CINXE.COM

Rotations in 4-dimensional Euclidean space - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Rotations in 4-dimensional Euclidean space - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"69b50eaa-3074-4bbb-91a9-9332912c3b56","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Rotations_in_4-dimensional_Euclidean_space","wgTitle":"Rotations in 4-dimensional Euclidean space","wgCurRevisionId":1256849856,"wgRevisionId":1256849856,"wgArticleId":2307854,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Use dmy dates from January 2020","Four-dimensional geometry","Quaternions","Rotation"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Rotations_in_4-dimensional_Euclidean_space","wgRelevantArticleId":2307854,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[ ],"wgRestrictionMove":[],"wgRedirectedFrom":"SO(4)","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgInternalRedirectTargetUrl":"/wiki/Rotations_in_4-dimensional_Euclidean_space","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q4048844","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform", "platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","mediawiki.page.gallery.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","ext.tmh.player","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Rotations in 4-dimensional Euclidean space - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Rotations_in_4-dimensional_Euclidean_space"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Rotations_in_4-dimensional_Euclidean_space"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Rotations_in_4-dimensional_Euclidean_space rootpage-Rotations_in_4-dimensional_Euclidean_space skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Rotations+in+4-dimensional+Euclidean+space" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Rotations+in+4-dimensional+Euclidean+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Rotations+in+4-dimensional+Euclidean+space" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Rotations+in+4-dimensional+Euclidean+space" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Geometry_of_4D_rotations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Geometry_of_4D_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Geometry of 4D rotations</span> </div> </a> <button aria-controls="toc-Geometry_of_4D_rotations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Geometry of 4D rotations subsection</span> </button> <ul id="toc-Geometry_of_4D_rotations-sublist" class="vector-toc-list"> <li id="toc-Simple_rotations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Simple_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Simple rotations</span> </div> </a> <ul id="toc-Simple_rotations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Double_rotations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Double_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Double rotations</span> </div> </a> <ul id="toc-Double_rotations-sublist" class="vector-toc-list"> <li id="toc-Isoclinic_rotations" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Isoclinic_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2.1</span> <span>Isoclinic rotations</span> </div> </a> <ul id="toc-Isoclinic_rotations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Group_structure_of_SO(4)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Group_structure_of_SO(4)"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Group structure of SO(4)</span> </div> </a> <ul id="toc-Group_structure_of_SO(4)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Special_property_of_SO(4)_among_rotation_groups_in_general" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Special_property_of_SO(4)_among_rotation_groups_in_general"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Special property of SO(4) among rotation groups in general</span> </div> </a> <ul id="toc-Special_property_of_SO(4)_among_rotation_groups_in_general-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Algebra_of_4D_rotations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Algebra_of_4D_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Algebra of 4D rotations</span> </div> </a> <button aria-controls="toc-Algebra_of_4D_rotations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Algebra of 4D rotations subsection</span> </button> <ul id="toc-Algebra_of_4D_rotations-sublist" class="vector-toc-list"> <li id="toc-Isoclinic_decomposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isoclinic_decomposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Isoclinic decomposition</span> </div> </a> <ul id="toc-Isoclinic_decomposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Relation_to_quaternions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relation_to_quaternions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Relation to quaternions</span> </div> </a> <ul id="toc-Relation_to_quaternions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_eigenvalues_of_4D_rotation_matrices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_eigenvalues_of_4D_rotation_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>The eigenvalues of 4D rotation matrices</span> </div> </a> <ul id="toc-The_eigenvalues_of_4D_rotation_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_Euler–Rodrigues_formula_for_3D_rotations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Euler–Rodrigues_formula_for_3D_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>The Euler–Rodrigues formula for 3D rotations</span> </div> </a> <ul id="toc-The_Euler–Rodrigues_formula_for_3D_rotations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hopf_coordinates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hopf_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.5</span> <span>Hopf coordinates</span> </div> </a> <ul id="toc-Hopf_coordinates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Visualization_of_4D_rotations" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Visualization_of_4D_rotations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Visualization of 4D rotations</span> </div> </a> <ul id="toc-Visualization_of_4D_rotations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generating_4D_rotation_matrices" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generating_4D_rotation_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Generating 4D rotation matrices</span> </div> </a> <ul id="toc-Generating_4D_rotation_matrices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Rotations in 4-dimensional Euclidean space</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 7 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-7" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">7 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Rotaciones_en_el_espacio_eucl%C3%ADdeo_4-dimensional" title="Rotaciones en el espacio euclídeo 4-dimensional – Spanish" lang="es" hreflang="es" data-title="Rotaciones en el espacio euclídeo 4-dimensional" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Rotation_en_quatre_dimensions" title="Rotation en quatre dimensions – French" lang="fr" hreflang="fr" data-title="Rotation en quatre dimensions" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/4%EC%B0%A8%EC%9B%90_%ED%9A%8C%EC%A0%84%EA%B5%B0" title="4차원 회전군 – Korean" lang="ko" hreflang="ko" data-title="4차원 회전군" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9A%E0%A4%A4%E0%A5%81%E0%A4%B0%E0%A5%8D%E0%A4%B5%E0%A4%BF%E0%A4%AE_%E0%A4%AF%E0%A5%82%E0%A4%95%E0%A5%8D%E0%A4%B2%E0%A4%BF%E0%A4%A1%E0%A5%80%E0%A4%A8_%E0%A4%B8%E0%A4%AE%E0%A4%B7%E0%A5%8D%E0%A4%9F%E0%A4%BF_%E0%A4%AE%E0%A5%87%E0%A4%82_%E0%A4%98%E0%A5%82%E0%A4%B0%E0%A5%8D%E0%A4%A3%E0%A4%A8" title="चतुर्विम यूक्लिडीन समष्टि में घूर्णन – Hindi" lang="hi" hreflang="hi" data-title="चतुर्विम यूक्लिडीन समष्टि में घूर्णन" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Rota%C8%9Bie_%C3%AEn_spa%C8%9Biul_euclidian_cvadridimensional" title="Rotație în spațiul euclidian cvadridimensional – Romanian" lang="ro" hreflang="ro" data-title="Rotație în spațiul euclidian cvadridimensional" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/SO(4)" title="SO(4) – Russian" lang="ru" hreflang="ru" data-title="SO(4)" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/SO(4)" title="SO(4) – Ukrainian" lang="uk" hreflang="uk" data-title="SO(4)" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4048844#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Rotations_in_4-dimensional_Euclidean_space" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Rotations_in_4-dimensional_Euclidean_space" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Rotations_in_4-dimensional_Euclidean_space"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Rotations_in_4-dimensional_Euclidean_space"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Rotations_in_4-dimensional_Euclidean_space" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Rotations_in_4-dimensional_Euclidean_space" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;oldid=1256849856" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Rotations_in_4-dimensional_Euclidean_space&amp;id=1256849856&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRotations_in_4-dimensional_Euclidean_space"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRotations_in_4-dimensional_Euclidean_space"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Rotations_in_4-dimensional_Euclidean_space&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q4048844" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=SO(4)&amp;redirect=no" class="mw-redirect" title="SO(4)">SO(4)</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Special orthogonal group</div> <p> In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> of <b>rotations about a fixed point in <a href="/wiki/Four-dimensional_space" title="Four-dimensional space">four-dimensional Euclidean space</a></b> is denoted <b>SO(4)</b>. The name comes from the fact that it is the <a href="/wiki/Special_orthogonal_group" class="mw-redirect" title="Special orthogonal group">special orthogonal group</a> of order 4. </p><p>In this article <i><a href="/wiki/Rotation_(mathematics)" title="Rotation (mathematics)">rotation</a></i> means <i>rotational displacement</i>. For the sake of uniqueness, rotation angles are assumed to be in the segment <span class="texhtml">&#91;0, π&#93;</span> except where mentioned or clearly implied by the context otherwise. </p><p>A "fixed plane" is a plane for which every vector in the plane is unchanged after the rotation. An "invariant plane" is a plane for which every vector in the plane, although it may be affected by the rotation, remains in the plane after the rotation. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Geometry_of_4D_rotations">Geometry of 4D rotations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=1" title="Edit section: Geometry of 4D rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Four-dimensional rotations are of two types: simple rotations and double rotations. </p> <div class="mw-heading mw-heading3"><h3 id="Simple_rotations">Simple rotations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=2" title="Edit section: Simple rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A simple rotation <span class="texhtml mvar" style="font-style:italic;">R</span> about a rotation centre <span class="texhtml mvar" style="font-style:italic;">O</span> leaves an entire plane <span class="texhtml mvar" style="font-style:italic;">A</span> through <span class="texhtml mvar" style="font-style:italic;">O</span> (axis-plane) fixed. Every plane <span class="texhtml mvar" style="font-style:italic;">B</span> that is <a href="/wiki/Completely_orthogonal" class="mw-redirect" title="Completely orthogonal">completely orthogonal</a> to <span class="texhtml mvar" style="font-style:italic;">A</span> intersects <span class="texhtml mvar" style="font-style:italic;">A</span> in a certain point <span class="texhtml mvar" style="font-style:italic;">P</span>. For each such point <span class="texhtml mvar" style="font-style:italic;">P</span> is the centre of the 2D rotation induced by <span class="texhtml mvar" style="font-style:italic;">R</span> in <span class="texhtml mvar" style="font-style:italic;">B</span>. All these 2D rotations have the same rotation angle <span class="texhtml mvar" style="font-style:italic;">α</span>. </p><p><a href="/wiki/Ray_(geometry)" class="mw-redirect" title="Ray (geometry)">Half-lines</a> from <span class="texhtml mvar" style="font-style:italic;">O</span> in the axis-plane <span class="texhtml mvar" style="font-style:italic;">A</span> are not displaced; half-lines from <span class="texhtml mvar" style="font-style:italic;">O</span> orthogonal to <span class="texhtml mvar" style="font-style:italic;">A</span> are displaced through <span class="texhtml mvar" style="font-style:italic;">α</span>; all other half-lines are displaced through an angle less than <span class="texhtml mvar" style="font-style:italic;">α</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Double_rotations">Double rotations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=3" title="Edit section: Double rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Tesseract.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Tesseract.gif/220px-Tesseract.gif" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/5/55/Tesseract.gif 1.5x" data-file-width="256" data-file-height="256" /></a><figcaption><a href="/wiki/Tesseract" title="Tesseract">Tesseract</a>, in <a href="/wiki/Stereographic_projection" title="Stereographic projection">stereographic projection</a>, in <b>double rotation</b></figcaption></figure> <figure class="mw-default-size mw-halign-left" typeof="mw:File/Thumb"><a href="/wiki/File:Torus_vectors_oblique.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Torus_vectors_oblique.jpg/220px-Torus_vectors_oblique.jpg" decoding="async" width="220" height="187" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Torus_vectors_oblique.jpg/330px-Torus_vectors_oblique.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b4/Torus_vectors_oblique.jpg/440px-Torus_vectors_oblique.jpg 2x" data-file-width="2038" data-file-height="1730" /></a><figcaption>A 4D <a href="/wiki/Clifford_torus" title="Clifford torus">Clifford torus</a> stereographically projected into 3D looks like a <a href="/wiki/Torus" title="Torus">torus</a>, and a double rotation can be seen as a helical path on that torus. For a rotation whose two rotation angles have a rational ratio, the paths will eventually reconnect; while for an irrational ratio they will not. An isoclinic rotation will form a <a href="/wiki/Villarceau_circle" class="mw-redirect" title="Villarceau circle">Villarceau circle</a> on the torus, while a simple rotation will form a circle parallel or perpendicular to the central axis.