CINXE.COM
Search results for: heat treatment
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: heat treatment</title> <meta name="description" content="Search results for: heat treatment"> <meta name="keywords" content="heat treatment"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="heat treatment" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="heat treatment"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10807</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: heat treatment</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10807</span> 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zden%C4%9Bk%20Vesel%C3%BD">Zdeněk Veselý</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Honner"> Milan Honner</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Mach"> Jiří Mach </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. The complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from the 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on the temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title="computer simulation">computer simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=unsteady%20model" title=" unsteady model"> unsteady model</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20boundary%20condition" title=" complex boundary condition"> complex boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20heat%20source" title=" moving heat source"> moving heat source</a> </p> <a href="https://publications.waset.org/abstracts/32393/2d-and-3d-unsteady-simulation-of-the-heat-transfer-in-the-sample-during-heat-treatment-by-moving-heat-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32393.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10806</span> Effect of Solution Heat Treatment on Intergranular Corrosion Resistance of Welded Stainless Steel AISI 321</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Mahmoudi">Amir Mahmoudi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this investigation, AISI321 steel after welding by Shilded Metal Arc Welding (SMAW) was solution heat treated in various temperatures and times, and then was sensitizied. Results indicated, increasing of temperature in solution heat treatment raises the sensitization and creates the cavity structure in grain boundaries. Besides, in order to examine the effect of time on solution heat treatment, all samples were solution heat treated at different times and fixed temperature (1050°C). By increasing the time, more chrome carbides were created due to dissolution of delta ferrite phase and reproduce titanium carbides. Additionally, the best process for solution heat treatment for this steel was suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title="stainless steel">stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20heat%20treatment" title=" solution heat treatment"> solution heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=intergranular%20corrosion" title=" intergranular corrosion"> intergranular corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=DLEPR" title=" DLEPR"> DLEPR</a> </p> <a href="https://publications.waset.org/abstracts/26566/effect-of-solution-heat-treatment-on-intergranular-corrosion-resistance-of-welded-stainless-steel-aisi-321" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26566.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10805</span> Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Esmailian">M. Esmailian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shakouri"> M. Shakouri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mottahedi"> A. Mottahedi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Shabestari"> S. G. Shabestari </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=7055%20Aluminum%20alloy" title="7055 Aluminum alloy">7055 Aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SCC%20resistance" title=" SCC resistance"> SCC resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20Treatment" title=" heat Treatment"> heat Treatment</a> </p> <a href="https://publications.waset.org/abstracts/34624/effect-of-t6-and-re-aging-heat-treatment-on-mechanical-properties-of-7055-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10804</span> Separation of Hazardous Brominated Plastics from Waste Plastics by Froth Flotation after Surface Modification with Mild Heat-Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Thi%20Thanh%20Truc">Nguyen Thi Thanh Truc</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Hyeon%20Lee"> Chi-Hyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Reddy%20Mallampati"> Srinivasa Reddy Mallampati</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong-Kyu%20Lee"> Byeong-Kyu Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study evaluated to facilitate separation of ABS plastics from other waste plastics by froth flotation after surface hydrophilization of ABS with heat treatment. The mild heat treatment at 100oC for 60s could selectively increase the hydrophilicity of the ABS plastics surface (i.e., ABS contact angle decreased from 79o to 65.8o) among other plastics mixture. The SEM and XPS results of plastic samples sufficiently supported the increase in hydrophilic functional groups and decrease contact angle on ABS surface, after heat treatment. As a result of the froth flotation (at mixing speed 150 rpm and airflow rate 0.3 L/min) after heat treatment, about 85% of ABS was selectively separated from other heavy plastics with 100% of purity. The effect of optimum treatment condition and detailed mechanism onto separation efficiency in the froth floatation was also investigated. This research is successful in giving a simple, effective, and inexpensive method for ABS separation from waste plastics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS" title="ABS">ABS</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic" title=" hydrophilic"> hydrophilic</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=froth%20flotation" title=" froth flotation"> froth flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title=" contact angle"> contact angle</a> </p> <a href="https://publications.waset.org/abstracts/32214/separation-of-hazardous-brominated-plastics-from-waste-plastics-by-froth-flotation-after-surface-modification-with-mild-heat-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10803</span> Influence of Post Weld Heat Treatment on Mechanical and Metallurgical Properties of TIG Welded Aluminium Alloy Joints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurmeet%20Singh%20Cheema">Gurmeet Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Navjotinder%20Singh"> Navjotinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurjinder%20Singh"> Gurjinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amardeep%20Singh"> Amardeep Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium and