CINXE.COM
Search results for: kefir supernatant
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: kefir supernatant</title> <meta name="description" content="Search results for: kefir supernatant"> <meta name="keywords" content="kefir supernatant"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="kefir supernatant" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="kefir supernatant"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 89</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: kefir supernatant</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Antioxidant Activity of the Algerian Traditional Kefir Supernatant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Amellal-Chibane">H. Amellal-Chibane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dehdouh"> N. Dehdouh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ait-Kaki"> S. Ait-Kaki</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20%20Halladj"> F. Halladj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kefir is fermented milk that is produced by adding Kefir grains, consisting of bacteria and yeasts, to milk. The aim of this study was to investigate the antioxidant activity of the kefir supernatant and the raw milk. The Antioxidant activity assays of kefir supernatant and raw milk were evaluated by assessing the DPPH radical-scavenging activity. Kefir supernatant demonstrated high antioxidant activity (87.75%) compared to the raw milk (70.59 %). These results suggest that the Algerian kefir has interesting antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir%20supernatant" title=" kefir supernatant"> kefir supernatant</a>, <a href="https://publications.waset.org/abstracts/search?q=raw%20milk" title=" raw milk "> raw milk </a> </p> <a href="https://publications.waset.org/abstracts/24330/antioxidant-activity-of-the-algerian-traditional-kefir-supernatant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Effect of Goat Milk Kefir and Soy Milk Kefir on IL-6 in Diabetes Mellitus Wistar Mice Models Induced by Streptozotocin and Nicotinamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agatha%20Swasti%20Ayuning%20Tyas">Agatha Swasti Ayuning Tyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hyperglycemia in Diabetes Mellitus (DM) is an important factor in cellular and vascular damage, which is caused by activation of C Protein Kinase, polyol and hexosamine track, and production of Advanced Glycation End-Products (AGE). Those mentioned before causes the accumulation of Reactive Oxygen Species (ROS). Oxidative stress increases the expression of proinflammatory factors IL-6 as one of many signs of endothelial disfunction. Genistein in soy milk has a high immunomodulator potential. Goat milk contains amino acids which have antioxidative potential. Fermented kefir has an anti-inflammatory activity which believed will also contribute in potentiating goat milk and soy milk. This study is a quasi-experimental posttest-only research to 30 Wistar mice. This study compared the levels of IL-6 between healthy Wistar mice group (G1) and 4 DM Wistar mice with intervention and grouped as follows: mice without treatment (G2), mice treated with 100% goat milk kefir (G3), mice treated with combination of 50% goat milk kefir and 50% soy milk kefir (G4), and mice treated with 100% soy milk kefir (G5). DM animal models were induced with Streptozotocin & Nicotinamide to achieve hyperglycemic condition. Goat milk kefir and soy milk kefir are given at a dose of 2 mL/kg body weight/day for four weeks to intervention groups. Blood glucose was analyzed by the GOD-POD principle. IL-6 was analyzed by enzyme-linked sandwich ELISA. The level of IL-6 in DM untreated control group (G2) showed a significant difference from the group treated with the combination of 50% goat milk kefir and 50% soy milk kefir (G3) (p=0,006) and the group treated with 100% soy milk kefir (G5) (p=0,009). Whereas the difference of IL-6 in group treated with 100% goat milk kefir (G3) was not significant (p=0,131). There is also synergism between glucose level and IL-6 in intervention groups treated with combination of 50% goat milk kefir and 50% soy milk kefir (G3) and the group treated with 100% soy milk kefir (G5). Combination of 50 % goat milk kefir and 50% soy milk kefir and administration of 100% soy milk kefir alone can control the level of IL-6 remained low in DM Wistar mice induced with streptozocin and nicotinamide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title="diabetes mellitus">diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk%20kefir" title=" goat milk kefir"> goat milk kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20milk%20kefir" title=" soy milk kefir"> soy milk kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=interleukin%206" title=" interleukin 6"> interleukin 6</a> </p> <a href="https://publications.waset.org/abstracts/65540/effect-of-goat-milk-kefir-and-soy-milk-kefir-on-il-6-in-diabetes-mellitus-wistar-mice-models-induced-by-streptozotocin-and-nicotinamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Physicochemical and Microbiological Properties of Kefir, Kefir Yogurt and Chickpea Yogurt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuray%20G%C3%BCzeler">Nuray Güzeler</a>, <a href="https://publications.waset.org/abstracts/search?q=Elif%20Ari"> Elif Ari</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6zde%20Konuray"> Gözde Konuray</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87a%C4%9Fla%20%C3%96zbek"> Çağla Özbek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The consumption of functional foods is very common. For this reason, many products which are probiotic, prebiotic, energy reduced and fat reduced are developed. In this research, physicochemical and microbiological properties of functional kefir, kefir yogurt and chickpea yogurt were examined. For this purpose, pH values, titration acidities, viscosity values, water holding capacities, serum separation values, acetaldehyde contents, tyrosine contents, the count of aerobic mesophilic bacteria, lactic acid bacteria count and mold-yeast counts were determined. As a result of performed analysis, the differences between titration acidities, serum separation values, water holding capacities, acetaldehyde and tyrosine contents of samples were statistically significant (p < 0.05). There were no significant differences on pH values, viscosities, and microbiological properties of samples (p > 0.05). Consequently industrial production of functional kefir yogurt and chickpea yogurt may be advised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea%20yogurt" title="chickpea yogurt">chickpea yogurt</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir%20yogurt" title=" kefir yogurt"> kefir yogurt</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a> </p> <a href="https://publications.waset.org/abstracts/71188/physicochemical-and-microbiological-properties-of-kefir-kefir-yogurt-and-chickpea-yogurt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Screening of Antagonistic/Synergistic Effect between Lactic Acid Bacteria (LAB) and Yeast Strains Isolated from Kefir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mihriban%20Korukluoglu">Mihriban Korukluoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Goksen%20Arik"> Goksen Arik</a>, <a href="https://publications.waset.org/abstracts/search?q=Cagla%20Erdogan"> Cagla Erdogan</a>, <a href="https://publications.waset.org/abstracts/search?q=Selen%20Kocakoglu"> Selen Kocakoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kefir is a traditional fermented refreshing beverage which is known for its valuable and beneficial properties for human health. Mainly yeast species, lactic acid bacteria (LAB) strains and fewer acetic acid bacteria strains live together in a natural matrix named “kefir grain”, which is formed from various proteins and polysaccharides. Different microbial species live together in slimy kefir grain and it has been thought that synergetic effect could take place between microorganisms, which belong to different genera and species. In this research, yeast and LAB were isolated from kefir samples obtained from Uludag University Food Engineering Department. The cell morphology of isolates was screened by microscopic examination. Gram reactions of bacteria isolates were determined by Gram staining method, and as well catalase activity was examined. After observing the microscopic/morphological and physical, enzymatic properties of all isolates, they were divided into the groups as LAB and/or yeast according to their physicochemical responses to the applied examinations. As part of this research, the antagonistic/synergistic efficacy of the identified five LAB and five yeast strains to each other were determined individually by disk diffusion method. The antagonistic or synergistic effect is one of the most important properties in a co-culture system that different microorganisms