<sup id="cite_ref-FOOTNOTEDorst201914−166.2._Isoclinic_Rotations_in_4D_1-0" class="reference"><a href="#cite_note-FOOTNOTEDorst201914−166.2._Isoclinic_Rotations_in_4D-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <p>For each rotation <span class="texhtml mvar" style="font-style:italic;">R</span> of 4-space (fixing the origin), there is at least one pair of <a href="/wiki/Orthogonality" title="Orthogonality">orthogonal</a> 2-planes <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> each of which is invariant and whose direct sum <span class="texhtml"><i>A</i> ⊕ <i>B</i></span> is all of 4-space. Hence <span class="texhtml mvar" style="font-style:italic;">R</span> operating on either of these planes produces an ordinary rotation of that plane. For almost all <span class="texhtml mvar" style="font-style:italic;">R</span> (all of the 6-dimensional set of rotations except for a 3-dimensional subset), the rotation angles <span class="texhtml mvar" style="font-style:italic;">α</span> in plane <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">β</span> in plane <span class="texhtml mvar" style="font-style:italic;">B</span> – both assumed to be nonzero – are different. The unequal rotation angles <span class="texhtml mvar" style="font-style:italic;">α</span> and <span class="texhtml mvar" style="font-style:italic;">β</span> satisfying <span class="texhtml">−π &lt; <i>α</i></span>, <span class="texhtml"><i>β</i> &lt; π</span> are almost<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> uniquely determined by <span class="texhtml mvar" style="font-style:italic;">R</span>. Assuming that 4-space is oriented, then the orientations of the 2-planes <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> can be chosen consistent with this orientation in two ways. If the rotation angles are unequal (<span class="texhtml"><i>α</i> ≠ <i>β</i></span>), <span class="texhtml mvar" style="font-style:italic;">R</span> is sometimes termed a "double rotation". </p><p>In that case of a double rotation, <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are the only pair of invariant planes, and <a href="/wiki/Ray_(geometry)" class="mw-redirect" title="Ray (geometry)">half-lines</a> from the origin in <span class="texhtml mvar" style="font-style:italic;">A</span>, <span class="texhtml mvar" style="font-style:italic;">B</span> are displaced through <span class="texhtml mvar" style="font-style:italic;">α</span> and <span class="texhtml mvar" style="font-style:italic;">β</span> respectively, and half-lines from the origin not in <span class="texhtml mvar" style="font-style:italic;">A</span> or <span class="texhtml mvar" style="font-style:italic;">B</span> are displaced through angles strictly between <span class="texhtml mvar" style="font-style:italic;">α</span> and <span class="texhtml mvar" style="font-style:italic;">β</span>. </p> <div class="mw-heading mw-heading4"><h4 id="Isoclinic_rotations">Isoclinic rotations</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=4" title="Edit section: Isoclinic rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the rotation angles of a double rotation are equal then there are infinitely many <a href="/wiki/Invariant_(mathematics)" title="Invariant (mathematics)">invariant</a> planes instead of just two, and all <a href="/wiki/Ray_(geometry)" class="mw-redirect" title="Ray (geometry)">half-lines</a> from <span class="texhtml mvar" style="font-style:italic;">O</span> are displaced through the same angle. Such rotations are called <b>isoclinic</b> or <b>equiangular rotations</b>, or <b>Clifford displacements</b>. Beware: not all planes through <span class="texhtml mvar" style="font-style:italic;">O</span> are invariant under isoclinic rotations; only planes that are spanned by a half-line and the corresponding displaced half-lines are invariant.<sup id="cite_ref-FOOTNOTEKimRote20168–10Relations_to_Clifford_Parallelism_3-0" class="reference"><a href="#cite_note-FOOTNOTEKimRote20168–10Relations_to_Clifford_Parallelism-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Assuming that a fixed orientation has been chosen for 4-dimensional space, isoclinic 4D rotations may be put into two categories. To see this, consider an isoclinic rotation <span class="texhtml mvar" style="font-style:italic;">R</span>, and take an orientation-consistent ordered set <span class="texhtml"><i>OU</i>, <i>OX</i>, <i>OY</i>, <i>OZ</i></span> of mutually perpendicular half-lines at <span class="texhtml mvar" style="font-style:italic;">O</span> (denoted as <span class="texhtml mvar" style="font-style:italic;">OUXYZ</span>) such that <span class="texhtml mvar" style="font-style:italic;">OU</span> and <span class="texhtml mvar" style="font-style:italic;">OX</span> span an invariant plane, and therefore <span class="texhtml mvar" style="font-style:italic;">OY</span> and <span class="texhtml mvar" style="font-style:italic;">OZ</span> also span an invariant plane. Now assume that only the rotation angle <span class="texhtml mvar" style="font-style:italic;">α</span> is specified. Then there are in general four isoclinic rotations in planes <span class="texhtml mvar" style="font-style:italic;">OUX</span> and <span class="texhtml mvar" style="font-style:italic;">OYZ</span> with rotation angle <span class="texhtml mvar" style="font-style:italic;">α</span>, depending on the rotation senses in <span class="texhtml mvar" style="font-style:italic;">OUX</span> and <span class="texhtml mvar" style="font-style:italic;">OYZ</span>. </p><p>We make the convention that the rotation senses from <span class="texhtml mvar" style="font-style:italic;">OU</span> to <span class="texhtml mvar" style="font-style:italic;">OX</span> and from <span class="texhtml mvar" style="font-style:italic;">OY</span> to <span class="texhtml mvar" style="font-style:italic;">OZ</span> are reckoned positive. Then we have the four rotations <span class="texhtml"><i>R</i><sub>1</sub> = (+<i>α</i>, +<i>α</i>)</span>, <span class="texhtml"><i>R</i><sub>2</sub> = (−<i>α</i>, −<i>α</i>)</span>, <span class="texhtml"><i>R</i><sub>3</sub> = (+<i>α</i>, −<i>α</i>)</span> and <span class="texhtml"><i>R</i><sub>4</sub> = (−<i>α</i>, +<i>α</i>)</span>. <span class="texhtml"><i>R</i><sub>1</sub></span> and <span class="texhtml"><i>R</i><sub>2</sub></span> are each other's <a href="/wiki/Inverse_function" title="Inverse function">inverses</a>; so are <span class="texhtml"><i>R</i><sub>3</sub></span> and <span class="texhtml"><i>R</i><sub>4</sub></span>. As long as <span class="texhtml mvar" style="font-style:italic;">α</span> lies between 0 and <span class="texhtml mvar" style="font-style:italic;">π</span>, these four rotations will be distinct. </p><p>Isoclinic rotations with like signs are denoted as <i>left-isoclinic</i>; those with opposite signs as <i>right-isoclinic</i>. Left- and right-isoclinic rotations are represented respectively by left- and right-multiplication by unit quaternions; see the paragraph "Relation to quaternions" below. </p><p>The four rotations are pairwise different except if <span class="texhtml"><i>α</i> = 0</span> or <span class="texhtml"><i>α</i> = π</span>. The angle <span class="texhtml"><i>α</i> = 0</span> corresponds to the identity rotation; <span class="texhtml"><i>α</i> = π</span> corresponds to the <a href="/wiki/Inversion_in_a_point" class="mw-redirect" title="Inversion in a point">central inversion</a>, given by the negative of the identity matrix. These two elements of SO(4) are the only ones that are simultaneously left- and right-isoclinic. </p><p>Left- and right-isocliny defined as above seem to depend on which specific isoclinic rotation was selected. However, when another isoclinic rotation <span class="texhtml mvar" style="font-style:italic;">R′</span> with its own axes <span class="texhtml mvar" style="font-style:italic;">OU′</span>, <span class="texhtml mvar" style="font-style:italic;">OX′</span>, <span class="texhtml mvar" style="font-style:italic;">OY′</span>, <span class="texhtml mvar" style="font-style:italic;">OZ′</span> is selected, then one can always choose the <a href="/wiki/Even_permutation" class="mw-redirect" title="Even permutation">order</a> of <span class="texhtml mvar" style="font-style:italic;">U′</span>, <span class="texhtml mvar" style="font-style:italic;">X′</span>, <span class="texhtml mvar" style="font-style:italic;">Y′</span>, <span class="texhtml mvar" style="font-style:italic;">Z′</span> such that <span class="texhtml mvar" style="font-style:italic;">OUXYZ</span> can be transformed into <span class="texhtml mvar" style="font-style:italic;">OU′X′Y′Z′</span> by a rotation rather than by a rotation-reflection (that is, so that the ordered basis <span class="texhtml mvar" style="font-style:italic;">OU′</span>, <span class="texhtml mvar" style="font-style:italic;">OX′</span>, <span class="texhtml mvar" style="font-style:italic;">OY′</span>, <span class="texhtml mvar" style="font-style:italic;">OZ′</span> is also consistent with the same fixed choice of orientation as <span class="texhtml mvar" style="font-style:italic;">OU</span>, <span class="texhtml mvar" style="font-style:italic;">OX</span>, <span class="texhtml mvar" style="font-style:italic;">OY</span>, <span class="texhtml mvar" style="font-style:italic;">OZ</span>). Therefore, once one has selected an orientation (that is, a system <span class="texhtml mvar" style="font-style:italic;">OUXYZ</span> of axes that is universally denoted as right-handed), one can determine the left or right character of a specific isoclinic rotation. </p> <div class="mw-heading mw-heading3"><h3 id="Group_structure_of_SO(4)"><span id="Group_structure_of_SO.284.29"></span>Group structure of SO(4)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=5" title="Edit section: Group structure of SO(4)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>SO(4) is a <a href="/wiki/Noncommutative" class="mw-redirect" title="Noncommutative">noncommutative</a> <a href="/wiki/Compact_space" title="Compact space">compact</a> 6-<a href="/wiki/Dimension#Manifolds" title="Dimension">dimensional</a> <a href="/wiki/Lie_group" title="Lie group">Lie group</a>. </p><p>Each plane through the rotation centre <span class="texhtml mvar" style="font-style:italic;">O</span> is the axis-plane of a <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutative</a> <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to SO(2). All these subgroups are mutually <a href="/wiki/Conjugation_of_isometries_in_Euclidean_space" title="Conjugation of isometries in Euclidean space">conjugate</a> in SO(4). </p><p>Each pair of completely <a href="/wiki/Orthogonality" title="Orthogonality">orthogonal</a> planes through <span class="texhtml mvar" style="font-style:italic;">O</span> is the pair of <a href="/wiki/Invariant_(mathematics)" title="Invariant (mathematics)">invariant</a> planes of a commutative subgroup of SO(4) isomorphic to <span class="nowrap">SO(2) × SO(2)</span>. </p><p>These groups are <a href="/wiki/Maximal_torus" title="Maximal torus">maximal tori</a> of SO(4), which are all mutually conjugate in SO(4). See also <a href="/wiki/Clifford_torus" title="Clifford torus">Clifford torus</a>. </p><p>All left-isoclinic rotations form a noncommutative subgroup <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> of SO(4), which is isomorphic to the <a href="/wiki/Multiplicative_group" title="Multiplicative group">multiplicative group</a> <span class="texhtml"><i>S</i><sup>3</sup></span> of unit <a href="/wiki/Quaternion" title="Quaternion">quaternions</a>. All right-isoclinic rotations likewise form a subgroup <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span> of SO(4) isomorphic to <span class="texhtml"><i>S</i><sup>3</sup></span>. Both <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> and <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span> are maximal subgroups of SO(4). </p><p>Each left-isoclinic rotation <a href="/wiki/Commutative" class="mw-redirect" title="Commutative">commutes</a> with each right-isoclinic rotation. This implies that there exists a <a href="/wiki/Direct_product_of_groups" title="Direct product of groups">direct product</a> <span class="nowrap"><span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub> × <i>S</i><sup>3</sup><sub>R</sub></span></span> with <a href="/wiki/Normal_subgroup" title="Normal subgroup">normal subgroups</a> <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> and <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span>; both of the corresponding <a href="/wiki/Factor_group" class="mw-redirect" title="Factor group">factor groups</a> are isomorphic to the other factor of the direct product, i.e. isomorphic to <span class="texhtml"><i>S</i><sup>3</sup></span>. (This is not SO(4) or a subgroup of it, because <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> and <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span> are not disjoint: the identity <span class="texhtml mvar" style="font-style:italic;">I</span> and the central inversion <span class="texhtml">−<i>I</i></span> each belong to both <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> and <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span>.) </p><p>Each 4D rotation <span class="texhtml mvar" style="font-style:italic;">A</span> is in two ways the product of left- and right-isoclinic rotations <span class="texhtml"><i>A</i><sub>L</sub></span> and <span class="texhtml"><i>A</i><sub>R</sub></span>. <span class="texhtml"><i>A</i><sub>L</sub></span> and <span class="texhtml"><i>A</i><sub>R</sub></span> are together determined up to the central inversion, i.e. when both <span class="texhtml"><i>A</i><sub>L</sub></span> and <span class="texhtml"><i>A</i><sub>R</sub></span> are multiplied by the central inversion their product is <span class="texhtml mvar" style="font-style:italic;">A</span> again. </p><p>This implies that <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub> × <i>S</i><sup>3</sup><sub>R</sub></span> is the <a href="/wiki/Universal_covering_group" class="mw-redirect" title="Universal covering group">universal covering group</a> of SO(4) — its unique <a href="/wiki/Double_covering_group" class="mw-redirect" title="Double covering group">double cover</a> — and that <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> and <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span> are normal subgroups of SO(4). The identity rotation <span class="texhtml mvar" style="font-style:italic;">I</span> and the central inversion <span class="texhtml">−<i>I</i></span> form a group <span class="texhtml">C<sub>2</sub></span> of order 2, which is the <a href="/wiki/Center_of_a_group" class="mw-redirect" title="Center of a group">centre</a> of SO(4) and of both <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> and <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span>. The centre of a group is a normal subgroup of that group. The factor group of C<sub>2</sub> in SO(4) is isomorphic to SO(3)&#160;×&#160;SO(3). The factor groups of <span class="texhtml"><i>S</i></span><sup>3</sup><sub>L</sub> by C<sub>2</sub> and of <span class="texhtml"><i>S</i></span><sup>3</sup><sub>R</sub> by C<sub>2</sub> are each isomorphic to SO(3). Similarly, the factor groups of SO(4) by <span class="texhtml"><i>S</i></span><sup>3</sup><sub>L</sub> and of SO(4) by <span class="texhtml"><i>S</i></span><sup>3</sup><sub>R</sub> are each isomorphic to SO(3). </p><p>The topology of SO(4) is the same as that of the Lie group <span class="nowrap">SO(3) × Spin(3) = SO(3) × SU(2)</span>, namely the space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} ^{3}\times \mathbb {S} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} ^{3}\times \mathbb {S} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7cd76d82b660af056ef59dc61f8c73037a4ec439" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.662ex; height:2.676ex;" alt="{\displaystyle \mathbb {P} ^{3}\times \mathbb {S} ^{3}}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {P} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {P} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fb80175bc622b3936c7a0438fc690b2ec410b4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.475ex; height:2.676ex;" alt="{\displaystyle \mathbb {P} ^{3}}"></span> is the <a href="/wiki/Real_projective_space" title="Real projective space">real projective space</a> of dimension 3 and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {S} ^{3}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {S} ^{3}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9697d2cff6f93d773215ab1e21a4c047f6aab6f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.347ex; height:2.676ex;" alt="{\displaystyle \mathbb {S} ^{3}}"></span> is the <a href="/wiki/3-sphere" title="3-sphere">3-sphere</a>. However, it is noteworthy that, as a Lie group, SO(4) is not a direct product of Lie groups, and so it is not isomorphic to <span class="nowrap">SO(3) × Spin(3) = SO(3) × SU(2)</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Special_property_of_SO(4)_among_rotation_groups_in_general"><span id="Special_property_of_SO.284.29_among_rotation_groups_in_general"></span>Special property of SO(4) among rotation groups in general</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=6" title="Edit section: Special property of SO(4) among rotation groups in general"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The odd-dimensional rotation groups do not contain the central inversion and are <a href="/wiki/Simple_group" title="Simple group">simple groups</a>. </p><p>The even-dimensional rotation groups do contain the central inversion <span class="texhtml">−<i>I</i></span> and have the group <span class="nowrap">C<sub>2</sub> = {<span class="texhtml"><i>I</i></span>, <span class="texhtml">−<i>I</i></span>}</span> as their <a href="/wiki/Center_of_a_group" class="mw-redirect" title="Center of a group">centre</a>. For even n ≥ 6, SO(n) is almost simple in that the <a href="/wiki/Factor_group" class="mw-redirect" title="Factor group">factor group</a> SO(n)/C<sub>2</sub> of SO(n) by its centre is a simple group. </p><p>SO(4) is different: there is no <a href="/wiki/Conjugation_of_isometries_in_Euclidean_space" title="Conjugation of isometries in Euclidean space">conjugation</a> by any element of SO(4) that transforms left- and right-isoclinic rotations into each other. <a href="/wiki/Reflection_(mathematics)" title="Reflection (mathematics)">Reflections</a> transform a left-isoclinic rotation into a right-isoclinic one by conjugation, and vice versa. This implies that under the group O(4) of <i>all</i> isometries with fixed point <span class="texhtml mvar" style="font-style:italic;">O</span> the distinct subgroups <span class="texhtml"><i>S</i><sup>3</sup><sub>L</sub></span> and <span class="texhtml"><i>S</i><sup>3</sup><sub>R</sub></span> are conjugate to each other, and so cannot be normal subgroups of O(4). The 5D rotation group SO(5) and all higher rotation groups contain subgroups isomorphic to O(4). Like SO(4), all even-dimensional rotation groups contain isoclinic rotations. But unlike SO(4), in SO(6) and all higher even-dimensional rotation groups any two isoclinic rotations through the same angle are conjugate. The set of all isoclinic rotations is not even a subgroup of SO(2<span class="texhtml"><i>N</i></span>), let alone a normal subgroup. </p> <div class="mw-heading mw-heading2"><h2 id="Algebra_of_4D_rotations">Algebra of 4D rotations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=7" title="Edit section: Algebra of 4D rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>SO(4) is commonly identified with the group of <a href="/wiki/Orientation_(vector_space)" title="Orientation (vector space)">orientation</a>-preserving <a href="/wiki/Isometry" title="Isometry">isometric</a> <a href="/wiki/Linear" class="mw-redirect" title="Linear">linear</a> mappings of a 4D <a href="/wiki/Vector_space" title="Vector space">vector space</a> with <a href="/wiki/Inner_product" class="mw-redirect" title="Inner product">inner product</a> over the <a href="/wiki/Real_number" title="Real number">real numbers</a> onto itself. </p><p>With respect to an <a href="/wiki/Orthonormal" class="mw-redirect" title="Orthonormal">orthonormal</a> <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> in such a space SO(4) is represented as the group of real 4th-order <a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">orthogonal matrices</a> with <a href="/wiki/Determinant" title="Determinant">determinant</a> +1.<sup id="cite_ref-FOOTNOTEKimRote2016§5_Four_Dimensional_Rotations_4-0" class="reference"><a href="#cite_note-FOOTNOTEKimRote2016§5_Four_Dimensional_Rotations-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Isoclinic_decomposition">Isoclinic decomposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=8" title="Edit section: Isoclinic decomposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A 4D rotation given by its matrix is decomposed into a left-isoclinic and a right-isoclinic rotation<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> as follows: </p><p>Let </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A={\begin{pmatrix}a_{00}&amp;a_{01}&amp;a_{02}&amp;a_{03}\\a_{10}&amp;a_{11}&amp;a_{12}&amp;a_{13}\\a_{20}&amp;a_{21}&amp;a_{22}&amp;a_{23}\\a_{30}&amp;a_{31}&amp;a_{32}&amp;a_{33}\\\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>02</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>03</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A={\begin{pmatrix}a_{00}&amp;a_{01}&amp;a_{02}&amp;a_{03}\\a_{10}&amp;a_{11}&amp;a_{12}&amp;a_{13}\\a_{20}&amp;a_{21}&amp;a_{22}&amp;a_{23}\\a_{30}&amp;a_{31}&amp;a_{32}&amp;a_{33}\\\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c88e553116bc3cee8ee03045c789ffddd25e1078" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:29.052ex; height:12.509ex;" alt="{\displaystyle A={\begin{pmatrix}a_{00}&amp;a_{01}&amp;a_{02}&amp;a_{03}\\a_{10}&amp;a_{11}&amp;a_{12}&amp;a_{13}\\a_{20}&amp;a_{21}&amp;a_{22}&amp;a_{23}\\a_{30}&amp;a_{31}&amp;a_{32}&amp;a_{33}\\\end{pmatrix}}}"></span></dd></dl> <p>be its matrix with respect to an arbitrary orthonormal basis. </p><p>Calculate from this the so-called <i>associate matrix</i> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M={\frac {1}{4}}{\begin{pmatrix}a_{00}+a_{11}+a_{22}+a_{33}&amp;+a_{10}-a_{01}-a_{32}+a_{23}&amp;+a_{20}+a_{31}-a_{02}-a_{13}&amp;+a_{30}-a_{21}+a_{12}-a_{03}\\a_{10}-a_{01}+a_{32}-a_{23}&amp;-a_{00}-a_{11}+a_{22}+a_{33}&amp;+a_{30}-a_{21}-a_{12}+a_{03}&amp;-a_{20}-a_{31}-a_{02}-a_{13}\\a_{20}-a_{31}-a_{02}+a_{13}&amp;-a_{30}-a_{21}-a_{12}-a_{03}&amp;-a_{00}+a_{11}-a_{22}+a_{33}&amp;+a_{10}+a_{01}-a_{32}-a_{23}\\a_{30}+a_{21}-a_{12}-a_{03}&amp;+a_{20}-a_{31}+a_{02}-a_{13}&amp;-a_{10}-a_{01}-a_{32}-a_{23}&amp;-a_{00}+a_{11}+a_{22}-a_{33}\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>02</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>03</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>03</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>02</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>02</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>03</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> <mtd> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>03</mn> </mrow> </msub> </mtd> <mtd> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>02</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M={\frac {1}{4}}{\begin{pmatrix}a_{00}+a_{11}+a_{22}+a_{33}&amp;+a_{10}-a_{01}-a_{32}+a_{23}&amp;+a_{20}+a_{31}-a_{02}-a_{13}&amp;+a_{30}-a_{21}+a_{12}-a_{03}\\a_{10}-a_{01}+a_{32}-a_{23}&amp;-a_{00}-a_{11}+a_{22}+a_{33}&amp;+a_{30}-a_{21}-a_{12}+a_{03}&amp;-a_{20}-a_{31}-a_{02}-a_{13}\\a_{20}-a_{31}-a_{02}+a_{13}&amp;-a_{30}-a_{21}-a_{12}-a_{03}&amp;-a_{00}+a_{11}-a_{22}+a_{33}&amp;+a_{10}+a_{01}-a_{32}-a_{23}\\a_{30}+a_{21}-a_{12}-a_{03}&amp;+a_{20}-a_{31}+a_{02}-a_{13}&amp;-a_{10}-a_{01}-a_{32}-a_{23}&amp;-a_{00}+a_{11}+a_{22}-a_{33}\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e4e087bea216624642bd8ef04b065ebf24bca4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:108.531ex; height:12.509ex;" alt="{\displaystyle M={\frac {1}{4}}{\begin{pmatrix}a_{00}+a_{11}+a_{22}+a_{33}&amp;+a_{10}-a_{01}-a_{32}+a_{23}&amp;+a_{20}+a_{31}-a_{02}-a_{13}&amp;+a_{30}-a_{21}+a_{12}-a_{03}\\a_{10}-a_{01}+a_{32}-a_{23}&amp;-a_{00}-a_{11}+a_{22}+a_{33}&amp;+a_{30}-a_{21}-a_{12}+a_{03}&amp;-a_{20}-a_{31}-a_{02}-a_{13}\\a_{20}-a_{31}-a_{02}+a_{13}&amp;-a_{30}-a_{21}-a_{12}-a_{03}&amp;-a_{00}+a_{11}-a_{22}+a_{33}&amp;+a_{10}+a_{01}-a_{32}-a_{23}\\a_{30}+a_{21}-a_{12}-a_{03}&amp;+a_{20}-a_{31}+a_{02}-a_{13}&amp;-a_{10}-a_{01}-a_{32}-a_{23}&amp;-a_{00}+a_{11}+a_{22}-a_{33}\end{pmatrix}}}"></span></dd></dl> <p><span class="texhtml mvar" style="font-style:italic;">M</span> has <a href="/wiki/Rank_(linear_algebra)" title="Rank (linear algebra)">rank</a> one and is of unit <a href="/wiki/Euclidean_norm" class="mw-redirect" title="Euclidean norm">Euclidean norm</a> as a 16D vector if and only if <span class="texhtml mvar" style="font-style:italic;">A</span> is indeed a 4D rotation matrix. In this case there exist real numbers <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i>, <i>d</i></span> and <span class="texhtml"><i>p</i>, <i>q</i>, <i>r</i>, <i>s</i></span> such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M={\begin{pmatrix}ap&amp;aq&amp;ar&amp;as\\bp&amp;bq&amp;br&amp;bs\\cp&amp;cq&amp;cr&amp;cs\\dp&amp;dq&amp;dr&amp;ds\end{pmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> <mi>p</mi> </mtd> <mtd> <mi>a</mi> <mi>q</mi> </mtd> <mtd> <mi>a</mi> <mi>r</mi> </mtd> <mtd> <mi>a</mi> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> <mi>p</mi> </mtd> <mtd> <mi>b</mi> <mi>q</mi> </mtd> <mtd> <mi>b</mi> <mi>r</mi> </mtd> <mtd> <mi>b</mi> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> <mi>p</mi> </mtd> <mtd> <mi>c</mi> <mi>q</mi> </mtd> <mtd> <mi>c</mi> <mi>r</mi> </mtd> <mtd> <mi>c</mi> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mi>p</mi> </mtd> <mtd> <mi>d</mi> <mi>q</mi> </mtd> <mtd> <mi>d</mi> <mi>r</mi> </mtd> <mtd> <mi>d</mi> <mi>s</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M={\begin{pmatrix}ap&amp;aq&amp;ar&amp;as\\bp&amp;bq&amp;br&amp;bs\\cp&amp;cq&amp;cr&amp;cs\\dp&amp;dq&amp;dr&amp;ds\end{pmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41519e555861ef747f850e6491b3dec4f3aa4b85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:26.624ex; height:12.509ex;" alt="{\displaystyle M={\begin{pmatrix}ap&amp;aq&amp;ar&amp;as\\bp&amp;bq&amp;br&amp;bs\\cp&amp;cq&amp;cr&amp;cs\\dp&amp;dq&amp;dr&amp;ds\end{pmatrix}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (ap)^{2}+\cdots +(ds)^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(p^{2}+q^{2}+r^{2}+s^{2}\right)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>d</mi> <mi>s</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>q</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (ap)^{2}+\cdots +(ds)^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(p^{2}+q^{2}+r^{2}+s^{2}\right)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac080b9cab08cfc8f0e1cb7c525538af542965e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:65.806ex; height:3.343ex;" alt="{\displaystyle (ap)^{2}+\cdots +(ds)^{2}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(p^{2}+q^{2}+r^{2}+s^{2}\right)=1.