CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 329 results for author: <span class="mathjax">Xue, Z</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&query=Xue%2C+Z">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xue, Z"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xue%2C+Z&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xue, Z"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.06407">arXiv:2411.06407</a> <span> [<a href="https://arxiv.org/pdf/2411.06407">pdf</a>, <a href="https://arxiv.org/format/2411.06407">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Error-mitigated initialization of surface codes with non-Pauli stabilizers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=He%2C+Z">Zhi-Cheng He</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.06407v2-abstract-short" style="display: inline;"> Quantum error correction represents a significant milestone in large-scale quantum computing, with the surface code being a prominent strategy due to its high error threshold and experimental feasibility. However, it is challenging to implement non-Clifford logical gates in a fault-tolerant way with low overhead, through the conventional magic state distillation technique. Here, we enhance the per… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06407v2-abstract-full').style.display = 'inline'; document.getElementById('2411.06407v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.06407v2-abstract-full" style="display: none;"> Quantum error correction represents a significant milestone in large-scale quantum computing, with the surface code being a prominent strategy due to its high error threshold and experimental feasibility. However, it is challenging to implement non-Clifford logical gates in a fault-tolerant way with low overhead, through the conventional magic state distillation technique. Here, we enhance the performance of the conventional surface code by incorporating non-Pauli stabilizers and introduce two innovative initialization protocols. Our approach enhances the fidelity of the initialization of non-Clifford logical state by avoiding unprotected operations before the encoding process. This improved fidelity of the initialization of non-Clifford logical states reduces the necessary number of logical qubits for precise state distillation, ultimately decreasing the overall resource overhead. Furthermore, we demonstrate the ability to entangle logical qubits in non-Pauli and Pauli bases via the lattice surgery technique. This integration enables the use of Pauli-based surface codes for computation while non-Pauli codes are employed for auxiliary qubit initialization, thus compatible with the conventional wisdom of logical Clifford operation based on the Pauli-based surface code. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.06407v2-abstract-full').style.display = 'none'; document.getElementById('2411.06407v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00391">arXiv:2411.00391</a> <span> [<a href="https://arxiv.org/pdf/2411.00391">pdf</a>, <a href="https://arxiv.org/format/2411.00391">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced Analysis for the Decoy-State Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zitai Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+Y">Yizhi Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xiongfeng Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00391v1-abstract-short" style="display: inline;"> Quantum key distribution is a cornerstone of quantum cryptography, enabling secure communication through the principles of quantum mechanics. In reality, most practical implementations rely on the decoy-state method to ensure security against photon-number-splitting attacks. A significant challenge in realistic quantum cryptosystems arises from statistical fluctuations with finite data sizes, whic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00391v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00391v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00391v1-abstract-full" style="display: none;"> Quantum key distribution is a cornerstone of quantum cryptography, enabling secure communication through the principles of quantum mechanics. In reality, most practical implementations rely on the decoy-state method to ensure security against photon-number-splitting attacks. A significant challenge in realistic quantum cryptosystems arises from statistical fluctuations with finite data sizes, which complicate the key-rate estimation due to the nonlinear dependence on the phase error rate. In this study, we first revisit and improve the key rate bound for the decoy-state method. We then propose an enhanced framework for statistical fluctuation analysis. By employing our fluctuation analysis on the improved bound, we demonstrate enhancement in key generation rates through numerical simulations with typical experimental parameters. Furthermore, our approach to fluctuation analysis is not only applicable in quantum cryptography but can also be adapted to other quantum information processing tasks, particularly when the objective and experimental variables exhibit a linear relationship. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00391v1-abstract-full').style.display = 'none'; document.getElementById('2411.00391v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 figures, and 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15781">arXiv:2408.15781</a> <span> [<a href="https://arxiv.org/pdf/2408.15781">pdf</a>, <a href="https://arxiv.org/format/2408.15781">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Determining non-Hermitian parent Hamiltonian from a single eigenstate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xie%2C+X">Xu-Dan Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+D">Dan-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15781v1-abstract-short" style="display: inline;"> A quantum state for being an eigenstate of some local Hamiltonian should be constraint by zero energy variance and consequently, the constraint is rather strong that a single eigenstate may uniquely determine the Hamiltonian. For non-Hermitian systems, it is natural to expect that determining the Hamiltonian requires a pair of both left and right eigenstates. Here, we observe that it can be suffic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15781v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15781v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15781v1-abstract-full" style="display: none;"> A quantum state for being an eigenstate of some local Hamiltonian should be constraint by zero energy variance and consequently, the constraint is rather strong that a single eigenstate may uniquely determine the Hamiltonian. For non-Hermitian systems, it is natural to expect that determining the Hamiltonian requires a pair of both left and right eigenstates. Here, we observe that it can be sufficient to determine a non-Hermitian Hamiltonian from a single right or left eigenstate. Our approach is based on the quantum covariance matrix, where the solution of Hamiltonian corresponds to the complex null vector. Our scheme favours non-Hermitian Hamiltonian learning on experimental quantum systems, as only the right eigenstates there can be accessed. Furthermore, we use numerical simulations to examine the effects of measurement errors and show the stability of our scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15781v1-abstract-full').style.display = 'none'; document.getElementById('2408.15781v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.07342">arXiv:2408.07342</a> <span> [<a href="https://arxiv.org/pdf/2408.07342">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Evidence of P-wave Pairing in K2Cr3As3 Superconductors from Phase-sensitive Measurement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Z">Zhiyuan Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Dou%2C+Z">Ziwei Dou</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+A">Anqi Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Cuiwei Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Hong%2C+Y">Yu Hong</a>, <a href="/search/quant-ph?searchtype=author&query=Lei%2C+X">Xincheng Lei</a>, <a href="/search/quant-ph?searchtype=author&query=Pan%2C+Y">Yue Pan</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhongchen Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhipeng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Y">Yupeng Li</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+G">Guoan Li</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+X">Xiaofan Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Guo%2C+X">Xingchen Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Deng%2C+X">Xiao Deng</a>, <a href="/search/quant-ph?searchtype=author&query=Lyu%2C+Z">Zhaozheng Lyu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+P">Peiling Li</a>, <a href="/search/quant-ph?searchtype=author&query=Qu%2C+F">Faming Qu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+G">Guangtong Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Su%2C+D">Dong Su</a>, <a href="/search/quant-ph?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+L">Li Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+J">Jie Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+J">Jiangping Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.07342v1-abstract-short" style="display: inline;"> P-wave superconductors hold immense promise for both fundamental physics and practical applications due to their unusual pairing symmetry and potential topological superconductivity. However, the exploration of the p-wave superconductors has proved to be a complex endeavor. Not only are they rare in nature but also the identification of p-wave superconductors has been an arduous task in history. F… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07342v1-abstract-full').style.display = 'inline'; document.getElementById('2408.07342v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.07342v1-abstract-full" style="display: none;"> P-wave superconductors hold immense promise for both fundamental physics and practical applications due to their unusual pairing symmetry and potential topological superconductivity. However, the exploration of the p-wave superconductors has proved to be a complex endeavor. Not only are they rare in nature but also the identification of p-wave superconductors has been an arduous task in history. For example, phase-sensitive measurement, an experimental technique which can provide conclusive evidence for unconventional pairing, has not been implemented successfully to identify p-wave superconductors. Here, we study a recently discovered family of superconductors, A2Cr3As3 (A = K, Rb, Cs), which were proposed theoretically to be a candidate of p-wave superconductors. We fabricate superconducting quantum interference devices (SQUIDs) on exfoliated K2Cr3As3, and perform the phase-sensitive measurement. We observe that such SQUIDs exhibit a pronounced second-order harmonic component sin(2蠁) in the current-phase relation, suggesting the admixture of 0- and 蟺-phase. By carefully examining the magnetic field dependence of the oscillation patterns of critical current and Shapiro steps under microwave irradiation, we reveal a crossover from 0- to 蟺-dominating phase state and conclude that the existence of the 蟺-phase is in favor of the p-wave pairing symmetry in K2Cr3As3. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.07342v1-abstract-full').style.display = 'none'; document.getElementById('2408.07342v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.18478">arXiv:2407.18478</a> <span> [<a href="https://arxiv.org/pdf/2407.18478">pdf</a>, <a href="https://arxiv.org/format/2407.18478">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum optical coherence theory based on Feynman's path integral </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jianbin Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yu Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+H">Hui Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zheng%2C+H">Huaibin Zheng</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yuchen He</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+F">Fuli Li</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhuo Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.18478v3-abstract-short" style="display: inline;"> Compared to classical optical coherence theory based on Maxwell's electromagnetic theory and Glauber's quantum optical coherence theory based on matrix mechanics formulation of quantum mechanics, quantum optical coherence theory based on Feynman's path integral formulation of quantum mechanics provides a novel tool to study optical coherence. It has the advantage of understanding the connection be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18478v3-abstract-full').style.display = 'inline'; document.getElementById('2407.18478v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.18478v3-abstract-full" style="display: none;"> Compared to classical optical coherence theory based on Maxwell's electromagnetic theory and Glauber's quantum optical coherence theory based on matrix mechanics formulation of quantum mechanics, quantum optical coherence theory based on Feynman's path integral formulation of quantum mechanics provides a novel tool to study optical coherence. It has the advantage of understanding the connection between mathematical calculations and physical interpretations better. Quantum optical coherence theory based on Feynman's path integral is introduced and reviewed in this paper. Based on the results of transient first-order interference of two independent light beams, it is predicted that the classical model for electric field of thermal light introduced by classical optical textbooks may not be accurate. The physics of two-photon bunching of thermal light and Hong-Ou-Mandel dip of entangled photon pairs is the same, which can be interpreted by constructive and destructive two-photon interference, respectively. Quantum optical coherence theory based on Feynman's path integral is helpful to understand the coherence properties of light, which may eventually lead us to the answer of the question: what is a photon? <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.18478v3-abstract-full').style.display = 'none'; document.getElementById('2407.18478v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 35 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17049">arXiv:2407.17049</a> <span> [<a href="https://arxiv.org/pdf/2407.17049">pdf</a>, <a href="https://arxiv.org/format/2407.17049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Feedback Intensity Equalization Algorithm for Multi-Spots Holographic Tweezer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wang%2C+S">Shaoxiong Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+Y">Yifei Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+Y">Yaoting Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Lan%2C+P">Peng Lan</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+H">Heng Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhongxiao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17049v2-abstract-short" style="display: inline;"> Thanks to the high degree of adjustability, holographic tweezer array has been proved to be the best choice to create arbitrary geometries atomic array. In holographic tweezer array experiment, optical tweezer generated by spatial light modulator (SLM) usually is used as static tweezer array. Due to the alternating current(AC) stark shifts effect, intensity difference of traps will cause different… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17049v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17049v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17049v2-abstract-full" style="display: none;"> Thanks to the high degree of adjustability, holographic tweezer array has been proved to be the best choice to create arbitrary geometries atomic array. In holographic tweezer array experiment, optical tweezer generated by spatial light modulator (SLM) usually is used as static tweezer array. Due to the alternating current(AC) stark shifts effect, intensity difference of traps will cause different light shift. So, the optimization of intensity equalization is very important in many-body system consist of single atoms. Here we report a work on studying of intensity equalization algorithm. Through this algorithm, the uniformity of tweezer can exceed 96% when the number of tweezer size is bigger than 1000. Our analysis shows that further uniformity requires further optimization of optical system. The realization of the intensity equalization algorithm is of great significance to the many-body experiments based on single atom array. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17049v2-abstract-full').style.display = 'none'; document.getElementById('2407.17049v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12180">arXiv:2406.12180</a> <span> [<a href="https://arxiv.org/pdf/2406.12180">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Unusual charge density wave introduced by Janus structure in monolayer vanadium dichalcogenides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Ziqiang Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Shao%2C+Y">Yan Shao</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+C">Chun Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+G">Genyu Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+S">Shihao Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Zhi-Lin Li</a>, <a href="/search/quant-ph?searchtype=author&query=Hao%2C+X">Xiaoyu Hao</a>, <a href="/search/quant-ph?searchtype=author&query=Hou%2C+Y">Yanhui Hou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+T">Teng Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Shi%2C+J">Jin-An Shi</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+C">Chen Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jia-Ou Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+W">Wu Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+J">Jiadong Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Qiao%2C+J">Jingsi Qiao</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+X">Xu Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+H">Hong-Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Y">Yeliang Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12180v1-abstract-short" style="display: inline;"> As a fundamental structural feature, the symmetry of materials determines the exotic quantum properties in transition metal dichalcogenides (TMDs) with charge density wave (CDW). Breaking the inversion symmetry, the Janus structure, an artificially constructed lattice, provides an opportunity to tune the CDW states and the related properties. However, limited by the difficulties in atomic-level fa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12180v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12180v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12180v1-abstract-full" style="display: none;"> As a fundamental structural feature, the symmetry of materials determines the exotic quantum properties in transition metal dichalcogenides (TMDs) with charge density wave (CDW). Breaking the inversion symmetry, the Janus structure, an artificially constructed lattice, provides an opportunity to tune the CDW states and the related properties. However, limited by the difficulties in atomic-level fabrication and material stability, the experimental visualization of the CDW states in 2D TMDs with Janus structure is still rare. Here, using surface selenization of VTe2, we fabricated monolayer Janus VTeSe. With scanning tunneling microscopy, an unusual root13-root13 CDW state with threefold rotational symmetry breaking was observed and characterized. Combined with theoretical calculations, we find this CDW state can be attributed to the charge modulation in the Janus VTeSe, beyond the conventional electron-phonon coupling. Our findings provide a promising platform for studying the CDW states and artificially tuning the electronic properties toward the applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12180v1-abstract-full').style.display = 'none'; document.getElementById('2406.12180v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07274">arXiv:2406.07274</a> <span> [<a href="https://arxiv.org/pdf/2406.07274">pdf</a>, <a href="https://arxiv.org/format/2406.07274">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Improved criteria of detecting multipartite entanglement structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wu%2C+K">Kai Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Z">Zhihua Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+Z">Zhihao Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Fei%2C+S">Shao-Ming Fei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07274v1-abstract-short" style="display: inline;"> Multipartite entanglement is one of the crucial resources in quantum information processing tasks such as quantum metrology, quantum computing and quantum communications. It is essential to verify not only the multipartite entanglement, but also the entanglement structure in both fundamental theories and the applications of quantum information technologies. However, it is proved to be challenging… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07274v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07274v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07274v1-abstract-full" style="display: none;"> Multipartite entanglement is one of the crucial resources in quantum information processing tasks such as quantum metrology, quantum computing and quantum communications. It is essential to verify not only the multipartite entanglement, but also the entanglement structure in both fundamental theories and the applications of quantum information technologies. However, it is proved to be challenging to detect the entanglement structures, including entanglement depth, entanglement intactness and entanglement stretchability, especially for general states and large-scale quantum systems. By using the partitions of the tensor product space we propose a systematic method to construct powerful entanglement witnesses which identify better the multipartite entanglement structures. Besides, an efficient algorithm using semi-definite programming and a gradient descent algorithm are designed to detect entanglement structure from the inner polytope of the convex set containing all the states with the same entanglement structure. We demonstrate by detailed examples that our criteria perform better than other known ones. Our results may be applied to many quantum information processing tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07274v1-abstract-full').style.display = 'none'; document.getElementById('2406.07274v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05608">arXiv:2406.05608</a> <span> [<a href="https://arxiv.org/pdf/2406.05608">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Janus graphene nanoribbons with a single ferromagnetic zigzag edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Song%2C+S">Shaotang Song</a>, <a href="/search/quant-ph?searchtype=author&query=Teng%2C+Y">Yu Teng</a>, <a href="/search/quant-ph?searchtype=author&query=Tang%2C+W">Weichen Tang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen Xu</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yuanyuan He</a>, <a href="/search/quant-ph?searchtype=author&query=Ruan%2C+J">Jiawei Ruan</a>, <a href="/search/quant-ph?searchtype=author&query=Kojima%2C+T">Takahiro Kojima</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+W">Wenping Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Giessibl%2C+F+J">Franz J Giessibl</a>, <a href="/search/quant-ph?searchtype=author&query=Sakaguchi%2C+H">Hiroshi Sakaguchi</a>, <a href="/search/quant-ph?searchtype=author&query=Louie%2C+S+G">Steven G Louie</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+J">Jiong Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05608v2-abstract-short" style="display: inline;"> Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically exhibit antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a new class of ferromagnetic quantum spin chains, enabling the explor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05608v2-abstract-full').style.display = 'inline'; document.getElementById('2406.05608v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05608v2-abstract-full" style="display: none;"> Topological design of pi-electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically exhibit antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a new class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the 1D limit, but also establishes a long-sought carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics. However, designing such GNRs entails overcoming daunting challenges, including simultaneous breaking of structural and spin symmetries, and designing elegant precursors for asymmetric fabrication of reactive zigzag edges. Here, we report a general approach for designing and fabricating such ferromagnetic GNRs in the form of Janus GNRs with two distinct edge configurations. Guided by Lieb's theorem and topological classification theory, we devised two JGNRs by asymmetrically introduced a topological defect array of benzene motifs to one zigzag edge, while keeping the opposing zigzag edge unchanged. This breaks structural symmetry and creates a sublattice imbalance within each unit cell, initiating a spin symmetry breaking. Three Z-shape precursors are designed to fabricate one parent ZGNR and two JGNRs with an optimal lattice spacing of the defect array for a complete quench of the magnetic edge states at the defective edge. Characterization via scanning probe microscopy/spectroscopy and first-principles density functional theory confirms the successful fabrication of Janus GNRs with ferromagnetic ground state delocalised along the pristine zigzag edge. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05608v2-abstract-full').style.display = 'none'; document.getElementById('2406.05608v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05982">arXiv:2405.05982</a> <span> [<a href="https://arxiv.org/pdf/2405.05982">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhihao Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Shang%2C+W">Wenjie Shang</a>, <a href="/search/quant-ph?searchtype=author&query=Kim%2C+S">Seongmin Kim</a>, <a href="/search/quant-ph?searchtype=author&query=Bobbitt%2C+A">Alexandria Bobbitt</a>, <a href="/search/quant-ph?searchtype=author&query=Lee%2C+E">Eungkyu Lee</a>, <a href="/search/quant-ph?searchtype=author&query=Luo%2C+T">Tengfei Luo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05982v1-abstract-short" style="display: inline;"> Quantum algorithms are emerging tools in the design of functional materials due to their powerful solution space search capability. How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved. We propose a novel optimization strategy based on an active learning scheme that combines the improved Quantum Genetic Algorithm (QG… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05982v1-abstract-full').style.display = 'inline'; document.getElementById('2405.05982v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05982v1-abstract-full" style="display: none;"> Quantum algorithms are emerging tools in the design of functional materials due to their powerful solution space search capability. How to balance the high price of quantum computing resources and the growing computing needs has become an urgent problem to be solved. We propose a novel optimization strategy based on an active learning scheme that combines the improved Quantum Genetic Algorithm (QGA) with machine learning surrogate model regression. Using Random Forests as the surrogate model circumvents the time-consuming physical modeling or experiments, thereby improving the optimization efficiency. QGA, a genetic algorithm embedded with quantum mechanics, combines the advantages of quantum computing and genetic algorithms, enabling faster and more robust convergence to the optimum. Using the design of planar multilayer photonic structures for transparent radiative cooling as a testbed, we show superiority of our algorithm over the classical genetic algorithm (CGA). Additionally, we show the precision advantage of the RF model as a flexible surrogate model, which relaxes the constraints on the type of surrogate model that can be used in other quantum computing optimization algorithms (e.g., quantum annealing needs Ising model as a surrogate). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05982v1-abstract-full').style.display = 'none'; document.getElementById('2405.05982v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15922">arXiv:2404.15922</a> <span> [<a href="https://arxiv.org/pdf/2404.15922">pdf</a>, <a href="https://arxiv.org/format/2404.15922">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.213602">10.1103/PhysRevLett.132.213602 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-Atom Verification of the Optimal Trade-Off between Speed and Cost in Shortcuts to Adiabaticity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+J+-">J. -W. Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Bu%2C+J+-">J. -T. Bu</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+J+C">J. C. Li</a>, <a href="/search/quant-ph?searchtype=author&query=Meng%2C+W">Weiquan Meng</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+W+-">W. -Q. Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+B">B. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yuan%2C+W+-">W. -F. Yuan</a>, <a href="/search/quant-ph?searchtype=author&query=Du%2C+H+-">H. -J. Du</a>, <a href="/search/quant-ph?searchtype=author&query=Ding%2C+G+-">G. -Y. Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+W+-">W. -J. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+L">L. Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+F">F. Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhenyu Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Feng%2C+M">M. Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15922v2-abstract-short" style="display: inline;"> The approach of shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum information processing with enhanced speed. Owing to the inherent trade-off between dynamical speed and the cost associated with the transitionless driving field, executing arbitrarily fast operations becomes impractical. To understand the accurate interplay between speed and energetic cost i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15922v2-abstract-full').style.display = 'inline'; document.getElementById('2404.15922v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15922v2-abstract-full" style="display: none;"> The approach of shortcuts to adiabaticity enables the effective execution of adiabatic dynamics in quantum information processing with enhanced speed. Owing to the inherent trade-off between dynamical speed and the cost associated with the transitionless driving field, executing arbitrarily fast operations becomes impractical. To understand the accurate interplay between speed and energetic cost in this process, we propose theoretically and verify experimentally a new trade-off, which is characterized by a tightly optimized bound within $s$-parameterized phase spaces. Our experiment is carried out in a single ultracold $^{40}$Ca$^{+}$ ion trapped in a harmonic potential. By exactly operating the quantum states of the ion, we execute the Landau-Zener model as an example, where the quantum speed limit as well as the cost are governed by the spectral gap. We witness that our proposed trade-off is indeed tight in scenarios involving both initially eigenstates and initially thermal equilibrium states. Our work helps understanding the fundamental constraints in shortcuts to adiabaticity and illuminates the potential of under-utilized phase spaces that have been traditionally overlooked. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15922v2-abstract-full').style.display = 'none'; document.getElementById('2404.15922v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+5 pages, 3+3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 213602 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05685">arXiv:2404.05685</a> <span> [<a href="https://arxiv.org/pdf/2404.05685">pdf</a>, <a href="https://arxiv.org/format/2404.05685">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Global phase diagram of doped quantum spin liquid on the Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zheng-Tao Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Gu%2C+Z">Zheng-Cheng Gu</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+S">Shuo Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05685v1-abstract-short" style="display: inline;"> It has long been believed that doped quantum spin liquids (QSLs) can give rise to fascinating quantum phases, including the possibility of high-temperature superconductivity (SC) as proposed by P. W. Anderson's resonating valence bond (RVB) scenario. The Kagome lattice $t$-$J$ model is known to exhibit spin liquid behavior at half-filling, making it an ideal system for studying the properties of d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05685v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05685v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05685v1-abstract-full" style="display: none;"> It has long been believed that doped quantum spin liquids (QSLs) can give rise to fascinating quantum phases, including the possibility of high-temperature superconductivity (SC) as proposed by P. W. Anderson's resonating valence bond (RVB) scenario. The Kagome lattice $t$-$J$ model is known to exhibit spin liquid behavior at half-filling, making it an ideal system for studying the properties of doped QSL. In this study, we employ the fermionic projected entangled simplex state (PESS) method to investigate the ground state properties of the Kagome lattice $t$-$J$ model with $t/J = 3.0$. Our results reveal a phase transition from charge density wave (CDW) states to uniform states around a critical doping level $未_c \approx 0.27$. Within the CDW phase, we observe different types of Wigner crystal (WC) formulated by doped holes that are energetically favored. As we enter the uniform phase, a non-Fermi liquid (NFL) state emerges within the doping range $0.27 < 未< 0.32$, characterized by an exponential decay of all correlation functions. With further hole doping, we discover the appearance of a pair density wave (PDW) state within a narrow doping region $0.32 < 未< 1/3$. We