are living together. The synergistic effect should be promoted, whereas the antagonistic effect is prevented to provide effective culture for fermentation of kefir. The aim of this study was to determine microbial interactions between identified yeast and LAB strains, and whether their effect is antagonistic or synergistic. Thus, if there is a strain which inhibits or retards the growth of other strains found in Kefir microflora, this circumstance shows the presence of antagonistic effect in the medium. Such negative influence should be prevented, whereas the microorganisms which have synergistic effect on each other should be promoted by combining them in kefir grain. Standardisation is the most desired property for industrial production. Each microorganism found in the microbial flora of a kefir grain should be identified individually. The members of the microbial community found in the glue-like kefir grain may be redesigned as a starter culture regarding efficacy of each microorganism to another in kefir processing. The main aim of this research was to shed light on more effective production of kefir grain and to contribute a standardisation of kefir processing in the food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antagonistic%20effect" title="antagonistic effect">antagonistic effect</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria%20%28LAB%29" title=" lactic acid bacteria (LAB)"> lactic acid bacteria (LAB)</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic" title=" synergistic"> synergistic</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a> </p> <a href="https://publications.waset.org/abstracts/61707/screening-of-antagonisticsynergistic-effect-between-lactic-acid-bacteria-lab-and-yeast-strains-isolated-from-kefir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61707.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Development and Characterization of Kefir Drinks from Pumpkin (Cucurbita moschata) and Winter Melon (Benincasa hispida)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uthumporn%20Utra">Uthumporn Utra</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20N.%20Shariffa"> Y. N. Shariffa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Maizura"> M. Maizura</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Ruri"> A. S. Ruri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is to study the utilization of pumpkin and winter melon as the main substrate for kefir fermentation in the production of pumpkin and winter melon-based fermented drinks. Optimized temperature and time were chosen for fermentation of pumpkin and winter melon. Physicochemical and microbiological evaluations were conducted to the end products: P (fermented pumpkin juice) and K (fermented winter melon juice). Ethanol content was detected at low concentration of 0.9% (v/wt) in P, and 1.0% (v/wt) in K. Level of glucose and fructose increased significantly (p < 0.05) in both fermented drinks when compared to unfermented pumpkin (CP) and winter melon (CK) juices. Total phenolic content in P & K was higher than CP and CK, while %DPPH inhibition of both decreased significantly. Total Lactobacilli counts in P & K were 8.9 and 7.88 log cfu/ml respectively, while acetic acid bacteria counts were 8.62 and 7.57 log cfu/ml respectively, yeast counts were 4.71 and 5 log cfu/ml, and no E.coli was detected in all samples. Sensory evaluation yield comparable properties in P & K. This concluded that pumpkin and winter melon fermented drinks inoculated by water kefir grains could be promising source of nutrients with probiotic potency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20drinks" title="fermented drinks">fermented drinks</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20beverage" title=" functional beverage"> functional beverage</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=pumpkin" title=" pumpkin"> pumpkin</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20melon" title=" winter melon"> winter melon</a> </p> <a href="https://publications.waset.org/abstracts/92766/development-and-characterization-of-kefir-drinks-from-pumpkin-cucurbita-moschata-and-winter-melon-benincasa-hispida" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Development of Milky Products Leavend by Kefir Grains with Reduced Lactose and Flavored with Tropical Fruit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20L.%20Balieiro">A. L. Balieiro</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Silveira"> D. S. Silveira</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Santos"> R. A. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Freitas"> L. S. Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20L.%20S.%20De%20Alsina"> O. L. S. De Alsina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Lima"> A. S. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20F.%20Soares"> C. M. F. Soares </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The state of Sergipe has been emerging in milk production, mainly in the dairy basin located in the northeast of the state of the Brazil. However, this area concentrates the production of dairy, developing diverse products with higher aggregated value and scent and regional flavours. With this goal the present wok allows the development of dairy drinks with reduced lactose index, using kefir grains flavored with mangaba pulp. Initially, the removal of milk lactose was evaluated in adsorption columns completed with silica particles obtained by molecular impression technique, using sol ? gel method with the presence and absence of lactose biomolecule, molecular imprinted polymer (PIM) or pure matrix (MP), respectively. Then kefir grains were used for the development of dairy drinks flavored with regional fruits (mangaba). The products were analyzed sensorially, evaluated the probiotic potential and the removal of the lactose. Among the products obtained, the one that present best result in the sensorially was to the drink with removal PIM flavored of mangaba, for which around 60% of the testers indicated that would buy the new product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20imprinted%20polymer" title="molecular imprinted polymer">molecular imprinted polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=lactose" title=" lactose"> lactose</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a> </p> <a href="https://publications.waset.org/abstracts/3617/development-of-milky-products-leavend-by-kefir-grains-with-reduced-lactose-and-flavored-with-tropical-fruit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Production of Recombinant VP2 Protein of Canine Parvovirus Type 2c Using Baculovirus Expression System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Young%20Song">Jae Young Song</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Ohk%20Ouh"> In-Ohk Ouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyeon%20Park"> Seyeon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Byeong%20Sul%20Kang"> Byeong Sul Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Dong%20Cho"> Soo Dong Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Soo%20Cho"> In-Soo Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Canine parvovirus (CPV) is a major pathogen of diarrhea disease in dogs. CPV type 2 has three of antigenic variants such as 2a, 2b, and 2c. CPV constructs a small non-enveloped, icosahedral capsid that contains single-stranded DNA. It has capsids that two largely overlapping virion proteins (VP), VP1 (82 kDa), and VP2 (65 kDa). Baculoviruses are insect pathogens that regulate insect populations in nature and are being successfully used to control insect pests. The proteins produced in the baculovirus-expression system are used for instance for functional studies, vaccine preparations, or diagnostics. The vaccines produced by baculovirus-expression system showed elicitation of antibodies. The recombinant baculovirus infected SF9 cells showed broken shape. The recombinant VP2 proteins from cell pellet or supernatant were confirmed by western blotting. The result showed that the recombinant VP2 protein bands were appeared at 65 kDa molecular weight in both cell pellet and supernatant of infected SF9 cell. These results indicated that the recombinant baculovirus infected SF9 cell express the recombinant VP2 protein successfully. In addition, the expressed recombinant VP2 protein is secreted from cell to supernatant. The baculovirus expression system can be used to produce the VP2 protein of CPV 2c. In addition, the secretion property of the expression of VP2 protein may decrease the cost of production, because it can be skipped the cell breaking step. The produced VP2 protein could be used for vaccine and the agent of diagnostic tests. This study provides the foundation of the production of CPV 2c vaccine and the diagnostic agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baculovirus" title="baculovirus">baculovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=canine%20parvovirus%202c" title=" canine