}"></span></dd></dl> <p>There are exactly two sets of <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i>, <i>d</i></span> and <span class="texhtml"><i>p</i>, <i>q</i>, <i>r</i>, <i>s</i></span> such that <span class="texhtml"><i>a</i><sup>2</sup> + <i>b</i><sup>2</sup> + <i>c</i><sup>2</sup> + <i>d</i><sup>2</sup> = 1</span> and <span class="texhtml"><i>p</i><sup>2</sup> + <i>q</i><sup>2</sup> + <i>r</i><sup>2</sup> + <i>s</i><sup>2</sup> = 1</span>. They are each other's opposites. </p><p>The rotation matrix then equals </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}A&amp;={\begin{pmatrix}ap-bq-cr-ds&amp;-aq-bp+cs-dr&amp;-ar-bs-cp+dq&amp;-as+br-cq-dp\\bp+aq-dr+cs&amp;-bq+ap+ds+cr&amp;-br+as-dp-cq&amp;-bs-ar-dq+cp\\cp+dq+ar-bs&amp;-cq+dp-as-br&amp;-cr+ds+ap+bq&amp;-cs-dr+aq-bp\\dp-cq+br+as&amp;-dq-cp-bs+ar&amp;-dr-cs+bp-aq&amp;-ds+cr+bq+ap\end{pmatrix}}\\&amp;={\begin{pmatrix}a&amp;-b&amp;-c&amp;-d\\b&amp;\;\,\,a&amp;-d&amp;\;\,\,c\\c&amp;\;\,\,d&amp;\;\,\,a&amp;-b\\d&amp;-c&amp;\;\,\,b&amp;\;\,\,a\end{pmatrix}}{\begin{pmatrix}p&amp;-q&amp;-r&amp;-s\\q&amp;\;\,\,p&amp;\;\,\,s&amp;-r\\r&amp;-s&amp;\;\,\,p&amp;\;\,\,q\\s&amp;\;\,\,r&amp;-q&amp;\;\,\,p\end{pmatrix}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>s</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>p</mi> <mo>+</mo> <mi>c</mi> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>p</mi> <mo>+</mo> <mi>d</mi> <mi>q</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>s</mi> <mo>+</mo> <mi>b</mi> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> <mi>p</mi> <mo>+</mo> <mi>a</mi> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>r</mi> <mo>+</mo> <mi>c</mi> <mi>s</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>q</mi> <mo>+</mo> <mi>a</mi> <mi>p</mi> <mo>+</mo> <mi>d</mi> <mi>s</mi> <mo>+</mo> <mi>c</mi> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>r</mi> <mo>+</mo> <mi>a</mi> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>q</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>q</mi> <mo>+</mo> <mi>c</mi> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> <mi>p</mi> <mo>+</mo> <mi>d</mi> <mi>q</mi> <mo>+</mo> <mi>a</mi> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>s</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>q</mi> <mo>+</mo> <mi>d</mi> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>r</mi> <mo>+</mo> <mi>d</mi> <mi>s</mi> <mo>+</mo> <mi>a</mi> <mi>p</mi> <mo>+</mo> <mi>b</mi> <mi>q</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>r</mi> <mo>+</mo> <mi>a</mi> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>q</mi> <mo>+</mo> <mi>b</mi> <mi>r</mi> <mo>+</mo> <mi>a</mi> <mi>s</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>q</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>s</mi> <mo>+</mo> <mi>a</mi> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>s</mi> <mo>+</mo> <mi>b</mi> <mi>p</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>q</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>s</mi> <mo>+</mo> <mi>c</mi> <mi>r</mi> <mo>+</mo> <mi>b</mi> <mi>q</mi> <mo>+</mo> <mi>a</mi> <mi>p</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>c</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>d</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>b</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>p</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>s</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>p</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mi>s</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>p</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}A&amp;={\begin{pmatrix}ap-bq-cr-ds&amp;-aq-bp+cs-dr&amp;-ar-bs-cp+dq&amp;-as+br-cq-dp\\bp+aq-dr+cs&amp;-bq+ap+ds+cr&amp;-br+as-dp-cq&amp;-bs-ar-dq+cp\\cp+dq+ar-bs&amp;-cq+dp-as-br&amp;-cr+ds+ap+bq&amp;-cs-dr+aq-bp\\dp-cq+br+as&amp;-dq-cp-bs+ar&amp;-dr-cs+bp-aq&amp;-ds+cr+bq+ap\end{pmatrix}}\\&amp;={\begin{pmatrix}a&amp;-b&amp;-c&amp;-d\\b&amp;\;\,\,a&amp;-d&amp;\;\,\,c\\c&amp;\;\,\,d&amp;\;\,\,a&amp;-b\\d&amp;-c&amp;\;\,\,b&amp;\;\,\,a\end{pmatrix}}{\begin{pmatrix}p&amp;-q&amp;-r&amp;-s\\q&amp;\;\,\,p&amp;\;\,\,s&amp;-r\\r&amp;-s&amp;\;\,\,p&amp;\;\,\,q\\s&amp;\;\,\,r&amp;-q&amp;\;\,\,p\end{pmatrix}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8e127331a00ab81ff5fcea6d082d63e70fa1a1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.171ex; width:92.201ex; height:25.509ex;" alt="{\displaystyle {\begin{aligned}A&amp;={\begin{pmatrix}ap-bq-cr-ds&amp;-aq-bp+cs-dr&amp;-ar-bs-cp+dq&amp;-as+br-cq-dp\\bp+aq-dr+cs&amp;-bq+ap+ds+cr&amp;-br+as-dp-cq&amp;-bs-ar-dq+cp\\cp+dq+ar-bs&amp;-cq+dp-as-br&amp;-cr+ds+ap+bq&amp;-cs-dr+aq-bp\\dp-cq+br+as&amp;-dq-cp-bs+ar&amp;-dr-cs+bp-aq&amp;-ds+cr+bq+ap\end{pmatrix}}\\&amp;={\begin{pmatrix}a&amp;-b&amp;-c&amp;-d\\b&amp;\;\,\,a&amp;-d&amp;\;\,\,c\\c&amp;\;\,\,d&amp;\;\,\,a&amp;-b\\d&amp;-c&amp;\;\,\,b&amp;\;\,\,a\end{pmatrix}}{\begin{pmatrix}p&amp;-q&amp;-r&amp;-s\\q&amp;\;\,\,p&amp;\;\,\,s&amp;-r\\r&amp;-s&amp;\;\,\,p&amp;\;\,\,q\\s&amp;\;\,\,r&amp;-q&amp;\;\,\,p\end{pmatrix}}.\end{aligned}}}"></span></dd></dl> <p>This formula is due to Van Elfrinkhof (1897). </p><p>The first factor in this decomposition represents a left-isoclinic rotation, the second factor a right-isoclinic rotation. The factors are determined up to the negative 4th-order <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>, i.e. the central inversion. </p> <div class="mw-heading mw-heading3"><h3 id="Relation_to_quaternions">Relation to quaternions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=9" title="Edit section: Relation to quaternions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A point in 4-dimensional space with <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a> <span class="texhtml">(<i>u</i>, <i>x</i>, <i>y</i>, <i>z</i>)</span> may be represented by a <a href="/wiki/Quaternion" title="Quaternion">quaternion</a> <span class="texhtml"><i>P</i> = <i>u</i> + <i>xi</i> + <i>yj</i> + <i>zk</i></span>. </p><p>A left-isoclinic rotation is represented by left-multiplication by a unit quaternion <span class="texhtml"><i>Q</i><sub>L</sub> = <i>a</i> + <i>bi</i> + <i>cj</i> + <i>dk</i></span>. In matrix-vector language this is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}u'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}a&amp;-b&amp;-c&amp;-d\\b&amp;\;\,\,a&amp;-d&amp;\;\,\,c\\c&amp;\;\,\,d&amp;\;\,\,a&amp;-b\\d&amp;-c&amp;\;\,\,b&amp;\;\,\,a\end{pmatrix}}{\begin{pmatrix}u\\x\\y\\z\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>c</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>d</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>b</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>a</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>u</mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}u'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}a&amp;-b&amp;-c&amp;-d\\b&amp;\;\,\,a&amp;-d&amp;\;\,\,c\\c&amp;\;\,\,d&amp;\;\,\,a&amp;-b\\d&amp;-c&amp;\;\,\,b&amp;\;\,\,a\end{pmatrix}}{\begin{pmatrix}u\\x\\y\\z\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fd6c3b8aadd3555935b837fdc5c1081f7cec0fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:38.605ex; height:12.509ex;" alt="{\displaystyle {\begin{pmatrix}u&#039;\\x&#039;\\y&#039;\\z&#039;\end{pmatrix}}={\begin{pmatrix}a&amp;-b&amp;-c&amp;-d\\b&amp;\;\,\,a&amp;-d&amp;\;\,\,c\\c&amp;\;\,\,d&amp;\;\,\,a&amp;-b\\d&amp;-c&amp;\;\,\,b&amp;\;\,\,a\end{pmatrix}}{\begin{pmatrix}u\\x\\y\\z\end{pmatrix}}.}"></span></dd></dl> <p>Likewise, a right-isoclinic rotation is represented by right-multiplication by a unit quaternion <span class="texhtml"><i>Q</i><sub>R</sub> = <i>p</i> + <i>qi</i> + <i>rj</i> + <i>sk</i></span>, which is in matrix-vector form </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}u'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}p&amp;-q&amp;-r&amp;-s\\q&amp;\;\,\,p&amp;\;\,\,s&amp;-r\\r&amp;-s&amp;\;\,\,p&amp;\;\,\,q\\s&amp;\;\,\,r&amp;-q&amp;\;\,\,p\end{pmatrix}}{\begin{pmatrix}u\\x\\y\\z\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>p</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>s</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>r</mi> </mtd> </mtr> <mtr> <mtd> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>s</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>p</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>q</mi> </mtd> </mtr> <mtr> <mtd> <mi>s</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>r</mi> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>q</mi> </mtd> <mtd> <mspace width="thickmathspace" /> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mi>p</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>u</mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}u'\\x'\\y'\\z'\end{pmatrix}}={\begin{pmatrix}p&amp;-q&amp;-r&amp;-s\\q&amp;\;\,\,p&amp;\;\,\,s&amp;-r\\r&amp;-s&amp;\;\,\,p&amp;\;\,\,q\\s&amp;\;\,\,r&amp;-q&amp;\;\,\,p\end{pmatrix}}{\begin{pmatrix}u\\x\\y\\z\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcaf135cdf08f3c455223c644a540c9aef032e59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:38.356ex; height:12.509ex;" alt="{\displaystyle {\begin{pmatrix}u&#039;\\x&#039;\\y&#039;\\z&#039;\end{pmatrix}}={\begin{pmatrix}p&amp;-q&amp;-r&amp;-s\\q&amp;\;\,\,p&amp;\;\,\,s&amp;-r\\r&amp;-s&amp;\;\,\,p&amp;\;\,\,q\\s&amp;\;\,\,r&amp;-q&amp;\;\,\,p\end{pmatrix}}{\begin{pmatrix}u\\x\\y\\z\end{pmatrix}}.}"></span></dd></dl> <p>In the preceding section (<a href="#Isoclinic_decomposition">isoclinic decomposition</a>) it is shown how a general 4D rotation is split into left- and right-isoclinic factors. </p><p>In quaternion language Van Elfrinkhof's formula reads </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u'+x'i+y'j+z'k=(a+bi+cj+dk)(u+xi+yj+zk)(p+qi+rj+sk),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mo>&#x2032;</mo> </msup> <mo>+</mo> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mi>i</mi> <mo>+</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mi>j</mi> <mo>+</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mi>k</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>+</mo> <mi>c</mi> <mi>j</mi> <mo>+</mo> <mi>d</mi> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>+</mo> <mi>x</mi> <mi>i</mi> <mo>+</mo> <mi>y</mi> <mi>j</mi> <mo>+</mo> <mi>z</mi> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>p</mi> <mo>+</mo> <mi>q</mi> <mi>i</mi> <mo>+</mo> <mi>r</mi> <mi>j</mi> <mo>+</mo> <mi>s</mi> <mi>k</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u'+x'i+y'j+z'k=(a+bi+cj+dk)(u+xi+yj+zk)(p+qi+rj+sk),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d6fb3edfc262d1932dd3cffb60c16c905a4b58e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:76.525ex; height:3.009ex;" alt="{\displaystyle u&#039;+x&#039;i+y&#039;j+z&#039;k=(a+bi+cj+dk)(u+xi+yj+zk)(p+qi+rj+sk),}"></span></dd></dl> <p>or, in symbolic form, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P'=Q_{\mathrm {L} }PQ_{\mathrm {R} }.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mi>P</mi> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> </mrow> </mrow> </msub> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P'=Q_{\mathrm {L} }PQ_{\mathrm {R} }.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b4b683403342c9158001d8c5f2590d6f571f48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.762ex; height:2.843ex;" alt="{\displaystyle P&#039;=Q_{\mathrm {L} }PQ_{\mathrm {R} }.\,}"></span></dd></dl> <p>According to the German mathematician <a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a> this formula was already known to Cayley in 1854.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Quaternion multiplication is <a href="/wiki/Associative" class="mw-redirect" title="Associative">associative</a>. Therefore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P'=\left(Q_{\mathrm {L} }P\right)Q_{\mathrm {R} }=Q_{\mathrm {L} }\left(PQ_{\mathrm {R} }\right),\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mi>P</mi> </mrow> <mo>)</mo> </mrow> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">L</mi> </mrow> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>P</mi> <msub> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">R</mi> </mrow> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P'=\left(Q_{\mathrm {L} }P\right)Q_{\mathrm {R} }=Q_{\mathrm {L} }\left(PQ_{\mathrm {R} }\right),\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff5bb3a38cae4561ed9726c4b0bb9126d5c61f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.764ex; height:3.009ex;" alt="{\displaystyle P&#039;=\left(Q_{\mathrm {L} }P\right)Q_{\mathrm {R} }=Q_{\mathrm {L} }\left(PQ_{\mathrm {R} }\right),\,}"></span></dd></dl> <p>which shows that left-isoclinic and right-isoclinic rotations commute. </p> <div class="mw-heading mw-heading3"><h3 id="The_eigenvalues_of_4D_rotation_matrices">The eigenvalues of 4D rotation matrices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=10" title="Edit section: The eigenvalues of 4D rotation matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The four <a href="/wiki/Eigenvalue" class="mw-redirect" title="Eigenvalue">eigenvalues</a> of a 4D rotation matrix generally occur as two conjugate pairs of <a href="/wiki/Complex_numbers" class="mw-redirect" title="Complex numbers">complex numbers</a> of unit magnitude. If an eigenvalue is real, it must be ±1, since a rotation leaves the magnitude of a vector unchanged. The conjugate of that eigenvalue is also unity, yielding a pair of eigenvectors which define a fixed plane, and so the rotation is simple. In quaternion notation, a proper (i.e., non-inverting) rotation in SO(4) is a proper simple rotation if and only if the real parts of the unit quaternions <span class="texhtml"><i>Q</i><sub>L</sub></span> and <span class="texhtml"><i>Q</i><sub>R</sub></span> are equal in magnitude and have the same sign.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> If they are both zero, all eigenvalues of the rotation are unity, and the rotation is the null rotation. If the real parts of <span class="texhtml"><i>Q</i><sub>L</sub></span> and <span class="texhtml"><i>Q</i><sub>R</sub></span> are not equal then all eigenvalues are complex, and the rotation is a double rotation. </p> <div class="mw-heading mw-heading3"><h3 id="The_Euler–Rodrigues_formula_for_3D_rotations"><span id="The_Euler.E2.80.93Rodrigues_formula_for_3D_rotations"></span>The Euler–Rodrigues formula for 3D rotations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=11" title="Edit section: The Euler–Rodrigues formula for 3D rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Our ordinary 3D space is conveniently treated as the subspace with coordinate system 0XYZ of the 4D space with coordinate system UXYZ. Its <a href="/wiki/Rotation_group_SO(3)" class="mw-redirect" title="Rotation group SO(3)">rotation group SO(3)</a> is identified with the subgroup of SO(4) consisting of the matrices </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}1&amp;\,\,0&amp;\,\,0&amp;\,\,0\\0&amp;a_{11}&amp;a_{12}&amp;a_{13}\\0&amp;a_{21}&amp;a_{22}&amp;a_{23}\\0&amp;a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> <mtd> <mspace width="thinmathspace" /> <mspace width="thinmathspace" /> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}1&amp;\,\,0&amp;\,\,0&amp;\,\,0\\0&amp;a_{11}&amp;a_{12}&amp;a_{13}\\0&amp;a_{21}&amp;a_{22}&amp;a_{23}\\0&amp;a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bff252b2c151750e08bd21307a66c54d0f12d38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:22.913ex; height:12.509ex;" alt="{\displaystyle {\begin{pmatrix}1&amp;\,\,0&amp;\,\,0&amp;\,\,0\\0&amp;a_{11}&amp;a_{12}&amp;a_{13}\\0&amp;a_{21}&amp;a_{22}&amp;a_{23}\\0&amp;a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}.