its alloys play have excellent corrosion resistant properties, ease of fabrication and high specific strength to weight ratio. In this investigation an attempt has been made to study the effect of different post weld heat treatment methods on the mechanical and metallurgical properties of TIG welded joints of the commercial aluminium alloy. Three different methods of post weld heat treatments are, solution heat treatment, artificial aged and combination of solution heat treatment and artificial aging are given to TIG welded aluminium joints. Mechanical and metallurgical properties of as welded and post weld treated joints of the aluminium alloys was examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20alloys" title="aluminium alloys">aluminium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=TIG%20welding" title=" TIG welding"> TIG welding</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20weld%20heat%20treatment" title=" post weld heat treatment"> post weld heat treatment</a> </p> <a href="https://publications.waset.org/abstracts/14625/influence-of-post-weld-heat-treatment-on-mechanical-and-metallurgical-properties-of-tig-welded-aluminium-alloy-joints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">575</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10802</span> Effects of Heat Treatment on the Elastic Constants of Cedar Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Yilmaz%20Aydin">Tugba Yilmaz Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin"> Ergun Guntekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Aydin"> Murat Aydin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of heat treatment on the elastic constants of cedar wood (Cedrus libani) were investigated. Specimens were exposed to heat under atmospheric pressure at four different temperatures (120, 150, 180, 210 °C) and three different time levels (2, 5, 8 hours). Three Young’s modulus (EL, ER, ET) and six Poisson ratios (μLR, μLT, μRL, μRT, μTL, μTR) were determined from compression test using bi-axial extensometer at constant moisture content (12 %). Three shear modulus were determined using ultrasound. Six shear wave velocities propagating along the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector with 1 MHz transverse transducers. The properties of the samples tested were significantly affected by heat treatment by different degree. As a result, softer treatments yielded some amount of increase in Young modulus and shear modulus values, but increase of time and temperature resulted in significant decrease for both values. Poisson ratios seemed insensitive to heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cedar%20wood" title="cedar wood">cedar wood</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/50445/effects-of-heat-treatment-on-the-elastic-constants-of-cedar-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10801</span> Effect of Heat Treatment on Columnar Grain Growth and Goss Texture on Surface in Grain-Oriented Electrical Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jungkyun%20Na">Jungkyun Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaesang%20Lee"> Jaesang Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mo%20Koo"> Yang Mo Koo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study to find a replacement for expensive secondary recrystallization in GO electrical steel production, effect of heat treatment on the formation of columnar grain and Goss texture is investigated. The composition of the sample is Fe-2.0Si-0.2C. This process involves repeating of cold rolling and decarburization as a replacement for secondary recrystallization. By cold-rolling shear band is made and Goss grain grows from shear band by decarburization. By doing another cold rolling, some Goss texture is newly formed from the shear band, and some Goss texture is retained in microbands. To determine whether additional heat treatment with H2 atmosphere is needed on decarburization process for growth of Goss texture, comparing between decarburization and heat treatment with H2 atmosphere is performed. Also, to find optimum condition for heat treatment, heat treatment with various time and temperature is performed. It was found that increase in the number of cold rolling and heat treatment increases Goss texture. Both high Goss texture and good columnar structure is achieved at 900℃, and this temperature is within a+r phase region. Heat treatment at a temperature higher than a+r phase region caused carbon diffusion and this made layer with Goss grain decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20steel" title="electrical steel">electrical steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Goss%20texture" title=" Goss texture"> Goss texture</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structure" title=" columnar structure"> columnar structure</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20grain%20growth" title=" normal grain growth"> normal grain growth</a> </p> <a href="https://publications.waset.org/abstracts/74896/effect-of-heat-treatment-on-columnar-grain-growth-and-goss-texture-on-surface-in-grain-oriented-electrical-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10800</span> Comparative Study of Mechanical and Corrosion Behaviors on Heat Treated Steel Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mario%20Robinson">Mario Robinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Moe%20Rabea"> Moe Rabea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research examines the effects of heat treatment processes on the mechanical properties and corrosion resistanceof1045 and 4140 Steel Alloysfor industrial applications. Heat treatment processes of full annealing, normalizing, quenching, and tempering are carried out on the alloy samples. The mechanical and corrosion resistance tests of the heat treated samples are carried out, and the results obtained are related to their SEMmorphologies analysis. The results show that the heat treatment processes have an effect on the tensile strength, impact, and a significant effect on the corrosion resistance of the alloy samples. With respect to the strain characteristics, significant improvement in the ductility of the samples is recorded in the full annealing and alloy tempered samples. Thus, for application requiring strength and ductility, such as in aerospace industries, this tempered heat treated alloy could be used. In addition, the quenched sample shows a significant improvement in hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title="heat treatment">heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20appilcations" title=" industrial appilcations"> industrial appilcations</a> </p> <a href="https://publications.waset.org/abstracts/153004/comparative-study-of-mechanical-and-corrosion-behaviors-on-heat-treated-steel-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10799</span> Heat