CINXE.COM
Search results for: total threshold limit concentration
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: total threshold limit concentration</title> <meta name="description" content="Search results for: total threshold limit concentration"> <meta name="keywords" content="total threshold limit concentration"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="total threshold limit concentration" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="total threshold limit concentration"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14822</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: total threshold limit concentration</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14822</span> Studies on Toxicity and Mechanical Properties of Nonmetallic Printed Circuit Boards Waste in Recycled HDPE Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shantha%20Kumari%20Muniyandi">Shantha Kumari Muniyandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Sohaili"> Johan Sohaili</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Suhaila%20Mohamad"> Siti Suhaila Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the suitability of reusing nonmetallic printed circuit boards (PCBs) waste in recycled HDPE (rHDPE) in terms of toxicity and mechanical properties. A series of X-ray Fluorescence Spectrometry (XRF) analysis tests have been conducted on raw nonmetallic PCBs waste to determine the chemical compositions. It can be seen that the nonmetallic PCBs approximately 72% of glass fiber reinforced epoxy resin materials such as SiO2, Al2O3, CaO, MgO, BaO, Na2O, and SrO, 9.4% of metallic materials such as CuO, SnO2, and Fe2O3, and 6.53% of Br. Total Threshold Limit Concentration (TTLC) and Toxicity Characteristic Leaching Procedure (TCLP) tests also have been done to study the toxicity characteristics of raw nonmetallic PCB powders, rHDPE/PCB and virgin HDPE for comparison purposes. For both of the testing, Cu was identified as the highest metal element contained in raw PCBs with the concentration of 905 mg/kg and 59.09 mg/L for TTLC and TCLP, respectively. However, once the nonmetallic PCB was filled in rHDPE composites, the concentrations of Cu were reduced to 134 mg/kg for TTLC and to 3 mg/L for TCLP testing. For mechanical properties testing, incorporation of 40 wt% nonmetallic PCB into rHDPE has increased the flexural modulus and flexural strength by 140% and 36%, respectively. While, Izod Impact strength decreased steadily with incorporation of 10 – 40 wt% nonmetallic PCBs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonmetallic%20printed%20circuit%20board" title="nonmetallic printed circuit board">nonmetallic printed circuit board</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20HDPE" title=" recycled HDPE"> recycled HDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration" title=" total threshold limit concentration"> total threshold limit concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity%20characteristic%20leaching%20procedure" title=" toxicity characteristic leaching procedure"> toxicity characteristic leaching procedure</a> </p> <a href="https://publications.waset.org/abstracts/1490/studies-on-toxicity-and-mechanical-properties-of-nonmetallic-printed-circuit-boards-waste-in-recycled-hdpe-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14821</span> Safe Limits Concentration of Ammonia at Work Environments through CD8 Expression in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rohim%20Tualeka">Abdul Rohim Tualeka</a>, <a href="https://publications.waset.org/abstracts/search?q=Erick%20Caravan%20K.%20Betekeneng"> Erick Caravan K. Betekeneng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdhoni%20Zuhro"> Ramdhoni Zuhro</a>, <a href="https://publications.waset.org/abstracts/search?q=Reko%20Triyono"> Reko Triyono</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sahri"> M. Sahri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been widely reported incidence caused by acute and chronic effects of exposure to ammonia in the working environment in Indonesia, but ammonia concentration was found to be below the threshold value. The purpose of this study was to determine the safety limit concentration of ammonia in the working environment through the expression of CD8 as a reference for determining the threshold value of ammonia in the working environment. This research was a laboratory experimental with post test only control group design using experimental animals as subjects experiment. From homogeneity test results indicated that the weight of white rats exposed and control groups had a homogeneous variant with a significant level of p (0.701) > α (0.05). Description of the average breathing rate is 0.0013 m³/h. Average weight rats based group listed exposure is 0.1405 kg. From the calculation IRS CD8, CD8 highest score in the doses contained 0.0154, with the location of the highest dose of ammonia without any effect on the lungs of rats is 0.0154 mg/kg body weight of mice. Safe Human Dose (SHD) ammonia is 0.002 mg/kg body weight workers. The conclusion of this study is the safety limit concentration of ammonia gas in the working environment of 0,025 ppm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia" title="ammonia">ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=CD8" title=" CD8"> CD8</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20limits%20concentration" title=" safe limits concentration"> safe limits concentration</a> </p> <a href="https://publications.waset.org/abstracts/72574/safe-limits-concentration-of-ammonia-at-work-environments-through-cd8-expression-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14820</span> Assessment of Chromium Concentration and Human Health Risk in the Steelpoort River Sub-Catchment of the Olifants River Basin, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abraham%20Addo-Bediako">Abraham Addo-Bediako</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many freshwater ecosystems are facing immense pressure from anthropogenic activities, such as agricultural, industrial and mining. Trace metal pollution in freshwater ecosystems has become an issue of public health concern due to its toxicity and persistence in the environment. Trace elements pose a serious risk not only to the environment and aquatic biota but also humans. Chromium is one of such trace elements and its pollution in surface waters and groundwaters represents a serious environmental problem. In South Africa, agriculture, mining, industrial and domestic wastes are the main contributors to chromium discharge in rivers. The common forms of chromium are chromium (III) and chromium (VI). The latter is the most toxic because it can cause damage to human health. The aim of the study was to assess the contamination of chromium in the water and sediments of two rivers in the Steelpoort River sub-catchment of the Olifants River Basin, South Africa and human health risk. The concentration of Cr was analyzed using inductively coupled plasma–optical emission spectrometry (ICP-OES). The concentration of the metal was found to exceed the threshold limit, mainly in areas of high human activities. The hazard quotient through ingestion exposure did not exceed the threshold limit of 1 for adults and children and cancer risk for adults and children computed did not exceed the threshold limit of 10-4. Thus, there is no potential health risk from chromium through ingestion of drinking water for now. However, with increasing human activities, especially mining, the concentration could increase and become harmful to humans who depend on rivers for drinking water. It is recommended that proper management strategies should be taken to minimize the impact of chromium on the rivers and water from the rivers should properly be treated before domestic use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20use" title="land use">land use</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk" title=" health risk"> health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20pollution" title=" metal pollution"> metal pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/168746/assessment-of-chromium-concentration-and-human-health-risk-in-the-steelpoort-river-sub-catchment-of-the-olifants-river-basin-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14819</span> Investigation