parvovirus 2c"> canine parvovirus 2c</a>, <a href="https://publications.waset.org/abstracts/search?q=dog" title=" dog"> dog</a>, <a href="https://publications.waset.org/abstracts/search?q=Korea" title=" Korea"> Korea</a> </p> <a href="https://publications.waset.org/abstracts/93353/production-of-recombinant-vp2-protein-of-canine-parvovirus-type-2c-using-baculovirus-expression-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Chemometric Regression Analysis of Radical Scavenging Ability of Kombucha Fermented Kefir-Like Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kovacevic">Strahinja Kovacevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20Karadzic%20Banjac"> Milica Karadzic Banjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmina%20Vitas"> Jasmina Vitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Vukmanovic"> Stefan Vukmanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Radomir%20Malbasa"> Radomir Malbasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevric"> Lidija Jevric</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovic"> Sanja Podunavac-Kuzmanovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with chemometric regression analysis of quality parameters and the radical scavenging ability of kombucha fermented kefir-like products obtained with winter savory (WS), peppermint (P), stinging nettle (SN) and wild thyme tea (WT) kombucha inoculums. Each analyzed sample was described by milk fat content (MF, %), total unsaturated fatty acids content (TUFA, %), monounsaturated fatty acids content (MUFA, %), polyunsaturated fatty acids content (PUFA, %), the ability of free radicals scavenging (RSA Dₚₚₕ, % and RSA.ₒₕ, %) and pH values measured after each hour from the start until the end of fermentation. The aim of the conducted regression analysis was to establish chemometric models which can predict the radical scavenging ability (RSA Dₚₚₕ, % and RSA.ₒₕ, %) of the samples by correlating it with the MF, TUFA, MUFA, PUFA and the pH value at the beginning, in the middle and at the end of fermentation process which lasted between 11 and 17 hours, until pH value of 4.5 was reached. The analysis was carried out applying univariate linear (ULR) and multiple linear regression (MLR) methods on the raw data and the data standardized by the min-max normalization method. The obtained models were characterized by very limited prediction power (poor cross-validation parameters) and weak statistical characteristics. Based on the conducted analysis it can be concluded that the resulting radical scavenging ability cannot be precisely predicted only on the basis of MF, TUFA, MUFA, PUFA content, and pH values, however, other quality parameters should be considered and included in the further modeling. This study is based upon work from project: Kombucha beverages production using alternative substrates from the territory of the Autonomous Province of Vojvodina, 142-451-2400/2019-03, supported by Provincial Secretariat for Higher Education and Scientific Research of AP Vojvodina. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title="chemometrics">chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kombucha" title=" kombucha"> kombucha</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a> </p> <a href="https://publications.waset.org/abstracts/114072/chemometric-regression-analysis-of-radical-scavenging-ability-of-kombucha-fermented-kefir-like-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Effects of Medium Composition on the Production of Biomass and a Carbohydrate Isomerase by a Novel Strain of Lactobacillus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Miriam%20Hern%C3%A1ndez-Arroyo">M. Miriam Hernández-Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivonne%20Caro-Gonzales"> Ivonne Caro-Gonzales</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20%C3%81ngel%20Plascencia-Espinosa"> Miguel Ángel Plascencia-Espinosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20R.%20Trejo-Estrada"> Sergio R. Trejo-Estrada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A large biodiversity of Lactobacillus strains has been detected in traditional foods and beverages from Mexico. A selected strain of Lactobacillus sp - PODI-20, used for the obtained from an artisanal fermented beverage was cultivated in different carbon sources in a complex medium, in order to define which carbon sourced induced more effectively the isomerization of arabinose by cell fractions obtained by fermentation. Four different carbon sources were tested in a medium containing peptone and yeast extract and mineral salts. Glucose, galactose, arabinose, and lactose were tested individually at three different concentrations: 3.5, 6, and 10% w/v. The biomass yield ranged from 1.72 to 17.6 g/L. The cell pellet was processed by mechanical homogenization. Both fractions, the cellular debris, and the lysis supernatant were tested for their ability to isomerize arabinose into ribulose. The highest yield of isomer was 12 % of isomerization in the supernatant fractions; whereas up to 9.3% was obtained by the use of cell debris. The isomerization of arabinose has great significance in the production of lactic acid by fermentation of complex carbohydrate hydrolysates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isomerase" title="isomerase">isomerase</a>, <a href="https://publications.waset.org/abstracts/search?q=tagatose" title=" tagatose"> tagatose</a>, <a href="https://publications.waset.org/abstracts/search?q=aguamiel" title=" aguamiel"> aguamiel</a>, <a href="https://publications.waset.org/abstracts/search?q=isomerization" title=" isomerization"> isomerization</a> </p> <a href="https://publications.waset.org/abstracts/17958/effects-of-medium-composition-on-the-production-of-biomass-and-a-carbohydrate-isomerase-by-a-novel-strain-of-lactobacillus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Biological Treatment of Bacterial Biofilms from Drinking Water Distribution System in Lebanon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamieh">A. Hamieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Olama"> Z. Olama</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Holail"> H. Holail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drinking Water Distribution Systems provide opportunities for microorganisms that enter the drinking water to develop into biofilms. Antimicrobial agents, mainly chlorine, are used to disinfect drinking water, however, there are not yet standardized disinfection strategies with reliable efficacy and development of novel anti-biofilm strategies is still of major concern. In the present study the ability of Lactobacillus acidophilus and Streptomyces sp. cell free supernatants to inhibit the bacterial biofilm formation in Drinking Water Distribution System in Lebanon was investigated. Treatment with cell free supernatants of Lactobacillus acidophilus and Streptomyces sp. at 20% concentration resulted in average biofilm inhibition (52.89 and 39.66% respectively). A preliminary investigation about the mode of action of biofilm inhibition revealed that cell free supernatants showed no bacteriostatic or bactericidal activity against all the tested isolates. Pre-coating wells with supernatants revealed that Lactobacillus acidophilus cell free supernatant inhibited average biofilm formation (62.53%) by altering the adhesion of bacterial isolates to the surface, preventing the initial attachment step, which is important for biofilm production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20free%20supernatant" title=" cell free supernatant"> cell free supernatant</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title=" distribution system"> distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title=" drinking water"> drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=lactobacillus%20acidophilus" title=" lactobacillus acidophilus"> lactobacillus acidophilus</a>, <a href="https://publications.waset.org/abstracts/search?q=streptomyces%20sp" title=" streptomyces sp"> streptomyces sp</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesion" title=" adhesion"> adhesion</a> </p> <a href="https://publications.waset.org/abstracts/36546/biological-treatment-of-bacterial-biofilms-from-drinking-water-distribution-system-in-lebanon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Moradi">N. Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20M.