also discuss the potential experimental implications of our findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05685v1-abstract-full').style.display = 'none'; document.getElementById('2404.05685v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 17 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.01359">arXiv:2404.01359</a> <span> [<a href="https://arxiv.org/pdf/2404.01359">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> </div> <p class="title is-5 mathjax"> Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zuyu Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+K">Kang Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+P">Pengnian Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+T">Tao Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+Y">Yuanming Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+S">Shixian Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Y">Yunlai Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Z">Zuheng Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Dai%2C+Y">Yuehua Dai</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+J">Jun Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+F">Fei Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.01359v1-abstract-short" style="display: inline;"> The recent emergence of the hybrid quantum-classical neural network (HQCNN) architecture has garnered considerable attention due to the potential advantages associated with integrating quantum principles to enhance various facets of machine learning algorithms and computations. However, the current investigated serial structure of HQCNN, wherein information sequentially passes from one network to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01359v1-abstract-full').style.display = 'inline'; document.getElementById('2404.01359v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.01359v1-abstract-full" style="display: none;"> The recent emergence of the hybrid quantum-classical neural network (HQCNN) architecture has garnered considerable attention due to the potential advantages associated with integrating quantum principles to enhance various facets of machine learning algorithms and computations. However, the current investigated serial structure of HQCNN, wherein information sequentially passes from one network to another, often imposes limitations on the trainability and expressivity of the network. In this study, we introduce a novel architecture termed Parallel Proportional Fusion of Quantum and Spiking Neural Networks (PPF-QSNN). The dataset information is simultaneously fed into both the spiking neural network and the variational quantum circuits, with the outputs amalgamated in proportion to their individual contributions. We systematically assess the impact of diverse PPF-QSNN parameters on network performance for image classification, aiming to identify the optimal configuration. Numerical results on the MNIST dataset unequivocally illustrate that our proposed PPF-QSNN outperforms both the existing spiking neural network and the serial quantum neural network across metrics such as accuracy, loss, and robustness. This study introduces a novel and effective amalgamation approach for HQCNN, thereby laying the groundwork for the advancement and application of quantum advantage in artificial intelligent computations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.01359v1-abstract-full').style.display = 'none'; document.getElementById('2404.01359v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06051">arXiv:2403.06051</a> <span> [<a href="https://arxiv.org/pdf/2403.06051">pdf</a>, <a href="https://arxiv.org/format/2403.06051">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Observation of non-contact Casimir friction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhujing Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ju%2C+P">Peng Ju</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+K">Kunhong Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+Y">Yuanbin Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Jacob%2C+Z">Zubin Jacob</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tongcang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06051v1-abstract-short" style="display: inline;"> Quantum mechanics predicts the occurrence of random electromagnetic field fluctuations, or virtual photons, in vacuum. The exchange of virtual photons between two bodies in relative motion could lead to non-contact quantum vacuum friction or Casimir friction. Despite its theoretical significance, the non-contact Casimir frictional force has not been observed and its theoretical predictions have va… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06051v1-abstract-full').style.display = 'inline'; document.getElementById('2403.06051v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06051v1-abstract-full" style="display: none;"> Quantum mechanics predicts the occurrence of random electromagnetic field fluctuations, or virtual photons, in vacuum. The exchange of virtual photons between two bodies in relative motion could lead to non-contact quantum vacuum friction or Casimir friction. Despite its theoretical significance, the non-contact Casimir frictional force has not been observed and its theoretical predictions have varied widely. In this work, we report the first measurement of the non-contact Casimir frictional force between two moving bodies. By employing two mechanical oscillators with resonant frequencies far lower than those in Lorentz models of electrons in dielectric materials, we have amplified the Casimir frictional force at low relative velocities by several orders of magnitude. We directly measure the non-contact Casimir frictional force between the two oscillators and show its linear dependence on velocity, proving the dissipative nature of Casimir friction. This advancement marks a pivotal contribution to the field of dissipative quantum electrodynamics and enhances our understanding of friction at the nanoscale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06051v1-abstract-full').style.display = 'none'; document.getElementById('2403.06051v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04705">arXiv:2402.04705</a> <span> [<a href="https://arxiv.org/pdf/2402.04705">pdf</a>, <a href="https://arxiv.org/format/2402.04705">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.023229">10.1103/PhysRevResearch.6.023229 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoherence rate in random Lindblad dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y">Yifeng Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhenyu Xu</a>, <a href="/search/quant-ph?searchtype=author&query=del+Campo%2C+A">Adolfo del Campo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04705v3-abstract-short" style="display: inline;"> Open quantum systems undergo decoherence, which is responsible for the transition from quantum to classical behavior. The time scale in which decoherence takes place can be analyzed using upper limits to its rate. We examine the dynamics of open chaotic quantum systems governed by random Lindblad operators sourced from Gaussian and Ginibre ensembles with Wigner-Dyson symmetry classes. In these sys… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04705v3-abstract-full').style.display = 'inline'; document.getElementById('2402.04705v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04705v3-abstract-full" style="display: none;"> Open quantum systems undergo decoherence, which is responsible for the transition from quantum to classical behavior. The time scale in which decoherence takes place can be analyzed using upper limits to its rate. We examine the dynamics of open chaotic quantum systems governed by random Lindblad operators sourced from Gaussian and Ginibre ensembles with Wigner-Dyson symmetry classes. In these systems, the ensemble-averaged purity decays monotonically as a function of time. This decay is governed by the decoherence rate, which is upper-bounded by the dimension of their Hilbert space and is independent of the ensemble symmetry. These findings hold upon mixing different ensembles, indicating the universal character of the decoherence rate limit. Moreover, our findings reveal that open chaotic quantum systems governed by random Lindbladians tend to exhibit the most rapid decoherence, regardless of the initial state. This phenomenon is associated with the concentration of the decoherence rate near its upper bound. Our work identifies primary features of decoherence in dissipative quantum chaos, with applications ranging from quantum foundations to high-energy physics and quantum technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04705v3-abstract-full').style.display = 'none'; document.getElementById('2402.04705v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 023229 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04213">arXiv:2402.04213</a> <span> [<a href="https://arxiv.org/pdf/2402.04213">pdf</a>, <a href="https://arxiv.org/format/2402.04213">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantifying information flow in quantum processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Santos%2C+L">Leonardo Santos</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Piilo%2C+J">Jyrki Piilo</a>, <a href="/search/quant-ph?searchtype=author&query=G%C3%BChne%2C+O">Otfried G眉hne</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04213v2-abstract-short" style="display: inline;"> We present a framework for quantifying information flow within general quantum processes. For this purpose, we introduce the signaling power of quantum channels and discuss its relevant operational properties. This function supports extensions to higher order maps, enabling the evaluation of information flow in general quantum causal networks and also processes with indefinite causal order. Furthe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04213v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04213v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04213v2-abstract-full" style="display: none;"> We present a framework for quantifying information flow within general quantum processes. For this purpose, we introduce the signaling power of quantum channels and discuss its relevant operational properties. This function supports extensions to higher order maps, enabling the evaluation of information flow in general quantum causal networks and also processes with indefinite causal order. Furthermore, our results offer a rigorous approach to information dynamics in open systems that applies also in the presence of initial system-environment correlations, and allows for the distinction between classical and quantum information backflow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04213v2-abstract-full').style.display = 'none'; document.getElementById('2402.04213v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+10 pages. Comments welcome! v2: text compression, some corrections and improvements, and new references added</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02343">arXiv:2402.02343</a> <span> [<a href="https://arxiv.org/pdf/2402.02343">pdf</a>, <a href="https://arxiv.org/format/2402.02343">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.110.012442">10.1103/PhysRevA.110.012442 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Noise mitigation in quantum teleportation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zi-Jian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=An%2C+J">Jun-Hong An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02343v2-abstract-short" style="display: inline;"> Permitting the transmission of unknown quantum states over long distances by using entanglement, quantum teleportation serves as an important building block for many quantum technologies. However, in the noisy intermediate-scale quantum era, the practical realization of quantum teleportation is inevitably challenged by the noise-induced decoherence. We here propose a noise-mitigation mechanism app… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02343v2-abstract-full').style.display = 'inline'; document.getElementById('2402.02343v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02343v2-abstract-full" style="display: none;"> Permitting the transmission of unknown quantum states over long distances by using entanglement, quantum teleportation serves as an important building block for many quantum technologies. However, in the noisy intermediate-scale quantum era, the practical realization of quantum teleportation is inevitably challenged by the noise-induced decoherence. We here propose a noise-mitigation mechanism applicable in both the discrete- and continuous-variable quantum teleportation schemes. Via investigating the non-Markovian decoherence dynamics of the two types of quantum teleportation schemes, we find that, as long as a bound state is formed in the energy spectrum of the total system consisting of the involved subsystems and their respective reservoirs, the quantum superiority of the fidelity is persistently recovered. Supplying an insightful understanding of the noise-mitigation protocols, our result paves the way to the practical realization of noise-tolerant quantum teleportation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02343v2-abstract-full').style.display = 'none'; document.getElementById('2402.02343v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 110, 012442 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11147">arXiv:2401.11147</a> <span> [<a href="https://arxiv.org/pdf/2401.11147">pdf</a>, <a href="https://arxiv.org/format/2401.11147">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.064048">10.1103/PhysRevApplied.21.064048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonadiabatic geometric quantum gates with on-demand trajectories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yan Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11147v3-abstract-short" style="display: inline;"> High-fidelity quantum gates are an essential prerequisite for large-scale quantum computation. When manipulating practical quantum systems, environmentally and operationally induced errors are inevitable, and thus, in addition to being fast, it is preferable that operations should be intrinsically robust against different errors. Here, we propose a general protocol for constructing geometric quant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11147v3-abstract-full').style.display = 'inline'; document.getElementById('2401.11147v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11147v3-abstract-full" style="display: none;"> High-fidelity quantum gates are an essential prerequisite for large-scale quantum computation. When manipulating practical quantum systems, environmentally and operationally induced errors are inevitable, and thus, in addition to being fast, it is preferable that operations should be intrinsically robust against different errors. Here, we propose a general protocol for constructing geometric quantum gates with on-demand trajectories by modulating the applied pulse shapes that define the system's evolution trajectory. Our scheme adopts reverse engineering of the target Hamiltonian using smooth pulses, which also eliminates the difficulty of calculating geometric phases for an arbitrary trajectory. Furthermore, because a particular geometric gate can be induced by various different trajectories, we can further optimize the gate performance under different scenarios; the results of numerical simulations indicate that this optimization can greatly enhance the quality of the gate. In addition, we present an implementation of our proposal using superconducting circuits, showcasing substantial enhancements in gate performance compared with conventional schemes. Our protocol thus presents a promising approach for high-fidelity and strong-robust geometric quantum gates for large-scale quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11147v3-abstract-full').style.display = 'none'; document.getElementById('2401.11147v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Appl. 21, 064048 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.04897">arXiv:2312.04897</a> <span> [<a href="https://arxiv.org/pdf/2312.04897">pdf</a>, <a href="https://arxiv.org/ps/2312.04897">ps</a>, <a href="https://arxiv.org/format/2312.04897">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.110204">10.1103/PhysRevLett.132.110204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bounding the amount of entanglement from witness operators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+L">Liang-Liang Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Tavakoli%2C+A">Armin Tavakoli</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Sixia Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.04897v2-abstract-short" style="display: inline;"> We present an approach to estimate the operational distinguishability between an entangled state and any separable state directly from measuring an entanglement witness. We show that this estimation also implies bounds on a variety of other well-known entanglement quantifiers. This approach for entanglement estimation is then extended to to both the measurement-device-independent scenario and the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04897v2-abstract-full').style.display = 