometry is introduced to give a very conservative collision probability prediction for the Starlink satellite in its most densely clustered region. Under the model in this paper, the probability of collision for Starlink satellite where it clustered most densely is found to be 8.484 ∗ 10^−4. It is found that the predicted collision probability increased nonlinearly with the increased safety distance set. This simple model provides evidence that the continuous development of maneuver avoidance systems is necessary for the future of the orbital safety of satellites under the harsher Lower Earth Orbit environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Starlink" title="Starlink">Starlink</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20probability" title=" collision probability"> collision probability</a>, <a href="https://publications.waset.org/abstracts/search?q=debris" title=" debris"> debris</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry%20model" title=" geometry model"> geometry model</a> </p> <a href="https://publications.waset.org/abstracts/171068/starlink-satellite-collision-probability-simulation-based-on-simplified-geometry-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Simulation of Obstacle Avoidance for Multiple Autonomous Vehicles in a Dynamic Environment Using Q-Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20D.%20Jansson">Andreas D. Jansson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The availability of inexpensive, yet competent hardware allows for increased level of automation and self-optimization in the context of Industry 4.0. However, such agents require high quality information about their surroundings along with a robust strategy for collision avoidance, as they may cause expensive damage to equipment or other agents otherwise. Manually defining a strategy to cover all possibilities is both time-consuming and counter-productive given the capabilities of modern hardware. This paper explores the idea of a model-free self-optimizing obstacle avoidance strategy for multiple autonomous agents in a simulated dynamic environment using the Q-learning algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title=" industry 4.0"> industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title=" multi-agent system"> multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=Q-learning" title=" Q-learning"> Q-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/132508/simulation-of-obstacle-avoidance-for-multiple-autonomous-vehicles-in-a-dynamic-environment-using-q-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> Impact of Capture Effect on Receiver Initiated Collision Detection with Sequential Resolution in WLAN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sethu%20Lekshmi">Sethu Lekshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahanas"> Shahanas</a>, <a href="https://publications.waset.org/abstracts/search?q=Prettha%20P."> Prettha P.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All existing protocols in wireless networks are mainly based on Carrier Sense Multiple Access with Collision avoidance. By applying collision detection in wireless networks, the time spent on collision can be reduced and thus improves system throughput. However in a real WLAN scenario due to the use of nonlinear modulation techniques only receiver can decided whether a packet loss take place, even there are multiple transmissions. In this proposed method, the receiver or Access Point detects the collision when multiple data packets are transmitted from different wireless stations. Whenever the receiver detects a collision, it transmits a jamming signal to all the transmitting stations so that they can immediately stop their on-going transmissions. We also provide preferential access to all collided packet to reduce unfairness and to increase system throughput by reducing contention. However, this preferential access will not block the channel for the long time. Here, an in-band transmission is considered in which both the data frames and control frames are transmitted in the same channel. We also provide a simple mathematical model for the proposed protocol and give the simulation result of WLAN scenario under various capture thresholds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=802.11" title="802.11">802.11</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=capture%20effect" title=" capture effect"> capture effect</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20detection" title=" collision detection"> collision detection</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20resolution" title=" collision resolution"> collision resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20initiated" title=" receiver initiated"> receiver initiated</a> </p> <a href="https://publications.waset.org/abstracts/31968/impact-of-capture-effect-on-receiver-initiated-collision-detection-with-sequential-resolution-in-wlan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> A Review on Comparative Analysis of Path Planning and Collision Avoidance Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Agarwal">Divya Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushpendra%20S.