CINXE.COM
Search results for: heat source
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: heat source</title> <meta name="description" content="Search results for: heat source"> <meta name="keywords" content="heat source"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="heat source" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="heat source"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2599</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: heat source</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2599</span> 2D and 3D Unsteady Simulation of the Heat Transfer in the Sample during Heat Treatment by Moving Heat Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Z.%20Vesel%C3%BD">Z. Vesel媒</a>, <a href="https://publications.waset.org/search?q=M.%20Honner"> M. Honner</a>, <a href="https://publications.waset.org/search?q=J.%20Mach"> J. Mach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the performed work is to establish the 2D and 3D model of direct unsteady task of sample heat treatment by moving source employing computer model on the basis of finite element method. Complex boundary condition on heat loaded sample surface is the essential feature of the task. Computer model describes heat treatment of the sample during heat source movement over the sample surface. It is started from 2D task of sample cross section as a basic model. Possibilities of extension from 2D to 3D task are discussed. The effect of the addition of third model dimension on temperature distribution in the sample is showed. Comparison of various model parameters on the sample temperatures is observed. Influence of heat source motion on the depth of material heat treatment is shown for several velocities of the movement. Presented computer model is prepared for the utilization in laser treatment of machine parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer%20simulation" title="Computer simulation">Computer simulation</a>, <a href="https://publications.waset.org/search?q=unsteady%20model" title=" unsteady model"> unsteady model</a>, <a href="https://publications.waset.org/search?q=heat%0D%0Atreatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/search?q=complex%20boundary%20condition" title=" complex boundary condition"> complex boundary condition</a>, <a href="https://publications.waset.org/search?q=moving%20heat%20source." title=" moving heat source."> moving heat source.</a> </p> <a href="https://publications.waset.org/10002687/2d-and-3d-unsteady-simulation-of-the-heat-transfer-in-the-sample-during-heat-treatment-by-moving-heat-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002687/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002687/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002687/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002687/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002687/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002687/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002687/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002687/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002687/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002687/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2046</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2598</span> Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Djarot%20B.%20Darmadi">Djarot B. Darmadi</a>, <a href="https://publications.waset.org/search?q=John%20Norrish"> John Norrish</a>, <a href="https://publications.waset.org/search?q=Anh%20Kiet%20Tieu"> Anh Kiet Tieu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solutions for the temperature profile around a moving heat source are obtained using both analytic and finite element (FEM) methods. Analytic and FEM solutions are applied to study the temperature profile in welding. A moving heat source is represented using both point heat source and uniform distributed disc heat source models. Analytic solutions are obtained by solving the partial differential equation for energy conservation in a solid, and FEM results are provided by simulating welding using the ANSYS software. Comparison is made for quasi steady state conditions. The results provided by the analytic solutions are in good agreement with results obtained by FEM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Analytic%20solution" title="Analytic solution">Analytic solution</a>, <a href="https://publications.waset.org/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/search?q=Temperature%20profile" title=" Temperature profile"> Temperature profile</a>, <a href="https://publications.waset.org/search?q=HeatSource%20Model" title=" HeatSource Model"> HeatSource Model</a> </p> <a href="https://publications.waset.org/864/analytic-and-finite-element-solutions-for-temperature-profiles-in-welding-using-varied-heat-source-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/864/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/864/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/864/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/864/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/864/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/864/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/864/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/864/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/864/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/864/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2235</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2597</span> Convective Heat Transfer of Internal Electronic Components in a Headlight Geometry </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jan%20Langebach">Jan Langebach</a>, <a href="https://publications.waset.org/search?q=Peter%20Fischer"> Peter Fischer</a>, <a href="https://publications.waset.org/search?q=Christian%20Karcher"> Christian Karcher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study is presented on convective heat transfer in enclosures. The results are addressed to automotive headlights containing new-age light sources like Light Emitting Diodes (LED). The heat transfer from the heat source (LED) to the enclosure walls is investigated for mixed convection as interaction of the forced convection flow from an inlet and an outlet port and the natural convection at the heat source. Unlike existing studies, inlet and outlet port are thermally coupled and do not serve to remove hot fluid. The input power of the heat source is expressed by the Rayleigh number. The internal position of the heat source, the aspect ratio of the enclosure, and the inclination angle of one wall are varied. The results are given in terms of the global Nusselt number and the enclosure Nusselt number that characterize the heat transfer from the source and from the interior fluid to the enclosure walls, respectively. It is found that the heat transfer from the source to the fluid can be maximized if the source is placed in the main stream from the inlet to the outlet port. In this case, the Reynolds number and heat source position have the major impact on the heat transfer. A disadvantageous position has been found where natural and forced convection compete each other. The overall heat transfer from the source to the wall increases with increasing Reynolds number as well as with increasing aspect ratio and decreasing inclination angle. The heat transfer from the interior fluid to the enclosure wall increases upon decreasing the aspect ratio and increasing the inclination angle. This counteracting behaviour is caused by the variation of the area of the enclosure wall. All mixed convection results are compared to the natural convection limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Enclosure" title="Enclosure">Enclosure</a>, <a href="https://publications.waset.org/search?q=heat%20source" title=" heat source"> heat source</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=mixed%0Aconvection." title=" mixed convection."> mixed convection.</a> </p> <a href="https://publications.waset.org/4676/convective-heat-transfer-of-internal-electronic-components-in-a-headlight-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4676/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4676/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4676/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4676/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4676/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4676/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4676/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4676/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4676/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4676/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1801</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2596</span> Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammad%20Reza%20Soltani">Mohammad Reza Soltani</a>, <a href="https://publications.waset.org/search?q=Mohammad%20Farahani"> Mohammad Farahani</a>, <a href="https://publications.waset.org/search?q=Javad%20Sepahi%20Younsi"> Javad Sepahi Younsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Drag%20coefficient" title="Drag coefficient">Drag coefficient</a>, <a href="https://publications.waset.org/search?q=heat%20source" title=" heat source"> heat source</a>, <a href="https://publications.waset.org/search?q=performanceparameters" title=" performanceparameters"> performanceparameters</a>, <a href="https://publications.waset.org/search?q=supersonic%20inlet." title=" supersonic inlet."