CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;10 of 10 results for author: <span class="mathjax">Goh, K T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/quant-ph" aria-role="search"> Searching in archive <strong>quant-ph</strong>. <a href="/search/?searchtype=author&amp;query=Goh%2C+K+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Goh, K T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Goh%2C+K+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Goh, K T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13712">arXiv:2411.13712</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13712">pdf</a>, <a href="https://arxiv.org/format/2411.13712">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Self-testing quantum randomness expansion on an integrated photonic chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhang%2C+G">Gong Zhang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Primaatmaja%2C+I+W">Ignatius William Primaatmaja</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+Y">Yue Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ng%2C+S+Q">Si Qi Ng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ng%2C+H+J">Hong Jie Ng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Pistoia%2C+M">Marco Pistoia</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Gong%2C+X">Xiao Gong</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lim%2C+C">Charles Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13712v1-abstract-short" style="display: inline;"> The power of quantum random number generation is more than just the ability to create truly random numbers$\unicode{x2013}$it can also enable self-testing, which allows the user to verify the implementation integrity of certain critical quantum components with minimal assumptions. In this work, we develop and implement a self-testing quantum random number generator (QRNG) chipset capable of genera&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13712v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13712v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13712v1-abstract-full" style="display: none;"> The power of quantum random number generation is more than just the ability to create truly random numbers$\unicode{x2013}$it can also enable self-testing, which allows the user to verify the implementation integrity of certain critical quantum components with minimal assumptions. In this work, we develop and implement a self-testing quantum random number generator (QRNG) chipset capable of generating 15.33 Mbits of certifiable randomness in each run (an expansion rate of $5.11\times 10^{-4}$ at a repetition rate of 10 Mhz). The chip design is based on a highly loss-and-noise tolerant measurement-device-independent protocol, where random coherent states encoded using quadrature phase shift keying are used to self-test the quantum homodyne detection unit: well-known to be challenging to characterise in practice. Importantly, this proposal opens up the possibility to implement miniaturised self-testing QRNG devices at production scale using standard silicon photonics foundry platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13712v1-abstract-full').style.display = 'none'; document.getElementById('2411.13712v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 Pages, 5 Figures, and 2 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04960">arXiv:2206.04960</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04960">pdf</a>, <a href="https://arxiv.org/format/2206.04960">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.22331/q-2023-03-02-932">10.22331/q-2023-03-02-932 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Security of device-independent quantum key distribution protocols: a review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Primaatmaja%2C+I+W">Ignatius W. Primaatmaja</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+E+Y+-">Ernest Y. -Z. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Khoo%2C+J+T+-">John T. -F. Khoo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ghorai%2C+S">Shouvik Ghorai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lim%2C+C+C+-">Charles C. -W. Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04960v3-abstract-short" style="display: inline;"> Device-independent quantum key distribution (DI-QKD) is often seen as the ultimate key exchange protocol in terms of security, as it can be performed securely with uncharacterised black-box devices. The advent of DI-QKD closes several loopholes and side-channels that plague current QKD systems. While implementing DI-QKD protocols is technically challenging, there have been recent proof-of-principl&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04960v3-abstract-full').style.display = 'inline'; document.getElementById('2206.04960v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04960v3-abstract-full" style="display: none;"> Device-independent quantum key distribution (DI-QKD) is often seen as the ultimate key exchange protocol in terms of security, as it can be performed securely with uncharacterised black-box devices. The advent of DI-QKD closes several loopholes and side-channels that plague current QKD systems. While implementing DI-QKD protocols is technically challenging, there have been recent proof-of-principle demonstrations, resulting from the progress made in both theory and experiments. In this review, we will provide an introduction to DI-QKD, an overview of the related experiments performed, and the theory and techniques required to analyse its security. We conclude with an outlook on future DI-QKD research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04960v3-abstract-full').style.display = 'none'; document.getElementById('2206.04960v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Review article, 47 pages, 3 figures. Accepted in Quantum</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Quantum 7, 932 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02691">arXiv:2005.02691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2005.02691">pdf</a>, <a href="https://arxiv.org/format/2005.02691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-021-23147-3">10.1038/s41467-021-23147-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Device-Independent Quantum Key Distribution with Random Key Basis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Schwonnek%2C+R">Rene Schwonnek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Primaatmaja%2C+I+W">Ignatius W. Primaatmaja</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+E+Y+-">Ernest Y. -Z. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wolf%2C+R">Ramona Wolf</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Scarani%2C+V">Valerio Scarani</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lim%2C+C+C+-">Charles C. -W. Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02691v2-abstract-short" style="display: inline;"> Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the fir&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02691v2-abstract-full').style.display = 'inline'; document.getElementById('2005.02691v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02691v2-abstract-full" style="display: none;"> Device-independent quantum key distribution (DIQKD) is the art of using untrusted devices to distribute secret keys in an insecure network. It thus represents the ultimate form of cryptography, offering not only information-theoretic security against channel attacks, but also against attacks exploiting implementation loopholes. In recent years, much progress has been made towards realising the first DIQKD experiments, but current proposals are just out of reach of today&#39;s loophole-free Bell experiments. Here, we significantly narrow the gap between the theory and practice of DIQKD with a simple variant of the original protocol based on the celebrated Clauser-Horne-Shimony-Holt (CHSH) Bell inequality. By using two randomly chosen key generating bases instead of one, we show that our protocol significantly improves over the original DIQKD protocol, enabling positive keys in the high noise regime for the first time. We also compute the finite-key security of the protocol for general attacks, showing that approximately 1E8 to 1E10 measurement rounds are needed to achieve positive rates using state-of-the-art experimental parameters. Our proposed DIQKD protocol thus represents a highly promising path towards the first realisation of DIQKD in practice. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02691v2-abstract-full').style.display = 'none'; document.getElementById('2005.02691v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages;Main article (10 pages); Supplementary Information (12 pages)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat Commun 12, 2880 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.11372">arXiv:1908.11372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1908.11372">pdf</a>, <a href="https://arxiv.org/format/1908.11372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41534-021-00494-z">10.1038/s41534-021-00494-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Computing secure key rates for quantum key distribution with untrusted devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Tan%2C+E+Y+-">Ernest Y. -Z. Tan</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Schwonnek%2C+R">Ren茅 Schwonnek</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Primaatmaja%2C+I+W">Ignatius William Primaatmaja</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lim%2C+C+C+-">Charles C. -W. Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.11372v4-abstract-short" style="display: inline;"> Device-independent quantum key distribution (DIQKD) provides the strongest form of secure key exchange, using only the input-output statistics of the devices to achieve information-theoretic security. Although the basic security principles of DIQKD are now well-understood, it remains a technical challenge to derive reliable and robust security bounds for advanced DIQKD protocols that go beyond the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11372v4-abstract-full').style.display = 'inline'; document.getElementById('1908.11372v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.11372v4-abstract-full" style="display: none;"> Device-independent quantum key distribution (DIQKD) provides the strongest form of secure key exchange, using only the input-output statistics of the devices to achieve information-theoretic security. Although the basic security principles of DIQKD are now well-understood, it remains a technical challenge to derive reliable and robust security bounds for advanced DIQKD protocols that go beyond the previous results based on violations of the CHSH inequality. In this work, we present a framework based on semi-definite programming that gives reliable lower bounds on the asymptotic secret key rate of any QKD protocol using untrusted devices. In particular, our method can in principle be utilized to find achievable secret key rates for any DIQKD protocol, based on the full input-output probability distribution or any choice of Bell inequality. Our method also extends to other DI cryptographic tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.11372v4-abstract-full').style.display = 'none'; document.getElementById('1908.11372v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Improved proof of strong duality. Close to published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Inf 7, 158 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.10127">arXiv:1901.10127</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.10127">pdf</a>, <a href="https://arxiv.org/format/1901.10127">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.100.022305">10.1103/PhysRevA.100.022305 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental comparison of tomography and self-testing in certifying entanglement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Perumangatt%2C+C">Chithrabhanu Perumangatt</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lee%2C+Z+X">Zhi Xian Lee</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Ling%2C+A">Alexander Ling</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Scarani%2C+V">Valerio Scarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.10127v2-abstract-short" style="display: inline;"> We assess the quality of a source of allegedly pure two-qubit states using both standard tomography and methods inspired by device-independent self-testing. Even when the detection and locality loopholes are open, the latter methods can dispense with modelling of the system and the measurements. However, due to finite sample fluctuations, the estimated probability distribution usually does not sat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10127v2-abstract-full').style.display = 'inline'; document.getElementById('1901.10127v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.10127v2-abstract-full" style="display: none;"> We assess the quality of a source of allegedly pure two-qubit states using both standard tomography and methods inspired by device-independent self-testing. Even when the detection and locality loopholes are open, the latter methods can dispense with modelling of the system and the measurements. However, due to finite sample fluctuations, the estimated probability distribution usually does not satisfy the no-signaling conditions exactly. We implement data analysis that is robust against these fluctuations. We demonstrate a high ratio $f_s/f_t\approx 0.988$ between the fidelity estimated from self-testing and that estimated from full tomography, proving high performance of self-testing methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10127v2-abstract-full').style.display = 'none'; document.getElementById('1901.10127v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 100, 022305 