CINXE.COM

Search results for: Wael Mamdouh

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Wael Mamdouh</title> <meta name="description" content="Search results for: Wael Mamdouh"> <meta name="keywords" content="Wael Mamdouh"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Wael Mamdouh" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Wael Mamdouh"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 62</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Wael Mamdouh</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Synergistic Effect of Doxorubicin-Loaded Silver Nanoparticles – Polymeric Conjugates on Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20M.%20El-Baz">Nancy M. El-Baz</a>, <a href="https://publications.waset.org/abstracts/search?q=Laila%20Ziko"> Laila Ziko</a>, <a href="https://publications.waset.org/abstracts/search?q=Rania%20Siam"> Rania Siam</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Mamdouh"> Wael Mamdouh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is one of the most devastating diseases, and has over than 10 million new cases annually worldwide. Despite the effectiveness of chemotherapeutic agents, their systemic toxicity and non-selective anticancer actions represent the main obstacles facing cancer curability. Due to the effective enhanced permeability and retention (EPR) effect of nanomaterials, nanoparticles (NPs) have been used as drug nanocarriers providing targeted cancer drug delivery systems. In addition, several inorganic nanoparticles such as silver (AgNPs) nanoparticles demonstrated a potent anticancer activity against different cancers. The present study aimed at formulating core-shell inorganic NPs-based combinatorial therapy based on combining the anticancer activity of AgNPs along with doxorubicin (DOX) and evaluating their cytotoxicity on MCF-7 breast cancer cells. These inorganic NPs-based combinatorial therapies were designed to (i) Target and kill cancer cells with high selectivity, (ii) Have an improved efficacy/toxicity balance, and (iii) Have an enhanced therapeutic index when compared to the original non-modified DOX with much lower dosage The in-vitro cytotoxicity studies demonstrated that the NPs-based combinatorial therapy achieved the same efficacy of non-modified DOX on breast cancer cell line, but with 96% reduced dose. Such reduction in DOX dose revealed that the combination between DOX and NPs possess a synergic anticancer activity against breast cancer. We believe that this is the first report on a synergic anticancer effect at very low dose of DOX against MCF-7 cells. Future studies on NPs-based combinatorial therapy may aid in formulating novel and significantly more effective cancer therapeutics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles-based%20combinatorial%20therapy" title="nanoparticles-based combinatorial therapy">nanoparticles-based combinatorial therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=doxorubicin" title=" doxorubicin"> doxorubicin</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a> </p> <a href="https://publications.waset.org/abstracts/25247/synergistic-effect-of-doxorubicin-loaded-silver-nanoparticles-polymeric-conjugates-on-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Hossam%20ElMolla">Ahmed Hossam ElMolla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hatem%20Saleh"> Mohamed Hatem Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Mostafa"> Hamza Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Lara%20Mamdouh"> Lara Mamdouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassin%20Wael"> Yassin Wael</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20center" title="data center">data center</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20analytics" title=" predictive analytics"> predictive analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20management" title=" grid management"> grid management</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20center%20optimization" title=" data center optimization"> data center optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20performance%20indicators" title=" key performance indicators"> key performance indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=resiliency" title=" resiliency"> resiliency</a> </p> <a href="https://publications.waset.org/abstracts/189214/impact-of-transitioning-to-renewable-energy-sources-on-key-performance-indicators-and-artificial-intelligence-modules-of-data-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">33</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Microwave-Assisted Synthesis of a Class of Pyridine and Purine Thioglycoside Analogs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Abu-Zaied">Mamdouh Abu-Zaied</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mohamed"> K. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Galal%20A.%20Nawwar"> Galal A. Nawwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microwave-assisted synthesis of a new class of pyridine or purine thioglycoside analogs from readily available starting materials has been described. The key step of this protocol is the formation of sodium pyridine 4-thiolate 4 and pyrazolo[1,5-a]pyrimidine-7-thiolate 5 derivatives via condensation of 1 with cyanoacetanilide derivative 2 or 5-aminopyrazole derivative 3 respectively under microwave irradiation, followed by coupling with halo sugars to give the corresponding pyridine and purine thioglycoside analogs. The obtained compounds were evaluated in vitro against lung (A549), colon (HCT116), liver (HEPG2), and MCF-7(breast) cancer cell lines. Some of them recorded promising activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antitumor" title="antitumor">antitumor</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20sugars" title=" cyclic sugars"> cyclic sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrazoles" title=" pyrazoles"> pyrazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=pyridines" title=" pyridines"> pyridines</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrimidines" title=" pyrimidines"> pyrimidines</a>, <a href="https://publications.waset.org/abstracts/search?q=purines" title=" purines"> purines</a>, <a href="https://publications.waset.org/abstracts/search?q=thioglycosides" title=" thioglycosides"> thioglycosides</a> </p> <a href="https://publications.waset.org/abstracts/61036/microwave-assisted-synthesis-of-a-class-of-pyridine-and-purine-thioglycoside-analogs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Genome Analyses of Pseudomonas Fluorescens b29b from Coastal Kerala</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ali%20Mohammed%20Hadi">Wael Ali