CINXE.COM
essential geometric morphism in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> essential geometric morphism in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> essential geometric morphism </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/759/#Item_10" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="topos_theory">Topos Theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topos+theory">topos theory</a></strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Toposes">Toposes</a></li> </ul> <h2 id="background">Background</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+theory">category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/functor">functor</a></p> </li> </ul> </li> </ul> <h2 id="toposes">Toposes</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a>, <a class="existingWikiWord" href="/nlab/show/Heyting+algebra">Heyting algebra</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pretopos">pretopos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topos">topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Grothendieck+topos">Grothendieck topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+presheaves">category of presheaves</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/presheaf">presheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representable+functor">representable presheaf</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+sheaves">category of sheaves</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/site">site</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/sieve">sieve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/coverage">coverage</a>, <a class="existingWikiWord" href="/nlab/show/Grothendieck+pretopology">pretopology</a>, <a class="existingWikiWord" href="/nlab/show/Grothendieck+topology">topology</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sheaf">sheaf</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sheafification">sheafification</a></p> </li> </ul> </li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quasitopos">quasitopos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+topos">base topos</a>, <a class="existingWikiWord" href="/nlab/show/indexed+topos">indexed topos</a></p> </li> </ul> <h2 id="toc_internal_logic">Internal Logic</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+semantics">categorical semantics</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/internal+logic">internal logic</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/subobject+classifier">subobject classifier</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/natural+numbers+object">natural numbers object</a></p> </li> </ul> </li> </ul> <h2 id="topos_morphisms">Topos morphisms</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/logical+morphism">logical morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/direct+image">direct image</a>/<a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/global+section">global sections</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+embedding">geometric embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/surjective+geometric+morphism">surjective geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/essential+geometric+morphism">essential geometric morphism</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+connected+geometric+morphism">locally connected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+geometric+morphism">connected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/totally+connected+geometric+morphism">totally connected geometric morphism</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%C3%A9tale+geometric+morphism">étale geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+geometric+morphism">open geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+geometric+morphism">proper geometric morphism</a>, <a class="existingWikiWord" href="/nlab/show/compact+topos">compact topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separated+geometric+morphism">separated geometric morphism</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+topos">Hausdorff topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+geometric+morphism">local geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/bounded+geometric+morphism">bounded geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+change">base change</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localic+geometric+morphism">localic geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/hyperconnected+geometric+morphism">hyperconnected geometric morphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/atomic+geometric+morphism">atomic geometric morphism</a></p> </li> </ul> </li> </ul> <h2 id="extra_stuff_structure_properties">Extra stuff, structure, properties</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+locale">topological locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/localic+topos">localic topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/petit+topos">petit topos/gros topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+connected+topos">locally connected topos</a>, <a class="existingWikiWord" href="/nlab/show/connected+topos">connected topos</a>, <a class="existingWikiWord" href="/nlab/show/totally+connected+topos">totally connected topos</a>, <a class="existingWikiWord" href="/nlab/show/strongly+connected+topos">strongly connected topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+topos">local topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohesive+topos">cohesive topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+topos">classifying topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/smooth+topos">smooth topos</a></p> </li> </ul> <h2 id="cohomology_and_homotopy">Cohomology and homotopy</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cohomology">cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+groups+in+an+%28infinity%2C1%29-topos">homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/abelian+sheaf+cohomology">abelian