CINXE.COM
Search results for: probabilistic neural network (PNN)
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: probabilistic neural network (PNN)</title> <meta name="description" content="Search results for: probabilistic neural network (PNN)"> <meta name="keywords" content="probabilistic neural network (PNN)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="probabilistic neural network (PNN)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="probabilistic neural network (PNN)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5535</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: probabilistic neural network (PNN)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5535</span> Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelhadi%20Lotfi">Abdelhadi Lotfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Benyettou"> Abdelkader Benyettou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20networks" title=" probabilistic neural networks"> probabilistic neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20optimization" title=" network optimization"> network optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/104139/optimizing-the-probabilistic-neural-network-training-algorithm-for-multi-class-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5534</span> Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafdaoui%20Hichem">Hafdaoui Hichem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehadjebia%20Cherifa"> Mehadjebia Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benatia%20Djamel"> Benatia Djamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title="piezoelectric material">piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29" title=" probabilistic neural network (PNN)"> probabilistic neural network (PNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20microwaves" title=" acoustic microwaves"> acoustic microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20waves" title=" bulk waves"> bulk waves</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20attenuation%20coefficient" title=" the attenuation coefficient"> the attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/43264/using-probabilistic-neural-network-pnn-for-extracting-acoustic-microwaves-bulk-acoustic-waves-in-piezoelectric-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5533</span> Max-Entropy Feed-Forward Clustering Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaohan%20Bookman">Xiaohan Bookman</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyan%20Zhu"> Xiaoyan Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution under some limited conditions. As this paper defines two processes in Feed-Forward Neural Network, our limited condition is the abstracted features of samples which are worked out in the abstraction process. And the final outputs are the probability distribution for different clusters in the clustering process. As Entropy-Based Principle is considered into the feed-forward neural network, a clustering method is born. We have conducted some experiments on six open UCI data sets, comparing with a few baselines and applied purity as the measurement. The results illustrate that our method outperforms all the other baselines that are most popular clustering methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed-forward%20neural%20network" title="feed-forward neural network">feed-forward neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=max-entropy%20principle" title=" max-entropy principle"> max-entropy principle</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20models" title=" probabilistic models "> probabilistic models </a> </p> <a href="https://publications.waset.org/abstracts/26856/max-entropy-feed-forward-clustering-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5532</span> Applying Neural Networks for Solving Record Linkage Problem via Fuzzy Description Logics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mikheil%20Kalmakhelidze">Mikheil Kalmakhelidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Record linkage (RL) problem has become more and more important in recent years due to the growing interest towards big data analysis. The problem can be formulated in a very simple way: Given two entries a and b of a database, decide whether they represent the same object or not. There are two classical deterministic and probabilistic ways of solving the RL problem. Using simple Bayes classifier in many cases produces useful results but sometimes they show to be poor. In recent years several successful approaches have been made towards solving specific RL problems by neural network algorithms including single layer perception, multilayer back propagation network etc. In our work, we model the RL problem for specific dataset of student applications in fuzzy description logic (FDL) where linkage of specific pair (a,b) depends on the truth value of corresponding formula A(a,b) in a canonical FDL model. As a main result, we build neural network for deciding truth value of FDL formulas in a canonical model and thus link RL problem to machine learning. We apply the approach to dataset with 10000 entries and also compare to classical RL solving approaches. The results show to be more accurate than standard probabilistic approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=description%20logic" title="description logic">description logic</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=record%20linkage" title=" record linkage"> record linkage</a> </p> <a href="https://publications.waset.org/abstracts/70272/applying-neural-networks-for-solving-record-linkage-problem-via-fuzzy-description-logics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5531</span> Solving the Quadratic Programming Problem Using a Recurrent Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Behroozpoor">A. A. Behroozpoor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Mazarei"> M. M. Mazarei </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a fuzzy recurrent neural network is proposed for solving the classical quadratic control problem subject to linear equality and bound constraints. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=REFERENCES%20%20%0D%0A%5B1%5D%09Xia" title="REFERENCES [1] Xia">REFERENCES [1] Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Y" title=" Y"> Y</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20new%20neural%20network%20for%20solving%20linear%20and%20quadratic%20programming%20problems.%20IEEE%20Transactions%20on%20Neural%20Networks" title=" A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks"> A new neural network for solving linear and quadratic programming problems. IEEE Transactions on Neural Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=7%286%29" title=" 7(6)"> 7(6)</a>, <a href="https://publications.waset.org/abstracts/search?q=1996" title=" 1996"> 1996</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.1544%E2%80%931548.%0D%0A%5B2%5D%09Xia" title=" pp.1544–1548. [2] Xia"> pp.1544–1548. [2] Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Y." title=" Y."> Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=%26%20Wang" title=" & Wang"> & Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=J" title=" J"> J</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20recurrent%20neural%20network%20for%20solving%20nonlinear%20convex%20programs%20subject%20to%20linear%20constraints.%20IEEE%20Transactions%20on%20Neural%20Networks" title=" A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks"> A recurrent neural network for solving nonlinear convex programs subject to linear constraints. IEEE Transactions on Neural Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=16%282%29" title="16(2)">16(2)</a>, <a href="https://publications.waset.org/abstracts/search?q=2005" title=" 2005"> 2005</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.%20379%E2%80%93386.%0D%0A%5B3%5D%09Xia" title=" pp. 379–386. [3] Xia"> pp. 379–386. [3] Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Y." title=" Y."> Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=H" title=" H"> H</a>, <a href="https://publications.waset.org/abstracts/search?q=Leung" title=" Leung"> Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=%26%20J" title=" & J"> & J</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang" title=" Wang"> Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20projection%20neural%20network%20and%20its%20application%20to%20constrained%20optimization%20problems.%20IEEE%20Transactions%20Circuits%20and%20Systems-I" title=" A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I"> A projection neural network and its application to constrained optimization problems. IEEE Transactions Circuits and Systems-I</a>, <a href="https://publications.waset.org/abstracts/search?q=49%284%29" title=" 49(4)"> 49(4)</a>, <a href="https://publications.waset.org/abstracts/search?q=2002" title=" 2002"> 2002</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.447%E2%80%93458.B.%20%0D%0A%5B4%5D%09Q.%20Liu" title=" pp.447–458.B. [4] Q. Liu"> pp.447–458.B. [4] Q. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Guo" title=" Z. Guo"> Z. Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wang" title=" J. Wang"> J. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=A%20one-layer%20recurrent%20neural%20network%20for%20constrained%20seudoconvex%20optimization%20and%20its%20application%20for%20dynamic%20portfolio%20optimization.%20Neural%20Networks" title=" A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks"> A one-layer recurrent neural network for constrained seudoconvex optimization and its application for dynamic portfolio optimization. Neural Networks</a>, <a href="https://publications.waset.org/abstracts/search?q=26" title=" 26"> 26</a>, <a href="https://publications.waset.org/abstracts/search?q=2012" title=" 2012"> 2012</a>, <a href="https://publications.waset.org/abstracts/search?q=pp.%2099-109." title=" pp. 99-109. "> pp. 99-109. </a> </p> <a href="https://publications.waset.org/abstracts/19435/solving-the-quadratic-programming-problem-using-a-recurrent-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">644</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5530</span> Constructing a Probabilistic Ontology from a DBLP Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emna%20Hlel">Emna Hlel</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Jamousi"> Salma Jamousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmajid%20Ben%20Hamadou"> Abdelmajid Ben Hamadou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every model for knowledge representation to model real-world applications must be able to cope with the effects of uncertain phenomena. One of main defects of classical ontology is its inability to represent and reason with uncertainty. To remedy this defect, we try to propose a method to construct probabilistic ontology for integrating uncertain information in an ontology modeling a set of basic publications DBLP (Digital Bibliography & Library Project) using a probabilistic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classical%20ontology" title="classical ontology">classical ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20ontology" title=" probabilistic ontology"> probabilistic