CINXE.COM

Ricci calculus - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Ricci calculus - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"0fe904f1-cec5-4aa9-bfad-98aa6d2f56cb","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Ricci_calculus","wgTitle":"Ricci calculus","wgCurRevisionId":1255956512,"wgRevisionId":1255956512,"wgArticleId":35456546,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","CS1 German-language sources (de)","Articles with short description","Short description matches Wikidata","Calculus","Differential geometry","Tensors"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Ricci_calculus","wgRelevantArticleId":35456546,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom": "Tensor_calculus","wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgInternalRedirectTargetUrl":"/wiki/Ricci_calculus","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q7322955","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true, "wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Ricci calculus - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Ricci_calculus"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Ricci_calculus&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Ricci_calculus"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Ricci_calculus rootpage-Ricci_calculus skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ricci+calculus" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Ricci+calculus" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Ricci+calculus" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Ricci+calculus" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Applications" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Applications</span> </div> </a> <ul id="toc-Applications-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notation_for_indices" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notation_for_indices"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notation for indices</span> </div> </a> <button aria-controls="toc-Notation_for_indices-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notation for indices subsection</span> </button> <ul id="toc-Notation_for_indices-sublist" class="vector-toc-list"> <li id="toc-Basis-related_distinctions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Basis-related_distinctions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Basis-related distinctions</span> </div> </a> <ul id="toc-Basis-related_distinctions-sublist" class="vector-toc-list"> <li id="toc-Space_and_time_coordinates" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Space_and_time_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.1</span> <span>Space and time coordinates</span> </div> </a> <ul id="toc-Space_and_time_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Coordinate_and_index_notation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Coordinate_and_index_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.2</span> <span>Coordinate and index notation</span> </div> </a> <ul id="toc-Coordinate_and_index_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reference_to_basis" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Reference_to_basis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1.3</span> <span>Reference to basis</span> </div> </a> <ul id="toc-Reference_to_basis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Upper_and_lower_indices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Upper_and_lower_indices"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Upper and lower indices</span> </div> </a> <ul id="toc-Upper_and_lower_indices-sublist" class="vector-toc-list"> <li id="toc-Covariant_tensor_components" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Covariant_tensor_components"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.1</span> <span>Covariant tensor components</span> </div> </a> <ul id="toc-Covariant_tensor_components-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Contravariant_tensor_components" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Contravariant_tensor_components"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.2</span> <span>Contravariant tensor components</span> </div> </a> <ul id="toc-Contravariant_tensor_components-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mixed-variance_tensor_components" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Mixed-variance_tensor_components"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.3</span> <span>Mixed-variance tensor components</span> </div> </a> <ul id="toc-Mixed-variance_tensor_components-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Tensor_type_and_degree" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Tensor_type_and_degree"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.4</span> <span>Tensor type and degree</span> </div> </a> <ul id="toc-Tensor_type_and_degree-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Summation_convention" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Summation_convention"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.5</span> <span>Summation convention</span> </div> </a> <ul id="toc-Summation_convention-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Multi-index_notation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Multi-index_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.6</span> <span>Multi-index notation</span> </div> </a> <ul id="toc-Multi-index_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sequential_summation" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Sequential_summation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.7</span> <span>Sequential summation</span> </div> </a> <ul id="toc-Sequential_summation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Raising_and_lowering_indices" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Raising_and_lowering_indices"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2.8</span> <span>Raising and lowering indices</span> </div> </a> <ul id="toc-Raising_and_lowering_indices-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Correlations_between_index_positions_and_invariance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Correlations_between_index_positions_and_invariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Correlations between index positions and invariance</span> </div> </a> <ul id="toc-Correlations_between_index_positions_and_invariance-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-General_outlines_for_index_notation_and_operations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#General_outlines_for_index_notation_and_operations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>General outlines for index notation and operations</span> </div> </a> <button aria-controls="toc-General_outlines_for_index_notation_and_operations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle General outlines for index notation and operations subsection</span> </button> <ul id="toc-General_outlines_for_index_notation_and_operations-sublist" class="vector-toc-list"> <li id="toc-Free_and_dummy_indices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Free_and_dummy_indices"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Free and dummy indices</span> </div> </a> <ul id="toc-Free_and_dummy_indices-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_tensor_equation_represents_many_ordinary_(real-valued)_equations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_tensor_equation_represents_many_ordinary_(real-valued)_equations"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>A tensor equation represents many ordinary (real-valued) equations</span> </div> </a> <ul id="toc-A_tensor_equation_represents_many_ordinary_(real-valued)_equations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Indices_are_replaceable_labels" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Indices_are_replaceable_labels"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Indices are replaceable labels</span> </div> </a> <ul id="toc-Indices_are_replaceable_labels-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Indices_are_the_same_in_every_term" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Indices_are_the_same_in_every_term"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Indices are the same in every term</span> </div> </a> <ul id="toc-Indices_are_the_same_in_every_term-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Brackets_and_punctuation_used_once_where_implied" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Brackets_and_punctuation_used_once_where_implied"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Brackets and punctuation used once where implied</span> </div> </a> <ul id="toc-Brackets_and_punctuation_used_once_where_implied-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Symmetric_and_antisymmetric_parts" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Symmetric_and_antisymmetric_parts"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Symmetric and antisymmetric parts</span> </div> </a> <button aria-controls="toc-Symmetric_and_antisymmetric_parts-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Symmetric and antisymmetric parts subsection</span> </button> <ul id="toc-Symmetric_and_antisymmetric_parts-sublist" class="vector-toc-list"> <li id="toc-Symmetric_part_of_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Symmetric_part_of_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Symmetric part of tensor</span> </div> </a> <ul id="toc-Symmetric_part_of_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Antisymmetric_or_alternating_part_of_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Antisymmetric_or_alternating_part_of_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Antisymmetric or alternating part of tensor</span> </div> </a> <ul id="toc-Antisymmetric_or_alternating_part_of_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sum_of_symmetric_and_antisymmetric_parts" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sum_of_symmetric_and_antisymmetric_parts"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Sum of symmetric and antisymmetric parts</span> </div> </a> <ul id="toc-Sum_of_symmetric_and_antisymmetric_parts-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Differentiation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Differentiation"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Differentiation</span> </div> </a> <button aria-controls="toc-Differentiation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Differentiation subsection</span> </button> <ul id="toc-Differentiation-sublist" class="vector-toc-list"> <li id="toc-Partial_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partial_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Partial derivative</span> </div> </a> <ul id="toc-Partial_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Covariant_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Covariant_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Covariant derivative</span> </div> </a> <ul id="toc-Covariant_derivative-sublist" class="vector-toc-list"> <li id="toc-Connection_types" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Connection_types"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span>Connection types</span> </div> </a> <ul id="toc-Connection_types-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Exterior_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exterior_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Exterior derivative</span> </div> </a> <ul id="toc-Exterior_derivative-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Lie_derivative" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Lie_derivative"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.4</span> <span>Lie derivative</span> </div> </a> <ul id="toc-Lie_derivative-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notable_tensors" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notable_tensors"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notable tensors</span> </div> </a> <button aria-controls="toc-Notable_tensors-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notable tensors subsection</span> </button> <ul id="toc-Notable_tensors-sublist" class="vector-toc-list"> <li id="toc-Kronecker_delta" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kronecker_delta"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Kronecker delta</span> </div> </a> <ul id="toc-Kronecker_delta-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Torsion_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Torsion_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Torsion tensor</span> </div> </a> <ul id="toc-Torsion_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Riemann_curvature_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Riemann_curvature_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Riemann curvature tensor</span> </div> </a> <ul id="toc-Riemann_curvature_tensor-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Metric_tensor" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Metric_tensor"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Metric tensor</span> </div> </a> <ul id="toc-Metric_tensor-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Ricci calculus</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 4 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-4" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">4 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AD%D8%B3%D8%A7%D8%A8_%D8%B1%D9%8A%D8%AA%D8%B4%D9%8A" title="حساب ريتشي – Arabic" lang="ar" hreflang="ar" data-title="حساب ريتشي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/C%C3%A0lcul_de_Ricci" title="Càlcul de Ricci – Catalan" lang="ca" hreflang="ca" data-title="Càlcul de Ricci" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A6%AC%EC%B9%98_%EB%AF%B8%EC%A0%81%EB%B6%84%ED%95%99" title="리치 미적분학 – Korean" lang="ko" hreflang="ko" data-title="리치 미적분학" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/C%C3%A1lculo_de_Ricci" title="Cálculo de Ricci – Portuguese" lang="pt" hreflang="pt" data-title="Cálculo de Ricci" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7322955#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ricci_calculus" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Ricci_calculus" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Ricci_calculus"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ricci_calculus&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Ricci_calculus&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Ricci_calculus"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ricci_calculus&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Ricci_calculus&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Ricci_calculus" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Ricci_calculus" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Ricci_calculus&amp;oldid=1255956512" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Ricci_calculus&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Ricci_calculus&amp;id=1255956512&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRicci_calculus"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRicci_calculus"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Ricci_calculus&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Ricci_calculus&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q7322955" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(Redirected from <a href="/w/index.php?title=Tensor_calculus&amp;redirect=no" class="mw-redirect" title="Tensor calculus">Tensor calculus</a>)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Tensor index notation for tensor-based calculations</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Tensor index notation" redirects here. For a summary of tensors in general, see <a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a>.</div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, <b>Ricci calculus</b> constitutes the rules of index notation and manipulation for <a href="/wiki/Tensors" class="mw-redirect" title="Tensors">tensors</a> and <a href="/wiki/Tensor_fields" class="mw-redirect" title="Tensor fields">tensor fields</a> on a <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifold</a>, with or without a <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a> or <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connection</a>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> It is also the modern name for what used to be called the <b>absolute differential calculus</b> (the foundation of <a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">tensor calculus</a>), <b>tensor calculus</b> or <b>tensor analysis</b> developed by <a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a> in 1887–1896, and subsequently popularized in a paper written with his pupil <a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a> in 1900.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a> developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to <a href="/wiki/General_relativity" title="General relativity">general relativity</a> and <a href="/wiki/Differential_geometry" title="Differential geometry">differential geometry</a> in the early twentieth century.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> The basis of modern tensor analysis was developed by <a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a> in his a paper from 1861.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p><p>A component of a tensor is a <a href="/wiki/Real_number" title="Real number">real number</a> that is used as a coefficient of a basis element for the tensor space. The tensor is the sum of its components multiplied by their corresponding basis elements. Tensors and tensor fields can be expressed in terms of their components, and operations on tensors and tensor fields can be expressed in terms of operations on their components. The description of tensor fields and operations on them in terms of their components is the focus of the Ricci calculus. This notation allows an efficient expression of such tensor fields and operations. While much of the notation may be applied with any tensors, operations relating to a <a href="/wiki/Differential_structure" title="Differential structure">differential structure</a> are only applicable to tensor fields. Where needed, the notation extends to components of non-tensors, particularly <a href="/wiki/Multidimensional_array" class="mw-redirect" title="Multidimensional array">multidimensional arrays</a>. </p><p>A tensor may be expressed as a linear sum of the <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> of <a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">vector</a> and <a href="/wiki/Covector" class="mw-redirect" title="Covector">covector</a> basis elements. The resulting tensor components are labelled by indices of the basis. Each index has one possible value per <a href="/wiki/Dimension" title="Dimension">dimension</a> of the underlying <a href="/wiki/Vector_space" title="Vector space">vector space</a>. The number of indices equals the degree (or order) of the tensor. </p><p>For compactness and convenience, the Ricci calculus incorporates <a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a>, which implies summation over indices repeated within a term and <a href="/wiki/Universal_quantification" title="Universal quantification">universal quantification</a> over free indices. Expressions in the notation of the Ricci calculus may generally be interpreted as a set of simultaneous equations relating the components as functions over a manifold, usually more specifically as functions of the coordinates on the manifold. This allows intuitive manipulation of expressions with familiarity of only a limited set of rules. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Applications">Applications</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=1" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tensor calculus has many applications in <a href="/wiki/Physics" title="Physics">physics</a>, <a href="/wiki/Engineering" title="Engineering">engineering</a> and <a href="/wiki/Computer_science" title="Computer science">computer science</a> including <a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">elasticity</a>, <a href="/wiki/Continuum_mechanics" title="Continuum mechanics">continuum mechanics</a>, <a href="/wiki/Electromagnetism" title="Electromagnetism">electromagnetism</a> (see <a href="/wiki/Mathematical_descriptions_of_the_electromagnetic_field" title="Mathematical descriptions of the electromagnetic field">mathematical descriptions of the electromagnetic field</a>), <a href="/wiki/General_relativity" title="General relativity">general relativity</a> (see <a href="/wiki/Mathematics_of_general_relativity" title="Mathematics of general relativity">mathematics of general relativity</a>), <a href="/wiki/Quantum_field_theory" title="Quantum field theory">quantum field theory</a>, and <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>. </p><p> Working with a main proponent of the <a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">exterior calculus</a> <a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a>, the influential geometer <a href="/wiki/Shiing-Shen_Chern" title="Shiing-Shen Chern">Shiing-Shen Chern</a> summarizes the role of tensor calculus:<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></p><blockquote><p>In our subject of differential geometry, where you talk about manifolds, one difficulty is that the geometry is described by coordinates, but the coordinates do not have meaning. They are allowed to undergo transformation. And in order to handle this kind of situation, an important tool is the so-called tensor analysis, or Ricci calculus, which was new to mathematicians. In mathematics you have a function, you write down the function, you calculate, or you add, or you multiply, or you can differentiate. You have something very concrete. In geometry the geometric situation is described by numbers, but you can change your numbers arbitrarily. So to handle this, you need the Ricci calculus.