CINXE.COM

Search results for: transparent conducting oxide

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: transparent conducting oxide</title> <meta name="description" content="Search results for: transparent conducting oxide"> <meta name="keywords" content="transparent conducting oxide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="transparent conducting oxide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="transparent conducting oxide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2790</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: transparent conducting oxide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2790</span> Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Huang">Kai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Assamen%20Ayalew%20Ejigu"> Assamen Ayalew Ejigu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Jie%20Lin"> Mu-Jie Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Chiun%20Chao"> Liang-Chiun Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20beam" title=" ion beam"> ion beam</a>, <a href="https://publications.waset.org/abstracts/search?q=NiO" title=" NiO"> NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide" title=" oxide"> oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent" title=" transparent"> transparent</a> </p> <a href="https://publications.waset.org/abstracts/58525/copper-doped-p-type-nickel-oxide-transparent-conducting-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2789</span> Synthesis and Characterization of SnO2: Ti Thin Films Spray-Deposited on Optical Glass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Demet%20Tatar">Demet Tatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20D%C3%BCzg%C3%BCn"> Bahattin Düzgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we have newly developed titanium-tin oxide (TiSnO) thin films as the transparent conducting oxides materials by the spray pyrolysis technique. Tin oxide thin films doped with different Ti content were successfully grown by spray pyrolysis and they were characterized as a function of Ti content. The effect of Ti contents on the crystalline structure and optical properties of the as-deposited SnO2:Ti films was systematically investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), atomic force microscopy (AFM), UV-vis spectrometer and photoluminecenc spectrophotometer. The X-ray diffraction patterns taken at room temperature showed that the films are polycrystalline. The preferred directions of crystal growth appeared in the difractogram of SnO2: Ti (TiTO) films were correspond to the reflections from the (110), (200), (211) and (301) planes. The grain size varies from 21.8 to 27.8 nm for (110) preferred plane. SEM and AFM study reveals the surface of TiTO to be made of nanocrystalline particles. The highest visible transmittance (570 nm) of the deposited films is 80 % for 20 wt % titanium doped tin oxide films. The obtained results revealed that the structures and optical properties of the films were greatly affected by doping levels. These films are useful as conducting layers in electro chromic and photovoltaic devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide" title="transparent conducting oxide">transparent conducting oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensors" title=" gas sensors"> gas sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO2" title=" SnO2"> SnO2</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti" title=" Ti"> Ti</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic" title=" optoelectronic"> optoelectronic</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/28486/synthesis-and-characterization-of-sno2-ti-thin-films-spray-deposited-on-optical-glass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2788</span> Effect of Substrate Temperature on Structure and Properties of Sputtered Transparent Conducting Film of La-Doped BaSnO₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Tiwari">Alok Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Show%20Wong"> Ming Show Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum (La) doped Barium Tin Oxide (BaSnO₃) film is an excellent alternative for expensive Transparent Conducting Oxides (TCOs) film such as Indium Tin Oxide (ITO). However single crystal film of La-doped BaSnO₃ has been reported with a good amount of conductivity and transparency but in order to improve its reachability, it is important to grow doped BaSO₃ films on an inexpensive substrate. La-doped BaSnO₃ thin films have been grown on quartz substrate by Radio Frequency (RF) sputtering at a different substrate temperature (from 200⁰C to 750⁰C). The thickness of the film measured was varying from 360nm to 380nm with varying substrate temperature. Structure, optical and electrical properties have been studied. The carrier concentration is seen to be decreasing as we enhance the substrate temperature while mobility found to be increased up to 9.3 cm²/V-S. At low substrate temperature resistivity found was lower (< 3x10⁻³ ohm-cm) while sudden enhancement was seen as substrate temperature raises and the trend continues further with increasing substrate temperature. Optical transmittance is getting better with higher substrate temperature from 70% at 200⁰C to > 80% at 750⁰C. Overall, understanding of changes in microstructure, electrical and optical properties of a thin film by varying substrate temperature has been reported successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity" title="conductivity">conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=TCO%20film" title=" TCO film"> TCO film</a> </p> <a href="https://publications.waset.org/abstracts/95715/effect-of-substrate-temperature-on-structure-and-properties-of-sputtered-transparent-conducting-film-of-la-doped-basno3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2787</span> The Development of Solar Cells to Maximize the Utilization of Solar Energy in Al-Baha Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed%20Alghamdi">Mohammed Ahmed Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazem%20Mahmoud%20Ali%20Darwish"> Hazem Mahmoud Ali Darwish</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Mohamed%20Abdelraheem"> Mostafa Mohamed Abdelraheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transparent conducting oxides (TCOs) possess low resistivity, exhibit good adherence to many substrates, and have good transmission characteristics from the visible to near-infrared wavelengths, which make it useful for various applications. Thin films of transparent conducting oxide (TCO’s) have received much attention because of their wide applications in the field of optoelectronic devices. Advancement of transparent conducting oxides TCO’s may not only lie within the improvement of existing materials in use, but also the development of novel materials. Solar cells are devices, which convert solar energy into electricity, either directly via the photovoltaic effect, or indirectly by first converting the solar energy to heat or chemical energy. Solar power has attracted attention of late as the most advanced of the alternative energy resources. The project aims to access the solar energy in Al-Baha region by search for materials (transparent-conductive oxides (TCO's)) to use in solar cells with highly transparent to the solar spectrum, have low electrical resistivity, be stable under H-plasma, and have a suitable structure in particular for a-Si solar cells. As the PV surface is exposed to the sunlight, the module temperature increases. High ambient temperatures along with long sunlight exposure time increases the temperature impact on PV cells efficiency. Since Al-Baha area is characterized by an atmosphere and pressure different from their counterparts in Saudi Arabia due to the height above sea level, hence it is appropriate to do studies to improve the efficiency of solar cells under these conditions. In this work, some ion change materials will be deposited using either sputtering/ or electron beam evaporation techniques. The optical properties of the synthesized materials will be studied in details for solar cell application. As we will study the effect of some dyes on the optical properties of the prepared films. The efficiency and other parameters of solar cell will be determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20properties" title=" electrical properties"> electrical properties</a> </p> <a href="https://publications.waset.org/abstracts/33180/the-development-of-solar-cells-to-maximize-the-utilization-of-solar-energy-in-al-baha-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33180.