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.01942">arXiv:1901.01942</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.01942">pdf</a>, <a href="https://arxiv.org/format/1901.01942">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.062332">10.1103/PhysRevA.99.062332 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Versatile security analysis of measurement-device-independent quantum key distribution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Primaatmaja%2C+I+W">Ignatius William Primaatmaja</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lavie%2C+E">Emilien Lavie</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wang%2C+C">Chao Wang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Lim%2C+C+C+W">Charles Ci Wen Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.01942v4-abstract-short" style="display: inline;"> Measurement-device-independent quantum key distribution (MDI-QKD) is the only known QKD scheme that can completely overcome the problem of detection side-channel attacks. Yet, despite its practical importance, there is no standard approach towards proving the security of MDI-QKD. Here, we present a simple numerical method that can efficiently compute almost-tight security bounds for any discretely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01942v4-abstract-full').style.display = 'inline'; document.getElementById('1901.01942v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.01942v4-abstract-full" style="display: none;"> Measurement-device-independent quantum key distribution (MDI-QKD) is the only known QKD scheme that can completely overcome the problem of detection side-channel attacks. Yet, despite its practical importance, there is no standard approach towards proving the security of MDI-QKD. Here, we present a simple numerical method that can efficiently compute almost-tight security bounds for any discretely modulated MDI-QKD protocol. To demonstrate the broad utility of our method, we use it to analyze the security of coherent-state MDI-QKD, decoy-state MDI-QKD with leaky sources, and a variant of twin-field QKD called phase-matching QKD. In all of the numerical simulations (using realistic detection models) we find that our method gives significantly higher secret key rates than those obtained with current security proof techniques. Interestingly, we also find that phase-matching QKD using only two coherent test states is enough to overcome the fundamental rate-distance limit of QKD. Taken together, these findings suggest that our security proof method enables a versatile, fast, and possibly optimal approach towards the security validation of practical MDI-QKD systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.01942v4-abstract-full').style.display = 'none'; document.getElementById('1901.01942v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 6 figures. Title has been revised</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 062332 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05892">arXiv:1710.05892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05892">pdf</a>, <a href="https://arxiv.org/format/1710.05892">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.97.022104">10.1103/PhysRevA.97.022104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Geometry of the set of quantum correlations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Kaniewski%2C+J">J臋drzej Kaniewski</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wolfe%2C+E">Elie Wolfe</a>, <a href="/search/quant-ph?searchtype=author&amp;query=V%C3%A9rtesi%2C+T">Tam谩s V茅rtesi</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+X">Xingyao Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cai%2C+Y">Yu Cai</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Liang%2C+Y">Yeong-Cherng Liang</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Scarani%2C+V">Valerio Scarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05892v3-abstract-short" style="display: inline;"> It is well known that correlations predicted by quantum mechanics cannot be explained by any classical (local-realistic) theory. The relative strength of quantum and classical correlations is usually studied in the context of Bell inequalities, but this tells us little about the geometry of the quantum set of correlations. In other words, we do not have good intuition about what the quantum set ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05892v3-abstract-full').style.display = 'inline'; document.getElementById('1710.05892v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05892v3-abstract-full" style="display: none;"> It is well known that correlations predicted by quantum mechanics cannot be explained by any classical (local-realistic) theory. The relative strength of quantum and classical correlations is usually studied in the context of Bell inequalities, but this tells us little about the geometry of the quantum set of correlations. In other words, we do not have good intuition about what the quantum set actually looks like. In this paper we study the geometry of the quantum set using standard tools from convex geometry. We find explicit examples of rather counter-intuitive features in the simplest non-trivial Bell scenario (two parties, two inputs and two outputs) and illustrate them using 2-dimensional slice plots. We also show that even more complex features appear in Bell scenarios with more inputs or more parties. Finally, we discuss the limitations that the geometry of the quantum set imposes on the task of self-testing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05892v3-abstract-full').style.display = 'none'; document.getElementById('1710.05892v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 + 8 pages, 6 figures, v2: added an argument relating self-testing and extremality, v3: typos corrected, results unchanged, published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 97, 022104 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1611.08062">arXiv:1611.08062</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1611.08062">pdf</a>, <a href="https://arxiv.org/format/1611.08062">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/ncomms15485">10.1038/ncomms15485 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> All Pure Bipartite Entangled States can be Self-Tested </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Coladangelo%2C+A">Andrea Coladangelo</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Scarani%2C+V">Valerio Scarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1611.08062v2-abstract-short" style="display: inline;"> Device-independent self-testing allows to uniquely characterize the quantum state shared by untrusted parties (up to local isometries) by simply inspecting their correlations, and requiring only minimal assumptions, namely a no-signaling constraint on the untrusted parties and the validity of quantum mechanics. The device-independent approach