CINXE.COM

Condorcet method - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Condorcet method - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-sticky-header-enabled vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"cbd1369d-ef43-443c-8fca-9e32c89f08c9","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Condorcet_method","wgTitle":"Condorcet method","wgCurRevisionId":1275671704,"wgRevisionId":1275671704,"wgArticleId":44446,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with dead external links","Articles with dead external links from March 2022","Articles with permanently dead external links","Articles with short description","Short description matches Wikidata","Pages with French IPA","All articles with unsourced statements","Articles with unsourced statements from April 2012","Articles with unsourced statements from May 2021","Articles needing additional references from March 2021","All articles needing additional references", "Articles with unsourced statements from March 2024","Articles with unsourced statements from October 2020","Wikipedia articles with style issues from November 2020","All articles with style issues","CS1 maint: location missing publisher","Single-winner electoral systems","Condorcet methods","Preferential electoral systems"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Condorcet_method","wgRelevantArticleId":44446,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true}, "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q868720","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready", "ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.16"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/Electoral-systems-gears.svg/1200px-Electoral-systems-gears.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/Electoral-systems-gears.svg/800px-Electoral-systems-gears.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/8/82/Electoral-systems-gears.svg/640px-Electoral-systems-gears.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Condorcet method - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Condorcet_method"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Condorcet_method&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Condorcet_method"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Condorcet_method rootpage-Condorcet_method skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" title="Main menu" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li><li id="n-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages"><span>Special pages</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Condorcet+method" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Condorcet+method" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Condorcet+method" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Condorcet+method" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Summary" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Summary"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Summary</span> </div> </a> <ul id="toc-Summary-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Definition</span> </div> </a> <ul id="toc-Definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Basic_procedure" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Basic_procedure"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Basic procedure</span> </div> </a> <button aria-controls="toc-Basic_procedure-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Basic procedure subsection</span> </button> <ul id="toc-Basic_procedure-sublist" class="vector-toc-list"> <li id="toc-Voting" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Voting"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Voting</span> </div> </a> <ul id="toc-Voting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Finding_the_winner" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Finding_the_winner"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Finding the winner</span> </div> </a> <ul id="toc-Finding_the_winner-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pairwise_counting_and_matrices" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pairwise_counting_and_matrices"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Pairwise counting and matrices</span> </div> </a> <ul id="toc-Pairwise_counting_and_matrices-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Example:_Voting_on_the_location_of_Tennessee&#039;s_capital" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example:_Voting_on_the_location_of_Tennessee&#039;s_capital"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Example: Voting on the location of Tennessee's capital</span> </div> </a> <ul id="toc-Example:_Voting_on_the_location_of_Tennessee&#039;s_capital-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Circular_ambiguities" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Circular_ambiguities"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Circular ambiguities</span> </div> </a> <ul id="toc-Circular_ambiguities-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Two-method_systems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Two-method_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Two-method systems</span> </div> </a> <ul id="toc-Two-method_systems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Single-method_systems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Single-method_systems"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Single-method systems</span> </div> </a> <button aria-controls="toc-Single-method_systems-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Single-method systems subsection</span> </button> <ul id="toc-Single-method_systems-sublist" class="vector-toc-list"> <li id="toc-Kemeny–Young_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Kemeny–Young_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Kemeny–Young method</span> </div> </a> <ul id="toc-Kemeny–Young_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ranked_pairs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ranked_pairs"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Ranked pairs</span> </div> </a> <ul id="toc-Ranked_pairs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Schulze_method" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Schulze_method"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Schulze method</span> </div> </a> <ul id="toc-Schulze_method-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Defeat_strength" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Defeat_strength"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Defeat strength</span> </div> </a> <ul id="toc-Defeat_strength-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Related_terms" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Related_terms"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Related terms</span> </div> </a> <ul id="toc-Related_terms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Condorcet_ranking_methods" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Condorcet_ranking_methods"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Condorcet ranking methods</span> </div> </a> <ul id="toc-Condorcet_ranking_methods-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Comparison_with_instant_runoff_and_first-past-the-post_(plurality)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Comparison_with_instant_runoff_and_first-past-the-post_(plurality)"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Comparison with instant runoff and first-past-the-post (plurality)</span> </div> </a> <ul id="toc-Comparison_with_instant_runoff_and_first-past-the-post_(plurality)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Potential_for_tactical_voting" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Potential_for_tactical_voting"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>Potential for tactical voting</span> </div> </a> <ul id="toc-Potential_for_tactical_voting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Evaluation_by_criteria" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Evaluation_by_criteria"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Evaluation by criteria</span> </div> </a> <ul id="toc-Evaluation_by_criteria-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Use_of_Condorcet_voting" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Use_of_Condorcet_voting"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Use of Condorcet voting</span> </div> </a> <ul id="toc-Use_of_Condorcet_voting-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Footnotes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Footnotes"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Footnotes</span> </div> </a> <ul id="toc-Footnotes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">18</span> <span>External links</span> </div> </a> <button aria-controls="toc-External_links-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle External links subsection</span> </button> <ul id="toc-External_links-sublist" class="vector-toc-list"> <li id="toc-Software" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Software"> <div class="vector-toc-text"> <span class="vector-toc-numb">18.1</span> <span>Software</span> </div> </a> <ul id="toc-Software-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" title="Table of Contents" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Condorcet method</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 16 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-16" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">16 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Condorcetova_metoda" title="Condorcetova metoda – Czech" lang="cs" hreflang="cs" data-title="Condorcetova metoda" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Condorcet-Methode" title="Condorcet-Methode – German" lang="de" hreflang="de" data-title="Condorcet-Methode" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/M%C3%A9todo_de_Condorcet" title="Método de Condorcet – Spanish" lang="es" hreflang="es" data-title="Método de Condorcet" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Kondorcet-balotado" title="Kondorcet-balotado – Esperanto" lang="eo" hreflang="eo" data-title="Kondorcet-balotado" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B1%D9%88%D8%B4_%DA%A9%D9%86%D8%AF%D9%88%D8%B1%D8%B3%D9%87" title="روش کندورسه – Persian" lang="fa" hreflang="fa" data-title="روش کندورسه" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Condorcet" title="Méthode de Condorcet – French" lang="fr" hreflang="fr" data-title="Méthode de Condorcet" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it badge-Q70893996 mw-list-item" title=""><a href="https://it.wikipedia.org/wiki/Metodo_Condorcet" title="Metodo Condorcet – Italian" lang="it" hreflang="it" data-title="Metodo Condorcet" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%95%D7%A2%D7%9E%D7%93_%D7%A7%D7%95%D7%A0%D7%93%D7%95%D7%A8%D7%A1%D7%94" title="מועמד קונדורסה – Hebrew" lang="he" hreflang="he" data-title="מועמד קונדורסה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Condorcet-m%C3%B3dszer" title="Condorcet-módszer – Hungarian" lang="hu" hreflang="hu" data-title="Condorcet-módszer" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Methode_Condorcet" title="Methode Condorcet – Dutch" lang="nl" hreflang="nl" data-title="Methode Condorcet" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/M%C3%A9todo_de_Condorcet" title="Método de Condorcet – Portuguese" lang="pt" hreflang="pt" data-title="Método de Condorcet" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Condorcet_method" title="Condorcet method – Simple English" lang="en-simple" hreflang="en-simple" data-title="Condorcet method" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Condorcet%E2%80%99n_menetelm%C3%A4" title="Condorcet’n menetelmä – Finnish" lang="fi" hreflang="fi" data-title="Condorcet’n menetelmä" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Condorcet-metod" title="Condorcet-metod – Swedish" lang="sv" hreflang="sv" data-title="Condorcet-metod" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%A7%E0%B8%B4%E0%B8%98%E0%B8%B5%E0%B8%81%E0%B8%87%E0%B8%94%E0%B8%AD%E0%B8%A3%E0%B9%8C%E0%B9%81%E0%B8%8B" title="วิธีกงดอร์แซ – Thai" lang="th" hreflang="th" data-title="วิธีกงดอร์แซ" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%AD%94%E5%A4%9A%E5%A1%9E%E6%8A%95%E7%A5%A8%E6%B3%95" title="孔多塞投票法 – Chinese" lang="zh" hreflang="zh" data-title="孔多塞投票法" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q868720#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Condorcet_method" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Condorcet_method" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Condorcet_method"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Condorcet_method&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Condorcet_method&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Condorcet_method"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Condorcet_method&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Condorcet_method&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Condorcet_method" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Condorcet_method" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Condorcet_method&amp;oldid=1275671704" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Condorcet_method&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Condorcet_method&amp;id=1275671704&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCondorcet_method"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCondorcet_method"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Condorcet_method&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Condorcet_method&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q868720" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Pairwise-comparison electoral system</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><table class="sidebar sidebar-collapse nomobile nowraplinks"><tbody><tr><td class="sidebar-pretitle">A joint <a href="/wiki/Portal:Politics" title="Portal:Politics">Politics</a> and <a href="/wiki/Portal:Economics" title="Portal:Economics">Economics</a> series</td></tr><tr><th class="sidebar-title-with-pretitle" style="border-top:1px #fafafa solid; border-bottom:1px #fafafa solid; background:#efefef; background: var(--background-color-interactive, #efefef); color: var(--color-base, #000); padding:0.2em;"><a href="/wiki/Social_choice_theory" title="Social choice theory">Social choice</a> and <a href="/wiki/Electoral_system" title="Electoral system">electoral systems</a></th></tr><tr><td class="sidebar-image"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Electoral-systems-gears.