CINXE.COM
Search results for: flocculants
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flocculants</title> <meta name="description" content="Search results for: flocculants"> <meta name="keywords" content="flocculants"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flocculants" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flocculants"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flocculants</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Flocculation on the Treatment of Olive Oil Mill Wastewater: Pre-Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Hodaifa">G. Hodaifa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20P%C3%A1ez"> J. A. Páez</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Agabo"> C. Agabo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ramos"> E. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Guti%C3%A9rrez"> J. C. Gutiérrez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rosal"> A. Rosal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the continuous two-phase decanter process used for olive oil production is the more internationally widespread. The wastewaters generated from this industry (OMW) is a real environmental problem because of its high organic load. Among proposed treatments for these wastewaters, the advanced oxidation technologies (Fenton process, ozone, photoFenton, etc.) are the most favourable. The direct application of these processes is somewhat expensive. Therefore, the application of a previous stage based on a flocculation-sedimentation operation is of high importance. In this research five commercial flocculants (three cationic, and two anionic) have been used to achieve the separation of phases (liquid clarified-sludge). For each flocculant, different concentrations (0-1000 mg/L) have been studied. In these experiments, sludge volume formed over time and the final water quality were determined. The final removal percentages of total phenols (11.3-25.1%), COD (5.6-20.4%), total carbon (2.3-26.5%), total organic carbon (1.50-23.8%), total nitrogen (1.45-24.8%), and turbidity (27.9-61.4%) were obtained. Also, the variation on the electric conductivity reduction percentage (1-8%) was determined. Finally, the best flocculants with highest removal percentages have been determined (QG2001 and Flocudex CS49). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flocculants" title="flocculants">flocculants</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20mill%20wastewater" title=" olive oil mill wastewater"> olive oil mill wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/20372/flocculation-on-the-treatment-of-olive-oil-mill-wastewater-pre-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Valorisation of a Bioflocculant and Hydroxyapatites as Coagulation-Flocculation Adjuvants in Wastewater Treatment of the Steppe in the Wilaya of Saida</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Choumane">Fatima Zohra Choumane</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Benguella"> Belkacem Benguella</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouhana%20Maachou"> Bouhana Maachou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Saadi"> Nacera Saadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution caused by wastewater is a serious problem in Algeria. This pollution has certainly harmful effects on the environment. In order to reduce the bad effects of these pollutants, many wastewater treatment processes, mainly physicochemical, are implemented. This study consists in using two flocculants; the first one is a biodegradable natural bioflocculant, i.e. Cactaceaeou ficus-indica cactus juice, and the second is the synthetic hydroxyapatite, in a physico-chemical process through coagulation-flocculation, using two coagulants, i.e. ferric chloride and aluminum sulfate, to treat wastewater collected at the entrance of the treatment plant, in the town of Saida. The influence of various experimental parameters, such as the amounts of coagulants and flocculants used, pH, turbidity, COD and BOD5, was investigated. The coagulation - flocculation jar tests of wastewater reveal that ferric chloride, containing a mass of 0.3 g – hydroxyapatite, treated for 1 hour through calcination, is the most effective adjuvant in clarifying the wastewater, with turbidity equal to 98.16 %. In the presence of the two bioflocculants, Cactaceae juice and aluminum sulphate, with a dose of 0.2 g, flocculation is good, with turbidity equal to 95.61 %. Examination of the key reaction parameters, following the flocculation tests of wastewater, shows that the degree of pollution decreases. This is confirmed by the COD and turbidity values obtained. Examination of these results suggests the use of these flocculants in wastewater treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater" title="wastewater">wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=cactus%20ficus-indica" title=" cactus ficus-indica"> cactus ficus-indica</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation%20-%20flocculation" title=" coagulation - flocculation"> coagulation - flocculation</a> </p> <a href="https://publications.waset.org/abstracts/43194/valorisation-of-a-bioflocculant-and-hydroxyapatites-as-coagulation-flocculation-adjuvants-in-wastewater-treatment-of-the-steppe-in-the-wilaya-of-saida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Flocculation