CINXE.COM

Search results for: real-world 3D models

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: real-world 3D models</title> <meta name="description" content="Search results for: real-world 3D models"> <meta name="keywords" content="real-world 3D models"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="real-world 3D models" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="real-world 3D models"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6755</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: real-world 3D models</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6485</span> Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jefri%20Draup">Jefri Draup</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Ambard"> Antoine Ambard</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Toan%20Nguyen"> Chi-Toan Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident" title="accident">accident</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel" title=" fuel"> fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium" title=" zirconium"> zirconium</a> </p> <a href="https://publications.waset.org/abstracts/119938/modelling-phase-transformations-in-zircaloy-4-fuel-cladding-under-transient-heating-rates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6484</span> A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Bum%20Shin">Yong Bum Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20criteria%20decision%20making" title="multiple criteria decision making">multiple criteria decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=rank%20inconsistency" title=" rank inconsistency"> rank inconsistency</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20commensurate%20multiple" title=" unified commensurate multiple"> unified commensurate multiple</a>, <a href="https://publications.waset.org/abstracts/search?q=analytic%20hierarchy%20process" title=" analytic hierarchy process"> analytic hierarchy process</a> </p> <a href="https://publications.waset.org/abstracts/163543/a-pedagogical-case-study-on-consumer-decision-making-models-a-selection-of-smart-phone-apps" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6483</span> A Comparative Evaluation of the SIR and SEIZ Epidemiological Models to Describe the Diffusion Characteristics of COVID-19 Polarizing Viewpoints on Online</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Maleki">Maryam Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20Mead"> Esther Mead</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Arani"> Mohammad Arani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Agarwal"> Nitin Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is conducted to examine how opposing viewpoints related to COVID-19 were diffused on Twitter. To accomplish this, six datasets using two epidemiological models, SIR (Susceptible, Infected, Recovered) and SEIZ (Susceptible, Exposed, Infected, Skeptics), were analyzed. The six datasets were chosen because they represent opposing viewpoints on the COVID-19 pandemic. Three of the datasets contain anti-subject hashtags, while the other three contain pro-subject hashtags. The time frame for all datasets is three years, starting from January 2020 to December 2022. The findings revealed that while both models were effective in evaluating the propagation trends of these polarizing viewpoints, the SEIZ model was more accurate with a relatively lower error rate (6.7%) compared to the SIR model (17.3%). Additionally, the relative error for both models was lower for anti-subject hashtags compared to pro-subject hashtags. By leveraging epidemiological models, insights into the propagation trends of polarizing viewpoints on Twitter were gained. This study paves the way for the development of methods to prevent the spread of ideas that lack scientific evidence while promoting the dissemination of scientifically backed ideas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiological%20model" title=" epidemiological model"> epidemiological model</a>, <a href="https://publications.waset.org/abstracts/search?q=seiz%20model" title=" seiz model"> seiz model</a>, <a href="https://publications.waset.org/abstracts/search?q=sir%20model" title=" sir model"> sir model</a>, <a href="https://publications.waset.org/abstracts/search?q=covid-19" title=" covid-19"> covid-19</a>, <a href="https://publications.waset.org/abstracts/search?q=twitter" title=" twitter"> twitter</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network%20analysis" title=" social network analysis"> social network analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20contagion" title=" social contagion"> social contagion</a> </p> <a href="https://publications.waset.org/abstracts/177941/a-comparative-evaluation-of-the-sir-and-seiz-epidemiological-models-to-describe-the-diffusion-characteristics-of-covid-19-polarizing-viewpoints-on-online" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6482</span> Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramona%20Zharfpeykan">Ramona Zharfpeykan</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Rouse"> Paul Rouse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title="data envelopment analysis">data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20performance%20measurement%20system" title=" sustainability performance measurement system"> sustainability performance measurement system</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability%20performance%20index" title=" sustainability performance index"> sustainability performance index</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20reporting%20initiative" title=" global reporting initiative"> global reporting initiative</a> </p> <a href="https://publications.waset.org/abstracts/107493/comparative-sustainability-performance-analysis-of-australian-companies-using-composite-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6481</span> A Study of High Viscosity Oil-Gas Slug Flow Using Gamma Densitometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Baba">Y. Baba</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Archibong-Eso"> A. Archibong-Eso</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yeung"> H. Yeung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental study of high viscosity oil-gas flows in horizontal