ontology</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20network" title=" Bayesian network"> Bayesian network</a> </p> <a href="https://publications.waset.org/abstracts/24225/constructing-a-probabilistic-ontology-from-a-dblp-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5529</span> Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najmeh%20Mohsenifar">Najmeh Mohsenifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Narjes%20Mohsenifar"> Narjes Mohsenifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Kargar"> Abbas Kargar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title="electrocardiogram">electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20artificial%20neural%20network" title=" RBF artificial neural network"> RBF artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO%20algorithm" title=" PSO algorithm"> PSO algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=predict" title=" predict"> predict</a>, <a href="https://publications.waset.org/abstracts/search?q=accuracy" title=" accuracy"> accuracy</a> </p> <a href="https://publications.waset.org/abstracts/33466/selecting-the-best-rbf-neural-network-using-pso-algorithm-for-ecg-signal-prediction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">626</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5528</span> Automated Detection of Related Software Changes by Probabilistic Neural Networks Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Huang">Yuan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangping%20Chen"> Xiangping Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaonan%20Luo"> Xiaonan Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Current software are continuously updating. The change between two versions usually involves multiple program entities (e.g., packages, classes, methods, attributes) with multiple purposes (e.g., changed requirements, bug fixing). It is hard for developers to understand which changes are made for the same purpose. Whether two changes are related is not decided by the relationship between this two entities in the program. In this paper, we summarized 4 coupling rules(16 instances) and 4 state-combination types at the class, method and attribute levels for software change. Related Change Vector (RCV) are defined based on coupling rules and state-combination types, and applied to classify related software changes by using Probabilistic Neural Network during a software updating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PNN" title="PNN">PNN</a>, <a href="https://publications.waset.org/abstracts/search?q=related%20change" title=" related change"> related change</a>, <a href="https://publications.waset.org/abstracts/search?q=state-combination" title=" state-combination"> state-combination</a>, <a href="https://publications.waset.org/abstracts/search?q=logical%20coupling" title=" logical coupling"> logical coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20entity" title=" software entity"> software entity</a> </p> <a href="https://publications.waset.org/abstracts/10601/automated-detection-of-related-software-changes-by-probabilistic-neural-networks-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5527</span> Assessing Artificial Neural Network Models on Forecasting the Return of Stock Market Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Rostami%20Jaz">Hamid Rostami Jaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Ameri%20Siahooei"> Kamran Ameri Siahooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Up to now different methods have been used to forecast the index returns and the index rate. Artificial intelligence and artificial neural networks have been one of the methods of index returns forecasting. This study attempts to carry out a comparative study on the performance of different Radial Base Neural Network and Feed-Forward Perceptron Neural Network to forecast investment returns on the index. To achieve this goal, the return on investment in Tehran Stock Exchange index is evaluated and the performance of Radial Base Neural Network and Feed-Forward Perceptron Neural Network are compared. Neural networks performance test is applied based on the least square error in two approaches of in-sample and out-of-sample. The research results show the superiority of the radial base neural network in the in-sample approach and the superiority of perceptron neural network in the out-of-sample approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exchange%20index" title="exchange index">exchange index</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptron%20neural%20network" title=" perceptron neural network"> perceptron neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Tehran%20stock%20exchange" title=" Tehran stock exchange"> Tehran stock exchange</a> </p> <a href="https://publications.waset.org/abstracts/51503/assessing-artificial-neural-network-models-on-forecasting-the-return-of-stock-market-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5526</span> Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto">Tomoaki Hashimoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title="optimal control">optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20systems" title=" stochastic systems"> stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20systems" title=" discrete-time systems"> discrete-time systems</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20constraints" title=" probabilistic constraints"> probabilistic constraints</a> </p> <a href="https://publications.waset.org/abstracts/57973/solutions-to-probabilistic-constrained-optimal-control-problems-using-concentration-inequalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5525</span> The