> supersonic inlet.</a> </p> <a href="https://publications.waset.org/2446/performance-improvement-of-a-supersonic-external-compression-inlet-by-heat-source-addition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2446/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2446/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2446/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2446/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2446/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2446/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2446/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2446/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2446/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2446/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2302</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2595</span> Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Anjanna%20Matta">Anjanna Matta</a>, <a href="https://publications.waset.org/search?q=P.%20A.%20L.%20Narayana"> P. A. L. Narayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Linear%20stability%20analysis" title="Linear stability analysis">Linear stability analysis</a>, <a href="https://publications.waset.org/search?q=heat%20source" title=" heat source"> heat source</a>, <a href="https://publications.waset.org/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/search?q=mass%20flow." title=" mass flow."> mass flow.</a> </p> <a href="https://publications.waset.org/10002268/influence-of-internal-heat-source-on-thermal-instability-in-a-horizontal-porous-layer-with-mass-flow-and-inclined-temperature-gradient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002268/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002268/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002268/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002268/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002268/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002268/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002268/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002268/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002268/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002268/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1730</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2594</span> Ground Heat Exchanger Modeling Developed for Energy Flows of an Incompressible Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Paul%20Christodoulides">Paul Christodoulides</a>, <a href="https://publications.waset.org/search?q=Georgios%20Florides"> Georgios Florides</a>, <a href="https://publications.waset.org/search?q=Panayiotis%20Pouloupatis"> Panayiotis Pouloupatis</a>, <a href="https://publications.waset.org/search?q=Vassilios%20Messaritis"> Vassilios Messaritis</a>, <a href="https://publications.waset.org/search?q=Lazaros%20Lazari"> Lazaros Lazari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground-source heat pumps achieve higher efficiencies than conventional air-source heat pumps because they exchange heat with the ground that is cooler in summer and hotter in winter than the air environment. Earth heat exchangers are essential parts of the ground-source heat pumps and the accurate prediction of their performance is of fundamental importance. This paper presents the development and validation of a numerical model through an incompressible fluid flow, for the simulation of energy and temperature changes in and around a U-tube borehole heat exchanger. The FlexPDE software is used to solve the resulting simultaneous equations that model the heat exchanger. The validated model (through a comparison with experimental data) is then used to extract conclusions on how various parameters like the U-tube diameter, the variation of the ground thermal conductivity and specific heat and the borehole filling material affect the temperature of the fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=U-tube%20borehole" title="U-tube borehole">U-tube borehole</a>, <a href="https://publications.waset.org/search?q=energy%20flow" title=" energy flow"> energy flow</a>, <a href="https://publications.waset.org/search?q=incompressible%20fluid" title=" incompressible fluid"> incompressible fluid</a>, <a href="https://publications.waset.org/search?q=numerical%20model" title=" numerical model"> numerical model</a> </p> <a href="https://publications.waset.org/13387/ground-heat-exchanger-modeling-developed-for-energy-flows-of-an-incompressible-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13387/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13387/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13387/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13387/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13387/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13387/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13387/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13387/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13387/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13387/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2015</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2593</span> A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100<sup>o</sup>C to 140<sup>o</sup>C using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Organic%20Rankine%20cycle%20%28ORC%29" title="Organic Rankine cycle (ORC)">Organic Rankine cycle (ORC)</a>, <a href="https://publications.waset.org/search?q=low%20temperature%20heat%20source" title=" low temperature heat source"> low temperature heat source</a>, <a href="https://publications.waset.org/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/search?q=source%20temperature." title=" source temperature. "> source temperature. </a> </p> <a href="https://publications.waset.org/9998302/a-second-law-assessment-of-organic-rankine-cycle-depending-on-source-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998302/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998302/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998302/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998302/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998302/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998302/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998302/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998302/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998302/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998302/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1893</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2592</span> Free Convection in an Infinite Porous Dusty Medium Induced by Pulsating Point Heat Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Kannan">K. Kannan</a>, <a href="https://publications.waset.org/search?q=V.%20Venkataraman"> V. Venkataraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Free convection effects and heat transfer due to a pulsating point heat source embedded in an infinite, fluid saturated, porous dusty medium are studied analytically. Both velocity and temperature fields are discussed in the form of series expansions in the Rayleigh number, for both the fluid and particle phases based on the mean heat generation rate from source and on the permeability of the porous dusty medium. This study is carried out by assuming the Rayleigh number small and the validity of Darcy-s law. Analytical expressions for both phases are obtained for second order mean in both velocity and temperature fields and evolution of different wave patterns are observed in the fluctuating part. It has been observed that, at the vicinity of the origin, the second order mean flow is influenced only by relaxation time of dust particles and not by dust concentration.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Pulsating%20point%20heat%20source" title="Pulsating point heat source">Pulsating point heat source</a>, <a href="https://publications.waset.org/search?q=azimuthal%20velocity" title=" azimuthal velocity"> azimuthal velocity</a>, <a href="https://publications.waset.org/search?q=porous%20dusty%20medium" title=" porous dusty medium"> porous dusty medium</a>, <a href="https://publications.waset.org/search?q=Darcy%27s%20law." title=" Darcy's law."