and Settling Rate Studies of Clean Coal Fines at Different Flocculants Dosage, pH Values, Bulk Density and Particle Size</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Himeshkumar%20Ashokbhai">Patel Himeshkumar Ashokbhai</a>, <a href="https://publications.waset.org/abstracts/search?q=Suchit%20Sharma"> Suchit Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Garg"> Arvind Kumar Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The results obtained from settling test of coal fines are used as an important tool to select the dewatering equipment such as thickeners, centrifuges and filters. Coal being hydrophobic in nature does not easily settle when mixed with water. Coal slurry that takes longer time to release water is highly undesirable because it poses additional challenge during sedimentation, centrifuge and filtration. If filter cake has higher than permitted moisture content then it not only creates handling problems but inflated freight costs and reduction in input and productivity for coke oven charges. It is to be noted that coal fines drastically increase moisture percentage in filter cake hence are to be minimized. To increase settling rate of coal fines in slurry chemical substances called flocculants or coagulants are added that cause coal particles to flocculate or coalesce into larger particles. These larger particles settle at faster rate and have higher settling velocity. Other important factors affecting settling rate are flocculent dosage, slurry or pulp density and particle size. Hence in this paper we tried to study the settling characteristic of clean coal fines by varying one of the four factors namely 1. Flocculant Dosage (acryl-amide) 2. pH of the water 3. Bulk density 4. Particle size of clean coal fines in settling experiment and drew important conclusions. Result of this paper will be much useful not only for coal beneficiation plant design but also for cost reduction of coke production facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20density" title="bulk density">bulk density</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fines" title=" coal fines"> coal fines</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculants" title=" flocculants"> flocculants</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=settling%20velocity" title=" settling velocity"> settling velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/38696/flocculation-and-settling-rate-studies-of-clean-coal-fines-at-different-flocculants-dosage-ph-values-bulk-density-and-particle-size" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Interference of Polymers Addition in Wastewaters Microbial Survey: Case Study of Viral Retention in Sludges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doriane%20Delafosse">Doriane Delafosse</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Fontvieille"> Dominique Fontvieille</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Wastewater treatment plants (WWTPs) generally display significant efficacy in virus retention yet, are sometimes highly variable, partly in relation to large fluctuating loads at the head of the plant and partly because of episodic dysfunctions in some treatment processes. The problem is especially sensitive when human enteric viruses, such as human Noroviruses Genogroup I or Adenoviruses, are in concern: their release downstream WWTP, in environments often interconnected to recreational areas, may be very harmful to human communities even at low concentrations. It points out the importance of WWTP permanent monitoring from which their internal treatment processes could be adjusted. One way to adjust primary treatments is to add coagulants and flocculants to sewage ahead settling tanks to improve decantation. In this work, sludge produced by three coagulants (two organics, one mineral), four flocculants (three cationic, one anionic), and their combinations were studied for their efficacy in human enteric virus retention. Sewage samples were coming from a WWTP in the vicinity of the laboratory. All experiments were performed three times and in triplicates in laboratory pilots, using Murine Norovirus (MNV-1), a surrogate of human Norovirus, as an internal control (spiking). Viruses were quantified by (RT-)qPCR after nucleic acid extraction from both treated water and sediment. Results: Low values of sludge virus retention (from 4 to 8% of the initial sewage concentration) were observed with each cationic organic flocculant added to wastewater and no coagulant. The largest part of the virus load was detected in the treated water (48 to 90%). However, it was not counterbalancing the amount of the introduced virus (MNV-1). The results pertained to two types of cationic flocculants, branched and linear, and in the last case, to two percentages of cations. Results were quite similar to the association of a linear cationic organic coagulant and an anionic flocculant, though suggesting that differences between water and sludges would sometimes be related to virus size or virus origins (autochthonous/allochthonous). FeCl₃, as a mineral coagulant associated with an anionic flocculant, significantly