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2786</span> Effect of Gel Concentration on Physical Properties of an Electrochromic Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharan%20K.%20Indrakar">Sharan K. Indrakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20B.%20Prasad"> Aakash B. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Takshi"> Arash Takshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesha%20Srinivasan"> Sesha Srinivasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20K.%20Stefanakos"> Elias K. Stefanakos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochromic" title="electrochromic">electrochromic</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20electrolyte" title=" gel electrolyte"> gel electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a> </p> <a href="https://publications.waset.org/abstracts/136080/effect-of-gel-concentration-on-physical-properties-of-an-electrochromic-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2785</span> Transparent Photovoltaic Skin for Artificial Thermoreceptor and Nociceptor Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Bhatnagar">Priyanka Bhatnagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Malkeshkumar%20Patel"> Malkeshkumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joondong%20Kim"> Joondong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joonpyo%20Hong"> Joonpyo Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial skin and sensory memory platforms are produced using a flexible, transparent photovoltaic (TPV) device. The TPV device is composed of a metal oxide heterojunction (nZnO/p-NiO) and transmits visible light (> 50%) while producing substantial electric power (0.5 V and 200 μA cm-2 ). This TPV device is a transparent energy interface that can be used to detect signals and propagate information without an external energy supply. The TPV artificial skin offers a temperature detection range (0 C75 C) that is wider than that of natural skin (5 C48 °C) due to the temperature-sensitive pyrocurrent from the ZnO layer. Moreover, the TPV thermoreceptor offers sensory memory of extreme thermal stimuli. Much like natural skin, artificial skin uses the nociceptor mechanism to protect tissue from harmful damage via signal amplification (hyperalgesia) and early adaption (allodynia). This demonstrates the many features of TPV artificial skin, which can sense and transmit signals and memorize information under self-operation mode. This transparent photovoltaic skin can provide sustainable energy for use in human electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transparent" title="transparent">transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20memory" title=" thermal memory"> thermal memory</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20skin" title=" artificial skin"> artificial skin</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoreceptor" title=" thermoreceptor"> thermoreceptor</a> </p> <a href="https://publications.waset.org/abstracts/149259/transparent-photovoltaic-skin-for-artificial-thermoreceptor-and-nociceptor-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2784</span> Highly Transparent, Hydrophobic and Self-Cleaning ZnO-Durazane Based Hybrid Organic-Inorganic Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahmane%20Hamdi">Abderrahmane Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20Chalon"> Julie Chalon</a>, <a href="https://publications.waset.org/abstracts/search?q=Benoit%20Dodin"> Benoit Dodin</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Champagne"> Philippe Champagne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this report, we present a simple route to realize robust, hydrophobic, and highly transparent coatings using organic polysilazane (durazane) and zinc oxide nanoparticles (ZnO). These coatings were deposited by spraying the mixture solution on glass slides. Thus, the properties of the films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis-NIR spectrophotometer, and water contact angle method. This sprayable polymer mixed with ZnO nanoparticles shows high transparency for visible light > 90%, a hydrophobic character (CA > 90°), and good mechanical and chemical stability. The coating also demonstrates excellent self-cleaning properties, which makes it a promising candidate for commercial use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coatings" title="coatings">coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20polysilazane" title=" organic polysilazane"> organic polysilazane</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cleaning" title=" self-cleaning"> self-cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=transparence" title=" transparence"> transparence</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20nanoparticles" title=" zinc oxide nanoparticles"> zinc oxide nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/124131/highly-transparent-hydrophobic-and-self-cleaning-zno-durazane-based-hybrid-organic-inorganic-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2783</span> Characterization Techniques for Studying Properties of Nanomaterials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nandini%20Sharma">Nandini Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring the characteristics of a nanostructured material comprises measurements of structural, morphological, mechanical, optical and electronic properties of the synthesized nanopowder and different layers and coatings of nanomaterials coated on transparent conducting oxides (TCOs) substrates like fluorine doped tin oxide (FTO) or Indium doped tin oxide (ITO). This article focuses on structural and optical characterization with emphasis on measurements of the photocatalytic efficiency as a photocatalyst and their interpretation to extract relevant information about various TCOs and materials, their emitter regions, and surface passivation. It also covers a brief description of techniques based on photoluminescence that can portray high resolution pictorial graphs for application as solar energy devices. With the advancement in the scientific techniques, detailed information about the structural, morphological, and optical properties can be investigated, which is further useful for engineering and designing of an efficient device. The common principles involved in the prevalent characterization techniques aid to illustrate the range of options that can be broadened in near future for acurate device characterization and diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=structural" title=" structural"> structural</a>, <a href="https://publications.waset.org/abstracts/search?q=optical" title=" optical"> optical</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterial" title=" nanomaterial"> nanomaterial</a> </p> <a href="https://publications.waset.org/abstracts/133270/characterization-techniques-for-studying-properties-of-nanomaterials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2782</span> Synthesis and Characterization of Polypyrrole-Coated Non-Conducting Cellulosic Substrate and Modified by Copper Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamam">A. Hamam</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Oukil"> D. Oukil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dib"> A. Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Makhloufi"> L. Makhloufi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to synthesize modified Polypyrrole films (PPy) containing nanoparticles of copper oxides onto a non conducting cellulosic substrate. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is carried out using FeCl3 as an oxidant and Pyrrole as monomer. Different parameters were optimized (monomer concentration, duration of the experiment, nature of supporting electrolyte, temperature, etc.) in order to obtain films with different thickness and different morphologies. Thickness and topography of different PPy deposits were estimated by a profilometer apparatus. The electrochemical reactivity of the obtained electrodes were tested by cyclic voltammetry technique (CV) and electrochemical impedance spectroscopy (EIS). Secondly, the modification of the PPy film surface by incorporation of copper oxide nanonoparticles is conducted by applying a galvanostatic procedure from CuCl2 solution. Surface characterization has been carried out using scanning microscope (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis showed the presence of the copper oxide nanoparticles (CuO) in the polymer films with dimensions less than 50 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20electrode" title=" modified electrode"> modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate" title=" cellulosic substrate"> cellulosic substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide "> copper oxide </a> </p> <a href="https://publications.waset.org/abstracts/16789/synthesis-and-characterization-of-polypyrrole-coated-non-conducting-cellulosic-substrate-and-modified-by-copper-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2781</span> The Effects of pH on the Electrochromism in Nickel Oxide Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Ta%C5%9Fk%C3%B6pr%C3%BC">T. Taşköprü</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zor"> M. Zor</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Turan"> E. Turan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advantages of nickel oxide as an electrochromic material are its good contrast of transmittance and its suitable use as a secondary electrochromic film with WO3 for electrochromic devices. Electrochromic nickel oxide film was prepared by using a simple and inexpensive chemical deposition bath (CBD) technique onto fluorine-doped tin oxide (FTO) coated glass substrates from nickel nitrate solution. The films were ace centered cubic NiO with preferred orientation in the (2 0 0) direction. The electrochromic (EC) properties of the films were studied as a function of pH (8, 9, 10 and 11) in an aqueous alkaline electrolyte (0.3 M KOH) using cyclic voltammetry (CV). The EC cell was formed with the following configuration; FTO/nickel oxide film/0.3 M KOH/Pt The potential was cycled from 0.1 to 0.6V at diffferent potential sweep rates in the range 10- 50 mV/s. The films exhibit anodic electrochromism, changing colour from transparent to black.CV results of a nickel oxide film showed well-resolved anodic current peak at potential; 45 mV and cathodic peak at potential 28 mV. The structural, morphological, and optical changes in NiO film following the CV were investigated by means of X-ray diffractometer (XRD), field emission electron microscopy (FESEM) and UV-Vis- NIR spectrophotometry. No change was observed in XRD, besides surface morphology undergoes change due to the electrical discharge. The change in tansmittance between the bleached and colored state is 68% for the film deposited with pH=11 precursor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20oxide" title="nickel oxide">nickel oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/39351/the-effects-of-ph-on-the-electrochromism-in-nickel-oxide-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2780</span> Electrospun Conducting Polymer/Graphene Composite Nanofibers for Gas Sensing Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aliaa%20M.%20S.%20Salem">Aliaa M. S. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Soliman%20I.%20El-Hout"> Soliman I. El-Hout</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Gaber"> Amira Gaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Nageh"> Hassan Nageh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the development of poisonous gas detectors is considered to be an urgent matter to secure human health and the environment from poisonous gases, in view of the fact that even a minimal amount of poisonous gas can be fatal. Of these concerns, various inorganic or organic sensing materials have been used. Among these are conducting polymers, have been used as the active material in the gassensorsdue to their low-cost,easy-controllable molding, good electrochemical properties including facile fabrication process, inherent physical properties, biocompatibility, and optical properties. Moreover, conducting polymer-based chemical sensors have an amazing advantage compared to the conventional one as structural diversity, facile functionalization, room temperature operation, and easy fabrication. However, the low selectivity and conductivity of conducting polymers motivated the doping of it with varied materials, especially graphene, to enhance the gas-sensing performance under ambient conditions. There were a number of approaches proposed for producing polymer/ graphene nanocomposites, including template-free self-assembly, hard physical template-guided synthesis, chemical, electrochemical, and electrospinning...etc. In this work, we aim to prepare a novel gas sensordepending on Electrospun nanofibers of conducting polymer/RGO composite that is the effective and efficient expectation of poisonous gases like ammonia, in different application areas such as environmental gas analysis, chemical-,automotive- and medical industries. Moreover, our ultimate objective is to maximize the sensing performance of the prepared sensor and to check its recovery properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro%20spinning%20process" title="electro spinning process">electro spinning process</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=polythiophene" title=" polythiophene"> polythiophene</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalized%20reduced%20graphene%20oxide" title=" functionalized reduced graphene oxide"> functionalized reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating%20technique" title=" spin coating technique"> spin coating technique</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensors" title=" gas sensors"> gas sensors</a> </p> <a href="https://publications.waset.org/abstracts/142667/electrospun-conducting-polymergraphene-composite-nanofibers-for-gas-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2779</span> In-situ Monitoring of Residual Stress Behavior-Temperature Profiles in Transparent Polyimide/Tetrapod Zinc Oxide Whisker Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Ho%20Nam">Ki-Ho Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Haksoo%20Han"> Haksoo Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tetrapod