%20Bharti"> Pushpendra S. Bharti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous mobile robots (AMR) are expected as smart tools for operations in every automation industry. Path planning and obstacle avoidance is the backbone of AMR as robots have to reach their goal location avoiding obstacles while traversing through optimized path defined according to some criteria such as distance, time or energy. Path planning can be classified into global and local path planning where environmental information is known and unknown/partially known, respectively. A number of sensors are used for data collection. A number of algorithms such as artificial potential field (APF), rapidly exploring random trees (RRT), bidirectional RRT, Fuzzy approach, Purepursuit, A* algorithm, vector field histogram (VFH) and modified local path planning algorithm, etc. have been used in the last three decades for path planning and obstacle avoidance for AMR. This paper makes an attempt to review some of the path planning and obstacle avoidance algorithms used in the field of AMR. The review includes comparative analysis of simulation and mathematical computations of path planning and obstacle avoidance algorithms using MATLAB 2018a. From the review, it could be concluded that different algorithms may complete the same task (i.e. with a different set of instructions) in less or more time, space, effort, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title=" obstacle avoidance"> obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20mobile%20robots" title=" autonomous mobile robots"> autonomous mobile robots</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a> </p> <a href="https://publications.waset.org/abstracts/93693/a-review-on-comparative-analysis-of-path-planning-and-collision-avoidance-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khouil">M. Khouil</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saber"> N. Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mestari"> M. Mestari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision%20identification" title="collision identification">collision identification</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20time" title=" fixed time"> fixed time</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20polyhedra" title=" convex polyhedra"> convex polyhedra</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=AMAXNET" title=" AMAXNET"> AMAXNET</a> </p> <a href="https://publications.waset.org/abstracts/8931/neural-network-in-fixed-time-for-collision-detection-between-two-convex-polyhedra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Design of Target Selection for Pedestrian Autonomous Emergency Braking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Song">Tao Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng"> Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangfeng%20Tian"> Guangfeng Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuang%20Xu"> Chuang Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An autonomous emergency braking system is an advanced driving assistance system that enables vehicle collision avoidance and pedestrian collision avoidance to improve vehicle safety. At present, because the pedestrian target is small, and the mobility is large, the pedestrian AEB system is faced with more technical difficulties and higher functional requirements. In this paper, a method of pedestrian target selection based on a variable width funnel is proposed. Based on the current position and predicted position of pedestrians, the relative position of vehicle and pedestrian at the time of collision is calculated, and different braking strategies are adopted according to the hazard level of pedestrian collisions. In the CNCAP standard operating conditions, comparing the method of considering only the current position of pedestrians and the method of considering pedestrian prediction position, as well as the method based on fixed width funnel and variable width funnel, the results show that, based on variable width funnel, the choice of pedestrian target will be more accurate and the opportunity of the intervention of AEB system will be more reasonable by considering the predicted position of the pedestrian target and vehicle's lateral motion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20emergency%20braking%20system" title="automatic emergency braking system">automatic emergency braking system</a>, <a href="https://publications.waset.org/abstracts/search?q=pedestrian%20target%20selection" title=" pedestrian target selection"> pedestrian target selection</a>, <a href="https://publications.waset.org/abstracts/search?q=TTC" title=" TTC"> TTC</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20width%20funnel" title=" variable width funnel"> variable width funnel</a> </p> <a href="https://publications.waset.org/abstracts/131807/design-of-target-selection-for-pedestrian-autonomous-emergency-braking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> An Approaching Index to Evaluate a forward Collision Probability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lin%20Chen">Yuan-Lin Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approaching forward collision probability index (AFCPI) for alerting and assisting driver in keeping safety distance to avoid the forward collision accident in highway driving. The time to collision (TTC) and time headway (TH) are used to evaluate the TTC forward collision probability index (TFCPI) and the TH forward collision probability index (HFCPI), respectively. The Mamdani fuzzy inference algorithm is presented combining TFCPI and HFCPI to calculate the approaching collision probability index of the vehicle. The AFCPI is easier to understand for the driver who did not even have any professional knowledge in vehicle professional field. At the same time, the driver’s behavior is taken into account for suiting each driver. For the approaching index, the value 0 is indicating the 0% probability of forward collision, and the values 0.5 and 1 are indicating the 50% and 100% probabilities of forward collision, respectively. The AFCPI is useful and easy-to-understand for alerting driver to avoid the forward collision accidents when driving in highway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approaching%20index" title="approaching index">approaching index</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20collision%20probability" title=" forward collision probability"> forward collision probability</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20collision" title=" time to collision"> time to collision</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20headway" title=" time headway"> time headway</a> </p> <a href="https://publications.waset.org/abstracts/74855/an-approaching-index-to-evaluate-a-forward-collision-probability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> Real-Time Detection