increased both auto- and allochthonous virus retention in the sediments (15 to 34%). Accordingly, virus load in treated water was lower (14 to 48%) but with a total that still does not reach the amount of the introduced virus (MNV-1). It also appeared that the virus retrieval in a bare 0.1M NaCl suspension varied rather strongly according to the FeCl₃ concentration, suggesting an inhibiting effect on the molecular analysis used to detect the virus. Finally, no viruses were detected in both phases (sediment and water) with the combination branched cationic coagulant-linear anionic flocculant, which was later demonstrated as an effect, here also, of polymers on the virus detection-molecular analysis. Conclusions: The combination of FeCl₃-anionic flocculant gave its highest performance to the decantation-based virus removal process. However, large unbalanced values in spiking experiments were observed, suggesting that polymers cast additional obstacles to both elution buffer and lysis buffer on their way to reach the virus. The situation was probably even worse with autochthonous viruses already embedded into sewage's particulate matter. Polymers and FeCl₃ also appeared to interfere in some steps of molecular analyses. More attention should be paid to such impediments wherever chemical additives are considered to be used to enhance WWTP processes. Acknowledgments: This research was supported by the ABIOLAB laboratory (Montbonnot Saint-Martin, France) and by the ASPOSAN association. Field experiments were possible thanks to the Grand Chambéry WWTP authorities (Chambéry, France). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flocculants-coagulants" title="flocculants-coagulants">flocculants-coagulants</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=enteric%20viruses" title=" enteric viruses"> enteric viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20sedimentation%20treatment%20plant" title=" wastewater sedimentation treatment plant"> wastewater sedimentation treatment plant</a> </p> <a href="https://publications.waset.org/abstracts/153041/interference-of-polymers-addition-in-wastewaters-microbial-survey-case-study-of-viral-retention-in-sludges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Cadmium Accumulation and Depuration Characteristics through Food Source of Cage-Cultivated Fish after Accidental Pollution in Longjiang River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qianli%20Ma">Qianli Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuemin%20Zhao"> Xuemin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingai%20Yao"> Lingai Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhencheng%20Xu"> Zhencheng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Wang"> Li Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal pollution accidents, frequently happened in this decade in China, severely threaten aquatic ecosystem and economy. In January 2012, a basin-scale accidental Cd pollution happened in Longjiang River in southwest China. Although water quality was recovered in short period by emergency treatment with flocculants, a large amount of contaminated cage-cultivated fish were left with the task of preventing or mitigating Cd contamination of fish. In this study, unpolluted Ctenopharyngodon idellus were fed by Cd-contaminated macrophytes for assessing the effect of Cd accumulation through food exposure, and the contaminated C. idellus were fed with Cd-free macrophytes for assessing the ability of Cd depuration. The on-site cultivation experiments were done in two sites of Lalang (S1, accidental Cd pollution originated) and Sancha (S2, a large amount of flocculants were added to accelerate Cd precipitation) in Longjiang river. Results showed that Cd content in fish muscle presented an increasing trend in the accumulation experiment. In S1, Cd content of fish muscle rose sharply from day 8 to day 18 with higher average Cd content in macrophytes and sediment, and kept in the range of 0.208-0.308 mg/kg afterward. In S2, Cd content of fish muscle rose gradually throughout the experiment and reached the maximum level of 0.285 mg/kg on day 76. The results of the depuration experiment showed that Cd content in fish muscle decreased and significant changes were observed in the first half time of the experiment. Meanwhile, fish with lower initial Cd content presented higher elimination constant. In S1, Cd content of fish significantly decreased from 0.713 to 0.304 mg/kg in 18 days and kept decreasing to 0.110 mg/kg in the end, and 84.6% of Cd content was eliminated. While in S2, there was a sharp decrease of Cd content of fish in 0-8 days from 0.355 mg/kg to 0.069 mg/kg. The total elimination percentage was 93.8% and 80.6% of which appeared in day 0-8. The elimination constant of fish in S2 was 0.03 which was higher than 0.02 in S1. Collectively, our results showed Cd could be absorbed through food exposure and accumulate in fish muscle, and the accumulated Cd in fish muscle can be excreted after isolated from the polluted food sources. This knowledge allows managers to assess health risk of Cd contaminated fish and minimize aquaculture loss when considering fish cultivation after accidental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accidental%20pollution" title="accidental