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Electoral-systems-gears.svg/128px-Electoral-systems-gears.svg.png" decoding="async" width="128" height="128" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/82/Electoral-systems-gears.svg/192px-Electoral-systems-gears.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/82/Electoral-systems-gears.svg/256px-Electoral-systems-gears.svg.png 2x" data-file-width="1024" data-file-height="1024" /></a><figcaption></figcaption></figure></td></tr><tr><td class="sidebar-above"> <div class="hlist"><ul><li><a href="/wiki/Social_choice_theory" title="Social choice theory">Social choice</a></li><li><a href="/wiki/Mechanism_design" title="Mechanism design">Mechanism design</a></li><li><a href="/wiki/Comparative_politics" title="Comparative politics">Comparative politics</a></li><li><a href="/wiki/Comparison_of_voting_rules" title="Comparison of voting rules">Comparison</a></li><li><a href="/wiki/List_of_electoral_systems" title="List of electoral systems">List</a><span class="nowrap">&#160;</span>(<a href="/wiki/List_of_electoral_systems_by_country" title="List of electoral systems by country">By country</a>)</li></ul></div></td></tr><tr><td class="sidebar-content" style="text-align:left;"> <div class="sidebar-list mw-collapsible"><div class="sidebar-list-title" style="background:#efefef; border-top:1px solid;background: var(--background-color-interactive, #efefef); color: var(--color-base, #000);;color: var(--color-base)"><a href="/wiki/Single-member_district" title="Single-member district">Single-winner methods</a></div><div class="sidebar-list-content mw-collapsible-content"><b>Single vote - <a href="/wiki/Plurality_voting" title="Plurality voting">plurality</a> methods</b> <ul><li><a href="/wiki/First-past-the-post_voting" title="First-past-the-post voting">First preference plurality (FPP)</a></li> <li><a href="/wiki/Two-round_system" title="Two-round system">Two-round</a> (<abbr style="font-size:85%" title=""><a href="/wiki/American_English" title="American English">US</a>:</abbr> <a href="/wiki/Nonpartisan_primary" title="Nonpartisan primary">Jungle primary</a>) <ul><li><a href="/wiki/Partisan_primary" class="mw-redirect" title="Partisan primary">Partisan primary</a></li></ul></li> <li><a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">Instant-runoff</a> <ul><li><abbr style="font-size:85%" title=""><a href="/wiki/British_English" title="British English">UK</a>:</abbr> Alternative vote (AV)</li> <li><abbr style="font-size:85%" title=""><a href="/wiki/American_English" title="American English">US</a>:</abbr> Ranked-choice (RCV)</li></ul></li></ul> <hr /> <p><b><a class="mw-selflink selflink">Condorcet methods</a></b> </p> <ul><li><a href="/wiki/Tideman_alternative_method" title="Tideman alternative method">Condorcet-IRV</a></li> <li><a href="/wiki/Round-robin_voting" title="Round-robin voting">Round-robin voting</a> <ul><li><a href="/wiki/Minimax_Condorcet_method" title="Minimax Condorcet method">Minimax</a></li> <li><a href="/wiki/Schulze_method" title="Schulze method">Schulze</a></li> <li><a href="/wiki/Ranked_pairs" title="Ranked pairs">Ranked pairs</a></li> <li><a href="/wiki/Maximal_lottery" class="mw-redirect" title="Maximal lottery">Maximal lottery</a></li></ul></li></ul> <hr /> <p><b><a href="/wiki/Positional_voting" title="Positional voting">Positional voting</a></b> </p> <ul><li><a href="/wiki/First-preference_plurality" class="mw-redirect" title="First-preference plurality">Plurality</a> (<abbr style="font-size:85%" title=""><a href="/wiki/Sequential_elimination_method" title="Sequential elimination method">el.</a></abbr> <a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">IRV</a>)</li> <li><a href="/wiki/Borda_count" title="Borda count">Borda count</a> (<abbr style="font-size:85%" title=""><a href="/wiki/Sequential_elimination_method" title="Sequential elimination method">el.</a></abbr> <a href="/wiki/Baldwin%27s_method" class="mw-redirect" title="Baldwin&#39;s method">Baldwin</a>)</li> <li><a href="/wiki/Anti-plurality_voting" title="Anti-plurality voting">Antiplurality</a> (<abbr style="font-size:85%" title=""><a href="/wiki/Sequential_elimination_method" title="Sequential elimination method">el.</a></abbr> <a href="/wiki/Coombs_method" class="mw-redirect" title="Coombs method">Coombs</a>)</li></ul> <hr /> <p><b><a href="/wiki/Rated_voting" title="Rated voting">Cardinal voting</a></b> </p> <ul><li><a href="/wiki/Score_voting" title="Score voting">Score voting</a></li> <li><a href="/wiki/Approval_voting" title="Approval voting">Approval voting</a></li> <li><a href="/wiki/Highest_median_voting_rules" title="Highest median voting rules">Majority judgment</a></li> <li><a href="/wiki/STAR_voting" title="STAR voting">STAR voting</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content" style="text-align:left;"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#efefef; border-top:1px solid;background: var(--background-color-interactive, #efefef); color: var(--color-base, #000);;color: var(--color-base)"><a href="/wiki/Proportional_representation" title="Proportional representation">Proportional representation</a></div><div class="sidebar-list-content mw-collapsible-content"><b><a href="/wiki/Party-list_proportional_representation" title="Party-list proportional representation">Party-list</a></b> <ul><li><a href="/wiki/Apportionment_(politics)" title="Apportionment (politics)">Apportionment</a> <ul><li><a href="/wiki/Highest_averages_method" title="Highest averages method">Highest averages</a></li> <li><a href="/wiki/Largest_remainder_method" class="mw-redirect" title="Largest remainder method">Largest remainders</a></li> <li><a href="/wiki/National_remnant" title="National remnant">National remnant</a></li> <li><a href="/wiki/Biproportional_apportionment" title="Biproportional apportionment">Biproportional</a></li></ul></li> <li><a href="/wiki/Electoral_list" title="Electoral list">List type</a> <ul><li><a href="/wiki/Closed_list" title="Closed list">Closed list</a></li> <li><a href="/wiki/Open_list" title="Open list">Open list</a></li> <li><a href="/wiki/Panachage" title="Panachage">Panachage</a></li> <li><a href="/wiki/Justified_representation" title="Justified representation">List-free PR</a></li> <li><a href="/wiki/Localized_list" title="Localized list">Localized list</a></li></ul></li></ul> <hr /> <p><b><a href="/wiki/Electoral_quota" title="Electoral quota">Quota-remainder methods</a></b> </p> <ul><li><a href="/wiki/Single_transferable_vote" title="Single transferable vote">Hare STV</a></li> <li><a href="/wiki/Schulze_STV" title="Schulze STV">Schulze STV</a></li> <li><a href="/wiki/CPO-STV" title="CPO-STV">CPO-STV</a></li> <li><a href="/wiki/Quota_Borda_system" title="Quota Borda system">Quota Borda</a></li></ul> <hr /> <p><b><a href="/wiki/Approval-based_committee" class="mw-redirect" title="Approval-based committee">Approval-based committees</a></b> </p> <ul><li><a href="/wiki/Proportional_approval_voting" title="Proportional approval voting">Thiele's method</a></li> <li><a href="/wiki/Phragmen%27s_voting_rules" title="Phragmen&#39;s voting rules">Phragmen's method</a></li> <li><a href="/wiki/Expanding_approvals_rule" title="Expanding approvals rule">Expanding approvals rule</a></li> <li><a href="/wiki/Method_of_equal_shares" title="Method of equal shares">Method of equal shares</a></li></ul> <hr /> <p><b><a href="/wiki/Fractional_social_choice" title="Fractional social choice">Fractional social choice</a></b> </p> <ul><li><a href="/wiki/Direct_representation" title="Direct representation">Direct representation</a> <ul><li><a href="/wiki/Interactive_representation" title="Interactive representation">Interactive representation</a></li> <li><a href="/wiki/Liquid_democracy" title="Liquid democracy">Liquid democracy</a></li></ul></li> <li><a href="/wiki/Fractional_approval_voting" title="Fractional approval voting">Fractional approval voting</a></li> <li><a href="/wiki/Maximal_lottery" class="mw-redirect" title="Maximal lottery">Maximal lottery</a></li> <li><a href="/wiki/Random_ballot" title="Random ballot">Random ballot</a></li></ul> <hr /> <p><b><a href="/wiki/Semi-proportional_representation" title="Semi-proportional representation">Semi-proportional representation</a></b> </p> <ul><li><a href="/wiki/Cumulative_voting" title="Cumulative voting">Cumulative</a> <ul><li><a href="/wiki/Single_non-transferable_vote" title="Single non-transferable vote">SNTV</a></li></ul></li> <li><a href="/wiki/Limited_voting" title="Limited voting">Limited voting</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content" style="text-align:left;"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#efefef; border-top:1px solid;background: var(--background-color-interactive, #efefef); color: var(--color-base, #000);;color: var(--color-base)"><a href="/wiki/Mixed_electoral_system" title="Mixed electoral system">Mixed systems</a></div><div class="sidebar-list-content mw-collapsible-content"><b>By results of combination</b> <ul><li><a href="/wiki/Mixed-member_majoritarian_representation" title="Mixed-member majoritarian representation">Mixed-member majoritarian</a></li> <li><a href="/wiki/Mixed-member_proportional_representation" title="Mixed-member proportional representation">Mixed-member proportional</a></li></ul> <hr /><b>By mechanism of combination</b> <ul><li><b>Non-<a href="/wiki/Compensation_(electoral_systems)" title="Compensation (electoral systems)">compensatory</a></b> <ul><li><a href="/wiki/Parallel_voting" title="Parallel voting">Parallel (superposition)</a></li> <li><a href="/wiki/Coexistence_(electoral_systems)" title="Coexistence (electoral systems)">Coexistence</a></li> <li><a href="/w/index.php?title=Conditional_electoral_system&amp;action=edit&amp;redlink=1" class="new" title="Conditional electoral system (page does not exist)">Conditional</a></li> <li><a href="/wiki/Majority_bonus_system" title="Majority bonus system">Fusion (majority bonus)</a></li></ul></li> <li><b><a href="/wiki/Compensation_(electoral_systems)" title="Compensation (electoral systems)">Compensatory</a></b> <ul><li><a href="/w/index.php?title=Seat_linkage_mixed_system&amp;action=edit&amp;redlink=1" class="new" title="Seat linkage mixed system (page does not exist)">Seat linkage system</a> <ul><li><abbr style="font-size:85%" title=""><a href="/wiki/British_English" title="British English">UK</a>:</abbr> <a href="/wiki/Additional_member_system" class="mw-redirect" title="Additional member system">'AMS'</a></li> <li><abbr style="font-size:85%" title=""><a href="/wiki/New_Zealand_English" title="New Zealand English">NZ</a>:</abbr> <a href="/wiki/Mixed-member_proportional" class="mw-redirect" title="Mixed-member proportional">'MMP'</a></li></ul></li> <li><a href="/wiki/Vote_linkage_mixed_system" class="mw-redirect" title="Vote linkage mixed system">Vote linkage system</a> <ul><li><a href="/wiki/Scorporo" title="Scorporo">Negative vote transfer</a></li> <li><a href="/wiki/Mixed_ballot_transferable_vote" title="Mixed ballot transferable vote">Mixed ballot</a></li></ul></li></ul></li> <li><a href="/wiki/Mixed_electoral_system" title="Mixed electoral system">Supermixed systems</a> <ul><li><a href="/wiki/Dual-member_proportional_representation" class="mw-redirect" title="Dual-member proportional representation">Dual-member proportional</a></li> <li><a href="/wiki/Rural%E2%80%93urban_proportional_representation" title="Rural–urban proportional representation">Rural–urban proportional</a></li> <li><a href="/wiki/Majority_jackpot_system" title="Majority jackpot system">Majority jackpot</a></li></ul></li></ul> <hr /> <p><b>By ballot type</b> </p> <ul><li><a href="/wiki/Mixed_single_vote" title="Mixed single vote">Single vote</a> <ul><li><a href="/wiki/Double_simultaneous_vote" title="Double simultaneous vote">Double simultaneous vote</a></li></ul></li> <li><a href="/wiki/Mixed_electoral_systems" class="mw-redirect" title="Mixed electoral systems">Dual-vote</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content" style="text-align:left;"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#efefef; border-top:1px solid;background: var(--background-color-interactive, #efefef); color: var(--color-base, #000);;color: var(--color-base)"><a href="/wiki/Pathological_(mathematics)#Voting" title="Pathological (mathematics)">Paradoxes and pathologies</a></div><div class="sidebar-list-content mw-collapsible-content"><b>Spoiler effects</b> <ul><li><a href="/wiki/Spoiler_effect" title="Spoiler effect">Spoiler effect</a></li> <li><a href="/wiki/Independence_of_clones" class="mw-redirect" title="Independence of clones">Cloning paradox</a></li> <li><a href="/wiki/Condorcet_winner_criterion" title="Condorcet winner criterion">Frustrated majorities paradox</a></li> <li><a href="/wiki/Center_squeeze" title="Center squeeze">Center squeeze</a></li></ul> <hr /> <p><b>Pathological response</b> </p> <ul><li><a href="/wiki/Perverse_response" class="mw-redirect" title="Perverse response">Perverse response</a></li> <li><a href="/wiki/Best-is-worst_paradox" title="Best-is-worst paradox">Best-is-worst paradox</a></li> <li><a href="/wiki/No-show_paradox" title="No-show paradox">No-show paradox</a> <ul><li><a href="/wiki/Multiple_districts_paradox" title="Multiple districts paradox">Multiple districts paradox</a></li></ul></li></ul> <hr /> <p><b><a href="/wiki/Strategic_voting" title="Strategic voting">Strategic voting</a></b> </p> <ul><li><a