}"></span></dd></dl> <p>In Van Elfrinkhof's formula in the preceding subsection this restriction to three dimensions leads to <span class="texhtml"><i>p</i> = <i>a</i></span>, <span class="texhtml"><i>q</i> = −<i>b</i></span>, <span class="texhtml"><i>r</i> = −<i>c</i></span>, <span class="texhtml"><i>s</i> = −<i>d</i></span>, or in quaternion representation: <span class="texhtml"><i>Q</i><sub><i>R</i></sub> = <i>Q</i><sub><i>L</i></sub>′ = <i>Q</i><sub><i>L</i></sub><sup>−1</sup></span>. The 3D rotation matrix then becomes the <a href="/wiki/Euler%E2%80%93Rodrigues_formula" title="Euler–Rodrigues formula">Euler–Rodrigues formula</a> for 3D rotations </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}a_{11}&amp;a_{12}&amp;a_{13}\\a_{21}&amp;a_{22}&amp;a_{23}\\a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}={\begin{pmatrix}a^{2}+b^{2}-c^{2}-d^{2}&amp;2(bc-ad)&amp;2(bd+ac)\\2(bc+ad)&amp;a^{2}-b^{2}+c^{2}-d^{2}&amp;2(cd-ab)\\2(bd-ac)&amp;2(cd+ab)&amp;a^{2}-b^{2}-c^{2}+d^{2}\end{pmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>13</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>21</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>23</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>31</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>33</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>2</mn> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>d</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mn>2</mn> <mo stretchy="false">(</mo> <mi>b</mi> <mi>d</mi> <mo>+</mo> <mi>a</mi> <mi>c</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mo stretchy="false">(</mo> <mi>b</mi> <mi>c</mi> <mo>+</mo> <mi>a</mi> <mi>d</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mn>2</mn> <mo stretchy="false">(</mo> <mi>c</mi> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mo stretchy="false">(</mo> <mi>b</mi> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mi>c</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mn>2</mn> <mo stretchy="false">(</mo> <mi>c</mi> <mi>d</mi> <mo>+</mo> <mi>a</mi> <mi>b</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}a_{11}&amp;a_{12}&amp;a_{13}\\a_{21}&amp;a_{22}&amp;a_{23}\\a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}={\begin{pmatrix}a^{2}+b^{2}-c^{2}-d^{2}&amp;2(bc-ad)&amp;2(bd+ac)\\2(bc+ad)&amp;a^{2}-b^{2}+c^{2}-d^{2}&amp;2(cd-ab)\\2(bd-ac)&amp;2(cd+ab)&amp;a^{2}-b^{2}-c^{2}+d^{2}\end{pmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/273b8db3f4a37d876215cab48448687d347204e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.13ex; margin-bottom: -0.208ex; width:83.562ex; height:9.843ex;" alt="{\displaystyle {\begin{pmatrix}a_{11}&amp;a_{12}&amp;a_{13}\\a_{21}&amp;a_{22}&amp;a_{23}\\a_{31}&amp;a_{32}&amp;a_{33}\end{pmatrix}}={\begin{pmatrix}a^{2}+b^{2}-c^{2}-d^{2}&amp;2(bc-ad)&amp;2(bd+ac)\\2(bc+ad)&amp;a^{2}-b^{2}+c^{2}-d^{2}&amp;2(cd-ab)\\2(bd-ac)&amp;2(cd+ab)&amp;a^{2}-b^{2}-c^{2}+d^{2}\end{pmatrix}},}"></span></dd></dl> <p>which is the representation of the 3D rotation by its <a href="/wiki/Euler%E2%80%93Rodrigues_parameters" class="mw-redirect" title="Euler–Rodrigues parameters">Euler–Rodrigues parameters</a>: <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i>, <i>d</i></span>. </p><p>The corresponding quaternion formula <span class="texhtml"><i>P′</i> = <i>QPQ</i><sup>−1</sup></span>, where <span class="texhtml"><i>Q</i> = <i>Q</i><sub>L</sub></span>, or, in expanded form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x'i+y'j+z'k=(a+bi+cj+dk)(xi+yj+zk)(a-bi-cj-dk)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mo>&#x2032;</mo> </msup> <mi>i</mi> <mo>+</mo> <msup> <mi>y</mi> <mo>&#x2032;</mo> </msup> <mi>j</mi> <mo>+</mo> <msup> <mi>z</mi> <mo>&#x2032;</mo> </msup> <mi>k</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mi>i</mi> <mo>+</mo> <mi>c</mi> <mi>j</mi> <mo>+</mo> <mi>d</mi> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mi>i</mi> <mo>+</mo> <mi>y</mi> <mi>j</mi> <mo>+</mo> <mi>z</mi> <mi>k</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2212;<!-- − --></mo> <mi>b</mi> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mi>j</mi> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x'i+y'j+z'k=(a+bi+cj+dk)(xi+yj+zk)(a-bi-cj-dk)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d916eb6ade7ffb5fd64b14e48a57f76a71309b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:66.925ex; height:3.009ex;" alt="{\displaystyle x&#039;i+y&#039;j+z&#039;k=(a+bi+cj+dk)(xi+yj+zk)(a-bi-cj-dk)}"></span></dd></dl> <p>is known as the <a href="/wiki/William_Rowan_Hamilton" title="William Rowan Hamilton">Hamilton</a>–<a href="/wiki/Arthur_Cayley" title="Arthur Cayley">Cayley</a> formula. </p> <div class="mw-heading mw-heading3"><h3 id="Hopf_coordinates">Hopf coordinates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=12" title="Edit section: Hopf coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Rotations in 3D space are made mathematically much more tractable by the use of <a href="/wiki/Hyperspherical_coordinates" class="mw-redirect" title="Hyperspherical coordinates">spherical coordinates</a>. Any rotation in 3D can be characterized by a fixed axis of rotation and an invariant plane perpendicular to that axis. Without loss of generality, we can take the <span class="texhtml mvar" style="font-style:italic;">xy</span>-plane as the invariant plane and the <span class="texhtml mvar" style="font-style:italic;">z</span>-axis as the fixed axis. Since radial distances are not affected by rotation, we can characterize a rotation by its effect on the unit sphere (2-sphere) by <a href="/wiki/Spherical_coordinates" class="mw-redirect" title="Spherical coordinates">spherical coordinates</a> referred to the fixed axis and invariant plane: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}x&amp;=\sin \theta \cos \phi \\y&amp;=\sin \theta \sin \phi \\z&amp;=\cos \theta \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03D5;<!-- ϕ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}x&amp;=\sin \theta \cos \phi \\y&amp;=\sin \theta \sin \phi \\z&amp;=\cos \theta \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5094078fcd3239776450c5e1ee2cc61eb3d5f469" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; width:14.784ex; height:8.843ex;" alt="{\displaystyle {\begin{aligned}x&amp;=\sin \theta \cos \phi \\y&amp;=\sin \theta \sin \phi \\z&amp;=\cos \theta \end{aligned}}}"></span></dd></dl> <p>Because <span class="texhtml"><i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> + <i>z</i><sup>2</sup> = 1</span>, the points (<i>x</i>,<i>y</i>,<i>z</i>) lie on the unit 2-sphere. A point with angles <span class="texhtml">{<i>θ</i><sub>0</sub>, <i>φ</i><sub>0</sub>}</span>, rotated by an angle <span class="texhtml mvar" style="font-style:italic;">φ</span> about the <span class="texhtml mvar" style="font-style:italic;">z</span>-axis, becomes the point with angles <span class="texhtml">{<i>θ</i><sub>0</sub>, <i>φ</i><sub>0</sub> + <i>φ</i>}</span>. While <a href="/wiki/Hyperspherical_coordinates" class="mw-redirect" title="Hyperspherical coordinates">hyperspherical coordinates</a> are also useful in dealing with 4D rotations, an even more useful coordinate system for 4D is provided by <a href="/wiki/3-sphere#Hopf_coordinates" title="3-sphere">Hopf coordinates</a> <span class="texhtml">{<i>ξ</i><sub>1</sub>, <i>η</i>, <i>ξ</i><sub>2</sub>}</span>,<sup id="cite_ref-Karcher_8-0" class="reference"><a href="#cite_note-Karcher-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> which are a set of three angular coordinates specifying a position on the 3-sphere. For example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}u&amp;=\cos \xi _{1}\sin \eta \\z&amp;=\sin \xi _{1}\sin \eta \\x&amp;=\cos \xi _{2}\cos \eta \\y&amp;=\sin \xi _{2}\cos \eta \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>u</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B7;<!-- η --></mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B7;<!-- η --></mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B7;<!-- η --></mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BE;<!-- ξ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B7;<!-- η --></mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}u&amp;=\cos \xi _{1}\sin \eta \\z&amp;=\sin \xi _{1}\sin \eta \\x&amp;=\cos \xi _{2}\cos \eta \\y&amp;=\sin \xi _{2}\cos \eta \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7b4c43d1dae7528fb79a21151a3e8a753066eb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.505ex; width:15.805ex; height:12.176ex;" alt="{\displaystyle {\begin{aligned}u&amp;=\cos \xi _{1}\sin \eta \\z&amp;=\sin \xi _{1}\sin \eta \\x&amp;=\cos \xi _{2}\cos \eta \\y&amp;=\sin \xi _{2}\cos \eta \end{aligned}}}"></span></dd></dl> <p>Because <span class="texhtml"><i>u</i><sup>2</sup> + <i>x</i><sup>2</sup> + <i>y</i><sup>2</sup> + <i>z</i><sup>2</sup> = 1</span>, the points lie on the 3-sphere. </p><p>In 4D space, every rotation about the origin has two invariant planes which are completely orthogonal to each other and intersect at the origin, and are rotated by two independent angles <span class="texhtml"><i>ξ</i><sub>1</sub></span> and <span class="texhtml"><i>ξ</i><sub>2</sub></span>. Without loss of generality, we can choose, respectively, the <span class="texhtml mvar" style="font-style:italic;">uz</span>- and <span class="texhtml mvar" style="font-style:italic;">xy</span>-planes as these invariant planes. A rotation in 4D of a point <span class="texhtml">{<i>ξ</i><sub>10</sub>, <i>η</i><sub>0</sub>, <i>ξ</i><sub>20</sub>}</span> through angles <span class="texhtml"><i>ξ</i><sub>1</sub></span> and <span class="texhtml"><i>ξ</i><sub>2</sub></span> is then simply expressed in Hopf coordinates as <span class="texhtml">{<i>ξ</i><sub>10</sub> + <i>ξ</i><sub>1</sub>, <i>η</i><sub>0</sub>, <i>ξ</i><sub>20</sub> + <i>ξ</i><sub>2</sub>}</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Visualization_of_4D_rotations">Visualization of 4D rotations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=13" title="Edit section: Visualization of 4D rotations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:4DRotationTrajectories.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/4DRotationTrajectories.jpg/390px-4DRotationTrajectories.jpg" decoding="async" width="390" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/4DRotationTrajectories.jpg/585px-4DRotationTrajectories.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/4DRotationTrajectories.jpg/780px-4DRotationTrajectories.jpg 2x" data-file-width="1020" data-file-height="327" /></a><figcaption>Trajectories of a point on the Clifford Torus:<br />Fig.1: simple rotations (black) and left and right isoclinic rotations (red and blue)<br /> Fig.2: a general rotation with angular displacements in a ratio of 1:5<br /> Fig.3: a general rotation with angular displacements in a ratio of 5:1<br /> All images are <a href="/wiki/Stereographic_projection" title="Stereographic projection">stereographic projections</a>.</figcaption></figure> <p>Every rotation in 3D space has a fixed axis unchanged by rotation. The rotation is completely specified by specifying the axis of rotation and the angle of rotation about that axis. Without loss of generality, this axis may be chosen as the <span class="texhtml mvar" style="font-style:italic;">z</span>-axis of a Cartesian coordinate system, allowing a simpler visualization of the rotation. </p><p>In 3D space, the <a href="/wiki/Spherical_coordinates" class="mw-redirect" title="Spherical coordinates">spherical coordinates</a> <span class="texhtml">{<i>θ</i>, <i>φ</i>}</span> may be seen as a parametric expression of the 2-sphere. For fixed <span class="texhtml mvar" style="font-style:italic;">θ</span> they describe circles on the 2-sphere which are perpendicular to the <span class="texhtml mvar" style="font-style:italic;">z</span>-axis and these circles may be viewed as trajectories of a point on the sphere. A point <span class="texhtml">{<i>θ</i><sub>0</sub>, <i>φ</i><sub>0</sub>}</span> on the sphere, under a rotation about the <span class="texhtml mvar" style="font-style:italic;">z</span>-axis, will follow a trajectory <span class="texhtml">{<i>θ</i><sub>0</sub>, <i>φ</i><sub>0</sub> + <i>φ</i>}</span> as the angle <span class="texhtml mvar" style="font-style:italic;">φ</span> varies. The trajectory may be viewed as a rotation parametric in time, where the angle of rotation is linear in time: <span class="texhtml"><i>φ</i> = <i>ωt</i></span>, with <span class="texhtml mvar" style="font-style:italic;">ω</span> being an "angular velocity". </p><p>Analogous to the 3D case, every rotation in 4D space has at least two invariant axis-planes which are left invariant by the rotation and are completely orthogonal (i.e. they intersect at a point). The rotation is completely specified by specifying the axis planes and the angles of rotation about them. Without loss of generality, these axis planes may be chosen to be the <span class="texhtml mvar" style="font-style:italic;">uz</span>- and <span class="texhtml mvar" style="font-style:italic;">xy</span>-planes of a Cartesian coordinate system, allowing a simpler visualization of the rotation. </p><p>In 4D space, the Hopf angles <span class="texhtml">{<i>ξ</i><sub>1</sub>, <i>η</i>, <i>ξ</i><sub>2</sub>}</span> parameterize the 3-sphere. For fixed <span class="texhtml mvar" style="font-style:italic;">η</span> they describe a torus parameterized by <span class="texhtml"><i>ξ</i><sub>1</sub></span> and <span class="texhtml"><i>ξ</i><sub>2</sub></span>, with <span class="texhtml"><i>η</i> = <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">π</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span></span> being the special case of the <a href="/wiki/Clifford_torus" title="Clifford torus">Clifford torus</a> in the <span class="texhtml mvar" style="font-style:italic;">xy</span>- and <span class="texhtml mvar" style="font-style:italic;">uz</span>-planes. These tori are not the usual tori found in 3D-space. While they are still 2D surfaces, they are embedded in the 3-sphere. The 3-sphere can be <a href="/wiki/Stereographic_projection" title="Stereographic projection">stereographically</a> projected onto the whole Euclidean 3D-space, and these tori are then seen as the usual tori of revolution. It can be seen that a point specified by <span class="texhtml">{<i>ξ</i><sub>10</sub>, <i>η</i><sub>0</sub>, <i>ξ</i><sub>20</sub>}</span> undergoing a rotation with the <span class="texhtml mvar" style="font-style:italic;">uz</span>- and <span class="texhtml mvar" style="font-style:italic;">xy</span>-planes invariant will remain on the torus specified by <span class="texhtml"><i>η</i><sub>0</sub></span>.