pollution">accidental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=cadmium%20accumulation%20and%20depuration" title=" cadmium accumulation and depuration"> cadmium accumulation and depuration</a>, <a href="https://publications.waset.org/abstracts/search?q=cage-cultivated%20fish" title=" cage-cultivated fish"> cage-cultivated fish</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a> </p> <a href="https://publications.waset.org/abstracts/74446/cadmium-accumulation-and-depuration-characteristics-through-food-source-of-cage-cultivated-fish-after-accidental-pollution-in-longjiang-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Hybrid Solutions in Physicochemical Processes for the Removal of Turbidity in Andean Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20C%C3%A1rdenas%20Gaudry">María Cárdenas Gaudry</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Ramces%20Fano%20Miranda"> Gonzalo Ramces Fano Miranda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sediment removal is very important in the purification of water, not only for reasons of visual perception but also because of its association with odor and taste problems. The Cuchoquesera reservoir, which is in the Andean region of Ayacucho (Peru) at an altitude of 3,740 meters above sea level, visually presents suspended particles and organic impurities indicating that it contains water of dubious quality to deduce that it is suitable for direct consumption of human beings. In order to quantitatively know the degree of impurities, water quality monitoring was carried out from February to August 2018, in which four sampling stations were established in the reservoir. The selected measured parameters were electrical conductivity, total dissolved solids, pH, color, turbidity, and sludge volume. The indicators of the studied parameters exceed the permissible limits except for electrical conductivity (190 μS/cm) and total dissolved solids (255 mg/L). In this investigation, the best combination and the optimal doses of reagents were determined that allowed the removal of sediments from the waters of the Cuchoquesera reservoir, through the physicochemical process of coagulation-flocculation. In order to improve this process during the rainy season, six combinations of reagents were evaluated, made up of three coagulants (ferric chloride, ferrous sulfate, and aluminum sulfate) and two natural flocculants: prickly pear powder (Opuntia ficus-indica) and tara gum (Caesalpinia spinoza). For each combination of reagents, jar tests were developed following the central composite experimental design (CCED), where the design factors were the doses of coagulant and flocculant and the initial turbidity. The results of the jar tests were adjusted to mathematical models, obtaining that to treat the water from the Cuchoquesera reservoir, with a turbidity of 150 UTN and a color of 137 U Pt-Co, 27.9 mg/L of the coagulant aluminum sulfate with 3 mg/L of the natural tara gum flocculant to produce a purified water quality of 1.7 UTN of turbidity and 3.2 U Pt-Co of apparent color. The estimated cost of the dose of coagulant and flocculant found was 0.22 USD/m³. This is how “grey-green” technologies can be used as a combination in nature-based solutions in water treatment, in this case, to achieve potability, making it more sustainable, especially economically, if green technology is available at the site of application of the nature-based hybrid solution. This research is a demonstration of the compatibility of natural coagulants/flocculants with other treatment technologies in the integrated/hybrid treatment process, such as the possibility of hybridizing natural coagulants with other types of coagulants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prickly%20pear%20powder" title="prickly pear powder">prickly pear powder</a>, <a href="https://publications.waset.org/abstracts/search?q=tara%20gum" title=" tara gum"> tara gum</a>, <a href="https://publications.waset.org/abstracts/search?q=nature-based%20solutions" title=" nature-based solutions"> nature-based solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20sulfate" title=" aluminum sulfate"> aluminum sulfate</a>, <a href="https://publications.waset.org/abstracts/search?q=jar%20test" title=" jar test"> jar test</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity"> turbidity</a>, <a href="https://publications.waset.org/abstracts/search?q=coagulation" title=" coagulation"> coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a> </p> <a href="https://publications.waset.org/abstracts/152304/hybrid-solutions-in-physicochemical-processes-for-the-removal-of-turbidity-in-andean-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Exploring the Influences on Entrainment of Serpentines by Grinding and Reagents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Tang">M. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Wen"> S. M. Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20Liu"> D. W. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the influences on the entrainment of serpentines by grinding and reagents during copper–nickel sulfide flotation. The previous bench flotation tests were performed to extract the metallic values from the ore in Yunnan Mine, China and the relatively satisfied results with recoveries of 86.92% Cu, 54.92% Ni, and 74.73% Pt+Pd in the concentrate were harvested at their grades of 4.02%, 3.24% and 76.61 g/t, respectively. However, the content of MgO in the concentrate was still more than 19%. Micro-flotation tests were conducted with the objective of figuring out the influences on the entrainment of serpentines into the concentrate by particle size, flocculants or depressants and collectors, as well as visual observations in suspension by OLYMPUS camera. All the tests results pointed to the presences of both “entrapped-in” serpentines and its coating on the hydrophobic flocs resulted from strong collectors (combination of butyl xanthate, butyl ammonium dithophosphate, even after adding carboxymethyl cellulose as effective depressant. And fine grinding may escalate the entrainment of serpentines in the concentrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=serpentine" title="serpentine">serpentine</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20and%20nickel%20sulfides" title=" copper and nickel sulfides"> copper and nickel sulfides</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=entrainment" title=" entrainment"> entrainment</a> </p> <a href="https://publications.waset.org/abstracts/5044/exploring-the-influences-on-entrainment-of-serpentines-by-grinding-and-reagents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Application of Dissolved Air Flotation for Removal of Oil from Wastewater </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talat%20Ghomashchi">Talat Ghomashchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Akbari"> Zahra Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shirin%20Malekpour"> Shirin Malekpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Alimirzaee"> Marjan Alimirzaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixing the waste water of industries with natural water has caused environmental pollution. So researcher try to obtain methods and optimum conditions for waste water treatment. One of important stage in waste water treatment is dissolved air flotation. DAF is used for the removal of suspended solids and oils from waste water. In this paper, the effect of several parameters on flotation efficiency with Cationic polyacrylamide as flocculant, was examined, namely, (a) concentration of cationic flocculants, (b) pH (c) fast mixing time, (d) fast mixing speed,(e) slow mixing time,(f) retention time and temperature. After design of experiment, in each trial turbidity of waste water was measured by spectrophotometer. Results show that contribution of pH and concentration of flocculant on flotation efficiency are 75% and 9% respectively. Cationic polyacrylamide led to a significant increase in the settling speed and effect of temperature is negligible. In the optimum condition, the outcome of the DAF unit is increased and amount of suspended solid and oil in waste water is decreased effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolved%20air%20flotation" title="dissolved air flotation">dissolved air flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20industry" title=" oil industry"> oil industry</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/33427/application-of-dissolved-air-flotation-for-removal-of-oil-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Principles of Municipal Sewage Sludge Bioconversion into Biomineral Fertilizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Kalinichenko">K. V. Kalinichenko</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Nikovskaya"> G. N. Nikovskaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficiency of heavy metals removal from sewage sludge in bioleaching with heterotrophic, chemoautotrophic (sulphur-oxidizing) sludge cenoses and chemical leaching (in distilled water, weakly acidic or alkaline medium) was compared. The efficacy of heavy metals removal from sewage sludge varied from 83 % (Zn) up to 14 % (Cr) and followed the order: Zn > Mn > Cu > Ni > Co > Pb > Cr. The advantages of metals bioleaching process at heterotrophic metabolism was shown. A new process for bioconversation of sewage sludge into fertilizer at middle temperature after partial heavy metals removal was developed. This process is based on enhancing vital ability of heterotrophic microorganisms by adding easily metabolized nutrients and synthesis of metabolites by growing sludge cenoses. These metabolites possess the properties of heavy metals extractants and flocculants which provide sludge flocks sedimentation and concentration. The process results in biomineral fertilizer with immobilized sludge bioelements with prolonged action. The fertilizer obtained satisfied the EU limits for the sewage sludge of agricultural utilization. High efficiency of the biomineral fertilizers obtained has been demonstrated in vegetation experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title="fertilizer">fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage%20sludge" title=" sewage sludge"> sewage sludge</a> </p> <a href="https://publications.waset.org/abstracts/2684/principles-of-municipal-sewage-sludge-bioconversion-into-biomineral-fertilizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2684.