%20Lopez-Vazquez"> C. M. Lopez-Vazquez</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Garcia%20Hernandez"> H. Garcia Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rubio%20Rincon"> F. Rubio Rincon</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Brdanovic"> D. Brdanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20van%20Loosdrecht"> Mark van Loosdrecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digestate%20sludge" title="digestate sludge">digestate sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20contaminants" title=" emerging contaminants"> emerging contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-AOP" title=" UV-AOP"> UV-AOP</a> </p> <a href="https://publications.waset.org/abstracts/149466/comparing-uv-based-and-o3-based-aops-for-removal-of-emerging-contaminants-from-food-processing-digestate-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> The Study of Platelet-Rich Plasma(PRP) on Wounds of OLEFT Rats Using Expression of MMP-2, MMP-9 mRNA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ho%20Seong%20Shin">Ho Seong Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: A research in relation to wound healing also showed that platelet-rich plasma (PRP) was effective on normal tissue regeneration. Nonetheless, there is no evidence that when platelet-rich plasma was applied on diabetic wound, it normalize diabetic wound healing process. In this study, we have analyzed matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) expression to know the effect of PRP on diabetic wounds using Reverse transcription-polymerase chain reaction (RT-PCR) of MMP-2, MMP-9 mRNA. Materials and Methods: Platelet-rich plasma (PRP) was prepared from blood of 6 rats. The whole 120-mL was added immediately to an anticoagulant. Citrate phosphonate dextrose(CPD) buffer (0.15 mg CPDmL) in a ratio of 1 mL of CPD buffer to 5 mL of blood. The blood was then centrifuged at 220g for 20minutes. The supernatant was saved to produce fibrin glue. The participate containing PRP was used for second centrifugation at 480g for 20 minutes. The pellet from the second centrifugation was saved and diluted with supernatant until the platelet concentration became 900,000/μL. Twenty male, 4week-old OLETF rats were underwent operation; each rat had two wounds created on left and right sides. The each wound of left side was treated with PRP gel, the wound of right side was treated with physiologic saline gauze. Results: RT-PCR analysis; The levels of MMP-2 mRNA in PRP applied tissues were positively related to postwounding days, whereas MMP-2 mRNA expression in saline-applied tissues remained in 5day after treatment. MMP-9 mRNA was undetectable in saline-applied tissues for either tissue, except 3day after treatment. Following PRP-applied tissues, MMP-9 mRNA expression was detected, with maximal expression being seen at third day. The levels of MMP-9 mRNA in PRP applied tissues were reported high intensity of optical density related to saline applied tissues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP-2" title=" MMP-2"> MMP-2</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP-9" title=" MMP-9"> MMP-9</a>, <a href="https://publications.waset.org/abstracts/search?q=OLETF" title=" OLETF"> OLETF</a>, <a href="https://publications.waset.org/abstracts/search?q=PRP" title=" PRP"> PRP</a>, <a href="https://publications.waset.org/abstracts/search?q=wound%20healing%0D%0AMMP-9" title=" wound healing MMP-9"> wound healing MMP-9</a> </p> <a href="https://publications.waset.org/abstracts/39065/the-study-of-platelet-rich-plasmaprp-on-wounds-of-oleft-rats-using-expression-of-mmp-2-mmp-9-mrna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Changed Behavior of the Porcine Hemagglutinating Encephalomyelitis Virus (Betacoronavirus) in Respiratory Epithelial Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ateeqa%20Aslam">Ateeqa Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans%20J.%20Nauwynck"> Hans J. Nauwynck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Porcine hemagglutinating encephalomyelitis virus (PHEV) is a betacoronavirus that has been studied in the past as a cause of vomiting and wasting disease (VWD) in young piglets (<3 weeks). Nowadays, the virus is still circulating on most farms in Belgium, but there are no descriptions anymore of VWD. Therefore, we are interested in differences between the old and new strains. We compared the replication kinetics of the old well-studied strain VW572 (1972) and the recent isolate P412 (2020) in a susceptible continuous cell line (RPD cells) and in primary porcine respiratory epithelial cells (PoRECs). The RPD cell line was inoculated with each PHEV strain at an m.o.i. of 1 the supernatant was collected, and the cells were fixed at different time points post-inoculation. The supernatant was titrated (extracellular virus titer), and the infected cells were revealed by immunofluorescence staining and quantitated by fluorescence microscopy. We found that VW572 replicated better in the RPD cell line at earlier time points when compared to P412. Porcine respiratory epithelial cells (PoREC) were isolated, grown at air-liquid interphase in transwells and inoculated with both strains of PHEV at a virus titer of 106.6TCID50 per 200 µl either at the apical side or at the basal side of the cells. At different time points after inoculation, the transwells were fixed and stained for infected cells. VW572 preferentially infected the epithelial cells via the basolateral side of porcine nasal epithelial cells, whereas P412 preferred the apical side. These findings suggest that there has been an evolution of PHEV in its interaction with the respiratory epithelial cells. In the future, more virus strains will be enclosed and the tropism of the strains for different neuronal cell types will be examined for the change in virus neurotropism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porcine%20hemagglutinating%20encephalomyelitis%20virus%20%28PHEV%29" title="porcine hemagglutinating encephalomyelitis virus (PHEV)">porcine hemagglutinating encephalomyelitis virus (PHEV)</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20porcine%20respiratory%20epithelial%20cells%20%28PoRECs%29" title=" primary porcine respiratory epithelial cells (PoRECs)"> primary porcine respiratory epithelial cells (PoRECs)</a>, <a href="https://publications.waset.org/abstracts/search?q=virus%20tropism" title=" virus tropism"> virus tropism</a>, <a href="https://publications.waset.org/abstracts/search?q=vomiting%20and%20wasting%20disease%20%28VWD%29" title=" vomiting and wasting disease (VWD)"> vomiting and wasting disease (VWD)</a> </p> <a href="https://publications.waset.org/abstracts/186511/changed-behavior-of-the-porcine-hemagglutinating-encephalomyelitis-virus-betacoronavirus-in-respiratory-epithelial-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Antibacterial Activities of Lactic Acid Bacteria on Potential Multidrug - Resistant Pathogens Isolated from Rabbit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Checkfaith%20I.%20Aizebeoje">Checkfaith I. Aizebeoje</a>, <a href="https://publications.waset.org/abstracts/search?q=Temitope%20O.%20Lawal"> Temitope O. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bolanle%20A.%20Adeniyi"> Bolanle A. Adeniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The overuse and abuse of antibiotics in treating zoonotic infections in humans and opportunistic infections in rabbit has contributed to the increase in antimicrobial drug resistance, therefore, an alternative to antibiotics is needed in treating these infections. The study was carried out to determine the antimicrobial activity of lactic acid bacteria (LAB) isolated from rabbit’s faeces against multidrug-resistant (MDR) pathogens isolated from the same rabbit. Twelve faecal samples and twelve swabs from fur samples were randomly collected aseptically from apparently healthy rabbits from Ajibode, Ibadan and University of Ibadan research farm in Ibadan, Oyo state, Nigeria. Lactic acid bacteria and multidrug-resistant pathogens were isolated using appropriate agar media and identified by partial sequencing of the 16SrRNA gene. Antibiotic susceptibility pattern of isolated bacteria and LAB were determined by the agar diffusion method. The antibacterial activity of the LAB against the test pathogens was determined using the agar overlay and agar diffusion methods. The pathogens Myroides gitamensis, Citrobacter rodentium, Acinetobacter johnsonii, Enterobacter oryzendophyticus and Serratia marcescens as well as twenty-eight (28) species of LAB belonging to Acetobacter and Lactobacillus genera were identified and characterized. Lactobacillus plantarum had the highest (60.71%) occurrence of the LAB. Viable cells and cell free supernatant (CFS) of isolated LAB inhibited the growth of the test organisms with the largest zone of inhibition (40 mm) produced by Lactobacillus plantarum against Citrobacter rodentium. This study showed that LAB from rabbit possess considerable antibacterial activity against multidrug-resistant bacteria from the same environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activities" title="antibacterial activities">antibacterial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20supernatant" title=" cell-free supernatant"> cell-free supernatant</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria%3B%20multidrug-resistant%20pathogens" title=" lactic