Treatment on Malaysian Hardwood Timbers: The Effect of Heat Exposure at Different Levels of Temperature on Bending Strength Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Ilya%20Farhana%20Md%20Noh">Nur Ilya Farhana Md Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zakiah%20Ahmad"> Zakiah Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat treatment on timbers is a process of applying heat to modify and equip the timbers with new improvised characteristics. It is environmental friendly compared to the common practice of treating timber by chemical preservatives. Malaysian hardwood timbers; Pauh Kijang and Kapur in green condition were heat treated at 150°C, 170°C, 190°C and 210°C in a specially design electronic furnace in one hour duration. The objectives were to determine the effect of heat treatment on bending strength properties of heat treated Pauh Kijang and Kapur in term of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) and to examine the significance changes at each temperature levels applied. Untreated samples for each species were used as a control sample. The results indicated that the bending strength properties for both species of timbers were affected by the heat exposure. Both MOE and MOR values for heat treated Pauh Kijang were increased when subjected to the specified temperature levels except at 210°C. The values were dropped compared to the control sample and sample treated at 190°C. Heat treated Kapur shows the same pattern of increment on its MOE and MOR values after exposure to heat at three temperature levels used and the values dropped at 210°C. However, differ to Pauh Kijang, even though there were decrement occurred at 210°C but the value is still higher compared to the control sample. The increments of MOE and MOR values are an indicator that heat treatment had successfully improvised the bending strength properties of these two species of hardwood timber. As the good strength of Malaysian timbers used as structural material is limited in numbers and expensive, heat treating timber with low strength properties is an alternative way to overcome this issue. Heat treatment is an alternative method need to be explored and made available in Malaysia as this country is still practicing chemical preservative treatment on the timbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20strength" title="bending strength">bending strength</a>, <a href="https://publications.waset.org/abstracts/search?q=hardwood%20timber" title=" hardwood timber"> hardwood timber</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity%20%28MOE%29" title=" modulus of elasticity (MOE)"> modulus of elasticity (MOE)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20rupture%20%28MOR%29" title=" modulus of rupture (MOR)"> modulus of rupture (MOR)</a> </p> <a href="https://publications.waset.org/abstracts/68941/heat-treatment-on-malaysian-hardwood-timbers-the-effect-of-heat-exposure-at-different-levels-of-temperature-on-bending-strength-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10798</span> Influence of Sodium Acetate on Electroless Ni-P Deposits and Effect of Heat Treatment on Corrosion Behavior </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20El%20Kaissi">Y. El Kaissi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Allam"> M. Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Koulou"> A. Koulou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Galai"> M. Galai</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ebn%20Touhami"> M. Ebn Touhami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of our work is to develop an industrial bath of nickel alloy deposit on mild steel. The optimization of the operating parameters made it possible to obtain a stable Ni-P alloy deposition formulation. To understand the reaction mechanism of the deposition process, a kinetic study was performed by cyclic voltammetry and by electrochemical impedance spectroscopy (EIS). The coatings obtained have a very high corrosion resistance in a very aggressive acid medium which increases with the heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title="cyclic voltammetry">cyclic voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=EIS" title=" EIS"> EIS</a>, <a href="https://publications.waset.org/abstracts/search?q=electroless%20Ni%E2%80%93P%20coating" title=" electroless Ni–P coating"> electroless Ni–P coating</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiodynamic%20polarization" title=" potentiodynamic polarization"> potentiodynamic polarization</a> </p> <a href="https://publications.waset.org/abstracts/63389/influence-of-sodium-acetate-on-electroless-ni-p-deposits-and-effect-of-heat-treatment-on-corrosion-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10797</span> Characterising the Effects of Heat Treatment on 3CR12 and AISI 316 Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi">Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Akinlabi"> Stephen A. Akinlabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the effects of heat treatment on 3CR12 and AISI 316 stainless steel grades. Heat treatment was conducted on the steel grades and cooled using two different media; air and water in order to study the effect of each medium on the evolving properties of the samples. The heat treated samples were characterized through the evolving microstructure and hardness. It was found that there was a significant grain size reduction in both the heat treated stainless steel specimens compared to the parent materials. The finer grain sizes were achieved as a result of impediment to growth of one phase by the other. The Vickers micro-hardness values of the heat treated samples were higher compared to the parent materials due to the fact that each of the steel grades had a proportion of martensitic structures in their microstructures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenite" title="austenite">austenite</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title=" grain size"> grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=martensite" title=" martensite"> martensite</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20and%20stainless%20steel" title=" microstructure and stainless steel"> microstructure and stainless steel</a> </p> <a href="https://publications.waset.org/abstracts/5781/characterising-the-effects-of-heat-treatment-on-3cr12-and-aisi-316-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10796</span> Microstructure and Mechanical Properties of Boron-Containing AZ91D Mg Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Chan%20Kim">Ji Chan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of boron addition on the microstructure and mechanical properties of AZ91D Mg alloy was investigated in this study. Through