Mohammed Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudomonas fluorescens B29B, which has asparaginase enzymatic activity, was isolated from the surface coastal seawater of Trivandrum, India. We report the complete Pseudomonas fluorescens B29B genome sequenced, identified, and annotated from a marine source. We find the genome at most minuscule a 7,331,508 bp single circular chromosome with a GC content of 62.19% and 6883 protein-coding genes. Three hundred forty subsystems were identified, including two predicted asparaginases from the genome analysis of P. fluorescens B29B for further investigation. This genome data will help further industrial biotechnology applications of proteins in general and asparaginase as a target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudomonas" title="pseudomonas">pseudomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=marine" title=" marine"> marine</a>, <a href="https://publications.waset.org/abstracts/search?q=asparaginases" title=" asparaginases"> asparaginases</a>, <a href="https://publications.waset.org/abstracts/search?q=Kerala" title=" Kerala"> Kerala</a>, <a href="https://publications.waset.org/abstracts/search?q=whole-genome" title=" whole-genome"> whole-genome</a> </p> <a href="https://publications.waset.org/abstracts/139283/genome-analyses-of-pseudomonas-fluorescens-b29b-from-coastal-kerala" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Removal of Lead in High Rate Activated Sludge System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Y.%20Saleh">Mamdouh Y. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20El%20Enany"> Gaber El Enany</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20H.%20Elzahar"> Medhat H. Elzahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Z.%20Elshikhipy"> Mohamed Z. Elshikhipy</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Hamouda"> Rana Hamouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20wastewater" title="industrial wastewater">industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title=" activated sludge"> activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD5" title=" BOD5"> BOD5</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=alum%20salt" title=" alum salt"> alum salt</a> </p> <a href="https://publications.waset.org/abstracts/7453/removal-of-lead-in-high-rate-activated-sludge-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Industrial Wastewater Treatment Improvements Using Limestone </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Y.%20Saleh">Mamdouh Y. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20El%20Enany"> Gaber El Enany</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20H.%20Elzahar"> Medhat H. Elzahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20H.%20Omran"> Moustafa H. Omran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20wastewater" title=" synthetic wastewater"> synthetic wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS%20removal" title=" TDS removal"> TDS removal</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title=" COD removal"> COD removal</a> </p> <a href="https://publications.waset.org/abstracts/29474/industrial-wastewater-treatment-improvements-using-limestone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Industrial Wastewater Treatment Improvements Using Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Y.%20Saleh">Mamdouh Y. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20El%20Enany"> Gaber El Enany</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20H.%20Elzahar"> Medhat H. Elzahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20H.%20Omran"> Moustafa H. Omran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discharge limits of industrial waste water effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. Thus, a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding activated carbon with different dosages to waste water, and for each group waste water was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. At the end of this paper, a comparison was made between the efficiency of using activated carbon and the efficiency of using limestone in the same circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20removal" title=" COD removal"> COD removal</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS%20removal" title=" TDS removal"> TDS removal</a> </p> <a href="https://publications.waset.org/abstracts/19774/industrial-wastewater-treatment-improvements-using-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Predicting Groundwater Areas Using Data Mining Techniques: Groundwater in Jordan as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faisal%20Aburub">Faisal Aburub</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Hadi"> Wael Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data mining is the process of extracting useful or hidden information from a large database. Extracted information can be used to discover relationships among features, where data objects are grouped according to logical relationships; or to predict unseen objects to one of the predefined groups. In this paper, we aim to investigate four well-known data mining algorithms in order to predict groundwater areas in Jordan. These algorithms are Support Vector Machines (SVMs), Na&iuml;ve Bayes (NB), K-Nearest Neighbor (kNN) and Classification Based on Association Rule (CBA). The experimental results indicate that the SVMs algorithm outperformed other algorithms in terms of classification accuracy, precision and F1 evaluation measures using the datasets of groundwater areas that were collected from Jordanian Ministry of Water and Irrigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation%20measures" title=" evaluation measures"> evaluation measures</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a> </p> <a href="https://publications.waset.org/abstracts/49437/predicting-groundwater-areas-using-data-mining-techniques-groundwater-in-jordan-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Photocatalytic Conversion of Water/Methanol Mixture into Hydrogen Using Cerium/Iron Oxides Based Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20A.%20Aboutaleb">Wael A. Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20A.%20El%20Naggar"> Ahmed M. A. El Naggar</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20M.