> Darcy's law.</a> </p> <a href="https://publications.waset.org/7592/free-convection-in-an-infinite-porous-dusty-medium-induced-by-pulsating-point-heat-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7592/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7592/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7592/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7592/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7592/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7592/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7592/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7592/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7592/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7592/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1375</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2591</span> Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Haoshui%20Yu">Haoshui Yu</a>, <a href="https://publications.waset.org/search?q=Donghoi%20Kim"> Donghoi Kim</a>, <a href="https://publications.waset.org/search?q=Truls%20Gundersen"> Truls Gundersen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO<sub>2</sub> power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO<sub>2</sub> (tCO<sub>2</sub>) cycle or supercritical CO<sub>2</sub> (sCO<sub>2</sub>) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO<sub>2</sub> cycle and sCO<sub>2</sub> cycle are different from that of an ORC. The tCO<sub>2</sub> cycle and the sCO<sub>2</sub> cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO<sub>2</sub> cycle, sCO<sub>2</sub> cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO<sub>2</sub>/ORC performs better compared with cascaded ORC/ORC and cascaded sCO<sub>2</sub>/ORC for the case study.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=LNG%20cold%20energy" title="LNG cold energy">LNG cold energy</a>, <a href="https://publications.waset.org/search?q=low-temperature%20waste%20heat" title=" low-temperature waste heat"> low-temperature waste heat</a>, <a href="https://publications.waset.org/search?q=organic%20Rankine%20cycle" title=" organic Rankine cycle"> organic Rankine cycle</a>, <a href="https://publications.waset.org/search?q=supercritical%20CO2%20cycle" title=" supercritical CO2 cycle"> supercritical CO2 cycle</a>, <a href="https://publications.waset.org/search?q=transcritical%20CO2%20cycle." title=" transcritical CO2 cycle. "> transcritical CO2 cycle. </a> </p> <a href="https://publications.waset.org/10008823/cascaded-transcriticalsupercritical-co2-cycles-and-organic-rankine-cycles-to-recover-low-temperature-waste-heat-and-lng-cold-energy-simultaneously" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008823/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008823/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008823/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008823/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008823/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008823/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008823/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008823/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008823/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008823/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1088</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2590</span> Unsteady Heat and Mass Transfer in MHD Flow of Nanofluids over Stretching Sheet with a Non-Uniform Heat Source/Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bandaris%20Shankar">Bandaris Shankar</a>, <a href="https://publications.waset.org/search?q=Yohannes%20Yirga"> Yohannes Yirga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, the problem of heat and mass transfer in unsteady MHD boundary-layer flow of nanofluids over stretching sheet with a non uniform heat source/sink is considered. The unsteadiness in the flow and temperature is caused by the time-dependent stretching velocity and surface temperature. The unsteady boundary layer equations are transformed to a system of non-linear ordinary differential equations and solved numerically using Keller box method. The velocity, temperature, and concentration profiles were obtained and utilized to compute the skin-friction coefficient, local Nusselt number, and local Sherwood number for different values of the governing parameters viz. solid volume fraction parameter, unsteadiness parameter, magnetic field parameter, Schmidt number, space-dependent and temperature-dependent parameters for heat source/sink. A comparison of the numerical results of the present study with previously published data revealed an excellent agreement.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Manetohydrodynamics" title="Manetohydrodynamics">Manetohydrodynamics</a>, <a href="https://publications.waset.org/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/search?q=non-uniform%20heat%20source%2Fsink" title=" non-uniform heat source/sink"> non-uniform heat source/sink</a>, <a href="https://publications.waset.org/search?q=unsteady." title=" unsteady."> unsteady.</a> </p> <a href="https://publications.waset.org/9997184/unsteady-heat-and-mass-transfer-in-mhd-flow-of-nanofluids-over-stretching-sheet-with-a-non-uniform-heat-sourcesink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997184/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997184/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997184/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997184/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997184/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997184/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997184/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997184/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997184/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997184/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3239</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2589</span> Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tapano%20Kumar%20Hotta">Tapano Kumar Hotta</a>, <a href="https://publications.waset.org/search?q=S%20P%20Venkateshan"> S P Venkateshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Discrete%20heat%20source" title="Discrete heat source">Discrete heat source</a>, <a href="https://publications.waset.org/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/search?q=natural%0Aconvection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/search?q=vertical%20channel" title=" vertical channel"> vertical channel</a> </p> <a href="https://publications.waset.org/9581/natural-and-mixed-convection-heat-transfer-cooling-of-discrete-heat-sources-placed-near-the-bottom-on-a-pcb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9581/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9581/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9581/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9581/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9581/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9581/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9581/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9581/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9581/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9581/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2079</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2588</span> Performance Analysis of Absorption Power Cycle under Different Source Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The absorption power generation cycle based on the ammonia-water mixture has attracted much attention for efficient recovery of low-grade energy sources. In this paper a thermodynamic performance analysis is carried out for a Kalina cycle using ammonia-water mixture as a working fluid for efficient conversion of low-temperature heat source in the form of sensible energy. The effects of the source temperature on the system performance are extensively investigated by using the thermodynamic models. The results show that the source temperature as well as the ammonia mass fraction affects greatly on the thermodynamic performance of the cycle.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ammonia-water%20mixture" title="Ammonia-water mixture">Ammonia-water mixture</a>, <a href="https://publications.waset.org/search?q=Kalina%20cycle" title=" Kalina cycle"> Kalina cycle</a>, <a href="https://publications.waset.org/search?q=low-grade%0D%0Aheat%20source" title=" low-grade heat source"> low-grade heat source</a>, <a href="https://publications.waset.org/search?q=source%20temperature." title=" source temperature."> source temperature.