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Treatment of Rice Industry Waste Water by Flotation-Flocculation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Kapoor">J. K. Kapoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Jabin"> Shagufta Jabin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Bhatia"> H. S. Bhatia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyamine flocculants were synthesized by poly-condensation of diphenylamine and epichlorohydrin using 1, 2-diaminoethane as modifying agent. The polyelectrolytes were prepared by taking epichlohydrin-diphenylamine in a molar ratio of 1:1, 1.5:1, 2:1, and 2.5:1. The flocculation performance of these polyelectrolytes was evaluated with rice industry waste water. The polyelectrolytes have been used in conjunction with alum for coagulation- flocculation process. Prior to the coagulation- flocculation process, air flotation technique was used with the aim to remove oil and grease content from waste water. Significant improvement was observed in the removal of oil and grease content after the air flotation technique. It has been able to remove 91.7% oil and grease from rice industry waste water. After coagulation-flocculation method, it has been observed that polyelectrolyte with epichlohydrin-diphenylamine molar ratio of 1.5:1 showed best results for the removal of pollutants from rice industry waste water. The highest efficiency of turbidity and TSS removal with polyelectrolyte has been found to be 97.5% and 98.2%, respectively. Results of these evaluations also reveal 86.8% removal of COD and 87.5% removal of BOD from rice industry waste water. Thus, we demonstrate optimization of coagulation–flocculation technique which is appropriate for waste water treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flotation%20technique" title=" air flotation technique"> air flotation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=polyelectrolyte" title=" polyelectrolyte"> polyelectrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=turbidity" title=" turbidity "> turbidity </a> </p> <a href="https://publications.waset.org/abstracts/16797/treatment-of-rice-industry-waste-water-by-flotation-flocculation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Decolorization and Degradation of Ponceau Red P4R in Aqueous Solution by Ferrate (Vi)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaimaan%20Benhsinat">Chaimaan Benhsinat</a>, <a href="https://publications.waset.org/abstracts/search?q=Amal%20Tazi"> Amal Tazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Azzi"> Mohammed Azzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic azo-dyes are widely used in food industry, they product intense coloration, high toxicity and mutagenicity for wastewater; Causing serious damage to aquatic biota and risk factors for humans. The treatment of these effluents remains a major challenge especially for third world countries that have not yet all possibilities to integrate the concept of sustainable development. These aqueous effluents require specific treatment to preserve natural environments. For these reasons and in order to contribute to the fight against this danger, we were interested in this study to the degradation of the dye Ponceau Red E124 'C20H11N2Na3O10S3' 'used in a food industry Casablanca-Morocco, by the super iron ferrate (VI) K3FexMnyO8; Synthesized in our laboratory and known for its high oxidizing and flocculants. The degradation of Ponceau red is evaluated with the objectives of chemical oxygen demand (COD), total organic carbon (TOC) and discoloration reductions. The results are very satisfying. In fact, we achieved 90% reduction of COD and 99% of discoloration. The recovered floc are subject to various techniques for spectroscopic analysis (UV-visible and IR) to identify by-products formed after the degradation. Moreover, the results will then be compared with those obtained by the application of ferrous sulfate (FeSO4, 7H2O) used by the food industry for the degradation of P4R. The results will be later compared with those obtained by the application of ferrous sulfate (FeSO4, 7H2O) used by the food industry, in the degradation of the P4R. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title="COD removal">COD removal</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20removal" title=" color removal"> color removal</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20ponceau%204R" title=" dye ponceau 4R"> dye ponceau 4R</a>, <a href="https://publications.waset.org/abstracts/search?q=oxydation%20by%20ferrate%20%28VI%29" title=" oxydation by ferrate (VI)"> oxydation by ferrate (VI)</a> </p> <a href="https://publications.waset.org/abstracts/34531/decolorization-and-degradation-of-ponceau-red-p4r-in-aqueous-solution-by-ferrate-vi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luciana%20C.%20Ramos">Luciana C. Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Leandro%20J.%20Sousa"> Leandro J. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B4nio%20Ferreira%20da%20Silva"> Antônio Ferreira da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Val%C3%A9ria%20Gomes%20Oliveira%20Falc%C3%A3o"> Valéria Gomes Oliveira Falcão</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzana%20T.%20Cunha%20Lima"> Suzana T. Cunha Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of <em>Phaeodactylum tricornutum</em>. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m<sup>-2</sup>s<sup>-1</sup>, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=diatom" title=" diatom"> diatom</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a> </p> <a href="https://publications.waset.org/abstracts/68818/evaluation-of-electro-flocculation-for-biomass-production-of-marine-microalgae-phaodactylum-tricornutum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Intentional Cultivation of Non-toxic Filamentous Cyanobacteria Tolypothrix as an Approach to Treat Eutrophic Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Simona%20Lucakova">Simona Lucakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Irena%20Branyikova"> Irena Branyikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eutrophication, a condition when water becomes over-enriched with nutrients (P, N), can lead to undesirable excessive growth of phytoplankton, so-called algal bloom. This process results in the accumulation of toxin-producing cyanobacteria and oxygen depletion, both possibly leading to the collapse of the whole ecosystem. In real conditions, the limiting nutrient, which determines the possible growth of harmful algal bloom, is usually phosphorus. Algicides or flocculants have been applied in the eutrophicated waterbody in order to reduce the phytoplankton growth, which leads to the introduction of toxic chemicals into the water. In our laboratory, the idea of the prevention of harmful phytoplankton growth by the intentional cultivation of non-toxic cyanobacteria Tolypothrix tenuis in semi-open floating photobioreactors directly on the surface of phosphorus-rich waterbody is examined. During the process of cultivation, redundant phosphorus is incorporated into cyanobacterial biomass, which can be subsequently used for the production of biofuels, cosmetics, pharmaceuticals, or biostimulants for agricultural use. To determine the ability of phosphorus incorporation, batch-cultivation of Tolypothrix biomass in media simulating eutrophic water (10% BG medium) and in effluent from municipal wastewater treatment plant, both with the initial phosphorus concentration in the range 0.5-1.0 mgP/L was performed in laboratory-scale models of floating photobioreactors. After few hours of cultivation, the phosphorus content was decreased below the target limit of 0.035 mgP/L, which was given as a borderline for the algal bloom formation. Under laboratory conditions, the effect of several parameters on the rate of phosphorus decrease was tested (illumination, temperature, stirring speed/aeration gas flow, biomass to medium ratio). Based on the obtained results, a bench-scale floating photobioreactor was designed and will be tested for Tolypothrix growth in real conditions. It was proved that intentional cultivation of cyanobacteria Tolypothrix could be a suitable approach for extracting redundant phosphorus from eutrophic waters as prevention of algal bloom formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title="cyanobacteria">cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=eutrophication" title=" eutrophication"> eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=floating%20photobioreactor" title=" floating photobioreactor"> floating photobioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tolypothrix" title=" Tolypothrix"> Tolypothrix</a> </p> <a href="https://publications.waset.org/abstracts/141388/intentional-cultivation-of-non-toxic-filamentous-cyanobacteria-tolypothrix-as-an-approach-to-treat-eutrophic-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Application of Geotube® Method for Sludge Handling in Adaro Coal Mine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezman%20Fitriansyah">Ezman Fitriansyah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lestari%20Diah%20Restu"> Lestari Diah Restu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wawan"> Wawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adaro coal mine in South Kalimantan-Indonesia maintains catchment area of approximately 15,000 Ha for its mine operation. As an open pit surface coal mine with high erosion rate, the mine water in Adaro coal mine contains high TSS that needs to be treated before being released to rivers. For the treatment process, Adaro operates 21 Settling Ponds equipped with combination of physical and chemical system to separate solids and water to ensure the discharged water complied with regional environmental quality standards. However, the sludge created from the sedimentation process reduces the settling ponds capacity gradually. Therefore regular maintenance activities are required to recover and maintain the ponds' capacity. Trucking system and direct dredging had been the most common method to handle sludge in Adaro. But the main problem in applying these two methods is excessive area required for drying pond construction. To solve this problem, Adaro implements an alternative method called Geotube®. The principle of Geotube® method is the sludge contained in the Settling Ponds is pumped into Geotube® containers which have been designed to release water and retain mud flocks. During the pumping process, an amount of flocculants chemicals are injected into the sludge to form bigger mud flocks. Due