CINXE.COM

Search results for: exoskeleton

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: exoskeleton</title> <meta name="description" content="Search results for: exoskeleton"> <meta name="keywords" content="exoskeleton"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="exoskeleton" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="exoskeleton"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 32</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: exoskeleton</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Improvement of an Arm and Shoulder Exoskeleton Using Gyro Sensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Maneetham">D. Maneetham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The developed exoskeleton device has to control joints between shoulder and arm. Exoskeleton device can help patients with hemiplegia upper so that the patient can help themselves in their daily life. Exoskeleton device includes a robot arm wear that looks like the movement is similar to the normal arm. Exoskeleton arm is powered by the motor through the cable with a control system that developed to control the movement of the joint of a robot arm. The arm will include the shoulder, the elbow, and the wrist. The control system is used Arduino Mega 2560 controller and the operation of the DC motor through the relay module. The control system can be divided into two modes such as the manual control with the joystick mode and automatically control with the movement of the head by Gyro sensor. The controller is also designed to move between the shoulder and the arm movement from their original location. Results have shown that the controller gave the best performance and all movements can be controlled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exoskeleton%20arm" title="exoskeleton arm">exoskeleton arm</a>, <a href="https://publications.waset.org/abstracts/search?q=hemiplegia%20upper" title=" hemiplegia upper"> hemiplegia upper</a>, <a href="https://publications.waset.org/abstracts/search?q=shoulder%20and%20arm" title=" shoulder and arm"> shoulder and arm</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a> </p> <a href="https://publications.waset.org/abstracts/82186/improvement-of-an-arm-and-shoulder-exoskeleton-using-gyro-sensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Optimization of the Control Scheme for Human Extremity Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Li">Yang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaorong%20Guan"> Xiaorong Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Xu"> Cheng Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to design a suitable control scheme for human extremity exoskeleton, the interaction force control scheme with traditional PI controller was presented, and the simulation study of the electromechanical system of the human extremity exoskeleton was carried out by using a MATLAB/Simulink module. By analyzing the simulation calculation results, it was shown that the traditional PI controller is not very suitable for every movement speed of human body. So, at last the fuzzy self-adaptive PI controller was presented to solve this problem. Eventually, the superiority and feasibility of the fuzzy self-adaptive PI controller was proved by the simulation results and experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20extremity%20exoskeleton" title="human extremity exoskeleton">human extremity exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20force%20control%20scheme" title=" interaction force control scheme"> interaction force control scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20study" title=" simulation study"> simulation study</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20self-adaptive%20pi%20controller" title=" fuzzy self-adaptive pi controller"> fuzzy self-adaptive pi controller</a>, <a href="https://publications.waset.org/abstracts/search?q=man-machine%20coordinated%20walking" title=" man-machine coordinated walking"> man-machine coordinated walking</a>, <a href="https://publications.waset.org/abstracts/search?q=bear%20payload" title=" bear payload"> bear payload</a> </p> <a href="https://publications.waset.org/abstracts/53441/optimization-of-the-control-scheme-for-human-extremity-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Exoskeleton-Enhanced Manufacturing: A Study Exploring Psychological and Physical Effects on Assembly Operators&#039; Wellbeing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iveta%20Eimontaite">Iveta Eimontaite</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20R.%20Fletcher"> Sarah R. Fletcher</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Surico"> Michele Surico</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfio%20Minissale"> Alfio Minissale</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20F.%20Abba"> Fabio F. Abba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industry 4.0 offers possibilities for increased production volumes and greater efficiency whilst at the same time presenting new opportunities and challenges for the human workforce. Exoskeletons have been used in healthcare and are now starting to be adopted in manufacturing. The potential benefits of reducing fatigue and physical strain are attractive prospects of the technology for industry; however, the novelty of exoskeletons and surrounding ethical issues raise concerns amongst the stakeholders. The current case study investigated the introduction of an upper body exoskeleton designed to support posture but not increase physical strength in a factory over three time points: before the exoskeleton was introduced, and one and two months post-introduction once operators had experienced working with it. The main focus was to evaluate changes in operators' workload, situation awareness, technology self-efficacy, and physical discomfort following the introduction of the exoskeleton. After using the exoskeleton over two months, operators reported a decrease in temporal demand and an increase in performance of the NASA TLX instrument. Furthermore, over the second month, operators' self-reported technology self-efficacy scores increased, but at the same time, their situation awareness decreased. Interestingly, operators' physical discomfort after using the exoskeleton for two months increased from not uncomfortable to quite uncomfortable in the shoulder, arm, and middle back regions. The results suggest that self-perceived task efficiency improved; however, increased discomfort and decreased situation awareness scores indicate that two months might not be long enough for the exoskeleton to be integrated into operators’ mental body schema. The paper will discuss further implications and suggestions for exoskeleton introduction to manufacturing environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title="exoskeleton">exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20workload" title=" mental workload"> mental workload</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20discomfort" title=" physical discomfort"> physical discomfort</a>, <a href="https://publications.waset.org/abstracts/search?q=situation%20awareness" title=" situation awareness"> situation awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20self-efficacy" title=" technology self-efficacy"> technology self-efficacy</a> </p> <a href="https://publications.waset.org/abstracts/126952/exoskeleton-enhanced-manufacturing-a-study-exploring-psychological-and-physical-effects-on-assembly-operators-wellbeing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Reduction in the Metabolic Cost of Human Walking