</a> </p> <a href="https://publications.waset.org/10000477/performance-analysis-of-absorption-power-cycle-under-different-source-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000477/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000477/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000477/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000477/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000477/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000477/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000477/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000477/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000477/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000477/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2474</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2587</span> Radiation Effects on the Unsteady MHD Free Convection Flow Past in an Infinite Vertical Plate with Heat Source</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tusharkanta%20Das">Tusharkanta Das</a>, <a href="https://publications.waset.org/search?q=Tumbanath%20Samantara"> Tumbanath Samantara</a>, <a href="https://publications.waset.org/search?q=Sukanta%20Kumar%20Sahoo"> Sukanta Kumar Sahoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Unsteady effects of MHD free convection flow past in an infinite vertical plate with heat source in presence of radiation with reference to all critical parameters that appear in field equations are studied in this paper. The governing equations are developed by usual Boussinesq’s approximation. The problem is solved by using perturbation technique. The results are obtained for velocity, temperature, Nusselt number and skin-friction. The effects of magnetic parameter, prandtl number, Grashof number, permeability parameter, heat source/sink parameter and radiation parameter are discussed on flow characteristics and shown by means of graphs and tables.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20transfer" title="Heat transfer">Heat transfer</a>, <a href="https://publications.waset.org/search?q=radiation" title=" radiation"> radiation</a>, <a href="https://publications.waset.org/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/search?q=free%20convection" title=" free convection"> free convection</a>, <a href="https://publications.waset.org/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/search?q=suction." title=" suction."> suction.</a> </p> <a href="https://publications.waset.org/10011288/radiation-effects-on-the-unsteady-mhd-free-convection-flow-past-in-an-infinite-vertical-plate-with-heat-source" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011288/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011288/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011288/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011288/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011288/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011288/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011288/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011288/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011288/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011288/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">902</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2586</span> Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Maatoug%20Hassine">Maatoug Hassine</a>, <a href="https://publications.waset.org/search?q=Mourad%20Hrizi"> Mourad Hrizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Geometric%20inverse%20source%20problem" title="Geometric inverse source problem">Geometric inverse source problem</a>, <a href="https://publications.waset.org/search?q=heat%20equation" title=" heat equation"> heat equation</a>, <a href="https://publications.waset.org/search?q=topological%20sensitivity" title=" topological sensitivity"> topological sensitivity</a>, <a href="https://publications.waset.org/search?q=topological%20optimization" title=" topological optimization"> topological optimization</a>, <a href="https://publications.waset.org/search?q=Kohn-Vogelius%0D%0Aformulation." title=" Kohn-Vogelius formulation."> Kohn-Vogelius formulation.</a> </p> <a href="https://publications.waset.org/10006334/topological-sensitivity-analysis-for-reconstruction-of-the-inverse-source-problem-from-boundary-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006334/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006334/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006334/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006334/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006334/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006334/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006334/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006334/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006334/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006334/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006334.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1133</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2585</span> Effects of Viscous Dissipation and Concentration Based Internal Heat Source on Convective Instability in a Porous Medium with Throughflow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Deepika">N. Deepika</a>, <a href="https://publications.waset.org/search?q=P.%20A.%20L.%20Narayana"> P. A. L. Narayana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Linear stability analysis of double diffusive convection in a horizontal porous layer saturated with fluid is examined by considering the effects of viscous dissipation, concentration based internal heat source and vertical throughflow. The basic steady state solution for Governing equations is derived. Linear stability analysis has been implemented numerically by using shooting and Runge-kutta methods. Critical thermal Rayleigh number Rac is obtained for various values of solutal Rayleigh number Sa, vertical Peclet number Pe, Gebhart number Ge, Lewis number Le and measure of concentration based internal heat source 纬. It is observed that Ge has destabilizing effect for upward throughflow and stabilizing effect for downward throughflow. And 纬 has considerable destabilizing effect for upward throughflow and insignificant destabilizing effect for downward throughflow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Porous%20medium" title="Porous medium">Porous medium</a>, <a href="https://publications.waset.org/search?q=concentration%20based%20internal%20heat%0D%0Asource" title=" concentration based internal heat source"> concentration based internal heat source</a>, <a href="https://publications.waset.org/search?q=vertical%20throughflow" title=" vertical throughflow"> vertical throughflow</a>, <a href="https://publications.waset.org/search?q=viscous%20dissipation." title=" viscous dissipation."> viscous dissipation.</a> </p> <a href="https://publications.waset.org/10002369/effects-of-viscous-dissipation-and-concentration-based-internal-heat-source-on-convective-instability-in-a-porous-medium-with-throughflow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002369/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002369/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002369/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002369/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002369/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002369/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002369/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002369/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002369/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002369/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1645</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2584</span> Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kemal%20Comakli">Kemal Comakli</a>, <a href="https://publications.waset.org/search?q=Meryem%20Terhan"> Meryem Terhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20recovery%20from%20flue%20gas" title="Heat recovery from flue gas">Heat recovery from flue gas</a>, <a href="https://publications.waset.org/search?q=energy%20analysis%20of%20flue%20gas" title=" energy analysis of flue gas"> energy analysis of flue gas</a>, <a href="https://publications.waset.org/search?q=economical%20analysis" title=" economical analysis"> economical analysis</a>, <a href="https://publications.waset.org/search?q=payback%20period." title=" payback period."> payback period.