</p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Notation_for_indices">Notation for indices</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=2" title="Edit section: Notation for indices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Index_notation" title="Index notation">Index notation</a></div> <div class="mw-heading mw-heading3"><h3 id="Basis-related_distinctions">Basis-related distinctions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=3" title="Edit section: Basis-related distinctions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Space_and_time_coordinates">Space and time coordinates</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=4" title="Edit section: Space and time coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Where a distinction is to be made between the space-like basis elements and a time-like element in the four-dimensional spacetime of classical physics, this is conventionally done through indices as follows:<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>The lowercase <a href="/wiki/Latin_alphabet" title="Latin alphabet">Latin alphabet</a> <span class="texhtml"><i>a</i>, <i>b</i>, <i>c</i>, ...</span> is used to indicate restriction to 3-dimensional <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>, which take values 1, 2, 3 for the spatial components; and the time-like element, indicated by 0, is shown separately.</li> <li>The lowercase <a href="/wiki/Greek_alphabet" title="Greek alphabet">Greek alphabet</a> <span class="texhtml"><i>α</i>, <i>β</i>, <i>γ</i>, ...</span> is used for 4-dimensional <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>, which typically take values 0 for time components and 1, 2, 3 for the spatial components.</li></ul> <p>Some sources use 4 instead of 0 as the index value corresponding to time; in this article, 0 is used. Otherwise, in general mathematical contexts, any symbols can be used for the indices, generally running over all dimensions of the vector space. </p> <div class="mw-heading mw-heading4"><h4 id="Coordinate_and_index_notation">Coordinate and index notation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=5" title="Edit section: Coordinate and index notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The author(s) will usually make it clear whether a subscript is intended as an index or as a label. </p><p>For example, in 3-D Euclidean space and using <a href="/wiki/Cartesian_coordinates" class="mw-redirect" title="Cartesian coordinates">Cartesian coordinates</a>; the <a href="/wiki/Coordinate_vector" title="Coordinate vector">coordinate vector</a> <span class="texhtml"><b>A</b> = (<i>A</i><sub>1</sub>, <i>A</i><sub>2</sub>, <i>A</i><sub>3</sub>) = (<i>A</i><sub>x</sub>, <i>A</i><sub>y</sub>, <i>A</i><sub>z</sub>)</span> shows a direct correspondence between the subscripts 1, 2, 3 and the labels <span class="texhtml">x</span>, <span class="texhtml">y</span>, <span class="texhtml">z</span>. In the expression <span class="texhtml"><i>A<sub>i</sub></i></span>, <span class="texhtml"><i>i</i></span> is interpreted as an index ranging over the values 1, 2, 3, while the <span class="texhtml">x</span>, <span class="texhtml">y</span>, <span class="texhtml">z</span> subscripts are only labels, not variables. In the context of spacetime, the index value 0 conventionally corresponds to the label <span class="texhtml">t</span>. </p> <div class="mw-heading mw-heading4"><h4 id="Reference_to_basis">Reference to basis</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=6" title="Edit section: Reference to basis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Indices themselves may be <i>labelled</i> using <a href="/wiki/Diacritic" title="Diacritic">diacritic</a>-like symbols, such as a <a href="/wiki/Circumflex" title="Circumflex">hat</a> (ˆ), <a href="/wiki/Macron_(diacritic)" title="Macron (diacritic)">bar</a> (¯), <a href="/wiki/Tilde" title="Tilde">tilde</a> (˜), or prime (′) as in: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{\hat {\phi }}\,,Y_{\bar {\lambda }}\,,Z_{\tilde {\eta }}\,,T_{\mu '}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B7;<!-- η --></mi> <mo stretchy="false">&#x007E;<!-- ~ --></mo> </mover> </mrow> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2032;</mo> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{\hat {\phi }}\,,Y_{\bar {\lambda }}\,,Z_{\tilde {\eta }}\,,T_{\mu '}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d7b71e8e0a2f211ca902dbfd24225b85dd3e9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:15.947ex; height:3.343ex;" alt="{\displaystyle X_{\hat {\phi }}\,,Y_{\bar {\lambda }}\,,Z_{\tilde {\eta }}\,,T_{\mu &#039;}}"></span></dd></dl> <p>to denote a possibly different <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a> for that index. An example is in <a href="/wiki/Lorentz_transformation" title="Lorentz transformation">Lorentz transformations</a> from one <a href="/wiki/Frame_of_reference" title="Frame of reference">frame of reference</a> to another, where one frame could be unprimed and the other primed, as in: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{\mu '}=v^{\nu }L_{\nu }{}^{\mu '}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2032;</mo> </msup> </mrow> </msup> <mo>=</mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>&#x03BC;<!-- μ --></mi> <mo>&#x2032;</mo> </msup> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{\mu '}=v^{\nu }L_{\nu }{}^{\mu '}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9531592a4c1f8c9f82f918f1fd62482f87969084" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.3ex; height:3.176ex;" alt="{\displaystyle v^{\mu &#039;}=v^{\nu }L_{\nu }{}^{\mu &#039;}.}"></span></dd></dl> <p>This is not to be confused with <a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">van der Waerden notation</a> for <a href="/wiki/Spinor" title="Spinor">spinors</a>, which uses hats and overdots on indices to reflect the chirality of a spinor. </p> <div class="mw-heading mw-heading3"><h3 id="Upper_and_lower_indices">Upper and lower indices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=7" title="Edit section: Upper and lower indices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Ricci calculus, and <a href="/wiki/Abstract_index_notation" title="Abstract index notation">index notation</a> more generally, distinguishes between lower indices (subscripts) and upper indices (superscripts); the latter are <i>not</i> exponents, even though they may look as such to the reader only familiar with other parts of mathematics. </p><p>In the special case that the metric tensor is everywhere equal to the identity matrix, it is possible to drop the distinction between upper and lower indices, and then all indices could be written in the lower position. Coordinate formulae in linear algebra such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{ij}b_{jk}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{ij}b_{jk}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e83a68ed8b62f71b1b0d4823b7c0861de5e401b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.471ex; height:2.843ex;" alt="{\displaystyle a_{ij}b_{jk}}"></span> for the product of matrices may be examples of this. But in general, the distinction between upper and lower indices should be maintained. </p> <div class="mw-heading mw-heading4"><h4 id="Covariant_tensor_components"><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariant tensor components</a></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=8" title="Edit section: Covariant tensor components"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <i>lower index</i> (subscript) indicates covariance of the components with respect to that index: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha \beta \gamma \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha \beta \gamma \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1babea3ee94799d2f8126184c41788d43430d6e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.787ex; height:2.843ex;" alt="{\displaystyle A_{\alpha \beta \gamma \cdots }}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Contravariant_tensor_components"><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Contravariant tensor components</a></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=9" title="Edit section: Contravariant tensor components"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An <i>upper index</i> (superscript) indicates contravariance of the components with respect to that index: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha \beta \gamma \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha \beta \gamma \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3477a1ad78c8035b297b30f236be657f43968b4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.787ex; height:2.676ex;" alt="{\displaystyle A^{\alpha \beta \gamma \cdots }}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Mixed-variance_tensor_components"><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed-variance tensor components</a></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=10" title="Edit section: Mixed-variance tensor components"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A tensor may have both upper and lower indices: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha }{}^{\beta }{}_{\gamma }{}^{\delta \cdots }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha }{}^{\beta }{}_{\gamma }{}^{\delta \cdots }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4063d286b1c0bea0b5473f291abbb6b73192f72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.872ex; height:3.343ex;" alt="{\displaystyle A_{\alpha }{}^{\beta }{}_{\gamma }{}^{\delta \cdots }.}"></span></dd></dl> <p>Ordering of indices is significant, even when of differing variance. However, when it is understood that no indices will be raised or lowered while retaining the base symbol, covariant indices are sometimes placed below contravariant indices for notational convenience (e.g. with the <a href="/wiki/Generalized_Kronecker_delta" class="mw-redirect" title="Generalized Kronecker delta">generalized Kronecker delta</a>). </p> <div class="mw-heading mw-heading4"><h4 id="Tensor_type_and_degree">Tensor type and degree</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=11" title="Edit section: Tensor type and degree"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The number of each upper and lower indices of a tensor gives its <i>type</i>: a tensor with <span class="texhtml"><i>p</i></span> upper and <span class="texhtml"><i>q</i></span> lower indices is said to be of type <span class="texhtml">(<i>p</i>, <i>q</i>)</span>, or to be a type-<span class="texhtml">(<i>p</i>, <i>q</i>)</span> tensor. </p><p>The number of indices of a tensor, regardless of variance, is called the <i>degree</i> of the tensor (alternatively, its <i>valence</i>, <i>order</i> or <i>rank</i>, although <i>rank</i> is ambiguous). Thus, a tensor of type <span class="texhtml">(<i>p</i>, <i>q</i>)</span> has degree <span class="texhtml"><i>p</i> + <i>q</i></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Summation_convention"><a href="/wiki/Summation_convention" class="mw-redirect" title="Summation convention">Summation convention</a></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=12" title="Edit section: Summation convention"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The same symbol occurring twice (one upper and one lower) within a term indicates a pair of indices that are summed over: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha }B^{\alpha }\equiv \sum _{\alpha }A_{\alpha }B^{\alpha }\quad {\text{or}}\quad A^{\alpha }B_{\alpha }\equiv \sum _{\alpha }A^{\alpha }B_{\alpha }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>or</mtext> </mrow> <mspace width="1em" /> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha }B^{\alpha }\equiv \sum _{\alpha }A_{\alpha }B^{\alpha }\quad {\text{or}}\quad A^{\alpha }B_{\alpha }\equiv \sum _{\alpha }A^{\alpha }B_{\alpha }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70aa42f4d4ae0c60b985316d7315018a0402935a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:45.736ex; height:5.509ex;" alt="{\displaystyle A_{\alpha }B^{\alpha }\equiv \sum _{\alpha }A_{\alpha }B^{\alpha }\quad {\text{or}}\quad A^{\alpha }B_{\alpha }\equiv \sum _{\alpha }A^{\alpha }B_{\alpha }\,.}"></span></dd></dl> <p>The operation implied by such a summation is called <a href="/wiki/Tensor_contraction" title="Tensor contraction">tensor contraction</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha }B^{\beta }\rightarrow A_{\alpha }B^{\alpha }\equiv \sum _{\alpha }A_{\alpha }B^{\alpha }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha }B^{\beta }\rightarrow A_{\alpha }B^{\alpha }\equiv \sum _{\alpha }A_{\alpha }B^{\alpha }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a3e108fe153f5989462eb205ed8fd235c27856f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:29.605ex; height:5.509ex;" alt="{\displaystyle A_{\alpha }B^{\beta }\rightarrow A_{\alpha }B^{\alpha }\equiv \sum _{\alpha }A_{\alpha }B^{\alpha }\,.}"></span></dd></dl> <p>This summation may occur more than once within a term with a distinct symbol per pair of indices, for example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }\equiv \sum _{\alpha }\sum _{\gamma }A_{\alpha }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>&#x2261;<!-- ≡ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }\equiv \sum _{\alpha }\sum _{\gamma }A_{\alpha }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5e36b553f8fcbcb811afad6d65d34908fbda320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.939ex; height:5.843ex;" alt="{\displaystyle A_{\alpha }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }\equiv \sum _{\alpha }\sum _{\gamma }A_{\alpha }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }\,.}"></span></dd></dl> <p>Other combinations of repeated indices within a term are considered to be ill-formed, such as </p> <dl><dd><table> <tbody><tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha \alpha }{}^{\gamma }\qquad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <mspace width="2em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha \alpha }{}^{\gamma }\qquad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d7ea4e85eb95defc8d054e4e5f1e4305820a32a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.849ex; height:2.676ex;" alt="{\displaystyle A_{\alpha \alpha }{}^{\gamma }\qquad }"></span></td> <td>(both occurrences of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> are lower; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha }{}^{\alpha \gamma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha }{}^{\alpha \gamma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1b97067c1f2b441a08084f3f0f558984829e35d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.204ex; height:2.676ex;" alt="{\displaystyle A_{\alpha }{}^{\alpha \gamma }}"></span> would be fine) </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha \gamma }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha \gamma }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9aae670490fc210c43bac3e580ccd9d60e422b64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.054ex; height:3.343ex;" alt="{\displaystyle A_{\alpha \gamma }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }}"></span></td> <td>(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> occurs twice as a lower index; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha \gamma }{}^{\gamma }B^{\alpha }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha \gamma }{}^{\gamma }B^{\alpha }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48cf4f136965fbd67cd6c3719d61ecb100e7e76f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.093ex; height:3.009ex;" alt="{\displaystyle A_{\alpha \gamma }{}^{\gamma }B^{\alpha }}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha \delta }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha \delta }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d38ca3cdbc8d96eb1e6cacde27bce9858627d6e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.903ex; height:3.343ex;" alt="{\displaystyle A_{\alpha \delta }{}^{\gamma }B^{\alpha }C_{\gamma }{}^{\beta }}"></span> would be fine). </td></tr></tbody></table></dd></dl> <p>The reason for excluding such formulae is that although these quantities could be computed as arrays of numbers, they would not in general transform as tensors under a change of basis. </p> <div class="mw-heading mw-heading4"><h4 id="Multi-index_notation"><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=13" title="Edit section: Multi-index notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a tensor has a list of all upper or lower indices, one shorthand is to use a capital letter for the list:<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{i_{1}\cdots i_{n}}B^{i_{1}\cdots i_{n}j_{1}\cdots j_{m}}C_{j_{1}\cdots j_{m}}\equiv A_{I}B^{IJ}C_{J},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> <mi>J</mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>J</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{i_{1}\cdots i_{n}}B^{i_{1}\cdots i_{n}j_{1}\cdots j_{m}}C_{j_{1}\cdots j_{m}}\equiv A_{I}B^{IJ}C_{J},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc601536b8b79be6a4cad82fa131390978cec09c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.824ex; height:3.343ex;" alt="{\displaystyle A_{i_{1}\cdots i_{n}}B^{i_{1}\cdots i_{n}j_{1}\cdots j_{m}}C_{j_{1}\cdots j_{m}}\equiv A_{I}B^{IJ}C_{J},}"></span></dd></dl> <p>where <span class="texhtml"><i>I</i> = <i>i</i><sub>1</sub> <i>i</i><sub>2</sub> ⋅⋅⋅ <i>i<sub>n</sub></i></span> and <span class="texhtml"><i>J</i> = <i>j</i><sub>1</sub> <i>j</i><sub>2</sub> ⋅⋅⋅ <i>j<sub>m</sub></i></span>. </p> <div class="mw-heading mw-heading4"><h4 id="Sequential_summation">Sequential summation</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=14" title="Edit section: Sequential summation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A pair of vertical bars <span class="texhtml">| &#8901; |</span> around a set of all-upper indices or all-lower indices (but not both), associated with contraction with another set of indices when the expression is <a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">completely antisymmetric</a> in each of the two sets of indices:<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{|\alpha \beta \gamma |\cdots }B^{\alpha \beta \gamma \cdots }=A_{\alpha \beta \gamma \cdots }B^{|\alpha \beta \gamma |\cdots }=\sum _{\alpha &lt;\beta &lt;\gamma }A_{\alpha \beta \gamma \cdots }B^{\alpha \beta \gamma \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msup> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&lt;</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&lt;</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{|\alpha \beta \gamma |\cdots }B^{\alpha \beta \gamma \cdots }=A_{\alpha \beta \gamma \cdots }B^{|\alpha \beta \gamma |\cdots }=\sum _{\alpha &lt;\beta &lt;\gamma }A_{\alpha \beta \gamma \cdots }B^{\alpha \beta \gamma \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/400c1172bfeba2575be237bb6fbb2836fe483c43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:54.644ex; height:6.009ex;" alt="{\displaystyle A_{|\alpha \beta \gamma |\cdots }B^{\alpha \beta \gamma \cdots }=A_{\alpha \beta \gamma \cdots }B^{|\alpha \beta \gamma |\cdots }=\sum _{\alpha &lt;\beta &lt;\gamma }A_{\alpha \beta \gamma \cdots }B^{\alpha \beta \gamma \cdots }}"></span></dd></dl> <p>means a restricted sum over index values, where each index is constrained to being strictly less than the next. More than one group can be summed in this way, for example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;A_{|\alpha \beta \gamma |}{}^{|\delta \epsilon \cdots \lambda |}B^{\alpha \beta \gamma }{}_{\delta \epsilon \cdots \lambda |\mu \nu \cdots \zeta |}C^{\mu \nu \cdots \zeta }\\[3pt]={}&amp;\sum _{\alpha &lt;\beta &lt;\gamma }~\sum _{\delta &lt;\epsilon &lt;\cdots &lt;\lambda }~\sum _{\mu &lt;\nu &lt;\cdots &lt;\zeta }A_{\alpha \beta \gamma }{}^{\delta \epsilon \cdots \lambda }B^{\alpha \beta \gamma }{}_{\delta \epsilon \cdots \lambda \mu \nu \cdots \zeta }C^{\mu \nu \cdots \zeta }\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.6em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi></mi> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>&lt;</mo> <mi>&#x03B2;<!-- β --></mi> <mo>&lt;</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </munder> <mtext>&#xA0;</mtext> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mo>&lt;</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </munder> <mtext>&#xA0;</mtext> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mo>&lt;</mo> <mi>&#x03BD;<!-- ν --></mi> <mo>&lt;</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&lt;</mo> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </msub> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03B6;<!