zinc oxide whiskers (TZnO-Ws) were successfully synthesized by a thermal oxidation method. A series of transparent polyimide (PI)/TZnO-W composites were successfully synthesized via a solution-blending method. The structural and morphological features of TZnO-Ws and PI/TZnO-W composites were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-Ray diffraction (WAXD), and field emission scanning electron microscope (FE-SEM). Dynamic stress behaviors were investigated in-situ during thermal imidization of the soft-baked PI/TZnO-W composite precursor and thermally cured composite films using a thin film stress analyzer (TFSA) by wafer bending technique. The PI/TZnO-W composite films exhibited an optical transparency greater than 80% at 550 nm (≤ 0.5 wt% TZnO-W content), a low coefficient of thermal expansion (CTE), and enhanced glass transition temperature. However, the thermal decomposition temperature decreased as the TZnO-W content increased. The water diffusion coefficient and water uptake of the PI/TZNO-W composite films were obtained by best fits to a Fickian diffusion model. The water resistance capacity of PI was greatly enhanced and moisture diffusion in the pure PI was retarded by incorporating the TZnO-W. The PI composite films based on TZNO-W resultantly may have potential applications in optoelectronic manufacturing processes as a flexible transparent substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyimide%20%28PI%29" title="polyimide (PI)">polyimide (PI)</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrapod%20ZnO%20whisker%20%28TZnO-W%29" title=" tetrapod ZnO whisker (TZnO-W)"> tetrapod ZnO whisker (TZnO-W)</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent" title=" transparent"> transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stress%20behavior" title=" dynamic stress behavior"> dynamic stress behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resistance" title=" water resistance"> water resistance</a> </p> <a href="https://publications.waset.org/abstracts/23357/in-situ-monitoring-of-residual-stress-behavior-temperature-profiles-in-transparent-polyimidetetrapod-zinc-oxide-whisker-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2778</span> Transparent and Solution Processable Low Contact Resistance SWCNT/AZONP Bilayer Electrodes for Sol-Gel Metal Oxide Thin Film Transistor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Su%20Jeong%20Lee">Su Jeong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Il%20Lee"> Tae Il Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Han%20Kim"> Jung Han Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul-Hong%20Kim"> Chul-Hong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Gee%20Sung%20Chae"> Gee Sung Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Min%20Myoung"> Jae-Min Myoung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contact resistance between source/drain electrodes and semiconductor layer is an important parameter affecting electron transporting performance in the thin film transistor (TFT). In this work, we introduced a transparent and the solution prossable single-walled carbon nanotube (SWCNT)/Al-doped ZnO nano particle (AZO NP) bilayer electrodes showing low contact resistance with indium-oxide (In2O3) sol gel thin film. By inserting low work function AZO NPs into the interface between the SWCNTs and the In2O3 which has a high energy barrier, we could obtain an electrical Ohmic contact between them. Finally, with the SWCNT-AZO NP bilayer electrodes, we successfully fabricated a TFT showing a field effect mobility of 5.38 cm2/V∙s at 250 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube%20%28SWCNT%29" title="single-walled carbon nanotube (SWCNT)">single-walled carbon nanotube (SWCNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=Al-doped%20ZnO%20%28AZO%29%20nanoparticle" title=" Al-doped ZnO (AZO) nanoparticle"> Al-doped ZnO (AZO) nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20resistance" title=" contact resistance"> contact resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-film%20transistor%20%28TFT%29" title=" thin-film transistor (TFT) "> thin-film transistor (TFT) </a> </p> <a href="https://publications.waset.org/abstracts/19325/transparent-and-solution-processable-low-contact-resistance-swcntazonp-bilayer-electrodes-for-sol-gel-metal-oxide-thin-film-transistor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2777</span> Sunlight-Activated Graphene Heterostructure Transparent Cathodes for High-Performance Graphene/Si Schottky Junction Photovoltaics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Sun%20Ho">Po-Sun Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Chen"> Chun-Wei Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work demonstrated a “sunlight-activated” graphene-heterostructure transparent electrode in which photogenerated charges from a light-absorbing material are transferred to graphene, resulting in the modulation of electrical properties of the graphene transparent electrode caused by a strong light–matter interaction at graphene-heterostructure interfaces. A photoactive graphene/TiOx-heterostructure transparent cathode was used to fabricate an n-graphene/p-Si Schottky junction solar cell, achieving a record-high power conversion efficiency (>10%). The photoactive graphene-heterostructure transparent electrode, which exhibits excellent tunable electrical properties under sunlight illumination, has great potential for use in the future development of graphene-based photovoltaics and optoelectronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20electrode" title=" transparent electrode"> transparent electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%2FSi%20Schottky%20junction" title=" graphene/Si Schottky junction"> graphene/Si Schottky junction</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a> </p> <a href="https://publications.waset.org/abstracts/61633/sunlight-activated-graphene-heterostructure-transparent-cathodes-for-high-performance-graphenesi-schottky-junction-photovoltaics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2776</span> Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Battal">Ahmet Battal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Tatar"> Demet Tatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20D%C3%BCzg%C3%BCn"> Bahattin Düzgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO2" title=" SnO2"> SnO2</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20doped" title=" doubly doped"> doubly doped</a> </p> <a href="https://publications.waset.org/abstracts/28569/effect-of-substrate-temperature-on-some-physical-properties-of-doubly-doped-tin-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2775</span> Nanostructured Fluorine Doped Zinc Oxide Thin Films Deposited by Ultrasonic Spray Pyrolisys Technique: Effect of Starting Solution Composition and Substrate Temperature on the Physical Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmeralda%20Ch%C3%A1vez%20Vargas">Esmeralda Chávez Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20de%20la%20L.