acid bacteria; multidrug-resistant pathogens"> lactic acid bacteria; multidrug-resistant pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=rabbits%E2%80%99%20faeces" title=" rabbits’ faeces "> rabbits’ faeces </a> </p> <a href="https://publications.waset.org/abstracts/129576/antibacterial-activities-of-lactic-acid-bacteria-on-potential-multidrug-resistant-pathogens-isolated-from-rabbit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> The Production of B-Group Vitamin by Lactic Acid Bacteria and Its Importance in Food Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goksen%20Arik">Goksen Arik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihriban%20Korukluoglu"> Mihriban Korukluoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactic acid bacteria (LAB) has been used commonly in the food industry. They can be used as natural preservatives because acidifying carried out in the medium can protect the last product against microbial spoilage. Besides, other metabolites produced by LAB during fermentation period have also an antimicrobial effect on pathogen and spoilage microorganisms in the food industry. LAB are responsible for the desirable and distinctive aroma and flavour which are observed in fermented food products such as pickle, kefir, yogurt, and cheese. Various LAB strains are able to produce B-group vitamins such as folate (B11), riboflavin (B2) and cobalamin (B12). Especially wild-type strains of LAB can produce B-group vitamins in high concentrations. These cultures may be used in food industry as a starter culture and also the microbial strains can be used in encapsulation technology for new and functional food product development. This review is based on the current applications of B-group vitamin producing LAB. Furthermore, the new technologies and innovative researches about B vitamin production in LAB have been demonstrated and discussed for determining their usage availability in various area in the food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%20vitamin" title="B vitamin">B vitamin</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20industry" title=" food industry"> food industry</a>, <a href="https://publications.waset.org/abstracts/search?q=lactic%20acid%20bacteria" title=" lactic acid bacteria"> lactic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=starter%20culture" title=" starter culture"> starter culture</a>, <a href="https://publications.waset.org/abstracts/search?q=technology" title=" technology"> technology</a> </p> <a href="https://publications.waset.org/abstracts/73676/the-production-of-b-group-vitamin-by-lactic-acid-bacteria-and-its-importance-in-food-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Kinetics Study for the Recombinant Cellulosome to the Degradation of Chlorella Cell Residuals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20C.%20Lin">C. C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kan"> S. C. Kan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20W.%20Yeh"> C. W. Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20I%20Chen"> C. I Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Shieh"> C. J. Shieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20C.%20Liu"> Y. C. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, lipid-deprived residuals of microalgae were hydrolyzed for the production of reducing sugars by using the recombinant Bacillus cellulosome, carrying eight genes from the Clostridium thermocellum ATCC27405. The obtained cellulosome was found to exist mostly in the broth supernatant with a cellulosome activity of 2.4 U/mL. Furthermore, the Michaelis-Menten constant (Km) and Vmax of cellulosome were found to be 14.832 g/L and 3.522 U/mL. The activation energy of the cellulosome to hydrolyze microalgae LDRs was calculated as 32.804 kJ/mol. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipid-deprived%20residuals%20of%20microalgae" title="lipid-deprived residuals of microalgae">lipid-deprived residuals of microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosome" title=" cellulosome"> cellulosome</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20sugars" title=" reducing sugars"> reducing sugars</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/30811/kinetics-study-for-the-recombinant-cellulosome-to-the-degradation-of-chlorella-cell-residuals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beth%20Taylor">Beth Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kojima%20Mituaki"> Kojima Mituaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Senda"> Atsushi Senda</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Morishita"> Koji Morishita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Otomo"> Yasuhiro Otomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exosomes" title="exosomes">exosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20ischaemia" title=" intestinal ischaemia"> intestinal ischaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenteric%20lymph" title=" mesenteric lymph"> mesenteric lymph</a>, <a href="https://publications.waset.org/abstracts/search?q=vagal%20stimulation" title=" vagal stimulation"> vagal stimulation</a> </p> <a href="https://publications.waset.org/abstracts/111415/the-impact-of-intestinal-ischaemia-reperfusion-injury-upon-the-biological-function-of-mesenteric-lymph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Possibilities of Using Chia Seeds in Fermented Beverages Made from Mare’s and Cow’s Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20Mahmoud">Nancy Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Teichert"> Joanna Teichert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, fermented milk containing probiotic microorganisms is fundamental to human health. The changes in the properties of fermented milk during storage influence the quality and consumer acceptability. This study aimed to evaluate the effect of 1.5 % of chia seeds on the chemical, physical and sensory properties of fermented cow’s and mare’s milk for two weeks at 4°C. The results showed that the pH of cow’s milk drops significantly at the 2nd hour, but mare's milk drops significantly at the 6th hour. The acidity of both types of milk increased as the storage time progressed. Adding chia seeds increased firmness significantly and improved color and consistency. A decrease in brightness (L*), an increase in redness (a*), and yellowness (b*) during storage were observed. Our study showed that the chia seeds have more effect on reducing the brightness of fermented mare milk than fermented cow milk. Analysis of taste and smell parameters showed that after adding chia seeds, the scores changed and became much higher. The sour taste of fermented milk had reduced this positively affected the acceptance of the product. Chia seeds induced beneficial effects on sensory outcomes and enhanced physiochemical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mare%20milk" title="mare milk">mare milk</a>, <a href="https://publications.waset.org/abstracts/search?q=cow%20milk" title=" cow milk"> cow milk</a>, <a href="https://publications.waset.org/abstracts/search?q=feremnted%20milk" title=" feremnted milk"> feremnted milk</a>, <a href="https://publications.waset.org/abstracts/search?q=kefir" title=" kefir"> kefir</a>, <a href="https://publications.waset.org/abstracts/search?q=koumiss" title=" koumiss"> koumiss</a> </p> <a href="https://publications.waset.org/abstracts/163677/possibilities-of-using-chia-seeds-in-fermented-beverages-made-from-mares-and-cows-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Delgado-Meza%20M.">Delgado-Meza M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Minor-P%C3%A9rez%20H."