Gaits Using Quasi-Passive Upper Body Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafiseh%20%20Ebrahimi">Nafiseh Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautham%20%20Muthukumaran"> Gautham Muthukumaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Jafari"> Amir Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human walking gait is considered to be the most efficient biped walking gait. There are various types of gait human follows during locomotion and arm swing is one of the most important factors which controls and differentiates human gaits. Earlier studies declared a 7% reduction in the metabolic cost due to the arm swing. In this research, we compared different types of arm swings in terms of metabolic cost reduction and then suggested, designed, fabricated and tested a quasi-passive upper body exoskeleton to study the metabolic cost reduction in the folded arm walking gate scenarios. Our experimental results validate a 10% reduction in the metabolic cost of walking aided by the application of the proposed exoskeleton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arm%20swing" title="arm swing">arm swing</a>, <a href="https://publications.waset.org/abstracts/search?q=MET%20%28metabolic%20equivalent%20of%20a%20task%29" title=" MET (metabolic equivalent of a task)"> MET (metabolic equivalent of a task)</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimeter" title=" calorimeter"> calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20consumption" title=" oxygen consumption"> oxygen consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20body%20quasi-passive%20exoskeleton" title=" upper body quasi-passive exoskeleton"> upper body quasi-passive exoskeleton</a> </p> <a href="https://publications.waset.org/abstracts/102630/reduction-in-the-metabolic-cost-of-human-walking-gaits-using-quasi-passive-upper-body-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Parametric Study of Ball and Socket Joint for Bio-Mimicking Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Roy">Mukesh Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Basant%20Singh%20Sikarwar"> Basant Singh Sikarwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Prakash"> Ravi Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20Ranjan"> Priya Ranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayush%20Goyal"> Ayush Goyal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than 11% of people suffer from weakness in the bone resulting in inability in walking or climbing stairs or from limited upper body and limb immobility. This motivates a fresh bio-mimicking solution to the design of an exo-skeleton to support human movement in the case of partial or total immobility either due to congenital or genetic factors or due to some accident or due to geratological factors. A deeper insight and detailed understanding is required into the workings of the ball and socket joints. Our research is to mimic ball and socket joints to design snugly fitting exoskeletons. Our objective is to design an exoskeleton which is comfortable and the presence of which is not felt if not in use. Towards this goal, a parametric study is conducted to provide detailed design parameters to fabricate an exoskeleton. This work builds up on real data of the design of the exoskeleton, so that the designed exo-skeleton will be able to provide required strength and support to the subject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-mimicking" title="bio-mimicking">bio-mimicking</a>, <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title=" exoskeleton"> exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20joint" title=" ball joint"> ball joint</a>, <a href="https://publications.waset.org/abstracts/search?q=socket%20joint" title=" socket joint"> socket joint</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20limb" title=" artificial limb"> artificial limb</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20rehabilitation" title=" patient rehabilitation"> patient rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=joints" title=" joints"> joints</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interface" title=" human-machine interface"> human-machine interface</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20robotics" title=" wearable robotics"> wearable robotics</a> </p> <a href="https://publications.waset.org/abstracts/37015/parametric-study-of-ball-and-socket-joint-for-bio-mimicking-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Energy Efficient Autonomous Lower Limb Exoskeleton for Human Motion Enhancement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazim%20Mir-Nasiri">Nazim Mir-Nasiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hudyjaya%20Siswoyo%20Jo"> Hudyjaya Siswoyo Jo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes conceptual design, control strategies, and partial simulation for a new fully autonomous lower limb wearable exoskeleton system for human motion enhancement that can support its weight and increase strength and endurance. Various problems still remain to be solved where the most important is the creation of a power and cost efficient system that will allow an exoskeleton to operate for extended period without batteries being frequently recharged. The designed exoskeleton is enabling to decouple the weight/mass carrying function of the system from the forward motion function which reduces the power and size of propulsion motors and thus the overall weight, cost of the system. The decoupling takes place by blocking the motion at knee joint by placing passive air cylinder across the joint. The cylinder is actuated when the knee angle has reached the minimum allowed value to bend. The value of the minimum bending angle depends on usual walk style of the subject. The mechanism of the exoskeleton features a seat to rest the subject&rsquo;s body weight at the moment of blocking the knee joint motion. The mechanical structure of each leg has six degrees of freedom: four at the hip, one at the knee, and one at the ankle. Exoskeleton legs are attached to subject legs by using flexible cuffs. The operation of all actuators depends on the amount of pressure felt by the feet pressure sensors and knee angle sensor. The sensor readings depend on actual posture of the subject and can be classified in three distinct cases: subject stands on one leg, subject stands still on both legs and subject stands on both legs but transit its weight from one leg to other. This exoskeleton is power efficient because electrical motors are smaller in size and did not participate in supporting the weight like in all other existing exoskeleton designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient%20system" title="energy efficient system">energy efficient system</a>, <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title=" exoskeleton"> exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20enhancement" title=" motion enhancement"> motion enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a> </p> <a href="https://publications.waset.org/abstracts/51680/energy-efficient-autonomous-lower-limb-exoskeleton-for-human-motion-enhancement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Bembli">Sana Bembli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahla%20Khraief%20Haddad"> Nahla Khraief Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Safya%20Belghith"> Safya Belghith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exoskeleton-%20upper%20limb%20system" title="exoskeleton- upper limb system">exoskeleton- upper limb system</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20free%20terminal%20sliding%20mode" title=" model