href="/wiki/Sincere_favorite_criterion" title="Sincere favorite criterion">Lesser evil voting</a></li> <li><a href="/wiki/Strategic_voting#Exaggeration" title="Strategic voting">Exaggeration</a></li> <li><a href="/wiki/Truncation_(voting)" class="mw-redirect" title="Truncation (voting)">Truncation</a></li> <li><a href="/wiki/Turkey-raising" class="mw-redirect" title="Turkey-raising">Turkey-raising</a></li></ul> <hr /> <p><b>Paradoxes of <a href="/wiki/Majority_rule" title="Majority rule">majority rule</a></b> </p> <ul><li><a href="/wiki/Tyranny_of_the_majority" title="Tyranny of the majority">Tyranny of the majority</a></li> <li><a href="/wiki/Discursive_dilemma" title="Discursive dilemma">Discursive dilemma</a></li> <li><a href="/wiki/Condorcet_paradox" title="Condorcet paradox">Conflicting majorities paradox</a></li></ul></div></div></td> </tr><tr><td class="sidebar-content" style="text-align:left;"> <div class="sidebar-list mw-collapsible mw-collapsed"><div class="sidebar-list-title" style="background:#efefef; border-top:1px solid;background: var(--background-color-interactive, #efefef); color: var(--color-base, #000);;color: var(--color-base)"><a href="/wiki/Social_choice_theory" title="Social choice theory">Social and collective choice</a></div><div class="sidebar-list-content mw-collapsible-content"><b><a href="/wiki/Proof_of_impossibility" title="Proof of impossibility">Impossibility theorems</a></b> <ul><li><a href="/wiki/Arrow%27s_impossibility_theorem" title="Arrow&#39;s impossibility theorem">Arrow's theorem</a></li> <li><a href="/wiki/Condorcet_paradox" title="Condorcet paradox">Majority impossibility</a></li> <li><a href="/wiki/Moulin%27s_impossibility_theorem" class="mw-redirect" title="Moulin&#39;s impossibility theorem">Moulin's impossibility theorem</a></li> <li><a href="/wiki/McKelvey%E2%80%93Schofield_chaos_theorem" title="McKelvey–Schofield chaos theorem">McKelvey–Schofield chaos theorem</a></li> <li><a href="/wiki/Gibbard%27s_theorem" title="Gibbard&#39;s theorem">Gibbard's theorem</a></li></ul> <hr /> <p><b>Positive results</b> </p> <ul><li><a href="/wiki/Median_voter_theorem" title="Median voter theorem">Median voter theorem</a></li> <li><a href="/wiki/Condorcet%27s_jury_theorem" title="Condorcet&#39;s jury theorem">Condorcet's jury theorem</a></li> <li><a href="/wiki/May%27s_theorem" title="May&#39;s theorem">May's theorem</a></li> <li><a href="/wiki/Arrow%27s_theorem#Minimizing" class="mw-redirect" title="Arrow&#39;s theorem">Condorcet dominance theorems</a></li> <li><a href="/w/index.php?title=Harsanyi%27s_utilitarian_theorem&amp;action=edit&amp;redlink=1" class="new" title="Harsanyi&#39;s utilitarian theorem (page does not exist)">Harsanyi's utilitarian theorem</a></li> <li><a href="/wiki/Vickrey-Clarke-Groves_mechanism" class="mw-redirect" title="Vickrey-Clarke-Groves mechanism">VCG mechanism</a></li> <li><a href="/wiki/Quadratic_voting" title="Quadratic voting">Quadratic voting</a></li></ul></div></div></td> </tr><tr><td class="sidebar-below" style="background: var(--background-color-interactive, #efefef); color: inherit; padding-top:0.2em;"> <div class="hlist"><ul><li><span class="nowrap"><span class="mw-image-border noviewer" typeof="mw:File"><a href="/wiki/File:A_coloured_voting_box.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/en/thumb/0/01/A_coloured_voting_box.svg/16px-A_coloured_voting_box.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/0/01/A_coloured_voting_box.svg/24px-A_coloured_voting_box.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/0/01/A_coloured_voting_box.svg/32px-A_coloured_voting_box.svg.png 2x" data-file-width="160" data-file-height="160" /></a></span> </span><a href="/wiki/Portal:Politics" title="Portal:Politics">Politics&#32;portal</a></li><li><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Emblem-money.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Emblem-money.svg/16px-Emblem-money.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Emblem-money.svg/24px-Emblem-money.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f3/Emblem-money.svg/32px-Emblem-money.svg.png 2x" data-file-width="48" data-file-height="48" /></a></span> </span><a href="/wiki/Portal:Economics" title="Portal:Economics">Economics&#32;portal</a></li></ul></div><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></td></tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electoral_systems_sidebar" title="Template:Electoral systems sidebar"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electoral_systems_sidebar" title="Template talk:Electoral systems sidebar"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electoral_systems_sidebar" title="Special:EditPage/Template:Electoral systems sidebar"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Preferential_ballot.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Preferential_ballot.svg/220px-Preferential_ballot.svg.png" decoding="async" width="220" height="285" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Preferential_ballot.svg/330px-Preferential_ballot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/Preferential_ballot.svg/440px-Preferential_ballot.svg.png 2x" data-file-width="765" data-file-height="990" /></a><figcaption>Example Condorcet method voting ballot. Blank votes are equivalent to ranking that candidate last.</figcaption></figure> <p>A <b>Condorcet method</b> (<span class="rt-commentedText nowrap"><style data-mw-deduplicate="TemplateStyles:r1177148991">.mw-parser-output .IPA-label-small{font-size:85%}.mw-parser-output .references .IPA-label-small,.mw-parser-output .infobox .IPA-label-small,.mw-parser-output .navbox .IPA-label-small{font-size:100%}</style><span class="IPA-label IPA-label-small">English: </span><span class="IPA nopopups noexcerpt" lang="en-fonipa"><a href="/wiki/Help:IPA/English" title="Help:IPA/English">/<span style="border-bottom:1px dotted"><span title="&#39;k&#39; in &#39;kind&#39;">k</span><span title="/ɒ/: &#39;o&#39; in &#39;body&#39;">ɒ</span><span title="&#39;n&#39; in &#39;nigh&#39;">n</span><span title="&#39;d&#39; in &#39;dye&#39;">d</span><span title="/ɔːr/: &#39;ar&#39; in &#39;war&#39;">ɔːr</span><span title="/ˈ/: primary stress follows">ˈ</span><span title="&#39;s&#39; in &#39;sigh&#39;">s</span><span title="/eɪ/: &#39;a&#39; in &#39;face&#39;">eɪ</span></span>/</a></span></span>; <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1177148991"><span class="IPA-label IPA-label-small">French:</span> <span class="IPA nowrap" lang="fr-Latn-fonipa"><a href="/wiki/Help:IPA/French" title="Help:IPA/French">&#91;kɔ̃dɔʁsɛ&#93;</a></span>) is an <a href="/wiki/Election_method" class="mw-redirect" title="Election method">election method</a> that elects the candidate who wins a <a href="/wiki/Majority_rule" title="Majority rule">majority of the vote</a> in every head-to-head election against each of the other candidates, whenever there is such a candidate. A candidate with this property, the <i>pairwise champion</i> or <i>beats-all winner</i>, is formally called the <i>Condorcet winner</i><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> or <i>Pairwise Majority Rule Winner</i> (PMRW).<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The head-to-head elections need not be done separately; a voter's choice within any given pair can be determined from the ranking.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some elections may not yield a Condorcet winner because voter preferences may be cyclic—that is, it is possible that every candidate has an opponent that defeats them in a two-candidate contest.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> The possibility of such cyclic preferences is known as the <a href="/wiki/Condorcet_paradox" title="Condorcet paradox">Condorcet paradox</a>. However, a smallest group of candidates that beat all candidates not in the group, known as the <a href="/wiki/Smith_set" title="Smith set">Smith set</a>, always exists. The Smith set is guaranteed to have the Condorcet winner in it should one exist. Many Condorcet methods elect a candidate who is in the Smith set absent a Condorcet winner, and is thus said to be "Smith-efficient".<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p><p>Condorcet voting methods are named for the 18th-century French <a href="/wiki/Mathematician" title="Mathematician">mathematician</a> and <a href="/wiki/Philosopher" class="mw-redirect" title="Philosopher">philosopher</a> Marie Jean Antoine Nicolas Caritat, the <a href="/wiki/Marquis_de_Condorcet" title="Marquis de Condorcet">Marquis de Condorcet</a>, who championed such systems. However, <a href="/wiki/Ramon_Llull" title="Ramon Llull">Ramon Llull</a> devised the earliest known Condorcet method in 1299.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> It was equivalent to <a href="/wiki/Copeland%27s_method" title="Copeland&#39;s method">Copeland's method</a> in cases with no pairwise ties.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>Condorcet methods may use <a href="/wiki/Ranked_voting" title="Ranked voting">preferential ranked</a>, <a href="/wiki/Cardinal_voting" class="mw-redirect" title="Cardinal voting">rated vote</a> ballots, or explicit votes between all pairs of candidates. Most Condorcet methods employ a single round of preferential voting, in which each voter ranks the candidates from most (marked as number 1) to least preferred (marked with a higher number). A voter's ranking is often called their <i>order of preference.</i> Votes can be tallied in many ways to find a winner. All Condorcet methods will elect the Condorcet winner if there is one. If there is no Condorcet winner different Condorcet-compliant methods may elect different winners in the case of a cycle—Condorcet methods differ on which other criteria they satisfy. </p><p>The procedure given in <a href="/wiki/Robert%27s_Rules_of_Order" title="Robert&#39;s Rules of Order">Robert's Rules of Order</a> for voting on motions and amendments is also a Condorcet method, even though the voters do not vote by expressing their orders of preference.<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> There are multiple rounds of voting, and in each round the vote is between two of the alternatives. The loser (by majority rule) of a pairing is eliminated, and the winner of a pairing survives to be paired in a later round against another alternative. Eventually, only one alternative remains, and it is the winner. This is analogous to a single-winner or round-robin tournament; the total number of pairings is one less than the number of alternatives. Since a Condorcet winner will win by majority rule in each of its pairings, it will never be eliminated by Robert's Rules. But this method cannot reveal a <a href="/wiki/Voting_paradox" class="mw-redirect" title="Voting paradox">voting paradox</a> in which there is no Condorcet winner and a majority prefer an early loser over the eventual winner (though it will always elect someone in the <a href="/wiki/Smith_set" title="Smith set">Smith set</a>). A considerable portion of the literature on social choice theory is about the properties of this method since it is widely used and is used by important organizations (legislatures, councils, committees, etc.). It is not practical for use in public elections, however, since its multiple rounds of voting would be very expensive for voters, for candidates, and for governments to administer. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Summary">Summary</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=1" title="Edit section: Summary"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a contest between candidates A, B and C using the preferential-vote form of Condorcet method, a head-to-head race is conducted between each pair of candidates. A and B, B and C, and C and A. If one candidate is preferred over all others, they are the Condorcet Winner and winner of the election. </p><p>Because of the possibility of the <a href="/wiki/Condorcet_paradox" title="Condorcet paradox">Condorcet paradox</a>, it is possible, but unlikely,<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> that a Condorcet winner may not exist in a specific election. This is sometimes called a <i>Condorcet cycle</i> or just <i>cycle</i> and can be thought of as <a href="/wiki/Rock_paper_scissors" title="Rock paper scissors">Rock beating Scissors, Scissors beating Paper, and Paper beating Rock</a>. Various Condorcet methods differ in how they resolve such a cycle. (Most elections do not have cycles. See <a href="/wiki/Condorcet_paradox#Likelihood_of_the_paradox" title="Condorcet paradox">Condorcet paradox#Likelihood of the paradox</a> for estimates.) If there is no cycle, all Condorcet methods elect the same candidate and are operationally equivalent. </p> <ul><li>Each voter ranks the candidates in order of preference (top-to-bottom, or best-to-worst, or 1st, 2nd, 3rd, etc.). The voter may be allowed to rank candidates as equals and to express indifference (no preference) between them. Candidates omitted by a voter may be treated as if the voter ranked them at the bottom.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup></li> <li>For each pairing of candidates (as in a <a href="/wiki/Round-robin_tournament" title="Round-robin tournament">round-robin tournament</a>) count how many votes rank each candidate over the other candidate. Thus each pairing will have two totals: the size of its majority and the size of its minority<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2012)">citation needed</span></a></i>&#93;</sup><sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> (or there will be a tie).</li></ul> <p>For most Condorcet methods, those counts usually suffice to determine the complete order of finish (i.e. who won, who came in 2nd place, etc.). They always suffice to determine whether there is a Condorcet winner. </p><p>Additional information may be needed in the event of ties. Ties can be pairings that have no majority, or they can be majorities that are the same size. Such ties will be rare when there are many voters. Some Condorcet methods may have other kinds of ties. For example, with <a href="/wiki/Copeland%27s_method" title="Copeland&#39;s method">Copeland's method</a>, it would not be rare for two or more candidates to win the same number of pairings, when there is no Condorcet winner.