%20Gobara"> Heba M. Gobara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research work reports the photocatalytic production of hydrogen from water-methanol mixture using three different 15% ceria/iron oxide catalysts. The catalysts were prepared by physical mixing, precipitation, and ultrasonication methods and labeled as catalysts A-C. The structural and texture properties of the obtained catalysts were confirmed by X-ray diffraction (XRD), BET-surface area analysis and transmission electron microscopy (TEM). The photocatalytic activity of the three catalysts towards hydrogen generation was then tested. Promising hydrogen productivity was obtained by the three catalysts however different gases compositions were obtained by each type of catalyst. Specifically, catalyst A had produced hydrogen mixed with CO₂ while the composite structure (catalyst B) had generated only pure H₂. In the case of catalyst C, syngas made of H₂ and CO was revealed, as a novel product, for the first time, in such process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20splitting" title=" water splitting"> water splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysts" title=" photocatalysts"> photocatalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20energy" title=" clean energy "> clean energy </a> </p> <a href="https://publications.waset.org/abstracts/82416/photocatalytic-conversion-of-watermethanol-mixture-into-hydrogen-using-ceriumiron-oxides-based-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Establishing the Optimum Location of a Single Tower Crane Using a Smart Mathematical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Abo%20El-Magd">Yasser Abo El-Magd</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Fawzy%20Mohamed"> Wael Fawzy Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the great development in construction and building field, there are many projects and huge works appeared which consume many construction materials. Accordingly, that causes difficulty in handling traditional transportation means (ordinary cranes) due to their limited capacity; there is an urgent need to use high capacity cranes such as tower cranes. However, with regard to their high expense, we have to take into consideration selecting what type of cranes to be utilized which has been discussed by many researchers. In this research, a proposed technique was created to select the suitable type of crane and the best place for crane erection, in addition to minimum radius for requested crane in order to minimize cost. To fulfill that target, a computer program is designed to numerate these problems, demonstrating an example explaining how to apply program and the result donated the best place. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tower%20crane" title="tower crane">tower crane</a>, <a href="https://publications.waset.org/abstracts/search?q=jib%20length" title=" jib length"> jib length</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20time" title=" operating time"> operating time</a>, <a href="https://publications.waset.org/abstracts/search?q=location" title=" location"> location</a>, <a href="https://publications.waset.org/abstracts/search?q=feasible%20area" title=" feasible area"> feasible area</a> </p> <a href="https://publications.waset.org/abstracts/51801/establishing-the-optimum-location-of-a-single-tower-crane-using-a-smart-mathematical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> ANFIS Approach for Locating Faults in Underground Cables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdy%20B.%20Eteiba">Magdy B. Eteiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ismael%20Wahba"> Wael Ismael Wahba</a>, <a href="https://publications.waset.org/abstracts/search?q=Shimaa%20Barakat"> Shimaa Barakat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system. Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANFIS" title="ANFIS">ANFIS</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location" title=" fault location"> fault location</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20cable" title=" underground cable"> underground cable</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20transform" title=" wavelet transform"> wavelet transform</a> </p> <a href="https://publications.waset.org/abstracts/11080/anfis-approach-for-locating-faults-in-underground-cables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Numerical Investigation of Mixed Convection for Rarefied Gases in Square Enclosures </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Al-Kouz">Wael Al-Kouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical simulations to study heat transfer and flow characteristics of mixed convection for rarefied gas in a square enclosure are utilized. Effect of the geometry in terms of the location of the inlet and exit openings are investigated. Moreover, effect of Knudsen number on the flow and heat transfer characteristics is illustrated and discussed. Results of the simulations show that there is a configuration that yields better heat transfer. This configuration is found to be the geometry in which the inlet opening is in the top left corner and the exit opening is at the bottom right corner. In addition, it is found that by increasing Knudsen number, Nusselt number will decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Knudsen%20number" title="Knudsen number">Knudsen number</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20convection" title=" mixed convection"> mixed convection</a>, <a href="https://publications.waset.org/abstracts/search?q=rarefied%20gas" title=" rarefied gas"> rarefied gas</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20enclosure" title=" square enclosure"> square enclosure</a> </p> <a href="https://publications.waset.org/abstracts/80904/numerical-investigation-of-mixed-convection-for-rarefied-gases-in-square-enclosures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> The Learning Styles Approach to Math Instruction: Improving Math Achievement and Motivation among Low Achievers in Kuwaiti Elementary Schools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eisa%20M.%20Al-Balhan">Eisa M. Al-Balhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20M.%20Soliman"> Mamdouh M. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduced learning styles techniques into mathematics teaching to improve mathematics achievement and motivation among Kuwaiti fourth- and fifth-grade low achievers. The study consisted of two groups. The control group (N = 212) received traditional math tutoring based on a textbook and the tutor’s knowledge of math. The experimental group (N = 209) received math tutoring from instructors trained in the Learning Style™ approach. Three instruments were used: Motivation Scale towards Mathematics; Achievement in Mathematics Test; and the manual of learning style approach indicating the individual’s preferred learning style: AKV, AVK, KAV, KVA, VAK, or VKA. The participating teachers taught to the detected learning style of each student or group. The findings show significant improvement in achievement and motivation towards mathematics in the experimental group. The outcome offers information to variables affecting achievement and motivation towards mathematics and demonstrates the leading role of Kuwait in education within the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elementary%20school" title="elementary school">elementary school</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20style" title=" learning style"> learning style</a>, <a href="https://publications.waset.org/abstracts/search?q=math%20low%20achievers" title=" math low achievers"> math low achievers</a>, <a href="https://publications.waset.org/abstracts/search?q=SmartWired%E2%84%A2" title=" SmartWired™"> SmartWired™</a>, <a href="https://publications.waset.org/abstracts/search?q=math%20instruction" title=" math instruction"> math instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a> </p> <a href="https://publications.waset.org/abstracts/158887/the-learning-styles-approach-to-math-instruction-improving-math-achievement-and-motivation-among-low-achievers-in-kuwaiti-elementary-schools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> The Usage of Nitrogen Gas and Alum for Sludge Dewatering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Yousef%20Saleh">Mamdouh Yousef Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Medhat%20Hosny%20El-Zahar"> Medhat Hosny El-Zahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shymaa%20El-Dosoky"> Shymaa El-Dosoky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In most cases, the associated processing cost of dewatering sludge increase with the solid particles concentration. All experiments in this study were conducted on biological sludge type. All experiments help to reduce the greenhouse gases in addition, the technology used was faster in time and less in cost compared to other methods. First, the bubbling pressure was used to dissolve N₂ gas into the sludge, second alum was added to accelerate the process of coagulation of the sludge particles and facilitate their flotation, and third nitrogen gas was used to help floating the sludge particles and reduce the processing time because of the nitrogen gas from the inert gases. The conclusions of this experiment were as follows: first, the best conditions were obtained when the bubbling pressure was 0.6 bar. Second, the best alum dose was determined to help the sludge agglomerate and float. During the experiment, the best alum dose was 80 mg/L. It increased concentration of the sludge by 7-8 times. Third, the economic dose of nitrogen gas was 60 mg/L with separation efficiency of 85%. The sludge concentration was about 8-9 times. That happened due to the gas released tiny bubbles which adhere to the suspended matter causing them to float to the surface of the water where it could be then removed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20gas" title="nitrogen gas">nitrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment" title=" biological treatment"> biological treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=alum" title=" alum"> alum</a>, <a href="https://publications.waset.org/abstracts/search?q=dewatering%20sludge" title=" dewatering sludge"> dewatering sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title=" greenhouse gases"> greenhouse gases</a> </p> <a href="https://publications.waset.org/abstracts/104794/the-usage-of-nitrogen-gas-and-alum-for-sludge-dewatering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104794.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Considering the Reliability of Measurements Issue in Distributed Adaptive Estimation Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20M.%20Bazzi">Wael M. Bazzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Rastegarnia"> Amir Rastegarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Azam%20Khalili"> Azam Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we consider the issue of reliability of measurements in distributed adaptive estimation problem. To this aim, we assume a sensor network with different observation noise variance among the sensors and propose new estimation method based on incremental distributed least mean-square (IDLMS) algorithm. The proposed method contains two phases: I) Estimation of each sensors observation noise variance, and II) Estimation of the desired parameter using the estimated observation variances. To deal with the reliability of measurements, in the second phase of the proposed algorithm, the step-size parameter is adjusted for each sensor according to its observation noise variance. As our simulation results show, the proposed algorithm considerably improves the performance of the IDLMS algorithm in the same condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20filter" title="adaptive filter">adaptive filter</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20estimation" title=" distributed estimation"> distributed estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%0D%0Anetwork" title=" sensor network"> sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=IDLMS%20algorithm" title=" IDLMS algorithm"> IDLMS algorithm</a> </p> <a href="https://publications.waset.org/abstracts/27648/considering-the-reliability-of-measurements-issue-in-distributed-adaptive-estimation-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Measuring the Effect of the Privatization of the Kuwait Stock Exchange on Its Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20H.%20Atyeh">Mohamad H. Atyeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Alrashed"> Wael Alrashed</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Telford"> Steven Telford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to measure if there have been any notable changes in the trading actives of the Kuwait stock Exchange (KSE) after the privatization process that took place on the 25th of April 2016. The data that are used to test if there is any change in the KSE market performance are the daily indices for the period from the 25th of April 2016 till the 24th of October 2016 (after privatization) and a similar six months period before the date of the privatization from the 24th of October 2015 till the 24th of April 2016. In addition, as a control, the study included a period that is a period parallel to the six months period after the privatization. The results indicate that privatization is associated with lower variability for the majority of variables, but that the observed switch in slope direction is not actually a product of privatization, but rather one of serial correlation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=privatization" title="privatization">privatization</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20stock%20exchange%20%28KSE%29" title=" Kuwait