Application of a Hybrid Neural Network for Recognition of a Handwritten Kazakh Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Almagul%20%20Assainova">Almagul Assainova </a>, <a href="https://publications.waset.org/abstracts/search?q=Dariya%20Abykenova"> Dariya Abykenova</a>, <a href="https://publications.waset.org/abstracts/search?q=Liudmila%20Goncharenko"> Liudmila Goncharenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20%20Sybachin"> Sergey Sybachin</a>, <a href="https://publications.waset.org/abstracts/search?q=Saule%20Rakhimova"> Saule Rakhimova</a>, <a href="https://publications.waset.org/abstracts/search?q=Abay%20Aman"> Abay Aman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recognition of a handwritten Kazakh text is a relevant objective today for the digitization of materials. The study presents a model of a hybrid neural network for handwriting recognition, which includes a convolutional neural network and a multi-layer perceptron. Each network includes 1024 input neurons and 42 output neurons. The model is implemented in the program, written in the Python programming language using the EMNIST database, NumPy, Keras, and Tensorflow modules. The neural network training of such specific letters of the Kazakh alphabet as ә, ғ, қ, ң, ө, ұ, ү, h, і was conducted. The neural network model and the program created on its basis can be used in electronic document management systems to digitize the Kazakh text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=handwriting%20recognition%20system" title="handwriting recognition system">handwriting recognition system</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20recognition" title=" image recognition"> image recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazakh%20font" title=" Kazakh font"> Kazakh font</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a> </p> <a href="https://publications.waset.org/abstracts/129773/the-application-of-a-hybrid-neural-network-for-recognition-of-a-handwritten-kazakh-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5524</span> An Advanced Automated Brain Tumor Diagnostics Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berkan%20Ural">Berkan Ural</a>, <a href="https://publications.waset.org/abstracts/search?q=Arif%20Eser"> Arif Eser</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinan%20Apaydin"> Sinan Apaydin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medical image processing is generally become a challenging task nowadays. Indeed, processing of brain MRI images is one of the difficult parts of this area. This study proposes a hybrid well-defined approach which is consisted from tumor detection, extraction and analyzing steps. This approach is mainly consisted from a computer aided diagnostics system for identifying and detecting the tumor formation in any region of the brain and this system is commonly used for early prediction of brain tumor using advanced image processing and probabilistic neural network methods, respectively. For this approach, generally, some advanced noise removal functions, image processing methods such as automatic segmentation and morphological operations are used to detect the brain tumor boundaries and to obtain the important feature parameters of the tumor region. All stages of the approach are done specifically with using MATLAB software. Generally, for this approach, firstly tumor is successfully detected and the tumor area is contoured with a specific colored circle by the computer aided diagnostics program. Then, the tumor is segmented and some morphological processes are achieved to increase the visibility of the tumor area. Moreover, while this process continues, the tumor area and important shape based features are also calculated. Finally, with using the probabilistic neural network method and with using some advanced classification steps, tumor area and the type of the tumor are clearly obtained. Also, the future aim of this study is to detect the severity of lesions through classes of brain tumor which is achieved through advanced multi classification and neural network stages and creating a user friendly environment using GUI in MATLAB. In the experimental part of the study, generally, 100 images are used to train the diagnostics system and 100 out of sample images are also used to test and to check the whole results. The preliminary results demonstrate the high classification accuracy for the neural network structure. Finally, according to the results, this situation also motivates us to extend this framework to detect and localize the tumors in the other organs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing%20algorithms" title="image processing algorithms">image processing algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a> </p> <a href="https://publications.waset.org/abstracts/69471/an-advanced-automated-brain-tumor-diagnostics-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5523</span> Artificial Neural Network Speed Controller for Excited DC Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elabed%20Saud">Elabed Saud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Artificial%20Neural%20Network%20%28ANNs%29" title="Artificial Neural Network (ANNs)">Artificial Neural Network (ANNs)</a>, <a href="https://publications.waset.org/abstracts/search?q=excited%20DC%20motor" title=" excited DC motor"> excited DC motor</a>, <a href="https://publications.waset.org/abstracts/search?q=convenional%20controller" title=" convenional controller"> convenional controller</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20Controller" title=" speed Controller"> speed