</a> </p> <a href="https://publications.waset.org/10004340/energy-and-economic-analysis-of-heat-recovery-from-boiler-exhaust-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004340/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004340/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004340/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004340/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004340/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004340/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004340/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004340/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004340/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004340/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2864</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2583</span> Enhancement of Natural Convection Heat Transfer within Closed Enclosure Using Parallel Fins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=F.%20A.%20Gdhaidh">F. A. Gdhaidh</a>, <a href="https://publications.waset.org/search?q=K.%20Hussain"> K. Hussain</a>, <a href="https://publications.waset.org/search?q=H.%20S.%20Qi"> H. S. Qi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A numerical study of natural convection heat transfer in water filled cavity has been examined in 3-Dfor single phase liquid cooling system by using an array of parallel plate fins mounted to one wall of a cavity. The heat generated by a heat source represents a computer CPU with dimensions of 37.5∗37.5mm mounted on substrate. A cold plate is used as a heat sink installed on the opposite vertical end of the enclosure. The air flow inside the computer case is created by an exhaust fan. A turbulent air flow is assumed and k-ε model is applied. The fins are installed on the substrate to enhance the heat transfer. The applied power energy range used is between 15 - 40W. In order to determine the thermal behaviour of the cooling system, the effect of the heat input and the number of the parallel plate fins are investigated. The results illustrate that as the fin number increases the maximum heat source temperature decreases. However, when the fin number increases to critical value the temperature start to increase due to the fins are too closely spaced and that cause the obstruction of water flow. The introduction of parallel plate fins reduces the maximum heat source temperature by 10% compared to the case without fins. The cooling system maintains the maximum chip temperature at 64.68°C when the heat input was at 40W that is much lower than the recommended computer chips limit temperature of no more than 85°C and hence the performance of the CPU is enhanced.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chips%20limit%20temperature" title="Chips limit temperature">Chips limit temperature</a>, <a href="https://publications.waset.org/search?q=closed%20enclosure" title=" closed enclosure"> closed enclosure</a>, <a href="https://publications.waset.org/search?q=natural%0D%0Aconvection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/search?q=parallel%20plate" title=" parallel plate"> parallel plate</a>, <a href="https://publications.waset.org/search?q=single%20phase%20liquid." title=" single phase liquid."> single phase liquid.</a> </p> <a href="https://publications.waset.org/10000695/enhancement-of-natural-convection-heat-transfer-within-closed-enclosure-using-parallel-fins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000695/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000695/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000695/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000695/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000695/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000695/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000695/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000695/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000695/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000695/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3006</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2582</span> A Comparative Study of Vapour Compression Heat Pump Systems under Air to Air and Air to Water Mode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kemal%20%C3%87omakli">Kemal 脟omakli</a>, <a href="https://publications.waset.org/search?q=U%C4%9Fur%20%C3%87akir"> U臒ur 脟akir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This research evaluated and compared the thermodynamic performance of heat pump systems which can be run under two different modes as air to air and air to water by using only one compressor. To achieve this comparison an experimental performance study was made on a traditional vapor compressed heat pump system that can be run air to air mode and air to water mode by help of a valve. The experiments made under different thermal conditions. Thermodynamic performance of the systems are presented and compared with each other for different working conditions.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Air%20source%20heat%20pump" title="Air source heat pump">Air source heat pump</a>, <a href="https://publications.waset.org/search?q=Energy%20Analysis" title=" Energy Analysis"> Energy Analysis</a>, <a href="https://publications.waset.org/search?q=Heat%20Pump" title=" Heat Pump"> Heat Pump</a> </p> <a href="https://publications.waset.org/3287/a-comparative-study-of-vapour-compression-heat-pump-systems-under-air-to-air-and-air-to-water-mode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3287/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3287/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3287/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3287/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3287/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3287/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3287/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3287/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3287/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3287/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1698</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2581</span> Influence of Flash Temperature on Exergetical Performance of Organic Flash Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a>, <a href="https://publications.waset.org/search?q=Chul%20Ho%20Han"> Chul Ho Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Organic Flash Cycle (OFC) has potential of improving efficiency for recovery of low temperature heat sources mainly due to reducing temperature mismatch in the heat exchanger. In this work exergetical performance analysis of ORC is conducted for recovery of low grade heat source. Effects of system parameters such as flash evaporation temperature or heating temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as exergy efficiency. Results show that exergy efficiency has a peak with respect to the flash temperature, and the optimum flash temperature increases with the heating temperature. The component where the largest exergy destruction occurs varies with the flash temperature or heating temperature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Organic%20flash%20cycle%20%28OFC%29" title="Organic flash cycle (OFC)">Organic flash cycle (OFC)</a>, <a href="https://publications.waset.org/search?q=low%20grade%20heat%20source" title=" low grade heat source"> low grade heat source</a>, <a href="https://publications.waset.org/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/search?q=anergy" title=" anergy"> anergy</a>, <a href="https://publications.waset.org/search?q=flash%20temperature." title=" flash temperature."> flash temperature.</a> </p> <a href="https://publications.waset.org/16468/influence-of-flash-temperature-on-exergetical-performance-of-organic-flash-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16468/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16468/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16468/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16468/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16468/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16468/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16468/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16468/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16468/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16468/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1922</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2580</span> Optimum Working Fluid Selection for Automotive Cogeneration System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wonsim%20Cha">Wonsim Cha</a>, <a href="https://publications.waset.org/search?q=Kibum%20Kim"> Kibum Kim</a>, <a href="https://publications.waset.org/search?q=Kyungwook%20Choi"> Kyungwook Choi</a>, <a href="https://publications.waset.org/search?q=Kihyung%20Lee"> Kihyung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A co-generation system in automobile can improve thermal efficiency of vehicle in some degree. The waste heat from the engine exhaust and coolant is still attractive energy source that reaches around 60% of the total energy converted from fuel. To maximize the effectiveness of heat exchangers for recovering the waste heat, it is vital to select the most suitable working fluid for the system, not to mention that it is important to find the optimum design for the heat exchangers. The design of heat exchanger is out of scoop of this study; rather, the main focus has been on the right selection of working fluid for the co-generation system. Simulation study was carried out to find the most suitable working fluid that can allow the system to achieve the optimum efficiency in terms of the heat recovery rate and thermal efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cycle%20Analysis" title="Cycle Analysis">Cycle Analysis</a>, <a href="https://publications.waset.org/search?q=Heat%20Recovery" title=" Heat Recovery"> Heat Recovery</a>, <a href="https://publications.waset.org/search?q=Rankine%20Cycle" title=" Rankine Cycle"> Rankine Cycle</a>, <a href="https://publications.waset.org/search?q=Waste%20Heat%20Recovery" title="Waste Heat Recovery">Waste Heat Recovery</a>, <a href="https://publications.waset.org/search?q=Working%20Fluid." title=" Working Fluid."