of Factors Affecting the Total Ionizing Dose Threshold of Electrically Erasable Read Only Memories for Use in Dose Rate Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liqian%20Li">Liqian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Liu"> Yu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karen%20Colins"> Karen Colins</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dose rate present in a seriously contaminated area can be indirectly determined by monitoring radiation damage to inexpensive commercial electronics, instead of deploying expensive radiation hardened sensors. EEPROMs (Electrically Erasable Read Only Memories) are a good candidate for this purpose because they are inexpensive and are sensitive to radiation exposure. When the total ionizing dose threshold is reached, an EEPROM chip will show signs of damage that can be monitored and transmitted by less susceptible electronics. The dose rate can then be determined from the known threshold dose and the exposure time, assuming the radiation field remains constant with time. Therefore, the threshold dose needs to be well understood before this method can be used. There are many factors affecting the threshold dose, such as the gamma ray energy spectrum, the operating voltage, etc. The purpose of this study was to experimentally determine how the threshold dose depends on dose rate, temperature, voltage, and duty factor. It was found that the duty factor has the strongest effect on the total ionizing dose threshold, while the effect of the other three factors that were investigated is less significant. The effect of temperature was found to be opposite to that expected to result from annealing and is yet to be understood. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEPROM" title="EEPROM">EEPROM</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizing%20radiation" title=" ionizing radiation"> ionizing radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20effects%20on%20electronics" title=" radiation effects on electronics"> radiation effects on electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20ionizing%20dose" title=" total ionizing dose"> total ionizing dose</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20networks" title=" wireless sensor networks"> wireless sensor networks</a> </p> <a href="https://publications.waset.org/abstracts/77107/investigation-of-factors-affecting-the-total-ionizing-dose-threshold-of-electrically-erasable-read-only-memories-for-use-in-dose-rate-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14818</span> Enzyme Linked Immuno Sorbent Assay Based Detection of Aflatoxin M1 and Ochratoxin A in Raw Milk in Punjab, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Moudgil">Pallavi Moudgil</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Bedi"> J. S. Bedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Aulakh"> R. S. Aulakh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20S.%20Gill"> J. P. S. Gill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mycotoxins in milk are of major public health concern. The present study was envisaged with an aim to monitor the occurrence of aflatoxin M1 and ochratoxin A in raw milk samples collected from individual animals from dairy farms located in Punjab (India). A total of 168 raw milk samples were collected and analysed using competitive ELISA kits. Out of these, 9 (5.4%) samples were found positive for aflatoxin M1 with the mean concentration of 0.006-0.13 ng/ml and 2 (1.2%) samples exceeded the established maximum residue limit of 0.05 ng/ml established by the European Union. For ochratoxin A, 2 (0.1%) samples were found positive with the mean concentration of 0.61-0.83 ng/ml with both the samples below the established maximum residue limit of 2 ng/ml. The results showed that the milk of dairy cattle is safe with respect to ochratoxin A contamination but occurrence of aflatoxin M1 above maximum residue limit suggested that feed contaminated with mycotoxins might have been offered to dairy cattle that can pose serious health risks to consumers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aflatoxin%20M1" title="Aflatoxin M1">Aflatoxin M1</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risks" title=" health risks"> health risks</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20residue%20limit" title=" maximum residue limit"> maximum residue limit</a>, <a href="https://publications.waset.org/abstracts/search?q=milk" title=" milk"> milk</a>, <a href="https://publications.waset.org/abstracts/search?q=Ochratoxin%20A" title=" Ochratoxin A"> Ochratoxin A</a> </p> <a href="https://publications.waset.org/abstracts/65718/enzyme-linked-immuno-sorbent-assay-based-detection-of-aflatoxin-m1-and-ochratoxin-a-in-raw-milk-in-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14817</span> Relation between Electrical Properties and Application of Chitosan Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evgen%20Prokhorov">Evgen Prokhorov</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Luna-Barcenas"> Gabriel Luna-Barcenas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity%20nanoparticles" title=" conductivity nanoparticles"> conductivity nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=percolation%20threshold" title=" percolation threshold"> percolation threshold</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20nanocomposites" title=" polymer nanocomposites"> polymer nanocomposites</a> </p> <a href="https://publications.waset.org/abstracts/70859/relation-between-electrical-properties-and-application-of-chitosan-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14816</span> Progressive Changes in Physico-Chemical Constituent of Rainwater: A Case Study at Oyoko, a Rural Community in Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20O.%20Yeboah">J. O. Yeboah</a>, <a href="https://publications.waset.org/abstracts/search?q=K%20Aboraa"> K Aboraa</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kodom"> K. Kodom </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The chemical and physical characteristics of rainwater harvested from a typical rooftop were progressively studied. The samples of rainwater collected were analyzed for pH, major ion concentrations, TDS, turbidity, conductivity. All the physicochemical constituents fell within the WHO guideline limits at some points as rainfall progresses except the pH. All the components of rainwater quality measured during the study showed higher concentrations during the early stages of rainfall and reduce as time progresses. There was a downward trend in terms of pH as rain progressed, with 18% of the samples recording pH below the WHO limit of 6.5-8.0. It was observed that iron concentration was above the WHO threshold value of 0.3 mg/l on occasions of heavy rains. The results revealed that most of physicochemical characteristics of rainwater samples were generally below the WHO threshold, as such, the rainwater characteristics showed satisfactory conditions in terms of physicochemical constituents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity" title="conductivity">conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=rainwater%20quality" title=" rainwater quality"> rainwater quality</a>, <a href="https://publications.waset.org/abstracts/search?q=TDS" title=" TDS"> TDS</a> </p> <a href="https://publications.waset.org/abstracts/3268/progressive-changes-in-physico-chemical-constituent-of-rainwater-a-case-study-at-oyoko-a-rural-community-in-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14815</span> Proposals of Exposure Limits for Infrasound From Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pawlaczyk-%C5%81uszczy%C5%84ska">M. Pawlaczyk-Łuszczyńska</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Wszo%C5%82ek"> T. Wszołek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dudarewicz"> A. Dudarewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ma%C5%82ecki"> P. Małecki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K%C5%82aczy%C5%84ski"> M. Kłaczyński</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bortkiewicz"> A. Bortkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human