%20Olvera"> M. de la L. Olvera</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maldonado"> A. Maldonado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The doping it is believed as follows, at high concentration fluorine in ZnO: F films is incorporated to the lattice by substitution of O-2 ions by F-1 ions; at middle fluorine concentrations, F ions may form interstitials, whereas for low concentrations it is increased the carriers and mobility could be explained by the surface passivation effect of fluorine. ZnO:F thin films were deposited on sodocalcic glass substratesat 425 °C , 450°C, 475 during 8, 12, 15 min from a 0.2 M solution. Doping concentration in the starting solutions was varied, namely, [F]/[F+Zn] = 0, 5, 15, 30, 45, 60, and 90 at. %; solvent composition was varied as well, 100:100; 50:50; 100:50(acetic acid: water: methanol ratios, in volume). In this work it is reported the characterization results of fluorine doped zinc oxide (ZnO:F) thin films deposited by the ultrasonic spray pyrolysis technique, using zinc acetate and ammonium fluorine as Zn an F precursors, respectively. The effect of varying the fluorine concentration in the starting solutions, the solvent composition, and the ageing time of the starting solutions, on the electrical resistivity, optical transmittance, structure and surface morphology was analyzed. In order to have a quantitative evaluation of the ZnO:F thin films for its application as transparent electrodes, the Figure of Merit was estimated from the Haacke´s formula. After a thoroughly study, it can be found that optimal conditions for the deposition of transparent and conductive ZnO:F thin films on sodocalcic substrates, were as follows; substrate temperature: solution molar concentration 0.2, doping concentration in the starting solution of [F]/[Zn]= 60 at. %, (water content)/(acetic acid) in starting solution: [H2O/ CH3OH]= 50:50, substrate temperature: 450 °C. The effects of aging of the starting solution has also been analyzed thoroughly and it has been found a dramatic effect on the electric resistivity of the material, aged by 40 days, show an electrical resitivity as low as 120 Ω/□, with a transmittance around 80% in the visible range. X-ray diffraction spectra show a polycrystalline of ZnO (wurtzite structure) where the amount of fluorine doping affects to preferential orientation (002 plane). Therefore, F introduction in lattice is by the substitution of O-2 ions by F-1 ions. The results show that ZnO:F thin films are potentially adequate for application as transparent conductive oxide in thin film solar cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TCOs" title="TCOs">TCOs</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20electrodes" title=" transparent electrodes"> transparent electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20spray%20pyrolysis" title=" ultrasonic spray pyrolysis"> ultrasonic spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%3AF" title=" ZnO:F"> ZnO:F</a> </p> <a href="https://publications.waset.org/abstracts/26273/nanostructured-fluorine-doped-zinc-oxide-thin-films-deposited-by-ultrasonic-spray-pyrolisys-technique-effect-of-starting-solution-composition-and-substrate-temperature-on-the-physical-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2774</span> Electronic States at SnO/SnO2 Heterointerfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Albar">A. Albar</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Schwingenschlogel"> U. Schwingenschlogel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Device applications of transparent conducting oxides require a thorough understanding of the physical and chemical properties of the involved interfaces. We use ab-initio calculations within density functional theory to investigate the electronic states at the SnO/SnO2 hetero-interface. Tin dioxide and monoxide are transparent materials with high n-type and p-type mobilities, respectively. This work aims at exploring the modifications of the electronic states, in particular the charge transfer, in the vicinity of the hetero-interface. The (110) interface is modeled by a super-cell approach in order to minimize the mismatch between the lattice parameters of the two compounds. We discuss the electronic density of states as a function of the distance to the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20of%20states" title="density of states">density of states</a>, <a href="https://publications.waset.org/abstracts/search?q=ab-initio%20calculations" title=" ab-initio calculations"> ab-initio calculations</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20states" title=" interface states"> interface states</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20transfer" title=" charge transfer"> charge transfer</a> </p> <a href="https://publications.waset.org/abstracts/1949/electronic-states-at-snosno2-heterointerfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2773</span> FTIR and AFM Properties of Doubly Doped Tin Oxide Thin Films Prepared by Spin Coating Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20Duzgun">Bahattin Duzgun</a>, <a href="https://publications.waset.org/abstracts/search?q=Adem%20Kocyigit"> Adem Kocyigit</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Tatar"> Demet Tatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Battal"> Ahmet Battal </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin oxide thin films are semiconductor materials highly transparent and with high mechanical and chemical stability, except for their interactions with oxygen atoms at high temperature. Many dopants, such as antimony (Sb), arsenic (As), fluorine (F), indium (In), molybdenum and (Mo) etc. have been used to improve the electrical properties of tin oxide films. Among these, Sb and F are found to be the most commonly used dopants for solar cell layers. Also Tin oxide tin films investigated and characterized by researchers different film deposition and analysis method. In this study, tin oxide thin films are deposited on glass substrate by spin coating technique and characterized by FTIR and AFM. FTIR spectroscopy revealed that all films have O-Sn-O and Sn-OH vibration bonds not changing with layer effect. AFM analysis indicates that all films are homogeneity and uniform. It can be seen that all films have needle shape structure in their surfaces. Uniformity and homogeneity of the films generally increased for increasing layers. The results found in present study showed that doubly doped SnO2 thin films is a good candidate for solar cells and other optoelectronic and technological applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly%20doped" title="doubly doped">doubly doped</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20coating" title=" spin coating"> spin coating</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR%20analysis" title=" FTIR analysis"> FTIR analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=AFM%20analysis" title=" AFM analysis"> AFM analysis</a> </p> <a href="https://publications.waset.org/abstracts/28405/ftir-and-afm-properties-of-doubly-doped-tin-oxide-thin-films-prepared-by-spin-coating-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2772</span> Role of Chloride Ions on The Properties of Electrodeposited ZnO Nanostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Mentar">L. Mentar</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Baka"> O. Baka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khelladi"> M. R. Khelladi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Azizi"> A. Azizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc oxide (ZnO), as a transparent semiconductor with a wide band gap of 3.4 eV and a large exciton binding energy of 60 meV at room temperature, is one of the most promising materials for a wide range of modern applications. With the development of film growth technologies and intense recent interest in nanotechnology, several varieties of ZnO nanostructured materials have been synthesized almost exclusively by thermal evaporation methods, particularly chemical vapor deposition (CVD), which generally require a high growth temperature above 550 °C. In contrast, wet chemistry techniques such as hydrothermal synthesis and