sheaf cohomology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+presheaves">model structure on simplicial presheaves</a></p> </li> </ul> <h2 id="in_higher_category_theory">In higher category theory</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+topos+theory">higher topos theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-topos">(0,1)-topos</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/%280%2C1%29-site">(0,1)-site</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-topos">2-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/2-site">2-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/2-sheaf">2-sheaf</a>, <a class="existingWikiWord" href="/nlab/show/stack">stack</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-topos">(∞,1)-topos</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-site">(∞,1)-site</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-sheaf">(∞,1)-sheaf</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-stack">∞-stack</a>, <a class="existingWikiWord" href="/nlab/show/derived+stack">derived stack</a></p> </li> </ul> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Diaconescu%27s+theorem">Diaconescu's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Barr%27s+theorem">Barr's theorem</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/topos+theory+-+contents">Edit this sidebar</a> </p> </div></div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#Properties'>Properties</a></li> <ul> <li><a href='#a_criterion_for_grothendieck_toposes'>A criterion for Grothendieck toposes</a></li> <li><a href='#RelationToSiteMorphisms'>Relation to morphisms of (co)sites</a></li> <li><a href='#some_morphism_calculus'>Some morphism calculus</a></li> </ul> <li><a href='#examples'>Examples</a></li> <ul> <li><a href='#logical_functors_and_etale_geometric_morphisms'>Logical functors and etale geometric morphisms</a></li> <li><a href='#locally_connected_toposes'>Locally connected toposes</a></li> <li><a href='#tiny_objects'>Tiny objects</a></li> </ul> <li><a href='#related_concepts'>Related concepts</a></li> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>A <a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mo>→</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">f : E \to F</annotation></semantics></math> between <a class="existingWikiWord" href="/nlab/show/topos">topos</a>es is a <a class="existingWikiWord" href="/nlab/show/functor">functor</a> of the underlying categories that is consistent with the interpretation of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi></mrow><annotation encoding="application/x-tex">F</annotation></semantics></math> as generalized <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>s.</p> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>=</mo><mi>Set</mi><mo>=</mo><mi>Sh</mi><mo stretchy="false">(</mo><mo>*</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">F = Set = Sh(*)</annotation></semantics></math> is the terminal <a class="existingWikiWord" href="/nlab/show/sheaf+topos">sheaf topos</a>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">E \to Set</annotation></semantics></math> is essential if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> is a <strong><a class="existingWikiWord" href="/nlab/show/locally+connected+topos">locally connected topos</a></strong>. In general, <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> being essential is a necessary (but not sufficient) condition to ensure that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> behaves like a map of topological spaces whose <a class="existingWikiWord" href="/nlab/show/fiber">fiber</a>s are locally connected: that it is a <a class="existingWikiWord" href="/nlab/show/locally+connected+geometric+morphism">locally connected geometric morphism</a>.</p> <h2 id="definition">Definition</h2> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>Given a <a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo><mo>:</mo><mi>E</mi><mo>→</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">(f^* \dashv f_*) : E \to F</annotation></semantics></math>, it is an <strong>essential geometric morphism</strong> if the <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^*</annotation></semantics></math> has not only the <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">f_*</annotation></semantics></math>, but also a <a class="existingWikiWord" href="/nlab/show/left+adjoint">left adjoint</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>!</mo></msub></mrow><annotation encoding="application/x-tex">f_!</annotation></semantics></math>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>f</mi> <mo>!</mo></msub><mo>⊣</mo><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>:</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>E</mi><mover><mover><munder><mo>⟶</mo><mrow><msub><mi>f</mi> <mo>*</mo></msub></mrow></munder><mover><mo>⟵</mo><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow></mover></mover><mover><mo>⟶</mo><mrow><msub><mi>f</mi> <mo>!</mo></msub></mrow></mover></mover><mi>F</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> (f_! \dashv f^* \dashv f_*) \;\;\; : \;\;\; E \stackrel{\overset{f_!}{\longrightarrow}}{\stackrel{\overset{f^*}{\longleftarrow}}{\underset{f_*}{\longrightarrow}}} F \,. </annotation></semantics></math></div></div> <p>A <a class="existingWikiWord" href="/nlab/show/point+of+a+topos">point of a topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>:</mo><mi>Set</mi><mo>→</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">x : Set \to E</annotation></semantics></math> which is given by an essential geometric morphism is called an <strong>essential point</strong> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>.