-- ζ --></mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;A_{|\alpha \beta \gamma |}{}^{|\delta \epsilon \cdots \lambda |}B^{\alpha \beta \gamma }{}_{\delta \epsilon \cdots \lambda |\mu \nu \cdots \zeta |}C^{\mu \nu \cdots \zeta }\\[3pt]={}&amp;\sum _{\alpha &lt;\beta &lt;\gamma }~\sum _{\delta &lt;\epsilon &lt;\cdots &lt;\lambda }~\sum _{\mu &lt;\nu &lt;\cdots &lt;\zeta }A_{\alpha \beta \gamma }{}^{\delta \epsilon \cdots \lambda }B^{\alpha \beta \gamma }{}_{\delta \epsilon \cdots \lambda \mu \nu \cdots \zeta }C^{\mu \nu \cdots \zeta }\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8147a102c1e44f90d4fc7d00507d039ec893e687" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:58.608ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}&amp;A_{|\alpha \beta \gamma |}{}^{|\delta \epsilon \cdots \lambda |}B^{\alpha \beta \gamma }{}_{\delta \epsilon \cdots \lambda |\mu \nu \cdots \zeta |}C^{\mu \nu \cdots \zeta }\\[3pt]={}&amp;\sum _{\alpha &lt;\beta &lt;\gamma }~\sum _{\delta &lt;\epsilon &lt;\cdots &lt;\lambda }~\sum _{\mu &lt;\nu &lt;\cdots &lt;\zeta }A_{\alpha \beta \gamma }{}^{\delta \epsilon \cdots \lambda }B^{\alpha \beta \gamma }{}_{\delta \epsilon \cdots \lambda \mu \nu \cdots \zeta }C^{\mu \nu \cdots \zeta }\end{aligned}}}"></span></dd></dl> <p>When using multi-index notation, an underarrow is placed underneath the block of indices:<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\underset {\rightharpoondown }{P}}{}^{\underset {\rightharpoondown }{Q}}B^{P}{}_{Q{\underset {\rightharpoondown }{R}}}C^{R}=\sum _{\underset {\rightharpoondown }{P}}\sum _{\underset {\rightharpoondown }{Q}}\sum _{\underset {\rightharpoondown }{R}}A_{P}{}^{Q}B^{P}{}_{QR}C^{R}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>P</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>Q</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>R</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> </mrow> </msub> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>P</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>Q</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> </munder> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>R</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> </mrow> </msup> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Q</mi> <mi>R</mi> </mrow> </msub> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>R</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\underset {\rightharpoondown }{P}}{}^{\underset {\rightharpoondown }{Q}}B^{P}{}_{Q{\underset {\rightharpoondown }{R}}}C^{R}=\sum _{\underset {\rightharpoondown }{P}}\sum _{\underset {\rightharpoondown }{Q}}\sum _{\underset {\rightharpoondown }{R}}A_{P}{}^{Q}B^{P}{}_{QR}C^{R}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb1fc534ca3c2589ea80ce6b8dfa7e5a3d0c19aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:43.414ex; height:6.843ex;" alt="{\displaystyle A_{\underset {\rightharpoondown }{P}}{}^{\underset {\rightharpoondown }{Q}}B^{P}{}_{Q{\underset {\rightharpoondown }{R}}}C^{R}=\sum _{\underset {\rightharpoondown }{P}}\sum _{\underset {\rightharpoondown }{Q}}\sum _{\underset {\rightharpoondown }{R}}A_{P}{}^{Q}B^{P}{}_{QR}C^{R}}"></span></dd></dl> <p>where </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\underset {\rightharpoondown }{P}}=|\alpha \beta \gamma |\,,\quad {\underset {\rightharpoondown }{Q}}=|\delta \epsilon \cdots \lambda |\,,\quad {\underset {\rightharpoondown }{R}}=|\mu \nu \cdots \zeta |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>P</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>Q</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi>R</mi> <mo stretchy="false">&#x21C1;<!-- ⇁ --></mo> </munder> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mi>&#x03B6;<!-- ζ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\underset {\rightharpoondown }{P}}=|\alpha \beta \gamma |\,,\quad {\underset {\rightharpoondown }{Q}}=|\delta \epsilon \cdots \lambda |\,,\quad {\underset {\rightharpoondown }{R}}=|\mu \nu \cdots \zeta |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8108aa73020edce1c9f915cb74516fa7a088fd8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; margin-left: -0.033ex; width:45.657ex; height:3.843ex;" alt="{\displaystyle {\underset {\rightharpoondown }{P}}=|\alpha \beta \gamma |\,,\quad {\underset {\rightharpoondown }{Q}}=|\delta \epsilon \cdots \lambda |\,,\quad {\underset {\rightharpoondown }{R}}=|\mu \nu \cdots \zeta |}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Raising_and_lowering_indices"><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=15" title="Edit section: Raising and lowering indices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>By contracting an index with a non-singular <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a>, the <a href="/wiki/Mixed_tensor" title="Mixed tensor">type</a> of a tensor can be changed, converting a lower index to an upper index or vice versa: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B^{\gamma }{}_{\beta \cdots }=g^{\gamma \alpha }A_{\alpha \beta \cdots }\quad {\text{and}}\quad A_{\alpha \beta \cdots }=g_{\alpha \gamma }B^{\gamma }{}_{\beta \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>=</mo> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B^{\gamma }{}_{\beta \cdots }=g^{\gamma \alpha }A_{\alpha \beta \cdots }\quad {\text{and}}\quad A_{\alpha \beta \cdots }=g_{\alpha \gamma }B^{\gamma }{}_{\beta \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db9ddafe12943f4d1b6947a74d80c1da87cca61e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:44.937ex; height:3.009ex;" alt="{\displaystyle B^{\gamma }{}_{\beta \cdots }=g^{\gamma \alpha }A_{\alpha \beta \cdots }\quad {\text{and}}\quad A_{\alpha \beta \cdots }=g_{\alpha \gamma }B^{\gamma }{}_{\beta \cdots }}"></span></dd></dl> <p>The base symbol in many cases is retained (e.g. using <span class="texhtml"><i>A</i></span> where <span class="texhtml"><i>B</i></span> appears here), and when there is no ambiguity, repositioning an index may be taken to imply this operation. </p> <div class="mw-heading mw-heading3"><h3 id="Correlations_between_index_positions_and_invariance">Correlations between index positions and invariance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=16" title="Edit section: Correlations between index positions and invariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>This table summarizes how the manipulation of covariant and contravariant indices fit in with invariance under a <a href="/wiki/Passive_transformation" class="mw-redirect" title="Passive transformation">passive transformation</a> between bases, with the components of each basis set in terms of the other reflected in the first column. The barred indices refer to the final coordinate system after the transformation.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p><p>The <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a> is used, <a href="#Notable_tensors">see also below</a>. </p> <dl><dd><table class="wikitable"> <tbody><tr> <th> </th> <th>Basis transformation </th> <th>Component transformation </th> <th>Invariance </th></tr> <tr> <th>Covector, covariant vector, 1-form </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega ^{\bar {\alpha }}=L_{\beta }{}^{\bar {\alpha }}\omega ^{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <mo>=</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega ^{\bar {\alpha }}=L_{\beta }{}^{\bar {\alpha }}\omega ^{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9243095e4582cc978639591c39ca1791becda181" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.49ex; height:3.509ex;" alt="{\displaystyle \omega ^{\bar {\alpha }}=L_{\beta }{}^{\bar {\alpha }}\omega ^{\beta }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\bar {\alpha }}=a_{\gamma }L^{\gamma }{}_{\bar {\alpha }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\bar {\alpha }}=a_{\gamma }L^{\gamma }{}_{\bar {\alpha }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40360bdf7926b0ae7bd39e3d4e889593e71d967b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.959ex; height:3.009ex;" alt="{\displaystyle a_{\bar {\alpha }}=a_{\gamma }L^{\gamma }{}_{\bar {\alpha }}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{\bar {\alpha }}\omega ^{\bar {\alpha }}=a_{\gamma }L^{\gamma }{}_{\bar {\alpha }}L_{\beta }{}^{\bar {\alpha }}\omega ^{\beta }=a_{\gamma }\delta ^{\gamma }{}_{\beta }\omega ^{\beta }=a_{\beta }\omega ^{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>&#x03C9;<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{\bar {\alpha }}\omega ^{\bar {\alpha }}=a_{\gamma }L^{\gamma }{}_{\bar {\alpha }}L_{\beta }{}^{\bar {\alpha }}\omega ^{\beta }=a_{\gamma }\delta ^{\gamma }{}_{\beta }\omega ^{\beta }=a_{\beta }\omega ^{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67dd6a10f2a9ac093f6319d45456834f91aef6fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.898ex; height:3.509ex;" alt="{\displaystyle a_{\bar {\alpha }}\omega ^{\bar {\alpha }}=a_{\gamma }L^{\gamma }{}_{\bar {\alpha }}L_{\beta }{}^{\bar {\alpha }}\omega ^{\beta }=a_{\gamma }\delta ^{\gamma }{}_{\beta }\omega ^{\beta }=a_{\beta }\omega ^{\beta }}"></span> </td></tr> <tr> <th>Vector, contravariant vector </th> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{\bar {\alpha }}=e_{\gamma }L_{\bar {\alpha }}{}^{\gamma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{\bar {\alpha }}=e_{\gamma }L_{\bar {\alpha }}{}^{\gamma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c30650f3788e788a13fc1f7f6ed4ac2fc1549aa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.666ex; height:3.009ex;" alt="{\displaystyle e_{\bar {\alpha }}=e_{\gamma }L_{\bar {\alpha }}{}^{\gamma }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u^{\bar {\alpha }}=L^{\bar {\alpha }}{}_{\beta }u^{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <mo>=</mo> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u^{\bar {\alpha }}=L^{\bar {\alpha }}{}_{\beta }u^{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f7b259e406c445d0f4985fe12b4aa283dbc6f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.257ex; height:3.509ex;" alt="{\displaystyle u^{\bar {\alpha }}=L^{\bar {\alpha }}{}_{\beta }u^{\beta }}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e_{\bar {\alpha }}u^{\bar {\alpha }}=e_{\gamma }L_{\bar {\alpha }}{}^{\gamma }L^{\bar {\alpha }}{}_{\beta }u^{\beta }=e_{\gamma }\delta ^{\gamma }{}_{\beta }u^{\beta }=e_{\gamma }u^{\gamma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>&#x03B1;<!-- α --></mi> <mo stretchy="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e_{\bar {\alpha }}u^{\bar {\alpha }}=e_{\gamma }L_{\bar {\alpha }}{}^{\gamma }L^{\bar {\alpha }}{}_{\beta }u^{\beta }=e_{\gamma }\delta ^{\gamma }{}_{\beta }u^{\beta }=e_{\gamma }u^{\gamma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8e0c77d91e903fb974e7c6a702f96875e37c11f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.75ex; height:3.509ex;" alt="{\displaystyle e_{\bar {\alpha }}u^{\bar {\alpha }}=e_{\gamma }L_{\bar {\alpha }}{}^{\gamma }L^{\bar {\alpha }}{}_{\beta }u^{\beta }=e_{\gamma }\delta ^{\gamma }{}_{\beta }u^{\beta }=e_{\gamma }u^{\gamma }}"></span> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading2"><h2 id="General_outlines_for_index_notation_and_operations">General outlines for index notation and operations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=17" title="Edit section: General outlines for index notation and operations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Tensors are equal <a href="/wiki/If_and_only_if" title="If and only if">if and only if</a> every corresponding component is equal; e.g., tensor <span class="texhtml"><i>A</i></span> equals tensor <span class="texhtml"><i>B</i></span> if and only if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha }{}_{\beta \gamma }=B^{\alpha }{}_{\beta \gamma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha }{}_{\beta \gamma }=B^{\alpha }{}_{\beta \gamma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1347f27ad3f717d458dbf326822ba0ea17af2d9a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.307ex; height:3.009ex;" alt="{\displaystyle A^{\alpha }{}_{\beta \gamma }=B^{\alpha }{}_{\beta \gamma }}"></span></dd></dl> <p>for all <span class="texhtml"><i>α</i>, <i>β</i>, <i>γ</i></span>. Consequently, there are facets of the notation that are useful in checking that an equation makes sense (an analogous procedure to <a href="/wiki/Dimensional_analysis" title="Dimensional analysis">dimensional analysis</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Free_and_dummy_indices"><a href="/wiki/Einstein_notation#Introduction" title="Einstein notation">Free and dummy indices</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=18" title="Edit section: Free and dummy indices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Indices not involved in contractions are called <i>free indices</i>. Indices used in contractions are termed <i>dummy indices</i>, or <i>summation indices</i>. </p> <div class="mw-heading mw-heading3"><h3 id="A_tensor_equation_represents_many_ordinary_(real-valued)_equations"><span id="A_tensor_equation_represents_many_ordinary_.28real-valued.29_equations"></span>A tensor equation represents many ordinary (real-valued) equations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=19" title="Edit section: A tensor equation represents many ordinary (real-valued) equations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The components of tensors (like <span class="texhtml"><i>A<sup>α</sup></i></span>, <span class="texhtml"><i>B<sub>β</sub><sup>γ</sup></i></span> etc.) are just real numbers. Since the indices take various integer values to select specific components of the tensors, a single tensor equation represents many ordinary equations. If a tensor equality has <span class="texhtml"><i>n</i></span> free indices, and if the dimensionality of the underlying vector space is <span class="texhtml"><i>m</i></span>, the equality represents <span class="texhtml"><i>m<sup>n</sup></i></span> equations: each index takes on every value of a specific set of values. </p><p>For instance, if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }=T^{\alpha }{}_{\beta }{}_{\delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }=T^{\alpha }{}_{\beta }{}_{\delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67679cf50bf310b7f95ba86f39046cbacd7fe10b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.781ex; height:3.009ex;" alt="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }=T^{\alpha }{}_{\beta }{}_{\delta }}"></span></dd></dl> <p>is in <a href="/wiki/Four-dimensional_space" title="Four-dimensional space">four dimensions</a> (that is, each index runs from 0 to 3 or from 1 to 4), then because there are three free indices (<span class="texhtml"><i>α</i>, <i>β</i>, <i>δ</i></span>), there are 4<sup>3</sup> = 64 equations. Three of these are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}A^{0}B_{1}{}^{0}C_{00}+A^{0}B_{1}{}^{1}C_{10}+A^{0}B_{1}{}^{2}C_{20}+A^{0}B_{1}{}^{3}C_{30}+D^{0}{}_{1}{}E_{0}&amp;=T^{0}{}_{1}{}_{0}\\A^{1}B_{0}{}^{0}C_{00}+A^{1}B_{0}{}^{1}C_{10}+A^{1}B_{0}{}^{2}C_{20}+A^{1}B_{0}{}^{3}C_{30}+D^{1}{}_{0}{}E_{0}&amp;=T^{1}{}_{0}{}_{0}\\A^{1}B_{2}{}^{0}C_{02}+A^{1}B_{2}{}^{1}C_{12}+A^{1}B_{2}{}^{2}C_{22}+A^{1}B_{2}{}^{3}C_{32}+D^{1}{}_{2}{}E_{2}&amp;=T^{1}{}_{2}{}_{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>20</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>30</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>02</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>12</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>22</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>32</mn> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}A^{0}B_{1}{}^{0}C_{00}+A^{0}B_{1}{}^{1}C_{10}+A^{0}B_{1}{}^{2}C_{20}+A^{0}B_{1}{}^{3}C_{30}+D^{0}{}_{1}{}E_{0}&amp;=T^{0}{}_{1}{}_{0}\\A^{1}B_{0}{}^{0}C_{00}+A^{1}B_{0}{}^{1}C_{10}+A^{1}B_{0}{}^{2}C_{20}+A^{1}B_{0}{}^{3}C_{30}+D^{1}{}_{0}{}E_{0}&amp;=T^{1}{}_{0}{}_{0}\\A^{1}B_{2}{}^{0}C_{02}+A^{1}B_{2}{}^{1}C_{12}+A^{1}B_{2}{}^{2}C_{22}+A^{1}B_{2}{}^{3}C_{32}+D^{1}{}_{2}{}E_{2}&amp;=T^{1}{}_{2}{}_{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abcec97cacb5a4f893b81e9ae6818834c9a22252" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.171ex; width:68.375ex; height:9.509ex;" alt="{\displaystyle {\begin{aligned}A^{0}B_{1}{}^{0}C_{00}+A^{0}B_{1}{}^{1}C_{10}+A^{0}B_{1}{}^{2}C_{20}+A^{0}B_{1}{}^{3}C_{30}+D^{0}{}_{1}{}E_{0}&amp;=T^{0}{}_{1}{}_{0}\\A^{1}B_{0}{}^{0}C_{00}+A^{1}B_{0}{}^{1}C_{10}+A^{1}B_{0}{}^{2}C_{20}+A^{1}B_{0}{}^{3}C_{30}+D^{1}{}_{0}{}E_{0}&amp;=T^{1}{}_{0}{}_{0}\\A^{1}B_{2}{}^{0}C_{02}+A^{1}B_{2}{}^{1}C_{12}+A^{1}B_{2}{}^{2}C_{22}+A^{1}B_{2}{}^{3}C_{32}+D^{1}{}_{2}{}E_{2}&amp;=T^{1}{}_{2}{}_{2}.\end{aligned}}}"></span></dd></dl> <p>This illustrates the compactness and efficiency of using index notation: many equations which all share a similar structure can be collected into one simple tensor equation. </p> <div class="mw-heading mw-heading3"><h3 id="Indices_are_replaceable_labels">Indices are replaceable labels</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=20" title="Edit section: Indices are replaceable labels"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Replacing any index symbol throughout by another leaves the tensor equation unchanged (provided there is no conflict with other symbols already used). This can be useful when manipulating indices, such as using index notation to verify <a href="/wiki/Vector_calculus_identities" title="Vector calculus identities">vector calculus identities</a> or identities of the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a> and <a href="/wiki/Levi-Civita_symbol#Properties" title="Levi-Civita symbol">Levi-Civita symbol</a> (see also below). An example of a correct change is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\rightarrow A^{\lambda }B_{\beta }{}^{\mu }C_{\mu \delta }+D^{\lambda }{}_{\beta }{}E_{\delta }\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\rightarrow A^{\lambda }B_{\beta }{}^{\mu }C_{\mu \delta }+D^{\lambda }{}_{\beta }{}E_{\delta }\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6695460fbd579d937bf76b8d32e8fbf7ebf2d630" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.719ex; height:3.343ex;" alt="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\rightarrow A^{\lambda }B_{\beta }{}^{\mu }C_{\mu \delta }+D^{\lambda }{}_{\beta }{}E_{\delta }\,,}"></span></dd></dl> <p>whereas an erroneous change is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\nrightarrow A^{\lambda }B_{\beta }{}^{\gamma }C_{\mu \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>&#x219B;<!-- ↛ --></mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\nrightarrow A^{\lambda }B_{\beta }{}^{\gamma }C_{\mu \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/102a4bae4102a8ed0d61eaced13e0146465f103c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.714ex; height:3.343ex;" alt="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\nrightarrow A^{\lambda }B_{\beta }{}^{\gamma }C_{\mu \delta }+D^{\alpha }{}_{\beta }{}E_{\delta }\,.}"></span></dd></dl> <p>In the first replacement, <span class="texhtml"><i>λ</i></span> replaced <span class="texhtml"><i>α</i></span> and <span class="texhtml"><i>μ</i></span> replaced <span class="texhtml"><i>γ</i></span> <i>everywhere</i>, so the expression still has the same meaning. In the second, <span class="texhtml"><i>λ</i></span> did not fully replace <span class="texhtml"><i>α</i></span>, and <span class="texhtml"><i>μ</i></span> did not fully replace <span class="texhtml"><i>γ</i></span> (incidentally, the contraction on the <span class="texhtml"><i>γ</i></span> index became a tensor product), which is entirely inconsistent for reasons shown next. </p> <div class="mw-heading mw-heading3"><h3 id="Indices_are_the_same_in_every_term">Indices are the same in every term</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=21" title="Edit section: Indices are the same in every term"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The free indices in a tensor expression always appear in the same (upper or lower) position throughout every term, and in a tensor equation the free indices are the same on each side. Dummy indices (which implies a summation over that index) need not be the same, for example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\delta }E_{\beta }=T^{\alpha }{}_{\beta }{}_{\delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\delta }E_{\beta }=T^{\alpha }{}_{\beta }{}_{\delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3bf681a1b966d47e87b5996d98812c1a90f10197" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.781ex; height:3.009ex;" alt="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D^{\alpha }{}_{\delta }E_{\beta }=T^{\alpha }{}_{\beta }{}_{\delta }}"></span></dd></dl> <p>as for an erroneous expression: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D_{\alpha }{}_{\beta }{}^{\gamma }E^{\delta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D_{\alpha }{}_{\beta }{}^{\gamma }E^{\delta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f83dc742b7ad539824026d36300e51d2f75eb658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.381ex; height:3.343ex;" alt="{\displaystyle A^{\alpha }B_{\beta }{}^{\gamma }C_{\gamma \delta }+D_{\alpha }{}_{\beta }{}^{\gamma }E^{\delta }.}"></span></dd></dl> <p>In other words, non-repeated indices must be of the same type in every term of the equation. In the above identity, <span class="texhtml"><i>α</i>, <i>β</i>, <i>δ</i></span> line up throughout and <span class="texhtml"><i>γ</i></span> occurs twice in one term due to a contraction (once as an upper index and once as a lower index), and thus it is a valid expression. In the invalid expression, while <span class="texhtml"><i>β</i></span> lines up, <span class="texhtml"><i>α</i></span> and <span class="texhtml"><i>δ</i></span> do not, and <span class="texhtml"><i>γ</i></span> appears twice in one term (contraction) <i>and</i> once in another term, which is inconsistent. </p> <div class="mw-heading mw-heading3"><h3 id="Brackets_and_punctuation_used_once_where_implied">Brackets and punctuation used once where implied</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=22" title="Edit section: Brackets and punctuation used once where implied"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When applying a rule to a number of indices (differentiation, symmetrization etc., shown next), the bracket or punctuation symbols denoting the rules are only shown on one group of the indices to which they apply. </p><p>If the brackets enclose <i>covariant indices</i> – the rule applies only to <i>all covariant indices enclosed in the brackets</i>, not to any contravariant indices which happen to be placed intermediately between the brackets. </p><p>Similarly if brackets enclose <i>contravariant indices</i> – the rule applies only to <i>all enclosed contravariant indices</i>, not to intermediately placed covariant indices. </p> <div class="mw-heading mw-heading2"><h2 id="Symmetric_and_antisymmetric_parts">Symmetric and antisymmetric parts</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=23" title="Edit section: Symmetric and antisymmetric parts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Symmetric_part_of_tensor"><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric</a> part of tensor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=24" title="Edit section: Symmetric part of tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Bracket#Parentheses" title="Bracket">Parentheses, (&#160;)</a>, around multiple indices denotes the symmetrized part of the tensor. When symmetrizing <span class="texhtml"><i>p</i></span> indices using <span class="texhtml"><i>σ</i></span> to range over permutations of the numbers 1 to <span class="texhtml"><i>p</i></span>, one takes a sum over the <a href="/wiki/Permutation" title="Permutation">permutations</a> of those indices <span class="texhtml"><i>α</i><sub><i>σ</i>(<i>i</i>)</sub></span> for <span class="texhtml"><i>i</i> = 1, 2, 3, ..., <i>p</i></span>, and then divides by the number of permutations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{(\alpha _{1}\alpha _{2}\cdots \alpha _{p})\alpha _{p+1}\cdots \alpha _{q}}={\dfrac {1}{p!