pipelines published in literature has indicated that hydrodynamic slug flow is the dominant flow pattern observed. Investigations have shown that hydrodynamic slugging brings about high instabilities in pressure that can damage production facilities thereby making it inherent to study high viscous slug flow regime so as to improve the understanding of its flow dynamics. Most slug flow models used in the petroleum industry for the design of pipelines together with their closure relationships were formulated based on observations of low viscosity liquid-gas flows. New experimental investigations and data are therefore required to validate these models. In cases where these models underperform, improving upon or building new predictive models and correlations will also depend on the new experimental dataset and further understanding of the flow dynamics in high viscous oil-gas flows. In this study conducted at the Flow laboratory, Oil and Gas Engineering Centre of Cranfield University, slug flow variables such as pressure gradient, mean liquid holdup, frequency and slug length for oil viscosity ranging from 1..0 – 5.5 Pa.s are experimentally investigated and analysed. The study was carried out in a 0.076m ID pipe, two fast sampling gamma densitometer and pressure transducers (differential and point) were used to obtain experimental measurements. Comparison of the measured slug flow parameters to the existing slug flow prediction models available in the literature showed disagreement with high viscosity experimental data thus highlighting the importance of building new predictive models and correlations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20densitometer" title="gamma densitometer">gamma densitometer</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20liquid%20holdup" title=" mean liquid holdup"> mean liquid holdup</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20gradient" title=" pressure gradient"> pressure gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=slug%20frequency%20and%20slug%20length" title=" slug frequency and slug length"> slug frequency and slug length</a> </p> <a href="https://publications.waset.org/abstracts/33621/a-study-of-high-viscosity-oil-gas-slug-flow-using-gamma-densitometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6480</span> Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myungjin%20Lee">Myungjin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Daegun%20Han"> Daegun Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongsung%20Kim"> Jongsung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soojun%20Kim"> Soojun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung%20Soo%20Kim"> Hung Soo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radar%20rainfall%20ensemble" title="radar rainfall ensemble">radar rainfall ensemble</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20models" title=" rainfall-runoff models"> rainfall-runoff models</a>, <a href="https://publications.waset.org/abstracts/search?q=blending%20method" title=" blending method"> blending method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20runoff%20hydrograph" title=" optimum runoff hydrograph"> optimum runoff hydrograph</a> </p> <a href="https://publications.waset.org/abstracts/76203/simulation-of-optimal-runoff-hydrograph-using-ensemble-of-radar-rainfall-and-blending-of-runoffs-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6479</span> Wind Fragility of Window Glass in 10-Story Apartment with Two Different Window Models </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viriyavudh%20Sim">Viriyavudh Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=WooYoung%20Jung"> WooYoung Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Damage due to high wind is not limited to load resistance components such as beam and column. The majority of damage is due to breach in the building envelope such as broken roof, window, and door. In this paper, wind fragility of window glass in residential apartment was determined to compare the difference between two window configuration models. Monte Carlo Simulation method had been used to derive damage data and analytical fragilities were constructed. Fragility of window system showed that window located in leeward wall had higher probability of failure, especially those close to the edge of structure. Between the two window models, Model 2 had higher probability of failure, this was due to the number of panel in this configuration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20fragility" title="wind fragility">wind fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20window" title=" glass window"> glass window</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20rise%20building" title=" high rise building"> high rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20disaster" title=" wind disaster"> wind disaster</a> </p> <a href="https://publications.waset.org/abstracts/61409/wind-fragility-of-window-glass-in-10-story-apartment-with-two-different-window-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6478</span> Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flora%20Babongo">Flora Babongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerie%20Chavez"> Valerie Chavez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title="causal inference">causal inference</a>, <a href="https://publications.waset.org/abstracts/search?q=DAGs" title=" DAGs"> DAGs</a>, <a href="https://publications.waset.org/abstracts/search?q=BAMLSS" title=" BAMLSS"> BAMLSS</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20index" title=" financial index"> financial index</a> </p> <a href="https://publications.waset.org/abstracts/106620/non-linear-causality-inference-using-bamlss-and-bi-cam-in-finance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6477</span> RAPDAC: Role Centric Attribute Based Policy Driven Access Control Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamil%20Ahmed">Jamil Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access control models aim to decide whether a user should be denied or granted access to the user‟s requested activity. Various access control models have been established and proposed. The most prominent of these models include role-based, attribute-based, policy based access control models as well