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (April 2012)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=2" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A Condorcet method is a voting system that will always elect the Condorcet winner (if there is one); this is the candidate whom voters prefer to each other candidate, when compared to them one at a time. This candidate can be found (if they exist; see next paragraph) by checking if there is a candidate who beats all other candidates; this can be done by using <a href="/wiki/Copeland%27s_method" title="Copeland&#39;s method">Copeland's method</a> and then checking if the Copeland winner has the highest possible Copeland score. They can also be found by conducting a series of pairwise comparisons, using the procedure given in Robert's Rules of Order described above. For <i>N</i> candidates, this requires <i>N</i> − 1 pairwise hypothetical elections. For example, with 5 candidates there are 4 pairwise comparisons to be made, since after each comparison, a candidate is eliminated, and after 4 eliminations, only one of the original 5 candidates will remain. </p><p>To confirm that a Condorcet winner exists in a given election, first do the Robert's Rules of Order procedure, declare the final remaining candidate the procedure's winner, and then do at most an additional <i>N</i> − 2 pairwise comparisons between the procedure's winner and any candidates they have not been compared against yet (including all previously eliminated candidates). If the procedure's winner does not win all pairwise matchups, then no Condorcet winner exists in the election (and thus the Smith set has multiple candidates in it). </p><p>Computing all pairwise comparisons requires ½<i>N</i>(<i>N</i>−1) pairwise comparisons for <i>N</i> candidates. For 10 candidates, this means 0.5*10*9=45 comparisons, which can make elections with many candidates hard to count the votes for.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="Do you mean, &quot;time consuming,&quot; &quot;difficult to compute,&quot; or something else entirely (May 2021)">citation needed</span></a></i>&#93;</sup> </p><p>The family of Condorcet methods is also referred to collectively as Condorcet's method. A voting system that always elects the Condorcet winner when there is one is described by electoral scientists as a system that satisfies the Condorcet criterion.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Additionally, a voting system can be considered to have Condorcet consistency, or be Condorcet consistent, if it elects any Condorcet winner.<sup id="cite_ref-:2_15-0" class="reference"><a href="#cite_note-:2-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>In certain circumstances, an election has no Condorcet winner. This occurs as a result of a kind of tie known as a <i>majority rule cycle</i>, described by <a href="/wiki/Voting_paradox" class="mw-redirect" title="Voting paradox">Condorcet's paradox</a>. The manner in which a winner is then chosen varies from one Condorcet method to another. Some Condorcet methods involve the basic procedure described below, coupled with a Condorcet completion method, which is used to find a winner when there is no Condorcet winner. Other Condorcet methods involve an entirely different system of counting, but are classified as Condorcet methods, or Condorcet consistent, because they will still elect the Condorcet winner if there is one.<sup id="cite_ref-:2_15-1" class="reference"><a href="#cite_note-:2-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>Not all single winner, <a href="/wiki/Ranked_voting_systems" class="mw-redirect" title="Ranked voting systems">ranked voting systems</a> are Condorcet methods. For example, <a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">instant-runoff voting</a> and the <a href="/wiki/Borda_count" title="Borda count">Borda count</a> are not Condorcet methods.<sup id="cite_ref-:2_15-2" class="reference"><a href="#cite_note-:2-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Basic_procedure">Basic procedure</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=3" title="Edit section: Basic procedure"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Voting">Voting</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=4" title="Edit section: Voting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In a Condorcet election the voter ranks the list of candidates in order of preference. If a ranked ballot is used, the voter gives a "1" to their first preference, a "2" to their second preference, and so on. Some Condorcet methods allow voters to rank more than one candidate equally so that the voter might express two first preferences rather than just one.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> If a scored ballot is used, voters rate or score the candidates on a scale, for example as is used in <a href="/wiki/Score_voting" title="Score voting">Score voting</a>, with a higher rating indicating a greater preference.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> When a voter does not give a full list of preferences, it is typically assumed that they prefer the candidates that they have ranked over all the candidates that were not ranked, and that there is no preference between candidates that were left unranked. Some Condorcet elections permit <a href="/wiki/Write-in_candidate" title="Write-in candidate">write-in candidates</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Finding_the_winner">Finding the winner</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=5" title="Edit section: Finding the winner"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The count is conducted by pitting every candidate against every other candidate in a series of hypothetical one-on-one contests. The winner of each pairing is the candidate preferred by a majority of voters. Unless they tie, there is always a majority when there are only two choices. The candidate preferred by each voter is taken to be the one in the pair that the voter ranks (or rates) higher on their ballot paper. For example, if Alice is paired against Bob it is necessary to count both the number of voters who have ranked Alice higher than Bob, and the number who have ranked Bob higher than Alice. If Alice is preferred by more voters then she is the winner of that pairing. When all possible pairings of candidates have been considered, if one candidate beats every other candidate in these contests then they are declared the Condorcet winner. As noted above, if there is no Condorcet winner a further method must be used to find the winner of the election, and this mechanism varies from one Condorcet consistent method to another.<sup id="cite_ref-:2_15-3" class="reference"><a href="#cite_note-:2-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> In any Condorcet method that passes <a href="/wiki/Independence_of_Smith-dominated_alternatives" title="Independence of Smith-dominated alternatives">Independence of Smith-dominated alternatives</a>, it can sometimes help to identify the <a href="/wiki/Smith_set" title="Smith set">Smith set</a> from the head-to-head matchups, and eliminate all candidates not in the set before doing the procedure for that Condorcet method. </p> <div class="mw-heading mw-heading3"><h3 id="Pairwise_counting_and_matrices">Pairwise counting and matrices</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=6" title="Edit section: Pairwise counting and matrices"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Condorcet methods use pairwise counting. For each possible pair of candidates, one pairwise count indicates how many voters prefer one of the paired candidates over the other candidate, and another pairwise count indicates how many voters have the opposite preference. The counts for all possible pairs of candidates summarize all the pairwise preferences of all the voters. </p><p>Pairwise counts are often displayed in a <i>pairwise comparison matrix</i>,<sup id="cite_ref-:0_19-0" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> or <i>outranking matrix</i>,<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> such as those below. In these <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrices</a>, each row represents each candidate as a 'runner', while each column represents each candidate as an 'opponent'. The cells at the intersection of rows and columns each show the result of a particular pairwise comparison. Cells comparing a candidate to themselves are left blank.<sup id="cite_ref-:1_21-0" class="reference"><a href="#cite_note-:1-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p>Imagine there is an election between four candidates: A, B, C, and D. The first matrix below records the preferences expressed on a single ballot paper, in which the voter's preferences are (B, C, A, D); that is, the voter ranked B first, C second, A third, and D fourth. In the matrix a '1' indicates that the runner is preferred over the 'opponent', while a '0' indicates that the runner is defeated.<sup id="cite_ref-:1_21-1" class="reference"><a href="#cite_note-:1-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:0_19-1" class="reference"><a href="#cite_note-:0-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable" style="width:13em;margin:auto;text-align:center"> <tbody><tr> <th style="background:var(--background-color-neutral,#eaecf0);color:inherit;background:linear-gradient(to top right,var(--background-color-neutral,#eaecf0) 49%,var(--border-color-base,#a2a9b1) 49.5%,var(--border-color-base,#a2a9b1) 50.5%,var(--background-color-neutral,#eaecf0) 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;Opponent</div><div style="margin-right:2em;text-align:left">Runner</div></th> <th>A</th> <th>B</th> <th>C</th> <th>D </th></tr> <tr> <th>A </th> <td>—</td> <td>0</td> <td>0</td> <td>1 </td></tr> <tr> <th>B </th> <td>1</td> <td>—</td> <td>1</td> <td>1 </td></tr> <tr> <th>C </th> <td>1</td> <td>0</td> <td>—</td> <td>1 </td></tr> <tr> <th>D </th> <td>0</td> <td>0</td> <td>0</td> <td>— </td></tr> <tr> <td colspan="6" style="line-height: 10px;"><small>A '1' indicates that the runner is preferred over the opponent; a '0' indicates that the runner is defeated.</small> </td></tr></tbody></table> <p>Using a matrix like the one above, one can find the overall results of an election. Each ballot can be transformed into this style of matrix, and then added to all other ballot matrices using <a href="/wiki/Matrix_addition" title="Matrix addition">matrix addition</a>. The sum of all ballots in an election is called the sum matrix. Suppose that in the imaginary election there are two other voters. Their preferences are (D, A, C, B) and (A, C, B, D). Added to the first voter, these ballots would give the following sum matrix: </p> <table class="wikitable" style="width:13em;margin:auto;text-align:center"> <tbody><tr> <th style="background:var(--background-color-neutral,#eaecf0);color:inherit;background:linear-gradient(to top right,var(--background-color-neutral,#eaecf0) 49%,var(--border-color-base,#a2a9b1) 49.5%,var(--border-color-base,#a2a9b1) 50.5%,var(--background-color-neutral,#eaecf0) 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">&#160;&#160;&#160;&#160;&#160;&#160;&#160;&#160;Opponent</div><div style="margin-right:2em;text-align:left">Runner</div></th> <th>A</th> <th>B</th> <th>C</th> <th>D </th></tr> <tr> <th>A </th> <td>— </td> <td>2</td> <td>2</td> <td>2 </td></tr> <tr> <th>B </th> <td>1</td> <td>—</td> <td>1</td> <td>2 </td></tr> <tr> <th>C </th> <td>1</td> <td>2</td> <td>—</td> <td>2 </td></tr> <tr> <th>D </th> <td>1</td> <td>1</td> <td>1</td> <td>— </td></tr></tbody></table> <p>When the sum matrix is found, the contest between each pair of candidates is considered. The number of votes for runner over opponent (runner, opponent) is compared with the number of votes for opponent over runner (opponent, runner) to find the Condorcet winner. In the sum matrix above, A is the Condorcet winner because A beats every other candidate. When there is no Condorcet winner Condorcet completion methods, such as Ranked Pairs and the Schulze method, use the information contained in the sum matrix to choose a winner. </p><p>Cells marked '—' in the matrices above have a numerical value of '0', but a dash is used since candidates are never preferred to themselves. The first matrix, that represents a single ballot, is inversely symmetric: (runner, opponent) is ¬(opponent, runner). Or (runner, opponent) + (opponent, runner) = 1. The sum matrix has this property: (runner, opponent) + (opponent, runner) = N for N voters, if all runners were fully ranked by each voter. </p> <div class="mw-heading mw-heading2"><h2 id="Example:_Voting_on_the_location_of_Tennessee's_capital"><span id="Example:_Voting_on_the_location_of_Tennessee.27s_capital"></span>Example: Voting on the location of Tennessee's capital</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=7" title="Edit section: Example: Voting on the location of Tennessee&#039;s capital"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Tennessee"></span> </p> <div style="float: left;"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Tenn_voting_example" title="Template:Tenn voting example"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Tenn_voting_example" title="Template talk:Tenn voting example"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Tenn_voting_example" title="Special:EditPage/Template:Tenn voting example"><abbr title="Edit this template">e</abbr></a></li></ul></div></div> <p><span typeof="mw:File"><a href="/wiki/File:Tennessee_map_for_voting_example.svg" class="mw-file-description"><img alt="Tennessee and its four major cities: Memphis in the far west; Nashville in the center; Chattanooga in the east; and Knoxville in the far northeast" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Tennessee_map_for_voting_example.svg/500px-Tennessee_map_for_voting_example.svg.png" decoding="async" width="500" height="122" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/88/Tennessee_map_for_voting_example.svg/750px-Tennessee_map_for_voting_example.