> Minor-Pérez H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rainbouw%20trout" title="rainbouw trout">rainbouw trout</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20inhibitors" title=" enzyme inhibitors"> enzyme inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=proteolysis" title=" proteolysis"> proteolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20activity" title=" enzyme activity "> enzyme activity </a> </p> <a href="https://publications.waset.org/abstracts/29192/biological-regulation-of-endogenous-enzymatic-activity-of-rainbow-trout-oncorhynchus-mykiss-with-protease-inhibitors-chickpea-in-model-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Shiang%20Chang">Kai-Shiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saikat%20Sinha%20Ray"> Saikat Sinha Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Te%20Hsu"> Hung-Te Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title="membrane bioreactor">membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20fluid" title=" cutting fluid"> cutting fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=oil" title=" oil"> oil</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a> </p> <a href="https://publications.waset.org/abstracts/62949/treatment-of-high-concentration-cutting-fluid-wastewater-by-ceramic-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Electroactivity of Clostridium saccharoperbutylacetonicum 1-4N during Carbon Dioxide Reduction in a Bioelectrosynthesis System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Garcia-Mogollon">Carlos A. Garcia-Mogollon</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Quintero-Diaz"> Juan C. Quintero-Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Avignone-Rossa"> Claudio Avignone-Rossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clostridium saccharoperbutylacetonicum 1-4N (Csb 1-4N) is an industrial reference strain for Acetone-Butanol-Ethanol (ABE) fermentation. Csb 1-4N is a solventogenic clostridium and H₂ producer with a metabolic profile that makes it a good candidate for Bioelectrosynthesis System (BES). The aim of this study was to evaluate the electroactivity of Csb 1-4N by cyclic voltammetry technique (CV). The Bioelectrosynthesis fermentation (BES) started in a Triptone-Yeast extract (TY) medium with trace elements and vitamins, Complex Nitrogen Source (CNS), and bicarbonate (NaHCO₃, 4g/L) as a carbon source, run at -600mVAg/AgCl and adding 200uM NADH. The six BES batches were performed with different media composition with and without NADH, CNS, HCO₃⁻ , and applied potential. The CV was performed as three-electrode system: platinum slice working electrode (WE), nickel contra electrode (CE) and reference electrode Ag/AgCl (ER). CVs were run in a potential range of -0.7V to 0.7V vs. VAg/AgCl at a scan rate 10mV/s. A CV recorded using different NaHCO₃ concentrations (0.25; 0.5; 1.0; 4g/L) were obtained. BES fermentation samples were centrifuged (3000 rpm, 5min, 4C), and supernatant (7mL) was used. CVs were obtained for Csb1-4N BES culture cell-free supernatant at 0h, 24h, and 48h. The electrochemical analysis was carried out with a PalmSens 4.0 potentiostat/galvanostat controlled with the PStrace 5.7 software, and CVs curves were characterized by reduction and oxidation currents and reduction and oxidation peaks. The CVs obtained for NaHCO₃ solutions showed that the reduction current and oxidation current decreased as the NaHCO₃ concentration was decreased. All reduction and oxidation currents decreased until exponential growth stop (24h), independence of initial cathodic current, except in medium with trace elements, vitamins, and NaHCO3, in which reduction current was around half at 24h and followed decreasing at 48. In this medium, Csb1-4N did not grow, but pH was increased, indicating that NaHCO₃ was reduced as the reduction current decreased. In general, at 48h reduction currents did not present important changes between different mediums in BES cultures. In terms of intensities in the peaks (Ip) did not present important variations; except with Ipa and Ipc in BES culture with NaHCO₃ and NADH added are higher than peaks in other cultures. Based on results, cathodic and anodic currents changes were induced by NaHCO₃ reduction reactions during Csb1-4N metabolic activity in different BES experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clostridium%20saccharoperbutylacetonicum%201-4N" title="clostridium saccharoperbutylacetonicum 1-4N">clostridium saccharoperbutylacetonicum 1-4N</a>, <a href="https://publications.waset.org/abstracts/search?q=bioelectrosynthesis" title=" bioelectrosynthesis"> bioelectrosynthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide%20fixation" title=" carbon dioxide fixation"> carbon dioxide fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/127614/electroactivity-of-clostridium-saccharoperbutylacetonicum-1-4n-during-carbon-dioxide-reduction-in-a-bioelectrosynthesis-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Comparision of Neutrophil Response to Curvularia, Bipolaris and Aspergillus Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eszter%20J.%20T%C3%B3th">Eszter J. Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Hoffmann"> Alexandra Hoffmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Csaba%20V%C3%A1gv%C3%B6lgyi"> Csaba Vágvölgyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tam%C3%A1s%20Papp"> Tamás Papp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Members of the genera Curvularia and Bipolaris are closely related melanin producing filamentous fungi; both of them have the teleomorph states in genus Cochliobolus. While Bipolaris species infect only plants and may cause serious agriculture damages, some Curvularia species was recovered from opportunistic human infections. The human pathogenic species typically cause phaeohyphomycoses, i.e. mould infections caused by melanised fungi, which can manifest as invasive mycoses with frequent involvement of the central nervous system in immunocompromised patients or as local infections (e.g. keratitis, sinusitis, and cutaneous lesions) in immunocompetent people. Although their plant-fungal interactions have been intensively studied, there is only little information available about the human pathogenic feature of these fungi. The aim of this study was to investigate the neutrophil granulocytes’ response to hyphal forms of Curvularia and Bipolaris in comparison with the response to Aspergillus. In the present study Curvularia lunata SZMC 23759 and Aspergillus fumigatus SZMC 23245 both isolated from human eye infection, and Bipolaris zeicola BRIP 19582b isolated from plant leaf were examined. Neutrophils were isolated from heparinised venous blood of healthy donors with dextran sedimentation followed by centrifugation over Ficoll and hypotonic lysis of erythrocytes. Viability and purity of the cells were checked with trypan blue and Wright staining, respectively. Infection of neutrophils was carried out with germinated conidia in a ratio of 5:1. Production of hydrogen peroxide, superoxide anion, and nitrogen monoxide was measured both intracellularly and extracellularly in response to the germinated spores with or without the supernatant and after serum treatment. ROS and NOS production of neutrophils in interaction with the three fungi were compared. It is already known that Aspergillus species induce ROS production of neutrophils only after serum treatment. Although, in case of C. lunata, serum opsonisation also induced an intensive production of reactive species, lower level of production was measured in the lack of serum as well. After interaction with the plant pathogenic B. zeicola, amount of reactive species found to be similar with and without serum treatment. The presence of germination supernatant decreased the reactive species production in case of each fungus. Interaction with Curvularia, Bipolaris and Aspergillus species induced different response of neutrophils. It seems that recognition of C. lunata and B. zeicola is independent of serum opsonisation, albeit it increases the level of the produced reactive species in response for C. lunata. The study was supported by the grant LP2016-8/2016. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Curvularia" title="Curvularia">Curvularia</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophils" title=" neutrophils"> neutrophils</a>, <a href="https://publications.waset.org/abstracts/search?q=NOS" title=" NOS"> NOS</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS"> ROS</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20opsonisation" title=" serum opsonisation"> serum opsonisation</a> </p> <a href="https://publications.waset.org/abstracts/56578/comparision-of-neutrophil-response-to-curvularia-bipolaris-and-aspergillus-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> Enhancing Algal Bacterial Photobioreactor Efficiency: Nutrient Removal and Cost Analysis Comparison for Light Source Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahrukh%20Ahmad">Shahrukh Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Purnendu%20Bose"> Purnendu Bose</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Algal-Bacterial photobioreactors (ABPBRs) have emerged as a promising technology for sustainable biomass production and wastewater treatment. Nutrient removal is seldom done in sewage treatment plants and large volumes of wastewater which still have nutrients are being discharged and that can lead to eutrophication. That is why ABPBR plays a vital role in wastewater treatment. However, improving the efficiency of ABPBR remains a significant challenge. This study aims to enhance ABPBR efficiency by focusing on two key aspects: nutrient removal and cost-effective optimization of the light source. By integrating nutrient removal and cost analysis for light source optimization, this study proposes practical strategies for improving ABPBR efficiency. To reduce organic carbon and convert ammonia to nitrates, domestic wastewater from a 130 MLD sewage treatment plant (STP) was aerated with a hydraulic retention time (HRT) of 2 days. The treated supernatant had an approximate nitrate and