<sup id="cite_ref-Pinkall_9-0" class="reference"><a href="#cite_note-Pinkall-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> The trajectory of a point can be written as a function of time as <span class="texhtml">{<i>ξ</i><sub>10</sub> + <i>ω</i><sub>1</sub><i>t</i>, <i>η</i><sub>0</sub>, <i>ξ</i><sub>20</sub> + <i>ω</i><sub>2</sub><i>t</i>}</span> and stereographically projected onto its associated torus, as in the figures below.<sup id="cite_ref-Banchoff_10-0" class="reference"><a href="#cite_note-Banchoff-10"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> In these figures, the initial point is taken to be <span class="texhtml">{0, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">π</span><span class="sr-only">/</span><span class="den">4</span></span>&#8288;</span>, 0}</span>, i.e. on the Clifford torus. In Fig. 1, two simple rotation trajectories are shown in black, while a left and a right isoclinic trajectory is shown in red and blue respectively. In Fig. 2, a general rotation in which <span class="texhtml"><i>ω</i><sub>1</sub> = 1</span> and <span class="texhtml"><i>ω</i><sub>2</sub> = 5</span> is shown, while in Fig. 3, a general rotation in which <span class="texhtml"><i>ω</i><sub>1</sub> = 5</span> and <span class="texhtml"><i>ω</i><sub>2</sub> = 1</span> is shown. </p><p>Below, a spinning <a href="/wiki/5-cell" title="5-cell">5-cell</a> is visualized with the fourth dimension squashed and displayed as colour. The Clifford torus described above is depicted in its rectangular (wrapping) form. </p> <ul class="gallery mw-gallery-traditional"> <li class="gallerycaption">Animated 4D rotations of a <a href="/wiki/5-cell" title="5-cell">5-cell</a> in <a href="/wiki/Orthographic_projection" title="Orthographic projection">orthographic projection</a></li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm/120px--Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm.jpg" controls="" preload="none" loop="" data-mw-tmh="" class="mw-file-element" width="120" height="67" data-durationhint="9" data-mwtitle="Simple_4D_rotation_of_a_5-cell,_in_X-Y_plane.webm" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b5/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="474" /><source src="//upload.wikimedia.org/wikipedia/commons/b/b5/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm" type="video/webm; codecs=&quot;vp9&quot;" data-width="1350" data-height="750" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b5/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="712" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b5/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="236" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b5/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="356" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/b/b5/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_X-Y_plane.webm.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="356" /></video></span></span></div> <div class="gallerytext">Simply rotating in X-Y plane</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><span><video id="mwe_player_1" poster="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm/120px--Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm.jpg" controls="" preload="none" loop="" data-mw-tmh="" class="mw-file-element" width="120" height="67" data-durationhint="12" data-mwtitle="Simple_4D_rotation_of_a_5-cell,_in_Z-W_plane.webm" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/65/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="474" /><source src="//upload.wikimedia.org/wikipedia/commons/6/65/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm" type="video/webm; codecs=&quot;vp9&quot;" data-width="1350" data-height="750" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/65/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="712" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/65/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="236" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/65/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="356" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/6/65/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm/Simple_4D_rotation_of_a_5-cell%2C_in_Z-W_plane.webm.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="356" /></video></span></span></div> <div class="gallerytext">Simply rotating in Z-W plane</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><span><video id="mwe_player_2" poster="//upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Double_4D_rotation_of_a_5-cell.webm/120px--Double_4D_rotation_of_a_5-cell.webm.jpg" controls="" preload="none" loop="" data-mw-tmh="" class="mw-file-element" width="120" height="67" data-durationhint="36" data-mwtitle="Double_4D_rotation_of_a_5-cell.webm" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ee/Double_4D_rotation_of_a_5-cell.webm/Double_4D_rotation_of_a_5-cell.webm.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="474" /><source src="//upload.wikimedia.org/wikipedia/commons/e/ee/Double_4D_rotation_of_a_5-cell.webm" type="video/webm; codecs=&quot;vp9&quot;" data-width="1350" data-height="750" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ee/Double_4D_rotation_of_a_5-cell.webm/Double_4D_rotation_of_a_5-cell.webm.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="712" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ee/Double_4D_rotation_of_a_5-cell.webm/Double_4D_rotation_of_a_5-cell.webm.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="142" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ee/Double_4D_rotation_of_a_5-cell.webm/Double_4D_rotation_of_a_5-cell.webm.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="236" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ee/Double_4D_rotation_of_a_5-cell.webm/Double_4D_rotation_of_a_5-cell.webm.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="356" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ee/Double_4D_rotation_of_a_5-cell.webm/Double_4D_rotation_of_a_5-cell.webm.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="356" /></video></span></span></div> <div class="gallerytext">Double rotating in X-Y and Z-W planes with angular velocities in a 4:3 ratio</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><span><video id="mwe_player_3" poster="//upload.wikimedia.org/wikipedia/commons/thumb/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm/120px--Isoclinic_left_4D_rotation_of_a_5-cell.webm.jpg" controls="" preload="none" loop="" data-mw-tmh="" class="mw-file-element" width="120" height="67" data-durationhint="9" data-mwtitle="Isoclinic_left_4D_rotation_of_a_5-cell.webm" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm/Isoclinic_left_4D_rotation_of_a_5-cell.webm.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="474" /><source src="//upload.wikimedia.org/wikipedia/commons/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm" type="video/webm; codecs=&quot;vp9&quot;" data-width="1350" data-height="750" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm/Isoclinic_left_4D_rotation_of_a_5-cell.webm.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="712" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm/Isoclinic_left_4D_rotation_of_a_5-cell.webm.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="142" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm/Isoclinic_left_4D_rotation_of_a_5-cell.webm.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="236" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm/Isoclinic_left_4D_rotation_of_a_5-cell.webm.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="356" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/55/Isoclinic_left_4D_rotation_of_a_5-cell.webm/Isoclinic_left_4D_rotation_of_a_5-cell.webm.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="356" /></video></span></span></div> <div class="gallerytext">Left isoclinic rotation</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><span><video id="mwe_player_4" poster="//upload.wikimedia.org/wikipedia/commons/thumb/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm/120px--Isoclinic_right_4D_rotation_of_a_5-cell.webm.jpg" controls="" preload="none" loop="" data-mw-tmh="" class="mw-file-element" width="120" height="67" data-durationhint="9" data-mwtitle="Isoclinic_right_4D_rotation_of_a_5-cell.webm" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm/Isoclinic_right_4D_rotation_of_a_5-cell.webm.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="854" data-height="474" /><source src="//upload.wikimedia.org/wikipedia/commons/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm" type="video/webm; codecs=&quot;vp9&quot;" data-width="1350" data-height="750" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm/Isoclinic_right_4D_rotation_of_a_5-cell.webm.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="1280" data-height="712" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm/Isoclinic_right_4D_rotation_of_a_5-cell.webm.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="256" data-height="142" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm/Isoclinic_right_4D_rotation_of_a_5-cell.webm.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="426" data-height="236" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm/Isoclinic_right_4D_rotation_of_a_5-cell.webm.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="640" data-height="356" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/5/54/Isoclinic_right_4D_rotation_of_a_5-cell.webm/Isoclinic_right_4D_rotation_of_a_5-cell.webm.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="640" data-height="356" /></video></span></span></div> <div class="gallerytext">Right isoclinic rotation</div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="Generating_4D_rotation_matrices">Generating 4D rotation matrices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=14" title="Edit section: Generating 4D rotation matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Four-dimensional rotations can be derived from <a href="/wiki/Rodrigues%27_rotation_formula" title="Rodrigues&#39; rotation formula">Rodrigues' rotation formula</a> and the Cayley formula. Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a 4&#160;×&#160;4 <a href="/wiki/Skew-symmetric_matrix" title="Skew-symmetric matrix">skew-symmetric matrix</a>. The skew-symmetric matrix <span class="texhtml mvar" style="font-style:italic;">A</span> can be uniquely decomposed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\theta _{1}A_{1}+\theta _{2}A_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\theta _{1}A_{1}+\theta _{2}A_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa178f784e168bcd84c240e11a444a951b438644" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.566ex; height:2.509ex;" alt="{\displaystyle A=\theta _{1}A_{1}+\theta _{2}A_{2}}"></span></dd></dl> <p>into two skew-symmetric matrices <span class="texhtml"><i>A</i><sub>1</sub></span> and <span class="texhtml"><i>A</i><sub>2</sub></span> satisfying the properties <span class="texhtml"><i>A</i><sub>1</sub><i>A</i><sub>2</sub> = 0</span>, <span class="texhtml"><i>A</i><sub>1</sub><sup>3</sup> = −<i>A</i><sub>1</sub></span> and <span class="texhtml"><i>A</i><sub>2</sub><sup>3</sup> = −<i>A</i><sub>2</sub></span>, where <span class="texhtml">∓<i>θ</i><sub>1</sub><i>i</i></span> and <span class="texhtml">∓<i>θ</i><sub>2</sub><i>i</i></span> are the eigenvalues of <span class="texhtml mvar" style="font-style:italic;">A</span>. Then, the 4D rotation matrices can be obtained from the skew-symmetric matrices <span class="texhtml"><i>A</i><sub>1</sub></span> and <span class="texhtml"><i>A</i><sub>2</sub></span> by Rodrigues' rotation formula and the Cayley formula.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>Let <span class="texhtml mvar" style="font-style:italic;">A</span> be a 4&#160;×&#160;4 nonzero skew-symmetric matrix with the set of eigenvalues </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{\theta _{1}i,-\theta _{1}i,\theta _{2}i,-\theta _{2}i:{\theta _{1}}^{2}+{\theta _{2}}^{2}&gt;0\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>i</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>i</mi> <mo>,</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>i</mi> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>i</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&gt;</mo> <mn>0</mn> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{\theta _{1}i,-\theta _{1}i,\theta _{2}i,-\theta _{2}i:{\theta _{1}}^{2}+{\theta _{2}}^{2}&gt;0\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7743c0feb642574f712ff424a821ed778fe0183" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.687ex; height:3.343ex;" alt="{\displaystyle \left\{\theta _{1}i,-\theta _{1}i,\theta _{2}i,-\theta _{2}i:{\theta _{1}}^{2}+{\theta _{2}}^{2}&gt;0\right\}.}"></span></dd></dl> <p>Then <span class="texhtml mvar" style="font-style:italic;">A</span> can be decomposed as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A=\theta _{1}A_{1}+\theta _{2}A_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A=\theta _{1}A_{1}+\theta _{2}A_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa178f784e168bcd84c240e11a444a951b438644" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.566ex; height:2.509ex;" alt="{\displaystyle A=\theta _{1}A_{1}+\theta _{2}A_{2}}"></span></dd></dl> <p>where <span class="texhtml"><i>A</i><sub>1</sub></span> and <span class="texhtml"><i>A</i><sub>2</sub></span> are skew-symmetric matrices satisfying the properties </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}A_{2}=A_{2}A_{1}=0,\qquad {A_{1}}^{3}=-A_{1},\quad {\text{and}}\quad {A_{2}}^{3}=-A_{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="2em" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}A_{2}=A_{2}A_{1}=0,\qquad {A_{1}}^{3}=-A_{1},\quad {\text{and}}\quad {A_{2}}^{3}=-A_{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/541b5ad130430740b1981b706debe19a02c292d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:57.412ex; height:3.009ex;" alt="{\displaystyle A_{1}A_{2}=A_{2}A_{1}=0,\qquad {A_{1}}^{3}=-A_{1},\quad {\text{and}}\quad {A_{2}}^{3}=-A_{2}.