as role-centric attribute based access control model. In this paper, a novel access control model is presented called “Role centric Attribute based Policy Driven Access Control (RAPDAC) model”. RAPDAC incorporates the concept of “policy” in the “role centric attribute based access control model”. It leverages the concept of "policy‟ by precisely combining the evaluation of conditions, attributes, permissions and roles in order to allow authorization access. This approach allows capturing the "access control policy‟ of a real time application in a well defined manner. RAPDAC model allows making access decision at much finer granularity as illustrated by the case study of a real time library information system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authorization" title="authorization">authorization</a>, <a href="https://publications.waset.org/abstracts/search?q=access%20control%20model" title=" access control model"> access control model</a>, <a href="https://publications.waset.org/abstracts/search?q=role%20based%20access%20control" title=" role based access control"> role based access control</a>, <a href="https://publications.waset.org/abstracts/search?q=attribute%20based%20access%20control" title=" attribute based access control"> attribute based access control</a> </p> <a href="https://publications.waset.org/abstracts/129022/rapdac-role-centric-attribute-based-policy-driven-access-control-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6476</span> On Stochastic Models for Fine-Scale Rainfall Based on Doubly Stochastic Poisson Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadarajah%20I.%20Ramesh">Nadarajah I. Ramesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Much of the research on stochastic point process models for rainfall has focused on Poisson cluster models constructed from either the Neyman-Scott or Bartlett-Lewis processes. The doubly stochastic Poisson process provides a rich class of point process models, especially for fine-scale rainfall modelling. This paper provides an account of recent development on this topic and presents the results based on some of the fine-scale rainfall models constructed from this class of stochastic point processes. Amongst the literature on stochastic models for rainfall, greater emphasis has been placed on modelling rainfall data recorded at hourly or daily aggregation levels. Stochastic models for sub-hourly rainfall are equally important, as there is a need to reproduce rainfall time series at fine temporal resolutions in some hydrological applications. For example, the study of climate change impacts on hydrology and water management initiatives requires the availability of data at fine temporal resolutions. One approach to generating such rainfall data relies on the combination of an hourly stochastic rainfall simulator, together with a disaggregator making use of downscaling techniques. Recent work on this topic adopted a different approach by developing specialist stochastic point process models for fine-scale rainfall aimed at generating synthetic precipitation time series directly from the proposed stochastic model. One strand of this approach focused on developing a class of doubly stochastic Poisson process (DSPP) models for fine-scale rainfall to analyse data collected in the form of rainfall bucket tip time series. In this context, the arrival pattern of rain gauge bucket tip times N(t) is viewed as a DSPP whose rate of occurrence varies according to an unobserved finite state irreducible Markov process X(t). Since the likelihood function of this process can be obtained, by conditioning on the underlying Markov process X(t), the models were fitted with maximum likelihood methods. The proposed models were applied directly to the raw data collected by tipping-bucket rain gauges, thus avoiding the need to convert tip-times to rainfall depths prior to fitting the models. One advantage of this approach was that the use of maximum likelihood methods enables a more straightforward estimation of parameter uncertainty and comparison of sub-models of interest. Another strand of this approach employed the DSPP model for the arrivals of rain cells and attached a pulse or a cluster of pulses to each rain cell. Different mechanisms for the pattern of the pulse process were used to construct variants of this model. We present the results of these models when they were fitted to hourly and sub-hourly rainfall data. The results of our analysis suggest that the proposed class of stochastic models is capable of reproducing the fine-scale structure of the rainfall process, and hence provides a useful tool in hydrological modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fine-scale%20rainfall" title="fine-scale rainfall">fine-scale rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood" title=" maximum likelihood"> maximum likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20process" title=" point process"> point process</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20model" title=" stochastic model"> stochastic model</a> </p> <a href="https://publications.waset.org/abstracts/90388/on-stochastic-models-for-fine-scale-rainfall-based-on-doubly-stochastic-poisson-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6475</span> Gastronomy: The Preferred Digital Business Models and Impacts in Business Economics within Hospitality, Tourism, and Catering Sectors through Online Commerce</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Oupa%20Hlatshwayo">John Oupa Hlatshwayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: There seem to be preferred digital business models with varying impacts within hospitality, tourism and catering sub-sectors explored through online commerce, as all are ingrained in the business economics domain. Aim: A study aims to establish if such phenomena (Digital Business Models) exist and to what extent if any, within the hospitality, tourism and catering industries, respectively. Setting: This is a qualitative study conducted by exploring several (Four) institutions globally through Case Studies. Method: This research explored explanatory case studies to answer questions about ‘how’ or ’why’ with little control by a researcher over the occurrence of events. It is qualitative research, deductive, and inductive methods. Hence, a