electro-deposition are promising alternatives to synthesize ZnO nanostructures, especially at a significantly lower temperature (below 200°C). In this study, the electro-deposition method was used to produce zinc oxide (ZnO) nanostructures on fluorine-doped tin oxide (FTO)-coated conducting glass substrate from chloride bath. We present the influence of KCl concentrations on the electro-deposition process, morphological, structural and optical properties of ZnO nanostructures. The potentials of electro-deposition of ZnO were determined using the cyclic voltammetry. From the Mott-Schottky measurements, the flat-band potential and the donor density for the ZnO nanostructure are determined. Field emission scanning electron microscopy (FESEM) images showed different sizes and morphologies of the nanostructures which depends on the concentrations of Cl-. Very netted hexagonal grains are observed for the nanostructures deposited at 0.1M of KCl. X-ray diffraction (XRD) study confirms the Wurtzite phase of the ZnO nanostructures with a preferred oriented along (002) plane normal to the substrate surface. UV-Visible spectra showed a significant optical transmission (~80%), which decreased with low Cl-1 concentrations. The energy band gap values have been estimated to be between 3.52 and 3.80 eV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cl-" title="Cl-">Cl-</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-deposition" title=" electro-deposition"> electro-deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=FESEM" title=" FESEM"> FESEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Mott-Schottky" title=" Mott-Schottky"> Mott-Schottky</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a> </p> <a href="https://publications.waset.org/abstracts/33048/role-of-chloride-ions-on-the-properties-of-electrodeposited-zno-nanostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2771</span> Inkjet Printed Silver Nanowire Network as Semi-Transparent Electrode for Organic Photovoltaic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donia%20Fredj">Donia Fredj</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Parmentier"> Marie Parmentier</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Archet"> Florence Archet</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Margeat"> Olivier Margeat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadok%20Ben%20Dkhil"> Sadok Ben Dkhil</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorg%20Ackerman"> Jorg Ackerman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transparent conductive electrodes (TCEs) or transparent electrodes (TEs) are a crucial part of many electronic and optoelectronic devices such as touch panels, liquid crystal displays (LCDs), organic light-emitting diodes (OLEDs), solar cells, and transparent heaters. The indium tin oxide (ITO) electrode is the most widely utilized transparent electrode due to its excellent optoelectrical properties. However, the drawbacks of ITO, such as the high cost of this material, scarcity of indium, and the fragile nature, limit the application in large-scale flexible electronic devices. Importantly, flexibility is becoming more and more attractive since flexible electrodes have the potential to open new applications which require transparent electrodes to be flexible, cheap, and compatible with large-scale manufacturing methods. So far, several materials as alternatives to ITO have been developed, including metal nanowires, conjugated polymers, carbon nanotubes, graphene, etc., which have been extensively investigated for use as flexible and low-cost electrodes. Among them, silver nanowires (AgNW) are one of the promising alternatives to ITO thanks to their excellent properties, high electrical conductivity as well as desirable light transmittance. In recent years, inkjet printing became a promising technique for large-scale printed flexible and stretchable electronics. However, inkjet printing of AgNWs still presents many challenges. In this study, a synthesis of stable AgNW that could compete with ITO was developed. This material was printed by inkjet technology directly on a flexible substrate. Additionally, we analyzed the surface microstructure, optical and electrical properties of the printed AgNW layers. Our further research focused on the study of all inkjet-printed organic modules with high efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transparent%20electrodes" title="transparent electrodes">transparent electrodes</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanowires" title=" silver nanowires"> silver nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=inkjet%20printing" title=" inkjet printing"> inkjet printing</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation%20of%20stable%20inks" title=" formulation of stable inks"> formulation of stable inks</a> </p> <a href="https://publications.waset.org/abstracts/142598/inkjet-printed-silver-nanowire-network-as-semi-transparent-electrode-for-organic-photovoltaic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2770</span> The Cultural and Semantic Danger of English Transparent Words Translated from English into Arabic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Khuwaileh">Abdullah Khuwaileh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While teaching and translating vocabulary is no longer a neglected area in ELT in general and in translation in particular, the psychology of its acquisition has been a neglected area. Our paper aims at exploring some of the learning and translating conditions under which vocabulary is acquired and translated properly. To achieve this objective, two teaching methods (experiments) were applied on 4 translators to measure their acquisition of a number of transparent vocabulary items. Some of these items were knowingly chosen from 'deceptively transparent words'. All the data, sample, etc., were taken from Jordan University of Science and Technology (JUST) and Yarmouk University, where the researcher is employed. The study showed that translators might translate transparent words inaccurately, particularly if these words are uncontextualised. It was also shown that the morphological structures of words may lead translators or even EFL learners to misinterpretations of meaning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=english" title="english">english</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent" title=" transparent"> transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=word" title=" word"> word</a>, <a href="https://publications.waset.org/abstracts/search?q=processing" title=" processing"> processing</a>, <a href="https://publications.waset.org/abstracts/search?q=translation" title=" translation"> translation</a> </p> <a href="https://publications.waset.org/abstracts/158885/the-cultural-and-semantic-danger-of-english-transparent-words-translated-from-english-into-arabic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2769</span> Investigation on Performance of Optical Shutter Panels for Transparent Displays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehong%20Kim">Jaehong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunhee%20Park"> Sunhee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=HongSeop%20Shin"> HongSeop Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyongho%20Lim"> Kyongho Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhyun%20Kwon"> Suhyun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Don-Gyou%20Lee"> Don-Gyou Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pureum%20Kim"> Pureum Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Moojong%20Lim"> Moojong Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=JongSang%20Baek"> JongSang Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transparent displays with OLEDs are the most commonly produced forms of see-through displays on the market or in development. In order to block the visual interruption caused by the light coming from the background, the special panel is combined with transparent displays with OLEDs. There is, however, few studies performance of optical shutter panel for transparent displays until now. This paper, therefore, describes the performance of optical shutter panels. The novel evaluation method was developed by measuring the amount of light which can form a transmitted background image. The new proposed method could tell how recognizable transmitted background images cannot be seen, and is consistent with viewer’s perception. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optical%20shutter%20panel" title="optical shutter panel">optical shutter panel</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20performance" title=" optical performance"> optical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20display" title=" transparent display"> transparent display</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20interruption" title=" visual interruption"> visual interruption</a> </p> <a href="https://publications.waset.org/abstracts/23119/investigation-on-performance-of-optical-shutter-panels-for-transparent-displays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2768</span> Investigation on Optical Performance of Operational Shutter Panels for Transparent Displays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaehong%20Kim">Jaehong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunhee%20Park"> Sunhee Park</a>, <a href="https://publications.waset.org/abstracts/search?q=HongSeop%20Shin"> HongSeop Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyongho%20Lim"> Kyongho Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhyun%20Kwon"> Suhyun Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Don-Gyou%20Lee"> Don-Gyou Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pureum%20Kim"> Pureum Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Moojong%20Lim"> Moojong Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=JongSang%20Baek"> JongSang Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transparent displays with OLEDs are the most commonly produced forms of see-through displays on the market or in development. In order to block the visual interruption caused by the light coming from the background, the special panel is combined with transparent displays with OLEDs. There is, however, few studies optical performance of operational shutter panel for transparent displays until now. This paper, therefore, describes the optical performance of operational shutter panels. The novel evaluation method was developed by measuring the amount of light which can form a transmitted background image. The new proposed method could tell how recognize transmitted background images cannot be seen, and is consistent with viewer’s perception. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transparent%20display" title="transparent display">transparent display</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20shutter%20panel" title=" operational shutter panel"> operational shutter panel</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20performance" title=" optical performance"> optical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=OLEDs" title=" OLEDs"> OLEDs</a> </p> <a href="https://publications.waset.org/abstracts/18753/investigation-on-optical-performance-of-operational-shutter-panels-for-transparent-displays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2767</span> Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yameen%20Ahmed">Yameen Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Hussain"> Jamshid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ullah"> Farman Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Asif"> Sohaib Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide" title="cobalt oxide">cobalt oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/142865/green-synthesis-of-copper-oxide-and-cobalt-oxide-nanoparticles-using-spinacia-oleracea-leaf-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2766</span> Evaluation of Total Antioxidant Activity (TAC) of Copper Oxide Decorated Reduced Graphene Oxide (CuO-rGO) at Different Stirring time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bensouici">Aicha Bensouici</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Mili"> Assia Mili</a>, <a href="https://publications.waset.org/abstracts/search?q=Naouel%20Rdjem"> Naouel Rdjem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Baali"> Nacera Baali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper oxide decorated reduced graphene oxide (GO) was obtained successfully using two steps route synthesis was used. Firstly, graphene oxide was obtained using a modified Hummers method by excluding sodium nitrate from starting materials. After washing-centrifugation routine pristine GO was decorated by copper oxide using a refluxation technique at 120°C during 2h, and an equal amount of GO and copper acetate was used. Three CuO-rGO nanocomposite samples types were obtained at 30min, 24h, and 7 day stirring time. TAC results show dose dependent behavior of CuO-rGO and confirm no influence of stirring time on antioxidant properties, 30min is considered as an optimal stirring condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title="copper oxide">copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=TAC" title=" TAC"> TAC</a>, <a href="https://publications.waset.org/abstracts/search?q=GO" title=" GO"> GO</a> </p> <a href="https://publications.waset.org/abstracts/157959/evaluation-of-total-antioxidant-activity-tac-of-copper-oxide-decorated-reduced-graphene-oxide-cuo-rgo-at-different-stirring-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2765</span> High Quality Gallium Oxide Microstructures by Catalyst-Free Thermal Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiang-Bei%20Qin">Jiang-Bei Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Rui-Xia%20Miao"> Rui-Xia Miao</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Ren"> Wei Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, high crystalline gallium oxide microstructures (wires, belts, and sheets) were synthesized by catalyst-free thermal oxidation. Structural studies such as X-ray diffraction, Raman and transmission electron microscope (TEM) investigations on the microstructures showed monoclinic phase of gallium oxide and single crystalline structure. The scanning electron microscopy (SEM) observations revealed that a huge super microsheet even grows up to 450 µm in length and 206 µm in width. Gallium oxide microstructures exhibit high crystallinity along (002) and (401), respectively. The PL spectrum of these microstructures excites a blue light band centered at 441 and 489nm. The growth mechanism of gallium oxide microstructures is discussed. These gallium oxide microstructures have great potential in functional devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalyst-free" title="catalyst-free">catalyst-free</a>, <a href="https://publications.waset.org/abstracts/search?q=gallium%20oxide" title=" gallium oxide"> gallium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20oxide" title=" thermal oxide"> thermal oxide</a> </p> <a href="https://publications.waset.org/abstracts/144556/high-quality-gallium-oxide-microstructures-by-catalyst-free-thermal-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2764</span> Nitrite Sensor Platform