of Space Manipulator Self-Collision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xiaodong">Zhang Xiaodong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tang%20Zixin"> Tang Zixin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Xin"> Liu Xin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder enveloping surface, and then the detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=space%20manipulator" title="space manipulator">space manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20detection" title=" collision detection"> collision detection</a>, <a href="https://publications.waset.org/abstracts/search?q=self-collision" title=" self-collision"> self-collision</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20real-time%20collision%20detection" title=" the real-time collision detection"> the real-time collision detection</a> </p> <a href="https://publications.waset.org/abstracts/23258/real-time-detection-of-space-manipulator-self-collision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Design and Field Programmable Gate Array Implementation of Radio Frequency Identification for Boosting up Tag Data Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Rajeshwari">G. Rajeshwari</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20D.%20M.%20Jabez%20Daniel"> V. D. M. Jabez Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radio Frequency Identification systems are used for automated identification in various applications such as automobiles, health care and security. It is also called as the automated data collection technology. RFID readers are placed in any area to scan large number of tags to cover a wide distance. The placement of the RFID elements may result in several types of collisions. A major challenge in RFID system is collision avoidance. In the previous works the collision was avoided by using algorithms such as ALOHA and tree algorithm. This work proposes collision reduction and increased throughput through reading enhancement method with tree algorithm. The reading enhancement is done by improving interrogation procedure and increasing the data handling capacity of RFID reader with parallel processing. The work is simulated using Xilinx ISE 14.5 verilog language. By implementing this in the RFID system, we can able to achieve high throughput and avoid collision in the reader at a same instant of time. The overall system efficiency will be increased by implementing this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna" title="antenna">antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-collision%20protocols" title=" anti-collision protocols"> anti-collision protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20management%20system" title=" data management system"> data management system</a>, <a href="https://publications.waset.org/abstracts/search?q=reader" title=" reader"> reader</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20enhancement" title=" reading enhancement"> reading enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=tag" title=" tag"> tag</a> </p> <a href="https://publications.waset.org/abstracts/51859/design-and-field-programmable-gate-array-implementation-of-radio-frequency-identification-for-boosting-up-tag-data-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> A New Criterion Using Pose and Shape of Objects for Collision Risk Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=DoHyeung%20Kim">DoHyeung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=DaeHee%20Seo"> DaeHee Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=ByungDoo%20Kim"> ByungDoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=ByungGil%20Lee"> ByungGil Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As many recent researches being implemented in aviation and maritime aspects, strong doubts have been raised concerning the reliability of the estimation of collision risk. It is shown that using position and velocity of objects can lead to imprecise results. In this paper, therefore, a new approach to the estimation of collision risks using pose and shape of objects is proposed. Simulation results are presented validating the accuracy of the new criterion to adapt to collision risk algorithm based on fuzzy logic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collision%20risk" title="collision risk">collision risk</a>, <a href="https://publications.waset.org/abstracts/search?q=pose" title=" pose"> pose</a>, <a href="https://publications.waset.org/abstracts/search?q=shape" title=" shape"> shape</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a> </p> <a href="https://publications.waset.org/abstracts/1474/a-new-criterion-using-pose-and-shape-of-objects-for-collision-risk-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> In-Depth Analysis of Involved Factors to Car-Motorcycle Accidents in Budapest City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danish%20Farooq">Danish Farooq</a>, <a href="https://publications.waset.org/abstracts/search?q=Janos%20Juhasz"> Janos Juhasz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Car-motorcycle accidents have been observed higher in recent years, which caused mainly riders’ fatalities and serious injuries. In-depth crash investigation methods aim to investigate the main factors which are likely involved in fatal road accidents and injury outcomes. The main objective of this study is to investigate the involved factors in car-motorcycle accidents in Budapest city. The procedure included statistical analysis and data sampling to identify car-motorcycle accidents by dominant accident types based on collision configurations. The police report was used as a data source for specified accidents, and simulation models were plotted according to scale (M 1:200). Car-motorcycle accidents were simulated in Virtual Crash software for 5 seconds before the collision. The simulation results showed that the main involved factors to car-motorcycle accidents were human behavior and view obstructions. The comprehensive, in-depth analysis also found that most of the car drivers