Controller</a> </p> <a href="https://publications.waset.org/abstracts/21941/artificial-neural-network-speed-controller-for-excited-dc-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">726</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5522</span> Design of Neural Predictor for Vibration Analysis of Drilling Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%B0kbal%20Eski">İkbal Eski </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation is researched on design of robust neural network predictors for analyzing vibration effects on moving parts of a drilling machine. Moreover, the research is divided two parts; first part is experimental investigation, second part is simulation analysis with neural networks. Therefore, a real time the drilling machine is used to vibrations during working conditions. The measured real vibration parameters are analyzed with proposed neural network. As results: Simulation approaches show that Radial Basis Neural Network has good performance to adapt real time parameters of the drilling machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analyses" title=" vibration analyses"> vibration analyses</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20machine" title=" drilling machine"> drilling machine</a>, <a href="https://publications.waset.org/abstracts/search?q=robust" title=" robust"> robust</a> </p> <a href="https://publications.waset.org/abstracts/30313/design-of-neural-predictor-for-vibration-analysis-of-drilling-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5521</span> Trusted Neural Network: Reversibility in Neural Networks for Network Integrity Verification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malgorzata%20Schwab">Malgorzata Schwab</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashis%20Kumer%20Biswas"> Ashis Kumer Biswas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this concept paper, we explore the topic of Reversibility in Neural Networks leveraged for Network Integrity Verification and crafted the term ''Trusted Neural Network'' (TNN), paired with the API abstraction around it, to embrace the idea formally. This newly proposed high-level generalizable TNN model builds upon the Invertible Neural Network architecture, trained simultaneously in both forward and reverse directions. This allows for the original system inputs to be compared with the ones reconstructed from the outputs in the reversed flow to assess the integrity of the end-to-end inference flow. The outcome of that assessment is captured as an Integrity Score. Concrete implementation reflecting the needs of specific problem domains can be derived from this general approach and is demonstrated in the experiments. The model aspires to become a useful practice in drafting high-level systems architectures which incorporate AI capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trusted" title="trusted">trusted</a>, <a href="https://publications.waset.org/abstracts/search?q=neural" title=" neural"> neural</a>, <a href="https://publications.waset.org/abstracts/search?q=invertible" title=" invertible"> invertible</a>, <a href="https://publications.waset.org/abstracts/search?q=API" title=" API"> API</a> </p> <a href="https://publications.waset.org/abstracts/144758/trusted-neural-network-reversibility-in-neural-networks-for-network-integrity-verification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5520</span> Trace Network: A Probabilistic Relevant Pattern Recognition Approach to Attribution Trace Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Xu">Jian Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaochun%20Yun"> Xiaochun Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongzheng%20Zhang"> Yongzheng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yafei%20Sang"> Yafei Sang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenyu%20Cheng"> Zhenyu Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Network attack prevention is a critical research area of information security. Network attack would be oppressed if attribution techniques are capable to trace back to the attackers after the hacking event. Therefore attributing these attacks to a particular identification becomes one of the important tasks when analysts attempt to differentiate and profile the attacker behind a piece of attack trace. To assist analysts in expose attackers behind the scenes, this paper researches on the connections between attribution traces and proposes probabilistic relevance based attribution patterns. This method facilitates the evaluation of the plausibility relevance between different traceable identifications. Furthermore, through analyzing the connections among traces, it could confirm the existence probability of a certain organization as well as discover its affinitive partners by the means of drawing relevance matrix from attribution traces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attribution%20trace" title="attribution trace">attribution trace</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20relevance" title=" probabilistic relevance"> probabilistic relevance</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20attack" title=" network attack"> network attack</a>, <a href="https://publications.waset.org/abstracts/search?q=attacker%20identification" title=" attacker identification"> attacker identification</a> </p> <a href="https://publications.waset.org/abstracts/61350/trace-network-a-probabilistic-relevant-pattern-recognition-approach-to-attribution-trace-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5519</span> Prediction of Oil Recovery