calculation of phase equilibria, carried out by using FactSage® and FTLite database, solution treatment temperature was decided as 420 °C where supersaturated solid solution can be obtained. Solid solution treatment was conducted at 420 °C for 24 hrs followed by hot rolling at 420 °C and the total reduction was about 60%. Recrystallization heat treatment was followed at 420 °C for 6 hrs to obtain equiaxed microstructure. After recrystallization treatment, aging heat treatment was conducted at temperature of 200 °C for time intervals from 1 min to 200 hrs and hardness of each condition was measured by micro-Vickers method. Peak hardness was observed after 20 hrs. Tensile tests were also conducted on the specimens aged for various time intervals and the results were compared with hardness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZ91D%20Mg%20alloy" title="AZ91D Mg alloy">AZ91D Mg alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=boron" title=" boron"> boron</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/62213/microstructure-and-mechanical-properties-of-boron-containing-az91d-mg-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10795</span> Effect of Heat Treatment on the Corrosion Behavior of Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Altoumi%20Alndalusi">Altoumi Alndalusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work examines the aqueous corrosion behavior of grades of stain less steel which are used as corrosion resistant castings for applications such as valve and pump bodies. The corrosion behavior of steels in the as-cast condition has been examined using potentiostatic studies to illustrate the need for correct thermal treatment. A metallurgical examination and chemical analysis were carried out to establish the morphology of the steel structure. Heat treatment was carried out in order to compare damage in relation to microstructure. Optical and scanning electron microscopy examinations confirmed that the austenitic steels suffers from severe localized inter-dendritic pitting attack, while non homogenized castings highly alloyed duplex steels gave inferior corrosion resistance. Through the heat treatment conditions a significant of phase transformation of the duplex steel C were occurred (from ferrite to austenite and sigma plus carbides) and were gave reduction resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cast" title="cast">cast</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless" title=" duplex stainless"> duplex stainless</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=material" title=" material"> material</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/80060/effect-of-heat-treatment-on-the-corrosion-behavior-of-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10794</span> Elastic Constants of Heat Treated Wood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of heat treatment on elastic constants of Black pine (Pinus nigra) wood were investigated. Specimens were exposed to heat under atmospheric pressure at two different temperatures (180 and 210 °C) and three different time levels (2, 5, 8 hours). Three Young’s modulus in three anatomical directions, six Poisson’s ratios and three Shear modulus values associated with the main directions were evaluated by compression tests. Compression strength of the samples in three principal directions was also determined. All of the properties of the specimens tested were altered by heat treatment. The degree of alteration depends on the temperature as well as duration applied. Results indicate that EL and compression strength in L direction were not significantly influenced, compression strength in R direction significantly decreased, ER, ET and compression strength in T direction were increased for shorter periods, then dropped for 8-hour application of 180 ºC. ER was not significantly affected, compression strength in R direction and EL was significantly decreased, ET and compression strength in T direction were increased for shorter periods, then decreased for 8-hour application of 210 ºC. The shear modulus of the samples was decreased with application of treatment combinations. Most of the Poisson’s ratios were not affected by heat treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20pine" title="black pine">black pine</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title=" elastic constants"> elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=wood" title=" wood"> wood</a> </p> <a href="https://publications.waset.org/abstracts/90755/elastic-constants-of-heat-treated-wood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10793</span> Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Al%20Denali">Omar Al Denali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Badi"> Abdelaziz Badi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prediction" title="prediction">prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=post-weld%20heat%20treatment" title=" post-weld heat treatment"> post-weld heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro-fuzzy%20inference%20system" title=" adaptive neuro-fuzzy inference system"> adaptive neuro-fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20absolute%20percentage%20error" title=" mean absolute percentage error"> mean absolute percentage error</a> </p> <a href="https://publications.waset.org/abstracts/148849/application-of-adaptive-neuro-fuzzy-inference-systems-technique-for-modeling-of-postweld-heat-treatment-process-of-pressure-vessel-steel-aastm-a516-grade-70" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10792</span> Optimization of Alkali Silicate Glass Heat Treatment for the Improvement of Thermal Expansion and Flexural Strength</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Guerra-Arias">Stephanie Guerra-Arias</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephani%20Nevarez"> Stephani Nevarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Calvin%20Stewart"> Calvin Stewart</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Grodsky"> Rachel Grodsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Eichorst"> Denis Eichorst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to describe the framework for optimizing the heat treatment of alkali silicate glasses, to enhance the performance of hermetic seals in extreme environments. When connectors are exposed to elevated temperatures, residual stresses develop due to the mismatch of thermal expansions between the glass, metal pin, and metal shell. Excessive thermal expansion mismatch compromises the reliability of hermetic seals. In this study, a series of heat treatment schedules will be performed on two commercial sealing glasses (one conventional sealing glass and one crystallizable sealing glass) using a design of experiments (DOE) approach. The coefficient of thermal