and riders were unable to perform collision avoidance manoeuvres before the collision. This study can help the traffic safety authorities to focus on simulated involved factors to solve road safety issues in car-motorcycle accidents. The study also proposes safety measures to improve safe movements among road users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20motorcycle%20accidents" title="car motorcycle accidents">car motorcycle accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=in-depth%20analysis" title=" in-depth analysis"> in-depth analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopic%20simulation" title=" microscopic simulation"> microscopic simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20measures" title=" safety measures"> safety measures</a> </p> <a href="https://publications.waset.org/abstracts/109658/in-depth-analysis-of-involved-factors-to-car-motorcycle-accidents-in-budapest-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Corporate Social Responsibility, Earnings, and Tax Avoidance: Evidence from Indonesia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cahyaningsih%20Cahyaningsih">Cahyaningsih Cahyaningsih</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%27ad%20Rakhman"> Fu'ad Rakhman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines empirically the association between corporate social responsibility (CSR) and tax avoidance. This study also investigates the effect of earnings on the relation between CSR and tax avoidance. Effective tax rate (ETR) and cash effective tax rate (CETR) were used to measure tax avoidance. Corporate social responsibility fund (CSRF) and corporate social responsibility disclosure (CSRD) were used as proxies for CSR. Test was conducted for public firms which were listed in the Indonesia Stock Exchange during the period of 2011-2014. Based on slack resource theory, this study finds that the relation between CSR and tax avoidance is moderated by earnings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corporate%20social%20responsibility%20disclosure" title="corporate social responsibility disclosure">corporate social responsibility disclosure</a>, <a href="https://publications.waset.org/abstracts/search?q=corporate%20social%20responsibility%20fund" title=" corporate social responsibility fund"> corporate social responsibility fund</a>, <a href="https://publications.waset.org/abstracts/search?q=earnings" title=" earnings"> earnings</a>, <a href="https://publications.waset.org/abstracts/search?q=tax%20avoidance" title=" tax avoidance"> tax avoidance</a> </p> <a href="https://publications.waset.org/abstracts/57745/corporate-social-responsibility-earnings-and-tax-avoidance-evidence-from-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Tax Avoidance and Leadership Replacement: Moderating Influence of Ownership and Political Connections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radwan%20Hussien%20Alkebsee">Radwan Hussien Alkebsee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the argument that reputational costs deter firms from engaging in tax avoidance activities, this paper investigates the relationship between tax avoidance and forced CEO turnover. This study is based on a broad sample of Chinese listed companies spanning the period 2011 to 2018. The findings reveal that tax avoidance is positively associated with forced CEO turnover. This suggests that firms that engage in tax avoidance experience a high rate of leadership replacement. The findings also reveal that the positive association between tax avoidance and forced CEO turnover is pronounced for state-owned firms, firms with no political connections, and firms located in “more developed” regions with extensive tax enforcement action, while it is not for private firms, firms with political connections, and firms located in “less developed” regions with weak tax enforcement actions. The baseline results remain consistent and robust for endogeneity concerns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tax%20avoidance" title="tax avoidance">tax avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=CEO%20turnover" title=" CEO turnover"> CEO turnover</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20connections" title=" political connections"> political connections</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20tax%20enforcement" title=" regional tax enforcement"> regional tax enforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/150110/tax-avoidance-and-leadership-replacement-moderating-influence-of-ownership-and-political-connections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">473</span> An Interoperability Concept for Detect and Avoid and Collision Avoidance Systems: Results from a Human-In-The-Loop Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Rorie">Robert Rorie</a>, <a href="https://publications.waset.org/abstracts/search?q=Lisa%20Fern"> Lisa Fern</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS) poses a variety of technical challenges to UAS developers and aviation regulators. In response to growing demand for access to civil airspace in the United States, the Federal Aviation Administration (FAA) has produced a roadmap identifying key areas requiring further research and development. One such technical challenge is the development of a ‘detect and avoid’ system (DAA; previously referred to as ‘sense and avoid’) to replace the ‘see and avoid’ requirement in manned aviation. The purpose of the DAA system is to support the pilot, situated at a ground control station (GCS) rather than in the cockpit of the aircraft, in maintaining ‘well clear’ of nearby aircraft through the use of GCS displays and alerts. In addition to its primary function of aiding the pilot in maintaining well clear, the DAA system must also safely interoperate with existing NAS systems and operations, such as the airspace management procedures of air traffic controllers (ATC) and collision avoidance (CA) systems currently in use by manned aircraft, namely the Traffic alert and Collision Avoidance System (TCAS) II. It is anticipated that many UAS architectures will integrate both a DAA system and a TCAS II. It is therefore necessary to explicitly study the integration of DAA and TCAS II alerting structures and maneuver guidance formats to ensure that pilots understand the appropriate type and urgency of their response to the various alerts. This paper presents a concept of interoperability for the two systems. The concept was developed with the goal of avoiding any negative impact on the performance level of TCAS II (understanding that TCAS II must largely be left as-is) while retaining a DAA system that still effectively enables pilots to maintain well clear, and, as a result, successfully reduces the frequency of collision hazards. The interoperability concept described in the paper focuses primarily on facilitating the transition from a late-stage DAA encounter (where a loss of well clear is imminent) to a TCAS II corrective Resolution Advisory (RA), which requires pilot compliance with the directive RA guidance (e.g., climb, descend) within five seconds of its issuance. The interoperability concept was presented to 10 participants (6 active UAS pilots and 4 active commercial pilots) in a medium-fidelity, human-in-the-loop simulation designed to stress different aspects of the DAA and TCAS II systems. Pilot response times, compliance rates and subjective assessments were recorded. Results indicated that pilots exhibited comprehension of, and appropriate prioritization within, the DAA-TCAS II combined alert structure. Pilots demonstrated a high rate of compliance with TCAS II RAs and were also seen to respond to corrective RAs within the five second requirement established for manned aircraft. The DAA system presented under test was also shown to be effective in supporting pilots’ ability to maintain well clear in the overwhelming majority of cases in which pilots had sufficient time to respond. The paper ends with a discussion of next steps for research on integrating UAS into civil airspace. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detect%20and%20avoid" title="detect and avoid">detect and avoid</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability" title=" interoperability"> interoperability</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20alert%20and%20collision%20avoidance%20system%20%28TCAS%20II%29" title=" traffic alert and collision avoidance system (TCAS II)"> traffic alert and collision avoidance system (TCAS II)</a>, <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aircraft%20systems" title=" unmanned aircraft systems"> unmanned aircraft systems</a> </p> <a href="https://publications.waset.org/abstracts/58071/an-interoperability-concept-for-detect-and-avoid-and-collision-avoidance-systems-results-from-a-human-in-the-loop-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> An Exponential Field Path Planning Method for Mobile Robots Integrated with Visual Perception</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdy%20Roman">Magdy Roman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Shoeib"> Mostafa Shoeib</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rostom"> Mostafa Rostom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global vision, whether provided by overhead fixed cameras, on-board aerial vehicle cameras, or satellite images can always provide detailed information on the environment around mobile robots. In this paper, an intelligent vision-based method of path planning and obstacle avoidance for mobile robots is presented. The method integrates visual perception with a new proposed field-based path-planning method to overcome common path-planning problems such as local minima, unreachable destination and unnecessary lengthy paths around obstacles. The method proposes an exponential angle deviation field around each obstacle that affects the orientation of a close robot. As the robot directs toward, the goal point obstacles are classified into right and left groups, and a deviation angle is exponentially added or subtracted to the orientation of the robot. Exponential field parameters are chosen based on Lyapunov stability criterion to guarantee robot convergence to the destination. The proposed method uses obstacles' shape and location, extracted from global vision system, through a collision prediction mechanism to decide whether to activate or deactivate obstacles field. In addition, a search mechanism is developed in case of robot or goal point is trapped among obstacles to find suitable exit or entrance. The proposed algorithm is validated both in simulation and through experiments. The algorithm shows effectiveness in obstacles' avoidance and destination convergence, overcoming common path planning problems found in classical methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20avoidance" title=" collision avoidance"> collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence" title=" convergence"> convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20robots" title=" mobile robots"> mobile robots</a> </p> <a href="https://publications.waset.org/abstracts/84189/an-exponential-field-path-planning-method-for-mobile-robots-integrated-with-visual-perception" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Earthquake Classification in Molluca Collision Zone Using Conventional Statistical Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Wattimanela">H. J. Wattimanela</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20S.%20Passaribu"> U. S. Passaribu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20T.