to the difference in particle size, the mud flocks are settled in the container whilst the water continues to flow out through the container’s pores. Compared to the trucking system and direct dredging method, this method provides three advantages: space required to operate, increasing of overburden waste dump volume, and increasing of water treatment process speed and quality. Based on the evaluation result, Geotube® method only needs 1:8 of space required by the other methods. From the geotechnical assessment result conducted by Adaro, the potential loss of waste dump volume capacity prior to implementation of the Geotube® method was 26.7%. The water treatment process of TSS in well maintained ponds is 16% more optimum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geotube" title="geotube">geotube</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20water" title=" mine water"> mine water</a>, <a href="https://publications.waset.org/abstracts/search?q=settling%20pond" title=" settling pond"> settling pond</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge%20handling" title=" sludge handling"> sludge handling</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/88114/application-of-geotube-method-for-sludge-handling-in-adaro-coal-mine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Optimizing Solids Control and Cuttings Dewatering for Water-Powered Percussive Drilling in Mineral Exploration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Addinell">S. J. Addinell</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Grabsch"> A. F. Grabsch</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Fawell"> P. D. Fawell</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Evans"> B. Evans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising down-hole water-powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barren cover. This system has shown superior rates of penetration in water-rich, hard rock formations at depths exceeding 500 metres. With fluid flow rates of up to 120 litres per minute at 200 bar operating pressure to energise the bottom hole tooling, excessive quantities of high quality drilling fluid (water) would be required for a prolonged drilling campaign. As a result, drilling fluid recovery and recycling has been identified as a necessary option to minimise costs and logistical effort. While the majority of the cuttings report as coarse particles, a significant fines fraction will typically also be present. To maximise tool life longevity, the percussive bottom hole assembly requires high quality fluid with minimal solids loading and any recycled fluid needs to have a solids cut point below 40 microns and a concentration less than 400 ppm before it can be used to reenergise the system. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process shows a strong power law relationship for particle size distributions. This data is critical in optimising solids control strategies and cuttings dewatering techniques. Optimisation of deployable solids control equipment is discussed and how the required centrate clarity was achieved in the presence of pyrite-rich metasediment cuttings. Key results were the successful pre-aggregation of fines through the selection and use of high molecular weight anionic polyacrylamide flocculants and the techniques developed for optimal dosing prior to scroll decanter centrifugation, thus keeping sub 40 micron solids loading within prescribed limits. Experiments on maximising fines capture in the presence of thixotropic drilling fluid additives (e.g. Xanthan gum and other biopolymers) are also discussed. As no core is produced during the drilling process, it is intended that the particle laden returned drilling fluid is used for top-of-hole geochemical and mineralogical assessment. A discussion is therefore presented on the biasing and latency of cuttings representivity by dewatering techniques, as well as the resulting detrimental effects on depth fidelity and accuracy. Data pertaining to the sample biasing with respect to geochemical signatures due to particle size distributions is presented and shows that, depending on the solids control and dewatering techniques used, it can have unwanted influence on top-of-hole analysis. Strategies are proposed to overcome these effects, improving sample quality. Successful solids control and cuttings dewatering for water-powered percussive drilling is presented, contributing towards the successful advancement of coiled tubing based greenfields mineral exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cuttings" title="cuttings">cuttings</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering" title=" dewatering"> dewatering</a>, <a href="https://publications.waset.org/abstracts/search?q=flocculation" title=" flocculation"> flocculation</a>, <a href="https://publications.waset.org/abstracts/search?q=percussive%20drilling" title=" percussive drilling"> percussive drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=solids%20control" title=" solids control"> solids control</a> </p> <a href="https://publications.waset.org/abstracts/59463/optimizing-solids-control-and-cuttings-dewatering-for-water-powered-percussive-drilling-in-mineral-exploration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>