</p> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>There are various further conditions that can be imposed on a geometric morphism:</p> <ul> <li> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>!</mo></msub></mrow><annotation encoding="application/x-tex">f_!</annotation></semantics></math> can be made into an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/indexed+functor">indexed functor</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^*</annotation></semantics></math> satisfies some extra conditions, the geometric morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/locally+connected+geometric+morphism">locally connected geometric morphism</a> (see there for details).</p> </li> <li> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>f</mi> <mo>!</mo></msub></mrow><annotation encoding="application/x-tex">f_!</annotation></semantics></math> preserves finite <a class="existingWikiWord" href="/nlab/show/products">products</a> then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is called <strong>connected surjective</strong>.</p> </li> <li> <p>If in addition to the above <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/local+geometric+morphism">local geometric morphism</a> in that there is a further functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>!</mo></msup><mo>:</mo><mi>F</mi><mo>→</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">f^! : F \to E</annotation></semantics></math> which is <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>f</mi> <mo>*</mo></msub><mo>⊣</mo><msup><mi>f</mi> <mo>!</mo></msup><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(f_* \dashv f^!)</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/full+and+faithful+functor">full and faithful</a> then the geometric morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is called <strong><a class="existingWikiWord" href="/nlab/show/cohesive+topos">cohesive</a></strong>.</p> </li> </ul> </div> <div class="num_remark"> <h6 id="remark_2">Remark</h6> <p>Since for a <a class="existingWikiWord" href="/nlab/show/Grothendieck+topos">Grothendieck topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>x</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">x^*</annotation></semantics></math> of an essential point is of the form <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Hom</mi> <mi>E</mi></msub><mo stretchy="false">(</mo><mi>P</mi><mo>,</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">Hom_E(P,-)</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi><mo>≇</mo><mi>∅</mi></mrow><annotation encoding="application/x-tex">P\ncong\emptyset</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/projective+object">projective</a> and <a class="existingWikiWord" href="/nlab/show/connected">connected</a>, objects satisfying these three conditions are sometimes called <em>essential objects</em> (cf. <a href="#JTT77">Johnstone 1977, p.255</a>).</p> </div> <h2 id="Properties">Properties</h2> <h3 id="a_criterion_for_grothendieck_toposes">A criterion for Grothendieck toposes</h3> <p>The inverse image <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^\ast</annotation></semantics></math> of an essential geometric morphism preserves small limits since it is a right adjoint. Hence, this provides a minimal requirement to satisfy for a general geometric morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">f^\ast\dashv f_\ast</annotation></semantics></math> in order to qualify for being essential. In case, the toposes involved are <a class="existingWikiWord" href="/nlab/show/Grothendieck+toposes">Grothendieck toposes</a> this condition is not only necessary but sufficient.</p> <div class="num_prop"> <h6 id="proposition">Proposition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo>:</mo><mi>ℰ</mi><mo>→</mo><mi>ℱ</mi></mrow><annotation encoding="application/x-tex">f^\ast\dashv f_\ast:\mathcal{E}\to\mathcal{F}</annotation></semantics></math> a geometric morphism between Grothendieck toposes. Then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math> is essential iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^\ast</annotation></semantics></math> preserves small limits iff <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^\ast</annotation></semantics></math> preserves small products.</p> </div> <div class="proof"> <h6 id="proof">Proof</h6> <p>Grothendieck toposes are <a class="existingWikiWord" href="/nlab/show/locally+presentable+category">locally presentable</a> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^\ast</annotation></semantics></math> has rank i.e. it preserves <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math>-filtered colimits for some <a class="existingWikiWord" href="/nlab/show/regular+cardinal">regular cardinal</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi></mrow><annotation encoding="application/x-tex">\alpha</annotation></semantics></math> since it is a left adjoint. But by (<a class="existingWikiWord" href="/nlab/show/Handbook+of+Categorical+Algebra">Borceux vol. 2</a> Thm.5.5.7, p.275) a functor between two locally presentable categories has a left adjoint precisely if it has rank and preserves small limits.</p> <p>Since limits can be constructed from products and equalizers and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">f^\ast</annotation></semantics></math> preserves the latter, it preserves small limits precisely when it preserves small products.</p> </div> <h3 id="RelationToSiteMorphisms">Relation to morphisms of (co)sites</h3> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/small+categories">small categories</a> write <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C,Set]</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>D</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[D,Set]</annotation></semantics></math> for the corresponding <a class="existingWikiWord" href="/nlab/show/copresheaf">copresheaf</a> <a class="existingWikiWord" href="/nlab/show/presheaf+topos">toposes</a>. (If we think of the <a class="existingWikiWord" href="/nlab/show/opposite+categories">opposite categories</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">C^{op}</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>D</mi> <mi>op</mi></msup></mrow><annotation encoding="application/x-tex">D^{op}</annotation></semantics></math> as <a class="existingWikiWord" href="/nlab/show/sites">sites</a> equipped with the trivial <a class="existingWikiWord" href="/nlab/show/coverage">coverage</a>, then these are the corresponding <a class="existingWikiWord" href="/nlab/show/sheaf+toposes">sheaf toposes</a>.)