%20Puspito"> A. N. T. Puspito</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Indratno"> S. W. Indratno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molluca Collision Zone is located at the junction of the Eurasian plate, Australian, Pacific, and the Philippines. Between the Sangihe arc, west of the collision zone, and to the east of Halmahera arc is active collision and convex toward the Molluca Sea. This research will analyze the behavior of earthquake occurrence in Molluca Collision Zone related to the distributions of an earthquake in each partition regions, determining the type of distribution of a occurrence earthquake of partition regions, and the mean occurrence of earthquakes each partition regions, and the correlation between the partitions region. We calculate number of earthquakes using partition method and its behavioral using conventional statistical methods. The data used is the data type of shallow earthquakes with magnitudes ≥ 4 SR for the period 1964-2013 in the Molluca Collision Zone. From the results, we can classify partitioned regions based on the correlation into two classes: strong and very strong. This classification can be used for early warning system in disaster management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molluca%20collision%20zone" title="molluca collision zone">molluca collision zone</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20regions" title=" partition regions"> partition regions</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20statistical%20methods" title=" conventional statistical methods"> conventional statistical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=classifications" title=" classifications"> classifications</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title=" disaster management"> disaster management</a> </p> <a href="https://publications.waset.org/abstracts/18499/earthquake-classification-in-molluca-collision-zone-using-conventional-statistical-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Fall Avoidance Control of Wheeled Inverted Pendulum Type Robotic Wheelchair While Climbing Stairs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nan%20Ding">Nan Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Motoki%20Shino"> Motoki Shino</a>, <a href="https://publications.waset.org/abstracts/search?q=Nobuyasu%20Tomokuni"> Nobuyasu Tomokuni</a>, <a href="https://publications.waset.org/abstracts/search?q=Genki%20Murata"> Genki Murata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wheelchair is the major means of transport for physically disabled people. However, it cannot overcome architectural barriers such as curbs and stairs. In this paper, the authors proposed a method to avoid falling down of a wheeled inverted pendulum type robotic wheelchair for climbing stairs. The problem of this system is that the feedback gain of the wheels cannot be set high due to modeling errors and gear backlash, which results in the movement of wheels. Therefore, the wheels slide down the stairs or collide with the side of the stairs, and finally the wheelchair falls down. To avoid falling down, the authors proposed a slider control strategy based on skyhook model in order to decrease the movement of wheels, and a rotary link control strategy based on the staircase dimensions in order to avoid collision or slide down. The effectiveness of the proposed fall avoidance control strategy was validated by ODE simulations and the prototype wheelchair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EPW" title="EPW">EPW</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20avoidance%20control" title=" fall avoidance control"> fall avoidance control</a>, <a href="https://publications.waset.org/abstracts/search?q=skyhook" title=" skyhook"> skyhook</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20inverted%20pendulum" title=" wheeled inverted pendulum"> wheeled inverted pendulum</a> </p> <a href="https://publications.waset.org/abstracts/63772/fall-avoidance-control-of-wheeled-inverted-pendulum-type-robotic-wheelchair-while-climbing-stairs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Path Planning for Collision Detection between two Polyhedra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khouil">M. Khouil</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Saber"> N. Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mestari"> M. Mestari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title="path planning">path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20detection" title=" collision detection"> collision detection</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20polyhedron" title=" convex polyhedron"> convex polyhedron</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/26616/path-planning-for-collision-detection-between-two-polyhedra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> The Effect of Tax Avoidance on Firm Value: Evidence from Amman Stock Exchange</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Abu%20Nassar">Mohammad Abu Nassar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Al%20Khalilah"> Mahmoud Al Khalilah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Abu%20Nassar"> Hussein Abu Nassar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to examine whether corporate tax avoidance practices can impact firm value in the Jordanian context. The study employs a quantitative approach using s sample of (124) industrial and services companies listed on the Amman Stock Exchange for the period from 2010 to 2019. Multiple linear regression analysis has been applied to test the study's hypothesis. The study employs effective tax rate and book-tax difference to measure tax avoidance and Tobin's Q factor to measure firm value. The results of the study revealed that tax avoidance practices, when measured using effective tax rates, do not significantly impact firm value. When the book-tax difference is used to measure tax avoidance, the study results showed a negative impact on firm value. The result of the study has not supported the traditional view of tax avoidance as a transfer of wealth from the government to shareholders for industrial and services companies listed on the Amman Stock Exchange, indicating that Jordanian firms should not use tax avoidance strategies to enhance their value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tax%20avoidance" title="tax avoidance">tax avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20tax%20rate" title=" effective tax rate"> effective tax rate</a>, <a href="https://publications.waset.org/abstracts/search?q=book-tax%20difference" title=" book-tax difference"> book-tax difference</a>, <a href="https://publications.waset.org/abstracts/search?q=firm%20value" title=" firm value"> firm value</a>, <a href="https://publications.waset.org/abstracts/search?q=Amman%20stock%20exchange" title=" Amman stock exchange"> Amman stock exchange</a> </p> <a href="https://publications.waset.org/abstracts/151892/the-effect-of-tax-avoidance-on-firm-value-evidence-from-amman-stock-exchange" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Raghuwaiya">K. Raghuwaiya</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Singh"> S. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Sharma"> B. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Vanualailai"> J. Vanualailai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a set of artificial potential field functions that improves upon; in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the Distance Optimization Technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20potential%20fields" title="artificial potential fields">artificial potential fields</a>, <a href="https://publications.waset.org/abstracts/search?q=3-trailer%20systems" title=" 3-trailer systems"> 3-trailer systems</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20planning" title=" motion planning"> motion planning</a>, <a href="https://publications.waset.org/abstracts/search?q=posture" title=" posture"> posture</a>, <a href="https://publications.waset.org/abstracts/search?q=parking%20and%20collision" title=" parking and collision"> parking and collision</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20trajectories" title=" free trajectories"> free trajectories</a> </p> <a href="https://publications.waset.org/abstracts/6932/potential-field-functions-for-motion-planning-and-posture-of-the-standard-3-trailer-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Implication of Attention Deficit and Task Avoidance on the Mathematics Performance of Pupils with Intellectual Disabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Bamidele%20Ojuawo">Matthew Bamidele Ojuawo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To some parents, task avoidance implies the time when argument ensues between parents and their children in order to get certain things done correctly without being forced. However, some children avoid certain task because of the fears that it is too hard or cannot be done without parental help. Laziness plays a role in task avoidance when children do not want to do something because they do not feel like it is easy enough or if they just want their parent help them get it over with more quickly. Children with attention deficit disorder more often have difficulties with social skills, such as social interaction and forming and maintaining friendships. The focus of this study is how task avoidance and attention deficit have effect on the mathematics performance of pupils in the lower basic classroom. Mathematics performance of pupils with learning disabilities has been seriously low due to avoidance of task and attention deficit posed as carried out in the previous researches, but the research has not been carried out in the lower basic classroom in Oyo, Oyo state, Nigeria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=task%20avoidance" title="task avoidance">task avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=parents" title=" parents"> parents</a>, <a href="https://publications.waset.org/abstracts/search?q=children%20with%20attention%20deficit" title=" children with attention deficit"> children with attention deficit</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics" title=" mathematics"> mathematics</a> </p> <a href="https://publications.waset.org/abstracts/124616/implication-of-attention-deficit-and-task-avoidance-on-the-mathematics-performance-of-pupils-with-intellectual-disabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Tax Avoidance During The Financial Crisis: Role Of Independent Commissioners And External Auditors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Ramadhan">Yasir Ramadhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate tax avoidance practices when a financial crisis occurs due to the effects of the COVID-19 pandemic. This study also finds out how the influence of independent commissioners and external auditors on tax avoidance practices during the COVID-19 pandemic. Tax avoidance practices are measured by the current ETR. The role of the independent board of commissioners is measured by the proportion of independent commissioners in the composition of the board of commissioners, while the external auditor is measured by audit quality. In this study, there were 342 observations of companies listed on the Indonesia Stock Exchange from 2019 to 2020. This study used the difference-in-differences (DiD) method in data analysis. The results of this study indicate that companies do tax avoidance during the COVID-19 pandemic. Meanwhile, independent commissioners and qualified audits are not proven to be able to negate tax avoidance practices during the COVID-19 Pandemic. These results also show that a higher proportion of independent commissioners and audit quality are not sufficient for countries with low levels of auditor litigation and investor protection and weak regulatory frameworks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audit" title="audit">audit</a>, <a href="https://publications.waset.org/abstracts/search?q=commissioner" title=" commissioner"> commissioner</a>, <a href="https://publications.waset.org/abstracts/search?q=tax%20avoidance" title=" tax avoidance"> tax avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20pandemic" title=" COVID-19 pandemic"> COVID-19 pandemic</a> </p> <a href="https://publications.waset.org/abstracts/145660/tax-avoidance-during-the-financial-crisis-role-of-independent-commissioners-and-external-auditors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Collision%20Avoidance&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>