tolerance to infrasound is defined by the hearing threshold. Infrasound that cannot be heard (or felt) is not annoying and is not thought to have any other adverse or health effects. Recent research has largely confirmed earlier findings. ISO 7196:1995 recommends the use of G-weighted characteristics for the assessment of infrasound. There is a strong correlation between G-weighted SPL and annoyance perception. The aim of this study was to propose exposure limits for infrasound from wind turbines. However, only a few countries have set limits for infrasound. These limits are usually no higher than 85-92 dBG, and none of them are specific to wind turbines. Over the years, a number of studies have been carried out to determine hearing thresholds below 20 Hz. It has been recognized that 10% of young people would be able to perceive 10 Hz at around 90 dB, and it has also been found that the difference in median hearing thresholds between young adults aged around 20 years and older adults aged over 60 years is around 10 dB, irrespective of frequency. This shows that older people (up to about 60 years of age) retain good hearing in the low frequency range, while their sensitivity to higher frequencies is often significantly reduced. In terms of exposure limits for infrasound, the average hearing threshold corresponds to a tone with a G-weighted SPL of about 96 dBG. In contrast, infrasound at Lp,G levels below 85-90 dBG is usually inaudible. The individual hearing threshold can, therefore be 10-15 dB lower than the average threshold, so the recommended limits for environmental infrasound could be 75 dBG or 80 dBG. It is worth noting that the G86 curve has been taken as the threshold of auditory perception of infrasound reached by 90-95% of the population, so the G75 and G80 curves can be taken as the criterion curve for wind turbine infrasound. Finally, two assessment methods and corresponding exposure limit values have been proposed for wind turbine infrasound, i.e. method I - based on G-weighted sound pressure level measurements and method II - based on frequency analysis in 1/3-octave bands in the frequency range 4-20 Hz. Separate limit values have been set for outdoor living areas in the open countryside (Area A) and for noise sensitive areas (Area B). In the case of Method I, infrasound limit values of 80 dBG (for areas A) and 75 dBG (for areas B) have been proposed, while in the case of Method II - criterion curves G80 and G75 have been chosen (for areas A and B, respectively). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infrasound" title="infrasound">infrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20limit" title=" exposure limit"> exposure limit</a>, <a href="https://publications.waset.org/abstracts/search?q=hearing%20thresholds" title=" hearing thresholds"> hearing thresholds</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbines" title=" wind turbines"> wind turbines</a> </p> <a href="https://publications.waset.org/abstracts/174872/proposals-of-exposure-limits-for-infrasound-from-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14814</span> Extremal Laplacian Energy of Threshold Graphs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Ahmad%20Mojallal">Seyed Ahmad Mojallal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let G be a connected threshold graph of order n with m edges and trace T. In this talk we give a lower bound on Laplacian energy in terms of n, m, and T of G. From this we determine the threshold graphs with the first four minimal Laplacian energies. We also list the first 20 minimal Laplacian energies among threshold graphs. Let σ=σ(G) be the number of Laplacian eigenvalues greater than or equal to average degree of graph G. Using this concept, we obtain the threshold graphs with the largest and the second largest Laplacian energies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20eigenvalues" title="Laplacian eigenvalues">Laplacian eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplacian%20energy" title=" Laplacian energy"> Laplacian energy</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20graphs" title=" threshold graphs"> threshold graphs</a>, <a href="https://publications.waset.org/abstracts/search?q=extremal%20graphs" title=" extremal graphs"> extremal graphs</a> </p> <a href="https://publications.waset.org/abstracts/41332/extremal-laplacian-energy-of-threshold-graphs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14813</span> Evaluation of Phthalates Contents and Their Health Effects in Consumed Sachet Water Brands in Delta State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edjere%20Oghenekohwiroro">Edjere Oghenekohwiroro</a>, <a href="https://publications.waset.org/abstracts/search?q=Asibor%20Irabor%20Godwin"> Asibor Irabor Godwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwem%20Bassey"> Uwem Bassey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper determines the presence and levels of phthalates in sachet and borehole water source in some parts of Delta State, Nigeria. Sachet and borehole water samples were collected from seven different water packaging facilities and level of phthalates determined using GC-MS instrumentation. Phthalates concentration in borehole samples varied from 0.00-0.01 (DMP), 0.06-0.20 (DEP), 0.10-0.98 (DBP), 0.21-0.36 (BEHP), 0.01-0.03 (DnOP) µg/L and (BBP) was not detectable; while sachet water varied from 0.03-0.95 (DMP), 0.16-12.45 (DEP), 0.57-3.38 (DBP), 0.00-0.03 (BBP), 0.08-0.31 (BEHP) and 0-0.03 (DnOP) µg/L. Phthalates concentration in the sachet water was higher than that of the corresponding boreholes sources and also showed significant difference (p < 0.05) between the two. Sources of these phthalate esters were the interaction between water molecules and plastic storage facilities. Although concentration of all phthalate esters analyzed were lower than the threshold limit value(TLV), over time storage of water samples in this medium can lead to substantial increase with negative effects on individuals consuming them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phthalate%20esters" title="phthalate esters">phthalate esters</a>, <a href="https://publications.waset.org/abstracts/search?q=borehole" title=" borehole"> borehole</a>, <a href="https://publications.waset.org/abstracts/search?q=sachet%20water" title=" sachet water"> sachet water</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20extraction" title=" sample extraction"> sample extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a> </p> <a href="https://publications.waset.org/abstracts/44400/evaluation-of-phthalates-contents-and-their-health-effects-in-consumed-sachet-water-brands-in-delta-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14812</span> Fabrication and Analysis of Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deepika%20Sharma">Deepika Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bal%20Krishan"> Bal Krishan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the structure of N-channel VDMOS was designed and analyzed using Silvaco TCAD tools by varying N+ source doping concentration, P-Body doping concentration, gate oxide thickness and the diffuse time. VDMOS is considered to be ideal power switches due to its high input impedance and fast switching speed. The performance of the device was analyzed from the Ids vs Vgs curve. The electrical characteristics such as threshold voltage, gate oxide thickness and breakdown voltage for the proposed device structures were extarcted. Effect of epitaxial layer on various parameters is also observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=on-resistance" title="on-resistance">on-resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20voltage" title=" threshold voltage"> threshold voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=epitaxial%20layer" title=" epitaxial layer"> epitaxial layer</a>, <a href="https://publications.waset.org/abstracts/search?q=breakdown%20voltage" title=" breakdown voltage"> breakdown voltage</a> </p> <a href="https://publications.waset.org/abstracts/53747/fabrication-and-analysis-of-vertical-double-diffused-metal-oxide-semiconductor-vdmos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14811</span> Adaptive