'inline'; document.getElementById('2312.04897v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.04897v2-abstract-full" style="display: none;"> We present an approach to estimate the operational distinguishability between an entangled state and any separable state directly from measuring an entanglement witness. We show that this estimation also implies bounds on a variety of other well-known entanglement quantifiers. This approach for entanglement estimation is then extended to to both the measurement-device-independent scenario and the fully device-independent scenario, where we obtain non-trivial but sub-optimal bounds. The procedure requires no numerical optimization and is easy to compute. It offers ways for experimenters to not only detect, but also quantify, entanglement from the standard entanglement witness procedure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.04897v2-abstract-full').style.display = 'none'; document.getElementById('2312.04897v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PhysRevLett.132.110204,(2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02588">arXiv:2312.02588</a> <span> [<a href="https://arxiv.org/pdf/2312.02588">pdf</a>, <a href="https://arxiv.org/format/2312.02588">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Lower-bounding entanglement with nonlocality in a general Bell's scenario </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Sun%2C+L">Liang-Liang Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Zhou%2C+X">Xiang Zhou</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Sixia Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02588v1-abstract-short" style="display: inline;"> Understanding the quantitative relation between entanglement and Bell nonlocality is a longstanding open problem of both fundamental and practical interest. Here we provide a general approach to address this issue. Starting with an observation that entanglement measures, while defined dramatically different in mathematics, are basically the distances between the state of interest and its closest s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02588v1-abstract-full').style.display = 'inline'; document.getElementById('2312.02588v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02588v1-abstract-full" style="display: none;"> Understanding the quantitative relation between entanglement and Bell nonlocality is a longstanding open problem of both fundamental and practical interest. Here we provide a general approach to address this issue. Starting with an observation that entanglement measures, while defined dramatically different in mathematics, are basically the distances between the state of interest and its closest separable state, we relate this minimal distance between states with distance-based Bell nonlocality, namely, the minimal distance between correlation of interest with respect to the set of classical correlations. This establishes the quantitative relation between entanglement and Bell nonlocality, leading to the bounds for entanglement in various contexts. Our approach enjoys the merits of: (i) generality, it applies to any Bell's scenario without requiring the information of devices and to many entanglement measures, (ii) faithfulness, it gives a non-trivial entanglement estimation from any nonlocal correlation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02588v1-abstract-full').style.display = 'none'; document.getElementById('2312.02588v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16868">arXiv:2311.16868</a> <span> [<a href="https://arxiv.org/pdf/2311.16868">pdf</a>, <a href="https://arxiv.org/format/2311.16868">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Two-dimensional Asymptotic Generalized Brillouin Zone Theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zeqi Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Pang%2C+B">Bo Pang</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Z">Zhesen Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16868v2-abstract-short" style="display: inline;"> In this work, we propose a theory on the two-dimensional non-Hermitian skin effect by resolving two representative minimal models. Specifically, we show that for any given non-Hermitian Hamiltonian, (i) the corresponding region covered by its open boundary spectrum on the complex energy plane should be independent of the open boundary geometry; and (ii) for any given open boundary eigenvalue… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16868v2-abstract-full').style.display = 'inline'; document.getElementById('2311.16868v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16868v2-abstract-full" style="display: none;"> In this work, we propose a theory on the two-dimensional non-Hermitian skin effect by resolving two representative minimal models. Specifically, we show that for any given non-Hermitian Hamiltonian, (i) the corresponding region covered by its open boundary spectrum on the complex energy plane should be independent of the open boundary geometry; and (ii) for any given open boundary eigenvalue $E_0$ , its corresponding two-dimensional asymptotic generalized Brillouin zone is determined by a series of geometry-independent Bloch/non-Bloch Fermi points and geometry-dependent non-Bloch equal frequency contours that connect them. A corollary of our theory is that most symmetry-protected exceptional semimetals should be robust to variations in OBC geometry. Our theory paves the way to the discussion on the higher dimensional non-Bloch band theory and the corresponding non-Hermitian bulk-boundary correspondence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16868v2-abstract-full').style.display = 'none'; document.getElementById('2311.16868v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, including appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13945">arXiv:2311.13945</a> <span> [<a href="https://arxiv.org/pdf/2311.13945">pdf</a>, <a href="https://arxiv.org/format/2311.13945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum network-entanglement measures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=de+Vicente%2C+J+I">Julio I. de Vicente</a>, <a href="/search/quant-ph?searchtype=author&query=Sun%2C+L">Liang-Liang Sun</a>, <a href="/search/quant-ph?searchtype=author&query=Yu%2C+S">Sixia Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13945v2-abstract-short" style="display: inline;"> Quantum networks are of high interest nowadays and a quantum internet has been long envisioned. Network-entanglement adapts the notion of entanglement to the network scenario and network-entangled states are considered to be a resource to overcome the limitations of a given network structure. In this work, we introduce measures of quantum network-entanglement that are well-defined within the gener… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13945v2-abstract-full').style.display = 'inline'; document.getElementById('2311.13945v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13945v2-abstract-full" style="display: none;"> Quantum networks are of high interest nowadays and a quantum internet has been long envisioned. Network-entanglement adapts the notion of entanglement to the network scenario and network-entangled states are considered to be a resource to overcome the limitations of a given network structure. In this work, we introduce measures of quantum network-entanglement that are well-defined within the general framework of quantum resource theories, which at the same time have a clear operational interpretation characterizing the extra resources necessary to prepare a targeted quantum state within a given network. In particular, we define the network communication cost and the network round complexity, which turn out to be intimately related to graph-theoretic parameters. We also provide methods to estimate these measures by introducing novel witnesses of network-entanglement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13945v2-abstract-full').style.display = 'none'; document.getElementById('2311.13945v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+20 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07869">arXiv:2311.07869</a> <span> [<a href="https://arxiv.org/pdf/2311.07869">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Hybrid GRU-CNN Bilinear Parameters Initialization for Quantum Approximate Optimization Algorithm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zuyu Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Cai%2C+P">Pengnian Cai</a>, <a href="/search/quant-ph?searchtype=author&query=Sheng%2C+K">Kang Sheng</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+T">Tao Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+Y">Yuanming Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhu%2C+Y">Yunlai Zhu</a>, <a href="/search/quant-ph?searchtype=author&query=Wu%2C+Z">Zuheng Wu</a>, <a href="/search/quant-ph?searchtype=author&query=Dai%2C+Y">Yuehua Dai</a>, <a href="/search/quant-ph?searchtype=author&query=Yang%2C+F">Fei Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07869v1-abstract-short" style="display: inline;"> The Quantum Approximate Optimization Algorithm (QAOA), a pivotal paradigm in the realm of variational quantum algorithms (VQAs), offers promising computational advantages for tackling combinatorial optimization problems. Well-defined initial circuit parameters, responsible for preparing a parameterized quantum state encoding the solution, play a key role in optimizing QAOA. However, classical opti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07869v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07869v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07869v1-abstract-full" style="display: none;"> The Quantum Approximate Optimization Algorithm (QAOA), a pivotal paradigm in the realm of variational quantum algorithms (VQAs), offers promising computational advantages for tackling combinatorial optimization problems. Well-defined initial circuit parameters, responsible for preparing a parameterized quantum state encoding the solution, play a key role in optimizing QAOA. However, classical optimization techniques encounter challenges in discerning optimal parameters that align with the optimal solution. In this work, we propose a hybrid optimization approach that integrates Gated Recurrent Units (GRU), Convolutional Neural Networks (CNN), and a bilinear strategy as an innovative alternative to conventional optimizers for predicting optimal parameters of QAOA circuits. GRU serves to stochastically initialize favorable parameters for depth-1 circuits, while CNN predicts initial parameters for depth-2 circuits based on the optimized parameters of depth-1 circuits. To assess the efficacy of our approach, we conducted a comparative analysis with traditional initialization methods using QAOA on Erd艖s-R茅nyi graph instances, revealing superior optimal approximation ratios. We employ the bilinear strategy to initialize QAOA circuit parameters at greater depths, with reference parameters obtained from GRU-CNN optimization. This approach allows us to forecast parameters for a depth-12 QAOA circuit, yielding a remarkable approximation ratio of 0.998 across 10 qubits, which surpasses that of the random initialization strategy and the PPN2 method at a depth of 10. The proposed hybrid GRU-CNN bilinear optimization method significantly improves the effectiveness and accuracy of parameters initialization, offering a promising iterative framework for QAOA that elevates its performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07869v1-abstract-full').style.display = 'none'; document.getElementById('2311.07869v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03166">arXiv:2311.03166</a> <span> [<a href="https://arxiv.org/pdf/2311.03166">pdf</a>, <a href="https://arxiv.org/format/2311.03166">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad7529">10.1088/1367-2630/ad7529 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fate of localization features in a one-dimensional non-Hermitian flat-band lattice with quasiperiodic modulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+H">Hui Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z">Zhanpeng Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Xia%2C+X">Xu Xia</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhihao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03166v3-abstract-short" style="display: inline;"> We investigate the influence of quasiperiodic modulations on one-dimensional non-Hermitian diamond lattices with an artificial magnetic flux $胃$ that possess flat bands. Our study shows that the symmetry of these modulations and the magnetic flux $胃$ play a pivotal role in shaping the localization properties of the system. When $胃=0$, the non-Hermitian lattice exhibits a single flat band in the cr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03166v3-abstract-full').style.display = 'inline'; document.getElementById('2311.03166v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03166v3-abstract-full" style="display: none;"> We investigate the influence of quasiperiodic modulations on one-dimensional non-Hermitian diamond lattices with an artificial magnetic flux $胃$ that possess flat bands. Our study shows that the symmetry of these modulations and the magnetic flux $胃$ play a pivotal role in shaping the localization properties of the system. When $胃=0$, the non-Hermitian lattice exhibits a single flat band in the crystalline case, and symmetric as well as antisymmetric modulations can induce accurate mobility edges. In contrast, when $胃=蟺$, the clean diamond lattice manifests three dispersionless bands referred to as an "all-band-flat" (ABF) structure, irrespective of the non-Hermitian parameter. The ABF structure restricts the transition from delocalized to localized states, as all states remain localized for any finite symmetric modulation. Our numerical calculations further unveil that the ABF system subjected to antisymmetric modulations exhibits multifractal-to-localized edges. Multifractal states are predominantly concentrated in the internal region of the spectrum. Additionally, we explore the case where $胃$ lies within the range of $(0, 蟺)$, revealing a diverse array of complex localization features. Finally, we propose a classical electrical circuit scheme to realize the non-Hermitian flat-band chain with quasiperiodic modulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03166v3-abstract-full').style.display = 'none'; document.getElementById('2311.03166v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 26 (2024) 093007 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16663">arXiv:2310.16663</a> <span> [<a href="https://arxiv.org/pdf/2310.16663">pdf</a>, <a href="https://arxiv.org/ps/2310.16663">ps</a>, <a href="https://arxiv.org/format/2310.16663">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.144207">10.1103/PhysRevB.108.144207 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergence of multifractality through cascade-like transitions in a mosaic interpolating Aubry-Andr茅-Fibonacci chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Dai%2C+Q">Qi Dai</a>, <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z">Zhanpeng Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhihao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16663v1-abstract-short" style="display: inline;"> In this paper, we explore the localization features of wave functions in a family of mosaic quasiperiodic chains obtained by continuously interpolating between two limits: the mosaic Aubry-Andr茅 (AA) model, known for its exact mobility edges with extended states in the band-center region, and localized ones in the band-edge regions for a large enough modulation amplitude, and the mosaic Fibonacci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16663v1-abstract-full').style.display = 'inline'; document.getElementById('2310.16663v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16663v1-abstract-full" style="display: none;"> In this paper, we explore the localization features of wave functions in a family of mosaic quasiperiodic chains obtained by continuously interpolating between two limits: the mosaic Aubry-Andr茅 (AA) model, known for its exact mobility edges with extended states in the band-center region, and localized ones in the band-edge regions for a large enough modulation amplitude, and the mosaic Fibonacci chain, which exhibits its multifractal nature for all the states except for the extended one with $E=0$ for an arbitrary finite modulation amplitude. We discover that the mosaic AA limit for the states in the band-edge regions evolves into multifractal ones through a cascade of delocalization transitions. This cascade shows lobes of lower fractal dimension values separated by maxima of fractal dimension. In contrast, the states in the band-center region (except for the $E=0$ state) display an anomalous cascading process, where it emerges lobes of higher fractal dimension values are separated by the regions with lower fractal dimensions. Our findings offer insight into understanding the multifractality of quasiperiodic chains. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16663v1-abstract-full').style.display = 'none'; document.getElementById('2310.16663v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 144207 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.16600">arXiv:2309.16600</a> <span> [<a href="https://arxiv.org/pdf/2309.16600">pdf</a>, <a href="https://arxiv.org/format/2309.16600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01713-7">10.1038/s42005-024-01713-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining Ultralight Dark Matter through an Accelerated Resonant Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zitong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xiaolin Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Wei%2C+K">Kai Wei</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yuxuan He</a>, <a href="/search/quant-ph?searchtype=author&query=Heng%2C+X">Xing Heng</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+X">Xiaofei Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Ai%2C+T">Tengyu Ai</a>, <a href="/search/quant-ph?searchtype=author&query=Liao%2C+J">Jian Liao</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jia Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xiao-Ping Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Budker%2C+D">Dmitry Budker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.16600v2-abstract-short" style="display: inline;"> Experiments aimed at detecting ultralight dark matter typically rely on resonant effects, which are sensitive to the dark matter mass that matches the resonance frequency. In this study, we investigate the nucleon couplings of ultralight axion dark matter using a magnetometer operating in a nuclear magnetic resonance (NMR) mode. Our approach involves the use of a $^{21}$Ne spin-based sensor, which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16600v2-abstract-full').style.display = 'inline'; document.getElementById('2309.16600v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.16600v2-abstract-full" style="display: none;"> Experiments aimed at detecting ultralight dark matter typically rely on resonant effects, which are sensitive to the dark matter mass that matches the resonance frequency. In this study, we investigate the nucleon couplings of ultralight axion dark matter using a magnetometer operating in a nuclear magnetic resonance (NMR) mode. Our approach involves the use of a $^{21}$Ne spin-based sensor, which features the lowest nuclear magnetic moment among noble-gas spins. This configuration allows us to achieve an ultrahigh sensitivity of 0.73 fT/Hz$^{1/2}$ at around 5 Hz, corresponding to energy resolution of approximately 1.5$\times 10^{-23}\,\rm{eV/Hz^{1/2}}$. Our analysis reveals that under certain conditions it is beneficial to scan the frequency with steps significantly larger than the resonance width. The analytical results are in agreement with experimental data and the scan strategy is potentially applicable to other resonant searches. Further, our study establishes stringent constraints on axion-like particles (ALP) in the 4.5--15.5 Hz Compton-frequency range coupling to neutrons and protons, improving on prior work by several-fold. Within a band around 4.6--6.6 Hz and around 7.5 Hz, our laboratory findings surpass astrophysical limits derived from neutron-star cooling. Hence, we demonstrate an accelerated resonance search for ultralight dark matter, achieving an approximately 30-fold increase in scanning step while maintaining competitive sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16600v2-abstract-full').style.display = 'none'; document.getElementById('2309.16600v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures, accepted by Communications Physics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15651">arXiv:2309.15651</a> <span> [<a href="https://arxiv.org/pdf/2309.15651">pdf</a>, <a href="https://arxiv.org/format/2309.15651">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Group twirling and noise tailoring for multi-qubit controlled phase gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+G">Guoding Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xie%2C+Z">Ziyi Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zitai Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xiongfeng Ma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15651v1-abstract-short" style="display: inline;"> Group twirling is crucial in quantum information processing, particularly in randomized benchmarking and random compiling. While protocols based on Pauli twirling have been effectively crafted to transform arbitrary noise channels into Pauli channels for Clifford gates -- thereby facilitating efficient benchmarking and mitigating worst-case errors -- practical twirling groups for multi-qubit non-C… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15651v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15651v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15651v1-abstract-full" style="display: none;"> Group twirling is crucial in quantum information processing, particularly in randomized benchmarking and random compiling. While protocols based on Pauli twirling have been effectively crafted to transform arbitrary noise channels into Pauli channels for Clifford gates -- thereby facilitating efficient benchmarking and mitigating worst-case errors -- practical twirling groups for multi-qubit non-Clifford gates are lacking. In this work, we study the issue of finding twirling groups for generic quantum gates within a widely used circuit structure in randomized benchmarking or random compiling. For multi-qubit controlled phase gates, which are essential in both the quantum Fourier transform and quantum search algorithms, we identify optimal twirling groups within the realm of classically replaceable unitary operations. In contrast to the simplicity of the Pauli twirling group for Clifford gates, the optimal groups for such gates are much larger, highlighting the overhead of tailoring noise channels in the presence of global non-Clifford gates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15651v1-abstract-full').style.display = 'none'; document.getElementById('2309.15651v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages,13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05735">arXiv:2309.05735</a> <span> [<a href="https://arxiv.org/pdf/2309.05735">pdf</a>, <a href="https://arxiv.org/format/2309.05735">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.140201">10.1103/PhysRevLett.132.140201 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Certifying sets of quantum observables with any full-rank state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Saha%2C+D">Debashis Saha</a>, <a href="/search/quant-ph?searchtype=author&query=Bharti%2C+K">Kishor Bharti</a>, <a href="/search/quant-ph?searchtype=author&query=Cabello%2C+A">Ad谩n Cabello</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05735v2-abstract-short" style="display: inline;"> We show that some sets of quantum observables are unique up to an isometry and have a contextuality witness that attains the same value for any initial state. We prove that these two properties make it possible to certify any of these sets by looking at the statistics of experiments with sequential measurements and using any initial state of full rank, including thermal and maximally mixed states.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05735v2-abstract-full').style.display = 'inline'; document.getElementById('2309.05735v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05735v2-abstract-full" style="display: none;"> We show that some sets of quantum observables are unique up to an isometry and have a contextuality witness that attains the same value for any initial state. We prove that these two properties make it possible to certify any of these sets by looking at the statistics of experiments with sequential measurements and using any initial state of full rank, including thermal and maximally mixed states. We prove that this ``certification with any full-rank state'' (CFR) is possible for any quantum system of finite dimension $d \ge 3$ and is robust and experimentally useful in dimensions 3 and 4. In addition, we prove that complete Kochen-Specker sets can be Bell self-tested if and only if they enable CFR. This establishes a fundamental connection between these two methods of certification, shows that both methods can be combined in the same experiment, and opens new possibilities for certifying quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05735v2-abstract-full').style.display = 'none'; document.getElementById('2309.05735v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+18 pages, 0+2 figures, 1+6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 140201 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01323">arXiv:2309.01323</a> <span> [<a href="https://arxiv.org/pdf/2309.01323">pdf</a>, <a href="https://arxiv.org/format/2309.01323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/andp.202300350">10.1002/andp.202300350 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State-independent geometric quantum gates via nonadiabatic and noncyclic evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+L">Li-Na Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yan Liang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01323v3-abstract-short" style="display: inline;"> Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not being fully explored in previous investigations. Here, we propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases fro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01323v3-abstract-full').style.display = 'inline'; document.getElementById('2309.01323v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01323v3-abstract-full" style="display: none;"> Geometric phases are robust to local noises and the nonadiabatic ones can reduce the evolution time, thus nonadiabatic geometric gates have strong robustness and can approach high fidelity. However, the advantage of geometric phase has not being fully explored in previous investigations. Here, we propose a scheme for universal quantum gates with pure nonadiabatic and noncyclic geometric phases from smooth evolution paths. In our scheme, only geometric phase can be accumulated in a fast way, and thus it not only fully utilizes the local noise resistant property of geometric phase but also reduces the difficulty in experimental realization. Numerical results show that the implemented geometric gates have stronger robustness than dynamical gates and the geometric scheme with cyclic path. Furthermore, we propose to construct universal quantum gate on superconducting circuits, with the fidelities of single-qubit gate and nontrivial two-qubit gate can achieve $99.97\%$ and $99.87\%$, respectively. Therefore, these high-fidelity quantum gates are promising for large-scale fault-tolerant quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01323v3-abstract-full').style.display = 'none'; document.getElementById('2309.01323v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Ann. Phys. (Berlin) 535, 2300350 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00753">arXiv:2308.00753</a> <span> [<a href="https://arxiv.org/pdf/2308.00753">pdf</a>, <a href="https://arxiv.org/format/2308.00753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.5.020318">10.1103/PRXQuantum.5.020318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bounding the joint numerical range of Pauli strings by graph parameters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Schwonnek%2C+R">Ren茅 Schwonnek</a>, <a href="/search/quant-ph?searchtype=author&query=Winter%2C+A">Andreas Winter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00753v2-abstract-short" style="display: inline;"> The interplay between the quantum state space and a specific set of measurements can be effectively captured by examining the set of jointly attainable expectation values. This set is commonly referred to as the (convex) joint numerical range. In this work, we explore geometric properties of this construct for measurements represented by tensor products of Pauli observables, also known as Pauli st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00753v2-abstract-full').style.display = 'inline'; document.getElementById('2308.00753v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00753v2-abstract-full" style="display: none;"> The interplay between the quantum state space and a specific set of measurements can be effectively captured by examining the set of jointly attainable expectation values. This set is commonly referred to as the (convex) joint numerical range. In this work, we explore geometric properties of this construct for measurements represented by tensor products of Pauli observables, also known as Pauli strings. The structure of pairwise commutation and anticommutation relations among a set of Pauli strings determines a graph $G$, sometimes also called the frustration graph. We investigate the connection between the parameters of this graph and the structure of minimal ellipsoids encompassing the joint numerical range. Such an outer approximation can be very practical since ellipsoids can be handled analytically even in high dimensions. We find counterexamples to a conjecture from [C. de Gois, K. Hansenne and O. G眉hne, arXiv:2207.02197], and answer an open question in [M. B. Hastings and R. O'Donnell, Proc. STOC 2022, pp. 776-789], which implies a new graph parameter that we call $尾(G)$. Besides, we develop this approach in different directions, such as comparison with graph-theoretic approaches in other fields, applications in quantum information theory, numerical methods, properties of the new graph parameter, etc. Our approach suggests many open questions that we discuss briefly at the end. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00753v2-abstract-full').style.display = 'none'; document.getElementById('2308.00753v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14+3 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 5, 020318, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07758">arXiv:2307.07758</a> <span> [<a href="https://arxiv.org/pdf/2307.07758">pdf</a>, <a href="https://arxiv.org/format/2307.07758">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.210801">10.1103/PhysRevLett.132.210801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum-enhanced metrology with network states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Yang%2C+Y">Yuxiang Yang</a>, <a href="/search/quant-ph?searchtype=author&query=Yadin%2C+B">Benjamin Yadin</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhen-Peng Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07758v2-abstract-short" style="display: inline;"> Armed with quantum correlations, quantum sensors in a network have shown the potential to outclass their classical counterparts in distributed sensing tasks such as clock synchronization and reference frame alignment. On the other hand, this analysis was done for simple and idealized networks, whereas the correlation shared within a practical quantum network, captured by the notion of network stat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07758v2-abstract-full').style.display = 'inline'; document.getElementById('2307.07758v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07758v2-abstract-full" style="display: none;"> Armed with quantum correlations, quantum sensors in a network have shown the potential to outclass their classical counterparts in distributed sensing tasks such as clock synchronization and reference frame alignment. On the other hand, this analysis was done for simple and idealized networks, whereas the correlation shared within a practical quantum network, captured by the notion of network states, is much more complex. Here, we prove a general bound that limits the performance of using quantum network states to estimate a global parameter, establishing the necessity of genuine multipartite entanglement for achieving a quantum advantage. The bound can also serve as an entanglement witness in networks and can be generalized to states generated by shallow circuits. Moreover, while our bound prohibits local network states from achieving the Heisenberg limit, we design a probabilistic protocol that, once successful, attains this ultimate limit of quantum metrology and preserves the privacy of involved parties. Our work establishes both the limitation and the possibility of quantum metrology within quantum networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07758v2-abstract-full').style.display = 'none'; document.getElementById('2307.07758v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures + appendix; close to the published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review Letters 132, 210801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06116">arXiv:2307.06116</a> <span> [<a href="https://arxiv.org/pdf/2307.06116">pdf</a>, <a href="https://arxiv.org/format/2307.06116">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c01551">10.1021/acs.nanolett.3c01551 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable generation and detection of on-demand W states in nanophotonic circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Santos%2C+L">Leonardo Santos</a>, <a href="/search/quant-ph?searchtype=author&query=Krishna%2C+G">Govind Krishna</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Ze-Sheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Iovan%2C+A">Adrian Iovan</a>, <a href="/search/quant-ph?searchtype=author&query=Steinhauer%2C+S">Stephan