free terminal sliding mode"> model free terminal sliding mode</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20compensation" title=" gravity compensation"> gravity compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness%20analysis" title=" robustness analysis"> robustness analysis</a> </p> <a href="https://publications.waset.org/abstracts/129467/model-free-terminal-sliding-mode-with-gravity-compensation-application-to-an-exoskeleton-upper-limb-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Enhancing Human Mobility Exoskeleton Comfort Using Admittance Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Rabaseda">Alexandre Rabaseda</a>, <a href="https://publications.waset.org/abstracts/search?q=Emelie%20Seguin"> Emelie Seguin</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20Doumit"> Marc Doumit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human mobility exoskeletons have been in development for several years and are becoming increasingly efficient. Unfortunately, user comfort was not always a priority design criterion throughout their development. To further improve this technology, exoskeletons should operate and deliver assistance without causing discomfort to the user. For this, improvements are necessary from an ergonomic point of view. The device&rsquo;s control method is important when endeavoring to enhance user comfort. Exoskeleton or rehabilitation device controllers use methods of control called interaction controls (admittance and impedance controls). This paper proposes an extended version of an admittance controller to enhance user comfort. The control method used consists of adding an inner loop that is controlled by a proportional-integral-derivative (PID) controller. This allows the interaction force to be kept as close as possible to the desired force trajectory. The force-tracking admittance controller modifies the actuation force of the system in order to follow both the desired motion trajectory and the desired relative force between the user and the exoskeleton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobility%20assistive%20device" title="mobility assistive device">mobility assistive device</a>, <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title=" exoskeleton"> exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=force-tracking%20admittance%20controller" title=" force-tracking admittance controller"> force-tracking admittance controller</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20comfort" title=" user comfort"> user comfort</a> </p> <a href="https://publications.waset.org/abstracts/133918/enhancing-human-mobility-exoskeleton-comfort-using-admittance-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Soft Exoskeleton Elastomer Pre-Tension Drive Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Yatsun">Andrey Yatsun</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrei%20Malchikov"> Andrei Malchikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soft%20exoskeleton" title="soft exoskeleton">soft exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-tension%20elastomer" title=" pre-tension elastomer"> pre-tension elastomer</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interaction" title=" human-machine interaction"> human-machine interaction</a> </p> <a href="https://publications.waset.org/abstracts/183948/soft-exoskeleton-elastomer-pre-tension-drive-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> A Human Centered Design of an Exoskeleton Using Multibody Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20K%C3%B6lbl">Sebastian Kölbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Reitmaier"> Thomas Reitmaier</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathias%20Hartmann"> Mathias Hartmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trial and error approaches to adapt wearable support structures to human physiology are time consuming and elaborate. However, during preliminary design, the focus lies on understanding the interaction between exoskeleton and the human body in terms of forces and moments, namely body mechanics. For the study at hand, a multi-body simulation approach has been enhanced to evaluate actual forces and moments in a human dummy model with and without a digital mock-up of an active exoskeleton. Therefore, different motion data have been gathered and processed to perform a musculosceletal analysis. The motion data are ground reaction forces, electromyography data (EMG) and human motion data recorded with a marker-based motion capture system. Based on the experimental data, the response of the human dummy model has been calibrated. Subsequently, the scalable human dummy model, in conjunction with the motion data, is connected with the exoskeleton structure. The results of the human-machine interaction (HMI) simulation platform are in particular resulting contact forces and human joint forces to compare with admissible values with regard to the human physiology. Furthermore, it provides feedback for the sizing of the exoskeleton structure in terms of resulting interface forces (stress justification) and the effect of its compliance. A stepwise approach for the setup and validation of the modeling strategy is presented and the potential for a more time and cost-effective development of wearable support structures is outlined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=assistive%20devices" title="assistive devices">assistive devices</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomic%20design" title=" ergonomic design"> ergonomic design</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20dynamics" title=" inverse dynamics"> inverse dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20kinematics" title=" inverse kinematics"> inverse kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=multibody%20simulation" title=" multibody simulation"> multibody simulation</a> </p> <a href="https://publications.waset.org/abstracts/151467/a-human-centered-design-of-an-exoskeleton-using-multibody-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Exoskeleton for Hemiplegic Patients: Mechatronic Approach to Move One Disabled Lower Limb</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaoui%20Hamza">Alaoui Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Moutacalli%20Mohamed%20Tarik"> Moutacalli Mohamed Tarik</a>, <a href="https://publications.waset.org/abstracts/search?q=Chebak%20Ahmed"> Chebak Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The number of people suffering from hemiplegia is growing each year. This lower limb disability affects all the aspects of their lives by taking away their autonomy. This implicates their close relatives, as well as the health system to provide the necessary care they need. The integration of exoskeletons in the medical field became a promising solution to resolve this issue. This paper presents an exoskeleton designed to help hemiplegic people get back the sensation and ability of normal walking. For this purpose, three step models have been created. The first step allows a simple forward movement of the leg. The second method is designed to overcome some obstacles in the patient path, and finally the third step model gives the patient total control over the device. Each of the control methods was designed to offer a solution to the challenges that the patients may face during the walking process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ability%20of%20normal%20walking" title="ability of normal walking">ability of normal