}}\sum _{\sigma }A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mi>p</mi> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </munder> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{(\alpha _{1}\alpha _{2}\cdots \alpha _{p})\alpha _{p+1}\cdots \alpha _{q}}={\dfrac {1}{p!}}\sum _{\sigma }A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1921f3053c5b9dfc3a4094cd441de6f996a51d67" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.722ex; height:6.343ex;" alt="{\displaystyle A_{(\alpha _{1}\alpha _{2}\cdots \alpha _{p})\alpha _{p+1}\cdots \alpha _{q}}={\dfrac {1}{p!}}\sum _{\sigma }A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\,.}"></span></dd></dl> <p>For example, two symmetrizing indices mean there are two indices to permute and sum over: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{(\alpha \beta )\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }+A_{\beta \alpha \gamma \cdots }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{(\alpha \beta )\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }+A_{\beta \alpha \gamma \cdots }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4def7d4f14408ffde9b0a964dc3e9a52f2eb638a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.422ex; height:5.343ex;" alt="{\displaystyle A_{(\alpha \beta )\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }+A_{\beta \alpha \gamma \cdots }\right)}"></span></dd></dl> <p>while for three symmetrizing indices, there are three indices to sum over and permute: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{(\alpha \beta \gamma )\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }+A_{\alpha \gamma \beta \delta \cdots }+A_{\gamma \beta \alpha \delta \cdots }+A_{\beta \alpha \gamma \delta \cdots }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{(\alpha \beta \gamma )\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }+A_{\alpha \gamma \beta \delta \cdots }+A_{\gamma \beta \alpha \delta \cdots }+A_{\beta \alpha \gamma \delta \cdots }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6fbd68033f6e8a2295a841344c8b1dbda54331f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:76.444ex; height:5.343ex;" alt="{\displaystyle A_{(\alpha \beta \gamma )\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }+A_{\alpha \gamma \beta \delta \cdots }+A_{\gamma \beta \alpha \delta \cdots }+A_{\beta \alpha \gamma \delta \cdots }\right)}"></span></dd></dl> <p>The symmetrization is <a href="/wiki/Distributive_property" title="Distributive property">distributive</a> over addition; </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{(\alpha }\left(B_{\beta )\gamma \cdots }+C_{\beta )\gamma \cdots }\right)=A_{(\alpha }B_{\beta )\gamma \cdots }+A_{(\alpha }C_{\beta )\gamma \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{(\alpha }\left(B_{\beta )\gamma \cdots }+C_{\beta )\gamma \cdots }\right)=A_{(\alpha }B_{\beta )\gamma \cdots }+A_{(\alpha }C_{\beta )\gamma \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3a9517b75ed561d6c6f635b9fab0096732e783b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:47.677ex; height:3.343ex;" alt="{\displaystyle A_{(\alpha }\left(B_{\beta )\gamma \cdots }+C_{\beta )\gamma \cdots }\right)=A_{(\alpha }B_{\beta )\gamma \cdots }+A_{(\alpha }C_{\beta )\gamma \cdots }}"></span></dd></dl> <p>Indices are not part of the symmetrization when they are: </p> <ul><li>not on the same level, for example; <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{(\alpha }B^{\beta }{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }+A_{\gamma }B^{\beta }{}_{\alpha }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{(\alpha }B^{\beta }{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }+A_{\gamma }B^{\beta }{}_{\alpha }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de2acbe01e3c86afed50b5174a05b17998dc16f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.651ex; height:5.343ex;" alt="{\displaystyle A_{(\alpha }B^{\beta }{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }+A_{\gamma }B^{\beta }{}_{\alpha }\right)}"></span></dd></dl></li> <li>within the parentheses and between vertical bars (i.e. |⋅⋅⋅|), modifying the previous example; <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{(\alpha }B_{|\beta |}{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }+A_{\gamma }B_{\beta \alpha }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">)</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{(\alpha }B_{|\beta |}{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }+A_{\gamma }B_{\beta \alpha }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3a1b1d8bf35c92ec5a2bbb40b7e1e9e77f919bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.781ex; height:5.343ex;" alt="{\displaystyle A_{(\alpha }B_{|\beta |}{}_{\gamma )}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }+A_{\gamma }B_{\beta \alpha }\right)}"></span></dd></dl></li></ul> <p>Here the <span class="texhtml"><i>α</i></span> and <span class="texhtml"><i>γ</i></span> indices are symmetrized, <span class="texhtml"><i>β</i></span> is not. </p> <div class="mw-heading mw-heading3"><h3 id="Antisymmetric_or_alternating_part_of_tensor"><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric</a> or alternating part of tensor</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=25" title="Edit section: Antisymmetric or alternating part of tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Bracket#Square_brackets" title="Bracket">Square brackets, [&#160;]</a>, around multiple indices denotes the <i>anti</i>symmetrized part of the tensor. For <span class="texhtml"><i>p</i></span> antisymmetrizing indices – the sum over the permutations of those indices <span class="texhtml"><i>α</i><sub><i>σ</i>(<i>i</i>)</sub></span> multiplied by the <a href="/wiki/Signature_(permutation)" class="mw-redirect" title="Signature (permutation)">signature of the permutation</a> <span class="texhtml">sgn(<i>σ</i>)</span> is taken, then divided by the number of permutations: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&amp;A_{[\alpha _{1}\cdots \alpha _{p}]\alpha _{p+1}\cdots \alpha _{q}}\\[3pt]={}&amp;{\dfrac {1}{p!}}\sum _{\sigma }\operatorname {sgn}(\sigma )A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\\={}&amp;\delta _{\alpha _{1}\cdots \alpha _{p}}^{\beta _{1}\dots \beta _{p}}A_{\beta _{1}\cdots \beta _{p}\alpha _{p+1}\cdots \alpha _{q}}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.6em 0.3em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">]</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mi>p</mi> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </munder> <mi>sgn</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">)</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msubsup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&amp;A_{[\alpha _{1}\cdots \alpha _{p}]\alpha _{p+1}\cdots \alpha _{q}}\\[3pt]={}&amp;{\dfrac {1}{p!}}\sum _{\sigma }\operatorname {sgn}(\sigma )A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\\={}&amp;\delta _{\alpha _{1}\cdots \alpha _{p}}^{\beta _{1}\dots \beta _{p}}A_{\beta _{1}\cdots \beta _{p}\alpha _{p+1}\cdots \alpha _{q}}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d1ed3a3d65899f83cceb9f6cc97981f79e26ee8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:35.121ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}&amp;A_{[\alpha _{1}\cdots \alpha _{p}]\alpha _{p+1}\cdots \alpha _{q}}\\[3pt]={}&amp;{\dfrac {1}{p!}}\sum _{\sigma }\operatorname {sgn}(\sigma )A_{\alpha _{\sigma (1)}\cdots \alpha _{\sigma (p)}\alpha _{p+1}\cdots \alpha _{q}}\\={}&amp;\delta _{\alpha _{1}\cdots \alpha _{p}}^{\beta _{1}\dots \beta _{p}}A_{\beta _{1}\cdots \beta _{p}\alpha _{p+1}\cdots \alpha _{q}}\\\end{aligned}}}"></span></dd></dl> <p>where <span class="texhtml"><i>δ</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:0.8em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>β</i><sub>1</sub>⋅⋅⋅<i>β<sub>p</sub></i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>α</i><sub>1</sub>⋅⋅⋅<i>α<sub>p</sub></i></sub></span></span></span> is the <a href="/wiki/Generalized_Kronecker_delta" class="mw-redirect" title="Generalized Kronecker delta">generalized Kronecker delta</a> of degree <span class="texhtml">2<i>p</i></span>, with scaling as defined below. </p><p>For example, two antisymmetrizing indices imply: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{[\alpha \beta ]\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }-A_{\beta \alpha \gamma \cdots }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">]</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{[\alpha \beta ]\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }-A_{\beta \alpha \gamma \cdots }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fef2be00b1aa41e860f5f8702aca3b7d5367c2ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:32.058ex; height:5.343ex;" alt="{\displaystyle A_{[\alpha \beta ]\gamma \cdots }={\dfrac {1}{2!}}\left(A_{\alpha \beta \gamma \cdots }-A_{\beta \alpha \gamma \cdots }\right)}"></span></dd></dl> <p>while three antisymmetrizing indices imply: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{[\alpha \beta \gamma ]\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }-A_{\alpha \gamma \beta \delta \cdots }-A_{\gamma \beta \alpha \delta \cdots }-A_{\beta \alpha \gamma \delta \cdots }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">]</mo> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{[\alpha \beta \gamma ]\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }-A_{\alpha \gamma \beta \delta \cdots }-A_{\gamma \beta \alpha \delta \cdots }-A_{\beta \alpha \gamma \delta \cdots }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bed48763fa258288b5223bfca013c8077b73c1cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:76.08ex; height:5.343ex;" alt="{\displaystyle A_{[\alpha \beta \gamma ]\delta \cdots }={\dfrac {1}{3!}}\left(A_{\alpha \beta \gamma \delta \cdots }+A_{\gamma \alpha \beta \delta \cdots }+A_{\beta \gamma \alpha \delta \cdots }-A_{\alpha \gamma \beta \delta \cdots }-A_{\gamma \beta \alpha \delta \cdots }-A_{\beta \alpha \gamma \delta \cdots }\right)}"></span></dd></dl> <p>as for a more specific example, if <span class="texhtml"><i>F</i></span> represents the <a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">electromagnetic tensor</a>, then the equation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0=F_{[\alpha \beta ,\gamma ]}={\dfrac {1}{3!}}\left(F_{\alpha \beta ,\gamma }+F_{\gamma \alpha ,\beta }+F_{\beta \gamma ,\alpha }-F_{\beta \alpha ,\gamma }-F_{\alpha \gamma ,\beta }-F_{\gamma \beta ,\alpha }\right)\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> <mo>=</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0=F_{[\alpha \beta ,\gamma ]}={\dfrac {1}{3!}}\left(F_{\alpha \beta ,\gamma }+F_{\gamma \alpha ,\beta }+F_{\beta \gamma ,\alpha }-F_{\beta \alpha ,\gamma }-F_{\alpha \gamma ,\beta }-F_{\gamma \beta ,\alpha }\right)\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b0ed84d31ca18fe3439603344b790da0d240dd4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:63.199ex; height:5.343ex;" alt="{\displaystyle 0=F_{[\alpha \beta ,\gamma ]}={\dfrac {1}{3!}}\left(F_{\alpha \beta ,\gamma }+F_{\gamma \alpha ,\beta }+F_{\beta \gamma ,\alpha }-F_{\beta \alpha ,\gamma }-F_{\alpha \gamma ,\beta }-F_{\gamma \beta ,\alpha }\right)\,}"></span></dd></dl> <p>represents <a href="/wiki/Gauss%27s_law_for_magnetism" title="Gauss&#39;s law for magnetism">Gauss's law for magnetism</a> and <a href="/wiki/Faraday%27s_law_of_induction" title="Faraday&#39;s law of induction">Faraday's law of induction</a>. </p><p>As before, the antisymmetrization is distributive over addition; </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{[\alpha }\left(B_{\beta ]\gamma \cdots }+C_{\beta ]\gamma \cdots }\right)=A_{[\alpha }B_{\beta ]\gamma \cdots }+A_{[\alpha }C_{\beta ]\gamma \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">]</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">]</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">]</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">]</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{[\alpha }\left(B_{\beta ]\gamma \cdots }+C_{\beta ]\gamma \cdots }\right)=A_{[\alpha }B_{\beta ]\gamma \cdots }+A_{[\alpha }C_{\beta ]\gamma \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36bebf226cf448c16e018ba4c4be7d3c23e8c1d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:46.401ex; height:3.343ex;" alt="{\displaystyle A_{[\alpha }\left(B_{\beta ]\gamma \cdots }+C_{\beta ]\gamma \cdots }\right)=A_{[\alpha }B_{\beta ]\gamma \cdots }+A_{[\alpha }C_{\beta ]\gamma \cdots }}"></span></dd></dl> <p>As with symmetrization, indices are not antisymmetrized when they are: </p> <ul><li>not on the same level, for example; <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{[\alpha }B^{\beta }{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }-A_{\gamma }B^{\beta }{}_{\alpha }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{[\alpha }B^{\beta }{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }-A_{\gamma }B^{\beta }{}_{\alpha }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4836ea3af90f4cfd3a577ba3aee7758824dc096" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.287ex; height:5.343ex;" alt="{\displaystyle A_{[\alpha }B^{\beta }{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B^{\beta }{}_{\gamma }-A_{\gamma }B^{\beta }{}_{\alpha }\right)}"></span></dd></dl></li> <li>within the square brackets and between vertical bars (i.e. |⋅⋅⋅|), modifying the previous example; <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{[\alpha }B_{|\beta |}{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }-A_{\gamma }B_{\beta \alpha }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{[\alpha }B_{|\beta |}{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }-A_{\gamma }B_{\beta \alpha }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca6e27819f5c787c31c829d21cefff2a45f1e3ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:33.416ex; height:5.343ex;" alt="{\displaystyle A_{[\alpha }B_{|\beta |}{}_{\gamma ]}={\dfrac {1}{2!}}\left(A_{\alpha }B_{\beta \gamma }-A_{\gamma }B_{\beta \alpha }\right)}"></span></dd></dl></li></ul> <p>Here the <span class="texhtml"><i>α</i></span> and <span class="texhtml"><i>γ</i></span> indices are antisymmetrized, <span class="texhtml"><i>β</i></span> is not. </p> <div class="mw-heading mw-heading3"><h3 id="Sum_of_symmetric_and_antisymmetric_parts">Sum of symmetric and antisymmetric parts</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=26" title="Edit section: Sum of symmetric and antisymmetric parts"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Any tensor can be written as the sum of its symmetric and antisymmetric parts on two indices: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha \beta \gamma \cdots }=A_{(\alpha \beta )\gamma \cdots }+A_{[\alpha \beta ]\gamma \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">)</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">]</mo> <mi>&#x03B3;<!-- γ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha \beta \gamma \cdots }=A_{(\alpha \beta )\gamma \cdots }+A_{[\alpha \beta ]\gamma \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c77f98f8ba96ab296be8245ee3b8655edb17f9e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:28.495ex; height:3.009ex;" alt="{\displaystyle A_{\alpha \beta \gamma \cdots }=A_{(\alpha \beta )\gamma \cdots }+A_{[\alpha \beta ]\gamma \cdots }}"></span></dd></dl> <p>as can be seen by adding the above expressions for <span class="texhtml"><i>A</i><sub>(<i>αβ</i>)<i>γ</i>⋅⋅⋅</sub></span> and <span class="texhtml"><i>A</i><sub>[<i>αβ</i>]<i>γ</i>⋅⋅⋅</sub></span>. This does not hold for other than two indices. </p> <div class="mw-heading mw-heading2"><h2 id="Differentiation">Differentiation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=27" title="Edit section: Differentiation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Four-gradient" title="Four-gradient">Four-gradient</a>, <a href="/wiki/D%27Alembertian" class="mw-redirect" title="D&#39;Alembertian">d'Alembertian</a>, and <a href="/wiki/Intrinsic_derivative" class="mw-redirect" title="Intrinsic derivative">Intrinsic derivative</a></div> <p>For compactness, derivatives may be indicated by adding indices after a comma or semicolon.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Partial_derivative"><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=28" title="Edit section: Partial derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While most of the expressions of the Ricci calculus are valid for arbitrary bases, the expressions involving partial derivatives of tensor components with respect to coordinates apply only with a <a href="/wiki/Coordinate_basis" class="mw-redirect" title="Coordinate basis">coordinate basis</a>: a basis that is defined through differentiation with respect to the coordinates. Coordinates are typically denoted by <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>μ</i></sup></span></span>, but do not in general form the components of a vector. In flat spacetime with linear coordinatization, a tuple of <i>differences</i> in coordinates, <span class="texhtml">Δ<i>x</i><span style="padding-left:0.12em;"><sup><i>μ</i></sup></span></span>, can be treated as a contravariant vector. With the same constraints on the space and on the choice of coordinate system, the partial derivatives with respect to the coordinates yield a result that is effectively covariant. Aside from use in this special case, the partial derivatives of components of tensors do not in general transform covariantly, but are useful in building expressions that are covariant, albeit still with a coordinate basis if the partial derivatives are explicitly used, as with the covariant, exterior and Lie derivatives below. </p><p>To indicate partial differentiation of the components of a tensor field with respect to a coordinate variable <span class="texhtml"><i>x</i><span style="padding-left:0.12em;"><sup><i>γ</i></sup></span></span>, a <i><a href="/wiki/Comma" title="Comma">comma</a></i> is placed before an appended lower index of the coordinate variable. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha \beta \cdots ,\gamma }={\dfrac {\partial }{\partial x^{\gamma }}}A_{\alpha \beta \cdots }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha \beta \cdots ,\gamma }={\dfrac {\partial }{\partial x^{\gamma }}}A_{\alpha \beta \cdots }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b63efa701ee57d909eca3aa31d3830f2a5ad2f55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.847ex; height:5.509ex;" alt="{\displaystyle A_{\alpha \beta \cdots ,\gamma }={\dfrac {\partial }{\partial x^{\gamma }}}A_{\alpha \beta \cdots }}"></span></dd></dl> <p>This may be repeated (without adding further commas): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha _{1}\alpha _{2}\cdots \alpha _{p}\,,\,\alpha _{p+1}\cdots \alpha _{q}}={\dfrac {\partial }{\partial x^{\alpha _{q}}}}\cdots {\dfrac {\partial }{\partial x^{\alpha _{p+2}}}}{\dfrac {\partial }{\partial x^{\alpha _{p+1}}}}A_{\alpha _{1}\alpha _{2}\cdots \alpha _{p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <mo>&#x22EF;<!-- ⋯ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </msup> </mrow> </mfrac> </mstyle> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha _{1}\alpha _{2}\cdots \alpha _{p}\,,\,\alpha _{p+1}\cdots \alpha _{q}}={\dfrac {\partial }{\partial x^{\alpha _{q}}}}\cdots {\dfrac {\partial }{\partial x^{\alpha _{p+2}}}}{\dfrac {\partial }{\partial x^{\alpha _{p+1}}}}A_{\alpha _{1}\alpha _{2}\cdots \alpha _{p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17f53a721623a4a3ddbf0d164ce2b94cb666f9a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:55.098ex; height:5.509ex;" alt="{\displaystyle A_{\alpha _{1}\alpha _{2}\cdots \alpha _{p}\,,\,\alpha _{p+1}\cdots \alpha _{q}}={\dfrac {\partial }{\partial x^{\alpha _{q}}}}\cdots {\dfrac {\partial }{\partial x^{\alpha _{p+2}}}}{\dfrac {\partial }{\partial x^{\alpha _{p+1}}}}A_{\alpha _{1}\alpha _{2}\cdots \alpha _{p}}.}"></span></dd></dl> <p>These components do <i>not</i> transform covariantly, unless the expression being differentiated is a scalar. This derivative is characterized by the <a href="/wiki/Product_rule" title="Product rule">product rule</a> and the derivatives of the coordinates </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{\alpha }{}_{,\gamma }=\delta _{\gamma }^{\alpha },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{\alpha }{}_{,\gamma }=\delta _{\gamma }^{\alpha },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebc66507054568a40df772a5802fb11052335369" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.279ex; height:3.009ex;" alt="{\displaystyle x^{\alpha }{}_{,\gamma }=\delta _{\gamma }^{\alpha },}"></span></dd></dl> <p>where <span class="texhtml"><i>δ</i></span> is the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Covariant_derivative"><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=29" title="Edit section: Covariant derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The covariant derivative is only defined if a <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connection</a> is defined. For any tensor field, a <i><a href="/wiki/Semicolon" title="Semicolon">semicolon</a></i> (<span class="texhtml">&#160;; </span>) placed before an appended lower (covariant) index indicates covariant differentiation. Less common alternatives to the semicolon include a <i><a href="/wiki/Slash_(punctuation)" title="Slash (punctuation)">forward slash</a></i> (<span class="texhtml"> / </span>)<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> or in three-dimensional curved space a single vertical bar (<span class="texhtml">&#160;|&#160;</span>).