Functionalized Reduced Graphene Oxide with Thionine Dye Based</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurulasma%20Zainudin">Nurulasma Zainudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashitah%20Mohd%20Yusoff"> Mashitah Mohd Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwok%20Feng%20Chong"> Kwok Feng Chong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functionalized reduced graphene oxide is essential importance for their end applications. Chemical functionalization of reduced graphene oxide with strange atoms is a leading strategy to modify the properties of the materials moreover maintains the inherent properties of reduced graphene oxide. A thionine functionalized reduce graphene oxide electrode was fabricated and was used to electrochemically determine nitrite. The electrochemical behaviour of thionine functionalized reduced graphene oxide towards oxidation of nitrite via cyclic voltammetry was studied and the proposed method exhibited enhanced electrocatalytic behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrite" title="nitrite">nitrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=thionine" title=" thionine"> thionine</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a> </p> <a href="https://publications.waset.org/abstracts/37261/nitrite-sensor-platform-functionalized-reduced-graphene-oxide-with-thionine-dye-based" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2763</span> Undoped and Fluorine Doped Zinc Oxide (ZnO:F) Thin Films Deposited by Ultrasonic Chemical Spray: Effect of the Solution on the Electrical and Optical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ch%C3%A1vez-Vargas">E. Chávez-Vargas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20de%20la%20L.%20Olvera-Amador"> M. de la L. Olvera-Amador</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jimenez-Gonzalez"> A. Jimenez-Gonzalez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Maldonado"> A. Maldonado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undoped and fluorine doped zinc oxide (ZnO) thin films were deposited on sodocalcic glass substrates by the ultrasonic chemical spray technique. As the main goal is the manufacturing of transparent electrodes, the effects of both the solution composition and the substrate temperature on both the electrical and optical properties of ZnO thin films were studied. As a matter of fact, the effect of fluorine concentration ([F]/[F+Zn] at. %), solvent composition (acetic acid, water, methanol ratios) and ageing time, regarding solution composition, were varied. In addition, the substrate temperature and the deposition time, regarding the chemical spray technique, were also varied. Structural studies confirm the deposition of polycrystalline, hexagonal, wurtzite type, ZnO. The results show that the increase of ([F]/[F+Zn] at. %) ratio in the solution, decreases the sheet resistance, RS, of the ZnO:F films, reaching a minimum, in the order of 1.6 Ωcm, at 60 at. %; further increase in the ([F]/[F+Zn]) ratio increases the RS of the films. The same trend occurs with the variation in substrate temperature, as a minimum RS of ZnO:F thin films was encountered when deposited at TS= 450 °C. ZnO:F thin films deposited with aged solution show a significant decrease in the RS in the order of 100 ΩS. The transmittance of the films was also favorable affected by the solvent ratio and, more significantly, by the ageing of the solution. The whole evaluation of optical and electrical characteristics of the ZnO:F thin films deposited under different conditions, was done under Haacke’s figure of Merit in order to have a clear and quantitative trend as transparent conductors application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%3AF" title=" ZnO:F"> ZnO:F</a>, <a href="https://publications.waset.org/abstracts/search?q=TCO" title=" TCO"> TCO</a>, <a href="https://publications.waset.org/abstracts/search?q=Haacke%E2%80%99s%20figure%20of%20Merit" title=" Haacke’s figure of Merit "> Haacke’s figure of Merit </a> </p> <a href="https://publications.waset.org/abstracts/31596/undoped-and-fluorine-doped-zinc-oxide-znof-thin-films-deposited-by-ultrasonic-chemical-spray-effect-of-the-solution-on-the-electrical-and-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2762</span> Fluorescence Quenching as an Efficient Tool for Sensing Application: Study on the Fluorescence Quenching of Naphthalimide Dye by Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanaz%20Seraj">Sanaz Seraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohre%20Rouhani"> Shohre Rouhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, graphene has gained much attention because of its unique optical, mechanical, electrical, and thermal properties. Graphene has been used as a key material in the technological applications in various areas such as sensors, drug delivery, super capacitors, transparent conductor, and solar cell. It has a superior quenching efficiency for various fluorophores. Based on these unique properties, the optical sensors with graphene materials as the energy acceptors have demonstrated great success in recent years. During quenching, the emission of a fluorophore is perturbed by a quencher which can be a substrate or biomolecule, and due to this phenomenon, fluorophore-quencher has been used for selective detection of target molecules. Among fluorescence dyes, 1,8-naphthalimide is well known for its typical intramolecular charge transfer (ICT) and photo-induced charge transfer (PET) fluorophore, strong absorption and emission in the visible region, high photo stability, and large Stokes shift. Derivatives of 1,8-naphthalimides have found applications in some areas, especially fluorescence sensors. Herein, the fluorescence quenching of graphene oxide has been carried out on a naphthalimide dye as a fluorescent probe model. The quenching ability of graphene oxide on naphthalimide dye was studied by UV-VIS and fluorescence spectroscopy. This study showed that graphene is an efficient quencher for fluorescent dyes. Therefore, it can be used as a suitable candidate sensing platform. To the best of our knowledge, studies on the quenching and absorption of naphthalimide dyes by graphene oxide are rare. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title="fluorescence">fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalimide%20dye" title=" naphthalimide dye"> naphthalimide dye</a>, <a href="https://publications.waset.org/abstracts/search?q=quenching" title=" quenching"> quenching</a> </p> <a href="https://publications.waset.org/abstracts/76722/fluorescence-quenching-as-an-efficient-tool-for-sensing-application-study-on-the-fluorescence-quenching-of-naphthalimide-dye-by-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2761</span> Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Rashmi">S. H. Rashmi</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Madhu"> G. M. Madhu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Kittur"> A. A. Kittur</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Suresh"> R. Suresh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glutaraldehyde" title="glutaraldehyde">glutaraldehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20vinyl%20alcohol" title=" poly vinyl alcohol"> poly vinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/1465/synthesis-characterization-and-physico-chemical-properties-of-nano-zinc-oxide-and-pva-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=92">92</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=93">93</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=transparent%20conducting%20oxide&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10