Steinhauer</a>, <a href="/search/quant-ph?searchtype=author&query=G%C3%BChne%2C+O">Otfried G眉hne</a>, <a href="/search/quant-ph?searchtype=author&query=Poole%2C+P+J">Philip J. Poole</a>, <a href="/search/quant-ph?searchtype=author&query=Dalacu%2C+D">Dan Dalacu</a>, <a href="/search/quant-ph?searchtype=author&query=Zwiller%2C+V">Val Zwiller</a>, <a href="/search/quant-ph?searchtype=author&query=Elshaari%2C+A+W">Ali W. Elshaari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06116v1-abstract-short" style="display: inline;"> Quantum physics phenomena, entanglement and coherence, are crucial for quantum information protocols, but understanding these in systems with more than two parts is challenging due to increasing complexity. The W state, a multipartite entangled state, is notable for its robustness and benefits in quantum communication. Here, we generate an 8-mode on-demand single photon W states, using nanowire qu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06116v1-abstract-full').style.display = 'inline'; document.getElementById('2307.06116v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06116v1-abstract-full" style="display: none;"> Quantum physics phenomena, entanglement and coherence, are crucial for quantum information protocols, but understanding these in systems with more than two parts is challenging due to increasing complexity. The W state, a multipartite entangled state, is notable for its robustness and benefits in quantum communication. Here, we generate an 8-mode on-demand single photon W states, using nanowire quantum dots and a silicon nitride photonic chip. We demonstrate a reliable, scalable technique for reconstructing W-state in photonic circuits using Fourier and real-space imaging, supported by the Gerchberg-Saxton phase retrieval algorithm. Additionally, we utilize an entanglement witness to distinguish between mixed and entangled states, thereby affirming the entangled nature of our generated state. The study provides a new imaging approach of assessing multipartite entanglement in W-states, paving the way for further progress in image processing and Fourier-space analysis techniques for complex quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06116v1-abstract-full').style.display = 'none'; document.getElementById('2307.06116v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05566">arXiv:2307.05566</a> <span> [<a href="https://arxiv.org/pdf/2307.05566">pdf</a>, <a href="https://arxiv.org/format/2307.05566">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.21.024016">10.1103/PhysRevApplied.21.024016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable protocol to mitigate $ZZ$ crosstalk in universal quantum gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yan Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+M">Ming-Jie Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+S">Sai Li</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+Z+D">Z. D. Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05566v2-abstract-short" style="display: inline;"> High-fidelity universal quantum gates are widely acknowledged as essential for scalable quantum computation. However, in solid-state quantum systems, which hold promise as physical implementation platforms for quantum computation, the inevitable $ZZ$ crosstalk resulting from interqubit interactions significantly impairs quantum operation performance. Here we propose a scalable protocol to achieve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05566v2-abstract-full').style.display = 'inline'; document.getElementById('2307.05566v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05566v2-abstract-full" style="display: none;"> High-fidelity universal quantum gates are widely acknowledged as essential for scalable quantum computation. However, in solid-state quantum systems, which hold promise as physical implementation platforms for quantum computation, the inevitable $ZZ$ crosstalk resulting from interqubit interactions significantly impairs quantum operation performance. Here we propose a scalable protocol to achieve $ZZ$-crosstalk mitigation in universal quantum gates. This method converts the noisy Hamiltonian with $ZZ$ crosstalk into a framework that efficiently suppresses all $ZZ$-crosstalk effects, leading to ideal target quantum operations. Specifically, we first analytically derive the $ZZ$-crosstalk mitigation conditions and then apply them to enhance the performance of target universal quantum gates. Moreover, numerical simulations validate the effectiveness of $ZZ$-crosstalk mitigation when multiple qubit gates operate concurrently. As a result, our protocol presents a promising approach for implementing practical parallel quantum gates in large-scale quantum computation scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05566v2-abstract-full').style.display = 'none'; document.getElementById('2307.05566v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Appl. 21, 024016 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.05207">arXiv:2307.05207</a> <span> [<a href="https://arxiv.org/pdf/2307.05207">pdf</a>, <a href="https://arxiv.org/format/2307.05207">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of reentrant metal-insulator transition in a random-dimer disordered SSH lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Ze-Sheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Iovan%2C+A">Adrian Iovan</a>, <a href="/search/quant-ph?searchtype=author&query=Khaymovich%2C+I+M">Ivan M. Khaymovich</a>, <a href="/search/quant-ph?searchtype=author&query=Zwiller%2C+V">Val Zwiller</a>, <a href="/search/quant-ph?searchtype=author&query=Elshaari%2C+A+W">Ali W. Elshaari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.05207v1-abstract-short" style="display: inline;"> The interrelationship between localization, quantum transport, and disorder has remained a fascinating focus in scientific research. Traditionally, it has been widely accepted in the physics community that in one-dimensional systems, as disorder increases, localization intensifies, triggering a metal-insulator transition. However, a recent theoretical investigation [Phys. Rev. Lett. 126, 106803] h… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05207v1-abstract-full').style.display = 'inline'; document.getElementById('2307.05207v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.05207v1-abstract-full" style="display: none;"> The interrelationship between localization, quantum transport, and disorder has remained a fascinating focus in scientific research. Traditionally, it has been widely accepted in the physics community that in one-dimensional systems, as disorder increases, localization intensifies, triggering a metal-insulator transition. However, a recent theoretical investigation [Phys. Rev. Lett. 126, 106803] has revealed that the interplay between dimerization and disorder leads to a reentrant localization transition, constituting a remarkable theoretical advancement in the field. Here, we present the experimental observation of reentrant localization using an experimentally friendly model, a photonic SSH lattice with random-dimer disorder, achieved by incrementally adjusting synthetic potentials. In the presence of correlated on-site potentials, certain eigenstates exhibit extended behavior following the localization transition as the disorder continues to increase. We directly probe the wave function in disordered lattices by exciting specific lattice sites and recording the light distribution. This reentrant phenomenon is further verified by observing an anomalous peak in the normalized participation ratio. Our study enriches the understanding of transport in disordered mediums and accentuates the substantial potential of integrated photonics for the simulation of intricate condensed matter physics phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.05207v1-abstract-full').style.display = 'none'; document.getElementById('2307.05207v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16667">arXiv:2306.16667</a> <span> [<a href="https://arxiv.org/pdf/2306.16667">pdf</a>, <a href="https://arxiv.org/format/2306.16667">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11432-023-3824-0">10.1007/s11432-023-3824-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonadiabatic Holonomic Quantum Computation and Its Optimal Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yan Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+P">Pu Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+T">Tao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16667v1-abstract-short" style="display: inline;"> Geometric phase has the intrinsic property of being resistant to some types of local noises as it only depends on global properties of the evolution path. Meanwhile, the non-Abelian geometric phase is in the matrix form, and thus can naturally be used to implement high performance quantum gates, i.e., the so-called holonomic quantum computation. This article reviews recent advances in nonadiabatic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16667v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16667v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16667v1-abstract-full" style="display: none;"> Geometric phase has the intrinsic property of being resistant to some types of local noises as it only depends on global properties of the evolution path. Meanwhile, the non-Abelian geometric phase is in the matrix form, and thus can naturally be used to implement high performance quantum gates, i.e., the so-called holonomic quantum computation. This article reviews recent advances in nonadiabatic holonomic quantum computation, and focuses on various optimal control approaches that can improve the gate performance, in terms of the gate fidelity and robustness. Besides, we also pay special attention to its possible physical realizations and some concrete examples of experimental realizations. Finally, with all these efforts, within state-of-the-art technology, the performance of the implemented holonomic quantum gates can outperform the conventional dynamical ones, under certain conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16667v1-abstract-full').style.display = 'none'; document.getElementById('2306.16667v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. China Inf. Sci. 66, 180502 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10831">arXiv:2306.10831</a> <span> [<a href="https://arxiv.org/pdf/2306.10831">pdf</a>, <a href="https://arxiv.org/format/2306.10831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L140202">10.1103/PhysRevB.108.L140202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of extended and localized states in finite-sized mosaic Wannier-Stark lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Khaymovich%2C+I+M">Ivan M. Khaymovich</a>, <a href="/search/quant-ph?searchtype=author&query=Iovan%2C+A">Adrian Iovan</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xiao-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Krishna%2C+G">Govind Krishna</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Ze-Sheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Tortumlu%2C+E">Emrah Tortumlu</a>, <a href="/search/quant-ph?searchtype=author&query=Balatsky%2C+A+V">Alexander V. Balatsky</a>, <a href="/search/quant-ph?searchtype=author&query=Zwiller%2C+V">Val Zwiller</a>, <a href="/search/quant-ph?searchtype=author&query=Elshaari%2C+A+W">Ali W. Elshaari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10831v2-abstract-short" style="display: inline;"> Quantum transport and localization are fundamental concepts in condensed matter physics. It is commonly believed that in one-dimensional systems, the existence of mobility edges is highly dependent on disorder. Recently, there has been a debate over the existence of an exact mobility edge in a modulated mosaic model without quenched disorder, the so-called mosaic Wannier-Stark lattice. Here, we ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10831v2-abstract-full').style.display = 'inline'; document.getElementById('2306.10831v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10831v2-abstract-full" style="display: none;"> Quantum transport and localization are fundamental concepts in condensed matter physics. It is commonly believed that in one-dimensional systems, the existence of mobility edges is highly dependent on disorder. Recently, there has been a debate over the existence of an exact mobility edge in a modulated mosaic model without quenched disorder, the so-called mosaic Wannier-Stark lattice. Here, we experimentally implement such disorder-free mosaic photonic lattices using a silicon photonics platform. By creating a synthetic electric field, we could observe energy-dependent coexistence of both extended and localized states in a finite number of waveguides. The Wannier-Stark ladder emerges when the resulting potential is strong enough, and can be directly probed by exciting different spatial modes of the lattice. Our studies provide the experimental proof of coexisting sets of strongly localized and conducting (though weakly localized) states in finite-sized mosaic Wannier-Stark lattices, which hold the potential to encode high-dimensional quantum resources with compact and robust structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10831v2-abstract-full').style.display = 'none'; document.getElementById('2306.10831v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L140202 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.10829">arXiv:2306.10829</a> <span> [<a href="https://arxiv.org/pdf/2306.10829">pdf</a>, <a href="https://arxiv.org/format/2306.10829">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.scib.2024.09.030">10.1016/j.scib.2024.09.030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing multi-mobility edges in quasiperiodic mosaic lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Gao%2C+J">Jun Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Khaymovich%2C+I+M">Ivan M. Khaymovich</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xiao-Wei Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Ze-Sheng Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Iovan%2C+A">Adrian Iovan</a>, <a href="/search/quant-ph?searchtype=author&query=Krishna%2C+G">Govind Krishna</a>, <a href="/search/quant-ph?searchtype=author&query=Jieensi%2C+J">Jiayidaer Jieensi</a>, <a href="/search/quant-ph?searchtype=author&query=Cataldo%2C+A">Andrea Cataldo</a>, <a href="/search/quant-ph?searchtype=author&query=Balatsky%2C+A+V">Alexander V. Balatsky</a>, <a href="/search/quant-ph?searchtype=author&query=Zwiller%2C+V">Val Zwiller</a>, <a href="/search/quant-ph?searchtype=author&query=Elshaari%2C+A+W">Ali W. Elshaari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.10829v2-abstract-short" style="display: inline;"> The mobility edge (ME) is a crucial concept in understanding localization physics, marking the critical transition between extended and localized states in the energy spectrum. Anderson localization scaling theory predicts the absence of ME in lower dimensional systems. Hence, the search for exact MEs, particularly for single particles in lower dimensions, has recently garnered significant interes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10829v2-abstract-full').style.display = 'inline'; document.getElementById('2306.10829v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.10829v2-abstract-full" style="display: none;"> The mobility edge (ME) is a crucial concept in understanding localization physics, marking the critical transition between extended and localized states in the energy spectrum. Anderson localization scaling theory predicts the absence of ME in lower dimensional systems. Hence, the search for exact MEs, particularly for single particles in lower dimensions, has recently garnered significant interest in both theoretical and experimental studies, resulting in notable progress. However, several open questions remain, including the possibility of a single system exhibiting multiple MEs and the continual existence of extended states, even within the strong disorder domain. Here, we provide experimental evidence to address these questions by utilizing a quasiperiodic mosaic lattice with meticulously designed nanophotonic circuits. Our observations demonstrate the coexistence of both extended and localized states in lattices with broken duality symmetry and varying modulation periods. By single site injection and scanning the disorder level, we could approximately probe the ME of the modulated lattice. These results corroborate recent theoretical predictions, introduce a new avenue for investigating ME physics, and offer inspiration for further exploration of ME physics in the quantum regime using hybrid integrated photonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.10829v2-abstract-full').style.display = 'none'; document.getElementById('2306.10829v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08039">arXiv:2306.08039</a> <span> [<a href="https://arxiv.org/pdf/2306.08039">pdf</a>, <a href="https://arxiv.org/format/2306.08039">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Dark matter search with a strongly-coupled hybrid spin system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Wei%2C+K">Kai Wei</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zitong