<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>The covariant derivative of a scalar function, a contravariant vector and a covariant vector are: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{;\beta }=f_{,\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{;\beta }=f_{,\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/451b7dd246ff7d71812c5982aeada009d110b57f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.64ex; height:2.843ex;" alt="{\displaystyle f_{;\beta }=f_{,\beta }}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{\alpha }{}_{;\beta }=A^{\alpha }{}_{,\beta }+\Gamma ^{\alpha }{}_{\gamma \beta }A^{\gamma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{\alpha }{}_{;\beta }=A^{\alpha }{}_{,\beta }+\Gamma ^{\alpha }{}_{\gamma \beta }A^{\gamma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e991bea1ccd05dc2c1608f58deb3e73a8bc8fe6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.928ex; height:3.009ex;" alt="{\displaystyle A^{\alpha }{}_{;\beta }=A^{\alpha }{}_{,\beta }+\Gamma ^{\alpha }{}_{\gamma \beta }A^{\gamma }}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\alpha ;\beta }=A_{\alpha ,\beta }-\Gamma ^{\gamma }{}_{\alpha \beta }A_{\gamma }\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>;</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\alpha ;\beta }=A_{\alpha ,\beta }-\Gamma ^{\gamma }{}_{\alpha \beta }A_{\gamma }\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3cbd0594dd68956d26487450bc9bbe6a77d36a8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.497ex; height:3.009ex;" alt="{\displaystyle A_{\alpha ;\beta }=A_{\alpha ,\beta }-\Gamma ^{\gamma }{}_{\alpha \beta }A_{\gamma }\,,}"></span></dd></dl> <p>where <span class="texhtml">Γ<i><sup>α</sup><sub>γβ</sub></i></span> are the connection coefficients. </p><p>For an arbitrary tensor:<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\gamma }&amp;\\=T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s},\gamma }&amp;+\,\Gamma ^{\alpha _{1}}{}_{\delta \gamma }T^{\delta \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}+\cdots +\Gamma ^{\alpha _{r}}{}_{\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\delta }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;-\,\Gamma ^{\delta }{}_{\beta _{1}\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\delta \beta _{2}\cdots \beta _{s}}-\cdots -\Gamma ^{\delta }{}_{\beta _{s}\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\delta }\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mtd> <mtd /> </mtr> <mtr> <mtd> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>+</mo> <mspace width="thinmathspace" /> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\gamma }&amp;\\=T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s},\gamma }&amp;+\,\Gamma ^{\alpha _{1}}{}_{\delta \gamma }T^{\delta \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}+\cdots +\Gamma ^{\alpha _{r}}{}_{\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\delta }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;-\,\Gamma ^{\delta }{}_{\beta _{1}\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\delta \beta _{2}\cdots \beta _{s}}-\cdots -\Gamma ^{\delta }{}_{\beta _{s}\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\delta }\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed190b0581f2ee5d90837d8cf6bfd954327ecc41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:70.654ex; height:10.509ex;" alt="{\displaystyle {\begin{aligned}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\gamma }&amp;\\=T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s},\gamma }&amp;+\,\Gamma ^{\alpha _{1}}{}_{\delta \gamma }T^{\delta \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}+\cdots +\Gamma ^{\alpha _{r}}{}_{\delta \gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\delta }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;-\,\Gamma ^{\delta }{}_{\beta _{1}\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\delta \beta _{2}\cdots \beta _{s}}-\cdots -\Gamma ^{\delta }{}_{\beta _{s}\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\delta }\,.\end{aligned}}}"></span></dd></dl> <p>An alternative notation for the covariant derivative of any tensor is the subscripted nabla symbol <span class="texhtml">∇<sub><i>β</i></sub></span>. For the case of a vector field <span class="texhtml"><i>A<sup>α</sup></i></span>:<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nabla _{\beta }A^{\alpha }=A^{\alpha }{}_{;\beta }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2207;<!-- ∇ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nabla _{\beta }A^{\alpha }=A^{\alpha }{}_{;\beta }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e83fe0b5ce22298ae3cf6ca15d3cf6f54b9fad6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:14.928ex; height:3.009ex;" alt="{\displaystyle \nabla _{\beta }A^{\alpha }=A^{\alpha }{}_{;\beta }\,.}"></span></dd></dl> <p>The covariant formulation of the <a href="/wiki/Directional_derivative" title="Directional derivative">directional derivative</a> of any tensor field along a vector <span class="texhtml"><i>v<sup>γ</sup></i></span> may be expressed as its contraction with the covariant derivative, e.g.: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{\gamma }A_{\alpha ;\gamma }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mo>;</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{\gamma }A_{\alpha ;\gamma }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89ad8a802177e47998545e7394cac007149a4857" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:7.664ex; height:3.009ex;" alt="{\displaystyle v^{\gamma }A_{\alpha ;\gamma }\,.}"></span></dd></dl> <p>The components of this derivative of a tensor field transform covariantly, and hence form another tensor field, despite subexpressions (the partial derivative and the connection coefficients) separately not transforming covariantly. </p><p>This derivative is characterized by the product rule: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (A^{\alpha }{}_{\beta \cdots }B^{\gamma }{}_{\delta \cdots })_{;\epsilon }=A^{\alpha }{}_{\beta \cdots ;\epsilon }B^{\gamma }{}_{\delta \cdots }+A^{\alpha }{}_{\beta \cdots }B^{\gamma }{}_{\delta \cdots ;\epsilon }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>;</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>;</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <mo>+</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> </mrow> </msub> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>;</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (A^{\alpha }{}_{\beta \cdots }B^{\gamma }{}_{\delta \cdots })_{;\epsilon }=A^{\alpha }{}_{\beta \cdots ;\epsilon }B^{\gamma }{}_{\delta \cdots }+A^{\alpha }{}_{\beta \cdots }B^{\gamma }{}_{\delta \cdots ;\epsilon }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ece0f3a884124b77e562288c47edc804e891ffa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:48.135ex; height:3.009ex;" alt="{\displaystyle (A^{\alpha }{}_{\beta \cdots }B^{\gamma }{}_{\delta \cdots })_{;\epsilon }=A^{\alpha }{}_{\beta \cdots ;\epsilon }B^{\gamma }{}_{\delta \cdots }+A^{\alpha }{}_{\beta \cdots }B^{\gamma }{}_{\delta \cdots ;\epsilon }\,.}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Connection_types">Connection types</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=30" title="Edit section: Connection types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A <a href="/wiki/Koszul_connection" class="mw-redirect" title="Koszul connection">Koszul connection</a> on the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a> of a <a href="/wiki/Differentiable_manifold" title="Differentiable manifold">differentiable manifold</a> is called an <a href="/wiki/Affine_connection" title="Affine connection">affine connection</a>. </p><p>A connection is a <a href="/wiki/Metric_connection" title="Metric connection">metric connection</a> when the covariant derivative of the metric tensor vanishes: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{\mu \nu ;\xi }=0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> <mo>;</mo> <mi>&#x03BE;<!-- ξ --></mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{\mu \nu ;\xi }=0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50e12fa29f0b0034072cde3086999e5f3757d42e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.684ex; height:2.843ex;" alt="{\displaystyle g_{\mu \nu ;\xi }=0\,.}"></span></dd></dl> <p>An <a href="/wiki/Affine_connection" title="Affine connection">affine connection</a> that is also a metric connection is called a <a href="/wiki/Riemannian_connection" class="mw-redirect" title="Riemannian connection">Riemannian connection</a>. A Riemannian connection that is torsion-free (i.e., for which the <a href="/wiki/Torsion_tensor" title="Torsion tensor">torsion tensor</a> vanishes: <span class="texhtml"><i>T</i><sup><i>α</i></sup><sub><i>βγ</i></sub> = 0</span>) is a <a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a>. </p><p>The <span class="texhtml">Γ<sup><i>α</i></sup><sub><i>βγ</i></sub></span> for a Levi-Civita connection in a coordinate basis are called <a href="/wiki/Christoffel_symbols" title="Christoffel symbols">Christoffel symbols</a> of the second kind. </p> <div class="mw-heading mw-heading3"><h3 id="Exterior_derivative"><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=31" title="Edit section: Exterior derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The exterior derivative of a totally antisymmetric type <span class="texhtml">(0, <i>s</i>)</span> tensor field with components <span class="texhtml"><i>A</i><sub><i>α</i><sub>1</sub>⋅⋅⋅<i>α</i><sub><i>s</i></sub></sub></span> (also called a <a href="/wiki/Differential_form" title="Differential form">differential form</a>) is a derivative that is covariant under basis transformations. It does not depend on either a metric tensor or a connection: it requires only the structure of a differentiable manifold. In a coordinate basis, it may be expressed as the antisymmetrization of the partial derivatives of the tensor components:<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page / location: 232–233">&#58;&#8202;232–233&#8202;</span></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\mathrm {d} A)_{\gamma \alpha _{1}\cdots \alpha _{s}}={\frac {\partial }{\partial x^{[\gamma }}}A_{\alpha _{1}\cdots \alpha _{s}]}=A_{[\alpha _{1}\cdots \alpha _{s},\gamma ]}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>A</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <mrow> <mi mathvariant="normal">&#x2202;<!-- ∂ --></mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> <mo stretchy="false">]</mo> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\mathrm {d} A)_{\gamma \alpha _{1}\cdots \alpha _{s}}={\frac {\partial }{\partial x^{[\gamma }}}A_{\alpha _{1}\cdots \alpha _{s}]}=A_{[\alpha _{1}\cdots \alpha _{s},\gamma ]}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71004231b37834cf42c9a1f6327be680986e7502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.506ex; height:5.843ex;" alt="{\displaystyle (\mathrm {d} A)_{\gamma \alpha _{1}\cdots \alpha _{s}}={\frac {\partial }{\partial x^{[\gamma }}}A_{\alpha _{1}\cdots \alpha _{s}]}=A_{[\alpha _{1}\cdots \alpha _{s},\gamma ]}.}"></span></dd></dl> <p>This derivative is not defined on any tensor field with contravariant indices or that is not totally antisymmetric. It is characterized by a graded product rule. </p> <div class="mw-heading mw-heading3"><h3 id="Lie_derivative"><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=32" title="Edit section: Lie derivative"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Lie derivative is another derivative that is covariant under basis transformations. Like the exterior derivative, it does not depend on either a metric tensor or a connection. The Lie derivative of a type <span class="texhtml">(<i>r</i>, <i>s</i>)</span> tensor field <span class="texhtml"><i>T</i></span> along (the flow of) a contravariant vector field <span class="texhtml"><i>X</i><span style="padding-left:0.12em;"><sup><i>ρ</i></sup></span></span> <a href="/wiki/Lie_derivative#Coordinate_expressions" title="Lie derivative">may be expressed</a> using a coordinate basis as<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}&amp;\\=X^{\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s},\gamma }&amp;-\,X^{\alpha _{1}}{}_{,\gamma }T^{\gamma \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\cdots -X^{\alpha _{r}}{}_{,\gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\gamma }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;+\,X^{\gamma }{}_{,\beta _{1}}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\gamma \beta _{2}\cdots \beta _{s}}+\cdots +X^{\gamma }{}_{,\beta _{s}}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\gamma }\,.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>T</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> </mtd> <mtd /> </mtr> <mtr> <mtd> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <mspace width="thinmathspace" /> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>+</mo> <mspace width="thinmathspace" /> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}&amp;\\=X^{\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s},\gamma }&amp;-\,X^{\alpha _{1}}{}_{,\gamma }T^{\gamma \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\cdots -X^{\alpha _{r}}{}_{,\gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\gamma }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;+\,X^{\gamma }{}_{,\beta _{1}}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\gamma \beta _{2}\cdots \beta _{s}}+\cdots +X^{\gamma }{}_{,\beta _{s}}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\gamma }\,.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b515590c0963e87352663fa6974e83f921e45535" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:74.597ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}({\mathcal {L}}_{X}T)^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}&amp;\\=X^{\gamma }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s},\gamma }&amp;-\,X^{\alpha _{1}}{}_{,\gamma }T^{\gamma \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\cdots -X^{\alpha _{r}}{}_{,\gamma }T^{\alpha _{1}\cdots \alpha _{r-1}\gamma }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;+\,X^{\gamma }{}_{,\beta _{1}}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\gamma \beta _{2}\cdots \beta _{s}}+\cdots +X^{\gamma }{}_{,\beta _{s}}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\gamma }\,.\end{aligned}}}"></span></dd></dl> <p>This derivative is characterized by the product rule and the fact that the Lie derivative of a contravariant vector field along itself is zero: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\mathcal {L}}_{X}X)^{\alpha }=X^{\gamma }X^{\alpha }{}_{,\gamma }-X^{\alpha }{}_{,\gamma }X^{\gamma }=0\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mi>X</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\mathcal {L}}_{X}X)^{\alpha }=X^{\gamma }X^{\alpha }{}_{,\gamma }-X^{\alpha }{}_{,\gamma }X^{\gamma }=0\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50860fb9d8caa4ede85e8df454ae884e06272977" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:35.513ex; height:3.009ex;" alt="{\displaystyle ({\mathcal {L}}_{X}X)^{\alpha }=X^{\gamma }X^{\alpha }{}_{,\gamma }-X^{\alpha }{}_{,\gamma }X^{\gamma }=0\,.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Notable_tensors">Notable tensors</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=33" title="Edit section: Notable tensors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Kronecker_delta"><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=34" title="Edit section: Kronecker delta"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Kronecker delta is like the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> when multiplied and contracted: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\delta _{\beta }^{\alpha }\,A^{\beta }&amp;=A^{\alpha }\\\delta _{\nu }^{\mu }\,B_{\mu }&amp;=B_{\nu }.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\delta _{\beta }^{\alpha }\,A^{\beta }&amp;=A^{\alpha }\\\delta _{\nu }^{\mu }\,B_{\mu }&amp;=B_{\nu }.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bb8b9a602a84392bd4c5f8d06254f241363b351" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.016ex; height:7.009ex;" alt="{\displaystyle {\begin{aligned}\delta _{\beta }^{\alpha }\,A^{\beta }&amp;=A^{\alpha }\\\delta _{\nu }^{\mu }\,B_{\mu }&amp;=B_{\nu }.\end{aligned}}}"></span></dd></dl> <p>The components <span class="texhtml"><i>δ</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>α</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>β</i></sub></span></span></span> are the same in any basis and form an invariant tensor of type <span class="texhtml">(1, 1)</span>, i.e. the identity of the <a href="/wiki/Tangent_bundle" title="Tangent bundle">tangent bundle</a> over the <a href="/wiki/Identity_mapping" class="mw-redirect" title="Identity mapping">identity mapping</a> of the <a href="/wiki/Base_manifold" class="mw-redirect" title="Base manifold">base manifold</a>, and so its trace is an invariant.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Its <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">trace</a> is the dimensionality of the space; for example, in four-dimensional <a href="/wiki/Spacetime" title="Spacetime">spacetime</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{\rho }^{\rho }=\delta _{0}^{0}+\delta _{1}^{1}+\delta _{2}^{2}+\delta _{3}^{3}=4.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msubsup> <mo>=</mo> <mn>4.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{\rho }^{\rho }=\delta _{0}^{0}+\delta _{1}^{1}+\delta _{2}^{2}+\delta _{3}^{3}=4.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f5473576b6ecf375e4f09bdb32d4a89025758b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.095ex; height:3.176ex;" alt="{\displaystyle \delta _{\rho }^{\rho }=\delta _{0}^{0}+\delta _{1}^{1}+\delta _{2}^{2}+\delta _{3}^{3}=4.}"></span></dd></dl> <p>The Kronecker delta is one of the family of generalized Kronecker deltas. The generalized Kronecker delta of degree <span class="texhtml">2<i>p</i></span> may be defined in terms of the Kronecker delta by (a common definition includes an additional multiplier of <span class="texhtml"><i>p</i>!</span> on the right): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{\beta _{1}\cdots \beta _{p}}^{\alpha _{1}\cdots \alpha _{p}}=\delta _{\beta _{1}}^{[\alpha _{1}}\cdots \delta _{\beta _{p}}^{\alpha _{p}]},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msubsup> <mo>&#x22EF;<!-- ⋯ --></mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{\beta _{1}\cdots \beta _{p}}^{\alpha _{1}\cdots \alpha _{p}}=\delta _{\beta _{1}}^{[\alpha _{1}}\cdots \delta _{\beta _{p}}^{\alpha _{p}]},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/836fd04ca45b520cd9af075de8d7dbd7f0752750" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:21.483ex; height:4.509ex;" alt="{\displaystyle \delta _{\beta _{1}\cdots \beta _{p}}^{\alpha _{1}\cdots \alpha _{p}}=\delta _{\beta _{1}}^{[\alpha _{1}}\cdots \delta _{\beta _{p}}^{\alpha _{p}]},}"></span></dd></dl> <p>and acts as an antisymmetrizer on <span class="texhtml"><i>p</i></span> indices: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta _{\beta _{1}\cdots \beta _{p}}^{\alpha _{1}\cdots \alpha _{p}}\,A^{\beta _{1}\cdots \beta _{p}}=A^{[\alpha _{1}\cdots \alpha _{p}]}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msubsup> <mspace width="thinmathspace" /> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mrow> </msup> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta _{\beta _{1}\cdots \beta _{p}}^{\alpha _{1}\cdots \alpha _{p}}\,A^{\beta _{1}\cdots \beta _{p}}=A^{[\alpha _{1}\cdots \alpha _{p}]}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee3b68e70b8aa0aa35e6023ddfacf8f8b0d51c44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:27.13ex; height:4.176ex;" alt="{\displaystyle \delta _{\beta _{1}\cdots \beta _{p}}^{\alpha _{1}\cdots \alpha _{p}}\,A^{\beta _{1}\cdots \beta _{p}}=A^{[\alpha _{1}\cdots \alpha _{p}]}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Torsion_tensor"><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=35" title="Edit section: Torsion tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An affine connection has a torsion tensor <span class="texhtml"><i>T</i><sup><i>α</i></sup><sub><i>βγ</i></sub></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\alpha }{}_{\beta \gamma }=\Gamma ^{\alpha }{}_{\beta \gamma }-\Gamma ^{\alpha }{}_{\gamma \beta }-\gamma ^{\alpha }{}_{\beta \gamma },}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\alpha }{}_{\beta \gamma }=\Gamma ^{\alpha }{}_{\beta \gamma }-\Gamma ^{\alpha }{}_{\gamma \beta }-\gamma ^{\alpha }{}_{\beta \gamma },}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d0567772a5f0de399e311ef01fbf40018f7e498" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.735ex; height:3.009ex;" alt="{\displaystyle T^{\alpha }{}_{\beta \gamma }=\Gamma ^{\alpha }{}_{\beta \gamma }-\Gamma ^{\alpha }{}_{\gamma \beta }-\gamma ^{\alpha }{}_{\beta \gamma },}"></span></dd></dl> <p>where <span class="texhtml"><i>&#947;</i><sup><i>&#945;</i></sup><sub><i>&#946;&#947;</i></sub></span> are given by the components of the Lie bracket of the local basis, which vanish when it is a coordinate basis. </p><p>For a Levi-Civita connection this tensor is defined to be zero, which for a coordinate basis gives the equations </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma ^{\alpha }{}_{\beta \gamma }=\Gamma ^{\alpha }{}_{\gamma \beta }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Gamma ^{\alpha }{}_{\beta \gamma }=\Gamma ^{\alpha }{}_{\gamma \beta }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44704229543d421eec76d614dbfd6d664c4dcfb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.353ex; height:3.009ex;" alt="{\displaystyle \Gamma ^{\alpha }{}_{\beta \gamma }=\Gamma ^{\alpha }{}_{\gamma \beta }.