comprehensive approach to analyzing qualitative data was attainable through immersion by reading to understand the information. Findings: The results corroborated the notion that digital business models are applicable, by and large, in business economics. Thus, three sectors wherein enterprises operate in the business economics sphere have been narrowed down i.e. hospitality, tourism and catering, are also referred to as triangular polygons due to the atypical nature of being ‘stand-alone’, yet ‘sub-sectors’, but there are confounding factors to consider. Conclusion: The significance of digital business models and digital transformation shows an inevitable merger between business and technology within Hospitality, Tourism, and Catering. Contribution: Such symbiotic relationship of business and technology, persistent evolution of clients’ interface with end-products, forever changing market, current adaptation as well as adjustment to ‘new world order’ by enterprises must be embraced constantly without fail by Business Practitioners, Academics, Business Students, Organizations and Governments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20business%20models" title="digital business models">digital business models</a>, <a href="https://publications.waset.org/abstracts/search?q=hospitality" title=" hospitality"> hospitality</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=catering" title=" catering"> catering</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20economics" title=" business economics"> business economics</a> </p> <a href="https://publications.waset.org/abstracts/172246/gastronomy-the-preferred-digital-business-models-and-impacts-in-business-economics-within-hospitality-tourism-and-catering-sectors-through-online-commerce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6474</span> Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osayande%20Pascal%20Omondiagbe">Osayande Pascal Omondiagbe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherlock%20a%20Licorish"> Sherlock a Licorish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title="feature selection">feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20prediction" title=" modeling and prediction"> modeling and prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=stack%20overflow" title=" stack overflow"> stack overflow</a> </p> <a href="https://publications.waset.org/abstracts/143309/predicting-stack-overflow-accepted-answers-using-features-and-models-with-varying-degrees-of-complexity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6473</span> Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nieto%20Bernal%20Wilson">Nieto Bernal Wilson</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmona%20Suarez%20Edgar"> Carmona Suarez Edgar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects. &nbsp;Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20warehouse" title="data warehouse">data warehouse</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20data" title=" model data"> model data</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20fact" title=" object fact"> object fact</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20relational%20fact" title=" object relational fact"> object relational fact</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20developed%20data%20warehouse" title=" process developed data warehouse"> process developed data warehouse</a> </p> <a href="https://publications.waset.org/abstracts/36181/agile-methodology-for-modeling-and-design-of-data-warehouses-am4dw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6472</span> Using Traffic Micro-Simulation to Assess the Benefits of Accelerated Pavement Construction for Reducing Traffic Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipta%20Ghorai">Sudipta Ghorai</a>, <a href="https://publications.waset.org/abstracts/search?q=Ossama%20Salem"> Ossama Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement maintenance, repair, and rehabilitation (MRR) processes may have considerable environmental impacts due to traffic disruptions associated with work zones. The simulation models in use to predict the emission of work zones were mostly static emission factor models (SEFD). SEFD calculates emissions based on average operation conditions e.g. average speed and type of vehicles. Although these models produce accurate results for large-scale planning studies, they are not suitable for analyzing driving conditions at the micro level such as acceleration, deceleration, idling, cruising, and queuing in a work zone. The purpose of this study is to prepare a comprehensive work zone environmental assessment (WEA) framework to calculate the emissions caused due to disrupted traffic; by integrating traffic microsimulation tools with emission models. This will help highway officials to assess the benefits of accelerated construction and opt for the most suitable TMP not only economically but also from an environmental point of view. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accelerated%20construction" title="accelerated construction">accelerated construction</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement%20MRR" title=" pavement MRR"> pavement MRR</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20microsimulation" title=" traffic microsimulation"> traffic microsimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=congestion" title=" congestion"> congestion</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions "> emissions </a> </p> <a href="https://publications.waset.org/abstracts/19803/using-traffic-micro-simulation-to-assess-the-benefits-of-accelerated-pavement-construction-for-reducing-traffic-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6471</span> Aggregation Scheduling Algorithms in Wireless Sensor Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Kyung%20An">Min Kyung An</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20aggregation" title="data aggregation">data aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=convergecast" title=" convergecast"> convergecast</a>, <a href="https://publications.waset.org/abstracts/search?q=gathering" title=" gathering"> gathering</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation" title=" approximation"> approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=omni-directional" title=" omni-directional"> omni-directional</a>, <a href="https://publications.waset.org/abstracts/search?q=directional" title=" directional"> directional</a> </p> <a href="https://publications.waset.org/abstracts/71859/aggregation-scheduling-algorithms-in-wireless-sensor-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6470</span> Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20K.