stock exchange (KSE)"> Kuwait stock exchange (KSE)</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20capitalization%20%28MCAP%29" title=" market capitalization (MCAP)"> market capitalization (MCAP)</a>, <a href="https://publications.waset.org/abstracts/search?q=capital%20markets%20authority%20%28CMA%29" title=" capital markets authority (CMA)"> capital markets authority (CMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Boursa%20Kuwait%20securities%20company%20%28BKSC%29" title=" Boursa Kuwait securities company (BKSC)"> Boursa Kuwait securities company (BKSC)</a> </p> <a href="https://publications.waset.org/abstracts/62593/measuring-the-effect-of-the-privatization-of-the-kuwait-stock-exchange-on-its-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Acute Phase Proteins as Biomarkers of Urinary Tract Infection (UTI) in Dairy Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20El-Deeb">Wael El-Deeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to investigate the diagnostic importance of acute phase proteins in urinary tract infection (UTI) in cattle. We describe the clinical, bacteriological and biochemical findings in 99 lactating cows. Blood and urine samples from diseased (n=84) and control healthy cows (n=15) were submitted to laboratory investigations. The urine analysis revealed hematuria and pyuria in UTI group. The isolated bacteria were E.coli (43/84) Corynebacterium spp, (31/84), Proteus spp. (6/84) and Streptococcus spp (4/84). The concentrations of Haptoglobin (Hp), serum amyloid A (SAA), α1-Acid glycoprotein (AGP), fibrinogen (Fb), total protein, albumen, and globulin were higher in cows with UTI when compared to healthy ones. Fifty-one of 84 cows with UTI were successfully treated. The levels of Hp, SAA, AGP, total protein, and globulin were associated with the odds of treatment failure. Conclusively, acute phase proteins could be used as diagnostic and prognostic biomarkers in cows with UTI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cows" title="cows">cows</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary" title=" urinary"> urinary</a>, <a href="https://publications.waset.org/abstracts/search?q=infections" title=" infections"> infections</a>, <a href="https://publications.waset.org/abstracts/search?q=haptoglobin" title=" haptoglobin"> haptoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20Amyloid%20A" title=" serum Amyloid A"> serum Amyloid A</a> </p> <a href="https://publications.waset.org/abstracts/17849/acute-phase-proteins-as-biomarkers-of-urinary-tract-infection-uti-in-dairy-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">722</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Survey on Malware Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doaa%20Wael">Doaa Wael</a>, <a href="https://publications.waset.org/abstracts/search?q=Naswa%20Abdelbaky"> Naswa Abdelbaky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malware is malicious software that is built to cause destructive actions and damage information systems and networks. Malware infections increase rapidly, and types of malware have become more sophisticated, which makes the malware detection process more difficult. On the other side, the Internet of Things IoT technology is vulnerable to malware attacks. These IoT devices are always connected to the internet and lack security. This makes them easy for hackers to access. These malware attacks are becoming the go-to attack for hackers. Thus, in order to deal with this challenge, new malware detection techniques are needed. Currently, building a blockchain solution that allows IoT devices to download any file from the internet and to verify/approve whether it is malicious or not is the need of the hour. In recent years, blockchain technology has stood as a solution to everything due to its features like decentralization, persistence, and anonymity. Moreover, using blockchain technology overcomes some difficulties in malware detection and improves the malware detection ratio over-than the techniques that do not utilize blockchain technology. In this paper, we study malware detection models which are based on blockchain technology. Furthermore, we elaborate on the effect of blockchain technology in malware detection, especially in the android environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malware%20analysis" title="malware analysis">malware analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=malware%20attacks" title=" malware attacks"> malware attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=malware%20detection%20approaches" title=" malware detection approaches"> malware detection approaches</a> </p> <a href="https://publications.waset.org/abstracts/164823/survey-on-malware-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> A Modelling Analysis of Monetary Policy Rule</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Bakhit">Wael Bakhit</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Bakhit"> Salma Bakhit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper employs a quarterly time series to determine the timing of structural breaks for interest rates in USA over the last 60 years. The Chow test is used for investigating the non-stationary, where the date of the potential break is assumed to be known. Moreover, an empirical examination of the financial sector was made to check if it is positively related to deviations from an assumed interest rate as given in a standard Taylor rule. The empirical analysis is strengthened by analysing the rule from a historical perspective and a look at the effect of setting the interest rate by the central bank on financial imbalances. The empirical evidence indicates that deviation in monetary policy has a potential causal factor in the build-up of financial imbalances and the subsequent crisis where macro prudential intervention could have beneficial effect. Thus, our findings tend to support the view which states that the probable existence of central banks has been a source of global financial crisis since the past decade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taylor%20rule" title="Taylor rule">Taylor rule</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20imbalances" title=" financial imbalances"> financial imbalances</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20banks" title=" central banks"> central banks</a>, <a href="https://publications.waset.org/abstracts/search?q=econometrics" title=" econometrics"> econometrics</a> </p> <a href="https://publications.waset.org/abstracts/8233/a-modelling-analysis-of-monetary-policy-rule" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Automated