> Working Fluid.</a> </p> <a href="https://publications.waset.org/2106/optimum-working-fluid-selection-for-automotive-cogeneration-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/2106/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/2106/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/2106/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/2106/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/2106/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/2106/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/2106/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/2106/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/2106/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/2106/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/2106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2236</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2579</span> Performance Evaluation of Extruded-Type Heat Sinks Used in Inverter for Solar Power Generation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jeong%20Hyun%20Kim">Jeong Hyun Kim</a>, <a href="https://publications.waset.org/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, heat release performances of the three extruded-type heat sinks can be used in inverter for solar power generation were evaluated. Numbers of fins in the heat sinks (namely E-38, E-47 and E-76) were 38, 47 and 76, respectively. Heat transfer areas of them were 1.8, 1.9 and 2.8m<sup>2</sup>. The heat release performances of E-38, E-47 and E-76 heat sinks were measured as 79.6, 81.6 and 83.2%, respectively. The results of heat release performance show that the larger amount of heat transfer area the higher heat release rate. While on the other, in this experiment, variations of mass flow rates caused by different cross sectional areas of the three heat sinks may not be the major parameter of the heat release. Despite the 47.4% increment of heat transfer area of E-76 heat sink than that of E-47 one, its heat release rate was higher by only 2.0%; this suggests that its heat transfer area need to be optimized.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Solar%20Inverter" title="Solar Inverter">Solar Inverter</a>, <a href="https://publications.waset.org/search?q=Heat%20Sink" title=" Heat Sink"> Heat Sink</a>, <a href="https://publications.waset.org/search?q=Forced%20Convection" title=" Forced Convection"> Forced Convection</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Performance%20Evaluation." title=" Performance Evaluation. "> Performance Evaluation. </a> </p> <a href="https://publications.waset.org/9996792/performance-evaluation-of-extruded-type-heat-sinks-used-in-inverter-for-solar-power-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996792/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996792/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996792/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996792/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996792/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996792/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996792/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996792/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996792/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996792/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2597</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2578</span> An Experimental Investigation of Thermoelectric Air-Cooling Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yu-Wei%20Chang">Yu-Wei Chang</a>, <a href="https://publications.waset.org/search?q=Chiao-Hung%20Cheng"> Chiao-Hung Cheng</a>, <a href="https://publications.waset.org/search?q=Wen-Fang%20Wu"> Wen-Fang Wu</a>, <a href="https://publications.waset.org/search?q=Sih-Li%20Chen"> Sih-Li Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article experimentally investigates the thermal performance of thermoelectric air-cooling module which comprises a thermoelectric cooler (TEC) and an air-cooling heat sink. The influences of input current and heat load are determined. And performances under each situation are quantified by thermal resistance analysis. Since TEC generates Joule heat, this nature makes construction of thermal resistance network difficult. To simplify the analysis, this article emphasizes on the resistance heat load might meet when passing through the device. Therefore, the thermal resistances in this paper are to divide temperature differences by heat load. According to the result, there exists an optimum input current under every heating power. In this case, the optimum input current is around 6A or 7A. The performance of the heat sink would be improved with TEC under certain heating power and input current, especially at a low heat load. According to the result, the device can even make the heat source cooler than the ambient. However, TEC is not always effective at every heat load and input current. In some situation, the device works worse than the heat sink without TEC. To determine the availability of TEC, this study figures out the effective operating region in which the TEC air-cooling module works better than the heat sink without TEC. The result shows that TEC is more effective at a lower heat load. If heat load is too high, heat sink with TEC will perform worse than without TEC. The limit of this device is 57W. Besides, TEC is not helpful if input current is too high or too low. There is an effective range of input current, and the range becomes narrower when the heat load grows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Thermoelectric%20cooler" title="Thermoelectric cooler">Thermoelectric cooler</a>, <a href="https://publications.waset.org/search?q=TEC" title=" TEC"> TEC</a>, <a href="https://publications.waset.org/search?q=electronic%20cooling" title=" electronic cooling"> electronic cooling</a>, <a href="https://publications.waset.org/search?q=heat%0Asink." title=" heat sink."> heat sink.</a> </p> <a href="https://publications.waset.org/7345/an-experimental-investigation-of-thermoelectric-air-cooling-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7345/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7345/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7345/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7345/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7345/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7345/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7345/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7345/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7345/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7345/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3728</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2577</span> Thermoelectric Generators as Alternative Source for Electric Power</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=L.%20C.%20Ding">L. C. Ding</a>, <a href="https://publications.waset.org/search?q=Bradley.%20G.%20Orr"> Bradley. G. Orr</a>, <a href="https://publications.waset.org/search?q=K.%20Rahaoui"> K. Rahaoui</a>, <a href="https://publications.waset.org/search?q=S.%20Truza"> S. Truza</a>, <a href="https://publications.waset.org/search?q=A.%20Date"> A. Date</a>, <a href="https://publications.waset.org/search?q=A.%20Akbarzadeh"> A. Akbarzadeh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The research on thermoelectric has been a blooming field of research for the latest decade, owing to large amount of heat source available to be harvested, being eco-friendly and static in operation. This paper provides the performance of thermoelectric generator (TEG) with bulk material of bismuth telluride, Bi<sub>2</sub>Te<sub>3</sub>. Later, the performance of the TEGs is evaluated by considering attaching the TEGs on a plastic (polyethylene sheet) in contrast to the common method of attaching the TEGs on the metal surface.