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Riemann_curvature_tensor"><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=36" title="Edit section: Riemann curvature tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If this tensor is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=\Gamma ^{\rho }{}_{\nu \sigma ,\mu }-\Gamma ^{\rho }{}_{\mu \sigma ,\nu }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu \sigma }-\Gamma ^{\rho }{}_{\nu \lambda }\Gamma ^{\lambda }{}_{\mu \sigma }\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>=</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03C3;<!-- σ --></mi> <mo>,</mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msub> <mo>+</mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msub> <msup> <mi mathvariant="normal">&#x0393;<!-- Γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BB;<!-- λ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BC;<!-- μ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=\Gamma ^{\rho }{}_{\nu \sigma ,\mu }-\Gamma ^{\rho }{}_{\mu \sigma ,\nu }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu \sigma }-\Gamma ^{\rho }{}_{\nu \lambda }\Gamma ^{\lambda }{}_{\mu \sigma }\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02edb442f0445eccc3d62812562ba73456f21f56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:49.396ex; height:3.343ex;" alt="{\displaystyle R^{\rho }{}_{\sigma \mu \nu }=\Gamma ^{\rho }{}_{\nu \sigma ,\mu }-\Gamma ^{\rho }{}_{\mu \sigma ,\nu }+\Gamma ^{\rho }{}_{\mu \lambda }\Gamma ^{\lambda }{}_{\nu \sigma }-\Gamma ^{\rho }{}_{\nu \lambda }\Gamma ^{\lambda }{}_{\mu \sigma }\,,}"></span></dd></dl> <p>then it is the <a href="/wiki/Commutator" title="Commutator">commutator</a> of the covariant derivative with itself:<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{\nu ;\rho \sigma }-A_{\nu ;\sigma \rho }=A_{\beta }R^{\beta }{}_{\nu \rho \sigma }\,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mo>;</mo> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mo>;</mo> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03BD;<!-- ν --></mi> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{\nu ;\rho \sigma }-A_{\nu ;\sigma \rho }=A_{\beta }R^{\beta }{}_{\nu \rho \sigma }\,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9003a6ab21e1c907d39fd2925d98758febea2097" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:25.91ex; height:3.343ex;" alt="{\displaystyle A_{\nu ;\rho \sigma }-A_{\nu ;\sigma \rho }=A_{\beta }R^{\beta }{}_{\nu \rho \sigma }\,,}"></span></dd></dl> <p>since the connection is torsionless, which means that the torsion tensor vanishes. </p><p>This can be generalized to get the commutator for two covariant derivatives of an arbitrary tensor as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\gamma \delta }&amp;-T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\delta \gamma }\\&amp;\!\!\!\!\!\!\!\!\!\!=-R^{\alpha _{1}}{}_{\rho \gamma \delta }T^{\rho \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\cdots -R^{\alpha _{r}}{}_{\rho \gamma \delta }T^{\alpha _{1}\cdots \alpha _{r-1}\rho }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;+R^{\sigma }{}_{\beta _{1}\gamma \delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\sigma \beta _{2}\cdots \beta _{s}}+\cdots +R^{\sigma }{}_{\beta _{s}\gamma \delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\sigma }\,\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>&#x2212;<!-- − --></mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>;</mo> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="negativethinmathspace" /> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2212;<!-- − --></mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C1;<!-- ρ --></mi> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03C1;<!-- ρ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>+</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mrow> </msub> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B1;<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </msub> </mrow> </msup> <msub> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22EF;<!-- ⋯ --></mo> <msub> <mi>&#x03B2;<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mspace width="thinmathspace" /> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\gamma \delta }&amp;-T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\delta \gamma }\\&amp;\!\!\!\!\!\!\!\!\!\!=-R^{\alpha _{1}}{}_{\rho \gamma \delta }T^{\rho \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\cdots -R^{\alpha _{r}}{}_{\rho \gamma \delta }T^{\alpha _{1}\cdots \alpha _{r-1}\rho }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;+R^{\sigma }{}_{\beta _{1}\gamma \delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\sigma \beta _{2}\cdots \beta _{s}}+\cdots +R^{\sigma }{}_{\beta _{s}\gamma \delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\sigma }\,\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca0d1fb611338c09353b29a8b4deed5d0975724f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.338ex; width:70.808ex; height:9.843ex;" alt="{\displaystyle {\begin{aligned}T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\gamma \delta }&amp;-T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s};\delta \gamma }\\&amp;\!\!\!\!\!\!\!\!\!\!=-R^{\alpha _{1}}{}_{\rho \gamma \delta }T^{\rho \alpha _{2}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s}}-\cdots -R^{\alpha _{r}}{}_{\rho \gamma \delta }T^{\alpha _{1}\cdots \alpha _{r-1}\rho }{}_{\beta _{1}\cdots \beta _{s}}\\&amp;+R^{\sigma }{}_{\beta _{1}\gamma \delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\sigma \beta _{2}\cdots \beta _{s}}+\cdots +R^{\sigma }{}_{\beta _{s}\gamma \delta }T^{\alpha _{1}\cdots \alpha _{r}}{}_{\beta _{1}\cdots \beta _{s-1}\sigma }\,\end{aligned}}}"></span></dd></dl> <p>which are often referred to as the <i>Ricci identities</i>.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Metric_tensor"><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=37" title="Edit section: Metric tensor"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The metric tensor <span class="texhtml"><i>g</i><sub><i>αβ</i></sub></span> is used for lowering indices and gives the length of any <a href="/wiki/Space-like" class="mw-redirect" title="Space-like">space-like</a> curve </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{length}}=\int _{y_{1}}^{y_{2}}{\sqrt {g_{\alpha \beta }{\frac {dx^{\alpha }}{d\gamma }}{\frac {dx^{\beta }}{d\gamma }}}}\,d\gamma \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>length</mtext> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{length}}=\int _{y_{1}}^{y_{2}}{\sqrt {g_{\alpha \beta }{\frac {dx^{\alpha }}{d\gamma }}{\frac {dx^{\beta }}{d\gamma }}}}\,d\gamma \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98cd6b25c5cb15c72d973b146153c17fc3a4aab3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.93ex; height:7.676ex;" alt="{\displaystyle {\text{length}}=\int _{y_{1}}^{y_{2}}{\sqrt {g_{\alpha \beta }{\frac {dx^{\alpha }}{d\gamma }}{\frac {dx^{\beta }}{d\gamma }}}}\,d\gamma \,,}"></span></dd></dl> <p>where <span class="texhtml"><i>γ</i></span> is any <a href="/wiki/Smooth_function" class="mw-redirect" title="Smooth function">smooth</a> <a href="/wiki/Monotonic_function" title="Monotonic function">strictly monotone</a> <a href="/wiki/Parametrization_(geometry)" title="Parametrization (geometry)">parameterization</a> of the path. It also gives the duration of any <a href="/wiki/Time-like" class="mw-redirect" title="Time-like">time-like</a> curve </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{duration}}=\int _{t_{1}}^{t_{2}}{\sqrt {{\frac {-1}{c^{2}}}g_{\alpha \beta }{\frac {dx^{\alpha }}{d\gamma }}{\frac {dx^{\beta }}{d\gamma }}}}\,d\gamma \,,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>duration</mtext> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> </mrow> <mrow> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </mfrac> </mrow> </msqrt> </mrow> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03B3;<!-- γ --></mi> <mspace width="thinmathspace" /> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{duration}}=\int _{t_{1}}^{t_{2}}{\sqrt {{\frac {-1}{c^{2}}}g_{\alpha \beta }{\frac {dx^{\alpha }}{d\gamma }}{\frac {dx^{\beta }}{d\gamma }}}}\,d\gamma \,,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e836952c41e93626144409fe1059c160c5bd6a29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.859ex; height:7.676ex;" alt="{\displaystyle {\text{duration}}=\int _{t_{1}}^{t_{2}}{\sqrt {{\frac {-1}{c^{2}}}g_{\alpha \beta }{\frac {dx^{\alpha }}{d\gamma }}{\frac {dx^{\beta }}{d\gamma }}}}\,d\gamma \,,}"></span></dd></dl> <p>where <span class="texhtml"><i>γ</i></span> is any smooth strictly monotone parameterization of the trajectory. See also <i><a href="/wiki/Line_element" title="Line element">Line element</a></i>. </p><p>The <a href="/wiki/Inverse_matrix" class="mw-redirect" title="Inverse matrix">inverse matrix</a> <span class="texhtml"><i>g</i><sup><i>αβ</i></sup></span> of the metric tensor is another important tensor, used for raising indices: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g^{\alpha \beta }g_{\beta \gamma }=\delta _{\gamma }^{\alpha }\,.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msubsup> <mspace width="thinmathspace" /> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g^{\alpha \beta }g_{\beta \gamma }=\delta _{\gamma }^{\alpha }\,.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/116dd34696e162b87711da9fdf07c70f2af025d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.99ex; height:3.343ex;" alt="{\displaystyle g^{\alpha \beta }g_{\beta \gamma }=\delta _{\gamma }^{\alpha }\,.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=38" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">Connection</a></li> <li><a href="/wiki/Curvilinear_coordinates" title="Curvilinear coordinates">Curvilinear coordinates</a> <ul><li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li></ul></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Exterior_algebra" title="Exterior algebra">Exterior algebra</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Holonomic_basis" title="Holonomic basis">Holonomic basis</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix calculus</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Multilinear_subspace_learning" title="Multilinear subspace learning">Multilinear subspace learning</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a href="/wiki/Regge_calculus" title="Regge calculus">Regge calculus</a></li> <li><a class="mw-selflink selflink">Ricci calculus</a></li> <li><a href="/wiki/Ricci_decomposition" title="Ricci decomposition">Ricci decomposition</a></li> <li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Vector_analysis" class="mw-redirect" title="Vector analysis">Vector analysis</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=39" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">While the raising and lowering of indices is dependent on a <a href="/wiki/Metric_tensor" title="Metric tensor">metric tensor</a>, the <a href="/wiki/Covariant_derivative" title="Covariant derivative">covariant derivative</a> is only dependent on the <a href="/wiki/Connection_(mathematics)" title="Connection (mathematics)">connection</a> while the <a href="/wiki/Exterior_derivative" title="Exterior derivative">exterior derivative</a> and the <a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a> are dependent on neither.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=40" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSynge_J.L.Schild_A.1949" class="citation book cs1">Synge J.L.; Schild A. (1949). <i>Tensor Calculus</i>. first Dover Publications 1978 edition. pp.&#160;6–108.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Calculus&amp;rft.pages=6-108&amp;rft.pub=first+Dover+Publications+1978+edition&amp;rft.date=1949&amp;rft.au=Synge+J.L.&amp;rft.au=Schild+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.A._WheelerC._MisnerK.S._Thorne1973" class="citation book cs1">J.A. Wheeler; C. Misner; K.S. Thorne (1973). <i><a href="/wiki/Gravitation_(book)" title="Gravitation (book)">Gravitation</a></i>. W.H. Freeman &amp; Co. pp.&#160;85–86, §3.5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7167-0344-0" title="Special:BookSources/0-7167-0344-0"><bdi>0-7167-0344-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.pages=85-86%2C+%C2%A73.5&amp;rft.pub=W.H.+Freeman+%26+Co&amp;rft.date=1973&amp;rft.isbn=0-7167-0344-0&amp;rft.au=J.A.+Wheeler&amp;rft.au=C.+Misner&amp;rft.au=K.S.+Thorne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR._Penrose2007" class="citation book cs1">R. Penrose (2007). <i><a href="/wiki/The_Road_to_Reality" title="The Road to Reality">The Road to Reality</a></i>. Vintage books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-679-77631-4" title="Special:BookSources/978-0-679-77631-4"><bdi>978-0-679-77631-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Road+to+Reality&amp;rft.pub=Vintage+books&amp;rft.date=2007&amp;rft.isbn=978-0-679-77631-4&amp;rft.au=R.+Penrose&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRicciLevi-Civita1900" class="citation journal cs1 cs1-prop-foreign-lang-source"><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Ricci, Gregorio</a>; <a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Levi-Civita, Tullio</a> (March 1900). <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002258102">"Méthodes de calcul différentiel absolu et leurs applications"</a> &#91;Methods of the absolute differential calculus and their applications&#93;. <i><a href="/wiki/Mathematische_Annalen" title="Mathematische Annalen">Mathematische Annalen</a></i> (in French). <b>54</b> (1–2). Springer: 125–201. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01454201">10.1007/BF01454201</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120009332">120009332</a><span class="reference-accessdate">. Retrieved <span class="nowrap">19 October</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Annalen&amp;rft.atitle=M%C3%A9thodes+de+calcul+diff%C3%A9rentiel+absolu+et+leurs+applications&amp;rft.volume=54&amp;rft.issue=1%E2%80%932&amp;rft.pages=125-201&amp;rft.date=1900-03&amp;rft_id=info%3Adoi%2F10.1007%2FBF01454201&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120009332%23id-name%3DS2CID&amp;rft.aulast=Ricci&amp;rft.aufirst=Gregorio&amp;rft.au=Levi-Civita%2C+Tullio&amp;rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Fdms%2Fresolveppn%2F%3FPPN%3DGDZPPN002258102&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchouten1924" class="citation book cs1 cs1-prop-foreign-lang-source">Schouten, Jan A. (1924). R. Courant (ed.). <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?PPN373339186"><i>Der Ricci-Kalkül – Eine Einführung in die neueren Methoden und Probleme der mehrdimensionalen Differentialgeometrie (Ricci Calculus – An introduction in the latest methods and problems in multi-dimensional differential geometry)</i></a>. Grundlehren der mathematischen Wissenschaften (in German). Vol.&#160;10. Berlin: Springer Verlag.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Der+Ricci-Kalk%C3%BCl+%E2%80%93+Eine+Einf%C3%BChrung+in+die+neueren+Methoden+und+Probleme+der+mehrdimensionalen+Differentialgeometrie+%28Ricci+Calculus+%E2%80%93+An+introduction+in+the+latest+methods+and+problems+in+multi-dimensional+differential+geometry%29&amp;rft.place=Berlin&amp;rft.series=Grundlehren+der+mathematischen+Wissenschaften&amp;rft.pub=Springer+Verlag&amp;rft.date=1924&amp;rft.aulast=Schouten&amp;rft.aufirst=Jan+A.&amp;rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FPPN373339186&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJahnke2003" class="citation book cs1">Jahnke, Hans Niels (2003). <i>A history of analysis</i>. Providence, RI: American Mathematical Society. p.&#160;244. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8218-2623-9" title="Special:BookSources/0-8218-2623-9"><bdi>0-8218-2623-9</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/51607350">51607350</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+history+of+analysis&amp;rft.place=Providence%2C+RI&amp;rft.pages=244&amp;rft.pub=American+Mathematical+Society&amp;rft.date=2003&amp;rft_id=info%3Aoclcnum%2F51607350&amp;rft.isbn=0-8218-2623-9&amp;rft.aulast=Jahnke&amp;rft.aufirst=Hans+Niels&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation journal cs1"><a rel="nofollow" class="external text" href="https://www.ams.org/notices/199807/chern.pdf">"Interview with Shiing Shen Chern"</a> <span class="cs1-format">(PDF)</span>. <i>Notices of the AMS</i>. <b>45</b> (7): 860–5. August 1998.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Notices+of+the+AMS&amp;rft.atitle=Interview+with+Shiing+Shen+Chern&amp;rft.volume=45&amp;rft.issue=7&amp;rft.pages=860-5&amp;rft.date=1998-08&amp;rft_id=https%3A%2F%2Fwww.ams.org%2Fnotices%2F199807%2Fchern.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFC._Møller1952" class="citation cs2">C. Møller (1952), <i>The Theory of Relativity</i>, p.&#160;234</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Relativity&amp;rft.pages=234&amp;rft.date=1952&amp;rft.au=C.+M%C3%B8ller&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span> is an example of a variation: 'Greek indices run from 1 to 3, Latin indices from 1 to 4'</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFT._Frankel2012" class="citation cs2">T. Frankel (2012), <i>The Geometry of Physics</i> (3rd&#160;ed.), Cambridge University Press, p.&#160;67, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1107-602601" title="Special:BookSources/978-1107-602601"><bdi>978-1107-602601</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Physics&amp;rft.pages=67&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-1107-602601&amp;rft.au=T.+Frankel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.A._WheelerC._MisnerK.S._Thorne1973" class="citation book cs1">J.A. Wheeler; C. Misner; K.S. Thorne (1973). <i><a href="/wiki/Gravitation_(book)" title="Gravitation (book)">Gravitation</a></i>. W.H. Freeman &amp; Co. p.&#160;91. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7167-0344-0" title="Special:BookSources/0-7167-0344-0"><bdi>0-7167-0344-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.pages=91&amp;rft.pub=W.H.+Freeman+%26+Co&amp;rft.date=1973&amp;rft.isbn=0-7167-0344-0&amp;rft.au=J.A.+Wheeler&amp;rft.au=C.+Misner&amp;rft.au=K.S.+Thorne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFT._Frankel2012" class="citation cs2">T. Frankel (2012), <i>The Geometry of Physics</i> (3rd&#160;ed.), Cambridge University Press, p.&#160;67, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1107-602601" title="Special:BookSources/978-1107-602601"><bdi>978-1107-602601</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Physics&amp;rft.pages=67&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-1107-602601&amp;rft.au=T.+Frankel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.A._WheelerC._MisnerK.S._Thorne1973" class="citation book cs1">J.A. Wheeler; C. Misner; K.S. Thorne (1973). <i><a href="/wiki/Gravitation_(book)" title="Gravitation (book)">Gravitation</a></i>. W.H. Freeman &amp; Co. pp.&#160;61, 202–203, 232. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7167-0344-0" title="Special:BookSources/0-7167-0344-0"><bdi>0-7167-0344-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.pages=61%2C+202-203%2C+232&amp;rft.pub=W.H.+Freeman+%26+Co&amp;rft.date=1973&amp;rft.isbn=0-7167-0344-0&amp;rft.au=J.A.+Wheeler&amp;rft.au=C.+Misner&amp;rft.au=K.S.+Thorne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._Woan2010" class="citation book cs1">G. Woan (2010). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/cambridgehandboo0000woan"><i>The Cambridge Handbook of Physics Formulas</i></a></span>. Cambridge University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-57507-2" title="Special:BookSources/978-0-521-57507-2"><bdi>978-0-521-57507-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Cambridge+Handbook+of+Physics+Formulas&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft.isbn=978-0-521-57507-2&amp;rft.au=G.+Woan&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fcambridgehandboo0000woan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/CovariantDerivative.html">Covariant derivative</a> – Mathworld, Wolfram</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFT._Frankel2012" class="citation cs2">T. Frankel (2012), <i>The Geometry of Physics</i> (3rd&#160;ed.), Cambridge University Press, p.&#160;298, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1107-602601" title="Special:BookSources/978-1107-602601"><bdi>978-1107-602601</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Physics&amp;rft.pages=298&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-1107-602601&amp;rft.au=T.+Frankel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.A._WheelerC._MisnerK.S._Thorne1973" class="citation book cs1">J.A. Wheeler; C. Misner; K.S. Thorne (1973). <i><a href="/wiki/Gravitation_(book)" title="Gravitation (book)">Gravitation</a></i>. W.H. Freeman &amp; Co. pp.&#160;510, §21.5. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-7167-0344-0" title="Special:BookSources/0-7167-0344-0"><bdi>0-7167-0344-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Gravitation&amp;rft.pages=510%2C+%C2%A721.5&amp;rft.pub=W.H.+Freeman+%26+Co&amp;rft.date=1973&amp;rft.isbn=0-7167-0344-0&amp;rft.au=J.A.+Wheeler&amp;rft.au=C.+Misner&amp;rft.au=K.S.+Thorne&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFT._Frankel2012" class="citation cs2">T. Frankel (2012), <i>The Geometry of Physics</i> (3rd&#160;ed.), Cambridge University Press, p.&#160;299, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1107-602601" title="Special:BookSources/978-1107-602601"><bdi>978-1107-602601</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Physics&amp;rft.pages=299&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-1107-602601&amp;rft.au=T.+Frankel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD._McMahon2006" class="citation book cs1">D. McMahon (2006). <i>Relativity</i>. Demystified. McGraw Hill. p.