Detection of Women Dehumanization in English Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maha%20Wiss">Maha Wiss</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Khreich"> Wael Khreich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Animals, objects, foods, plants, and other non-human terms are commonly used as a source of metaphors to describe females in formal and slang language. Comparing women to non-human items not only reflects cultural views that might conceptualize women as subordinates or in a lower position than humans, yet it conveys this degradation to the listeners. Moreover, the dehumanizing representation of females in the language normalizes the derogation and even encourages sexism and aggressiveness against women. Although dehumanization has been a popular research topic for decades, according to our knowledge, no studies have linked women's dehumanizing language to the machine learning field. Therefore, we introduce our research work as one of the first attempts to create a tool for the automated detection of the dehumanizing depiction of females in English texts. We also present the first labeled dataset on the charted topic, which is used for training supervised machine learning algorithms to build an accurate classification model. The importance of this work is that it accomplishes the first step toward mitigating dehumanizing language against females. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gender%20bias" title="gender bias">gender bias</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=women%20dehumanization" title=" women dehumanization"> women dehumanization</a> </p> <a href="https://publications.waset.org/abstracts/157291/automated-detection-of-women-dehumanization-in-english-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Modeling of Nitrogen Solubility in Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ghali">Saeed Ghali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoda%20El-Faramawy"> Hoda El-Faramawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Eissa"> Mamdouh Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Mishreky"> Michael Mishreky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacement of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600oC. [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solubility" title="solubility">solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Schaeffler" title=" Schaeffler"> Schaeffler</a> </p> <a href="https://publications.waset.org/abstracts/155322/modeling-of-nitrogen-solubility-in-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Recent Development on Application of Microwave Energy on Process Metallurgy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mamdouh%20Omran">Mamdouh Omran</a>, <a href="https://publications.waset.org/abstracts/search?q=Timo%20Fabritius"> Timo Fabritius</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A growing interest in microwave heating has emerged recently. Many researchers have begun to pay attention to microwave energy as an alternative technique for processing various primary and secondary raw materials. Compared to conventional methods, microwave processing offers several advantages, such as selective heating, rapid heating, and volumetric heating. The present study gives a summary on our recent works related to the use of microwave energy for the recovery of valuable metals from primary and secondary raw materials. The research is mainly focusing on: Application of microwave for the recovery and recycling of metals from different metallurgical industries wastes (i.e. electric arc furnace (EAF) dust, blast furnace (BF), basic oxygen furnace (BOF) sludge). Application of microwave for upgrading and recovery of valuable metals from primary raw materials (i.e. iron ore). The results indicated that microwave heating is a promising and effective technique for processing primary and secondary steelmaking wastes. After microwave treatment of iron ore for 60 s and 900 W, about a 28.30% increase in grindability.Wet high intensity magnetic separation (WHIMS) indicated that the magnetic separation increased from 34% to 98% after microwave treatment for 90 s and 900 W. In the case of EAF dust, after microwave processing at 1100 W for 20 min, Zinc removal from 64 % to ~ 97 %, depending on mixture ratio and treatment time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title="dielectric properties">dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title=" microwave heating"> microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20materials" title=" raw materials"> raw materials</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20raw%20materials" title=" secondary raw materials"> secondary raw materials</a> </p> <a href="https://publications.waset.org/abstracts/156829/recent-development-on-application-of-microwave-energy-on-process-metallurgy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> PID Sliding Mode Control with Sliding Surface Dynamics based Continuous Control Action for Robotic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20M.%20Elawady">Wael M. Elawady</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20F.%20Asar"> Mohamed F. Asar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20M.%20Sarhan"> Amany M. Sarhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper adopts a continuous sliding mode control scheme for trajectory tracking control of robot manipulators with structured and unstructured uncertain dynamics and external disturbances. In this algorithm, the equivalent control in the conventional sliding mode control is replaced by a PID control action. Moreover, the discontinuous switching control signal is replaced by a continuous proportional-integral (PI) control term such that the implementation of the proposed control algorithm does not require the prior knowledge of the bounds of unknown uncertainties and external disturbances and completely eliminates the chattering phenomenon of the conventional sliding mode control approach. The closed-loop system with the adopted control algorithm has been proved to be globally stable by using Lyapunov stability theory. Numerical simulations using the dynamical model of robot manipulators with modeling uncertainties demonstrate the superiority and effectiveness of the proposed approach in high speed trajectory tracking problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PID" title="PID">PID</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainties" title=" uncertainties"> uncertainties</a> </p> <a