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Electric%20power" title="Electric power">Electric power</a>, <a href="https://publications.waset.org/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/search?q=thermoelectric%20generator." title=" thermoelectric generator. "> thermoelectric generator. </a> </p> <a href="https://publications.waset.org/10002995/thermoelectric-generators-as-alternative-source-for-electric-power" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002995/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002995/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002995/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002995/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002995/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002995/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002995/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002995/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002995/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002995/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1786</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2576</span> Efficiency of Compact Organic Rankine Cycle System with Rotary-Vane-Type Expander for Low-Temperature Waste Heat Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Musthafah%20b.%20Mohd.Tahir">Musthafah b. Mohd.Tahir</a>, <a href="https://publications.waset.org/search?q=Noboru%20Yamada"> Noboru Yamada</a>, <a href="https://publications.waset.org/search?q=Tetsuya%20Hoshino"> Tetsuya Hoshino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the experimental efficiency of a compact organic Rankine cycle (ORC) system with a compact rotary-vane-type expander. The compact ORC system can be used for power generation from low-temperature heat sources such as waste heat from various small-scale heat engines, fuel cells, electric devices, and solar thermal energy. The purpose of this study is to develop an ORC system with a low power output of less than 1 kW with a hot temperature source ranging from 60掳C to 100掳C and a cold temperature source ranging from 10掳C to 30掳C. The power output of the system is rather less due to limited heat efficiency. Therefore, the system should have an economically optimal efficiency. In order to realize such a system, an efficient and low-cost expander is indispensable. An experimental ORC system was developed using the rotary-vane-type expander which is one of possible candidates of the expander. The experimental results revealed the expander performance for various rotation speeds, expander efficiencies, and thermal efficiencies. Approximately 30 W of expander power output with 48% expander efficiency and 4% thermal efficiency with a temperature difference between the hot and cold sources of 80掳C was achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Organic%20Rankine%20cycle" title="Organic Rankine cycle">Organic Rankine cycle</a>, <a href="https://publications.waset.org/search?q=Thermodynamic%20cycle" title=" Thermodynamic cycle"> Thermodynamic cycle</a>, <a href="https://publications.waset.org/search?q=Thermal%20efficiency" title="Thermal efficiency">Thermal efficiency</a>, <a href="https://publications.waset.org/search?q=Turbine%20efficiency" title=" Turbine efficiency"> Turbine efficiency</a>, <a href="https://publications.waset.org/search?q=Waste%20heat%20recovery" title=" Waste heat recovery"> Waste heat recovery</a>, <a href="https://publications.waset.org/search?q=Powergeneration" title=" Powergeneration"> Powergeneration</a>, <a href="https://publications.waset.org/search?q=Low%20temperature%20heat%20engine." title=" Low temperature heat engine."> Low temperature heat engine.</a> </p> <a href="https://publications.waset.org/6420/efficiency-of-compact-organic-rankine-cycle-system-with-rotary-vane-type-expander-for-low-temperature-waste-heat-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6420/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6420/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6420/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6420/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6420/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6420/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6420/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6420/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6420/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6420/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3581</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2575</span> Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Man%20Young%20Kim">Man Young Kim</a>, <a href="https://publications.waset.org/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20Sink" title="Heat Sink">Heat Sink</a>, <a href="https://publications.waset.org/search?q=Forced%20Convection" title=" Forced Convection"> Forced Convection</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Performance%20Evaluation" title=" Performance Evaluation"> Performance Evaluation</a>, <a href="https://publications.waset.org/search?q=Symmetrically%20Arranged." title=" Symmetrically Arranged."> Symmetrically Arranged.</a> </p> <a href="https://publications.waset.org/9999636/numerical-study-of-heat-release-of-the-symmetrically-arranged-extruded-type-heat-sinks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999636/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999636/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999636/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999636/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999636/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999636/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999636/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999636/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999636/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999636/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1646</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2574</span> Effect of Flow Holes on Heat Release Performance of Extruded-type Heat Sink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jung%20Hyun%20Kim">Jung Hyun Kim</a>, <a href="https://publications.waset.org/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5<sup>o</sup>C by the holes.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Heat%20Sink" title="Heat Sink">Heat Sink</a>, <a href="https://publications.waset.org/search?q=Forced%20Convection" title=" Forced Convection"> Forced Convection</a>, <a href="https://publications.waset.org/search?q=Heat%20Transfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Performance%20Evaluation" title=" Performance Evaluation"> Performance Evaluation</a>, <a href="https://publications.waset.org/search?q=Flow%20Holes." title=" Flow Holes. "> Flow Holes. </a> </p> <a href="https://publications.waset.org/9998304/effect-of-flow-holes-on-heat-release-performance-of-extruded-type-heat-sink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998304/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998304/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998304/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998304/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998304/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998304/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998304/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998304/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998304/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998304/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998304.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1799</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2573</span> Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chul%20Ho%20Han">Chul Ho Han</a>, <a href="https://publications.waset.org/search?q=Kyoung%20Hoon%20Kim"> Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Entropy" title="Entropy">Entropy</a>, <a href="https://publications.waset.org/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/search?q=ammonia-water%20mixture" title=" ammonia-water mixture"> ammonia-water mixture</a>, <a href="https://publications.waset.org/search?q=heat%0D%0Aexchanger." title=" heat exchanger."> heat exchanger.