&#160;67. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-145545-0" title="Special:BookSources/0-07-145545-0"><bdi>0-07-145545-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Relativity&amp;rft.series=Demystified&amp;rft.pages=67&amp;rft.pub=McGraw+Hill&amp;rft.date=2006&amp;rft.isbn=0-07-145545-0&amp;rft.au=D.+McMahon&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFR._Penrose2007" class="citation book cs1">R. Penrose (2007). <i><a href="/wiki/The_Road_to_Reality" title="The Road to Reality">The Road to Reality</a></i>. Vintage books. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-679-77631-4" title="Special:BookSources/978-0-679-77631-4"><bdi>978-0-679-77631-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Road+to+Reality&amp;rft.pub=Vintage+books&amp;rft.date=2007&amp;rft.isbn=978-0-679-77631-4&amp;rft.au=R.+Penrose&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBishopGoldberg1968" class="citation cs2">Bishop, R.L.; Goldberg, S.I. (1968), <i>Tensor Analysis on Manifolds</i>, p.&#160;130</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Analysis+on+Manifolds&amp;rft.pages=130&amp;rft.date=1968&amp;rft.aulast=Bishop&amp;rft.aufirst=R.L.&amp;rft.au=Goldberg%2C+S.I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBishopGoldberg1968" class="citation cs2">Bishop, R.L.; Goldberg, S.I. (1968), <i>Tensor Analysis on Manifolds</i>, p.&#160;85</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Analysis+on+Manifolds&amp;rft.pages=85&amp;rft.date=1968&amp;rft.aulast=Bishop&amp;rft.aufirst=R.L.&amp;rft.au=Goldberg%2C+S.I.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSynge_J.L.Schild_A.1949" class="citation book cs1">Synge J.L.; Schild A. (1949). <i>Tensor Calculus</i>. first Dover Publications 1978 edition. pp.&#160;83, p. 107.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Calculus&amp;rft.pages=83%2C+p.+107&amp;rft.pub=first+Dover+Publications+1978+edition&amp;rft.date=1949&amp;rft.au=Synge+J.L.&amp;rft.au=Schild+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._A._M._Dirac" class="citation book cs1">P. A. M. Dirac. <i>General Theory of Relativity</i>. pp.&#160;20–21.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=General+Theory+of+Relativity&amp;rft.pages=20-21&amp;rft.au=P.+A.+M.+Dirac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLovelockHanno_Rund1989" class="citation book cs1">Lovelock, David; Hanno Rund (1989). <i>Tensors, Differential Forms, and Variational Principles</i>. p.&#160;84.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensors%2C+Differential+Forms%2C+and+Variational+Principles&amp;rft.pages=84&amp;rft.date=1989&amp;rft.aulast=Lovelock&amp;rft.aufirst=David&amp;rft.au=Hanno+Rund&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="Sources">Sources</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=41" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBishopGoldberg1968" class="citation cs2"><a href="/wiki/Richard_L._Bishop" title="Richard L. Bishop">Bishop, R.L.</a>; Goldberg, S.I. (1968), <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/tensoranalysison00bish"><i>Tensor Analysis on Manifolds</i></a></span> (First Dover 1980&#160;ed.), The Macmillan Company, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-486-64039-6" title="Special:BookSources/0-486-64039-6"><bdi>0-486-64039-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Analysis+on+Manifolds&amp;rft.edition=First+Dover+1980&amp;rft.pub=The+Macmillan+Company&amp;rft.date=1968&amp;rft.isbn=0-486-64039-6&amp;rft.aulast=Bishop&amp;rft.aufirst=R.L.&amp;rft.au=Goldberg%2C+S.I.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftensoranalysison00bish&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDanielson2003" class="citation book cs1"><a href="/wiki/Donald_A._Danielson" title="Donald A. Danielson">Danielson, Donald A.</a> (2003). <i>Vectors and Tensors in Engineering and Physics</i> (2/e&#160;ed.). Westview (Perseus). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8133-4080-7" title="Special:BookSources/978-0-8133-4080-7"><bdi>978-0-8133-4080-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vectors+and+Tensors+in+Engineering+and+Physics&amp;rft.edition=2%2Fe&amp;rft.pub=Westview+%28Perseus%29&amp;rft.date=2003&amp;rft.isbn=978-0-8133-4080-7&amp;rft.aulast=Danielson&amp;rft.aufirst=Donald+A.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDimitrienko2002" class="citation book cs1">Dimitrienko, Yuriy (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?as_isbn=140201015X"><i>Tensor Analysis and Nonlinear Tensor Functions</i></a>. Kluwer Academic Publishers (Springer). <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-4020-1015-X" title="Special:BookSources/1-4020-1015-X"><bdi>1-4020-1015-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Analysis+and+Nonlinear+Tensor+Functions&amp;rft.pub=Kluwer+Academic+Publishers+%28Springer%29&amp;rft.date=2002&amp;rft.isbn=1-4020-1015-X&amp;rft.aulast=Dimitrienko&amp;rft.aufirst=Yuriy&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fas_isbn%3D140201015X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLovelockHanno_Rund1989" class="citation book cs1">Lovelock, David; Hanno Rund (1989) [1975]. <i>Tensors, Differential Forms, and Variational Principles</i>. Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-65840-7" title="Special:BookSources/978-0-486-65840-7"><bdi>978-0-486-65840-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensors%2C+Differential+Forms%2C+and+Variational+Principles&amp;rft.pub=Dover&amp;rft.date=1989&amp;rft.isbn=978-0-486-65840-7&amp;rft.aulast=Lovelock&amp;rft.aufirst=David&amp;rft.au=Hanno+Rund&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFC._Møller1952" class="citation cs2">C. Møller (1952), <a rel="nofollow" class="external text" href="https://archive.org/details/theoryofrelativi029229mbp"><i>The Theory of Relativity</i></a> (3rd&#160;ed.), Oxford University Press</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Relativity&amp;rft.edition=3rd&amp;rft.pub=Oxford+University+Press&amp;rft.date=1952&amp;rft.au=C.+M%C3%B8ller&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofrelativi029229mbp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSynge_J.L.Schild_A.1949" class="citation book cs1">Synge J.L.; Schild A. (1949). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/tensorcalculus00syng"><i>Tensor Calculus</i></a></span>. first Dover Publications 1978 edition. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-63612-2" title="Special:BookSources/978-0-486-63612-2"><bdi>978-0-486-63612-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Calculus&amp;rft.pub=first+Dover+Publications+1978+edition&amp;rft.date=1949&amp;rft.isbn=978-0-486-63612-2&amp;rft.au=Synge+J.L.&amp;rft.au=Schild+A.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftensorcalculus00syng&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJ.R._Tyldesley1975" class="citation cs2">J.R. Tyldesley (1975), <i>An introduction to Tensor Analysis: For Engineers and Applied Scientists</i>, Longman, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-582-44355-5" title="Special:BookSources/0-582-44355-5"><bdi>0-582-44355-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+Tensor+Analysis%3A+For+Engineers+and+Applied+Scientists&amp;rft.pub=Longman&amp;rft.date=1975&amp;rft.isbn=0-582-44355-5&amp;rft.au=J.R.+Tyldesley&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFD.C._Kay1988" class="citation cs2">D.C. Kay (1988), <i>Tensor Calculus</i>, Schaum's Outlines, McGraw Hill (USA), <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-033484-6" title="Special:BookSources/0-07-033484-6"><bdi>0-07-033484-6</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Calculus&amp;rft.pub=Schaum%27s+Outlines%2C+McGraw+Hill+%28USA%29&amp;rft.date=1988&amp;rft.isbn=0-07-033484-6&amp;rft.au=D.C.+Kay&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFT._Frankel2012" class="citation cs2">T. Frankel (2012), <i>The Geometry of Physics</i> (3rd&#160;ed.), Cambridge University Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1107-602601" title="Special:BookSources/978-1107-602601"><bdi>978-1107-602601</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Geometry+of+Physics&amp;rft.edition=3rd&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft.isbn=978-1107-602601&amp;rft.au=T.+Frankel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=42" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDimitrienko2002" class="citation book cs1">Dimitrienko, Yuriy (2002). <a rel="nofollow" class="external text" href="https://books.google.com/books?as_isbn=140201015X"><i>Tensor Analysis and Nonlinear Tensor Functions</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-4020-1015-X" title="Special:BookSources/1-4020-1015-X"><bdi>1-4020-1015-X</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Analysis+and+Nonlinear+Tensor+Functions&amp;rft.pub=Springer&amp;rft.date=2002&amp;rft.isbn=1-4020-1015-X&amp;rft.aulast=Dimitrienko&amp;rft.aufirst=Yuriy&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fas_isbn%3D140201015X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSokolnikoff1951" class="citation book cs1">Sokolnikoff, Ivan S (1951). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/tensoranalysisth0000soko"><i>Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua</i></a></span>. Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0471810525" title="Special:BookSources/0471810525"><bdi>0471810525</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Analysis%3A+Theory+and+Applications+to+Geometry+and+Mechanics+of+Continua&amp;rft.pub=Wiley&amp;rft.date=1951&amp;rft.isbn=0471810525&amp;rft.aulast=Sokolnikoff&amp;rft.aufirst=Ivan+S&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftensoranalysisth0000soko&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBorisenkoTarapov1979" class="citation book cs1">Borisenko, A.I.; Tarapov, I.E. (1979). <i>Vector and Tensor Analysis with Applications</i> (2nd&#160;ed.). Dover. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0486638332" title="Special:BookSources/0486638332"><bdi>0486638332</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Vector+and+Tensor+Analysis+with+Applications&amp;rft.edition=2nd&amp;rft.pub=Dover&amp;rft.date=1979&amp;rft.isbn=0486638332&amp;rft.aulast=Borisenko&amp;rft.aufirst=A.I.&amp;rft.au=Tarapov%2C+I.E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFItskov2015" class="citation book cs1">Itskov, Mikhail (2015). <i>Tensor Algebra and Tensor Analysis for Engineers: With Applications to Continuum Mechanics</i> (2nd&#160;ed.). Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783319163420" title="Special:BookSources/9783319163420"><bdi>9783319163420</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Algebra+and+Tensor+Analysis+for+Engineers%3A+With+Applications+to+Continuum+Mechanics&amp;rft.edition=2nd&amp;rft.pub=Springer&amp;rft.date=2015&amp;rft.isbn=9783319163420&amp;rft.aulast=Itskov&amp;rft.aufirst=Mikhail&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTyldesley1973" class="citation book cs1">Tyldesley, J. R. (1973). <i>An introduction to Tensor Analysis: For Engineers and Applied Scientists</i>. Longman. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-582-44355-5" title="Special:BookSources/0-582-44355-5"><bdi>0-582-44355-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+Tensor+Analysis%3A+For+Engineers+and+Applied+Scientists&amp;rft.pub=Longman&amp;rft.date=1973&amp;rft.isbn=0-582-44355-5&amp;rft.aulast=Tyldesley&amp;rft.aufirst=J.+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKay1988" class="citation book cs1">Kay, D. C. (1988). <i>Tensor Calculus</i>. Schaum’s Outlines. McGraw Hill. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-07-033484-6" title="Special:BookSources/0-07-033484-6"><bdi>0-07-033484-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Tensor+Calculus&amp;rft.series=Schaum%E2%80%99s+Outlines&amp;rft.pub=McGraw+Hill&amp;rft.date=1988&amp;rft.isbn=0-07-033484-6&amp;rft.aulast=Kay&amp;rft.aufirst=D.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrinfeld2014" class="citation book cs1">Grinfeld, P. (2014). <i>Introduction to Tensor Analysis and the Calculus of Moving Surfaces</i>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4614-7866-9" title="Special:BookSources/978-1-4614-7866-9"><bdi>978-1-4614-7866-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Tensor+Analysis+and+the+Calculus+of+Moving+Surfaces&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft.isbn=978-1-4614-7866-9&amp;rft.aulast=Grinfeld&amp;rft.aufirst=P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Ricci_calculus&amp;action=edit&amp;section=43" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDullemondPeeters1991–2010" class="citation web cs1">Dullemond, Kees; Peeters, Kasper (1991–2010). <a rel="nofollow" class="external text" href="http://www.ita.uni-heidelberg.de/~dullemond/lectures/tensor/tensor.pdf">"Introduction to Tensor Calculus"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">17 May</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Introduction+to+Tensor+Calculus&amp;rft.date=1991%2F2010&amp;rft.aulast=Dullemond&amp;rft.aufirst=Kees&amp;rft.au=Peeters%2C+Kasper&amp;rft_id=http%3A%2F%2Fwww.ita.uni-heidelberg.de%2F~dullemond%2Flectures%2Ftensor%2Ftensor.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ARicci+calculus" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Differentiable_computing" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Differentiable_computing" title="Template:Differentiable computing"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Differentiable_computing" title="Template talk:Differentiable computing"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Differentiable_computing" title="Special:EditPage/Template:Differentiable computing"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Differentiable_computing" style="font-size:114%;margin:0 4em">Differentiable computing</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differentiable_function" title="Differentiable function">General</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><b><a href="/wiki/Differentiable_programming" title="Differentiable programming">Differentiable programming</a></b></li> <li><a href="/wiki/Information_geometry" title="Information geometry">Information geometry</a></li> <li><a href="/wiki/Statistical_manifold" title="Statistical manifold">Statistical manifold</a></li> <li><a href="/wiki/Automatic_differentiation" title="Automatic differentiation">Automatic differentiation</a></li> <li><a href="/wiki/Neuromorphic_engineering" class="mw-redirect" title="Neuromorphic engineering">Neuromorphic engineering</a></li> <li><a href="/wiki/Pattern_recognition" title="Pattern recognition">Pattern recognition</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li> <li><a href="/wiki/Computational_learning_theory" title="Computational learning theory">Computational learning theory</a></li> <li><a href="/wiki/Inductive_bias" title="Inductive bias">Inductive bias</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Hardware</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Graphcore" title="Graphcore">IPU</a></li> <li><a href="/wiki/Tensor_Processing_Unit" title="Tensor Processing Unit">TPU</a></li> <li><a href="/wiki/Vision_processing_unit" title="Vision processing unit">VPU</a></li> <li><a href="/wiki/Memristor" title="Memristor">Memristor</a></li> <li><a href="/wiki/SpiNNaker" title="SpiNNaker">SpiNNaker</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Software libraries</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/TensorFlow" title="TensorFlow">TensorFlow</a></li> <li><a href="/wiki/PyTorch" title="PyTorch">PyTorch</a></li> <li><a href="/wiki/Keras" title="Keras">Keras</a></li> <li><a href="/wiki/Scikit-learn" title="Scikit-learn">scikit-learn</a></li> <li><a href="/wiki/Theano_(software)" title="Theano (software)">Theano</a></li> <li><a href="/wiki/Google_JAX" title="Google JAX">JAX</a></li> <li><a href="/wiki/Flux_(machine-learning_framework)" title="Flux (machine-learning framework)">Flux.jl</a></li> <li><a href="/wiki/MindSpore" title="MindSpore">MindSpore</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> Portals <ul><li><a href="/wiki/Portal:Computer_programming" title="Portal:Computer programming">Computer programming</a></li> <li><a href="/wiki/Portal:Technology" title="Portal:Technology">Technology</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Tensors" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tensors" title="Template:Tensors"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tensors" title="Template talk:Tensors"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tensors" title="Special:EditPage/Template:Tensors"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Tensors" style="font-size:114%;margin:0 4em"><a href="/wiki/Tensor" title="Tensor">Tensors</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i><a href="/wiki/Glossary_of_tensor_theory" title="Glossary of tensor theory">Glossary of tensor theory</a></i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Scope</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Mathematics" title="Mathematics">Mathematics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Coordinate_system" title="Coordinate system">Coordinate system</a></li> <li><a href="/wiki/Differential_geometry" title="Differential geometry">Differential geometry</a></li> <li><a href="/wiki/Dyadics" title="Dyadics">Dyadic algebra</a></li> <li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean geometry</a></li> <li><a href="/wiki/Exterior_calculus" class="mw-redirect" title="Exterior calculus">Exterior calculus</a></li> <li><a href="/wiki/Multilinear_algebra" title="Multilinear algebra">Multilinear algebra</a></li> <li><a href="/wiki/Tensor_algebra" title="Tensor algebra">Tensor algebra</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><div class="hlist"><ul><li><a href="/wiki/Physics" title="Physics">Physics</a></li><li><a href="/wiki/Engineering" title="Engineering">Engineering</a></li></ul></div></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_vision" title="Computer vision">Computer vision</a></li> <li><a href="/wiki/Continuum_mechanics" title="Continuum mechanics">Continuum mechanics</a></li> <li><a href="/wiki/Electromagnetism" title="Electromagnetism">Electromagnetism</a></li> <li><a href="/wiki/General_relativity" title="General relativity">General relativity</a></li> <li><a href="/wiki/Transport_phenomena" title="Transport phenomena">Transport phenomena</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_index_notation" title="Abstract index notation">Abstract index notation</a></li> <li><a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a></li> <li><a href="/wiki/Index_notation" title="Index notation">Index notation</a></li> <li><a href="/wiki/Multi-index_notation" title="Multi-index notation">Multi-index notation</a></li> <li><a href="/wiki/Penrose_graphical_notation" title="Penrose graphical notation">Penrose graphical notation</a></li> <li><a class="mw-selflink selflink">Ricci calculus</a></li> <li><a href="/wiki/Tetrad_(index_notation)" class="mw-redirect" title="Tetrad (index notation)">Tetrad (index notation)</a></li> <li><a href="/wiki/Van_der_Waerden_notation" title="Van der Waerden notation">Van der Waerden notation</a></li> <li><a href="/wiki/Voigt_notation" title="Voigt notation">Voigt notation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Tensor<br />definitions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tensor_(intrinsic_definition)" title="Tensor (intrinsic definition)">Tensor (intrinsic definition)</a></li> <li><a href="/wiki/Tensor_field" title="Tensor field">Tensor field</a></li> <li><a href="/wiki/Tensor_density" title="Tensor density">Tensor density</a></li> <li><a href="/wiki/Tensors_in_curvilinear_coordinates" title="Tensors in curvilinear coordinates">Tensors in curvilinear coordinates</a></li> <li><a href="/wiki/Mixed_tensor" title="Mixed tensor">Mixed tensor</a></li> <li><a href="/wiki/Antisymmetric_tensor" title="Antisymmetric tensor">Antisymmetric tensor</a></li> <li><a href="/wiki/Symmetric_tensor" title="Symmetric tensor">Symmetric tensor</a></li> <li><a href="/wiki/Tensor_operator" title="Tensor operator">Tensor operator</a></li> <li><a href="/wiki/Tensor_bundle" title="Tensor bundle">Tensor bundle</a></li> <li><a href="/wiki/Two-point_tensor" title="Two-point tensor">Two-point tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operations</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Covariant_derivative" title="Covariant derivative">Covariant derivative</a></li> <li><a href="/wiki/Exterior_covariant_derivative" title="Exterior covariant derivative">Exterior covariant derivative</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Exterior_product" class="mw-redirect" title="Exterior product">Exterior product</a></li> <li><a href="/wiki/Hodge_star_operator" title="Hodge star operator">Hodge star operator</a></li> <li><a href="/wiki/Lie_derivative" title="Lie derivative">Lie derivative</a></li> <li><a href="/wiki/Raising_and_lowering_indices" title="Raising and lowering indices">Raising and lowering indices</a></li> <li><a href="/wiki/Symmetrization" title="Symmetrization">Symmetrization</a></li> <li><a href="/wiki/Tensor_contraction" title="Tensor contraction">Tensor contraction</a></li> <li><a href="/wiki/Tensor_product" title="Tensor product">Tensor product</a></li> <li><a href="/wiki/Transpose" title="Transpose">Transpose</a> (2nd-order tensors)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related<br />abstractions</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Affine_connection" title="Affine connection">Affine connection</a></li> <li><a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">Basis</a></li> <li><a href="/wiki/Cartan_formalism_(physics)" class="mw-redirect" title="Cartan formalism (physics)">Cartan formalism (physics)</a></li> <li><a href="/wiki/Connection_form" title="Connection form">Connection form</a></li> <li><a href="/wiki/Covariance_and_contravariance_of_vectors" title="Covariance and contravariance