expansion (CTE) will be measured pre- and post-heat treatment using thermomechanical analysis (TMA). Afterwards, the flexural strength of the specimen will be measured using a four-point bend fixture mounted in a static universal testing machine. The measured material properties will be statistically analyzed using MiniTab software to determine which factors of the heat treatment process have a strong correlation to the coefficient of thermal expansion and/or flexural strength. Finally, a heat-treatment will be designed and tested to ensure the optimal performance of the hermetic seals in connectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass-ceramics" title="glass-ceramics">glass-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment" title=" design of experiment"> design of experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=hermetic%20connectors" title=" hermetic connectors"> hermetic connectors</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a> </p> <a href="https://publications.waset.org/abstracts/134575/optimization-of-alkali-silicate-glass-heat-treatment-for-the-improvement-of-thermal-expansion-and-flexural-strength" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10791</span> Effects of Applied Pressure and Heat Treatment on the Microstructure of Squeeze Cast Al-Si Alloy Were Examined</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Amar">Mohamed Ben Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Henda%20Barhoumi"> Henda Barhoumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hokia%20Siala"> Hokia Siala</a>, <a href="https://publications.waset.org/abstracts/search?q=Foued%20Elhalouani"> Foued Elhalouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present contribution consists of a purely experimental investigation on the effect of Squeeze casting on the micro structural and mechanical propriety of Al-Si alloys destined to automotive industry. Accordingly, we have proceeding, by ourselves, to all the thermal treatment consisting of solution treatment at 540°C for 8h and aging at 160°C for 4h. The various thermal treatment, have been carried out in order to monitor the processes of formation and dissolution accompanying the solid state phase transformations as well as the resulting changes in the mechanical proprieties. The examination of the micrographs of the aluminum alloys reveals the dominant presence of dendrite. Concerning the mechanical characteristic the Vickers micro-hardness curve an increase as a function of the pressure. As well as the heat treatment increase mechanical propriety such that pressure and micro hardness. The curves have been explained in terms of structural hardening resulting from the various compounds formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squeeze%20casting" title="squeeze casting">squeeze casting</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20parameters" title=" process parameters"> process parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/35915/effects-of-applied-pressure-and-heat-treatment-on-the-microstructure-of-squeeze-cast-al-si-alloy-were-examined" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35915.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10790</span> Developing Alternative Recovery Technology of Waste Heat in Automobile Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kun-Ping%20Cheng">Kun-Ping Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Shang%20Chang"> Dong-Shang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rou-Wen%20Wang"> Rou-Wen Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pre-treatment of automobile paint-shop procedures are the preparation of warm water rinsing tank, hot water rinsing tank, degreasing tank, phosphate tank. The conventional boiler steam fuel is natural gas, producing steam to supply the heat exchange of each tank sink. In this study, the high-frequency soldering economizer is developed for recovering waste heat in the automotive paint-shop (RTO, Regenerative Thermal Oxidation). The heat recovery rate of the new economizer is 20% to 30% higher than the conventional embedded heat pipe. The adaptive control system responded to both RTO furnace exhaust gas and heat demands. In order to maintain the temperature range of the tanks, pre-treatment tanks are directly heated by waste heat recovery device (gas-to-water heat exchanger) through the hot water cycle of heat transfer. The performance of developed waste heat recovery system shows the annual recovery achieved to 1,226,411,483 Kcal of heat (137.8 thousand cubic meters of natural gas). Boiler can reduce fuel consumption by 20 to 30 percent compared to without waste heat recovery. In order to alleviate environmental impacts, the temperature at the end of the flue is further reduced from 160 to 110°C. The innovative waste heat recovery is helpful to energy savings and sustainable environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery%20system" title="waste heat recovery system">waste heat recovery system</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=RTO%20%28Regenerative%20Thermal%20Oxidation%29" title=" RTO (Regenerative Thermal Oxidation)"> RTO (Regenerative Thermal Oxidation)</a>, <a href="https://publications.waset.org/abstracts/search?q=economizer" title=" economizer"> economizer</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20industry" title=" automotive industry"> automotive industry</a> </p> <a href="https://publications.waset.org/abstracts/78398/developing-alternative-recovery-technology-of-waste-heat-in-automobile-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10789</span> Effect of Heat Treatment on the Microstructural Evolution in Weld Region of X70 Pipeline Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Digheche">K. Digheche</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saadi"> K. Saadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Boumerzoug"> Z. Boumerzoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Welding is one of the most important technological processes used in many branches of industry such as industrial engineering, shipbuilding, pipeline fabrication among others. Generally, welding is the preferred joining method and most common steels are weldable. This investigation is a contribution to scientific work of welding of low carbon steel. This work presents the results of the isothermal heat treatment effect at 200, 400 and 600 °C on microstructural evolution in weld region of X70 pipeline steel. The welding process has been realized in three passes by industrial arc welding. We have found that the heat treatments cause grain growth reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20treatments" title="heat treatments">heat treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20carbon%20steel" title=" low carbon steel"> low carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a> </p> <a href="https://publications.waset.org/abstracts/18352/effect-of-heat-treatment-on-the-microstructural-evolution-in-weld-region-of-x70-pipeline-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10788</span> Effect of Deep Cryogenic Treatment on Aluminium Alloy Used for Making Heat Exchangers in Automotive HVAC System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohit">H. Mohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In automotive air conditioning system, two heat exchangers are used as evaporator and condenser which are placed inside the bonnet of a car in a compact manner. The dust particles from outside and moisture content produced during the process leads to formation of impure particles on the surface of evaporator coil. But in condenser coil, the impure particles are settling down due to dust from atmosphere. The major problem of the heat exchanger used in automotive air conditioning is leakage of refrigerant due to corrosion. This effect of corrosion will lead to damage on the surface of heat exchanger and leakage of refrigerant from the system. To protect from corrosion, coatings are applied on its surfaces. Nowadays, to improve the corrosion resistance of these heat exchangers, hydrophilic coatings are used, which is very expensive. Cryogenic treatment is one method which involves the treatment of materials below -150 °C using the cryogenic fluid such as liquid nitrogen. In this project work, a study of improvement in corrosion resistance of materials of aluminium alloys of various grades as AA 1100, AA 6061, AA 6063 and AA 2024 that are mainly used for fin and tube heat exchangers in automotive air conditioning system is made. In total, five different processes are selected for these grades of aluminium alloy and various parameters like corrosion rate, dimensional stability, hardness and microstructure are measured. The improvements were observed in these parameters while comparing it with conventional heat treatment process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20treatment" title="cryogenic treatment">cryogenic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title=" dimensional stability"> dimensional stability</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20science" title=" materials science"> materials science</a> </p> <a href="https://publications.waset.org/abstracts/10238/effect-of-deep-cryogenic-treatment-on-aluminium-alloy-used-for-making-heat-exchangers-in-automotive-hvac-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10787</span> Effect of Alloying Elements and Hot Forging/Rolling Reduction Ratio on Hardness and Impact Toughness of Heat Treated Low Alloy Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Tash">Mahmoud M. Tash </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was carried out to investigate the effect of alloying elements and thermo-mechanical treatment (TMT) i.e. hot rolling and forging with different reduction ratios on the hardness (HV) and impact toughness (J) of heat-treated low alloy steels. An understanding of the combined effect of TMT and alloying elements and by measuring hardness, impact toughness, resulting from different heat treatment following TMT of the low alloy steels, it is possible to determine which conditions yielded optimum mechanical properties and high strength to weight ratio. Experimental Correlations between hot work reduction ratio, hardness and impact toughness for thermo-mechanically heat treated low alloy steels are analyzed quantitatively, and both regression and mathematical hardness and impact toughness models are developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forging" title="hot forging">hot forging</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20%28HV%29" title=" hardness (HV)"> hardness (HV)</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20toughness%20%28J%29" title=" impact toughness (J)"> impact toughness (J)</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20alloy%20steels" title=" low alloy steels"> low alloy steels</a> </p> <a href="https://publications.waset.org/abstracts/24168/effect-of-alloying-elements-and-hot-forgingrolling-reduction-ratio-on-hardness-and-impact-toughness-of-heat-treated-low-alloy-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10786</span> Preparation and Fabrication of Lithium Disilicate Glass Ceramic as Dental Crowns via Hot Pressing Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Srion">A. Srion</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Thepsuwan"> W. Thepsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Monmaturapoj"> N. Monmaturapoj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two Lithium disilicate (LD) glass ceramics based on SiO2-Li2O-K2O-Al2O3 system were prepared through glass melting method and then fabricated into dental crowns via hot pressing at 850˚C and 900˚C in order to study the effect of the pressing temperatures on theirs phase formation and microstructure. The factor such as heat treatment temperature (as-cast glass, 600˚C and 700˚C) of the glass ceramics used to press was also investigated the effect of an initial microstructure before pressing. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine phase formation and microstructure of the samples, respectively. X-ray diffraction result shows that the main crystalline structure was Li2Si2O5 by having Li3PO4, Li0.6Al0.6Si2O6, Li2SiO3, Ca5 (PO4)3F, SiO2 as minor phases. Glass compositions with different heat treatment temperatures exhibited a difference phase formation but have less effect during pressing. Scanning electron microscopy analysis showed microstructure of lath-like of Li2Si2O5 in all glasses. With increasing the initial heat treatment temperature, the longer the lath-like crystals of lithium disilicate were increased especially when using glass heat treatment at 700˚C followed by pressing at 900˚C. This could be suggested that LD1 heat treatment at 700˚C which pressing at 900˚C presented the best formation by hot pressing and compiled microstructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20disilicate" title="lithium disilicate">lithium disilicate</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20pressing" title=" hot pressing"> hot pressing</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20crown" title=" dental crown"> dental crown</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a> </p> <a href="https://publications.waset.org/abstracts/17453/preparation-and-fabrication-of-lithium-disilicate-glass-ceramic-as-dental-crowns-via-hot-pressing-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10785</span> Enhancing the Rollability of Cu-Ge-Ni Alloy through Heat Treatment Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Hadi">Morteza Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the