%20Esfahani">Hamed K. Esfahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Bithin%20Datta"> Bithin Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geochemical%20transport%20simulation" title="geochemical transport simulation">geochemical transport simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20mine%20drainage" title=" acid mine drainage"> acid mine drainage</a>, <a href="https://publications.waset.org/abstracts/search?q=surrogate%20models" title=" surrogate models"> surrogate models</a>, <a href="https://publications.waset.org/abstracts/search?q=ensemble%20genetic%20programming" title=" ensemble genetic programming"> ensemble genetic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=contaminated%20aquifers" title=" contaminated aquifers"> contaminated aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20sites" title=" mine sites"> mine sites</a> </p> <a href="https://publications.waset.org/abstracts/39310/performance-evaluation-of-using-genetic-programming-based-surrogate-models-for-approximating-simulation-complex-geochemical-transport-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6469</span> Discrete Choice Modeling in Education: Evaluating Early Childhood Educators’ Practices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michalis%20Linardakis">Michalis Linardakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasilis%20Grammatikopoulos"> Vasilis Grammatikopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Athanasios%20Gregoriadis"> Athanasios Gregoriadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalliopi%20Trouli"> Kalliopi Trouli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discrete choice models belong to the family of Conjoint analysis that are applied on the preferences of the respondents towards a set of scenarios that describe alternative choices. The scenarios have been pre-designed to cover all the attributes of the alternatives that may affect the choices. In this study, we examine how preschool educators integrate physical activities into their everyday teaching practices through the use of discrete choice models. One of the advantages of discrete choice models compared to other more traditional data collection methods (e.g. questionnaires and interviews that use ratings) is that the respondent is called to select among competitive and realistic alternatives, rather than objectively rate each attribute that the alternatives may have. We present the effort to construct and choose representative attributes that would cover all possible choices of the respondents, and the scenarios that have arisen. For the purposes of the study, we used a sample of 50 preschool educators in Greece that responded to 4 scenarios (from the total of 16 scenarios that the orthogonal design resulted), with each scenario having three alternative teaching practices. Seven attributes of the alternatives were used in the scenarios. For the analysis of the data, we used multinomial logit model with random effects, multinomial probit model and generalized mixed logit model. The conclusions drawn from the estimated parameters of the models are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conjoint%20analysis" title="conjoint analysis">conjoint analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20choice%20models" title=" discrete choice models"> discrete choice models</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20data" title=" educational data"> educational data</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20statistical%20analysis" title=" multivariate statistical analysis"> multivariate statistical analysis</a> </p> <a href="https://publications.waset.org/abstracts/27531/discrete-choice-modeling-in-education-evaluating-early-childhood-educators-practices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6468</span> Forecasting Model for Rainfall in Thailand: Case Study Nakhon Ratchasima Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Sopipan">N. Sopipan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study of rainfall time series of weather stations in Nakhon Ratchasima province in Thailand using various statistical methods enabled to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. ARIMA and Holt-Winter models based on exponential smoothing were built. All the models proved to be adequate. Therefore, could give information that can help decision makers establish strategies for proper planning of agriculture, drainage system and other water resource applications in Nakhon Ratchasima province. We found the best perform for forecasting is ARIMA(1,0,1)(1,0,1)12. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARIMA%20Models" title="ARIMA Models">ARIMA Models</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20smoothing" title=" exponential smoothing"> exponential smoothing</a>, <a href="https://publications.waset.org/abstracts/search?q=Holt-Winter%20model" title=" Holt-Winter model"> Holt-Winter model</a> </p> <a href="https://publications.waset.org/abstracts/14834/forecasting-model-for-rainfall-in-thailand-case-study-nakhon-ratchasima-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6467</span> Interoperability Maturity Models for Consideration When Using School Management Systems in South Africa: A Scoping Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keneilwe%20Maremi">Keneilwe Maremi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlien%20Herselman"> Marlien Herselman</a>, <a href="https://publications.waset.org/abstracts/search?q=Adele%20Botha"> Adele Botha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose and focus of this paper are to determine the Interoperability Maturity Models to consider when using School Management Systems (SMS). The importance of this is to inform and help schools with knowing which Interoperability Maturity Model is best suited for their SMS. To address the purpose, this paper will apply