walking</a>, <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title=" exoskeleton"> exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=hemiplegic%20patients" title=" hemiplegic patients"> hemiplegic patients</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20limb%20motion-%20mechatronics" title=" lower limb motion- mechatronics"> lower limb motion- mechatronics</a> </p> <a href="https://publications.waset.org/abstracts/129650/exoskeleton-for-hemiplegic-patients-mechatronic-approach-to-move-one-disabled-lower-limb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Dynamic Analysis and Design of Lower Extremity Power-Assisted Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Song%20Shengli">Song Shengli</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Zhitao"> Tan Zhitao</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Qing"> Li Qing</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang%20Husheng"> Fang Husheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Qing"> Ye Qing</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Xinglong"> Zhang Xinglong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lower extremity power-assisted exoskeleton (LEPEX) is a kind of wearable electromechanical integration intelligent system, walking in synchronization with the wearer, which can assist the wearer walk by means of the driver mounted in the exoskeleton on each joint. In this paper, dynamic analysis and design of the LEPEX are performed. First of all, human walking process is divided into single leg support phase, double legs support phase and ground collision model. The three kinds of dynamics modeling is established using the Lagrange method. Then, the flat walking and climbing stairs dynamic information such as torque and power of lower extremity joints is derived for loading 75kg according to scholar Stansfield measured data of flat walking and scholars R. Riener measured data of climbing stair respectively. On this basis, the joint drive way in the sagittal plane is determined, and the structure of LEPEX is designed. Finally, the designed LEPEX is simulated under ADAMS by using a person’s joint sports information acquired under flat walking and climbing stairs. The simulation result effectively verified the correctness of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics" title="kinematics">kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20extremity%20exoskeleton" title=" lower extremity exoskeleton"> lower extremity exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure "> structure </a> </p> <a href="https://publications.waset.org/abstracts/20105/dynamic-analysis-and-design-of-lower-extremity-power-assisted-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahmi%20Brahim">Brahmi Brahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Habibur%20Rahman"> Mohammad Habibur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarouf%20Saad"> Maarouf Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Crist%C3%B3bal%20Ochoa%20Luna"> Cristóbal Ochoa Luna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=backstepping%20control" title="backstepping control">backstepping control</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20control" title=" iterative control"> iterative control</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehabilitation" title=" Rehabilitation"> Rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=ETS-MARSE" title=" ETS-MARSE"> ETS-MARSE</a> </p> <a href="https://publications.waset.org/abstracts/50768/iterative-estimator-based-nonlinear-backstepping-control-of-a-robotic-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Unpowered Knee Exoskeleton with Compliant Joints for Stair Descent Assistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengfan%20Wu">Pengfan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoan%20Chen"> Xiaoan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20He"> Ye He</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianchi%20Chen"> Tianchi Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the design of an unpowered knee exoskeleton to assist human walking by redistributing the moment of the knee joint during stair descent (SD). Considering the knee moment varying with the knee joint angle and the work of the knee joint is all negative, the custom-built spring was used to convert negative work into the potential energy of the spring during flexion, and the obtained energy work as assistance during extension to reduce the consumption of lower limb muscles. The human-machine adaptability problem was left by traditional rigid wearable due to the knee involves sliding and rotating without a fixed-axis rotation, and this paper designed the two-direction grooves to follow the human-knee kinematics, and the wire spring provides a certain resistance to the pin in the groove to prevent extra degrees of freedom. The experiment was performed on a normal stair by healthy young wearing the device on both legs with the surface electromyography recorded. The results show that the quadriceps (knee extensor) were reduced significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unpowered%20exoskeleton" title="unpowered exoskeleton">unpowered exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=stair%20descent" title=" stair descent"> stair descent</a>, <a href="https://publications.waset.org/abstracts/search?q=knee%20compliant%20joint" title=" knee compliant joint"> knee compliant joint</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20redistribution" title=" energy redistribution"> energy redistribution</a> </p> <a href="https://publications.waset.org/abstracts/115645/unpowered-knee-exoskeleton-with-compliant-joints-for-stair-descent-assistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Design of Ultra-Light and Ultra-Stiff Lattice Structure for Performance Improvement of Robotic Knee Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Chen">Bing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Ni"> Xiang Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Li"> Eric Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the population ageing, the number of patients suffering from chronic diseases is increasing, among which stroke is a high incidence for the elderly. In addition, there is a gradual increase in the number of patients with orthopedic or neurological conditions such as spinal cord injuries, nerve injuries, and other knee injuries. These diseases are chronic, with high recurrence and complications, and normal walking is difficult for such patients. Nowadays, robotic knee exoskeletons have been developed for individuals with knee impairments. However, the currently available robotic knee exoskeletons are generally developed with heavyweight, which makes the patients uncomfortable to wear, prone to wearing fatigue, shortening the wearing time, and reducing the efficiency of exoskeletons. Some lightweight materials, such as carbon fiber and titanium alloy, have been used for the development of robotic knee exoskeletons. However, this increases the cost of the exoskeletons. This paper illustrates the design of a new ultra-light and ultra-stiff truss type of lattice structure. The lattice structures are arranged in a fan shape, which can fit well with circular arc surfaces such as circular holes, and it can be utilized in the design of rods, brackets, and other parts of a robotic knee exoskeleton to reduce the weight. The metamaterial is formed by continuous arrangement and combination of small truss structure unit cells, which changes the diameter of the pillar section, geometrical size, and relative density of each unit cell. It can be made quickly through additive manufacturing