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/88/Tennessee_map_for_voting_example.svg/1000px-Tennessee_map_for_voting_example.svg.png 2x" data-file-width="780" data-file-height="190" /></a></span> </p><p>Suppose that <a href="/wiki/Tennessee" title="Tennessee">Tennessee</a> is holding an election on the location of its <a href="/wiki/Capital_city" title="Capital city">capital</a>. The population is concentrated around four major cities. <a href="/wiki/Spatial_voting" title="Spatial voting">All voters want the capital to be as close to them as possible.</a> The options are: </p> <ul><li><a href="/wiki/Memphis,_Tennessee" title="Memphis, Tennessee">Memphis</a>, the largest city, but far from the others (42% of voters)</li> <li><a href="/wiki/Nashville,_Tennessee" title="Nashville, Tennessee">Nashville</a>, near the center of the state (26% of voters)</li> <li><a href="/wiki/Chattanooga,_Tennessee" title="Chattanooga, Tennessee">Chattanooga</a>, somewhat east (15% of voters)</li> <li><a href="/wiki/Knoxville,_Tennessee" title="Knoxville, Tennessee">Knoxville</a>, far to the northeast (17% of voters)</li></ul> <p>The preferences of each region's voters are: </p> <table class="wikitable"> <tbody><tr> <th width="25%" style="background-color: #ffdddd">42% of voters<br /><small>Far-West</small> </th> <th width="25%" style="background-color: #ccffcc">26% of voters<br /><small>Center</small> </th> <th width="25%" style="background-color: #ddddff">15% of voters<br /><small>Center-East</small> </th> <th width="25%" style="background-color: #ffeedd">17% of voters<br /><small>Far-East</small> </th></tr> <tr> <td> <ol style="margin-left: 1.5em;"> <li> <b>Memphis</b> </li><li> Nashville </li><li> Chattanooga </li><li> Knoxville </li></ol> </td> <td> <ol style="margin-left: 1.5em;"> <li> <b>Nashville</b> </li><li> Chattanooga </li><li> Knoxville </li><li> Memphis </li></ol> </td> <td> <ol style="margin-left: 1.5em;"> <li> <b>Chattanooga</b> </li><li> Knoxville </li><li> Nashville </li><li> Memphis </li></ol> </td> <td> <ol style="margin-left: 1.5em;"> <li> <b>Knoxville</b> </li><li> Chattanooga </li><li> Nashville </li><li> Memphis </li></ol> </td></tr></tbody></table> <p><br /> To find the Condorcet winner every candidate must be matched against every other candidate in a series of imaginary one-on-one contests. In each pairing the winner is the candidate preferred by a majority of voters. When results for every possible pairing have been found they are as follows: </p> <table class="wikitable"> <tbody><tr> <th>Pair</th> <th>Winner </th></tr> <tr> <td>Memphis (42%) vs. Nashville (58%)</td> <td>Nashville </td></tr> <tr> <td>Memphis (42%) vs. Chattanooga (58%)</td> <td>Chattanooga </td></tr> <tr> <td>Memphis (42%) vs. Knoxville (58%)</td> <td>Knoxville </td></tr> <tr> <td>Nashville (68%) vs. Chattanooga (32%)</td> <td>Nashville </td></tr> <tr> <td>Nashville (68%) vs. Knoxville (32%)</td> <td>Nashville </td></tr> <tr> <td>Chattanooga (83%) vs. Knoxville (17%)</td> <td>Chattanooga </td></tr></tbody></table> <p>The results can also be shown in the form of a matrix: </p> <table class="wikitable"> <tbody><tr> <th>1st </th> <th colspan="4" style="background: #ccffcc">Nashville [N] </th> <td>3 Wins ↓ </td></tr> <tr> <th>2nd </th> <th colspan="3" style="background: #ddddff">Chattanooga [C] </th> <td style="background:var(--background-color-neutral,#eaecf0);color:inherit;background:linear-gradient(to top right,var(--background-color-neutral,#eaecf0) 49%,var(--border-color-base,#a2a9b1) 49.5%,var(--border-color-base,#a2a9b1) 50.5%,var(--background-color-neutral,#eaecf0) 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">→ 1 Loss</div><div style="margin-right:2em;text-align:left">↓ 2 Wins</div> </td> <td style="white-space:nowrap;">[N] 68%<br />[C] 32% </td></tr> <tr> <th>3rd </th> <th colspan="2" style="background: #ffeedd">Knoxville [K] </th> <td style="background:var(--background-color-neutral,#eaecf0);color:inherit;background:linear-gradient(to top right,var(--background-color-neutral,#eaecf0) 49%,var(--border-color-base,#a2a9b1) 49.5%,var(--border-color-base,#a2a9b1) 50.5%,var(--background-color-neutral,#eaecf0) 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">→ 2 Losses</div><div style="margin-right:2em;text-align:left">↓ 1 Win</div> </td> <td style="white-space:nowrap;">[C] 83% <br />[K] 17% </td> <td style="white-space:nowrap;">[N] 68% <br />[K] 32% </td></tr> <tr> <th>4th </th> <th style="background: #ffdddd">Memphis [M] </th> <td>3 Losses → </td> <td style="white-space:nowrap;">[K] 58% <br />[M] 42% </td> <td style="white-space:nowrap;">[C] 58% <br />[M] 42% </td> <td style="white-space:nowrap;">[N] 58% <br />[M] 42% </td></tr></tbody></table> <p>As can be seen from both of the tables above, Nashville beats every other candidate. This means that Nashville is the Condorcet winner. Nashville will thus win an election held under any possible Condorcet method. </p><p>While any Condorcet method will elect Nashville as the winner, if instead an election based on the same votes were held using <a href="/wiki/First-past-the-post" class="mw-redirect" title="First-past-the-post">first-past-the-post</a> or <a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">instant-runoff voting</a>, these systems would select Memphis<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>footnotes 1<span class="cite-bracket">&#93;</span></a></sup> and Knoxville<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>footnotes 2<span class="cite-bracket">&#93;</span></a></sup> respectively. This would occur despite the fact that most people would have preferred Nashville to either of those "winners". Condorcet methods make these preferences obvious rather than ignoring or discarding them. </p><p>On the other hand, in this example Chattanooga also defeats Knoxville and Memphis when paired against those cities. If we changed the basis for defining preference and determined that Memphis voters preferred Chattanooga as a second choice rather than as a third choice, Chattanooga would be the Condorcet winner even though finishing in last place in a first-past-the-post election. </p><p>An alternative way of thinking about this example if a <a href="/wiki/Smith_set" title="Smith set">Smith-efficient</a> Condorcet method that passes <a href="/wiki/Independence_of_Smith-dominated_alternatives" title="Independence of Smith-dominated alternatives">ISDA</a> is used to determine the winner is that 58% of the voters, a <a href="/wiki/Mutual_majority_criterion" title="Mutual majority criterion">mutual majority</a>, ranked Memphis last (making Memphis the <a href="/wiki/Majority_loser_criterion" title="Majority loser criterion">majority loser</a>) and Nashville, Chattanooga, and Knoxville above Memphis, ruling Memphis out. At that point, the voters who preferred Memphis as their 1st choice could only help to choose a winner among Nashville, Chattanooga, and Knoxville, and because they all preferred Nashville as their 1st choice among those three, Nashville would have had a 68% majority of 1st choices among the remaining candidates and won as the majority's 1st choice. </p> <div class="mw-heading mw-heading2"><h2 id="Circular_ambiguities">Circular ambiguities</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=8" title="Edit section: Circular ambiguities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Condorcet_method" title="Special:EditPage/Condorcet method">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">March 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>As noted above, sometimes an election has no Condorcet winner because there is no candidate who is preferred by voters to all other candidates. When this occurs the situation is known as a 'Condorcet cycle', 'majority rule cycle', 'circular ambiguity', 'circular tie', 'Condorcet paradox', or simply a 'cycle'. This situation emerges when, once all votes have been tallied, the preferences of voters with respect to some candidates form a circle in which every candidate is beaten by at least one other candidate (<a href="/wiki/Intransitivity#Cycles" title="Intransitivity">Intransitivity</a>). </p><p>For example, if there are three candidates, <a href="/wiki/Rock-paper-scissors" class="mw-redirect" title="Rock-paper-scissors">Candidate Rock, Candidate Scissors, and Candidate Paper</a>, there will be no Condorcet winner if voters prefer Candidate Rock over Candidate Scissors and Scissors over Paper, but also Candidate Paper over Rock. Depending on the context in which elections are held, circular ambiguities may or may not be common, but there is no known case of a governmental election with ranked-choice voting in which a circular ambiguity is evident from the record of ranked ballots. Nonetheless a cycle is always possible, and so every Condorcet method should be capable of determining a winner when this contingency occurs. A mechanism for resolving an ambiguity is known as ambiguity resolution, cycle resolution method, or <i>Condorcet completion method</i>. </p><p>Circular ambiguities arise as a result of the <a href="/wiki/Voting_paradox" class="mw-redirect" title="Voting paradox">voting paradox</a>—the result of an election can be intransitive (forming a cycle) even though all individual voters expressed a transitive preference. In a Condorcet election it is impossible for the preferences of a single voter to be cyclical, because a voter must rank all candidates in order, from top-choice to bottom-choice, and can only rank each candidate once, but the paradox of voting means that it is still possible for a circular ambiguity in voter tallies to emerge. </p><p>The idealized notion of a <a href="/wiki/Political_spectrum" title="Political spectrum">political spectrum</a> is often used to describe political candidates and policies. Where this kind of spectrum exists, and voters prefer candidates who are closest to their own position on the spectrum, there is a Condorcet winner (<a href="/wiki/Single_peaked_preferences" title="Single peaked preferences">Black's Single-Peakedness Theorem</a>). </p><p>In Condorcet methods, as in most electoral systems, there is also the possibility of an ordinary tie. This occurs when two or more candidates tie with each other but defeat every other candidate. As in other systems this can be resolved by a random method such as the drawing of lots. Ties can also be settled through other methods like seeing which of the tied winners had the most first choice votes, but this and some other non-random methods may re-introduce a degree of tactical voting, especially if voters know the race will be close. </p><p>The method used to resolve circular ambiguities is the main difference between the various Condorcet methods. There are countless ways in which this can be done, but every Condorcet method involves ignoring the majorities expressed by voters in at least some pairwise matchings. Some cycle resolution methods are Smith-efficient, meaning that they pass the <a href="/wiki/Smith_criterion" class="mw-redirect" title="Smith criterion">Smith criterion</a>. This guarantees that when there is a cycle (and no pairwise ties), only the candidates in the cycle can win, and that if there is a <a href="/wiki/Mutual_majority_criterion" title="Mutual majority criterion">mutual majority</a>, one of their preferred candidates will win. </p><p>Condorcet methods fit within two categories: </p> <ul><li>Two-method systems, which use a separate method to handle cases in which there is no Condorcet winner</li> <li>One-method systems, which use a single method that, without any special handling, always identifies the winner to be the Condorcet winner</li></ul> <p>Many one-method systems and some two-method systems will give the same result as each other if there are fewer than 4 candidates in the circular tie, and all voters separately rank at least two of those candidates. These include Smith-Minimax (Minimax but done only after all candidates not in the Smith set are eliminated), Ranked Pairs, and Schulze. For example, with three candidates in the Smith set in a Condorcet cycle, because Schulze and Ranked Pairs pass <a href="/wiki/Independence_of_Smith-dominated_alternatives" title="Independence of Smith-dominated alternatives">ISDA</a>, all candidates not in the Smith set can be eliminated first, and then for Schulze, dropping the weakest defeat of the three allows the candidate who had that weakest defeat to be the only candidate who can beat or tie all other candidates, while with Ranked Pairs, once the first two strongest defeats are locked in, the weakest cannot, since it'd create a cycle, and so the candidate with the weakest defeat will have no defeats locked in against them). </p> <div class="mw-heading mw-heading2"><h2 id="Two-method_systems">Two-method systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=9" title="Edit section: Two-method systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Condorcet_method" title="Special:EditPage/Condorcet method">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">March 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>One family of Condorcet methods consists of systems that first conduct a series of pairwise comparisons and then, if there is no Condorcet winner, fall back to an entirely different, non-Condorcet method to determine a winner. The simplest such fall-back methods involve entirely disregarding the results of the pairwise comparisons. For example, the Black method chooses the Condorcet winner if it exists, but uses the <a href="/wiki/Borda_count" title="Borda count">Borda count</a> instead if there is a cycle (the method is named for <a href="/wiki/Duncan_Black" title="Duncan Black">Duncan Black</a>). </p><p>A more sophisticated two-stage process is, in the event of a cycle, to use a separate voting system to find the winner but to restrict this second stage to a certain subset of candidates found by scrutinizing the results of the pairwise comparisons. Sets used for this purpose are defined so that they will always contain only the Condorcet winner if there is one, and will always, in any case, contain at least one candidate. Such sets include the </p> <ul><li><a href="/wiki/Smith_set" title="Smith set">Smith set</a>: The smallest non-empty set of candidates in a particular election such that every candidate in the set can beat all candidates outside the set. It is easily shown that there is only one possible Smith set for each election.