Factor Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Oladipo">O. P. Oladipo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Falode"> O. A. Falode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recovery%20factor" title="recovery factor">recovery factor</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=reserves" title=" reserves"> reserves</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=API" title=" API"> API</a>, <a href="https://publications.waset.org/abstracts/search?q=Guthrie" title=" Guthrie"> Guthrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Greenberger" title=" Greenberger"> Greenberger</a> </p> <a href="https://publications.waset.org/abstracts/18896/prediction-of-oil-recovery-factor-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5518</span> A Two-Step Framework for Unsupervised Speaker Segmentation Using BIC and Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Alwosheel">Ahmad Alwosheel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alqaraawi"> Ahmed Alqaraawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work proposes a new speaker segmentation approach for two speakers. It is an online approach that does not require a prior information about speaker models. It has two phases, a conventional approach such as unsupervised BIC-based is utilized in the first phase to detect speaker changes and train a Neural Network, while in the second phase, the output trained parameters from the Neural Network are used to predict next incoming audio stream. Using this approach, a comparable accuracy to similar BIC-based approaches is achieved with a significant improvement in terms of computation time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=diarization" title=" diarization"> diarization</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20indexing" title=" speaker indexing"> speaker indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=speaker%20segmentation" title=" speaker segmentation"> speaker segmentation</a> </p> <a href="https://publications.waset.org/abstracts/27191/a-two-step-framework-for-unsupervised-speaker-segmentation-using-bic-and-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5517</span> Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Luis%20Carrillo-Medina">José Luis Carrillo-Medina</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Latorre"> Roberto Latorre</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20signature" title="neural signature">neural signature</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20fingerprint" title=" neural fingerprint"> neural fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20based%20on%20signal%20identification" title=" processing based on signal identification"> processing based on signal identification</a>, <a href="https://publications.waset.org/abstracts/search?q=self-organizing%20neural%20network" title=" self-organizing neural network"> self-organizing neural network</a> </p> <a href="https://publications.waset.org/abstracts/20408/influence-of-the-refractory-period-on-neural-networks-based-on-the-recognition-of-neural-signatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5516</span> Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamyaa%20Gamal%20El-Deen%20Taha">Lamyaa Gamal El-Deen Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Sharawi"> Ashraf Sharawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GF-2%20images" title="GF-2 images">GF-2 images</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction-rectification" title=" feature extraction-rectification"> feature extraction-rectification</a>, <a href="https://publications.waset.org/abstracts/search?q=nearest%20neighbour%20object%20based%20classification" title=" nearest neighbour object based classification"> nearest neighbour object based classification</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation%20algorithms" title=" segmentation algorithms"> segmentation algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network%20classification" title=" neural network classification"> neural network classification</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron" title=" multilayer perceptron"> multilayer perceptron</a> </p> <a href="https://publications.waset.org/abstracts/84243/urban-land-cover-from-gf-2-satellite-images-using-object-based-and-neural-network-classifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5515</span> Active Islanding Detection Method Using Intelligent Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kuang-Hsiung%20Tan">Kuang-Hsiung Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chih-Chan%20Hu"> Chih-Chan Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Wu%20Lan"> Chien-Wu Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Sung%20Lin"> Shih-Sung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Te-Jen%20Chang"> Te-Jen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the <em>d</em>-axis current which leads to a frequency deviation at the terminal of the <em>RLC</em> load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20generators" title="distributed generators">distributed generators</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20fuzzy%20neural%20network" title=" probabilistic fuzzy neural network"> probabilistic fuzzy neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=islanding%20detection" title=" islanding detection"> islanding detection</a>, <a href="https://publications.waset.org/abstracts/search?q=non-detection%20zone" title=" non-detection zone"> non-detection zone</a> </p> <a href="https://publications.waset.org/abstracts/39253/active-islanding-detection-method-using-intelligent-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5514</span> Facial Emotion Recognition with Convolutional Neural Network Based Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Koray%20U.