techniques such as metal 3D printing. The unit cell of the truss structure is small, and the machined parts of the robotic knee exoskeleton, such as connectors, rods, and bearing brackets, can be filled and replaced by gradient arrangement and non-uniform distribution. Under the condition of satisfying the mechanical properties of the robotic knee exoskeleton, the weight of the exoskeleton is reduced, and hence, the patient’s wearing fatigue is relaxed, and the wearing time of the exoskeleton is increased. Thus, the efficiency and wearing comfort, and safety of the exoskeleton can be improved. In this paper, a brief description of the hardware design of the prototype of the robotic knee exoskeleton is first presented. Next, the design of the ultra-light and ultra-stiff truss type of lattice structures is proposed, and the mechanical analysis of the single-cell unit is performed by establishing the theoretical model. Additionally, simulations are performed to evaluate the maximum stress-bearing capacity and compressive performance of the uniform arrangement and gradient arrangement of the cells. Finally, the static analysis is performed for the cell-filled rod and the unmodified rod, respectively, and the simulation results demonstrate the effectiveness and feasibility of the designed ultra-light and ultra-stiff truss type of lattice structures. In future studies, experiments will be conducted to further evaluate the performance of the designed lattice structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structures" title=" lattice structures"> lattice structures</a>, <a href="https://publications.waset.org/abstracts/search?q=metamaterial" title=" metamaterial"> metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20knee%20exoskeleton" title=" robotic knee exoskeleton"> robotic knee exoskeleton</a> </p> <a href="https://publications.waset.org/abstracts/153996/design-of-ultra-light-and-ultra-stiff-lattice-structure-for-performance-improvement-of-robotic-knee-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Robotic Exoskeleton Response During Infant Physiological Knee Kinematics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Breanna%20Macumber">Breanna Macumber</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20Huayamave"> Victor A. Huayamave</a>, <a href="https://publications.waset.org/abstracts/search?q=Emir%20A.%20Vela"> Emir A. Vela</a>, <a href="https://publications.waset.org/abstracts/search?q=Wangdo%20Kim"> Wangdo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20T.%20Chamber"> Tamara T. Chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Centeno"> Esteban Centeno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20modeling" title="musculoskeletal modeling">musculoskeletal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20robotics" title=" soft robotics"> soft robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatrics" title=" pediatrics"> pediatrics</a> </p> <a href="https://publications.waset.org/abstracts/171107/robotic-exoskeleton-response-during-infant-physiological-knee-kinematics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Breanna%20Macumber">Breanna Macumber</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20A.%20Huayamave"> Victor A. Huayamave</a>, <a href="https://publications.waset.org/abstracts/search?q=Emir%20A.%20Vela"> Emir A. Vela</a>, <a href="https://publications.waset.org/abstracts/search?q=Wangdo%20Kim"> Wangdo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamara%20T.%20Chamber"> Tamara T. Chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Centeno"> Esteban Centeno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20modeling" title="musculoskeletal modeling">musculoskeletal modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20robotics" title=" soft robotics"> soft robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatrics" title=" pediatrics"> pediatrics</a> </p> <a href="https://publications.waset.org/abstracts/171597/exoskeleton-response-during-infant-physiological-knee-kinematics-and-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakshi%20Gupta">Sakshi Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Anupam%20Agrawal"> Anupam Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekta%20Singla"> Ekta Singla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20mechanism" title="passive mechanism">passive mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=task-based%20synthesis" title=" task-based synthesis"> task-based synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=emulating%20human-motion" title=" emulating human-motion"> emulating human-motion</a>, <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title=" exoskeleton"> exoskeleton</a> </p> <a href="https://publications.waset.org/abstracts/101014/kinematic-modelling-and-task-based-synthesis-of-a-passive-architecture-for-an-upper-limb-rehabilitation-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> X-Glove: Case Study of Soft Robotic Hand Exoskeleton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pim%20Terachinda">Pim Terachinda</a>, <a href="https://publications.waset.org/abstracts/search?q=Witaya%20Wannasuphoprasit"> Witaya Wannasuphoprasit</a>, <a href="https://publications.waset.org/abstracts/search?q=Wasuwat%20Kitisomprayoonkul"> Wasuwat Kitisomprayoonkul</a>, <a href="https://publications.waset.org/abstracts/search?q=Anan%20Srikiatkhachorn"> Anan Srikiatkhachorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Restoration of hand function and dexterity remain challenges in rehabilitation after stroke. We have developed soft exoskeleton hand robot in which using tendon-driven mechanism. Finger flexion and extension can be triggered by a foot switch and force can be adjusted manually depending on patient’s grip strength. The objective of this study is to investigate feasibility and safety of this device. The study was done in 2 stroke patients with the strength of the finger flexors/extensors grade 1/0 and 3/1 on Medical Research Council scale, respectively. Grasp and release training was performed for 30 minutes. No complication was observed. Results demonstrated that the device is safe, and therapy can be tailored to individual patient’s need. However, further study is required to determine recovery and rehabilitation outcomes after training in patients after nervous system injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hand" title="hand">hand</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=stroke" title=" stroke"> stroke</a> </p> <a href="https://publications.waset.org/abstracts/50577/x-glove-case-study-of-soft-robotic-hand-exoskeleton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Development of an Optimization Method for Myoelectric Signal Processing by Active Matrix Sensing in Robot Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noriyoshi%20Yamauchi">Noriyoshi Yamauchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Etsuo%20Horikawa"> Etsuo Horikawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Takunori%20Tsuji"> Takunori Tsuji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Training by exoskeleton robot is drawing attention as a rehabilitation method for body paralysis seen in many cases, and there are many forms that assist with the myoelectric signal generated by exercise commands from the brain. Rehabilitation requires more frequent training, but it is one of the reasons that the technology is required for the identification of the myoelectric potential derivation site and attachment of the device is preventing the spread of paralysis. In this research, we focus on improving the efficiency of gait training