Xu</a>, <a href="/search/quant-ph?searchtype=author&query=He%2C+Y">Yuxuan He</a>, <a href="/search/quant-ph?searchtype=author&query=Ma%2C+X">Xiaolin Ma</a>, <a href="/search/quant-ph?searchtype=author&query=Heng%2C+X">Xing Heng</a>, <a href="/search/quant-ph?searchtype=author&query=Huang%2C+X">Xiaofei Huang</a>, <a href="/search/quant-ph?searchtype=author&query=Quan%2C+W">Wei Quan</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+W">Wei Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jia Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Wang%2C+X">Xiaoping Wang</a>, <a href="/search/quant-ph?searchtype=author&query=Fang%2C+J">Jiancheng Fang</a>, <a href="/search/quant-ph?searchtype=author&query=Budker%2C+D">Dmitry Budker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08039v1-abstract-short" style="display: inline;"> Observational evidence suggests the existence of dark matter (DM), which comprises approximately $84.4\%$ of matter in the universe. Recent advances in tabletop quantum sensor technology have enabled searches for nongravitational interactions of DM. Our experiment named ChangE utilizes Coupled Hot Atom eNsembles to search for liGht dark mattEr and new physics. We identify a strongly-coupled hybrid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08039v1-abstract-full').style.display = 'inline'; document.getElementById('2306.08039v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08039v1-abstract-full" style="display: none;"> Observational evidence suggests the existence of dark matter (DM), which comprises approximately $84.4\%$ of matter in the universe. Recent advances in tabletop quantum sensor technology have enabled searches for nongravitational interactions of DM. Our experiment named ChangE utilizes Coupled Hot Atom eNsembles to search for liGht dark mattEr and new physics. We identify a strongly-coupled hybrid spin-resonance (HSR) regime that enhances the bandwidth of $^{21}$Ne nuclear spin by three orders of magnitude while maintaining high sensitivity. In combination with a self-compensating mode (SC) for low frequencies, we present a comprehensive broadband search for axion-like dark matter with Compton frequencies in the range of $[0.01, 1000]$ Hz. We set new constraints on the DM interactions with neutrons and protons, accounting for the stochastic effect. For the axion-neutron coupling, our results reach a low value of $|g_{ann}|\le 3\times 10^{-10}$ in the frequency range $[0.02 , 4]$ Hz surpassing astrophysical limits and provide the strongest laboratory constraints in the $[10, 100]$ Hz range. For the axion-proton coupling, we offer the best terrestrial constraints for the frequency below 100 Hz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08039v1-abstract-full').style.display = 'none'; document.getElementById('2306.08039v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06818">arXiv:2306.06818</a> <span> [<a href="https://arxiv.org/pdf/2306.06818">pdf</a>, <a href="https://arxiv.org/ps/2306.06818">ps</a>, <a href="https://arxiv.org/format/2306.06818">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.15302/frontphys.2025.024204">10.15302/frontphys.2025.024204 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reentrant Localization Transitions in a Topological Anderson Insulator: A Study of a Generalized Su-Schrieffer-Heeger Quasicrystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Lu%2C+Z">Zhanpeng Lu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+Y">Yunbo Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhihao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06818v2-abstract-short" style="display: inline;"> We study the topology and localization properties of a generalized Su-Schrieffer-Heeger (SSH) model with a quasi-periodic modulated hopping. It is found that the interplay of off-diagonal quasi-periodic modulations can induce topological Anderson insulator (TAI) phases and reentrant topological Anderson insulator (RTAI), and the topological phase boundaries can be uncovered by the divergence of th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06818v2-abstract-full').style.display = 'inline'; document.getElementById('2306.06818v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06818v2-abstract-full" style="display: none;"> We study the topology and localization properties of a generalized Su-Schrieffer-Heeger (SSH) model with a quasi-periodic modulated hopping. It is found that the interplay of off-diagonal quasi-periodic modulations can induce topological Anderson insulator (TAI) phases and reentrant topological Anderson insulator (RTAI), and the topological phase boundaries can be uncovered by the divergence of the localization length of the zero-energy mode. In contrast to the conventional case that the TAI regime emerges in a finite range with the increase of disorder, the TAI and RTAI are robust against arbitrary modulation amplitude for our system. Furthermore, we find that the TAI and RTAI can induce the emergence of reentrant localization transitions. Such an interesting connection between the reentrant localization transition and the TAI/RTAI can be detected from the wave-packet dynamics in cold atom systems by adopting the technique of momentum-lattice engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06818v2-abstract-full').style.display = 'none'; document.getElementById('2306.06818v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 20, 024204 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03732">arXiv:2306.03732</a> <span> [<a href="https://arxiv.org/pdf/2306.03732">pdf</a>, <a href="https://arxiv.org/format/2306.03732">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Universal Robust Geometric Quantum Control via Geometric Trajectory Correction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chen%2C+T">Tao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Hu%2C+J">Jia-Qi Hu</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+C">Chengxian Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03732v1-abstract-short" style="display: inline;"> Universal robust quantum control is essential for performing complex quantum algorithms and efficient quantum error correction protocols. Geometric phase, as a key element with intrinsic fault-tolerant feature, can be well integrated into quantum control processes to enhance control robustness. However, the current geometric quantum control is still controversial in robust universality, which lead… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03732v1-abstract-full').style.display = 'inline'; document.getElementById('2306.03732v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03732v1-abstract-full" style="display: none;"> Universal robust quantum control is essential for performing complex quantum algorithms and efficient quantum error correction protocols. Geometric phase, as a key element with intrinsic fault-tolerant feature, can be well integrated into quantum control processes to enhance control robustness. However, the current geometric quantum control is still controversial in robust universality, which leads to the unsatisfactory result that cannot sufficiently enhance the robustness of arbitrary type of geometric gate. In this study, we find that the finite choice on geometric evolution trajectory is one of the main roots that constrain the control robustness of previous geometric schemes, as it is unable to optionally avoid some trajectory segments that are seriously affected by systematic errors. In view of this, we here propose a new scheme for universal robust geometric control based on geometric trajectory correction, where enough available evolution parameters are introduced to ensure that the effective correction against systematic errors can be executed. From the results of our numerical simulation, arbitrary type of geometric gate implemented by using the corrected geometric trajectory has absolute robustness advantages over conventional quantum one. In addition, we also verify the feasibility of the high-fidelity physical implementation of our scheme in superconducting quantum circuit, and finally discuss in detail the potential researches based on our scheme. Therefore, our theoretical work is expected to offer an attractive avenue for realizing practical fault-tolerant quantum computation in existing experimental platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03732v1-abstract-full').style.display = 'none'; document.getElementById('2306.03732v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19807">arXiv:2305.19807</a> <span> [<a href="https://arxiv.org/pdf/2305.19807">pdf</a>, <a href="https://arxiv.org/format/2305.19807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1382-3">10.1007/s11467-023-1382-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Xie%2C+X">Xu-Dan Xie</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+D">Dan-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19807v2-abstract-short" style="display: inline;"> Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, based on energy variance, we propose a variational method for solving the non-Hermitian Hamiltonian, as zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a para… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19807v2-abstract-full').style.display = 'inline'; document.getElementById('2305.19807v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19807v2-abstract-full" style="display: none;"> Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex. Here, based on energy variance, we propose a variational method for solving the non-Hermitian Hamiltonian, as zero variance can naturally determine the eigenvalues and the associated left and right eigenstates. Moreover, the energy is set as a parameter in the cost function and can be tuned to obtain the whole spectrum, where each eigenstate can be efficiently obtained using a two-step optimization scheme. Through numerical simulations, we demonstrate the algorithm for preparing the left and right eigenstates, verifying the biorthogonal relations, as well as evaluating the observables. We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques. Therefore, our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19807v2-abstract-full').style.display = 'none'; document.getElementById('2305.19807v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 19, 41202 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.13636">arXiv:2305.13636</a> <span> [<a href="https://arxiv.org/pdf/2305.13636">pdf</a>, <a href="https://arxiv.org/ps/2305.13636">ps</a>, <a href="https://arxiv.org/format/2305.13636">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.184205">10.1103/PhysRevB.108.184205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From Ergodicity to Many-Body Localization in a One-Dimensional Interacting Non-Hermitian Stark System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jinghu Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhihao Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.13636v3-abstract-short" style="display: inline;"> Recent studies on disorder-induced many-body localization (MBL) in non-Hermitian quantum systems have attracted great interest. However, the non-Hermitian disorder-free MBL still needs to be clarified. We consider a one-dimensional interacting Stark model with nonreciprocal hoppings having time-reversal symmetry, the properties of which are boundary dependent. Under periodic boundary conditions (P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13636v3-abstract-full').style.display = 'inline'; document.getElementById('2305.13636v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.13636v3-abstract-full" style="display: none;"> Recent studies on disorder-induced many-body localization (MBL) in non-Hermitian quantum systems have attracted great interest. However, the non-Hermitian disorder-free MBL still needs to be clarified. We consider a one-dimensional interacting Stark model with nonreciprocal hoppings having time-reversal symmetry, the properties of which are boundary dependent. Under periodic boundary conditions (PBCs), such a model exhibits three types of phase transitions: the real-complex transition of eigenenergies, the topological phase transition, and the non-Hermitian Stark MBL transition. The real-complex and topological phase transitions occur at the same point in the thermodynamic limit but do not coincide with the non-Hermitian Stark MBL transition, which is quite different from the non-Hermitian disordered cases. By the level statistics, the system transitions from the Ginibre ensemble (GE) to the Gaussian orthogonal ensemble (GOE) to the Possion ensemble with the increase of the linear tilt potential's strength. The real-complex transition of the eigenvalues is accompanied by the GE-to-GOE transition in the ergodic regime. Moreover, the second transition of the level statistics corresponds to the occurrence of non-Hermitian Stark MBL. We demonstrate that the non-Hermitian Stark MBL is robust and shares many similarities with disorder-induced MBL, which several existing characteristic quantities of the spectral statistics and eigenstate properties can confirm. The dynamical evolutions of the entanglement entropy and the density imbalance can distinguish the real-complex and Stark MBL transitions. Finally, we find that our system under open boundary conditions lacks a real-complex transition, and the transition of non-Hermitian Stark MBL is the same as that under PBCs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.13636v3-abstract-full').style.display = 'none'; document.getElementById('2305.13636v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 184205 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01619">arXiv:2304.01619</a> <span> [<a href="https://arxiv.org/pdf/2304.01619">pdf</a>, <a href="https://arxiv.org/format/2304.01619">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.032601">10.1103/PhysRevA.108.032601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerated super-robust nonadiabatic holonomic quantum gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Shen%2C+P">Pu Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yan Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+T">Tao Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01619v3-abstract-short" style="display: inline;"> The nonadiabatic holonomic quantum computation based on three-level systems has wide applicability experimentally due to its simpler energy level structure requirement and inherent robustness from the geometric phase. However, in previous conventional schemes, the states of the calculation subspace have always leaked to the noncomputation subspace, resulting in less robustness than anticipated. Re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01619v3-abstract-full').style.display = 'inline'; document.getElementById('2304.01619v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01619v3-abstract-full" style="display: none;"> The nonadiabatic holonomic quantum computation based on three-level systems has wide applicability experimentally due to its simpler energy level structure requirement and inherent robustness from the geometric phase. However, in previous conventional schemes, the states of the calculation subspace have always leaked to the noncomputation subspace, resulting in less robustness than anticipated. Recent efforts to address this problem are at the cost of excessively long gate time, which will lead to more decoherence-induced errors. Here, we propose a solution to the problem without the severe limitation of the much longer gate time. Specifically, we implement arbitrary holonomic gates via a three-segment Hamiltonian, where the gate time depends on the rotation angle, and the smaller the rotation angle, the shorter the gate time will be. Compared with the previous solutions, our numerical simulations indicate that the decoherence-induced gate errors of our scheme are greatly decreased and the robustness of our scheme is also better, particularly for small-angle rotation gates. Moreover, we provide a detailed physical realization of our proposal on a two-dimensional superconducting quantum circuit. Therefore, our protocol provides a promising alternative for future fault-tolerant quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01619v3-abstract-full').style.display = 'none'; document.getElementById('2304.01619v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 032601 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04167">arXiv:2302.04167</a> <span> [<a href="https://arxiv.org/pdf/2302.04167">pdf</a>, <a href="https://arxiv.org/format/2302.04167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s11467-023-1322-2">10.1007/s11467-023-1322-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamical-Corrected Nonadiabatic Geometric Quantum Computation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ding%2C+C">Cheng-Yun Ding</a>, <a href="/search/quant-ph?searchtype=author&query=Chen%2C+L">Li Chen</a>, <a href="/search/quant-ph?searchtype=author&query=Zhang%2C+L">Li-Hua Zhang</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04167v2-abstract-short" style="display: inline;"> Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop scheme still has the same order of magnitude due to the requirement of strict multi-segment geomet… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04167v2-abstract-full').style.display = 'inline'; document.getElementById('2302.04167v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04167v2-abstract-full" style="display: none;"> Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop and two-loop composite-pulse strategies, in terms of resisting the systematic error, i.e., $蟽_x$ error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the $蟽_z$ error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04167v2-abstract-full').style.display = 'none'; document.getElementById('2302.04167v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. 