</li> <li><a href="/wiki/Schwartz_set" class="mw-redirect" title="Schwartz set">Schwartz set</a>: This is the innermost unbeaten set, and is usually the same as the Smith set. It is defined as the union of all possible sets of candidates such that for every set: <ol><li>Every candidate inside the set is pairwise unbeatable by any other candidate outside the set (i.e., ties are allowed).</li> <li>No proper (smaller) subset of the set fulfills the first property.</li></ol></li> <li><a href="/wiki/Landau_set" title="Landau set">Landau set</a> or uncovered set or Fishburn set: the set of candidates, such that each member, for every other candidate (including those inside the set), either beats this candidate or beats a third candidate that itself beats the candidate that is unbeaten by the member.</li></ul> <p>One possible method is to apply <a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">instant-runoff voting</a> in various ways, such as to the candidates of the Smith set. One variation of this method has been described as "Smith/IRV", with another being <a href="/wiki/Tideman%27s_alternative_method" class="mw-redirect" title="Tideman&#39;s alternative method">Tideman's alternative methods</a>. It is also possible to do "Smith/Approval" by allowing voters to rank candidates, and indicate which candidates they approve, such that the candidate in the Smith set approved by the most voters wins; this is often done using an approval threshold (i.e. if voters approve their 3rd choices, those voters are automatically considered to approve their 1st and 2nd choices too). In Smith/Score, the candidate in the Smith set with the highest total score wins, with the pairwise comparisons done based on which candidates are scored higher than others. </p> <div class="mw-heading mw-heading2"><h2 id="Single-method_systems">Single-method systems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=10" title="Edit section: Single-method systems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Condorcet_method" title="Special:EditPage/Condorcet method">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">March 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Some Condorcet methods use a single procedure that inherently meets the Condorcet criteria and, without any extra procedure, also resolves circular ambiguities when they arise. In other words, these methods do not involve separate procedures for different situations. Typically these methods base their calculations on pairwise counts. These methods include: </p> <ul><li><a href="/wiki/Copeland%27s_method" title="Copeland&#39;s method">Copeland's method</a>: This simple method involves electing the candidate who wins the most pairwise matchings. However, it often produces a tie.</li> <li><a href="/wiki/Kemeny%E2%80%93Young_method" title="Kemeny–Young method">Kemeny–Young method</a>: This method ranks all the choices from most popular and second-most popular down to least popular.</li> <li><a href="/wiki/Minimax_Condorcet" class="mw-redirect" title="Minimax Condorcet">Minimax</a>: Also called <i>Simpson</i>, <i>Simpson–Kramer</i>, and <i>Simple Condorcet</i>, this method chooses the candidate whose worst pairwise defeat is better than that of all other candidates. A refinement of this method involves restricting it to choosing a winner from among the Smith set; this has been called <i>Smith/Minimax</i>.</li> <li><a href="/wiki/Nanson%27s_method" title="Nanson&#39;s method">Nanson's method</a> and <a href="/wiki/Baldwin%27s_method" class="mw-redirect" title="Baldwin&#39;s method">Baldwin's method</a> combine Borda Count with an instant runoff procedure.</li> <li><a href="/wiki/Dodgson%27s_method" title="Dodgson&#39;s method">Dodgson's method</a> extends the Condorcet method by swapping candidates until a Condorcet winner is found. The winner is the candidate which requires the minimum number of swaps.</li> <li><a href="/wiki/Ranked_pairs" title="Ranked pairs">Ranked pairs</a> breaks each cycle in the pairwise preference graph by dropping the weakest majority in the cycle, thereby yielding a complete ranking of the candidates. This method is also known as <i>Tideman</i>, after its inventor <a href="/wiki/Nicolaus_Tideman" title="Nicolaus Tideman">Nicolaus Tideman</a>.</li> <li><a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> iteratively drops the weakest majority in the pairwise preference graph until the winner becomes well defined. This method is also known as <i>Schwartz sequential dropping</i> (SSD), <i>cloneproof Schwartz sequential dropping</i> (CSSD), <i>beatpath method</i>, <i>beatpath winner</i>, <i>path voting</i>, and <i>path winner</i>.</li> <li>Smith Score is a rated voting method which elects the Score voting winner from the Smith set.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>Ranked Pairs and Schulze are procedurally in some sense opposite approaches (although they very frequently give the same results): </p> <ul><li>Ranked Pairs (and its variants) starts with the strongest defeats and uses as much information as it can without creating ambiguity.</li> <li>Schulze repeatedly removes the weakest defeat until the ambiguity is removed.</li></ul> <p>Minimax could be considered as more "blunt" than either of these approaches, as instead of removing defeats it can be seen as immediately removing candidates by looking at the strongest defeats (although their victories are still considered for subsequent candidate eliminations). One way to think of it in terms of removing defeats is that Minimax removes each candidate's weakest defeats until some group of candidates with only pairwise ties between them have no defeats left, at which point the group ties to win.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (March 2024)">citation needed</span></a></i>&#93;</sup> </p> <div class="mw-heading mw-heading3"><h3 id="Kemeny–Young_method"><span id="Kemeny.E2.80.93Young_method"></span>Kemeny–Young method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=11" title="Edit section: Kemeny–Young method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Condorcet_method" title="Special:EditPage/Condorcet method">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">March 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Kemeny%E2%80%93Young_method" title="Kemeny–Young method">Kemeny–Young method</a></div> <p>The Kemeny–Young method considers every possible sequence of choices in terms of which choice might be most popular, which choice might be second-most popular, and so on down to which choice might be least popular. Each such sequence is associated with a Kemeny score that is equal to the sum of the <a href="#Pairwise_counting_and_matrices">pairwise counts</a> that apply to the specified sequence. The sequence with the highest score is identified as the overall ranking, from most popular to least popular. </p><p>When the pairwise counts are arranged in a matrix in which the choices appear in sequence from most popular (top and left) to least popular (bottom and right), the winning Kemeny score equals the sum of the counts in the upper-right, triangular half of the matrix (shown here in bold on a green background). </p> <table class="wikitable" style="text-align:center"> <tbody><tr> <th> </th> <th>...over <b>Nashville</b> </th> <th>...over <b>Chattanooga</b> </th> <th>...over <b>Knoxville</b> </th> <th>...over <b>Memphis</b> </th></tr> <tr> <th>Prefer <b>Nashville</b>... </th> <td>— </td> <td style="background:#cfc;"><b>68</b> </td> <td style="background:#cfc;"><b>68</b> </td> <td style="background:#cfc;"><b>58</b> </td></tr> <tr> <th>Prefer <b>Chattanooga</b>... </th> <td>32 </td> <td>— </td> <td style="background:#cfc;"><b>83</b> </td> <td style="background:#cfc;"><b>58</b> </td></tr> <tr> <th>Prefer <b>Knoxville</b>... </th> <td>32 </td> <td>17 </td> <td>— </td> <td style="background:#cfc;"><b>58</b> </td></tr> <tr> <th>Prefer <b>Memphis</b>... </th> <td>42 </td> <td>42 </td> <td>42 </td> <td>— </td></tr></tbody></table> <p>In this example, the Kemeny Score of the sequence Nashville &gt; Chattanooga &gt; Knoxville &gt; Memphis would be 393. </p><p>Calculating every Kemeny score requires considerable computation time in cases that involve more than a few choices. However, fast calculation methods based on <a href="/wiki/Integer_programming" title="Integer programming">integer programming</a> allow a computation time in seconds for some cases with as many as 40 choices. </p> <div class="mw-heading mw-heading3"><h3 id="Ranked_pairs">Ranked pairs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=12" title="Edit section: Ranked pairs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Ranked_pairs" title="Ranked pairs">Ranked pairs</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Condorcet_method" title="Special:EditPage/Condorcet method">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">March 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The order of finish is constructed a piece at a time by considering the (pairwise) majorities one at a time, from largest majority to smallest majority. For each majority, their higher-ranked candidate is placed ahead of their lower-ranked candidate in the (partially constructed) order of finish, except when their lower-ranked candidate has already been placed ahead of their higher-ranked candidate. </p><p>For example, suppose the voters' orders of preference are such that 75% rank B over C, 65% rank A over B, and 60% rank C over A. (The three majorities are a <a href="/wiki/Rock_paper_scissors" title="Rock paper scissors">rock paper scissors</a> cycle.) Ranked pairs begins with the largest majority, who rank B over C, and places B ahead of C in the order of finish. Then it considers the second largest majority, who rank A over B, and places A ahead of B in the order of finish. At this point, it has been established that A finishes ahead of B and B finishes ahead of C, which implies A also finishes ahead of C. So when ranked pairs considers the third largest majority, who rank C over A, their lower-ranked candidate A has already been placed ahead of their higher-ranked candidate C, so C is not placed ahead of A. The order of finish is "A, B, C" and A is the winner. </p><p>An equivalent definition is to find the order of finish that minimizes the size of the largest reversed majority. (In the 'lexicographical order' sense. If the largest majority reversed in two orders of finish is the same, the two orders of finish are compared by their second largest reversed majorities, etc. See <a href="/wiki/Lexicographical_order" class="mw-redirect" title="Lexicographical order">the discussion of MinMax, MinLexMax and Ranked Pairs in the 'Motivation and uses' section of the Lexicographical Order article</a>). (In the example, the order of finish "A, B, C" reverses the 60% who rank C over A. Any other order of finish would reverse a larger majority.) This definition is useful for simplifying some of the proofs of Ranked Pairs' properties, but the "constructive" definition executes much faster (small polynomial time). </p> <div class="mw-heading mw-heading3"><h3 id="Schulze_method">Schulze method</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=13" title="Edit section: Schulze method"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a></div> <p>The <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> resolves votes as follows: </p> <dl><dd>At each stage, we proceed as follows:</dd></dl> <dl><dd><ol><li>For each pair of undropped candidates X and Y: If there is a directed path of undropped links from candidate X to candidate Y, then we write "X → Y"; otherwise we write "not X → Y".</li> <li>For each pair of undropped candidates V and W: If "V → W" and "not W → V", then candidate W is dropped and all links, that start or end in candidate W, are dropped.</li> <li>The weakest undropped link is dropped. If several undropped links tie as weakest, all of them are dropped.</li></ol></dd></dl> <dl><dd>The procedure ends when all links have been dropped. The winners are the undropped candidates.</dd></dl> <p>In other words, this procedure repeatedly throws away the weakest pairwise defeat within the top set, until finally the number of votes left over produce an unambiguous decision. </p> <div class="mw-heading mw-heading3"><h3 id="Defeat_strength">Defeat strength</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=14" title="Edit section: Defeat strength"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-More_citations_needed_section plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Condorcet_method" title="Special:EditPage/Condorcet method">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>&#32;in this section. Unsourced material may be challenged and removed.</span> <span class="date-container"><i>(<span class="date">March 2021</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Some pairwise methods—including minimax, Ranked Pairs, and the Schulze method—resolve circular ambiguities based on the relative strength of the defeats. There are different ways to measure the strength of each defeat, and these include considering "winning votes" and "margins": </p> <ul><li>Winning votes: The number of votes on the winning side of a defeat.</li> <li>Margins: The number of votes on the winning side of the defeat, minus the number of votes on the losing side of the defeat.