a scoping review to ensure that all aspects are provided. The scoping review will include papers written from 2012-2019 and a comparison of the different types of Interoperability Maturity Models will be discussed in detail, which includes the background information, the levels of interoperability, and area for consideration in each Maturity Model. The literature was obtained from the following databases: IEEE Xplore and Scopus, the following search engines were used: Harzings, and Google Scholar. The topic of the paper was used as a search term for the literature and the term &lsquo;Interoperability Maturity Models&rsquo; was used as a keyword. The data were analyzed in terms of the definition of Interoperability, Interoperability Maturity Models, and levels of interoperability. The results provide a table that shows the focus area of concern for each Maturity Model (based on the scoping review where only 24 papers were found to be best suited for the paper out of 740 publications initially identified in the field). This resulted in the most discussed Interoperability Maturity Model for consideration (Information Systems Interoperability Maturity Model (ISIMM) and Organizational Interoperability Maturity Model for C2 (OIM)). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interoperability" title="interoperability">interoperability</a>, <a href="https://publications.waset.org/abstracts/search?q=interoperability%20maturity%20model" title=" interoperability maturity model"> interoperability maturity model</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20management%20system" title=" school management system"> school management system</a>, <a href="https://publications.waset.org/abstracts/search?q=scoping%20review" title=" scoping review"> scoping review</a> </p> <a href="https://publications.waset.org/abstracts/129080/interoperability-maturity-models-for-consideration-when-using-school-management-systems-in-south-africa-a-scoping-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6466</span> Models, Methods and Technologies for Protection of Critical Infrastructures from Cyber-Physical Threats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20%C5%BDupan">Ivan Župan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Critical infrastructure is essential for the functioning of a country and is designated for special protection by governments worldwide. Due to the increase in smart technology usage in every facet of the industry, including critical infrastructure, the exposure to malicious cyber-physical attacks has grown in the last few years. Proper security measures must be undertaken in order to defend against cyber-physical threats that can disrupt the normal functioning of critical infrastructure and, consequently the functioning of the country. This paper provides a review of the scientific literature of models, methods and technologies used to protect from cyber-physical threats in industries. The focus of the literature was observed from three aspects. The first aspect, resilience, concerns itself with the robustness of the system’s defense against threats, as well as preparation and education about potential future threats. The second aspect concerns security risk management for systems with cyber-physical aspects, and the third aspect investigates available testbed environments for testing developed models on scaled models of vulnerable infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20infrastructure" title="critical infrastructure">critical infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber-physical%20security" title=" cyber-physical security"> cyber-physical security</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20industry" title=" smart industry"> smart industry</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20methodology" title=" security methodology"> security methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20technology" title=" security technology"> security technology</a> </p> <a href="https://publications.waset.org/abstracts/169637/models-methods-and-technologies-for-protection-of-critical-infrastructures-from-cyber-physical-threats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6465</span> Comparative Analysis of Effecting Factors on Fertility by Birth Order: A Hierarchical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Hesari">Ali Hesari</a>, <a href="https://publications.waset.org/abstracts/search?q=Arezoo%20Esmaeeli"> Arezoo Esmaeeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regarding to dramatic changes of fertility and higher order births during recent decades in Iran, access to knowledge about affecting factors on different birth orders has crucial importance. In this study, According to hierarchical structure of many of social sciences data and the effect of variables of different levels of social phenomena that determine different birth orders in 365 days ending to 1390 census have been explored by multilevel approach. In this paper, 2% individual row data for 1390 census is analyzed by HLM software. Three different hierarchical linear regression models are estimated for data analysis of the first and second, third, fourth and more birth order. Research results displays different outcomes for three models. Individual level variables entered in equation are; region of residence (rural/urban), age, educational level and labor participation status and province level variable is GDP per capita. Results show that individual level variables have different effects in these three models and in second level we have different random and fixed effects in these models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fertility" title="fertility">fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=birth%20order" title=" birth order"> birth order</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20approach" title=" hierarchical approach"> hierarchical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=fixe%20effects" title=" fixe effects"> fixe effects</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20effects" title=" random effects"> random effects</a> </p> <a href="https://publications.waset.org/abstracts/22660/comparative-analysis-of-effecting-factors-on-fertility-by-birth-order-a-hierarchical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6464</span> An