18(6), 61304 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10868">arXiv:2301.10868</a> <span> [<a href="https://arxiv.org/pdf/2301.10868">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.3c02442">10.1021/acs.nanolett.3c02442 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-field GHz rotation and sensing with an optically levitated nanodumbbell </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Ju%2C+P">Peng Ju</a>, <a href="/search/quant-ph?searchtype=author&query=Jin%2C+Y">Yuanbin Jin</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+K">Kunhong Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Duan%2C+Y">Yao Duan</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhujing Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Gao%2C+X">Xingyu Gao</a>, <a href="/search/quant-ph?searchtype=author&query=Ni%2C+X">Xinjie Ni</a>, <a href="/search/quant-ph?searchtype=author&query=Li%2C+T">Tongcang Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10868v1-abstract-short" style="display: inline;"> A levitated non-spherical nanoparticle in a vacuum is ideal for studying quantum rotations and is an extremely sensitive torque and force detector. It has been proposed to probe fundamental particle-surface interactions such as the Casimir torque and the rotational quantum vacuum friction, which require it to be driven to rotate near a surface at sub-micrometer separations. Here, we optically levi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10868v1-abstract-full').style.display = 'inline'; document.getElementById('2301.10868v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10868v1-abstract-full" style="display: none;"> A levitated non-spherical nanoparticle in a vacuum is ideal for studying quantum rotations and is an extremely sensitive torque and force detector. It has been proposed to probe fundamental particle-surface interactions such as the Casimir torque and the rotational quantum vacuum friction, which require it to be driven to rotate near a surface at sub-micrometer separations. Here, we optically levitate a silica nanodumbbell in a vacuum at about 430 nm away from a sapphire surface and drive it to rotate at GHz frequencies. The relative linear speed between the tip of the nanodumbbell and the surface reaches 1.4 km/s at a sub-micrometer separation. The rotating nanodumbbell near the surface demonstrates a torque sensitivity of $(5.0 \pm 1.1) \times 10^{-26} {\rm NmHz}^{-1/2}$ at room temperature. Moreover, we levitate a nanodumbbell near a gold nanograting and use it to probe the near-field intensity distribution beyond the optical diffraction limit. Our numerical simulation shows it is promising to detect the Casimir torque between a nanodumbbell and a nanograting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10868v1-abstract-full').style.display = 'none'; document.getElementById('2301.10868v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nano Letters 23, 10157 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03334">arXiv:2301.03334</a> <span> [<a href="https://arxiv.org/pdf/2301.03334">pdf</a>, <a href="https://arxiv.org/format/2301.03334">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.042617">10.1103/PhysRevA.108.042617 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Time-optimal universal quantum gates on superconducting circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Li%2C+Z">Ze Li</a>, <a href="/search/quant-ph?searchtype=author&query=Liang%2C+M">Ming-Jie Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03334v2-abstract-short" style="display: inline;"> Decoherence is inevitable when manipulating quantum systems. It decreases the quality of quantum manipulations and thus is one of the main obstacles for large-scale quantum computation, where high-fidelity quantum gates are needed. Generally, the longer a gate operation is, the more decoherence-induced gate infidelity will be. Therefore, how to shorten the gate time becomes an urgent problem to be… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03334v2-abstract-full').style.display = 'inline'; document.getElementById('2301.03334v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03334v2-abstract-full" style="display: none;"> Decoherence is inevitable when manipulating quantum systems. It decreases the quality of quantum manipulations and thus is one of the main obstacles for large-scale quantum computation, where high-fidelity quantum gates are needed. Generally, the longer a gate operation is, the more decoherence-induced gate infidelity will be. Therefore, how to shorten the gate time becomes an urgent problem to be solved. To this end, time-optimal control based on solving the quantum brachistochrone equation is a straightforward solution. Here, based on time-optimal control, we propose a scheme to realize universal quantum gates on superconducting qubits in a two-dimensional square lattice configuration, and the two-qubit gate fidelity approaches 99.9\%. Meanwhile, we can further accelerate the Z-axis gate considerably by adjusting the detuning of the external driving. Finally, in order to reduce the influence of the dephasing error, decoherence-free subspace encoding is also incorporated in our physical implementation. Therefore, we present a fast quantum scheme which is promising for large-scale quantum computation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03334v2-abstract-full').style.display = 'none'; document.getElementById('2301.03334v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2 accepted</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 042617 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03448">arXiv:2212.03448</a> <span> [<a href="https://arxiv.org/pdf/2212.03448">pdf</a>, <a href="https://arxiv.org/format/2212.03448">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> Geometric Visualizations of Single and Entangled Qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Chang%2C+L+H">Li-Heng Henry Chang</a>, <a href="/search/quant-ph?searchtype=author&query=Roccaforte%2C+S">Shea Roccaforte</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Ziyu Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Cadden-Zimansky%2C+P">Paul Cadden-Zimansky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03448v2-abstract-short" style="display: inline;"> The Bloch Sphere visualization of the possible states of a single qubit has proved a useful pedagogical and conceptual tool as a one-to-one map between qubit states and points in a 3-D space. However, understanding many important concepts of quantum mechanics, such as entanglement, requires developing intuitions about states with a minimum of two qubits, which map one-to-one to unvisualizable spac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03448v2-abstract-full').style.display = 'inline'; document.getElementById('2212.03448v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03448v2-abstract-full" style="display: none;"> The Bloch Sphere visualization of the possible states of a single qubit has proved a useful pedagogical and conceptual tool as a one-to-one map between qubit states and points in a 3-D space. However, understanding many important concepts of quantum mechanics, such as entanglement, requires developing intuitions about states with a minimum of two qubits, which map one-to-one to unvisualizable spaces of 6 dimensions and higher. In this paper we circumvent this visualization issue by creating maps of subspaces of 1- and 2-qubit systems that quantitatively and qualitatively encode properties of these states in their geometries. For the 1-qubit case, the subspace approach allows one to visualize how mixed states relate to different choices of measurement in a basis-independent way and how to read off the entries in a density matrix representation of these states from lengths in a simple diagram. For the 2-qubit case, a toroidal map of 2-qubit states illuminates the non-trivial topology of the state space while allowing one to simultaneously read off, in distances and angles, the level of entanglement in the 2-qubit state and the mixed-state properties of its constituent qubits. By encoding states and their evolutions through quantum logic gates with little to no need of mathematical formalism, these maps may prove particularly useful for understanding fundamental concepts of quantum mechanics and quantum information at the introductory level. Interactive versions of the visualizations introduced in this paper are available at https://quantum.bard.edu/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03448v2-abstract-full').style.display = 'none'; document.getElementById('2212.03448v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09312">arXiv:2211.09312</a> <span> [<a href="https://arxiv.org/pdf/2211.09312">pdf</a>, <a href="https://arxiv.org/format/2211.09312">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.19.024051">10.1103/PhysRevApplied.19.024051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> State-independent Nonadiabatic Geometric Quantum Gates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liang%2C+Y">Yan Liang</a>, <a href="/search/quant-ph?searchtype=author&query=Shen%2C+P">Pu Shen</a>, <a href="/search/quant-ph?searchtype=author&query=Ji%2C+L">Li-Na Ji</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z+Y">Zheng Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09312v2-abstract-short" style="display: inline;"> Quantum computation has demonstrated advantages over classical computation for special hard problems, where a set of universal quantum gates is essential. Geometric phases, which have built-in resilience to local noise, have been used to construct quantum gates with excellent performance. However, this advantage has been smeared in previous schemes. Here, we propose a state-independent nonadiabati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09312v2-abstract-full').style.display = 'inline'; document.getElementById('2211.09312v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09312v2-abstract-full" style="display: none;"> Quantum computation has demonstrated advantages over classical computation for special hard problems, where a set of universal quantum gates is essential. Geometric phases, which have built-in resilience to local noise, have been used to construct quantum gates with excellent performance. However, this advantage has been smeared in previous schemes. Here, we propose a state-independent nonadiabatic geometric quantum-gate scheme that is able to realize a more fully geometric gate than previous approaches, allowing for the cancelation of dynamical phases accumulated by an arbitrary state. Numerical simulations demonstrate that our scheme has significantly stronger gate robustness than the previous geometric and dynamical ones. Meanwhile, we give a detailed physical implementation of our scheme with the Rydberg atom system based on the Rydberg blockade effect, specifically for multiqubit control-phase gates, which exceeds the fault-tolerance threshold of multiqubit quantum gates within the considered error range. Therefore, our scheme provides a promising way for fault-tolerant quantum computation in atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09312v2-abstract-full').style.display = 'none'; document.getElementById('2211.09312v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review APPLIED 19, 024051 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07983">arXiv:2211.07983</a> <span> [<a href="https://arxiv.org/pdf/2211.07983">pdf</a>, <a href="https://arxiv.org/format/2211.07983">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2023-12-04-1192">10.22331/q-2023-12-04-1192 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Differentiable matrix product states for simulating variational quantum computational chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Guo%2C+C">Chu Guo</a>, <a href="/search/quant-ph?searchtype=author&query=Fan%2C+Y">Yi Fan</a>, <a href="/search/quant-ph?searchtype=author&query=Xu%2C+Z">Zhiqian Xu</a>, <a href="/search/quant-ph?searchtype=author&query=Shang%2C+H">Honghui Shang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07983v4-abstract-short" style="display: inline;"> Quantum Computing is believed to be the ultimate solution for quantum chemistry problems. Before the advent of large-scale, fully fault-tolerant quantum computers, the variational quantum eigensolver~(VQE) is a promising heuristic quantum algorithm to solve real world quantum chemistry problems on near-term noisy quantum computers. Here we propose a highly parallelizable classical simulator for VQ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07983v4-abstract-full').style.display = 'inline'; document.getElementById('2211.07983v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07983v4-abstract-full" style="display: none;"> Quantum Computing is believed to be the ultimate solution for quantum chemistry problems. Before the advent of large-scale, fully fault-tolerant quantum computers, the variational quantum eigensolver~(VQE) is a promising heuristic quantum algorithm to solve real world quantum chemistry problems on near-term noisy quantum computers. Here we propose a highly parallelizable classical simulator for VQE based on the matrix product state representation of quantum state, which significantly extend the simulation range of the existing simulators. Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework, thus the gradients could be computed efficiently similar to the classical deep neural network, with a scaling that is independent of the number of variational parameters. As applications, we use our simulator to study commonly used small molecules such as HF, HCl, LiH and H$_2$O, as well as larger molecules CO$_2$, BeH$_2$ and H$_4$ with up to $40$ qubits. The favorable scaling of our simulator against the number of qubits and the number of parameters could make it an ideal testing ground for near-term quantum algorithms and a perfect benchmarking baseline for oncoming large scale VQE experiments on noisy quantum computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07983v4-abstract-full').style.display = 'none'; document.getElementById('2211.07983v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 7, 1192 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07917">arXiv:2211.07917</a> <span> [<a href="https://arxiv.org/pdf/2211.07917">pdf</a>, <a href="https://arxiv.org/format/2211.07917">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1134/S0021364023601057">10.1134/S0021364023601057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust and Fast Quantum State Transfer on Superconducting Circuits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&query=Liu%2C+X">Xiao-Qing Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Liu%2C+J">Jia Liu</a>, <a href="/search/quant-ph?searchtype=author&query=Xue%2C+Z">Zheng-Yuan Xue</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07917v2-abstract-short" style="display: inline;"> Quantum computation attaches importance to high-precision quantum manipulation, where the quantum state transfer with high fidelity is necessary. Here, we propose a new scheme to implement the quantum state transfer of high fidelity and long distance, by adding on-site potential into the qubit chain and enlarging the proportion of the coupling strength between the two ends and the chain. In the nu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07917v2-abstract-full').style.display = 'inline'; document.getElementById('2211.07917v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07917v2-abstract-full" style="display: none;"> Quantum computation attaches importance to high-precision quantum manipulation, where the quantum state transfer with high fidelity is necessary. Here, we propose a new scheme to implement the quantum state transfer of high fidelity and long distance, by adding on-site potential into the qubit chain and enlarging the proportion of the coupling strength between the two ends and the chain. In the numerical simulation, without decoherence, the transfer fidelities of 9 and 11 qubit chain are 0.999 and 0.997, respectively. Moreover, we give a detailed physical realization scheme of the quantum state transfer in superconducting circuits, and discuss the tolerance of our proposal against decoherence. Therefore, our scheme will shed light on quantum computation with long chain and high-fidelity quantum state transfer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07917v2-abstract-full').style.display = 'none'; document.getElementById('2211.07917v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JETP Lett. 117, 859-864 (2023) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&query=Xue%2C+Z&start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>