</a> </p> <a href="https://publications.waset.org/9998729/entropy-generation-analysis-of-heat-recovery-vapor-generator-for-ammonia-water-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998729/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998729/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998729/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998729/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998729/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998729/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998729/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998729/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998729/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998729/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2092</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2572</span> Heat Release Performance of Swaged- and Extruded-Type Heat Sink Used in Industrial Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jung%20Hyun%20Kim">Jung Hyun Kim</a>, <a href="https://publications.waset.org/search?q=Min%20Ye%20Ku"> Min Ye Ku</a>, <a href="https://publications.waset.org/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this experiment, we investigated the performance of two types of heat sink, swaged- and extruded-type, used in the inverter of industrial electricity generator. The swaged-type heat sink has 62 fins, and the extruded-type has 38 fins having the same dimension as that of the swaged-type. But the extruded-type heat sink maintains the same heat transfer area by the laterally waved surface which has 1 mm in radius. As a result, the swaged- and extruded-type heat sinks released 71% and 64% of the heat incoming to the heat sink, respectively. The other incoming heat were naturally convected and radiated to the ambient. In spite of 40% decrease in number of fins, the heat release performance of the extruded-type heat sink was lowered only 7% than that of the swaged-type. We believe that, this shows the increment of effective heat transfer area by the laterally waved surface of fins and the better heat transfer property of the extruded-type heat sink. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Solar%20Inverter" title="Solar Inverter">Solar Inverter</a>, <a href="https://publications.waset.org/search?q=Heat%20Sink" title=" Heat Sink"> Heat Sink</a>, <a href="https://publications.waset.org/search?q=Forced%20Convection" title=" Forced Convection"> Forced Convection</a>, <a href="https://publications.waset.org/search?q=Heat%0ATransfer" title=" Heat Transfer"> Heat Transfer</a>, <a href="https://publications.waset.org/search?q=Performance%20Evaluation." title=" Performance Evaluation."> Performance Evaluation.</a> </p> <a href="https://publications.waset.org/1848/heat-release-performance-of-swaged-and-extruded-type-heat-sink-used-in-industrial-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1848/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1848/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1848/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1848/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1848/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1848/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1848/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1848/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1848/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1848/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1954</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2571</span> Conjugate Heat transfer over an Unsteady Stretching Sheet Mixed Convection with Magnetic Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kai-Long%20Hsiao">Kai-Long Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A conjugate heat transfer for steady two-dimensional mixed convection with magnetic hydrodynamic (MHD) flow of an incompressible quiescent fluid over an unsteady thermal forming stretching sheet has been studied. A parameter, M, which is used to represent the dominance of the magnetic effect has been presented in governing equations. The similar transformation and an implicit finite-difference method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, the wall unknown values of f''(0) and '(胃 (0) for calculating the heat transfer of the similar boundary-layer flow are carried out as functions of the unsteadiness parameter (S), the Prandtl number (Pr), the space-dependent parameter (A) and temperature-dependent parameter (B) for heat source/sink and the magnetic parameter (M). The effects of these parameters have also discussed. At the results, it will produce greater heat transfer effect with a larger Pr and M, S, A, B will reduce heat transfer effects. At last, conjugate heat transfer for the free convection with a larger G has a good heat transfer effect better than a smaller G=0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Finite-difference%20method" title="Finite-difference method">Finite-difference method</a>, <a href="https://publications.waset.org/search?q=Conjugate%20heat%20transfer" title=" Conjugate heat transfer"> Conjugate heat transfer</a>, <a href="https://publications.waset.org/search?q=Unsteady%20Stretching%20Sheet" title="Unsteady Stretching Sheet">Unsteady Stretching Sheet</a>, <a href="https://publications.waset.org/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/search?q=Mixed%20convection." title=" Mixed convection."> Mixed convection.</a> </p> <a href="https://publications.waset.org/4670/conjugate-heat-transfer-over-an-unsteady-stretching-sheet-mixed-convection-with-magnetic-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4670/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4670/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4670/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4670/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4670/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4670/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4670/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4670/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4670/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4670/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1597</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2570</span> Experimental Investigation of Karanja Oil as a Fuel for Diesel Engine-Using Shell and Tube Heat Exchanger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nabnit%20Panigrahi">Nabnit Panigrahi</a>, <a href="https://publications.waset.org/search?q=M.%20K.%20Mohanty"> M. K. Mohanty</a>, <a href="https://publications.waset.org/search?q=S.%20K.%20Acharya"> S. K. Acharya</a>, <a href="https://publications.waset.org/search?q=S.%20R%20Mishra"> S. R Mishra</a>, <a href="https://publications.waset.org/search?q=R.%20C.%20Mohanty"> R. C. Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents experimental investigation carried out on an unmodified four stroke diesel engine running with preheated straight vegetable oil (SVO) of Karanja. The viscosity of straight karanja oil was reduced by preheating the oil up to 1600C under different load condition. The preheating was done with the help of a Shell and Tube heat exchanger equipment without using any external power source. The heat exchanger was designed in the lab and the heating source was by waste exhaust gas from engine. The experimental results data were analyzed by using 20% blends of svo of Karanja with 80% diesel by volume and 100% preheated svo of karanja for various parameters like specific fuel consumption, brake thermal efficiency and emission of exhaust gas like CO, CO<sub>2</sub>, HC and NOx. The results indicated that by using straight karanja oil, the emission parameter increases as compared to diesel but regarding engine performance it was found to be very close to that of diesel. All total it can be a replacement of diesel with a small efficiency drop.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Karanja%20oil" title="Karanja oil">Karanja oil</a>, <a href="https://publications.waset.org/search?q=Performance%20analysis" title=" Performance analysis"> Performance analysis</a>, <a href="https://publications.waset.org/search?q=Shell%20%26Tube%20heat%20exchanger" title=" Shell &Tube heat exchanger"> Shell &Tube heat exchanger</a>, <a href="https://publications.waset.org/search?q=SVO." title=" SVO."> SVO.</a> </p> <a href="https://publications.waset.org/9997495/experimental-investigation-of-karanja-oil-as-a-fuel-for-diesel-engine-using-shell-and-tube-heat-exchanger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997495/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997495/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997495/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997495/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997495/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997495/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997495/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997495/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997495/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997495/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3069</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=87">87</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=heat%20source&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>