potential enhancement of the rollability of Cu-Ge-Ni alloy through the mitigation of microstructural and compositional inhomogeneities via two distinct heat treatment methods: homogenization and solution treatment. To achieve this objective, the alloy with the desired composition was fabricated using a vacuum arc remelting furnace (VAR), followed by sample preparation for microstructural, compositional, and heat treatment analyses at varying temperatures and durations. Characterization was conducted employing optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Vickers hardness testing. The results obtained indicate that a minimum duration of 10 hours is necessary for adequate homogenization of the alloy at 750°C. This heat treatment effectively removes coarse dendrites from the casting microstructure and significantly reduces elemental separations. However, despite these improvements, the presence of a second phase with markedly different hardness from the matrix results in poor rolling ability for the alloy. The optimal time for solution treatment at various temperatures was determined, with the most effective cycle identified as 750°C for 2 hours, followed by rapid quenching in water. This process induces the formation of a single-phase microstructure and complete elimination of the second phase, as confirmed by X-ray diffraction analysis. Results demonstrate a reduction in hardness by 30 Vickers, and the elimination of microstructural unevenness enables successful thickness reduction by up to 50% through rolling without encountering cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cu-Ge-Ni%20alloy" title="Cu-Ge-Ni alloy">Cu-Ge-Ni alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=homogenization.%20solution%20treatment" title=" homogenization. solution treatment"> homogenization. solution treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=rollability" title=" rollability"> rollability</a> </p> <a href="https://publications.waset.org/abstracts/184647/enhancing-the-rollability-of-cu-ge-ni-alloy-through-heat-treatment-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184647.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10784</span> Nutritional Potentials of Two Nigerian Green Leafy Vegetables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philippa%20C.%20Ojimelukwe">Philippa C. Ojimelukwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20C.%20Okpalanma"> Felix C. Okpalanma</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20A.%20Mazi"> Emmanuel A. Mazi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The carotenoid content, vitamins (ascorbic acid, riboflavin, thiamin, niacin and vitamin K) and mineral contents (K, Ca, Mg, Zn and Fe) of raw, cooked (moist heat treatment) and stored Gnetum africanum and Pterocarpus mildbraedii leaves were investigated in the present research. Raw G. africanum contained higher total carotenoids (246.93µg/g edible portion) than P. mildbraedii (83.53µg/g edible portion) However, moist heat treatment significantly improved the total carotenoid content of P. mildbraedii. The carotenoid profiles of P. mildbraedii and G. africanum showed improved contents of beta cryptoxanthin , 9-cis, 11-cis and 13 cis beta carotenes due to moist heat treatment. Lutein contents of the two green leafy vegetables were quite high in raw, heat treated and stored samples. The two green leafy vegetables were good sources of vitamin K (118-120 µg). Moist heat treatment significantly (p < 0.05) increased the mineral contents of P.mildbraedii and G. africanum. The vitamin contents were reduced. Storage at ambient temperature (30oC) in the dark led to good retention of the minerals but not the vitamins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gnetum%20africanum" title="Gnetum africanum">Gnetum africanum</a>, <a href="https://publications.waset.org/abstracts/search?q=Pterocarpus%20mildbraedii" title=" Pterocarpus mildbraedii"> Pterocarpus mildbraedii</a>, <a href="https://publications.waset.org/abstracts/search?q=carotenoid%20profile" title=" carotenoid profile"> carotenoid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamins" title=" vitamins"> vitamins</a>, <a href="https://publications.waset.org/abstracts/search?q=minerals" title=" minerals"> minerals</a> </p> <a href="https://publications.waset.org/abstracts/26159/nutritional-potentials-of-two-nigerian-green-leafy-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10783</span> Mechanical Properties Analysis of Masonry Residue Mortar as Cement Replacement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Camila%20Parodi">Camila Parodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20Letelier"> Viviana Letelier</a>, <a href="https://publications.waset.org/abstracts/search?q=Giacomo%20Moriconi"> Giacomo Moriconi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residues in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. Previous researches demonstrate the feasibility of using brick and rust residues, separately, as a cement replacement. This study analyses the variation in the mechanical properties of mortars by incorporating masonry residue composed of clay bricks and cement mortar. In order to improve the mechanical properties of masonry residue, this was subjected to a heat treatment of 650 ° C for four hours and its effect is analyzed in this study. Masonry residue was obtained from a demolition of masonry perimetral walls. The residues were crushed and sieved and the maximum size of particles used was 75 microns. The percentages of cement replaced by masonry residue were 0%, 10%, 20% and 30%. The effect of masonry residue addition and its heat treatment in the mechanical properties of mortars is evaluated through compressive and flexural strength tests after 7, 14 and 28 curing days. Results show that increasing the amount of masonry residue used increases the losses in compressive strength and flexural strength. However, the use of up to a 20% of masonry residue, when a heat treatment is applied, allows obtaining mortars with similar compressive strength to the control mortar. Masonry residues mortars without a heat treatment show losses in compressive strengths between 15% and 27% with respect to masonry residues with heat treatment, which demonstrates the effectiveness of the heat treatment. From this analysis it can be conclude that it is possible to use up to 20% of masonry residue with heat treatment as cement replacement without significant losses in mortars mechanical properties, reducing considerably the environmental impact of the final material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20replacement" title="cement replacement">cement replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20residue" title=" masonry residue"> masonry residue</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20recycled%20mortars" title=" mechanical