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>If voters do not rank their preferences for all of the candidates, these two approaches can yield different results. Consider, for example, the following election: </p> <table class="wikitable"> <tbody><tr> <th>45 voters </th> <th>11 voters </th> <th>15 voters </th> <th>29 voters </th></tr> <tr> <td>1. A </td> <td>1. B </td> <td>1. B </td> <td>1. C </td></tr> <tr> <td> </td> <td> </td> <td>2. C </td> <td>2. B </td></tr></tbody></table> <p>The pairwise defeats are as follows: </p> <ul><li>B beats A, 55 to 45 (55 winning votes, a margin of 10 votes)</li> <li>A beats C, 45 to 44 (45 winning votes, a margin of 1 vote)</li> <li>C beats B, 29 to 26 (29 winning votes, a margin of 3 votes)</li></ul> <p>Using the winning votes definition of defeat strength, the defeat of B by C is the weakest, and the defeat of A by B is the strongest. Using the margins definition of defeat strength, the defeat of C by A is the weakest, and the defeat of A by B is the strongest. </p><p>Using winning votes as the definition of defeat strength, candidate B would win under minimax, Ranked Pairs and the Schulze method, but, using margins as the definition of defeat strength, candidate C would win in the same methods. </p><p>If all voters give complete rankings of the candidates, then winning votes and margins will always produce the same result. The difference between them can only come into play when some voters declare equal preferences amongst candidates, as occurs implicitly if they do not rank all candidates, as in the example above. </p><p>The choice between margins and winning votes is the subject of scholarly debate. Because all Condorcet methods always choose the Condorcet winner when one exists, the difference between methods only appears when cyclic ambiguity resolution is required. The argument for using winning votes follows from this: Because cycle resolution involves disenfranchising a selection of votes, then the selection should disenfranchise the fewest possible number of votes. When margins are used, the difference between the number of two candidates' votes may be small, but the number of votes may be very large—or not. Only methods employing winning votes satisfy <a href="/wiki/Plurality_criterion" class="mw-redirect" title="Plurality criterion">Woodall's plurality criterion</a>. </p><p>An argument in favour of using margins is the fact that the result of a pairwise comparison is decided by the presence of more votes for one side than the other and thus that it follows naturally to assess the strength of a comparison by this "surplus" for the winning side. Otherwise, changing only a few votes from the winner to the loser could cause a sudden large change from a large score for one side to a large score for the other. In other words, one could consider losing votes being in fact disenfranchised when it comes to ambiguity resolution with winning votes. Also, using winning votes, a vote containing ties (possibly implicitly in the case of an incompletely ranked ballot) does not have the same effect as a number of equally weighted votes with total weight equaling one vote, such that the ties are broken in every possible way (a violation of Woodall's symmetric-completion criterion), as opposed to margins.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>Under winning votes, if two more of the "B" voters decided to vote "BC", the A-&gt;C arm of the cycle would be overturned and Condorcet would pick C instead of B. This is an example of "Unburying" or "Later does harm". The margin method would pick C anyway. </p><p>Under the margin method, if three more "BC" voters decided to "bury" C by just voting "B", the A-&gt;C arm of the cycle would be strengthened and the resolution strategies would end up breaking the C-&gt;B arm and giving the win to B. This is an example of "Burying". The winning votes method would pick B anyway. </p> <div class="mw-heading mw-heading2"><h2 id="Related_terms">Related terms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=15" title="Edit section: Related terms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Other terms related to the Condorcet method are: </p> <dl><dt>Condorcet loser</dt> <dd><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2020)">citation needed</span></a></i>&#93;</sup> the candidate who is less preferred than every other candidate in a pairwise matchup (preferred by fewer voters than any other candidate).</dd> <dt>Weak Condorcet winner</dt> <dd><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2020)">citation needed</span></a></i>&#93;</sup> a candidate who beats or ties with every other candidate in a pairwise matchup (preferred by at least as many voters as any other candidate). There can be more than one weak Condorcet winner.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Weak Condorcet loser</dt> <dd><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2020)">citation needed</span></a></i>&#93;</sup> a candidate who is defeated by or ties with every other candidate in a pairwise matchup. Similarly, there can be more than one weak Condorcet loser.</dd></dl> <dl><dt>Improved Condorcet winner</dt> <dd><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2020)">citation needed</span></a></i>&#93;</sup> in improved condorcet methods, additional rules for pairwise comparisons are introduced to handle ballots where candidates are tied, so that pairwise wins can not be changed by those tied ballots switching to a specific preference order. A strong improved condorcet winner in an improved condorcet method must also be a strong condorcet winner, but the converse need not hold. In tied at the top methods, the number of ballots where the candidates are tied at the top of the ballot is subtracted from the victory margin between the two candidates. This has the effect of introducing more ties in the pairwise comparison graph, but allows the method to satisfy the favourite betrayal criterion.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Condorcet_ranking_methods">Condorcet ranking methods</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=16" title="Edit section: Condorcet ranking methods"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some Condorcet methods produce not just a single winner, but a ranking of all candidates from first to last place. A <b>Condorcet ranking</b> is a list of candidates with the property that the Condorcet winner (if one exists) comes first and the Condorcet loser (if one exists) comes last, and this holds recursively for the candidates ranked between them. </p><p>Single winner methods that satisfy this property include: </p> <ul><li><a href="/wiki/Copeland%27s_method" title="Copeland&#39;s method">Copeland's method</a></li> <li><a href="/wiki/Kemeny%E2%80%93Young_method" title="Kemeny–Young method">Kemeny–Young method</a></li> <li><a href="/wiki/Ranked_pairs" title="Ranked pairs">Ranked pairs</a></li> <li><a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a></li></ul> <p>Proportional forms which satisfy this property include: </p> <ul><li><a href="/wiki/CPO-STV" title="CPO-STV">CPO-STV</a></li> <li><a href="/wiki/Schulze_STV" title="Schulze STV">Schulze STV</a></li></ul> <p>Though there will not always be a Condorcet winner or Condorcet loser, there is always a Smith set and "Smith loser set" (smallest group of candidates who lose to all candidates not in the set in head-to-head elections). Some voting methods produce rankings that sort all candidates in the Smith set above all others, and all candidates in the Smith loser set below all others, with this holding recursively for all candidates ranked between them; in essence, this guarantees that when the candidates can be split into two groups, such that every candidate in the first group beats every candidate in the second group head-to-head, then all candidates in the first group are ranked higher than all candidates in the second group.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> Because the Smith set and Smith loser set are equivalent to the Condorcet winner and Condorcet loser when they exist, methods that always produce Smith set rankings also always produce Condorcet rankings. </p> <div class="mw-heading mw-heading2"><h2 id="Comparison_with_instant_runoff_and_first-past-the-post_(plurality)"><span id="Comparison_with_instant_runoff_and_first-past-the-post_.28plurality.29"></span>Comparison with instant runoff and first-past-the-post (plurality)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=17" title="Edit section: Comparison with instant runoff and first-past-the-post (plurality)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Essay-like plainlinks metadata ambox ambox-style ambox-essay-like" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/40px-Edit-clear.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/60px-Edit-clear.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/f/f2/Edit-clear.svg/80px-Edit-clear.svg.png 2x" data-file-width="48" data-file-height="48" /></span></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>is written like a <a href="/wiki/Wikipedia:What_Wikipedia_is_not#Wikipedia_is_not_a_publisher_of_original_thought" title="Wikipedia:What Wikipedia is not">personal reflection, personal essay, or argumentative essay</a></b> that states a Wikipedia editor's personal feelings or presents an original argument about a topic.<span class="hide-when-compact"> Please <a class="external text" href="https://en.wikipedia.org/w/index.php?title=Condorcet_method&amp;action=edit">help improve it</a> by rewriting it in an <a href="/wiki/Wikipedia:Writing_better_articles#Information_style_and_tone" title="Wikipedia:Writing better articles">encyclopedic style</a>.</span> <span class="date-container"><i>(<span class="date">November 2020</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Many proponents of <a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">instant-runoff voting</a> (IRV) are attracted by the belief that if their first choice does not win, their vote will be given to their second choice; if their second choice does not win, their vote will be given to their third choice, etc. This sounds perfect, but it is not true for every voter with IRV. If someone voted for a strong candidate, and their 2nd and 3rd choices are eliminated before their first choice is eliminated, IRV gives their vote to their 4th choice candidate, not their 2nd choice. <a href="/wiki/Condorcet_voting" class="mw-redirect" title="Condorcet voting">Condorcet voting</a> takes all rankings into account simultaneously, but at the expense of violating the <a href="/wiki/Later-no-harm_criterion" title="Later-no-harm criterion">later-no-harm criterion</a> and the <a href="/wiki/Later-no-help_criterion" title="Later-no-help criterion">later-no-help criterion</a>. With IRV, indicating a second choice will never affect your first choice. With Condorcet voting, it is possible that indicating a second choice will cause your first choice to lose. </p><p><a href="/wiki/Plurality_voting" title="Plurality voting">Plurality voting</a> is simple, and theoretically provides incentives for voters to compromise for centrist candidates rather than throw away their votes on candidates who cannot win. Opponents to plurality voting point out that voters often vote for the lesser of evils because they heard on the news that those two are the only two with a chance of winning, not necessarily because those two are the two natural compromises. This gives the media significant election powers. And if voters do compromise according to the media, the post election counts will prove the media right for next time. Condorcet runs each candidate against the other head to head, so that voters elect the candidate who would win the most sincere runoffs, instead of the one they thought they had to vote for. </p><p>There are circumstances, as in the examples above, when both <a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">instant-runoff voting</a> and the "<a href="/wiki/Plurality_voting_system" class="mw-redirect" title="Plurality voting system">first-past-the-post</a>" plurality system will fail to pick the Condorcet winner. (In fact, FPTP can elect the Condorcet loser and IRV can elect the second-worst candidate, who would lose to every candidate except the Condorcet loser.