phosphate values of 16 ppm as N and 6 ppm as P, respectively. This supernatant was then fed into the ABPBR, and the removal of nutrients (nitrate as N and phosphate as P) was observed using different colored LED bulbs, namely white, blue, red, yellow, and green. The ABPBR operated with a 9-hour light and 3-hour dark cycle, using only one color of bulbs per cycle. The study found that the white LED bulb, with a photosynthetic photon flux density (PPFD) value of 82.61 µmol.m-2 .sec-1 , exhibited the highest removal efficiency. It achieved a removal rate of 91.56% for nitrate and 86.44% for phosphate, surpassing the other colored bulbs. Conversely, the green LED bulbs showed the lowest removal efficiencies, with 58.08% for nitrate and 47.48% for phosphate at an HRT of 5 days. The quantum PAR (Photosynthetic Active Radiation) meter measured the photosynthetic photon flux density for each colored bulb setting inside the photo chamber, confirming that white LED bulbs operated at a wider wavelength band than the others. Furthermore, a cost comparison was conducted for each colored bulb setting. The study revealed that the white LED bulb had the lowest average cost (Indian Rupee)/light intensity (µmol.m-2 .sec-1 ) value at 19.40, while the green LED bulbs had the highest average cost (INR)/light intensity (µmol.m-2 .sec-1 ) value at 115.11. Based on these comparative tests, it was concluded that the white LED bulbs were the most efficient and costeffective light source for an algal photobioreactor. They can be effectively utilized for nutrient removal from secondary treated wastewater which helps in improving the overall wastewater quality before it is discharged back into the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algal%20bacterial%20photobioreactor" title="algal bacterial photobioreactor">algal bacterial photobioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20wastewater" title=" domestic wastewater"> domestic wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20removal" title=" nutrient removal"> nutrient removal</a>, <a href="https://publications.waset.org/abstracts/search?q=led%20bulbs" title=" led bulbs"> led bulbs</a> </p> <a href="https://publications.waset.org/abstracts/182952/enhancing-algal-bacterial-photobioreactor-efficiency-nutrient-removal-and-cost-analysis-comparison-for-light-source-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> Production of Bacillus Lipopeptides for Biocontrol of Postharvest Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Rangarajan">Vivek Rangarajan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20G.%20Klarke"> Kim G. Klarke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With overpopulation threatening the world’s ability to feed itself, food production and protection has become a major issue, especially in developing countries. Almost one-third of the food produced for human consumption, around 1.3 billion tonnes, is either wasted or lost annually. Postharvest decay in particular constitutes a major cause of crop loss with about 20% of fruits and vegetables produced lost during postharvest storage, mainly due to fungal disease. Some of the major phytopathogenic fungi affecting postharvest fruit crops in South Africa include Aspergillus, Botrytis, Penicillium, Alternaria and Sclerotinia spp. To date control of fungal phytopathogens has primarily been dependent on synthetic chemical fungicides, but these chemicals pose a significant threat to the environment, mainly due to their xenobiotic properties and tendency to generate resistance in the phytopathogens. Here, an environmentally benign alternative approach to control postharvest fungal phytopathogens in perishable fruit crops has been presented, namely the application of a bio-fungicide in the form of lipopeptide molecules. Lipopeptides are biosurfactants produced by Bacillus spp. which have been established as green, nontoxic and biodegradable molecules with antimicrobial properties. However, since the Bacillus are capable of producing a large number of lipopeptide homologues with differing efficacies against distinct target organisms, the lipopeptide production conditions and strategy are critical to produce the maximum lipopeptide concentration with homologue ratios to specification for optimum bio-fungicide efficacy. Process conditions, and their impact on Bacillus lipopeptide production, were evaluated in fully instrumented laboratory scale bioreactors under well-regulated controlled and defined environments. Factors such as the oxygen availability and trace element and nitrate concentrations had profound influences on lipopeptide yield, productivity and selectivity. Lipopeptide yield and homologue selectivity were enhanced in cultures where the oxygen in the sparge gas was increased from 21 to 30 mole%. The addition of trace elements, particularly Fe2+, increased the total concentration of lipopeptides and a nitrate concentration equivalent to 8 g/L ammonium nitrate resulted in optimum lipopeptide yield and homologue selectivity. Efficacy studies of the culture supernatant containing the crude lipopeptide mixture were conducted using phytopathogens isolated from fruit in the field, identified using genetic sequencing. The supernatant exhibited antifungal activity against all the test-isolates, namely Lewia, Botrytis, Penicillium, Alternaria and Sclerotinia spp., even in this crude form. Thus the lipopeptide product efficacy has been confirmed to control the main diseases, even in the basic crude form. Future studies will be directed towards purification of the lipopeptide product and enhancement of efficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal%20efficacy" title="antifungal efficacy">antifungal efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=lipopeptide%20production" title=" lipopeptide production"> lipopeptide production</a>, <a href="https://publications.waset.org/abstracts/search?q=perishable%20crops" title=" perishable crops"> perishable crops</a> </p> <a href="https://publications.waset.org/abstracts/59838/production-of-bacillus-lipopeptides-for-biocontrol-of-postharvest-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> Food Safety in Wine: Removal of Ochratoxin a in Contaminated White Wine Using Commercial Fining Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B2nio%20In%C3%AAs">Antònio Inês</a>, <a href="https://publications.waset.org/abstracts/search?q=Davide%20Silva"> Davide Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Filipa%20Carvalho"> Filipa Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Filipe-Riberiro"> Luís Filipe-Riberiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20M.%20Nunes"> Fernando M. Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%C3%ADs%20Abrunhosa"> Luís Abrunhosa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Cosme"> Fernanda Cosme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L-β-phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption. The maximum acceptable level of OTA in wines is 2.0 μg/kg according to the Commission regulation No. 1881/2006. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analyses were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatin, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatin, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatin, bentonite and activated carbon reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wine" title="wine">wine</a>, <a href="https://publications.waset.org/abstracts/search?q=ota%20removal" title=" ota removal"> ota removal</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=fining" title=" fining"> fining</a> </p> <a href="https://publications.waset.org/abstracts/31580/food-safety-in-wine-removal-of-ochratoxin-a-in-contaminated-white-wine-using-commercial-fining-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> Characteristic Components in Cornusofficinalis to AGEs Injury Protective Effect and Mechanism of HUVEC </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Han%20Tao">Yu-Han Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Qin%20Xu"> Hui-Qin Xu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aimed to explain the protective effect of Cornus officinalis characteristic components, under AGEs damage to HUVEC. After cultured HUVEC adhered, Cornus officinalis characteristic components such as loganin, morroniside, oleanolic acid, ursolic acid and aminoguanidine (positive control dug) hatched, after 1h the AGEs (200 mg/L) were added. After 24h, LDH, SOD, MDA, NO, ET, and AngⅡ, TGF-β, IL-1β, ROS in the supernatant were determined. The results showed the Cornus officinalis characteristic compounds could improve vitality of SOD, NO, reduce the MDA, ET, AngⅡ, TGF-β, IL-1β, ROS significantly when compared with the model groug. Loganin, oleanic acid, ursolic acid, had significant protective effect on AGEs injured HUVEC. As a conclusion, characteristic components in Cornus officinalis had a positive effect after