</p> <div class="num_prop"> <h6 id="proposition_2">Proposition</h6> <p>This construction extends to a <a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo>:</mo><msubsup><mi>Cat</mi> <mi>small</mi> <mi>co</mi></msubsup><mo>→</mo><msub><mi>Topos</mi> <mi>ess</mi></msub></mrow><annotation encoding="application/x-tex"> [-,Set] : Cat_{small}^{co} \to Topos_{ess} </annotation></semantics></math></div> <p>from the <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> <a class="existingWikiWord" href="/nlab/show/Cat">Cat</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mrow></mrow> <mi>small</mi></msub></mrow><annotation encoding="application/x-tex">{}_{small}</annotation></semantics></math> with <a class="existingWikiWord" href="/nlab/show/2-morphism">2-morphism</a>s reversed) to the sub-2-category of <a class="existingWikiWord" href="/nlab/show/Topos">Topos</a> on essential geometric morphisms, where a <a class="existingWikiWord" href="/nlab/show/functor">functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>C</mi><mo>→</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">f : C \to D</annotation></semantics></math> is sent to the essential geometric morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>f</mi> <mo>!</mo></msub><mo>⊣</mo><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo><mo>:</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mover><mover><munder><mo>→</mo><mrow><msub><mi>f</mi> <mo>*</mo></msub><mo>:</mo><mo>=</mo><msub><mi>Ran</mi> <mi>f</mi></msub></mrow></munder><mover><mo>←</mo><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo>:</mo><mo>=</mo><mo stretchy="false">(</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo stretchy="false">)</mo><mo>∘</mo><mi>f</mi></mrow></mover></mover><mover><mo>→</mo><mrow><msub><mi>f</mi> <mo>!</mo></msub><mo>:</mo><mo>=</mo><msub><mi>Lan</mi> <mi>f</mi></msub></mrow></mover></mover><mo stretchy="false">[</mo><mi>D</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mspace width="thinmathspace"></mspace><mo>,</mo></mrow><annotation encoding="application/x-tex"> (f_! \dashv f^* \dashv f_*) : [C,Set] \stackrel{\overset{f_! := Lan_f}{\to}}{\stackrel{\overset{f^* := (-) \circ f}{\leftarrow}}{\underset{f_* := Ran_f}{\to}}} [D,Set] \,, </annotation></semantics></math></div> <p>where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Lan</mi> <mi>f</mi></msub></mrow><annotation encoding="application/x-tex">Lan_f</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Ran</mi> <mi>f</mi></msub></mrow><annotation encoding="application/x-tex">Ran_f</annotation></semantics></math> denote the left and right <a class="existingWikiWord" href="/nlab/show/Kan+extension">Kan extension</a> along <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi></mrow><annotation encoding="application/x-tex">f</annotation></semantics></math>, respectively.</p> </div> <div class="num_prop"> <h6 id="proposition_3">Proposition</h6> <p>This 2-functor is a <a class="existingWikiWord" href="/nlab/show/full+and+faithful+2-functor">full and faithful 2-functor</a> when restricted to <a class="existingWikiWord" href="/nlab/show/Cauchy+complete+categories">Cauchy complete categories</a>:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo>:</mo><msubsup><mi>Cat</mi> <mi>CauchyComp</mi> <mi>co</mi></msubsup><mo>↪</mo><msub><mi>Topos</mi> <mi>ess</mi></msub><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> [-, Set] : Cat^co_{CauchyComp} \hookrightarrow Topos_{ess} \,. </annotation></semantics></math></div> <p>For all small categories <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi><mo>,</mo><mi>D</mi></mrow><annotation encoding="application/x-tex">C,D</annotation></semantics></math> we have an <a class="existingWikiWord" href="/nlab/show/equivalence+of+categories">equivalence of categories</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Func</mi><mo stretchy="false">(</mo><mover><mi>C</mi><mo>¯</mo></mover><mo>,</mo><mover><mi>D</mi><mo>¯</mo></mover><msup><mo stretchy="false">)</mo> <mi>op</mi></msup><mo>≃</mo><msub><mi>Topos</mi> <mi>ess</mi></msub><mo stretchy="false">(</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo>,</mo><mo stretchy="false">[</mo><mi>D</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex"> Func(\overline{C},\overline{D})^{op} \simeq Topos_{ess}([C,Set], [D,Set]) </annotation></semantics></math></div> <p>between the <a class="existingWikiWord" href="/nlab/show/opposite+category">opposite category</a> of the <a class="existingWikiWord" href="/nlab/show/functor+category">functor category</a> between the <a class="existingWikiWord" href="/nlab/show/Cauchy+completion">Cauchy completion</a>s of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>C</mi></mrow><annotation encoding="application/x-tex">C</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> and the the category of essential geometric morphisms between the copresheaf toposes and <a class="existingWikiWord" href="/nlab/show/geometric+transformation">geometric transformation</a>s between them.</p> </div> <p>In particular, since every <a class="existingWikiWord" href="/nlab/show/poset">poset</a> – when regarded as a <a class="existingWikiWord" href="/nlab/show/category">category</a> – is Cauchy complete, we have</p> <div class="num_cor"> <h6 id="corollary">Corollary</h6> <p>The <a class="existingWikiWord" href="/nlab/show/2-functor">2-functor</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo>:</mo><mi>Poset</mi><mo>→</mo><msub><mi>Topos</mi> <mi>ess</mi></msub></mrow><annotation encoding="application/x-tex"> [-,Set] : Poset \to Topos_{ess} </annotation></semantics></math></div> <p>is a <a class="existingWikiWord" href="/nlab/show/full+and+faithful+2-functor">full and faithful 2-functor</a>.