href="https://publications.waset.org/abstracts/31108/pid-sliding-mode-control-with-sliding-surface-dynamics-based-continuous-control-action-for-robotic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Cloning and Analysis of Nile Tilapia Toll-like receptors Type-3 mRNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelazeem%20Algammal">Abdelazeem Algammal</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20Abouelmaatti"> Reham Abouelmaatti</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaokun%20Li"> Xiaokun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jisheng%20Ma"> Jisheng Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Eman%20Abdelnaby"> Eman Abdelnaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Elfeil"> Wael Elfeil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Toll-like receptors (TLRs) are the best understood of the innate immune receptors that detect infections in vertebrates. However, the fish TLRs also exhibit very distinct features and a large diversity, which is likely derived from their diverse evolutionary history and the distinct environments that they occupy. Little is known about the fish immune system structure. Our work was aimed to identify and clone the Nile tilapiaTLR-3 as a model of freshwater fish species; we cloned the full-length cDNA sequence of Nile tilapia (Oreochromis niloticus) TLR-3 and according to our knowledge, it is the first report illustrating tilapia TLR-3. The complete cDNA sequence of Nile tilapia TLR-3 was 2736 pair base and it encodes a polypeptide of 912 amino acids. Analysis of the deduced amino acid sequence indicated that Nile tilapia TLR-3 has typical structural features and main components of proteins belonging to the TLR family. Our results illustrate a complete and functional Nile tilapia TLR-3 and it is considered an ortholog of the other vertebrate’s receptor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nile%20tilapia" title="Nile tilapia">Nile tilapia</a>, <a href="https://publications.waset.org/abstracts/search?q=TLR-3" title=" TLR-3"> TLR-3</a>, <a href="https://publications.waset.org/abstracts/search?q=cloning" title=" cloning"> cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/123307/cloning-and-analysis-of-nile-tilapia-toll-like-receptors-type-3-mrna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Minimally Invasive Open Lumbar Discectomy with Nucleoplasty and Annuloplasty as a Technique for Effective Reduction of Both Axial and Radicular Pain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Elkholy">Wael Elkholy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Sakr"> Ashraf Sakr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Qandeel"> Mahmoud Qandeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Elkholy"> Adam Elkholy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lumbar disc herniation is a common pathology that may cause significant low back pain and radicular pain that could profoundly impair daily life activities of individuals. Patients who undergo surgical treatment for lumbar disc herniation usually present with radiculopathy along with low back pain (LBP) instead of radiculopathy alone. When discectomy is performed, improvement in leg radiating pain is observed due to spinal nerve irritation. However, long-term LBP due to degenerative changes in the disc may occur postoperatively. In addition, limited research has been reported on the short-term (within 1 year) improvement in LBP after discectomy. In this study we would like to share our minimally invasive open technique for lumbar discectomy with annuloplasty and nuceloplasty as a technique for effective reduction of both axial and radicular pain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nucleoplasty" title="nucleoplasty">nucleoplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=sinuvertebral%20nerve%20cauterization" title=" sinuvertebral nerve cauterization"> sinuvertebral nerve cauterization</a>, <a href="https://publications.waset.org/abstracts/search?q=annuloplasty" title=" annuloplasty"> annuloplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=discogenic%20low%20back%20pain" title=" discogenic low back pain"> discogenic low back pain</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20pain" title=" axial pain"> axial pain</a>, <a href="https://publications.waset.org/abstracts/search?q=radicular%20pain" title=" radicular pain"> radicular pain</a>, <a href="https://publications.waset.org/abstracts/search?q=minimally%20invasive%20lumbar%20discectomy" title=" minimally invasive lumbar discectomy"> minimally invasive lumbar discectomy</a> </p> <a href="https://publications.waset.org/abstracts/168826/minimally-invasive-open-lumbar-discectomy-with-nucleoplasty-and-annuloplasty-as-a-technique-for-effective-reduction-of-both-axial-and-radicular-pain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aref%20Maalej">Aref Maalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Fakhfakh"> Marwa Fakhfakh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ben%20Amira"> Wael Ben Amira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction, and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title="numerical simulation">numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20blade" title=" flexible blade"> flexible blade</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid-structure%20interaction" title=" fluid-structure interaction"> fluid-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS%20workbench" title=" ANSYS workbench"> ANSYS workbench</a>, <a href="https://publications.waset.org/abstracts/search?q=flapwise%20deformation" title=" flapwise deformation"> flapwise deformation</a> </p> <a href="https://publications.waset.org/abstracts/169091/study-of-the-effect-of-rotation-on-the-deformation-of-a-flexible-blade-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> The Involvement of Viruses and Fungi in the Pathogenesis of Dental Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Khalil">Wael Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Rahal"> Elias Rahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghassan%20Matar"> Ghassan Matar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tooth related infections or commonly named dental infections have been described as the most common causes of tooth loss in adults. These pathologies were mostly periodontitis, pericoronitis, and periapical infection. The involvement of various bacteria in the pathogenesis of these pathologies has been thoroughly mentioned and approved in the literature. However, the variability in the severity and prognosis of these lesions among patients suggests the association of other pathogens, like viruses and fungi, in the pathogenesis of these lesions. Several studies in the literature