exploits the fact that certain non-local correlations c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08062v2-abstract-full').style.display = 'inline'; document.getElementById('1611.08062v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1611.08062v2-abstract-full" style="display: none;"> Device-independent self-testing allows to uniquely characterize the quantum state shared by untrusted parties (up to local isometries) by simply inspecting their correlations, and requiring only minimal assumptions, namely a no-signaling constraint on the untrusted parties and the validity of quantum mechanics. The device-independent approach exploits the fact that certain non-local correlations can be uniquely achieved by measurements on a particular quantum state. We can think of these correlations as a &#34;classical fingerprint&#34; of the self-tested quantum state. In this work, we answer affirmatively the outstanding open question of whether all pure bipartite entangled states can be self-tested, by providing explicit self-testing correlations for each. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1611.08062v2-abstract-full').style.display = 'none'; document.getElementById('1611.08062v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages. Added self-testing of measurements, corrected typos, and improved exposition</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 8, 15485 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.06048">arXiv:1602.06048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.06048">pdf</a>, <a href="https://arxiv.org/ps/1602.06048">ps</a>, <a href="https://arxiv.org/format/1602.06048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.94.022116">10.1103/PhysRevA.94.022116 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-local games and optimal steering at the boundary of the quantum set </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Zhen%2C+Y">Yi-Zheng Zhen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Zheng%2C+Y">Yu-Lin Zheng</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Cao%2C+W">Wen-Fei Cao</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Wu%2C+X">Xingyao Wu</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Chen%2C+K">Kai Chen</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Scarani%2C+V">Valerio Scarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.06048v2-abstract-short" style="display: inline;"> The boundary between classical and quantum correlations is well characterised by linear constraints called Bell inequalities. It is much harder to characterise the boundary of the quantum set itself in the space of no-signaling correlations. For the points on the quantum boundary that violate maximally some Bell inequalities, Oppenheim and Wehner [Science 330, 1072 (2010)] pointed out a complex pr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.06048v2-abstract-full').style.display = 'inline'; document.getElementById('1602.06048v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.06048v2-abstract-full" style="display: none;"> The boundary between classical and quantum correlations is well characterised by linear constraints called Bell inequalities. It is much harder to characterise the boundary of the quantum set itself in the space of no-signaling correlations. For the points on the quantum boundary that violate maximally some Bell inequalities, Oppenheim and Wehner [Science 330, 1072 (2010)] pointed out a complex property: the optimal measurements of Alice steer Bob&#39;s local state to the eigenstate of an effective operator corresponding to its maximal eigenvalue. This effective operator is the linear combination of Bob&#39;s local operators induced by the coefficients of the Bell inequality, and it can be interpreted as defining a fine-grained uncertainty relation. It is natural to ask whether the same property holds for other points on the quantum boundary, using the Bell expression that defines the tangent hyperplane at each point. We prove that this is indeed the case for a large set of points, including some that were believed to provide counterexamples. The price to pay is to acknowledge that the Oppenheim-Wehner criterion does not respect equivalence under the no-signaling constraint: for each point, one has to look for specific forms of writing the Bell expressions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.06048v2-abstract-full').style.display = 'none'; document.getElementById('1602.06048v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 94, 022116 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1509.08682">arXiv:1509.08682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1509.08682">pdf</a>, <a href="https://arxiv.org/format/1509.08682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/4/045022">10.1088/1367-2630/18/4/045022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement-device-independent quantification of entanglement for given Hilbert space dimension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/quant-ph?searchtype=author&amp;query=Goh%2C+K+T">Koon Tong Goh</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Bancal%2C+J">Jean-Daniel Bancal</a>, <a href="/search/quant-ph?searchtype=author&amp;query=Scarani%2C+V">Valerio Scarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1509.08682v3-abstract-short" style="display: inline;"> We address the question of how much entanglement can be certified from the observed correlations and the knowledge of the Hilbert space dimension of the measured systems. We focus on the case in which both systems are known to be qubits. For several correlations (though not for all), one can certify the same amount of entanglement as with state tomography, but with fewer assumptions, since nothing&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08682v3-abstract-full').style.display = 'inline'; document.getElementById('1509.08682v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1509.08682v3-abstract-full" style="display: none;"> We address the question of how much entanglement can be certified from the observed correlations and the knowledge of the Hilbert space dimension of the measured systems. We focus on the case in which both systems are known to be qubits. For several correlations (though not for all), one can certify the same amount of entanglement as with state tomography, but with fewer assumptions, since nothing is assumed about the measurements. We also present security proofs of quantum key distribution without any assumption on the measurements. We discuss how both the amount of entanglement and the security of quantum key distribution (QKD) are affected by the inefficiency of detectors in this scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1509.08682v3-abstract-full').style.display = 'none'; document.getElementById('1509.08682v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 18, 045022 (2016) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10