</p> </div> <div class="num_remark"> <h6 id="remark_3">Remark</h6> <p>Sometimes it is useful to decompose this statement as follows.</p> <p>There is a functor</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>Alex</mi><mo>:</mo><mi>Poset</mi><mo>→</mo><mi>Locale</mi></mrow><annotation encoding="application/x-tex"> Alex : Poset \to Locale </annotation></semantics></math></div> <p>which assigns to each <a class="existingWikiWord" href="/nlab/show/poset">poset</a> a <a class="existingWikiWord" href="/nlab/show/locale">locale</a> called its <a class="existingWikiWord" href="/nlab/show/Alexandroff+locale">Alexandroff locale</a>. By a theorem discussed there, a morphisms of locales <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f : X \to Y</annotation></semantics></math> is in the image of this functor precisely if its inverse image morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mi>Op</mi><mo stretchy="false">(</mo><mi>Y</mi><mo stretchy="false">)</mo><mo>→</mo><mi>Op</mi><mo stretchy="false">(</mo><mi>X</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">f^* Op(Y) \to Op(X)</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/frame">frame</a>s has a <a class="existingWikiWord" href="/nlab/show/left+adjoint">left adjoint</a> in the <a class="existingWikiWord" href="/nlab/show/2-category">2-category</a> <a class="existingWikiWord" href="/nlab/show/Locale">Locale</a>.</p> <p>Moreover, for any poset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>P</mi></mrow><annotation encoding="application/x-tex">P</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/sheaf+topos">sheaf topos</a> over <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Alex</mi><mi>P</mi></mrow><annotation encoding="application/x-tex">Alex P</annotation></semantics></math> is naturally equivalent to <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>P</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[P,Set]</annotation></semantics></math></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo>≃</mo><mi>Sh</mi><mo>∘</mo><mi>Alex</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> [-,Set] \simeq Sh \circ Alex \,. </annotation></semantics></math></div> <p>With this, the fact that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mo lspace="verythinmathspace" rspace="0em">−</mo><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo><mo>:</mo><mi>Poset</mi><mo>→</mo><mi>Topos</mi></mrow><annotation encoding="application/x-tex">[-,Set] : Poset \to Topos</annotation></semantics></math> hits precisely the essential geometric morphisms follows with the basic fact about <a class="existingWikiWord" href="/nlab/show/localic+reflection">localic reflection</a>, which says that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Sh</mi><mo>:</mo><mi>Locale</mi><mo>→</mo><mi>Topos</mi></mrow><annotation encoding="application/x-tex">Sh : Locale \to Topos</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/full+and+faithful+2-functor">full and faithful 2-functor</a>.</p> </div> <h3 id="some_morphism_calculus">Some morphism calculus</h3> <div class="num_prop"> <h6 id="proposition_4">Proposition</h6> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo>:</mo><mi>E</mi><mo>→</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">f : E \to F</annotation></semantics></math> be an essential geometric morphism.</p> <p>For every <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo>→</mo><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>*</mo></msub><mi>A</mi></mrow><annotation encoding="application/x-tex">\phi : X \to f^* f_* A</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> the diagram</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mi>X</mi></mtd> <mtd><mover><mo>→</mo><mi>ϕ</mi></mover></mtd> <mtd><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>*</mo></msub><mi>A</mi></mtd></mtr> <mtr><mtd><mo stretchy="false">↓</mo></mtd> <mtd></mtd> <mtd><mo stretchy="false">↓</mo></mtd></mtr> <mtr><mtd><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>!</mo></msub><mi>X</mi></mtd> <mtd><mover><mo>→</mo><mrow></mrow></mover></mtd> <mtd><mi>A</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding="application/x-tex"> \array{ X &\stackrel{\phi}{\to}& f^* f_* A \\ \downarrow && \downarrow \\ f^* f_! X &\stackrel{}{\to}& A } </annotation></semantics></math></div> <p>commutes, where the vertical morphisms are unit and counit, respectively, and where the bottom horizontal morphism is the <a class="existingWikiWord" href="/nlab/show/adjunct">adjunct</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi></mrow><annotation encoding="application/x-tex">\phi</annotation></semantics></math> under the composite adjunction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>!</mo></msub><mo>⊣</mo><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(f^* f_! \dashv f^* f_*)</annotation></semantics></math>.