investigated the association of multiple viruses and fungi with the above-mentioned lesions, yet, a vast controversy was reached concerning this subject.Aim: Our study aims to fill the gap in the literature concerning the contribution of adenovirus, HPV-16, EBV, fungi, and candida in the pathogenesis of periodontitis, pericoronitis, and periapical infection. For this purpose, we utilized the quantitative PCR for pathogen detection in saliva, gingival, and lesions samples of involved subjects. Results: Some of these pathogens appeared to have an association with the investigated dental pathologies, while others showed no contribution to the pathogenesis of these lesions. Further investigation is required in order to identify the subtype of the involved pathogens in these tooth related oral pathology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodontitis" title="periodontitis">periodontitis</a>, <a href="https://publications.waset.org/abstracts/search?q=pericoronitis" title=" pericoronitis"> pericoronitis</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20abscess" title=" dental abscess"> dental abscess</a>, <a href="https://publications.waset.org/abstracts/search?q=PCR" title=" PCR"> PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a> </p> <a href="https://publications.waset.org/abstracts/149650/the-involvement-of-viruses-and-fungi-in-the-pathogenesis-of-dental-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20M%20Albadri">Wael M Albadri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassnen%20M%20Jafer"> Hassnen M Jafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehab%20H%20Sfoog"> Ehab H Sfoog</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title="shear strength">shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=over-consolidation%20ratio" title=" over-consolidation ratio"> over-consolidation ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=vane%20shear%20test" title=" vane shear test"> vane shear test</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a> </p> <a href="https://publications.waset.org/abstracts/55043/developing-a-new-relationship-between-undrained-shear-strength-and-over-consolidation-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Vibration Control of a Tracked Vehicle Driver Seat via Magnetorheological Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wael%20Ata">Wael Ata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tracked vehicles are exposed to severe operating conditions during their battlefield. The suspension system of such vehicles plays a crucial role in the mitigation of vibration transmitted from unevenness to vehicle hull and consequently to the crew. When the vehicles are crossing the road with high speeds, the driver is subjected to a high magnitude of vibration dose. This is because of the passive suspension system of the tracked vehicle lack the effectiveness to withstand induced vibration from irregular terrains. This paper presents vibration control of a semi-active seat suspension incorporating Magnetorheological (MR) damper fitted to a driver seat of an amphibious tracked vehicle (BMP-1). A half vehicle model featuring the proposed semi-active seat suspension is developed and its governing equations are derived. Two controllers namely; skyhook and fuzzy logic skyhook based to suppress the vibration dose at driver’s seat are formulated. The results show that the controlled MR suspension seat along with the vehicle model has substantially suppressed vibration levels at the driver’s seat under bump and sinusoidal excitations <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tracked%20Vehicles" title="Tracked Vehicles">Tracked Vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20dampers" title=" MR dampers"> MR dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=Skyhook%20%20controller" title=" Skyhook controller"> Skyhook controller</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20controller" title=" fuzzy logic controller"> fuzzy logic controller</a> </p> <a href="https://publications.waset.org/abstracts/118209/vibration-control-of-a-tracked-vehicle-driver-seat-via-magnetorheological-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Quasi-Static Resistance Function Quantification for Lightweight Sandwich Panels: Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20A.%20Khalifa">Yasser A. Khalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20J.%20Tait"> Michael J. Tait</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Asce"> A. M. Asce</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20W.%20El-Dakhakhni"> Wael W. El-Dakhakhni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Asce"> M. Asce</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quasi-static resistance functions for orthogonal corrugated core sandwich panels were determined experimentally. According to the American and Canadian codes for blast resistant designs of buildings UFC 3-340-02, ASCE/SEI 59-11, and CSA/ S850-12 the dynamic behavior is related to the static behavior under uniform loading. The target was to design a lightweight, relatively cheap, and quick sandwich panel to be employed as a sacrificial cladding for important buildings. For that an available corrugated cold formed steel sheet profile in North America was used as a core for the sandwich panel, in addition to using a quick, relatively low cost fabrication technique in the construction process. Six orthogonal corrugated core sandwich panels were tested and the influence of core sheet gauge on the behavior of the sandwich panels was explored using two different gauges. Failure modes, yield forces, ultimate forces, and corresponding deformations were determined and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20formed%20steel" title="cold formed steel">cold formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20structure" title=" lightweight structure"> lightweight structure</a>, <a href="https://publications.waset.org/abstracts/search?q=sandwich%20panel" title=" sandwich panel"> sandwich panel</a>, <a href="https://publications.waset.org/abstracts/search?q=sacrificial%20cladding" title=" sacrificial cladding"> sacrificial cladding</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20loading" title=" uniform loading"> uniform loading</a> </p> <a href="https://publications.waset.org/abstracts/19165/quasi-static-resistance-function-quantification-for-lightweight-sandwich-panels-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wael%20Mamdouh&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wael%20Mamdouh&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Wael%20Mamdouh&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10