%20Erbas">Koray U. Erbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neural networks are appealing for many applications since they are able to learn complex non-linear relationships between input and output data. As the number of neurons and layers in a neural network increase, it is possible to represent more complex relationships with automatically extracted features. Nowadays Deep Neural Networks (DNNs) are widely used in Computer Vision problems such as; classification, object detection, segmentation image editing etc. In this work, Facial Emotion Recognition task is performed by proposed Convolutional Neural Network (CNN)-based DNN architecture using FER2013 Dataset. Moreover, the effects of different hyperparameters (activation function, kernel size, initializer, batch size and network size) are investigated and ablation study results for Pooling Layer, Dropout and Batch Normalization are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning%20based%20FER" title=" deep learning based FER"> deep learning based FER</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20emotion%20recognition" title=" facial emotion recognition"> facial emotion recognition</a> </p> <a href="https://publications.waset.org/abstracts/128197/facial-emotion-recognition-with-convolutional-neural-network-based-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5513</span> Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Danladi%20Ali">Danladi Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signal <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=one-dimensional%20multilevel%20wavelets" title="one-dimensional multilevel wavelets">one-dimensional multilevel wavelets</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20loss" title=" path loss"> path loss</a>, <a href="https://publications.waset.org/abstracts/search?q=GSM%20signal%20strength" title=" GSM signal strength"> GSM signal strength</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation" title=" propagation"> propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20environment%20and%20model" title=" urban environment and model"> urban environment and model</a> </p> <a href="https://publications.waset.org/abstracts/14119/neural-network-based-path-loss-prediction-for-global-system-for-mobile-communication-in-an-urban-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5512</span> Estimation of Chronic Kidney Disease Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Ali%20Ozkan">Ilker Ali Ozkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation" title="estimation">estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20kidney%20failure%20disease" title=" chronic kidney failure disease"> chronic kidney failure disease</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20diagnosis" title=" disease diagnosis"> disease diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/38766/estimation-of-chronic-kidney-disease-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5511</span> A Hybrid Hopfield Neural Network for Dynamic Flexible Job Shop Scheduling Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Teymourifar">Aydin Teymourifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurkan%20Ozturk"> Gurkan Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new hybrid Hopfield neural network is proposed for the dynamic, flexible job shop scheduling problem. A new heuristic based and easy to implement energy function is designed for the Hopfield neural network, which penalizes the constraints violation and decreases makespan. Moreover, for enhancing the performance, several heuristics are integrated to it that achieve active, and non-delay schedules also, prevent early convergence of the neural network. The suggested algorithm that is designed as a generalization of the previous studies for the flexible and dynamic scheduling problems can be used for solving real scheduling problems. Comparison of the presented hybrid method results with the previous studies results proves its efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20flexible%20job%20shop%20scheduling" title="dynamic flexible job shop scheduling">dynamic flexible job shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=constrained%20optimization" title=" constrained optimization"> constrained optimization</a> </p> <a href="https://publications.waset.org/abstracts/72143/a-hybrid-hopfield-neural-network-for-dynamic-flexible-job-shop-scheduling-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5510</span> Probabilistic Graphical Model for the Web</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nekri">M. Nekri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khelladi"> A. Khelladi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The world wide web network is a network with a complex topology, the main properties of which are the distribution of degrees in power law, A low clustering coefficient and a weak average distance. Modeling the web as a graph allows locating the information in little time and consequently offering a help in the construction of the research engine. Here, we present a model based on the already existing probabilistic graphs with all the aforesaid characteristics. This work will consist in studying the web in order to know its structuring thus it will enable us to modelize it more easily and propose a possible algorithm for its exploration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering%20coefficient" title="clustering coefficient">clustering coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=preferential%20attachment" title=" preferential attachment"> preferential attachment</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20world" title=" small world"> small world</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20community" title=" web community"> web community</a> </p> <a href="https://publications.waset.org/abstracts/13104/probabilistic-graphical-model-for-the-web" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5509</span> Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Kewen">Li Kewen</a>, <a href="https://publications.waset.org/abstracts/search?q=Su%20Zhaoxin"> Su Zhaoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Xingmou"> Wang Xingmou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Jian%20Bing"> Zhu Jian Bing </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title="convolutional neural network">convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=lithology" title=" lithology"> lithology</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20of%20reservoir" title=" prediction of reservoir"> prediction of reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20attributes" title=" seismic attributes "> seismic attributes </a> </p> <a href="https://publications.waset.org/abstracts/121343/research-on-reservoir-lithology-prediction-based-on-residual-neural-network-and-squeeze-and-excitation-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5508</span> Prediction of the Transmittance of Various Bended Angles Lightpipe by Using Neural Network under Different Sky Clearness Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Zhang">Li Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuehong%20Su"> Yuehong Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightpipe as a mature solar light tube technique has been employed worldwide. Accurately assessing the performance of lightpipe and evaluate daylighting available has been a challenging topic. Previous research had used regression model and computational simulation methods to estimate the performance of lightpipe. However, due to the nonlinear nature of solar light transferring in lightpipe, the methods mentioned above express inaccurate and time-costing issues. In the present study, a neural network model as an alternative method is investigated to predict the transmittance of lightpipe. Four types of commercial lightpipe with bended angle 0°, 30°, 45° and 60° are discussed under clear, intermediate and overcast sky conditions respectively. The neural network is generated in MATLAB by using the outcomes of an optical software Photopia simulations as targets for networks training and testing. The coefficient of determination (R²) for each model is higher than 0.98, and the mean square error (MSE) is less than 0.0019, which indicate the neural network strong predictive ability and the use of the neural network method could be an efficient technique for determining the performance of lightpipe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=bended%20lightpipe" title=" bended lightpipe"> bended lightpipe</a>, <a href="https://publications.waset.org/abstracts/search?q=transmittance" title=" transmittance"> transmittance</a>, <a href="https://publications.waset.org/abstracts/search?q=Photopia" title=" Photopia"> Photopia</a> </p> <a href="https://publications.waset.org/abstracts/99530/prediction-of-the-transmittance-of-various-bended-angles-lightpipe-by-using-neural-network-under-different-sky-clearness-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5507</span> Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdi.%20M.%20Nabi">Magdi. M. Nabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ding-Li%20Yu"> Ding-Li Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chylla-Haase%20polymerization%20reactor" title="Chylla-Haase polymerization reactor">Chylla-Haase polymerization reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=RBF%20neural%20networks" title=" RBF neural networks"> RBF neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=feed-forward" title=" feed-forward"> feed-forward</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20control" title=" feedback control"> feedback control</a> </p> <a href="https://publications.waset.org/abstracts/11204/nonlinear-adaptive-pid-control-for-a-semi-batch-reactor-based-on-an-rbf-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">702</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5506</span> Person Re-Identification using Siamese Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sello%20Mokwena">Sello Mokwena</a>, <a href="https://publications.waset.org/abstracts/search?q=Monyepao%20Thabang"> Monyepao Thabang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis on benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camera%20network" title="camera network">camera network</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network%20topology" title=" convolutional neural network topology"> convolutional neural network topology</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20tracking" title=" person tracking"> person tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=person%20re-identification" title=" person re-identification"> person re-identification</a>, <a href="https://publications.waset.org/abstracts/search?q=siamese" title=" siamese"> siamese</a> </p> <a href="https://publications.waset.org/abstracts/171989/person-re-identification-using-siamese-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=184">184</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=185">185</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>