properties of recycled mortars"> mechanical properties of recycled mortars</a> </p> <a href="https://publications.waset.org/abstracts/67858/mechanical-properties-analysis-of-masonry-residue-mortar-as-cement-replacement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10782</span> Fabricating Sheets of Mg-Zn Alloys by Thermomechanical Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min">Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, hot-rolled sheets of Mg-xZn alloy s(x=6, 8, and 10 weight percent) were produced by employing casting, homogenization heat treatment, hot rolling, and annealing processes subsequently. Effect of Zn addition on the microstructure and mechanical properties of Mg-Zn alloys were also investigated in each process. Through calculation of phase equilibria of Mg-Zn alloys, solution treatment temperature was decided as temperatures from 350 oC, where supersaturated solid solution can be obtained. After solution treatment, hot rolling was successfully conducted by reduction of 60%. Compression and tension tests were carried out at room temperature on the samples as-cast, solution treated, hot-rolled and recrystallized after rolling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mg-Zn%20alloy" title="Mg-Zn alloy">Mg-Zn alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20rolling" title=" hot rolling"> hot rolling</a> </p> <a href="https://publications.waset.org/abstracts/47844/fabricating-sheets-of-mg-zn-alloys-by-thermomechanical-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47844.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10781</span> Performance Evaluation of Extruded-type Heat sinks Used in Inverter for Solar Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung%20Hyun%20Kim">Jung Hyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, heat release performances of the three extruded-type heat sinks can be used in the inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8 m2. The heat release performances of E-38, E-47, and E-76 heat sinks were measured as 79.6, 81.6, and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of the mass flow rates caused by different cross-sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20Inverter" title="solar Inverter">solar Inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title=" heat sink"> heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection" title=" forced convection"> forced convection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/3314/performance-evaluation-of-extruded-type-heat-sinks-used-in-inverter-for-solar-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10780</span> Modification and Surface Characterization of the Co20Cr15W10Ni Alloy for Application as Biomaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20A.%20Vechietti">Fernanda A. Vechietti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nat%C3%A1lia%20O.%20B.%20Muniz"> Natália O. B. Muniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20C.%20Treccani"> Laura C. Treccani</a>, <a href="https://publications.waset.org/abstracts/search?q=Kurosch.%20Rezwan"> Kurosch. Rezwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alberto%20dos%20Santos"> Luis Alberto dos Santos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CoCr alloys are widely used in prosthetic implants due to their excellent mechanical properties, such as good tensile strength, elastic modulus and wear resistance. Their biocompatibility and lack of corrosion are also prominent features of this alloy. One of the most effective and simple ways to protect metal’s surfaces are treatments, such as electrochemical oxidation by passivation, which is used as a protect release of metallic ions. Another useful treatment is the electropolishing, which is used to reduce the carbide concentration and protrusion at the implanted surface. Electropolishing is a cheap and effective method for treatment of implants, which generally has complex geometries. The purpose of this study is surface modification of the alloy CoCr(ASTM F90-09) by different methods: polishing, electro polishing, passivation and heat treatment for application as biomaterials. The modification of the surface was studied and characterized by SEM, profilometry, wettability and compared to the surface of the samples untreated. The heat treatment and of passivation increased roughness (0.477 µm and 0.825 µm) the samples in relation the sample electropolished and polished(0.131 µm and 0.274 µm) and were observed the improve wettability’s with the increase the roughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomaterial" title="biomaterial">biomaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=CoCr" title=" CoCr"> CoCr</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/17556/modification-and-surface-characterization-of-the-co20cr15w10ni-alloy-for-application-as-biomaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10779</span> Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Amrane">C. Amrane</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Haman"> D. Haman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg%20alloys" title="Al-Mg alloys">Al-Mg alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatments" title=" heat treatments"> heat treatments</a> </p> <a href="https://publications.waset.org/abstracts/15618/comparative-study-on-the-precipitation-behavior-in-two-al-mg-alloys-al-12-wt-mg-and-al-8-wt-mg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10778</span> Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prashant%20Dhiman">Prashant Dhiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Viranshu%20Kumar"> Viranshu Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Joshi"> Pradeep Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyrogenic%20treatment" title="cyrogenic treatment">cyrogenic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=EDM%20%28Electrical%20Discharge%20Machining%29" title=" EDM (Electrical Discharge Machining)"> EDM (Electrical Discharge Machining)</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20%28Computer%20Numeric%20Control%29" title=" CNC (Computer Numeric Control)"> CNC (Computer Numeric Control)</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechanical%20and%20Metallurgical%20Properties" title=" Mechanical and Metallurgical Properties"> Mechanical and Metallurgical Properties</a> </p> <a href="https://publications.waset.org/abstracts/21766/effect-of-cryogenic-treatment-on-various-mechanical-and-metallurgical-properties-of-different-material-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=360">360</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=361">361</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=heat%20%0D%0Atreatment&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>