</p> </div> <div class="proof"> <h6 id="proof_2">Proof</h6> <p>The morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϕ</mi><mo>:</mo><mi>X</mi><mo>→</mo><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>*</mo></msub><mi>A</mi></mrow><annotation encoding="application/x-tex">\phi : X \to f^* f_* A</annotation></semantics></math> is the component of a <a class="existingWikiWord" href="/nlab/show/natural+transformation">natural transformation</a></p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mrow><mtable><mtr><mtd><mo>*</mo></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>X</mi></mover></mtd> <mtd></mtd> <mtd><mi>E</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>A</mi></mpadded></msup><mo stretchy="false">↓</mo></mtd> <mtd><msup><mo>⇓</mo> <mi>ϕ</mi></msup></mtd> <mtd></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow></mpadded></msup><mo>↗</mo></mtd></mtr> <mtr><mtd><mi>E</mi></mtd> <mtd><munder><mo>→</mo><mrow><msub><mi>f</mi> <mo>*</mo></msub></mrow></munder></mtd> <mtd><mi>F</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \array{ *&&\overset{X}{\to}&& E \\ {}^{\mathllap{A}}\downarrow &\Downarrow^\phi&& {}^{\mathllap{f^*}}\nearrow \\ E &\underset{f_*}{\to}&F } \,. </annotation></semantics></math></div> <p>The composite <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mover><mo>→</mo><mi>ϕ</mi></mover><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>*</mo></msub><mi>A</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">X \stackrel{\phi}{\to} f^* f_* A \to A</annotation></semantics></math> is the component of this composed with the counit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>*</mo></msub><mo>⇒</mo><mi>Id</mi></mrow><annotation encoding="application/x-tex">f^* f_* \Rightarrow Id</annotation></semantics></math>.</p> <p>We may insert the 2-identity given by the zig-zag law</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>⋯</mi><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>=</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mrow><mtable><mtr><mtd><mo>*</mo></mtd> <mtd></mtd> <mtd><mover><mo>→</mo><mi>X</mi></mover></mtd> <mtd></mtd> <mtd><mi>E</mi></mtd> <mtd></mtd> <mtd><mo>=</mo></mtd> <mtd></mtd> <mtd><mi>E</mi></mtd></mtr> <mtr><mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mi>A</mi></mpadded></msup><mo stretchy="false">↓</mo></mtd> <mtd><msup><mo>⇓</mo> <mi>ϕ</mi></msup></mtd> <mtd></mtd> <mtd><msup><mrow></mrow> <mpadded width="0" lspace="-100%width"><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow></mpadded></msup><mo>↗</mo></mtd> <mtd><mo>⇓</mo></mtd> <mtd><msup><mo>↘</mo> <mrow><msub><mi>f</mi> <mo>!</mo></msub></mrow></msup></mtd> <mtd><mo>⇓</mo></mtd> <mtd><msub><mo>↗</mo> <mpadded width="0"><mrow><msup><mi>f</mi> <mo>*</mo></msup></mrow></mpadded></msub></mtd></mtr> <mtr><mtd><mi>E</mi></mtd> <mtd><munder><mo>→</mo><mrow><msub><mi>f</mi> <mo>*</mo></msub></mrow></munder></mtd> <mtd><mi>F</mi></mtd> <mtd></mtd> <mtd><mo>=</mo></mtd> <mtd></mtd> <mtd><mi>F</mi></mtd></mtr></mtable></mrow><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> \cdots \;\;\; = \;\;\; \array{ *&&\overset{X}{\to}&& E && = && E \\ {}^{\mathllap{A}}\downarrow &\Downarrow^\phi&& {}^{\mathllap{f^*}}\nearrow &\Downarrow& \searrow^{f_!} &\Downarrow& \nearrow_{\mathrlap{f^*}} \\ E &\underset{f_*}{\to}&F &&=&& F } \,. </annotation></semantics></math></div> <p>Composing this with the counit <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>*</mo></msub><mo>⇒</mo><mi>Id</mi></mrow><annotation encoding="application/x-tex">f^* f_* \Rightarrow Id</annotation></semantics></math> produces the transformation whose component is manifestly the morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>→</mo><msup><mi>f</mi> <mo>*</mo></msup><msub><mi>f</mi> <mo>!</mo></msub><mi>X</mi><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">X \to f^* f_! X \to A</annotation></semantics></math>.</p> </div> <h2 id="examples">Examples</h2> <h3 id="logical_functors_and_etale_geometric_morphisms">Logical functors and etale geometric morphisms</h3> <p>A <a class="existingWikiWord" href="/nlab/show/logical+functor">logical functor</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi><mo>→</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">E\to F</annotation></semantics></math> with a <a class="existingWikiWord" href="/nlab/show/left+adjoint">left adjoint</a> has automatically also a <a class="existingWikiWord" href="/nlab/show/right+adjoint">right adjoint</a> whence is the <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> part of an essential geometric morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>F</mi><mo>→</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">F\to E</annotation></semantics></math>.</p> <p>A particularly important instance of this situation is the following:</p> <p>For any morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>A</mi><mo>→</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">f\colon A\to B</annotation></semantics></math> in a topos <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math>, the induced geometric morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>E</mi><mo stretchy="false">/</mo><mi>A</mi><mo>→</mo><mi>E</mi><mo stretchy="false">/</mo><mi>B</mi></mrow><annotation encoding="application/x-tex">f\colon E/A \to E/B</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/overcategory">overcategory</a> <a class="existingWikiWord" href="/nlab/show/topos">topos</a>es is essential. Here, the logical functor is given by the pullback functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>f</mi> <mo>*</mo></msup><mo>:</mo><mi>E</mi><mo stretchy="false">/</mo><mi>B</mi><mo>→</mo><mi>E</mi><mo stretchy="false">/</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">f^*:E/B\to E/A</annotation></semantics></math> of course.</p> <p>In the special case <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo>=</mo><mo>*</mo></mrow><annotation encoding="application/x-tex">B = *</annotation></semantics></math> the <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal object</a>, the essential geometric morphism</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo>:</mo><mi>E</mi><mo stretchy="false">/</mo><mi>A</mi><mo>→</mo><mi>E</mi></mrow><annotation encoding="application/x-tex"> \pi : E/A \to E </annotation></semantics></math></div> <p>is also called an <a class="existingWikiWord" href="/nlab/show/etale+geometric+morphism">etale geometric morphism</a>.