Analytical Survey of Construction Changes: Gaps and Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20Eshtehardian">Ehsan Eshtehardian</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Khodaverdi"> Saeed Khodaverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper surveys the studies on construction change and reveals some of the potential future works. A full-scale investigation of change literature, including change definitions, types, causes and effects, and change management systems, is accomplished to explore some of the coming change trends. It is tried to pick up the critical works in each section to deduct a true timeline of construction changes. The findings show that leaping from best practice guides in late 1990s and generic process models in the early 2000s to very advanced modeling environments in the mid-2000s and the early 2010s have made gaps along with opportunities for change researchers in order to develop some more easy and applicable models. Another finding is that there is a compelling similarity between the change and risk prediction models. Therefore, integrating these two concepts, specifically from proactive management point of view, may lead to a synergy and help project teams avoid rework. Also, the findings show that exploitation of cause-effect relationship models, in order to facilitate the dispute resolutions, seems to be an interesting field for future works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20change" title="construction change">construction change</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20management%20systems" title=" change management systems"> change management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=dispute%20resolutions" title=" dispute resolutions"> dispute resolutions</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20literature" title=" change literature"> change literature</a> </p> <a href="https://publications.waset.org/abstracts/48123/an-analytical-survey-of-construction-changes-gaps-and-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6463</span> Ground State Phases in Two-Mode Quantum Rabi Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suren%20Chilingaryan">Suren Chilingaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20optics" title="quantum optics">quantum optics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20phase%20transition" title=" quantum phase transition"> quantum phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20QED" title=" cavity QED"> cavity QED</a>, <a href="https://publications.waset.org/abstracts/search?q=circuit%20QED" title=" circuit QED"> circuit QED</a> </p> <a href="https://publications.waset.org/abstracts/53277/ground-state-phases-in-two-mode-quantum-rabi-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6462</span> Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Alrabeei">Salah Alrabeei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Yousuf"> Mohammad Yousuf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integral%20differential%20equations" title="integral differential equations">integral differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=jump%E2%80%93diffusion%20model" title=" jump–diffusion model"> jump–diffusion model</a>, <a href="https://publications.waset.org/abstracts/search?q=American%20options" title=" American options"> American options</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20approximation" title=" rational approximation"> rational approximation</a> </p> <a href="https://publications.waset.org/abstracts/125266/robust-numerical-scheme-for-pricing-american-options-under-jump-diffusion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6461</span> Modelling and Optimization of Laser Cutting Operations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hany%20Mohamed%20Abdu">Hany Mohamed Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan%20Gadallah"> Mohamed Hassan Gadallah</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Giushi%20Mokhtar"> El-Giushi Mokhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehia%20Mahmoud%20Ismail"> Yehia Mahmoud Ismail </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser beam cutting is one nontraditional machining process. This paper optimizes the parameters of Laser beam cutting machining parameters of Stainless steel (316L) by considering the effect of input parameters viz. power, oxygen pressure, frequency and cutting speed. Statistical design of experiments are carried in three different levels and process responses such as 'Average kerf taper (Ta)' and 'Surface Roughness (Ra)' are measured accordingly. A quadratic mathematical model (RSM) for each of the responses is developed as a function of the process parameters. Responses predicted by the models (as per Taguchi’s L27 OA) are employed to search for an optimal parametric combination to achieve desired yield of the process. RSM models are developed for mean responses, S/N ratio, and standard deviation of responses. Optimization models are formulated as single objective problem subject to process constraints. Models are formulated based on Analysis of Variance (ANOVA) using MATLAB environment. Optimum solutions are compared with Taguchi Methodology results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20cutting" title=" laser cutting"> laser cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20design" title=" robust design"> robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=kerf%20width" title=" kerf width"> kerf width</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM%20and%20DOE" title=" RSM and DOE"> RSM and DOE</a> </p> <a href="https://publications.waset.org/abstracts/31831/modelling-and-optimization-of-laser-cutting-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">620</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6460</span> The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20C.%20Soares">D. S. C. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20G.%20Costa"> D. G. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20T.%20S."> J. T. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20S.%20Abud"> A. K. S. Abud</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Nunes"> T. P. Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Oliveira%20J%C3%BAnior"> A. M. Oliveira Júnior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyse several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drying" title="drying">drying</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models"> models</a>, <a href="https://publications.waset.org/abstracts/search?q=jackfruit" title=" jackfruit"> jackfruit</a>, <a href="https://publications.waset.org/abstracts/search?q=biotechnology" title=" biotechnology"> biotechnology</a> </p> <a href="https://publications.waset.org/abstracts/2648/the-use-of-performance-indicators-for-evaluating-models-of-drying-jackfruit-artocarpus-heterophyllus-l-page-midilli-and-lewis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6459</span> Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Liu">T. Y. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Lin"> C. H. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Ferng"> Y. M. Ferng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyse the flow field and pressure distributions of the wing blades. Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm. Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyse the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=horizontal%20axis%20wind%20turbine" title="horizontal axis wind turbine">horizontal axis wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulence%20model" title=" turbulence model"> turbulence model</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20dynamics" title=" fluid dynamics"> fluid dynamics</a> </p> <a href="https://publications.waset.org/abstracts/3783/investigations-of-flow-field-with-different-turbulence-models-on-nrel-phase-vi-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6458</span> Climate Change Effects on Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Chebboub">Abdellatif Chebboub</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20change" title=" weather change"> weather change</a>, <a href="https://publications.waset.org/abstracts/search?q=danger%20of%20climate%20change" title=" danger of climate change"> danger of climate change</a> </p> <a href="https://publications.waset.org/abstracts/32801/climate-change-effects-on-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6457</span> Proposing a Strategic Management Maturity Model for Continues Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferhat%20Demir">Ferhat Demir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even if strategic management is highly critical for all types of organizations, only a few maturity models have been proposed in business literature for the area of strategic management activities. This paper updates previous studies and presents a new conceptual model for assessing the maturity of strategic management in any organization. Strategic management maturity model (S-3M) is basically composed of 6 maturity levels with 7 dimensions. The biggest contribution of S-3M is to put innovation into agenda of strategic management. The main objective of this study is to propose a model to align innovation with business strategies. This paper suggests that innovation (breakthrough new products/services and business models) is the only way of creating sustainable growth and strategy studies cannot ignore this aspect. Maturity models should embrace innovation to respond dynamic business environment and rapidly changing customer behaviours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strategic%20management" title="strategic management">strategic management</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation" title=" innovation"> innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20model" title=" business model"> business model</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20model" title=" maturity model"> maturity model</a> </p> <a href="https://publications.waset.org/abstracts/89817/proposing-a-strategic-management-maturity-model-for-continues-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6456</span> Correlation between Speech Emotion Recognition Deep Learning Models and Noises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leah%20Lee">Leah Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the correlation between deep learning models and emotions with noises to see whether or not noises mask emotions. The deep learning models used are plain convolutional neural networks (CNN), auto-encoder, long short-term memory (LSTM), and Visual Geometry Group-16 (VGG-16). Emotion datasets used are Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS), Crowd-sourced Emotional Multimodal Actors Dataset (CREMA-D), Toronto Emotional Speech Set (TESS), and Surrey Audio-Visual Expressed Emotion (SAVEE). To make it four times bigger, audio set files, stretch, and pitch augmentations are utilized. From the augmented datasets, five different features are extracted for inputs of the models. There are eight different emotions to be classified. Noise variations are white noise, dog barking, and cough sounds. The variation in the signal-to-noise ratio (SNR) is 0, 20, and 40. In summation, per a deep learning model, nine different sets with noise and SNR variations and just augmented audio files without any noises will be used in the experiment. To compare the results of the deep learning models, the accuracy and receiver operating characteristic (ROC) are checked. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-encoder" title="auto-encoder">auto-encoder</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20networks" title=" convolutional neural networks"> convolutional neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory" title=" long short-term memory"> long short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20emotion%20recognition" title=" speech emotion recognition"> speech emotion recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20geometry%20group-16" title=" visual geometry group-16"> visual geometry group-16</a> </p> <a href="https://publications.waset.org/abstracts/170547/correlation-between-speech-emotion-recognition-deep-learning-models-and-noises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=225">225</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=226">226</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=real-world%203D%20models&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10