of vectors">Covariance and contravariance of vectors</a></li> <li><a href="/wiki/Differential_form" title="Differential form">Differential form</a></li> <li><a href="/wiki/Dimension" title="Dimension">Dimension</a></li> <li><a href="/wiki/Exterior_form" class="mw-redirect" title="Exterior form">Exterior form</a></li> <li><a href="/wiki/Fiber_bundle" title="Fiber bundle">Fiber bundle</a></li> <li><a href="/wiki/Geodesic" title="Geodesic">Geodesic</a></li> <li><a href="/wiki/Levi-Civita_connection" title="Levi-Civita connection">Levi-Civita connection</a></li> <li><a href="/wiki/Linear_map" title="Linear map">Linear map</a></li> <li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">Matrix</a></li> <li><a href="/wiki/Multivector" title="Multivector">Multivector</a></li> <li><a href="/wiki/Pseudotensor" title="Pseudotensor">Pseudotensor</a></li> <li><a href="/wiki/Spinor" title="Spinor">Spinor</a></li> <li><a href="/wiki/Vector_(mathematics_and_physics)" title="Vector (mathematics and physics)">Vector</a></li> <li><a href="/wiki/Vector_space" title="Vector space">Vector space</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Notable tensors</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Mathematics</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a></li> <li><a href="/wiki/Levi-Civita_symbol" title="Levi-Civita symbol">Levi-Civita symbol</a></li> <li><a href="/wiki/Metric_tensor" title="Metric tensor">Metric tensor</a></li> <li><a href="/wiki/Nonmetricity_tensor" title="Nonmetricity tensor">Nonmetricity tensor</a></li> <li><a href="/wiki/Ricci_curvature" title="Ricci curvature">Ricci curvature</a></li> <li><a href="/wiki/Riemann_curvature_tensor" title="Riemann curvature tensor">Riemann curvature tensor</a></li> <li><a href="/wiki/Torsion_tensor" title="Torsion tensor">Torsion tensor</a></li> <li><a href="/wiki/Weyl_tensor" title="Weyl tensor">Weyl tensor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Physics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment_of_inertia#Inertia_tensor" title="Moment of inertia">Moment of inertia</a></li> <li><a href="/wiki/Angular_momentum#Angular_momentum_in_relativistic_mechanics" title="Angular momentum">Angular momentum tensor</a></li> <li><a href="/wiki/Spin_tensor" title="Spin tensor">Spin tensor</a></li> <li><a href="/wiki/Cauchy_stress_tensor" title="Cauchy stress tensor">Cauchy stress tensor</a></li> <li><a href="/wiki/Stress%E2%80%93energy_tensor" title="Stress–energy tensor">stress–energy tensor</a></li> <li><a href="/wiki/Einstein_tensor" title="Einstein tensor">Einstein tensor</a></li> <li><a href="/wiki/Electromagnetic_tensor" title="Electromagnetic tensor">EM tensor</a></li> <li><a href="/wiki/Gluon_field_strength_tensor" title="Gluon field strength tensor">Gluon field strength tensor</a></li> <li><a href="/wiki/Metric_tensor_(general_relativity)" title="Metric tensor (general relativity)">Metric tensor (GR)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mathematician" title="Mathematician">Mathematicians</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/%C3%89lie_Cartan" title="Élie Cartan">Élie Cartan</a></li> <li><a href="/wiki/Augustin-Louis_Cauchy" title="Augustin-Louis Cauchy">Augustin-Louis Cauchy</a></li> <li><a href="/wiki/Elwin_Bruno_Christoffel" title="Elwin Bruno Christoffel">Elwin Bruno Christoffel</a></li> <li><a href="/wiki/Albert_Einstein" title="Albert Einstein">Albert Einstein</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><a href="/wiki/Carl_Friedrich_Gauss" title="Carl Friedrich Gauss">Carl Friedrich Gauss</a></li> <li><a href="/wiki/Hermann_Grassmann" title="Hermann Grassmann">Hermann Grassmann</a></li> <li><a href="/wiki/Tullio_Levi-Civita" title="Tullio Levi-Civita">Tullio Levi-Civita</a></li> <li><a href="/wiki/Gregorio_Ricci-Curbastro" title="Gregorio Ricci-Curbastro">Gregorio Ricci-Curbastro</a></li> <li><a href="/wiki/Bernhard_Riemann" title="Bernhard Riemann">Bernhard Riemann</a></li> <li><a href="/wiki/Jan_Arnoldus_Schouten" title="Jan Arnoldus Schouten">Jan Arnoldus Schouten</a></li> <li><a href="/wiki/Woldemar_Voigt" title="Woldemar Voigt">Woldemar Voigt</a></li> <li><a href="/wiki/Hermann_Weyl" title="Hermann Weyl">Hermann Weyl</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Calculus" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus_topics" title="Template:Calculus topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus_topics" title="Template talk:Calculus topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus_topics" title="Special:EditPage/Template:Calculus topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Calculus" style="font-size:114%;margin:0 4em"><a href="/wiki/Calculus" title="Calculus">Calculus</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_theorem" title="Binomial theorem">Binomial theorem</a></li> <li><a href="/wiki/Concave_function" title="Concave function">Concave function</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a href="/wiki/Finite_difference" title="Finite difference">Finite difference</a></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free variables and bound variables</a></li> <li><a href="/wiki/Graph_of_a_function" title="Graph of a function">Graph of a function</a></li> <li><a href="/wiki/Linear_function" title="Linear function">Linear function</a></li> <li><a href="/wiki/Radian" title="Radian">Radian</a></li> <li><a href="/wiki/Rolle%27s_theorem" title="Rolle&#39;s theorem">Rolle's theorem</a></li> <li><a href="/wiki/Secant_line" title="Secant line">Secant</a></li> <li><a href="/wiki/Slope" title="Slope">Slope</a></li> <li><a href="/wiki/Tangent" title="Tangent">Tangent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limits</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indeterminate_form" title="Indeterminate form">Indeterminate form</a></li> <li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limit of a function</a> <ul><li><a href="/wiki/One-sided_limit" title="One-sided limit">One-sided limit</a></li></ul></li> <li><a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">Limit of a sequence</a></li> <li><a href="/wiki/Order_of_approximation" title="Order of approximation">Order of approximation</a></li> <li><a href="/wiki/(%CE%B5,_%CE%B4)-definition_of_limit" class="mw-redirect" title="(ε, δ)-definition of limit">(ε, δ)-definition of limit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a> <ul><li><a href="/wiki/Leibniz%27s_notation" title="Leibniz&#39;s notation">Leibniz's notation</a></li> <li><a href="/wiki/Newton%27s_notation_for_differentiation" class="mw-redirect" title="Newton&#39;s notation for differentiation">Newton's notation</a></li></ul></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules of differentiation</a> <ul><li><a href="/wiki/Linearity_of_differentiation" title="Linearity of differentiation">linearity</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L&#39;Hôpital&#39;s rule">L'Hôpital's</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a> <ul><li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz's rule</a></li></ul></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li></ul></li> <li>Other techniques <ul><li><a href="/wiki/Implicit_differentiation" class="mw-redirect" title="Implicit differentiation">Implicit differentiation</a></li> <li><a href="/wiki/Inverse_functions_and_differentiation" class="mw-redirect" title="Inverse functions and differentiation">Inverse functions and differentiation</a></li> <li><a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">Logarithmic derivative</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li></ul></li> <li><a href="/wiki/Stationary_point" title="Stationary point">Stationary points</a> <ul><li><a href="/wiki/First_derivative_test" class="mw-redirect" title="First derivative test">First derivative test</a></li> <li><a href="/wiki/Second_derivative_test" class="mw-redirect" title="Second derivative test">Second derivative test</a></li> <li><a href="/wiki/Extreme_value_theorem" title="Extreme value theorem">Extreme value theorem</a></li> <li><a href="/wiki/Maximum_and_minimum" title="Maximum and minimum">Maximum and minimum</a></li></ul></li> <li>Further applications <ul><li><a href="/wiki/Newton%27s_method" title="Newton&#39;s method">Newton's method</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor&#39;s theorem">Taylor's theorem</a></li></ul></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equation</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equation</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equation</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">Integral calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Arc_length" title="Arc length">Arc length</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Integral#Properties" title="Integral">Basic properties</a></li> <li><a href="/wiki/Constant_of_integration" title="Constant of integration">Constant of integration</a></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a> <ul><li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Differentiating under the integral sign</a></li></ul></li> <li><a href="/wiki/Integration_by_parts" title="Integration by parts">Integration by parts</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Integration by substitution</a> <ul><li><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a></li> <li><a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a></li> <li><a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">Tangent half-angle substitution</a></li></ul></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions in integration</a> <ul><li><a href="/wiki/Quadratic_integral" title="Quadratic integral">Quadratic integral</a></li></ul></li> <li><a href="/wiki/Trapezoidal_rule" title="Trapezoidal rule">Trapezoidal rule</a></li> <li>Volumes <ul><li><a href="/wiki/Disc_integration" title="Disc integration">Washer method</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Shell method</a></li></ul></li> <li><a href="/wiki/Integral_equation" title="Integral equation">Integral equation</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Derivatives <ul><li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li></ul></li> <li>Basic theorems <ul><li><a href="/wiki/Fundamental_Theorem_of_Line_Integrals" class="mw-redirect" title="Fundamental Theorem of Line Integrals">Line integrals</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green&#39;s theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes&#39; theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Gauss'</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence theorem</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian matrix and determinant</a></li> <li><a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li>Advanced topics <ul><li><a href="/wiki/Differential_form" title="Differential form">Differential forms</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Generalized_Stokes%27_theorem" class="mw-redirect" title="Generalized Stokes&#39; theorem">Generalized Stokes' theorem</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sequences and series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetico-geometric_sequence" title="Arithmetico-geometric sequence">Arithmetico-geometric sequence</a></li> <li>Types of series <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier</a></li> <li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">Infinite</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a> <ul><li><a href="/wiki/Maclaurin_series" class="mw-redirect" title="Maclaurin series">Maclaurin</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul></li> <li>Tests of convergence <ul><li><a href="/wiki/Abel%27s_test" title="Abel&#39;s test">Abel's</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet&#39;s test">Dirichlet's</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Term</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special functions<br />and numbers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bernoulli_number" title="Bernoulli number">Bernoulli numbers</a></li> <li><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e (mathematical constant)</a></li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li> <li><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithm</a></li> <li><a href="/wiki/Stirling%27s_approximation" title="Stirling&#39;s approximation">Stirling's approximation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_calculus" title="History of calculus">History of calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adequality" title="Adequality">Adequality</a></li> <li><a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a></li> <li><a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a></li> <li><a href="/wiki/Generality_of_algebra" title="Generality of algebra">Generality of algebra</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Infinitesimal" title="Infinitesimal">Infinitesimal</a></li> <li><a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">Infinitesimal calculus</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Fluxion" title="Fluxion">Fluxion</a></li> <li><a href="/wiki/Law_of_Continuity" class="mw-redirect" title="Law of Continuity">Law of Continuity</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Method of Fluxions</a></i></li> <li><i><a href="/wiki/The_Method_of_Mechanical_Theorems" title="The Method of Mechanical Theorems">The Method of Mechanical Theorems</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Integrals" scope="row" class="navbox-group" style="width:1%;text-align:left"><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_integrals_of_rational_functions" title="List of integrals of rational functions">rational functions</a></li> <li><a href="/wiki/List_of_integrals_of_irrational_functions" title="List of integrals of irrational functions">irrational functions</a></li> <li><a href="/wiki/List_of_integrals_of_exponential_functions" title="List of integrals of exponential functions">exponential functions</a></li> <li><a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">logarithmic functions</a></li> <li><a href="/wiki/List_of_integrals_of_hyperbolic_functions" title="List of integrals of hyperbolic functions">hyperbolic functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_hyperbolic_functions" title="List of integrals of inverse hyperbolic functions">inverse</a></li></ul></li> <li><a href="/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions">trigonometric functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_trigonometric_functions" title="List of integrals of inverse trigonometric functions">inverse</a></li> <li><a href="/wiki/Integral_of_the_secant_function" title="Integral of the secant function">Secant</a></li> <li><a href="/wiki/Integral_of_secant_cubed" title="Integral of secant cubed">Secant cubed</a></li></ul></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_limits" title="List of limits">List of limits</a></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">List of derivatives</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous topics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Complex calculus <ul><li><a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">Contour integral</a></li></ul></li> <li>Differential geometry <ul><li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Differential_geometry_of_curves" class="mw-redirect" title="Differential geometry of curves">of curves</a></li> <li><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">of surfaces</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li></ul></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a></li> <li><a href="/wiki/Gabriel%27s_horn" title="Gabriel&#39;s horn">Gabriel's horn</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Proof that 22/7 exceeds π</a></li> <li><a href="/wiki/Regiomontanus%27_angle_maximization_problem" title="Regiomontanus&#39; angle maximization problem">Regiomontanus' angle maximization problem</a></li> <li><a href="/wiki/Steinmetz_solid" title="Steinmetz solid">Steinmetz solid</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Major_topics_in_mathematical_analysis" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Analysis-footer" title="Template:Analysis-footer"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Analysis-footer" title="Template talk:Analysis-footer"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Analysis-footer" title="Special:EditPage/Template:Analysis-footer"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_topics_in_mathematical_analysis" style="font-size:114%;margin:0 4em">Major topics in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">mathematical analysis</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><b><a href="/wiki/Calculus" title="Calculus">Calculus</a></b>: <a href="/wiki/Integral" title="Integral">Integration</a></li> <li><a href="/wiki/Derivative" title="Derivative">Differentiation</a></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equations</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">ordinary</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">partial</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">stochastic</a></li></ul></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a></li> <li><a href="/wiki/Calculus_of_variations" title="Calculus of variations">Calculus of variations</a></li> <li><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix calculus</a></li> <li><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Lists of integrals</a></li> <li><a href="/wiki/Table_of_derivatives" class="mw-redirect" title="Table of derivatives">Table of derivatives</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Complex_analysis" title="Complex analysis">Complex analysis</a></li> <li><a href="/wiki/Hypercomplex_analysis" title="Hypercomplex analysis">Hypercomplex analysis</a> (<a href="/wiki/Quaternionic_analysis" title="Quaternionic analysis">quaternionic analysis</a>)</li> <li><a href="/wiki/Functional_analysis" title="Functional analysis">Functional analysis</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li> <li><a href="/wiki/Harmonic_analysis" title="Harmonic analysis">Harmonic analysis</a></li> <li><a href="/wiki/P-adic_analysis" title="P-adic analysis">P-adic analysis</a> (<a href="/wiki/P-adic_number" title="P-adic number">P-adic numbers</a>)</li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure theory</a></li> <li><a href="/wiki/Representation_theory" title="Representation theory">Representation theory</a></li></ul> <ul><li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Functions</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Special_functions" title="Special functions">Special functions</a></li> <li><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limit</a></li> <li><a href="/wiki/Series_(mathematics)" title="Series (mathematics)">Series</a></li> <li><a href="/wiki/Infinity" title="Infinity">Infinity</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐rnl2r Cached time: 20241122145133 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.808 seconds Real time usage: 1.074 seconds Preprocessor visited node count: 7676/1000000 Post‐expand include size: 147452/2097152 bytes Template argument size: 9694/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 152393/5000000 bytes Lua time usage: 0.418/10.000 seconds Lua memory usage: 6313271/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 733.357 1 -total 28.31% 207.639 2 Template:Reflist 25.86% 189.631 25 Template:Cite_book 17.39% 127.542 7 Template:Navbox 15.11% 110.790 1 Template:Short_description 14.27% 104.651 95 Template:Math 12.67% 92.881 1 Template:Differentiable_computing 10.97% 80.480 2 Template:Pagetype 6.17% 45.213 12 Template:Citation 4.47% 32.771 1 Template:Redirect --> <!-- Saved in parser cache with key enwiki:pcache:idhash:35456546-0!canonical and timestamp 20241122145133 and revision id 1255956512. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Ricci_calculus&amp;oldid=1255956512">https://en.wikipedia.org/w/index.php?title=Ricci_calculus&amp;oldid=1255956512</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Calculus" title="Category:Calculus">Calculus</a></li><li><a href="/wiki/Category:Differential_geometry" title="Category:Differential geometry">Differential geometry</a></li><li><a href="/wiki/Category:Tensors" title="Category:Tensors">Tensors</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:CS1_German-language_sources_(de)" title="Category:CS1 German-language sources (de)">CS1 German-language sources (de)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 7 November 2024, at 13:19<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Ricci_calculus&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-mcbjw","wgBackendResponseTime":165,"wgPageParseReport":{"limitreport":{"cputime":"0.808","walltime":"1.074","ppvisitednodes":{"value":7676,"limit":1000000},"postexpandincludesize":{"value":147452,"limit":2097152},"templateargumentsize":{"value":9694,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":152393,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 733.357 1 -total"," 28.31% 207.639 2 Template:Reflist"," 25.86% 189.631 25 Template:Cite_book"," 17.39% 127.542 7 Template:Navbox"," 15.11% 110.790 1 Template:Short_description"," 14.27% 104.651 95 Template:Math"," 12.67% 92.881 1 Template:Differentiable_computing"," 10.97% 80.480 2 Template:Pagetype"," 6.17% 45.213 12 Template:Citation"," 4.47% 32.771 1 Template:Redirect"]},"scribunto":{"limitreport-timeusage":{"value":"0.418","limit":"10.000"},"limitreport-memusage":{"value":6313271,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-rnl2r","timestamp":"20241122145133","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Ricci calculus","url":"https:\/\/en.wikipedia.org\/wiki\/Ricci_calculus","sameAs":"http:\/\/www.wikidata.org\/entity\/Q7322955","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q7322955","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2012-04-11T12:32:50Z","dateModified":"2024-11-07T13:19:03Z","headline":"tensor index notation for tensor-based calculations"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10