by exoskeleton type robots, improvement of myoelectric acquisition and analysis method using active matrix sensing method, and improvement of walking rehabilitation and walking by optimization of robot control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20matrix%20sensing" title="active matrix sensing">active matrix sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20machine%20interface%20%28BMI%29" title=" brain machine interface (BMI)"> brain machine interface (BMI)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20central%20pattern%20generator%20%28CPG%29" title=" the central pattern generator (CPG)"> the central pattern generator (CPG)</a>, <a href="https://publications.waset.org/abstracts/search?q=myoelectric%20signal%20processing" title=" myoelectric signal processing"> myoelectric signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20rehabilitation" title=" robot rehabilitation"> robot rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/64589/development-of-an-optimization-method-for-myoelectric-signal-processing-by-active-matrix-sensing-in-robot-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Building Exoskeletons for Seismic Retrofitting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giuliana%20Scuderi">Giuliana Scuderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Teuffel"> Patrick Teuffel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20structure" title="adaptive structure">adaptive structure</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetic%20design" title=" biomimetic design"> biomimetic design</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20exoskeleton" title=" building exoskeleton"> building exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20housing" title=" social housing"> social housing</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20envelope" title=" structural envelope"> structural envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20retrofitting" title=" structural retrofitting"> structural retrofitting</a> </p> <a href="https://publications.waset.org/abstracts/20144/building-exoskeletons-for-seismic-retrofitting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Preliminary Study on Analysis of Pinching Motion Actuated by Electro-Active Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doo%20W.%20Lee">Doo W. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20J.%20Lee"> Soo J. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bye%20R.%20Yoon"> Bye R. Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae%20Y.%20Jho"> Jae Y. Jho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyehan%20Rhee"> Kyehan Rhee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hand exoskeletons have been developed in order to assist daily activities for disabled and elder people. A figure exoskeleton was developed using ionic polymer metal composite (IPMC) actuators, and the performance of it was evaluated in this study. In order to study dynamic performance of a finger dummy performing pinching motion, force generating characteristics of an IPMC actuator and pinching motion of a thumb and index finger dummy actuated by IMPC actuators were analyzed. The blocking force of 1.54 N was achieved under 4 V of DC. A thumb and index finger dummy, which has one degree of freedom at the proximal joint of each figure, was manufactured by a three dimensional rapid prototyping. Each figure was actuated by an IPMC actuator, and the maximum fingertip force was 1.18 N. Pinching motion of a dummy was analyzed by two video cameras in vertical top and horizontal left end view planes. A figure dummy powered by IPMC actuators could perform flexion and extension motion of an index figure and a thumb. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finger%20exoskeleton" title="finger exoskeleton">finger exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20polymer%20metal%20composite" title=" ionic polymer metal composite"> ionic polymer metal composite</a>, <a href="https://publications.waset.org/abstracts/search?q=flexion%20and%20extension" title=" flexion and extension"> flexion and extension</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20analysis" title=" motion analysis"> motion analysis</a> </p> <a href="https://publications.waset.org/abstracts/5043/preliminary-study-on-analysis-of-pinching-motion-actuated-by-electro-active-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Analysis and Design of Exo-Skeleton System Based on Multibody Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jatin%20Gupta">Jatin Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Bishakh%20Bhattacharya"> Bishakh Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the aging process, many people start suffering from the problem of weak limbs resulting in mobility disorders and loss of sensory and motor function of limbs. Wearable robotic devices are viable solutions to help people suffering from these issues by augmenting their strength. These robotic devices, popularly known as exoskeletons aides user by providing external power and controlling the dynamics so as to achieve desired motion. Present work studies a simplified dynamic model of the human gait. A four link open chain kinematic model is developed to describe the dynamics of Single Support Phase (SSP) of the human gait cycle. The dynamic model is developed integrating mathematical models of the motion of inverted and triple pendulums. Stance leg is modeled as inverted pendulum having single degree of freedom and swing leg as triple pendulum having three degrees of freedom viz. thigh, knee, and ankle joints. The kinematic model is formulated using forward kinematics approach. Lagrangian approach is used to formulate governing dynamic equation of the model. For a system of nonlinear differential equations, numerical method is employed to obtain system response. Reference trajectory is generated using human body simulator, LifeMOD. For optimal mechanical design and controller design of exoskeleton system, it is imperative to study parameter sensitivity of the system. Six different parameters viz. thigh, shank, and foot masses and lengths are varied from 85% to 115% of the original value for the present work. It is observed that hip joint of swing leg is the most sensitive and ankle joint of swing leg is the least sensitive one. Changing link lengths causes more deviation in system response than link masses. Also, shank length and thigh mass are most sensitive parameters. Finally, the present study gives an insight on different factors that should be considered while designing a lower extremity exoskeleton. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lower%20limb%20exoskeleton" title="lower limb exoskeleton">lower limb exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=multibody%20dynamics" title=" multibody dynamics"> multibody dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20based%20formulation" title=" energy based formulation"> energy based formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20design" title=" optimal design"> optimal design</a> </p> <a href="https://publications.waset.org/abstracts/74882/analysis-and-design-of-exo-skeleton-system-based-on-multibody-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> An Ergonomic Evaluation of Three Load Carriage Systems for Reducing Muscle Activity of Trunk and Lower Extremities during Giant Puppet Performing Tasks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cathy%20SW.%20Chow">Cathy SW. Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Shin"> Kristina Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Faming%20Wang"> Faming Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20L.