}"></span></dd></dl> <p>Moreover, the skew-symmetric matrices <span class="texhtml"><i>A</i><sub>1</sub></span> and <span class="texhtml"><i>A</i><sub>2</sub></span> are uniquely obtained as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}={\frac {{\theta _{2}}^{2}A+A^{3}}{\theta _{1}\left({\theta _{2}}^{2}-{\theta _{1}}^{2}\right)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>A</mi> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}={\frac {{\theta _{2}}^{2}A+A^{3}}{\theta _{1}\left({\theta _{2}}^{2}-{\theta _{1}}^{2}\right)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebe3328c7455a6b0d1ca8c4b9efd11f8f0f5fe4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:20.632ex; height:7.176ex;" alt="{\displaystyle A_{1}={\frac {{\theta _{2}}^{2}A+A^{3}}{\theta _{1}\left({\theta _{2}}^{2}-{\theta _{1}}^{2}\right)}}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{2}={\frac {{\theta _{1}}^{2}A+A^{3}}{\theta _{2}\left({\theta _{1}}^{2}-{\theta _{2}}^{2}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>A</mi> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{2}={\frac {{\theta _{1}}^{2}A+A^{3}}{\theta _{2}\left({\theta _{1}}^{2}-{\theta _{2}}^{2}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3607a7d0b2ee461a6f7a1e6a04f6e1310d8a2c8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:21.279ex; height:7.176ex;" alt="{\displaystyle A_{2}={\frac {{\theta _{1}}^{2}A+A^{3}}{\theta _{2}\left({\theta _{1}}^{2}-{\theta _{2}}^{2}\right)}}.}"></span></dd></dl> <p>Then, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=e^{A}=I+\sin \theta _{1}A_{1}+\left(1-\cos \theta _{1}\right){A_{1}}^{2}+\sin \theta _{2}A_{2}+\left(1-\cos \theta _{2}\right){A_{2}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=e^{A}=I+\sin \theta _{1}A_{1}+\left(1-\cos \theta _{1}\right){A_{1}}^{2}+\sin \theta _{2}A_{2}+\left(1-\cos \theta _{2}\right){A_{2}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6292b1053077e571024b7db19458ebe336c6ad5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:70.8ex; height:3.176ex;" alt="{\displaystyle R=e^{A}=I+\sin \theta _{1}A_{1}+\left(1-\cos \theta _{1}\right){A_{1}}^{2}+\sin \theta _{2}A_{2}+\left(1-\cos \theta _{2}\right){A_{2}}^{2}}"></span></dd></dl> <p>is a rotation matrix in <span class="texhtml"><b>E</b><sup>4</sup></span>, which is generated by Rodrigues' rotation formula, with the set of eigenvalues </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{e^{\theta _{1}i},e^{-\theta _{1}i},e^{\theta _{2}i},e^{-\theta _{2}i}\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>i</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>i</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>i</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>i</mi> </mrow> </msup> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{e^{\theta _{1}i},e^{-\theta _{1}i},e^{\theta _{2}i},e^{-\theta _{2}i}\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db663d05fa9d4367f2a7bd1d44d77b7dc86a545b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.347ex; height:3.343ex;" alt="{\displaystyle \left\{e^{\theta _{1}i},e^{-\theta _{1}i},e^{\theta _{2}i},e^{-\theta _{2}i}\right\}.}"></span></dd></dl> <p>Also, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R=(I+A)(I-A)^{-1}=I+{\frac {2\theta _{1}}{1+{\theta _{1}}^{2}}}A_{1}+{\frac {2{\theta _{1}}^{2}}{1+{\theta _{1}}^{2}}}{A_{1}}^{2}+{\frac {2\theta _{2}}{1+{\theta _{2}}^{2}}}A_{2}+{\frac {2{\theta _{2}}^{2}}{1+{\theta _{2}}^{2}}}{A_{2}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>+</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R=(I+A)(I-A)^{-1}=I+{\frac {2\theta _{1}}{1+{\theta _{1}}^{2}}}A_{1}+{\frac {2{\theta _{1}}^{2}}{1+{\theta _{1}}^{2}}}{A_{1}}^{2}+{\frac {2\theta _{2}}{1+{\theta _{2}}^{2}}}A_{2}+{\frac {2{\theta _{2}}^{2}}{1+{\theta _{2}}^{2}}}{A_{2}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9dae1f2a9d9f949829ff83b62db78d83b5401e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:83.406ex; height:6.676ex;" alt="{\displaystyle R=(I+A)(I-A)^{-1}=I+{\frac {2\theta _{1}}{1+{\theta _{1}}^{2}}}A_{1}+{\frac {2{\theta _{1}}^{2}}{1+{\theta _{1}}^{2}}}{A_{1}}^{2}+{\frac {2\theta _{2}}{1+{\theta _{2}}^{2}}}A_{2}+{\frac {2{\theta _{2}}^{2}}{1+{\theta _{2}}^{2}}}{A_{2}}^{2}}"></span></dd></dl> <p>is a rotation matrix in <span class="texhtml"><b>E</b><sup>4</sup></span>, which is generated by Cayley's rotation formula, such that the set of eigenvalues of <span class="texhtml mvar" style="font-style:italic;">R</span> is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{{\frac {\left(1+\theta _{1}i\right)^{2}}{1+{\theta _{1}}^{2}}},{\frac {\left(1-\theta _{1}i\right)^{2}}{1+{\theta _{1}}^{2}}},{\frac {\left(1+\theta _{2}i\right)^{2}}{1+{\theta _{2}}^{2}}},{\frac {\left(1-\theta _{2}i\right)^{2}}{1+{\theta _{2}}^{2}}}\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>i</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>i</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>i</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mi>i</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{{\frac {\left(1+\theta _{1}i\right)^{2}}{1+{\theta _{1}}^{2}}},{\frac {\left(1-\theta _{1}i\right)^{2}}{1+{\theta _{1}}^{2}}},{\frac {\left(1+\theta _{2}i\right)^{2}}{1+{\theta _{2}}^{2}}},{\frac {\left(1-\theta _{2}i\right)^{2}}{1+{\theta _{2}}^{2}}}\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35f5f0b0674089fb5c9dbfd9d7b1b654109f5527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.481ex; height:7.509ex;" alt="{\displaystyle \left\{{\frac {\left(1+\theta _{1}i\right)^{2}}{1+{\theta _{1}}^{2}}},{\frac {\left(1-\theta _{1}i\right)^{2}}{1+{\theta _{1}}^{2}}},{\frac {\left(1+\theta _{2}i\right)^{2}}{1+{\theta _{2}}^{2}}},{\frac {\left(1-\theta _{2}i\right)^{2}}{1+{\theta _{2}}^{2}}}\right\}.}"></span></dd></dl> <p>The generating rotation matrix can be classified with respect to the values <span class="texhtml"><i>θ</i><sub>1</sub></span> and <span class="texhtml"><i>θ</i><sub>2</sub></span> as follows: </p> <ol><li>If <span class="texhtml"><i>θ</i><sub>1</sub> = 0</span> and <span class="texhtml"><i>θ</i><sub>2</sub> ≠ 0</span> or vice versa, then the formulae generate simple rotations;</li> <li>If <span class="texhtml"><i>θ</i><sub>1</sub></span> and <span class="texhtml"><i>θ</i><sub>2</sub></span> are nonzero and <span class="texhtml"><i>θ</i><sub>1</sub> ≠ <i>θ</i><sub>2</sub></span>, then the formulae generate double rotations;</li> <li>If <span class="texhtml"><i>θ</i><sub>1</sub></span> and <span class="texhtml"><i>θ</i><sub>2</sub></span> are nonzero and <span class="texhtml"><i>θ</i><sub>1</sub> = <i>θ</i><sub>2</sub></span>, then the formulae generate isoclinic rotations.</li></ol> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Laplace%E2%80%93Runge%E2%80%93Lenz_vector" title="Laplace–Runge–Lenz vector">Laplace–Runge–Lenz vector</a></li> <li><a href="/wiki/Lorentz_group" title="Lorentz group">Lorentz group</a></li> <li><a href="/wiki/Orthogonal_group" title="Orthogonal group">Orthogonal group</a></li> <li><a href="/wiki/Orthogonal_matrix" title="Orthogonal matrix">Orthogonal matrix</a></li> <li><a href="/wiki/Plane_of_rotation" title="Plane of rotation">Plane of rotation</a></li> <li><a href="/wiki/Poincar%C3%A9_group" title="Poincaré group">Poincaré group</a></li> <li><a href="/wiki/Quaternions_and_spatial_rotation" title="Quaternions and spatial rotation">Quaternions and spatial rotation</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=16" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Assuming that 4-space is oriented, then an orientation for each of the 2-planes <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> can be chosen to be consistent with this orientation of 4-space in two equally valid ways. If the angles from one such choice of orientations of <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are <span class="texhtml">{<i>α</i>, <i>β</i>}</span>, then the angles from the other choice are <span class="texhtml">{−<i>α</i>, −<i>β</i>}</span>. (In order to measure a rotation angle in a 2-plane, it is necessary to specify an orientation on that 2-plane. A rotation angle of −<span class="texhtml mvar" style="font-style:italic;">π</span> is the same as one of +<span class="texhtml mvar" style="font-style:italic;">π</span>. If the orientation of 4-space is reversed, the resulting angles would be either <span class="texhtml">{<i>α</i>, −<i>β</i>}</span> or <span class="texhtml">{−<i>α</i>, <i>β</i>}</span>. Hence the absolute values of the angles are well-defined completely independently of any choices.)</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Example of opposite signs: the central inversion; in the quaternion representation the real parts are +1 and −1, and the central inversion cannot be accomplished by a single simple rotation.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=17" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-FOOTNOTEDorst201914−166.2._Isoclinic_Rotations_in_4D-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEDorst201914−166.2._Isoclinic_Rotations_in_4D_1-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFDorst2019">Dorst 2019</a>, pp.&#160;14−16, 6.2. Isoclinic Rotations in 4D.</span> </li> <li id="cite_note-FOOTNOTEKimRote20168–10Relations_to_Clifford_Parallelism-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKimRote20168–10Relations_to_Clifford_Parallelism_3-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKimRote2016">Kim &amp; Rote 2016</a>, pp.&#160;8–10, Relations to Clifford Parallelism.</span> </li> <li id="cite_note-FOOTNOTEKimRote2016§5_Four_Dimensional_Rotations-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKimRote2016§5_Four_Dimensional_Rotations_4-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKimRote2016">Kim &amp; Rote 2016</a>, §5 Four Dimensional Rotations.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFPerez-GraciaThomas2017" class="citation journal cs1">Perez-Gracia, Alba; Thomas, Federico (2017). <a rel="nofollow" class="external text" href="https://upcommons.upc.edu/bitstream/handle/2117/113067/1749-ON-CAYLEYS-FACTORIZATION-OF-4D-ROTATIONS-AND-APPLICATIONS.pdf">"On Cayley's Factorization of 4D Rotations and Applications"</a> <span class="cs1-format">(PDF)</span>. <i>Adv. Appl. Clifford Algebras</i>. <b>27</b>: 523–538. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00006-016-0683-9">10.1007/s00006-016-0683-9</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/2117%2F113067">2117/113067</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12350382">12350382</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Adv.+Appl.+Clifford+Algebras&amp;rft.atitle=On+Cayley%27s+Factorization+of+4D+Rotations+and+Applications&amp;rft.volume=27&amp;rft.pages=523-538&amp;rft.date=2017&amp;rft_id=info%3Ahdl%2F2117%2F113067&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12350382%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00006-016-0683-9&amp;rft.aulast=Perez-Gracia&amp;rft.aufirst=Alba&amp;rft.au=Thomas%2C+Federico&amp;rft_id=https%3A%2F%2Fupcommons.upc.edu%2Fbitstream%2Fhandle%2F2117%2F113067%2F1749-ON-CAYLEYS-FACTORIZATION-OF-4D-ROTATIONS-AND-APPLICATIONS.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaoKolte2018" class="citation journal cs1">Rao, Dhvanita R.; Kolte, Sagar (2018). "Odd orthogonal matrices and the non-injectivity of the Vaserstein symbol". <i>Journal of Algebra</i>. <b>510</b>: 458–468. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jalgebra.2018.05.026">10.1016/j.jalgebra.2018.05.026</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=3828791">3828791</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Algebra&amp;rft.atitle=Odd+orthogonal+matrices+and+the+non-injectivity+of+the+Vaserstein+symbol&amp;rft.volume=510&amp;rft.pages=458-468&amp;rft.date=2018&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jalgebra.2018.05.026&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3828791%23id-name%3DMR&amp;rft.aulast=Rao&amp;rft.aufirst=Dhvanita+R.&amp;rft.au=Kolte%2C+Sagar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></span> </li> <li id="cite_note-Karcher-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Karcher_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2">Karcher, Hermann, <a rel="nofollow" class="external text" href="http://virtualmathmuseum.org/Surface/bianchi-pinkall_tori/bianchi-pinkall_tori.html">"Bianchi–Pinkall Flat Tori in S<sub>3</sub>"</a>, <i>3DXM Documentation</i>, 3DXM Consortium<span class="reference-accessdate">, retrieved <span class="nowrap">5 April</span> 2015</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=3DXM+Documentation&amp;rft.atitle=Bianchi%E2%80%93Pinkall+Flat+Tori+in+S%3Csub%3E3%3C%2Fsub%3E&amp;rft.aulast=Karcher&amp;rft.aufirst=Hermann&amp;rft_id=http%3A%2F%2Fvirtualmathmuseum.org%2FSurface%2Fbianchi-pinkall_tori%2Fbianchi-pinkall_tori.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></span> </li> <li id="cite_note-Pinkall-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pinkall_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPinkall1985" class="citation journal cs1">Pinkall, U. (1985). <a rel="nofollow" class="external text" href="https://www.maths.ed.ac.uk/~aar/papers/pinkall.pdf">"Hopf tori in S<sub>3</sub>"</a> <span class="cs1-format">(PDF)</span>. <i>Invent. Math</i>. <b>81</b> (2): 379–386. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1985InMat..81..379P">1985InMat..81..379P</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01389060">10.1007/bf01389060</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120226082">120226082</a><span class="reference-accessdate">. Retrieved <span class="nowrap">7 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Invent.+Math.&amp;rft.atitle=Hopf+tori+in+S%3Csub%3E3%3C%2Fsub%3E&amp;rft.volume=81&amp;rft.issue=2&amp;rft.pages=379-386&amp;rft.date=1985&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120226082%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01389060&amp;rft_id=info%3Abibcode%2F1985InMat..81..379P&amp;rft.aulast=Pinkall&amp;rft.aufirst=U.&amp;rft_id=https%3A%2F%2Fwww.maths.ed.ac.uk%2F~aar%2Fpapers%2Fpinkall.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></span> </li> <li id="cite_note-Banchoff-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Banchoff_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanchoff1990" class="citation book cs1">Banchoff, Thomas F. (1990). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/beyondthirddimen00thom"><i>Beyond the Third Dimension</i></a></span>. W H Freeman &amp; Co. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0716750253" title="Special:BookSources/978-0716750253"><bdi>978-0716750253</bdi></a><span class="reference-accessdate">. Retrieved <span class="nowrap">8 April</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Beyond+the+Third+Dimension&amp;rft.pub=W+H+Freeman+%26+Co&amp;rft.date=1990&amp;rft.isbn=978-0716750253&amp;rft.aulast=Banchoff&amp;rft.aufirst=Thomas+F.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fbeyondthirddimen00thom&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdoğduÖzdemir2015" class="citation web cs1">Erdoğdu, M.; Özdemir, M. (2015). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/283007638">"Generating Four Dimensional Rotation Matrices"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Generating+Four+Dimensional+Rotation+Matrices&amp;rft.date=2015&amp;rft.aulast=Erdo%C4%9Fdu&amp;rft.aufirst=M.&amp;rft.au=%C3%96zdemir%2C+M.&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F283007638&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;action=edit&amp;section=18" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>L. van Elfrinkhof: <a rel="nofollow" class="external text" href="https://archive.org/stream/handelingenvanh02unkngoog/#page/n289/mode/2up/search/237">Eene eigenschap van de orthogonale substitutie van de vierde orde.</a> <i>Handelingen van het 6e Nederlandsch Natuurkundig en Geneeskundig Congres</i>, Delft, 1897.</li> <li><a href="/wiki/Felix_Klein" title="Felix Klein">Felix Klein</a>: Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. Translated by E.R. Hedrick and C.A. Noble. The Macmillan Company, New York, 1932.</li> <li><a rel="nofollow" class="external text" href="http://www.brown.edu/Administration/News_Bureau/Databases/Encyclopedia/search.php?serial=M0090">Henry Parker Manning</a>: <i>Geometry of four dimensions</i>. The Macmillan Company, 1914. Republished unaltered and unabridged by Dover Publications in 1954. In this monograph four-dimensional geometry is developed from first principles in a synthetic axiomatic way. Manning's work can be considered as a direct extension of the works of <a href="/wiki/Euclid" title="Euclid">Euclid</a> and <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a> to four dimensions.</li> <li>J. H. Conway and D. A. Smith: On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. A. K. Peters, 2003.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHathaway1902" class="citation journal cs1"><a href="/wiki/Arthur_Stafford_Hathaway" title="Arthur Stafford Hathaway">Hathaway, Arthur S.</a> (1902). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9947-1902-1500586-2">"Quaternion Space"</a>. <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i>. <b>3</b> (1): 46–59. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0002-9947-1902-1500586-2">10.1090/S0002-9947-1902-1500586-2</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1986315">1986315</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=Quaternion+Space&amp;rft.volume=3&amp;rft.issue=1&amp;rft.pages=46-59&amp;rft.date=1902&amp;rft_id=info%3Adoi%2F10.1090%2FS0002-9947-1902-1500586-2&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1986315%23id-name%3DJSTOR&amp;rft.aulast=Hathaway&amp;rft.aufirst=Arthur+S.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252FS0002-9947-1902-1500586-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohan_Ernest_Mebius2005" class="citation arxiv cs1">Johan Ernest Mebius (2005). "A matrix-based proof of the quaternion representation theorem for four-dimensional rotations". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0501249">math/0501249</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+matrix-based+proof+of+the+quaternion+representation+theorem+for+four-dimensional+rotations&amp;rft.date=2005&amp;rft_id=info%3Aarxiv%2Fmath%2F0501249&amp;rft.au=Johan+Ernest+Mebius&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohan_Ernest_Mebius2007" class="citation arxiv cs1">Johan Ernest Mebius (2007). "Derivation of the Euler-Rodrigues formula for three-dimensional rotations from the general formula for four-dimensional rotations". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0701759">math/0701759</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Derivation+of+the+Euler-Rodrigues+formula+for+three-dimensional+rotations+from+the+general+formula+for+four-dimensional+rotations&amp;rft.date=2007&amp;rft_id=info%3Aarxiv%2Fmath%2F0701759&amp;rft.au=Johan+Ernest+Mebius&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Schoute.html">P.H.Schoute</a>: <i>Mehrdimensionale Geometrie</i>. Leipzig: G.J.Göschensche Verlagshandlung. Volume 1 (Sammlung Schubert XXXV): Die linearen Räume, 1902. Volume 2 (Sammlung Schubert XXXVI): Die Polytope, 1905.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStringham1901" class="citation journal cs1"><a href="/wiki/Irving_Stringham" title="Irving Stringham">Stringham, Irving</a> (1901). <a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0002-9947-1901-1500564-2">"On the geometry of planes in a parabolic space of four dimensions"</a>. <i><a href="/wiki/Transactions_of_the_American_Mathematical_Society" title="Transactions of the American Mathematical Society">Transactions of the American Mathematical Society</a></i>. <b>2</b> (2): 183–214. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fs0002-9947-1901-1500564-2">10.1090/s0002-9947-1901-1500564-2</a></span>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1986218">1986218</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+of+the+American+Mathematical+Society&amp;rft.atitle=On+the+geometry+of+planes+in+a+parabolic+space+of+four+dimensions&amp;rft.volume=2&amp;rft.issue=2&amp;rft.pages=183-214&amp;rft.date=1901&amp;rft_id=info%3Adoi%2F10.1090%2Fs0002-9947-1901-1500564-2&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1986218%23id-name%3DJSTOR&amp;rft.aulast=Stringham&amp;rft.aufirst=Irving&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1090%252Fs0002-9947-1901-1500564-2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFErdoğduÖzdemi̇r2020" class="citation journal cs1">Erdoğdu, Melek; Özdemi̇r, Mustafa (2020). <a rel="nofollow" class="external text" href="https://doi.org/10.36753%2Fmathenot.642208">"Simple, Double and Isoclinic Rotations with Applications"</a>. <i>Mathematical Sciences and Applications E-Notes</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.36753%2Fmathenot.642208">10.36753/mathenot.642208</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Sciences+and+Applications+E-Notes&amp;rft.atitle=Simple%2C+Double+and+Isoclinic+Rotations+with+Applications&amp;rft.date=2020&amp;rft_id=info%3Adoi%2F10.36753%2Fmathenot.642208&amp;rft.aulast=Erdo%C4%9Fdu&amp;rft.aufirst=Melek&amp;rft.au=%C3%96zdemi%CC%87r%2C+Mustafa&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.36753%252Fmathenot.642208&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMortari2001" class="citation journal cs1">Mortari, Daniele (July 2001). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190217142347/https://pdfs.semanticscholar.org/f7d8/63ceb75277133592ef9e92457b6705b1264f.pdf">"On the Rigid Rotation Concept in n-Dimensional Spaces"</a> <span class="cs1-format">(PDF)</span>. <i>Journal of the Astronautical Sciences</i>. <b>49</b> (3): 401–420. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2001JAnSc..49..401M">2001JAnSc..49..401M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03546230">10.1007/BF03546230</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16952309">16952309</a>. Archived from <a rel="nofollow" class="external text" href="https://pdfs.semanticscholar.org/f7d8/63ceb75277133592ef9e92457b6705b1264f.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 17 February 2019.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Astronautical+Sciences&amp;rft.atitle=On+the+Rigid+Rotation+Concept+in+n-Dimensional+Spaces&amp;rft.volume=49&amp;rft.issue=3&amp;rft.pages=401-420&amp;rft.date=2001-07&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16952309%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2FBF03546230&amp;rft_id=info%3Abibcode%2F2001JAnSc..49..401M&amp;rft.aulast=Mortari&amp;rft.aufirst=Daniele&amp;rft_id=https%3A%2F%2Fpdfs.semanticscholar.org%2Ff7d8%2F63ceb75277133592ef9e92457b6705b1264f.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKimRote2016" class="citation arxiv cs1">Kim, Heuna; Rote, G. (2016). "Congruence Testing of Point Sets in 4 Dimensions". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1603.07269">1603.07269</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.CG">cs.CG</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Congruence+Testing+of+Point+Sets+in+4+Dimensions&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1603.07269&amp;rft.aulast=Kim&amp;rft.aufirst=Heuna&amp;rft.au=Rote%2C+G.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFZamboj2021" class="citation journal cs1">Zamboj, Michal (8 January 2021). "Synthetic construction of the Hopf fibration in a double orthogonal projection of 4-space". <i>Journal of Computational Design and Engineering</i>. <b>8</b> (3): 836–854. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2003.09236">2003.09236</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1093%2Fjcde%2Fqwab018">10.1093/jcde/qwab018</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Computational+Design+and+Engineering&amp;rft.atitle=Synthetic+construction+of+the+Hopf+fibration+in+a+double+orthogonal+projection+of+4-space&amp;rft.volume=8&amp;rft.issue=3&amp;rft.pages=836-854&amp;rft.date=2021-01-08&amp;rft_id=info%3Aarxiv%2F2003.09236&amp;rft_id=info%3Adoi%2F10.1093%2Fjcde%2Fqwab018&amp;rft.aulast=Zamboj&amp;rft.aufirst=Michal&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDorst2019" class="citation journal cs1">Dorst, Leo (2019). <a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00006-019-0960-5">"Conformal Villarceau Rotors"</a>. <i>Advances in Applied Clifford Algebras</i>. <b>29</b> (44). <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00006-019-0960-5">10.1007/s00006-019-0960-5</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:253592159">253592159</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advances+in+Applied+Clifford+Algebras&amp;rft.atitle=Conformal+Villarceau+Rotors&amp;rft.volume=29&amp;rft.issue=44&amp;rft.date=2019&amp;rft_id=info%3Adoi%2F10.1007%2Fs00006-019-0960-5&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A253592159%23id-name%3DS2CID&amp;rft.aulast=Dorst&amp;rft.aufirst=Leo&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%252Fs00006-019-0960-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARotations+in+4-dimensional+Euclidean+space" class="Z3988"></span></li></ul> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐xzsqk Cached time: 20241124060746 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.545 seconds Real time usage: 0.720 seconds Preprocessor visited node count: 8792/1000000 Post‐expand include size: 73799/2097152 bytes Template argument size: 16406/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 2/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 62872/5000000 bytes Lua time usage: 0.257/10.000 seconds Lua memory usage: 6725551/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 550.099 1 -total 26.43% 145.400 2 Template:Reflist 24.81% 136.460 9 Template:Cite_journal 24.62% 135.416 134 Template:Math 16.81% 92.456 1 Template:Short_description 11.79% 64.844 2 Template:Pagetype 9.21% 50.674 3 Template:Sfn 6.63% 36.458 143 Template:Main_other 2.98% 16.375 1 Template:Use_dmy_dates 2.48% 13.640 1 Template:Notelist --> <!-- Saved in parser cache with key enwiki:pcache:idhash:2307854-0!canonical and timestamp 20241124060746 and revision id 1256849856. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;oldid=1256849856">https://en.wikipedia.org/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;oldid=1256849856</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Four-dimensional_geometry" title="Category:Four-dimensional geometry">Four-dimensional geometry</a></li><li><a href="/wiki/Category:Quaternions" title="Category:Quaternions">Quaternions</a></li><li><a href="/wiki/Category:Rotation" title="Category:Rotation">Rotation</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_dmy_dates_from_January_2020" title="Category:Use dmy dates from January 2020">Use dmy dates from January 2020</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 21:43<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Rotations_in_4-dimensional_Euclidean_space&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-lzhrf","wgBackendResponseTime":159,"wgPageParseReport":{"limitreport":{"cputime":"0.545","walltime":"0.720","ppvisitednodes":{"value":8792,"limit":1000000},"postexpandincludesize":{"value":73799,"limit":2097152},"templateargumentsize":{"value":16406,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":2,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":62872,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 550.099 1 -total"," 26.43% 145.400 2 Template:Reflist"," 24.81% 136.460 9 Template:Cite_journal"," 24.62% 135.416 134 Template:Math"," 16.81% 92.456 1 Template:Short_description"," 11.79% 64.844 2 Template:Pagetype"," 9.21% 50.674 3 Template:Sfn"," 6.63% 36.458 143 Template:Main_other"," 2.98% 16.375 1 Template:Use_dmy_dates"," 2.48% 13.640 1 Template:Notelist"]},"scribunto":{"limitreport-timeusage":{"value":"0.257","limit":"10.000"},"limitreport-memusage":{"value":6725551,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFBanchoff1990\"] = 1,\n [\"CITEREFDorst2019\"] = 1,\n [\"CITEREFErdoğduÖzdemir2015\"] = 1,\n [\"CITEREFErdoğduÖzdemi̇r2020\"] = 1,\n [\"CITEREFHathaway1902\"] = 1,\n [\"CITEREFJohan_Ernest_Mebius2005\"] = 1,\n [\"CITEREFJohan_Ernest_Mebius2007\"] = 1,\n [\"CITEREFKimRote2016\"] = 1,\n [\"CITEREFMortari2001\"] = 1,\n [\"CITEREFPerez-GraciaThomas2017\"] = 1,\n [\"CITEREFPinkall1985\"] = 1,\n [\"CITEREFRaoKolte2018\"] = 1,\n [\"CITEREFStringham1901\"] = 1,\n [\"CITEREFZamboj2021\"] = 1,\n}\ntemplate_list = table#1 {\n [\"=\"] = 31,\n [\"Citation\"] = 1,\n [\"Cite arXiv\"] = 3,\n [\"Cite book\"] = 1,\n [\"Cite journal\"] = 9,\n [\"Cite web\"] = 1,\n [\"Closed-closed\"] = 1,\n [\"Efn\"] = 1,\n [\"Math\"] = 119,\n [\"Mvar\"] = 122,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 5,\n [\"Pi\"] = 3,\n [\"Reflist\"] = 1,\n [\"Sfn\"] = 3,\n [\"Sfrac\"] = 3,\n [\"Short description\"] = 1,\n [\"Use dmy dates\"] = 1,\n [\"\\\\theta_1\"] = 1,\n [\"\\\\theta_2\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-xzsqk","timestamp":"20241124060746","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Rotations in 4-dimensional Euclidean space","url":"https:\/\/en.wikipedia.org\/wiki\/Rotations_in_4-dimensional_Euclidean_space","sameAs":"http:\/\/www.wikidata.org\/entity\/Q4048844","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q4048844","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2005-07-25T21:15:42Z","dateModified":"2024-11-11T21:43:58Z","headline":"special orthogonal group"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10