</p> <p>Conversely, (almost) any essential geometric morphism <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi></mrow><annotation encoding="application/x-tex">\pi</annotation></semantics></math> whose <a class="existingWikiWord" href="/nlab/show/inverse+image">inverse image</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">\pi^*</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/logical+functor">logical functor</a> has the form of an <a class="existingWikiWord" href="/nlab/show/etale+geometric+morphism">etale geometric morphism</a>:</p> <div class="num_prop"> <h6 id="proposition_5">Proposition</h6> <p>If the <a class="existingWikiWord" href="/nlab/show/left+adjoint">left adjoint</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>π</mi> <mo>!</mo></msub></mrow><annotation encoding="application/x-tex">\pi_!</annotation></semantics></math> of a logical functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>π</mi> <mo>*</mo></msup><mo>:</mo><mi>E</mi><mo>→</mo><mi>F</mi></mrow><annotation encoding="application/x-tex">\pi^*:E\to F</annotation></semantics></math> furthermore preserves equalizers, then the corresponding essential geometric morphism is up to equivalence an <a class="existingWikiWord" href="/nlab/show/etale+geometric+morphism">etale geometric morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>π</mi><mo>:</mo><mi>F</mi><mo>≃</mo><mi>E</mi><mo stretchy="false">/</mo><mi>A</mi><mo>→</mo><mi>E</mi></mrow><annotation encoding="application/x-tex">\pi : F\simeq E/A \to E</annotation></semantics></math> for an object <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> that is determined up to isomorphism.</p> </div> <p>For a proof see e.g. Johnstone <a href="#JTT77">(1977, p.37)</a>.</p> <h3 id="locally_connected_toposes">Locally connected toposes</h3> <p>A <a class="existingWikiWord" href="/nlab/show/locally+connected+topos">locally connected topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> is one where the <a class="existingWikiWord" href="/nlab/show/global+section">global section</a> <a class="existingWikiWord" href="/nlab/show/geometric+morphism">geometric morphism</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Γ</mi><mo>:</mo><mi>E</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">\Gamma : E \to Set</annotation></semantics></math> is essential.</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>f</mi> <mo>!</mo></msub><mo>⊣</mo><msup><mi>f</mi> <mo>*</mo></msup><mo>⊣</mo><msub><mi>f</mi> <mo>*</mo></msub><mo stretchy="false">)</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mo>:</mo><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mspace width="thickmathspace"></mspace><mi>E</mi><mover><mover><munder><mo>⟶</mo><mi>Γ</mi></munder><mover><mo>⟵</mo><mi>LConst</mi></mover></mover><mover><mo>⟶</mo><mrow><msub><mi>Π</mi> <mn>0</mn></msub></mrow></mover></mover><mi>Set</mi><mspace width="thinmathspace"></mspace><mo>.</mo></mrow><annotation encoding="application/x-tex"> (f_! \dashv f^* \dashv f_*) \;\;\; : \;\;\; E \stackrel{\overset{\Pi_0}{\longrightarrow}}{\stackrel{\overset{LConst}{\longleftarrow}}{\underset{\Gamma}{\longrightarrow}}} Set \,. </annotation></semantics></math></div> <p>In this case, the functor <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Γ</mi> <mo>!</mo></msub><mo>=</mo><msub><mi>Π</mi> <mn>0</mn></msub><mo>:</mo><mi>E</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding="application/x-tex">\Gamma_! = \Pi_0 : E \to Set</annotation></semantics></math> sends each object to its set of connected components. More on this situation is at <a class="existingWikiWord" href="/nlab/show/homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">homotopy groups in an (∞,1)-topos</a>.</p> <p>Note, though that if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi><mo lspace="verythinmathspace">:</mo><mi>E</mi><mo>→</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">p\colon E\to S</annotation></semantics></math> is an arbitrary geometric morphism through which we regard <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>-topos, i.e. a topos “in the world of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>,” the condition for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>E</mi></mrow><annotation encoding="application/x-tex">E</annotation></semantics></math> to be locally connected as an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>-topos is not just that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>p</mi></mrow><annotation encoding="application/x-tex">p</annotation></semantics></math> is essential, but that the left adjoint <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mo>!</mo></msub></mrow><annotation encoding="application/x-tex">p_!</annotation></semantics></math> can be made into an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math>-<a class="existingWikiWord" href="/nlab/show/indexed+functor">indexed functor</a> (which is automatically true for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>p</mi> <mo>*</mo></msup></mrow><annotation encoding="application/x-tex">p^*</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>p</mi> <mo>*</mo></msub></mrow><annotation encoding="application/x-tex">p_*</annotation></semantics></math>). This is automatically the case for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>-toposes (at least, when our <a class="existingWikiWord" href="/nlab/show/foundation">foundation</a> is <a class="existingWikiWord" href="/nlab/show/material+set+theory">material set theory</a>—and if our foundation is <a class="existingWikiWord" href="/nlab/show/structural+set+theory">structural set theory</a>, then our large categories and functors all need to be assumed to be <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi></mrow><annotation encoding="application/x-tex">Set</annotation></semantics></math>-indexed anyway). For more see <a class="existingWikiWord" href="/nlab/show/locally+connected+geometric+morphism">locally connected geometric morphism</a>.