Threshold Adjustment of Clear Channel Assessment in LAA Down Link</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Li">Yu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongyao%20Wang"> Dongyao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaobao%20Sun"> Xiaobao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Ni"> Wei Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In long-term evolution (LTE), the carriers around 5GHz are planned to be utilized without licenses to further enlarge system capacity. This feature is termed licensed assisted access (LAA). The channel sensing (clean channel assessment, CCA) is required before any transmission on these unlicensed carriers, in order to make sure the harmonious co-existence of LAA with other radio access technology in the unlicensed band. Obviously, the CCA threshold is very critical, which decides whether the transmission right following CCA is delivered in time and without collisions. An improper CCA threshold may cause buffer overflow of some eNodeBs if the eNodeBs are heavily loaded with the traffic. Thus, to solve these problems, we propose an adaptive threshold adjustment method for CCA in the LAA downlink. Both the load and transmission opportunities are concerned. The trend of the LAA throughput as the threshold varies is obtained, which guides the threshold adjustment. The co-existing between LAA and Wi-Fi is particularly tested. The results from system-level simulation confirm the merits of our design, especially in heavy traffic cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LTE" title="LTE">LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=LAA" title=" LAA"> LAA</a>, <a href="https://publications.waset.org/abstracts/search?q=CCA" title=" CCA"> CCA</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20adjustment" title=" threshold adjustment"> threshold adjustment</a> </p> <a href="https://publications.waset.org/abstracts/130135/adaptive-threshold-adjustment-of-clear-channel-assessment-in-laa-down-link" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14810</span> Solution-Processed Threshold Switching Selectors Based on Highly Flexible, Transparent and Scratchable Silver Nanowires Conductive Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peiyuan%20Guan">Peiyuan Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Wan"> Tao Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewei%20Chu"> Dewei Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the flash memory approaching its physical limit, the emerging resistive random-access memory (RRAM) has been considered as one of the most promising candidates for the next-generation non-volatile memory. One selector-one resistor configuration has shown the most promising way to resolve the crosstalk issue without affecting the scalability and high-density integration of the RRAM array. By comparison with other candidates of selectors (such as diodes and nonlinear devices), threshold switching selectors dominated by formation/spontaneous rupture of fragile conductive filaments have been proved to possess low voltages, high selectivity, and ultra-low current leakage. However, the flexibility and transparency of selectors are barely mentioned. Therefore, it is a matter of urgency to develop a selector with highly flexible and transparent properties to assist the application of RRAM for a diversity of memory devices. In this work, threshold switching selectors were designed using a facilely solution-processed fabrication on AgNWs@PDMS composite films, which show high flexibility, transparency and scratch resistance. As-fabricated threshold switching selectors also have revealed relatively high selectivity (~107), low operating voltages (Vth < 1 V) and good switching performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20and%20transparent" title="flexible and transparent">flexible and transparent</a>, <a href="https://publications.waset.org/abstracts/search?q=resistive%20random-access%20memory" title=" resistive random-access memory"> resistive random-access memory</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanowires" title=" silver nanowires"> silver nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20switching%20selector" title=" threshold switching selector"> threshold switching selector</a> </p> <a href="https://publications.waset.org/abstracts/119260/solution-processed-threshold-switching-selectors-based-on-highly-flexible-transparent-and-scratchable-silver-nanowires-conductive-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14809</span> Minimizing the Impact of Covariate Detection Limit in Logistic Regression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahadut%20Hossain">Shahadut Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Wesolowski"> Jacek Wesolowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahirul%20Hoque"> Zahirul Hoque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many epidemiological and environmental studies covariate measurements are subject to the detection limit. In most applications, covariate measurements are usually truncated from below which is known as left-truncation. Because the measuring device, which we use to measure the covariate, fails to detect values falling below the certain threshold. In regression analyses, it causes inflated bias and inaccurate mean squared error (MSE) to the estimators. This paper suggests a response-based regression calibration method to correct the deleterious impact introduced by the covariate detection limit in the estimators of the parameters of simple logistic regression model. Compared to the maximum likelihood method, the proposed method is computationally simpler, and hence easier to implement. It is robust to the violation of distributional assumption about the covariate of interest. In producing correct inference, the performance of the proposed method compared to the other competing methods has been investigated through extensive simulations. A real-life application of the method is also shown using data from a population-based case-control study of non-Hodgkin lymphoma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20exposure" title="environmental exposure">environmental exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20limit" title=" detection limit"> detection limit</a>, <a href="https://publications.waset.org/abstracts/search?q=left%20truncation" title=" left truncation"> left truncation</a>, <a href="https://publications.waset.org/abstracts/search?q=bias" title=" bias"> bias</a>, <a href="https://publications.waset.org/abstracts/search?q=ad-hoc%20substitution" title=" ad-hoc substitution"> ad-hoc substitution</a> </p> <a href="https://publications.waset.org/abstracts/55567/minimizing-the-impact-of-covariate-detection-limit-in-logistic-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14808</span> Classification of Sturm-Liouville Problems at Infinity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kishor%20J.