%20So"> B. C. L. So</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During some dynamic giant puppet performances, an ergonomically designed load carrier system is necessary for the puppeteers to carry a giant puppet body&rsquo;s heavy load with minimum muscle stress. A load carrier (i.e. prototype) was designed with two small wheels on the foot; and a hybrid spring device on the knee in order to assist the sliding and knee bending movements respectively. Thus, the purpose of this study was to evaluate the effect of three load carriers including two other commercially available load mounting systems, Tepex and SuitX, and the prototype. Ten male participants were recruited for the experiment. Surface electromyography (sEMG) was used to collect the participants&rsquo; muscle activities during forward moving and bouncing and with and without load of 11.1 kg that was 60 cm above the shoulder. Five bilateral muscles including the lumbar erector spinae (LES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), and gastrocnemius (GM) were selected for data collection. During forward moving task, the sEMG data showed smallest muscle activities by Tepex harness which exhibited consistently the lowest, compared with the prototype and SuitX which were significantly higher on&nbsp;left LES 68.99% and 64.99%, right LES 26.57% and 82.45%; left RF 87.71% and 47.61%, right RF 143.57% and 24.28%; left BF 80.21% and 22.23%, right BF 96.02% and 21.83%; right TA 6.32% and 4.47%; left GM&nbsp;5.89% and 12.35% respectively. The result above reflected mobility was highly restricted by tested exoskeleton devices. On the other hand, the sEMG data from bouncing task showed the smallest muscle activities by prototype which exhibited consistently the lowest, compared with the Tepex harness and SuitX which were significantly lower on lLES 6.65% and 104.93, rLES 23.56% and 92.19%; lBF 33.21% and 93.26% and rBF 24.70% and 81.16%; lTA 46.51% and 191.02%; rTA 12.75% and 125.76%; IGM 31.54% and 68.36%; rGM 95.95% and 96.43% respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title="exoskeleton">exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=giant%20puppet%20performers" title=" giant puppet performers"> giant puppet performers</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20carriage%20system" title=" load carriage system"> load carriage system</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20electromyography" title=" surface electromyography"> surface electromyography</a> </p> <a href="https://publications.waset.org/abstracts/122671/an-ergonomic-evaluation-of-three-load-carriage-systems-for-reducing-muscle-activity-of-trunk-and-lower-extremities-during-giant-puppet-performing-tasks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Small-Scale Survey on Risk Factors of Musculoskeletal Disorders in Workers of Logistics Companies in Cyprus and on the Early Adoption of Industrial Exoskeletons as Mitigation Measure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyriacos%20Clerides">Kyriacos Clerides</a>, <a href="https://publications.waset.org/abstracts/search?q=Panagiotis%20Herodotou"> Panagiotis Herodotou</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantina%20Polycarpou"> Constantina Polycarpou</a>, <a href="https://publications.waset.org/abstracts/search?q=Evagoras%20Xydas"> Evagoras Xydas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Musculoskeletal disorders (MSDs) in the workplace is a very common problem in Europe which are caused by multiple risk factors. In recent years, wearable devices and exoskeletons for the workplace have been trying to address the various risk factors that are associated with strenuous tasks in the workplace. The logistics sector is a huge sector that includes warehousing, storage, and transportation. However, the task associated with logistics is not well-studied in terms of MSDs risk. This study was aimed at looking into the MSDs affecting workers of logistics companies. It compares the prevalence of MSDs among workers and evaluates multiple risk factors that contribute to the development of MSDs. Moreover, this study seeks to obtain user feedback on the adoption of exoskeletons in such a work environment. Materials and Methods: The study was conducted among workers in logistics companies in Nicosia, Cyprus, from July to September 2022. A set of standardized questionnaires was used for collecting different types of data. Results: A high proportion of logistics professionals reported MSDs in one or more other body regions, the lower back being the most commonly affected area. Working in the same position for long periods, working in awkward postures, and handling an excessive load, were found to be the most commonly reported job risk factor that contributed to the development of MSDs, in this study. A significant number of participants consider the back region as the most to be benefited from a wearable exoskeleton device. Half of the participants would like to have at least a 50% reduction in their daily effort. The most important characteristics for the adoption of exoskeleton devices were found to be how comfortable the device is and its weight. Conclusion: Lower back and posture were the highest risk factors among all logistics professionals assessed in this study. A larger scale study using quantitative analytical tools may give a more accurate estimate of MSDs, which would pave the way for making more precise recommendations to eliminate the risk factors and thereby prevent MSDs. A follow-up study using exoskeletons in the workplace should be done to assess whether they assist in MSD prevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=musculoskeletal%20disorders" title="musculoskeletal disorders">musculoskeletal disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20health" title=" occupational health"> occupational health</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20risk" title=" occupational risk"> occupational risk</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20companies" title=" logistic companies"> logistic companies</a>, <a href="https://publications.waset.org/abstracts/search?q=workers" title=" workers"> workers</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyprus" title=" Cyprus"> Cyprus</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20exoskeletons" title=" industrial exoskeletons"> industrial exoskeletons</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20devices" title=" wearable devices"> wearable devices</a> </p> <a href="https://publications.waset.org/abstracts/165080/a-small-scale-survey-on-risk-factors-of-musculoskeletal-disorders-in-workers-of-logistics-companies-in-cyprus-and-on-the-early-adoption-of-industrial-exoskeletons-as-mitigation-measure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Relating Interface Properties with Crack Propagation in Composite Laminates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Qu">Tao Qu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Prakash"> Chandra Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Tomar"> Vikas Tomar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitin" title="chitin">chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=interfaces" title=" interfaces"> interfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a> </p> <a href="https://publications.waset.org/abstracts/44635/relating-interface-properties-with-crack-propagation-in-composite-laminates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Modeling and Control of a 4DoF Robotic Assistive Device for Hand Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Spiewak">Christopher Spiewak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Islam"> M. R. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Arifur%20Rahaman"> Mohammad Arifur Rahaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20H.%20Rahman"> Mohammad H. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20Smith"> Roger Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarouf%20Saad"> Maarouf Saad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For those who have lost the ability to move their hand, going through repetitious motions with the assistance of a therapist is the main method of recovery. We have been developed a robotic assistive device to rehabilitate the hand motions in place of the traditional therapy. The developed assistive device (RAD-HR) is comprised of four degrees of freedom enabling basic movements, hand function, and assists in supporting the hand during rehabilitation. We used a nonlinear computed torque control technique to control the RAD-HR. The accuracy of the controller was evaluated in simulations (MATLAB/Simulink environment). To see the robustness of the controller external disturbance as modelling uncertainty (&plusmn;10% of joint torques) were added in each joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biorobotics" title="biorobotics">biorobotics</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20assistive%20device" title=" robotic assistive device"> robotic assistive device</a>, <a href="https://publications.waset.org/abstracts/search?q=exoskeleton" title=" exoskeleton"> exoskeleton</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a> </p> <a href="https://publications.waset.org/abstracts/50770/modeling-and-control-of-a-4dof-robotic-assistive-device-for-hand-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> A Forearm-Wrist Rehabilitation Module for Stroke and Spinal Cord Injuries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vahid%20Mehrabi">Vahid Mehrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Iman%20Sharifi"> Iman Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Talebi"> H. A. Talebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The automation of rehabilitation procedure by the implementation of robotic devices can overcome the limitation in conventional physiotherapy methods by increasing training sessions and duration of process. In this paper, the design of a simple rehabilitation robot for forearm-wrist therapy in stroke and spinal cord injuries is presented. Wrist’s biological joint motion is modeled by a gimbal-like mechanism which resembles the human arm anatomy. Presented device is an exoskeleton robot with rotation axes corresponding to human skeleton anatomy. The mechanical structure, actuator and sensor selection, system kinematics and comparison between our device range of motion and required active daily life values is illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title="rehabilitation">rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20devices" title=" robotic devices"> robotic devices</a>, <a href="https://publications.waset.org/abstracts/search?q=physiotherapy" title=" physiotherapy"> physiotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=forearm-wrist" title=" forearm-wrist"> forearm-wrist</a> </p> <a href="https://publications.waset.org/abstracts/10515/a-forearm-wrist-rehabilitation-module-for-stroke-and-spinal-cord-injuries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Study of Chitosan beads Adsorption Properties for the Removal of Heavy Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20O.%20Osifo">Peter O. Osifo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hein%20W.%20J.%20P.%20Neomagus"> Hein W. J. P. Neomagus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a predicted pH model was used to determine adsorption equilibrium properties of copper, lead, zinc and cadmium. Chitosan was prepared from the exoskeleton of Cape rock-lobsters, collected from the surroundings of Cape Town, South Africa. The beads were cross-linked with gluteraldehyde to restore its chemical stability in acid media. The chitosan beads were characterized; the beads water contents and pKa varied in the range of 90-96% and 4.3-6.0 respectively and the degree of crosslinking for the beads was 18%. A pH-model, which described the reversibility of the metal adsorbed onto the beads, was used to predict the equilibrium properties of copper, lead, zinc and cadmium adsorption onto the cross-linked beads. The model accounts for the effect of pH and the important model parameters; the equilibrium adsorption constant (Kads) and to a lesser extent the adsorbent adsorption capacity (qmax). The adsorption equilibrium constant for copper, lead, zinc and cadmium were found to be 2.58×10-3, 2.22×0-3, 9.55×0-3, and 4.79×0-3, respectively. The adsorbent maximum capacity was determined to be 4.2 mmol/g. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan%20beads" title="chitosan beads">chitosan beads</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/42098/the-study-of-chitosan-beads-adsorption-properties-for-the-removal-of-heavy-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Optimal Rest Interval between Sets in Robot-Based Upper-Arm Rehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virgil%20Miranda">Virgil Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=Gissele%20Mosqueda"> Gissele Mosqueda</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Delgado"> Pablo Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=Yimesker%20Yihun"> Yimesker Yihun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muscular fatigue affects the muscle activation that is needed for producing the desired clinical outcome. Integrating optimal muscle relaxation periods into a variety of health care rehabilitation protocols is important to maximize the efficiency of the therapy. In this study, four muscle relaxation periods (30, 60, 90, and 120 seconds) and their effectiveness in producing consistent muscle activation of the muscle biceps brachii between sets of elbow flexion and extension task was investigated among a sample of 10 subjects with no disabilities. The same resting periods were then utilized in a controlled exoskeleton-based exercise for a sample size of 5 subjects and have shown similar results. On average, the muscle activity of the biceps brachii decreased by 0.3% when rested for 30 seconds, and it increased by 1.25%, 0.76%, and 0.82% when using muscle relaxation periods of 60, 90, and 120 seconds, respectively. The preliminary results suggest that a muscle relaxation period of about 60 seconds is needed for optimal continuous muscle activation within rehabilitation regimens. Robot-based rehabilitation is good to produce repetitive tasks with the right intensity, and knowing the optimal resting period will make the automation more effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rest%20intervals" title="rest intervals">rest intervals</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20biceps%20brachii" title=" muscle biceps brachii"> muscle biceps brachii</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20rehabilitation" title=" robot rehabilitation"> robot rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20fatigue" title=" muscle fatigue"> muscle fatigue</a> </p> <a href="https://publications.waset.org/abstracts/147766/optimal-rest-interval-between-sets-in-robot-based-upper-arm-rehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=exoskeleton&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=exoskeleton&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10