</p> <h3 id="tiny_objects">Tiny objects</h3> <p>The <a class="existingWikiWord" href="/nlab/show/tiny+object">tiny object</a>s of a <a class="existingWikiWord" href="/nlab/show/presheaf+topos">presheaf topos</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">[C,Set]</annotation></semantics></math> are precisely the essential points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Set</mi><mo>→</mo><mo stretchy="false">[</mo><mi>C</mi><mo>,</mo><mi>Set</mi><mo stretchy="false">]</mo></mrow><annotation encoding="application/x-tex">Set \to [C,Set]</annotation></semantics></math>. See <a class="existingWikiWord" href="/nlab/show/tiny+object">tiny object</a> for details.</p> <h2 id="related_concepts">Related concepts</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/essential+subtopos">essential subtopos</a> / <a class="existingWikiWord" href="/nlab/show/level+of+a+topos">level of a topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+connected+topos">locally connected topos</a> / <a class="existingWikiWord" href="/nlab/show/locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+topos">connected topos</a> / <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/totally+connected+topos">totally connected topos</a> / <a class="existingWikiWord" href="/nlab/show/totally+connected+%28%E2%88%9E%2C1%29-topos">totally connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/local+topos">local topos</a> / <a class="existingWikiWord" href="/nlab/show/local+%28%E2%88%9E%2C1%29-topos">local (∞,1)-topos</a>.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cohesive+topos">cohesive topos</a> / <a class="existingWikiWord" href="/nlab/show/cohesive+%28%E2%88%9E%2C1%29-topos">cohesive (∞,1)-topos</a></p> </li> </ul> <h2 id="references">References</h2> <p>Like many other things, it all started as an exercise in</p> <ul> <li id="SGA4"><a class="existingWikiWord" href="/nlab/show/M.+Artin">M. Artin</a>, <a class="existingWikiWord" href="/nlab/show/A.+Grothendieck">A. Grothendieck</a>, <a class="existingWikiWord" href="/nlab/show/J.+L.+Verdier">J. L. Verdier</a>, <em>Théorie des Topos et Cohomologie Etale des Schémas (<a class="existingWikiWord" href="/nlab/show/SGA4">SGA4</a>)</em>, LNM <strong>269</strong> Springer Heidelberg 1972. (exposé IV, ex.7.6, pp.414-417)</li> </ul> <p>Speaking of exercises, consider the results of <a class="existingWikiWord" href="/nlab/show/Jan+Erik+Roos">Roos</a> on essential points reported in exercise 7.3 of</p> <ul> <li id="JTT77"><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, <em>Topos Theory</em> , Academic Press New York 1977. (Dover reprint 2014, pp.254f)</li> </ul> <p>The case of sheaves valued in <a class="existingWikiWord" href="/nlab/show/FinSet">FinSet</a> is considered in</p> <ul> <li>J. Haigh, <em>Essential geometric morphisms between toposes of finite sets</em> , Math. Proc. Phil. Soc. <strong>87</strong> (1980) pp.21-24.</li> </ul> <p>The standard reference for <em>essential localizations</em> <sup id="fnref:1"><a href="#fn:1" rel="footnote">1</a></sup>, aka <a class="existingWikiWord" href="/nlab/show/level+of+a+topos">levels</a>, is</p> <ul> <li id="KL89"><a class="existingWikiWord" href="/nlab/show/G.+M.+Kelly">G. M. Kelly</a>, <a class="existingWikiWord" href="/nlab/show/F.+W.+Lawvere">F. W. Lawvere</a>, <em>On the Complete Lattice of Essential Localizations</em> , Bull. Soc. Math. de Belgique <strong>XLI</strong> (1989) 289-319 [<a class="existingWikiWord" href="/nlab/files/Kelly-Lawvere_EssentialLocalizations.pdf" title="pdf">pdf</a>]</li> </ul> <p>For more on this see also</p> <ul> <li id="Lima15"><a class="existingWikiWord" href="/nlab/show/Guilherme+Frederico+Lima">Guilherme Frederico Lima</a>, <em>From Essential Inclusions to Local Geometric Morphisms</em>, talk at <a href="https://indico.math.cnrs.fr/event/747/">Topos à l’IHES</a>, November 2015, Paris (<a href="https://www.youtube.com/watch?v=YsoGN91Rh_s">video</a>)</li> </ul> <p>The definition of essential geometric morphisms appears before Lemma A.4.1.5 in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, <em><a class="existingWikiWord" href="/nlab/show/Sketches+of+an+Elephant">Sketches of an Elephant</a> vol. I</em> , Oxford UP 2002.</li> </ul> <p>Connected surjective and local geometric morphisms are discussed in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Peter+Johnstone">Peter Johnstone</a>, <a class="existingWikiWord" href="/nlab/show/Ieke+Moerdijk">Ieke Moerdijk</a>, <em>Local maps of toposes</em> , Proceedings London Mathematical Society <strong>58</strong> (1989), pp.281-305.</li> </ul> <p>Further refinements are in</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Bill+Lawvere">Bill Lawvere</a>, <em>Axiomatic cohesion</em> Theory and Applications of Categories, Vol. 19, No. 3, 2007, pp. 41–49. (<a href="http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf">pdf</a>)</li> </ul> <div class="footnotes"><hr /><ol><li id="fn:1"> <p>See at <a class="existingWikiWord" href="/nlab/show/Aufhebung">Aufhebung</a> for further references on essential localizations. <a href="#fnref:1" rev="footnote">↩</a></p> </li></ol></div></body></html> </div> <div class="revisedby"> <p> Last revised on March 27, 2023 at 07:20:19. See the <a href="/nlab/history/essential+geometric+morphism" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/essential+geometric+morphism" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/759/#Item_10">Discuss</a><span class="backintime"><a href="/nlab/revision/essential+geometric+morphism/30" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/essential+geometric+morphism" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/essential+geometric+morphism" accesskey="S" class="navlink" id="history" rel="nofollow">History (30 revisions)</a> <a href="/nlab/show/essential+geometric+morphism/cite" style="color: black">Cite</a> <a href="/nlab/print/essential+geometric+morphism" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/essential+geometric+morphism" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>