%20shinde">Kishor J. shinde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We determine the values of k and p such that the Sturm-Liouville differential operator τu=-(d^2 u)/(dx^2) + kx^p u is in limit point case or limit circle case at infinity. In particular it is shown that τ is in the limit point case when (i) for p=2 and ∀k, (ii) for ∀p and k=0, (iii) for all p and k>0, (iv) for 0≤p≤2 and k<0, (v) for p<0 and k<0. τ is in the limit circle case when (i) for p>2 and k<0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limit%20point%20case" title="limit point case">limit point case</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20circle%20case" title=" limit circle case"> limit circle case</a>, <a href="https://publications.waset.org/abstracts/search?q=Sturm-Liouville" title=" Sturm-Liouville"> Sturm-Liouville</a>, <a href="https://publications.waset.org/abstracts/search?q=infinity" title=" infinity"> infinity</a> </p> <a href="https://publications.waset.org/abstracts/8386/classification-of-sturm-liouville-problems-at-infinity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14807</span> Characteristics and Drivers of Greenhouse Gas (GHG) emissions from China’s Manufacturing Industry: A Threshold Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rong%20Yuan">Rong Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Tao"> Zhao Tao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Only a handful of literature have used to non-linear model to investigate the influencing factors of greenhouse gas (GHG) emissions in China’s manufacturing sectors. And there is a limit in investigating quantitatively and systematically the mechanism of correlation between economic development and GHG emissions considering inherent differences among manufacturing sub-sectors. Considering the sectorial characteristics, the manufacturing sub-sectors with various impacts of output on GHG emissions may be explained by different development modes in each manufacturing sub-sector, such as investment scale, technology level and the level of international competition. In order to assess the environmental impact associated with any specific level of economic development and explore the factors that affect GHG emissions in China’s manufacturing industry during the process of economic growth, using the threshold Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) model, this paper investigated the influence impacts of GHG emissions for China’s manufacturing sectors of different stages of economic development. A data set from 28 manufacturing sectors covering an 18-year period was used. Results demonstrate that output per capita and investment scale contribute to increasing GHG emissions while energy efficiency, R&D intensity and FDI mitigate GHG emissions. Results also verify the nonlinear effect of output per capita on emissions as: (1) the Environmental Kuznets Curve (EKC) hypothesis is supported when threshold point RMB 31.19 million is surpassed; (2) the driving strength of output per capita on GHG emissions becomes stronger as increasing investment scale; (3) the threshold exists for energy efficiency with the positive coefficient first and negative coefficient later; (4) the coefficient of output per capita on GHG emissions decreases as R&D intensity increases. (5) FDI shows a reduction in elasticity when the threshold is compassed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=China" title="China">China</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20industry" title=" manufacturing industry"> manufacturing industry</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20STIRPAT%20model" title=" threshold STIRPAT model"> threshold STIRPAT model</a> </p> <a href="https://publications.waset.org/abstracts/61271/characteristics-and-drivers-of-greenhouse-gas-ghg-emissions-from-chinas-manufacturing-industry-a-threshold-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14806</span> Assessment of Physical, Chemical and Radionuclides Concentrations in Pharamasucal Industrial Wastewater Effluents in Amman, Jordan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Salem%20Abdullah%20Alhwaiti">Mohammad Salem Abdullah Alhwaiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assess the physical, chemical, and radionuclide concentrations of pharmaceutical industrial wastewater effluents. Fourteen wastewater samples were collected from pharmaceutical industries. The results showed a marked reduction in the levels of TH, Mg, and Ca concentration in wastewater limit for properties and criteria for discharge of wastewater to streams or wadies or water bodies in the effluent, whereas TSS and TDS showed higher concentration allowable for discharge of wastewater to streams or wadies or water bodies. The gross α activity in all the wastewater samples ranged between (0.086-0.234 Bq/L) lowered the 0.1 Bq/L limit set by World Health Organization (WHO), whereas gross β activity in few samples ranged between (2.565-4.800 Bq/L), indicating the higher limit set by WHO. Gamma spectroscopy revealed that K-40, Cr-51, Co-60, I-131, Cs-137, and U-238 activity are ≤0.114 Bq/L, ≤0.062 Bq/L, ≤0.00815Bq/L, ≤0.00792Bq/L, ≤0.00956 Bq/L, and ≤0.151 Bq/L, respectively, indicating lowest concentrations of these radionuclides in the pharmaceutical industrial wastewater effluents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20wastewater" title="pharmaceutical wastewater">pharmaceutical wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20%CE%B1%2F%CE%B2%20activity" title=" gross α/β activity"> gross α/β activity</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=Jordan" title=" Jordan"> Jordan</a> </p> <a href="https://publications.waset.org/abstracts/162078/assessment-of-physical-chemical-and-radionuclides-concentrations-in-pharamasucal-industrial-wastewater-effluents-in-amman-jordan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14805</span> Study of Radiological and Chemical Effects of Uranium in Ground Water of SW and NE Punjab, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Komal%20Saini">Komal Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Sahoo"> S. K. Sahoo</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Bajwa"> B. S. Bajwa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Laser Fluorimetery Technique has been used for the microanalysis of uranium content in water samples collected from different sources like the hand pumps, tube wells in the drinking water samples of SW & NE Punjab, India. The geographic location of the study region in NE Punjab is between latitude 31.21º- 32.05º N and longitude 75.60º-76.14º E and for SW Punjab is between latitude 29.66º-30.48º N and longitude 74.69º-75.54º E. The purpose of this study was mainly to investigate the uranium concentration levels of ground water being used for drinking purposes and to determine its health effects, if any, to the local population of these regions. In the present study 131 samples of drinking water collected from different villages of SW and 95 samples from NE, Punjab state, India have been analyzed for chemical and radiological toxicity. In the present investigation, uranium content in water samples of SW Punjab ranges from 0.13 to 908 μgL−1 with an average of 82.1 μgL−1 whereas in samples collected from NE- Punjab, it ranges from 0 to 28.2 μgL−1 with an average of 4.84 μgL−1. Thus, revealing that in the SW- Punjab 54 % of drinking water samples have uranium concentration higher than international recommended limit of 30 µgl-1 (WHO, 2011) while 35 % of samples exceeds the threshold of 60 µgl-1 recommended by our national regulatory authority of Atomic Energy Regulatory Board (AERB), Department of Atomic Energy, India, 2004. On the other hand in the NE-Punjab region, none of the observed water sample has uranium content above the national/international recommendations. The observed radiological risk in terms of excess cancer risk ranges from 3.64x10-7 to 2.54x10-3 for SW-Punjab, whereas for NE region it ranges from 0 to 7.89x10-5. The chemical toxic effect in terms of Life-time average Daily Dose (LDD) and Hazard Quotient (HQ) have also been calculated. The LDD for SW-Punjab varies from 0.0098 to 68.46 with an average of 6.18 µg/ kg/day whereas for NE region it varies from 0 to 2.13 with average 0.365 µg/ kg/day, thus indicating presence of chemical toxicity in SW Punjab as 35% of the observed samples in the SW Punjab are above the recommendation limit of 4.53 µg/ kg/day given by AERB for 60 µgl-1 of uranium. Maximum & Minimum values for hazard quotient for SW Punjab is 0.002 & 15.11 with average 1.36 which is considerably high as compared to safe limit i.e. 1. But for NE Punjab HQ varies from 0 to 0.47. The possible sources of high uranium observed in the SW- Punjab will also be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uranium" title="uranium">uranium</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=radiological%20and%20chemical%20toxicity" title=" radiological and chemical toxicity"> radiological and chemical toxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Punjab" title=" Punjab"> Punjab</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/22661/study-of-radiological-and-chemical-effects-of-uranium-in-ground-water-of-sw-and-ne-punjab-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14804</span> Salt-Induced Modulation in Biomass Production, Pigment Concentration, Ion Accumulation, Antioxidant System and Yield in Pea Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Noreen">S. Noreen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ahmad"> S. Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Salinity is one of the most important environmental factors that limit the production of crop plants to the greatest proportion than any other ones. Salt-induced changes in growth, pigment concentration, water status, malondialdehydes (MDA) and H₂O₂ content, enzymatic and non-enzymatic antioxidants, Na⁺, K⁺ content and yield attributes were examined in the glasshouse on ten pea (Pisum Sativum L.) accessions, namely ‘13240’, ‘18302’, ‘19666’, ‘19700’, ‘19776’, ‘19785’, ‘19788’, ‘20153’, ‘20155’, ‘26719’ were subjected to non-stress (0 mM NaCl) and salt stress (100 mM and150 mM NaCl) in pots containing sand medium. The results showed that salt stress at level150 mM substantially reduced biomass production, leaf water status, pigment concentration (chlorophyll ‘a’, ‘b’, ‘carotenoid content’ total chlorophyll), K⁺ content, quantum yield and yield attributes as compared to plants treated with 100 mM NaCl. Antioxidant enzymes, Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD) and Ascorbate peroxidase (APX), proline content, total soluble protein, total amino acids, Malondialdehyde content (MDA), Hydrogen peroxide (H₂O₂) content and Na⁺ uptake markedly enhanced due to the influence of salt stress. On the basis of analyses (expressed as percent of control), of 10 accessions of pea plant, two were ranked as salt tolerant namely (‘19666’, ‘20153’), four were moderately tolerant namely (‘19700’, ‘19776’, ‘19785’, ‘20155’), and three were salt sensitive namely (‘13240’, ‘18302’, ‘26719’) at 150 mM NaCl level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20enzymes" title="antioxidant enzymes">antioxidant enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20uptake" title=" ion uptake"> ion uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=pigment%20concentration" title=" pigment concentration"> pigment concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20stress" title=" salt stress"> salt stress</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20attributes" title=" yield attributes"> yield attributes</a> </p> <a href="https://publications.waset.org/abstracts/99795/salt-induced-modulation-in-biomass-production-pigment-concentration-ion-accumulation-antioxidant-system-and-yield-in-pea-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14803</span> Threshold Concepts in TESOL: A Thematic Analysis of Disciplinary Guiding Principles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neil%20Morgan">Neil Morgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of Threshold Concepts has offered a fertile new perspective on the transformative effects of mastery of particular concepts on student understanding of subject matter and their developing identities as inductees into disciplinary discourse communities. Only by successfully traversing key knowledge thresholds, it is claimed, can neophytes gain access to the more sophisticated understandings of subject matter possessed by mature members of a discipline. This paper uses thematic analysis of disciplinary guiding principles to identify nine candidate Threshold Concepts that appear to underpin effective TESOL practice. The relationship between these candidate TESOL Threshold Concepts, TESOL principles, and TESOL instructional techniques appears to be amenable to a schematic representation based on superordinate categories of TESOL practitioner concern and, as such, offers an alternative to the view of Threshold Concepts as a privileged subset of disciplinary core concepts. The paper concludes by exploring the potential of a Threshold Concepts framework to productively inform TESOL initial teacher education (ITE) and in-service education and training (INSET). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TESOL" title="TESOL">TESOL</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20concepts" title=" threshold concepts"> threshold concepts</a>, <a href="https://publications.waset.org/abstracts/search?q=TESOL%20principles" title=" TESOL principles"> TESOL principles</a>, <a href="https://publications.waset.org/abstracts/search?q=TESOL%20ITE%2FINSET" title=" TESOL ITE/INSET"> TESOL ITE/INSET</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20of%20practice" title=" community of practice"> community of practice</a> </p> <a href="https://publications.waset.org/abstracts/127795/threshold-concepts-in-tesol-a-thematic-analysis-of-disciplinary-guiding-principles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14802</span> Treatment of Oil Recovery Water Using Direct and Indirect Electrochemical Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tareg%20Omar%20Mansour">Tareg Omar Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Omar%20Elhaji"> Khaled Omar Elhaji </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Model solutions of pentanol in the salt water of various concentrations were subjected to electrochemical oxidation using a dimensionally stable anode (DSA) and a platinised titanium cathode. The removal of pentanol was analysed over time using gas chromatography (GC) and by monitoring the total organic carbon (TOC) concentration of the reaction mixture. It was found that the removal of pentanol occurred more efficiently at higher salinities and higher applied electrical current values. When using a salt concentration of 20,000 ppm and an applied current of 100 mA there was a decrease in concentration of pentanol of 15 %. When the salt concentration and applied current were increased to 58,000 ppm and 500 mA respectively, the decrease in concentration was improved to 64 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensionally%20stable%20anode%20%28DSA%29" title="dimensionally stable anode (DSA)">dimensionally stable anode (DSA)</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20organic%20hydrocarbon%20%28TOC%29" title=" total organic hydrocarbon (TOC)"> total organic hydrocarbon (TOC)</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography%20mass%20spectrometry%20%28GCMS%29" title=" gas chromatography mass spectrometry (GCMS)"> gas chromatography mass spectrometry (GCMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20oxidation" title=" electrochemical oxidation"> electrochemical oxidation</a> </p> <a href="https://publications.waset.org/abstracts/11461/treatment-of-oil-recovery-water-using-direct-and-indirect-electrochemical-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14801</span> Criterion-Referenced Test Reliability through Threshold Loss Agreement: Fuzzy Logic Analysis Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Alavidoost">Mohammad Ali Alavidoost</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Bozorgian"> Hossein Bozorgian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Criterion-referenced tests (CRTs) are designed to measure student performance against a fixed set of predetermined criteria or learning standards. The reliability of such tests cannot be based on internal reliability. Threshold loss agreement is one way to calculate the reliability of CRTs. However, the selection of master and non-master in such agreement is determined by the threshold point. The problem is if the threshold point witnesses a minute change, the selection of master and non-master may have a drastic change, leading to the change in reliability results. Therefore, in this study, the Fuzzy logic approach is employed as a remedial procedure for data analysis to obviate the threshold point problem. Forty-one Iranian students were selected; the participants were all between 20 and 30 years old. A quantitative approach was used to address the research questions. In doing so, a quasi-experimental design was utilized since the selection of the participants was not randomized. Based on the Fuzzy logic approach, the threshold point would be more stable during the analysis, resulting in rather constant reliability results and more precise assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=criterion-referenced%20tests" title="criterion-referenced tests">criterion-referenced tests</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20loss%20agreement" title=" threshold loss agreement"> threshold loss agreement</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20point" title=" threshold point"> threshold point</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20approach" title=" fuzzy logic approach"> fuzzy logic approach</a> </p> <a href="https://publications.waset.org/abstracts/135929/criterion-referenced-test-reliability-through-threshold-loss-agreement-fuzzy-logic-analysis-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14800</span> The Impact of Temperature on the Threshold Capillary Pressure of Fine-Grained Shales </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talal%20Al-Bazali">Talal Al-Bazali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammad"> S. Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The threshold capillary pressure of shale caprocks is an important parameter in CO₂ storage modeling. A correct estimation of the threshold capillary pressure is not only essential for CO₂ storage modeling but also important to assess the overall economical and environmental impact of the design process. A standard step by step approach has to be used to measure the threshold capillary pressure of shale and non-wetting fluids at different temperatures. The objective of this work is to assess the impact of high temperature on the threshold capillary pressure of four different shales as they interacted with four different oil based muds, air, CO₂, N₂, and methane. This study shows that the threshold capillary pressure of shale and non-wetting fluid is highly impacted by temperature. An empirical correlation for the dependence of threshold capillary pressure on temperature when different shales interacted with oil based muds and gasses has been developed. This correlation shows that the threshold capillary pressure decreases exponentially as the temperature increases. In this correlation, an experimental constant (α) appears, and this constant may depend on the properties of shale and non-wetting fluid. The value for α factor was found to be higher for gasses than for oil based muds. This is consistent with our intuition since the interfacial tension for gasses is higher than those for oil based muds. The author believes that measured threshold capillary pressure at ambient temperature is misleading and could yield higher values than those encountered at in situ conditions. Therefore one must correct for the impact of temperature when measuring threshold capillary pressure of shale at ambient temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressure" title="capillary pressure">capillary pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=shale" title=" shale"> shale</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thresshold" title=" thresshold"> thresshold</a> </p> <a href="https://publications.waset.org/abstracts/65146/the-impact-of-temperature-on-the-threshold-capillary-pressure-of-fine-grained-shales" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14799</span> Water Quality Assessment of Deep Wells in Western Misamis Oriental, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Girlie%20D.%20Leopoldo">Girlie D. Leopoldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Myrna%20S.%20Ceniza"> Myrna S. Ceniza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronnie%20L.%20Besagas"> Ronnie L. Besagas</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Y.%20Asoy"> Antonio Y. Asoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20T.%20Dael"> Noel T. Dael</a>, <a href="https://publications.waset.org/abstracts/search?q=Romeo%20M.%20Del%20Rosario"> Romeo M. Del Rosario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quality of groundwater from main deep well sources of seven (7) municipalities in Western Misamis Oriental, Philippines was examined. The study looks at the well waters’ physicochemical properties (temperture, pH, turbidity, conductivity, TDS, salinity, chlorides, TOC, and total hardness), the heavy metals and other metals (Pb, Cd, Al, As, Hg, Sb, Zn, Cu, Fe) and their microbiological (total coliform and E. coli) characteristics. The physicochemical properties of groundwater samples were found to be within the Philippine National Standards for Drinking Water (PNSDW)/US-EPA except for the TDS, chlorides, and hardness of some sources. Well waters from both Initao and Gitagum municipalities have TDS values of 643.2 mg/L and 578.4 mg/L, respectively, as compared to PNSDW/US-EPA standard limit of 500 mg/L. These same two municipalities Initao and Gitagum as well as the municipality of Libertad also have chloride levels beyond the 250 mg/L limit of PNSDW/US-EPA/EU with values at 360, 318 and 277 mg/L respectively. The Libertad sample also registered a total hardness of 407.5 mg/L CaCO3 as compared to the 300 mg/L PNSDW limit. These mentioned three (3) municipalities are noticed to have similar geologic structures. Although metal analyses revealed the presence of Zn, Cu and Fe in almost all well water sources, their concentrations are below allowable limit. All well waters from the seven municipalities failed in total coliform count. Escherichia coli were also found in well waters from four (4) municipalities including Laguindingan, Lugait, Gitagum, and Libertad. The presence of these pathogens in the well waters needs to be addressed to make the waters suitable for human consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20well" title=" deep well"> deep well</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical" title=" physico-chemical"> physico-chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal" title=" heavy metal"> heavy metal</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiological" title=" microbiological"> microbiological</a> </p> <a href="https://publications.waset.org/abstracts/22699/water-quality-assessment-of-deep-wells-in-western-misamis-oriental-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14798</span> Optimisation of Extraction of Phenolic Compounds in Algerian Lavandula multifida, Algeria, NW</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mahmoud%20Dif">Mustapha Mahmoud Dif</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouzia%20Benali-Toumi"> Fouzia Benali-Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Benyahia"> Mohamed Benyahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Bouazza"> Sofiane Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbes%20Dellal"> Abbes Dellal</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimane%20Baha"> Slimane Baha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L. multifida is applied to treat rheumatism and cold and has hypoglycemic and anti-inflammatory properties. The present study is to optimize the extraction of phenolic compounds in Algerian Lavandula multifida. The influences of parameters including temperature (decoction and maceration) and extraction time (15min to 45 min) on the flavonoids concentration are studied. The optimal conditions are determined and the quadratic response surfaces draw from the mathematical models. Total phenols were evaluated using Folin sicaltieu methods, total flavonoids were estimated using the Tri chloral aluminum method. The maximum concentration extracted, for total flavonoids, equal to 0.043 mg/g was achieved with decoction and extraction time of 41.55 min. However, for total phenol compounds highest concentration of 0.218 mg/g, is obtained with 45 min at 49.99°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%20multifidi" title="L multifidi">L multifidi</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20content" title=" phenolic content"> phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/46388/optimisation-of-extraction-of-phenolic-compounds-in-algerian-lavandula-multifida-algeria-nw" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14797</span> An Analysis of Heavy Metal Pollution by Shisham (Dalbergia sissoo) in Different Cities of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shumaila%20Shakoor">Shumaila Shakoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The levels of metal pollution (Pb, Cd, Cu, Zn) were investigated in the leaves of Dalbergia sisso in urban areas of the Sahiwal and Faisalabad City. For this purpose, three habitats were selected for sampling (roads, residential areas and parks). High concentration of metal was found in roadside samples as compared to residential areas and parks. In Sahiwal city the mean concentration of Copper (7.68µgg-¹) Zinc (43.55µgg-¹) and lead (4.79µgg-¹) were detected. Similarly, concentration of Cu, Zn, Pb and Cd in leaves of Faisalabad city ranged from 14.4-11.3µgg-¹, 49.7-49.5µgg-¹,138.7-47.1µgg-¹. Highest concentration of heavy metals was detected in Faisalabad as compared to Sahiwal city and level of heavy metals was below the threshold limits, therefore, the concentration of heavy metals was not high in Dalbergia sissoo. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc" title=" zinc"> zinc</a> </p> <a href="https://publications.waset.org/abstracts/55644/an-analysis-of-heavy-metal-pollution-by-shisham-dalbergia-sissoo-in-different-cities-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55644.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14796</span> Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aminu%20Yakubu%20Umar">Aminu Yakubu Umar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation" title="radiation">radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20output" title=" X-ray output"> X-ray output</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=half-value%20layer" title=" half-value layer"> half-value layer</a>, <a href="https://publications.waset.org/abstracts/search?q=mA%20linearity" title=" mA linearity"> mA linearity</a>, <a href="https://publications.waset.org/abstracts/search?q=KVp%20variation" title=" KVp variation"> KVp variation</a> </p> <a href="https://publications.waset.org/abstracts/10927/quality-control-assessment-of-x-ray-equipment-in-hospitals-of-katsina-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">609</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14795</span> Research on the Aeration Systems’ Efficiency of a Lab-Scale Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Marun%C8%9B%C4%83lu">Oliver Marunțălu</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Elisabeta%20Manea"> Elena Elisabeta Manea</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C4%83cr%C4%83mioara%20Diana%20Robescu"> Lăcrămioara Diana Robescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mihai%20Nec%C8%99oiu"> Mihai Necșoiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20L%C4%83z%C4%83roiu"> Gheorghe Lăzăroiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Andreya%20Bondrea"> Dana Andreya Bondrea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to obtain efficient pollutants removal in small-scale wastewater treatment plants, uniform water flow has to be achieved. The experimental setup, designed for treating high-load wastewater (leachate), consists of two aerobic biological reactors and a lamellar settler. Both biological tanks were aerated by using three different types of aeration systems - perforated pipes, membrane air diffusers and tube ceramic diffusers. The possibility of homogenizing the water mass with each of the air diffusion systems was evaluated comparatively. The oxygen concentration was determined by optical sensors with data logging. The experimental data was analyzed comparatively for all three different air dispersion systems aiming to identify the oxygen concentration variation during different operational conditions. The Oxygenation Capacity was calculated for each of the three systems and used as performance and selection parameter. The global mass transfer coefficients were also evaluated as important tools in designing the aeration system. Even though using the tubular porous diffusers leads to higher oxygen concentration compared to the perforated pipe system (which provides medium-sized bubbles in the aqueous solution), it doesn’t achieve the threshold limit of 80% oxygen saturation in less than 30 minutes. The study has shown that the optimal solution for the studied configuration was the radial air diffusers which ensure an oxygen saturation of 80% in 20 minutes. An increment of the values was identified when the air flow was increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow" title="flow">flow</a>, <a href="https://publications.waset.org/abstracts/search?q=aeration" title=" aeration"> aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=bioreactor" title=" bioreactor"> bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20concentration" title=" oxygen concentration "> oxygen concentration </a> </p> <a href="https://publications.waset.org/abstracts/29016/research-on-the-aeration-systems-efficiency-of-a-lab-scale-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14794</span> Combined Localization, Beamforming, and Interference Threshold Estimation in Underlay Cognitive System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Nasr">Omar Nasr</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasser%20Naguib"> Yasser Naguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hafez"> Mohamed Hafez </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at providing an innovative solution for blind interference threshold estimation in an underlay cognitive network to be used in adaptive beamforming by secondary user Transmitter and Receiver. For the task of threshold estimation, blind detection of modulation and SNR are used. For the sake of beamforming several localization algorithms are compared to settle on best one for cognitive environment. Beamforming algorithms as LCMV (Linear Constraint Minimum Variance) and MVDR (Minimum Variance Distortion less) are also proposed and compared. The idea of just nulling the primary user after knowledge of its location is discussed against the idea of working under interference threshold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=underlay" title=" underlay"> underlay</a>, <a href="https://publications.waset.org/abstracts/search?q=beamforming" title=" beamforming"> beamforming</a>, <a href="https://publications.waset.org/abstracts/search?q=MUSIC" title=" MUSIC"> MUSIC</a>, <a href="https://publications.waset.org/abstracts/search?q=MVDR" title=" MVDR"> MVDR</a>, <a href="https://publications.waset.org/abstracts/search?q=LCMV" title=" LCMV"> LCMV</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20estimation" title=" threshold estimation"> threshold estimation</a> </p> <a href="https://publications.waset.org/abstracts/17541/combined-localization-beamforming-and-interference-threshold-estimation-in-underlay-cognitive-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14793</span> Evaluation of Hydrocarbons in Tissues of Bivalve Mollusks from the Red Sea Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Ahmed%20Aljohani">Asma Ahmed Aljohani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Orif"> Mohammed Orif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concentration of polycyclic aromatic hydrocarbons (PAH) in clam (A. glabrata) was examined in samples collected from Alseef Beach, 30 km south of Jeddah city. Gas chromatography-mass spectrometry (GC-MS) was used to analyse the 14 PAHs. The concentration of total PAHs was found to range from 11.521 to 40.149 ng/gdw with a mean concentration of 21.857 ng/gdw, which is lower compared to similar studies. The lower molecular weight PAHs with three rings comprised 18.14% of the total PAH concentrations in the clams, while the high molecular weight PAHs with four rings, five rings, and six rings account for 81.86%. Diagnostic ratios for PAH source distinction suggested pyrogenic or anthropogenic sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bivalves" title="bivalves">bivalves</a>, <a href="https://publications.waset.org/abstracts/search?q=biomonitoring" title=" biomonitoring"> biomonitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbons" title=" hydrocarbons"> hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a> </p> <a href="https://publications.waset.org/abstracts/159285/evaluation-of-hydrocarbons-in-tissues-of-bivalve-mollusks-from-the-red-sea-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=494">494</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=495">495</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=total%20threshold%20limit%20concentration&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>