HUVEC injured by AGEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cornus%20officinalis" title="Cornus officinalis">Cornus officinalis</a>, <a href="https://publications.waset.org/abstracts/search?q=morroniside" title=" morroniside"> morroniside</a>, <a href="https://publications.waset.org/abstracts/search?q=oganin" title=" oganin"> oganin</a>, <a href="https://publications.waset.org/abstracts/search?q=oleanolic%20acid" title=" oleanolic acid"> oleanolic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ursolic%20acid" title=" ursolic acid"> ursolic acid</a> </p> <a href="https://publications.waset.org/abstracts/2916/characteristic-components-in-cornusofficinalis-to-ages-injury-protective-effect-and-mechanism-of-huvec" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> Adsorption of Acetone Vapors by SBA-16 and MCM-48 Synthesized from Rice Husk Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanting%20Zeng">Wanting Zeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsunling%20Bai"> Hsunling Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica was extracted from agriculture waste rice husk ash (RHA) and was used as the silica source for synthesis of RMCM-48 and RSBA-16. An alkali fusion process was utilized to separate silicate supernatant and the sediment effectively. The CTAB/Si and F127/Si molar ratio was employed to control the structure properties of the obtained RMCM-48 and RSBA-16 materials. The N2 adsorption-desorption results showed the micro-mesoporous RSBA-16 possessed high specific surface areas (662-1001 m2/g). All the obtained RSBA-16 materials were applied as the adsorbents for acetone adsorption. And the breakthrough tests clearly revealed that the RSBA-16(0.004) materials could achieve the highest acetone adsorption capacity of 186 mg/g under 1000 ppmv acetone vapor concentration at 25oC, which was also superior to ZSM-5 (71mg/g) and MCM-41 (157mg/g) under same test conditions. This can help to reduce the solid waste and the high adsorption performance of the obtained materials could consider as potential adsorbents for acetone adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetone" title="acetone">acetone</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-mesoporous%20material" title=" micro-mesoporous material"> micro-mesoporous material</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash%20%28RHA%29" title=" rice husk ash (RHA)"> rice husk ash (RHA)</a>, <a href="https://publications.waset.org/abstracts/search?q=RSBA-16" title=" RSBA-16"> RSBA-16</a> </p> <a href="https://publications.waset.org/abstracts/20095/adsorption-of-acetone-vapors-by-sba-16-and-mcm-48-synthesized-from-rice-husk-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humaira%20Khan">Humaira Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Javed"> Mohsin Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sammia%20Shahid"> Sammia Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles%20and%20copper-doped%20ZnO%20nanoparticles" title=" ZnO nanoparticles and copper-doped ZnO nanoparticles"> ZnO nanoparticles and copper-doped ZnO nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/81655/synthesis-spectral-characterization-and-photocatalytic-applications-of-graphene-oxide-nanocomposite-with-copper-doped-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> Effects of Oxidized LDL in M2 Macrophages: Implications in Atherosclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Gon%C3%A7alves">Fernanda Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Karla%20Alc%C3%A2ntara"> Karla Alcântara</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20Moura"> Vanessa Moura</a>, <a href="https://publications.waset.org/abstracts/search?q=Patr%C3%ADcia%20Nolasco"> Patrícia Nolasco</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Kalil"> Jorge Kalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Maristela%20Hernandez"> Maristela Hernandez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Atherosclerosis is a chronic disease where two striking features are observed: retention of lipids and inflammation. Understanding the interaction between immune cells and lipoproteins involved in atherogenesis are urgent challenges, since cardiovascular diseases are the leading cause of death worldwide. Macrophages are critical to the development of atherosclerotic plaques and in the perpetuation of inflammation in these lesions. These cells are also directly involved in unstable plaque rupture. Recently different populations of macrophages are being identified in atherosclerotic lesions. Although the presence of M2 macrophages (macrophages activated by the alternative pathway, eg. The IL-4) has been identified, the function of these cells in atherosclerosis is not yet defined. M2 macrophages have a high endocytic capacity, they promote remodeling of tissues and to have anti-inflammatory activity. However, in atherosclerosis, especially unstable plaques, severe inflammatory reaction, accumulation of cellular debris and intense degradation of the tissue is observed. Thus, it is possible that the M2 macrophages have altered function (phenotype) in atherosclerosis. Objective: Our aim is to evaluate if the presence of oxidized LDL alters the phenotype and function of M2 macrophages in vitro. Methods: For this, we will evaluate whether the addition of lipoprotein in M2 macrophages differentiated in vitro with IL -4 induces 1) a reduction in the secretion of anti-inflammatory cytokines (CBA and ELISA), 2) secretion of inflammatory cytokines (CBA and ELISA), 3) expression of cell activation markers (Flow cytometry), 4) alteration in gene expression of molecules adhesion and extracellular matrix (Real-Time PCR) and 5) Matrix degradation (confocal microscopy). Results: In oxLDL stimulated M2 macrophages cultures we did not find any differences in the expression of the cell surface markers tested, including: HLA-DR, CD80, CD86, CD206, CD163 and CD36. Also, cultures stimulated with oxLDL had similar phagocytic capacity when compared to unstimulated cells. However, in the supernatant of these cultures an increase in the secretion of the pro-inflammatory cytokine IL-8 was detected. No significant changes where observed in IL-6, IL-10, IL-12 and IL-1b levels. The culture supernatant also induced massive extracellular matrix (produced by mouse embryo fibroblast) filaments degradation. When evaluating the expression of 84 extracellular matrix and adhesion molecules genes, we observed that the stimulation of oxLDL in M2 macrophages decreased 47% of the genes and increased the expression of only 3% of the genes. In particular we noted that oxLDL inhibit the expression of 60% of the genes constituents of extracellular matrix and collagen expressed by these cells, including fibronectin1 and collagen VI. We also observed a decrease in the expression of matrix protease inhibitors, such as TIMP 2. On the opposite, the matricellular protein thrombospondin had a 12 fold increase in gene expression. In the presence of native LDL 90% of the genes had no altered expression. Conclusion: M2 macrophages stimulated with oxLDL secrete the pro-inflammatory cytokine IL-8, have an altered extracellular matrix constituents gene expression, and promote the degradation of extracellular matrix. M2 macrophages may contribute to the perpetuation of inflammation in atherosclerosis and to plaque rupture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title="atherosclerosis">atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=LDL" title=" LDL"> LDL</a>, <a href="https://publications.waset.org/abstracts/search?q=macrophages" title=" macrophages"> macrophages</a>, <a href="https://publications.waset.org/abstracts/search?q=m2" title=" m2"> m2</a> </p> <a href="https://publications.waset.org/abstracts/44754/effects-of-oxidized-ldl-in-m2-macrophages-implications-in-atherosclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Lamilla">Claudio Lamilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Misael%20Riquelme"> Misael Riquelme</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Saez"> Victoria Saez</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Sepulveda"> Fernanda Sepulveda</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Pavez"> Monica Pavez</a>, <a href="https://publications.waset.org/abstracts/search?q=Leticia%20Barrientos"> Leticia Barrientos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antarctic" title="antarctic">antarctic</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactants" title=" biosurfactants"> biosurfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/64306/biosurfactants-produced-by-antarctic-bacteria-with-hydrocarbon-cleaning-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=kefir%20supernatant&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=kefir%20supernatant&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=kefir%20supernatant&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>