<sup id="cite_ref-:02_30-0" class="reference"><a href="#cite_note-:02-30"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup>) In cases where there is a Condorcet Winner, and where IRV does not choose it, a majority would by definition prefer the Condorcet Winner to the IRV winner. Proponents of the Condorcet criterion see it as a principal issue in selecting an electoral system. They see the Condorcet criterion as a natural extension of <a href="/wiki/Majority_rule" title="Majority rule">majority rule</a>. Condorcet methods tend to encourage the selection of centrist candidates who appeal to the <a href="/wiki/Median" title="Median">median</a> voter. Here is an example that is designed to support IRV at the expense of Condorcet: </p> <table class="wikitable"> <tbody><tr> <th>499 voters </th> <th>3 voters </th> <th>498 voters </th></tr> <tr> <td>1. A </td> <td>1. B </td> <td>1. C </td></tr> <tr> <td>2. B </td> <td>2. C </td> <td>2. B </td></tr> <tr> <td>3. C </td> <td>3. A </td> <td>3. A </td></tr></tbody></table> <p>B is preferred by a 501–499 majority to A, and by a 502–498 majority to C. So, according to the Condorcet criterion, B should win, despite the fact that very few voters rank B in first place. By contrast, IRV elects C and plurality elects A. The goal of a ranked voting system is for voters to be able to vote sincerely and trust the system to protect their intent. Plurality voting forces voters to do all their tactics before they vote, so that the system does not need to figure out their intent. </p><p>The significance of this scenario, of two parties with strong support, and the one with weak support being the Condorcet winner, may be misleading, though, as it is a common mode in plurality voting systems (see <a href="/wiki/Duverger%27s_law" title="Duverger&#39;s law">Duverger's law</a>), but much less likely to occur in Condorcet or IRV elections, which unlike Plurality voting, punish candidates who alienate a significant block of voters. </p><p>Here is an example that is designed to support Condorcet at the expense of IRV: </p> <table class="wikitable"> <tbody><tr> <th>33 voters </th> <th>16 voters </th> <th>16 voters </th> <th>35 voters </th></tr> <tr> <td>1. A </td> <td>1. B </td> <td>1. B </td> <td>1. C </td></tr> <tr> <td>2. B </td> <td>2. A </td> <td>2. C </td> <td>2. B </td></tr> <tr> <td>3. C </td> <td>3. C </td> <td>3. A </td> <td>3. A </td></tr></tbody></table> <p>B would win against either A or C by more than a 65–35 margin in a one-on-one election, but IRV eliminates B first, leaving a contest between the more "polar" candidates, A and C. Proponents of plurality voting state that their system is simpler than any other and more easily understood. </p><p>All three systems are susceptible to <a href="/wiki/Tactical_voting" class="mw-redirect" title="Tactical voting">tactical voting</a>, but the types of tactics used and the frequency of strategic incentive differ in each method. </p> <div class="mw-heading mw-heading2"><h2 id="Potential_for_tactical_voting">Potential for tactical voting</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=18" title="Edit section: Potential for tactical voting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Tactical_voting#Condorcet" class="mw-redirect" title="Tactical voting">Tactical voting §&#160;Condorcet</a></div> <p>Like all voting methods,<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Condorcet methods are vulnerable to <a href="/wiki/Tactical_voting" class="mw-redirect" title="Tactical voting">compromising</a>. That is, voters can help avoid the election of a less-preferred candidate by insincerely raising the position of a more-preferred candidate on their ballot. However, Condorcet methods are only vulnerable to compromising when there is a <a href="/wiki/Condorcet_cycle" class="mw-redirect" title="Condorcet cycle">majority rule cycle</a>, or when one can be created.<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> </p><p>Condorcet methods are vulnerable to <a href="/wiki/Tactical_voting" class="mw-redirect" title="Tactical voting">burying</a>. In some elections, voters can help a more-preferred candidate by insincerely lowering the position of a less-preferred candidate on their ballot. For example, in an election with three candidates, voters may be able to falsify their second choice to help their preferred candidate win. </p><p>Example with the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a>: </p> <table class="wikitable"> <tbody><tr> <th>46 voters </th> <th>44 voters </th> <th>10 voters </th></tr> <tr> <td>1. A </td> <td>1. B </td> <td>1. C </td></tr> <tr> <td>2. B </td> <td>2. A </td> <td>2. B </td></tr> <tr> <td>3. C </td> <td>3. C </td> <td>3. A </td></tr></tbody></table> <ul><li>B is the sincere Condorcet winner. But since A has the most votes and almost has a majority, with A and B forming a <a href="/wiki/Mutual_majority_criterion" title="Mutual majority criterion">mutual majority</a> of 90% of the voters, A can win by publicly instructing A voters to bury B with C (see * below), using B-top voters' 2nd choice support to win the election. If B, after hearing the public instructions, reciprocates by burying A with C, C will be elected, and this threat may be enough to keep A from pushing for his tactic. B's other possible recourse would be to attack A's ethics in proposing the tactic and call for all voters to vote sincerely. This is an example of the <a href="/wiki/Chicken_(game)" title="Chicken (game)">chicken dilemma</a>.</li></ul> <table class="wikitable"> <tbody><tr> <th>46 voters </th> <th>44 voters </th> <th>10 voters </th></tr> <tr> <td>1. A </td> <td>1. B </td> <td>1. C </td></tr> <tr> <td>2. C* </td> <td>2. A </td> <td>2. B </td></tr> <tr> <td>3. B* </td> <td>3. C </td> <td>3. A </td></tr></tbody></table> <ul><li>B beats A by 8 as before, and A beats C by 82 as before, but <i>now</i> C beats B by 12, forming a <a href="/wiki/Smith_set" title="Smith set">Smith set</a> greater than one. Even the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> elects A: The path strength of A beats B is the lesser of 82 and 12, so 12. The path strength of B beats A is only 8, which is less than 12, so A wins. B voters are powerless to do anything about the public announcement by A, and C voters just hope B reciprocates, or maybe consider compromise voting for B if they dislike A enough.</li></ul> <p>Supporters of Condorcet methods which exhibit this potential problem could rebut this concern by pointing out that pre-election polls are most necessary with <a href="/wiki/Plurality_voting" title="Plurality voting">plurality voting</a>, and that voters, armed with ranked choice voting, could lie to pre-election pollsters, making it impossible for Candidate A to know whether or how to bury. It is also nearly impossible to predict ahead of time how many supporters of A would actually follow the instructions, and how many would be alienated by such an obvious attempt to manipulate the system. </p> <table class="wikitable"> <tbody><tr> <th>33 voters </th> <th>16 voters </th> <th>16 voters </th> <th>35 voters </th></tr> <tr> <td>1. A </td> <td>1. B </td> <td>1. B </td> <td>1. C </td></tr> <tr> <td>2. B </td> <td>2. A </td> <td>2. C </td> <td>2. B </td></tr> <tr> <td>3. C </td> <td>3. C </td> <td>3. A </td> <td>3. A </td></tr></tbody></table> <ul><li>In the above example, if C voters bury B with A, A will be elected instead of B. Since C voters prefer B to A, only they would be hurt by attempting the burying. Except for the first example where one candidate has the most votes and has a near majority, the Schulze method is very resistant to burying.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Evaluation_by_criteria">Evaluation by criteria</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=19" title="Edit section: Evaluation by criteria"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Scholars of electoral systems often compare them using mathematically defined <a href="/wiki/Comparison_of_electoral_systems" class="mw-redirect" title="Comparison of electoral systems">voting system criteria</a>. The criteria which Condorcet methods satisfy vary from one Condorcet method to another. However, the Condorcet criterion implies the <a href="/wiki/Majority_favorite_criterion" class="mw-redirect" title="Majority favorite criterion">majority criterion</a>, and thus is incompatible with <a href="/wiki/Independence_of_irrelevant_alternatives" title="Independence of irrelevant alternatives">independence of irrelevant alternatives</a> (though it implies a weaker analogous form of the criterion: when there is a Condorcet winner, losing candidates can drop out of the election without changing the result),<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Later-no-harm" class="mw-redirect" title="Later-no-harm">later-no-harm</a>, the <a href="/wiki/Participation_criterion" class="mw-redirect" title="Participation criterion">participation criterion</a>, and the <a href="/wiki/Consistency_criterion" class="mw-redirect" title="Consistency criterion">consistency criterion</a>. </p> <table class="wikitable" style="text-align:center"> <tbody><tr style="font-size:90%;line-height:1;"> <th style="background:var(--background-color-neutral,#eaecf0);color:inherit;background:linear-gradient(to top right,var(--background-color-neutral,#eaecf0) 49%,var(--border-color-base,#a2a9b1) 49.5%,var(--border-color-base,#a2a9b1) 50.5%,var(--background-color-neutral,#eaecf0) 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right">Voting system<br />criterion</div><div style="margin-right:2em;text-align:left"><br />Condorcet<br />method</div></th> <th><a href="/wiki/Monotonicity_criterion" class="mw-redirect" title="Monotonicity criterion">Monotonic</a></th> <th><a href="/wiki/Condorcet_loser_criterion" title="Condorcet loser criterion">Condorcet<br />loser</a></th> <th><a href="/wiki/Independence_of_clones_criterion" title="Independence of clones criterion">Clone<br />independence</a></th> <th><a href="/wiki/Reversal_symmetry" class="mw-redirect" title="Reversal symmetry">Reversal<br />symmetry</a></th> <th><a href="/wiki/Polynomial_time" class="mw-redirect" title="Polynomial time">Polynomial<br />time</a></th> <th><a href="/wiki/Resolvability_criterion" title="Resolvability criterion">Resolvable</a></th> <th><a href="/wiki/Independence_of_irrelevant_alternatives#Local_independence" title="Independence of irrelevant alternatives">Local<br />independence<br />of irrelevant<br />alternatives</a> </th></tr> <tr> <th><a href="/wiki/Schulze_method" title="Schulze method">Schulze</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No </td></tr> <tr> <th><a href="/wiki/Ranked_Pairs" class="mw-redirect" title="Ranked Pairs">Ranked Pairs</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td></tr> <tr> <th><a href="/wiki/Minimax_Condorcet" class="mw-redirect" title="Minimax Condorcet">Minimax</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No </td></tr> <tr> <th><a href="/wiki/Nanson%27s_method" title="Nanson&#39;s method">Nanson</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFB; color:black;vertical-align:middle;text-align:center;" class="table-partial">Unknown</td> <td style="background:#FFB; color:black;vertical-align:middle;text-align:center;" class="table-partial">Unknown </td></tr> <tr> <th><a href="/wiki/Kemeny%E2%80%93Young_method" title="Kemeny–Young method">Kemeny–Young</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes </td></tr> <tr> <th><a href="/wiki/Dodgson%27s_method" title="Dodgson&#39;s method">Dodgson</a> </th> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFB; color:black;vertical-align:middle;text-align:center;" class="table-partial">Unknown</td> <td style="background:#FFB; color:black;vertical-align:middle;text-align:center;" class="table-partial">Unknown </td></tr> <tr> <th><a href="/wiki/Copeland%27s_method" title="Copeland&#39;s method">Copeland</a> </th> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#9EFF9E;color:black;vertical-align:middle;text-align:center;" class="table-yes">Yes</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No</td> <td style="background:#FFC7C7;color:black;vertical-align:middle;text-align:center;" class="table-no">No </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Use_of_Condorcet_voting">Use of Condorcet voting</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=20" title="Edit section: Use of Condorcet voting"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Voting2.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/b/b6/Voting2.png" decoding="async" width="179" height="272" class="mw-file-element" data-file-width="179" data-file-height="272" /></a><figcaption>sample ballot for Wikimedia's Board of Trustees elections</figcaption></figure> <p>Condorcet methods are not known to be currently in use in government elections anywhere in the world, but a Condorcet method known as <a href="/wiki/Nanson%27s_method" title="Nanson&#39;s method">Nanson's method</a> was used in city elections in the <a href="/wiki/United_States" title="United States">U.S.</a> town of <a href="/wiki/Marquette,_Michigan" title="Marquette, Michigan">Marquette, Michigan</a> in the 1920s,<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> and today Condorcet methods are used by a number of political parties and private organizations. </p><p>In Vermont, Bill H.424<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> would enable towns, cities, and villages to adopt a Condorcet-based voting system for single-seat office elections through a majority vote at a town meeting. The system first checks for a majority winner among first preferences. If none, pairwise Condorcet comparisons are counted and the Condorcet winner is elected. If none, it resorts to a first-past-the-post tiebreaker. Once adopted, the system remains in effect until the community decides to revert to a previous method or another system through a subsequent town meeting vote. </p><p>Organizations which currently use some variant of the Condorcet method are: </p> <ul><li>The <a href="/wiki/Libertarian_Party_of_Washington" title="Libertarian Party of Washington">Libertarian Party of Washington</a> allows for a Condorcet method, in addition to other systems<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Free_State_Project" title="Free State Project">Free State Project</a> used <a href="/wiki/Minimax_Condorcet" class="mw-redirect" title="Minimax Condorcet">Minimax</a> for choosing its target state</li> <li>The <a href="/wiki/United_Kingdom" title="United Kingdom">uk</a>.* hierarchy of <a href="/wiki/Usenet" title="Usenet">Usenet</a> uses a Condorcet method<sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Baldwin%27s_method" class="mw-redirect" title="Baldwin&#39;s method">Baldwin's method</a> was in use by the <a href="/wiki/Trinity_College,_Cambridge" title="Trinity College, Cambridge">Trinity College</a> Dialectic Society around 1864.<sup id="cite_ref-:04_38-0" class="reference"><a href="#cite_note-:04-38"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></li> <li>Schulze method is used in many places. Some examples: <ul><li>The <a href="/wiki/Wikimedia_Foundation" title="Wikimedia Foundation">Wikimedia Foundation</a> used the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> to elect its Board of Trustees until 2013, when it switched to a <a href="/wiki/Ratings_ballot" class="mw-redirect" title="Ratings ballot">ratings ballot</a> with Support/Neutral/Oppose ballots.<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Pirate_Party_(Sweden)" title="Pirate Party (Sweden)">Pirate Party of Sweden</a> uses the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> for its primaries</li> <li>The <a href="/wiki/Debian" title="Debian">Debian</a> project uses the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> for internal referendums and to elect its leader</li> <li>The <a href="/wiki/Software_in_the_Public_Interest" title="Software in the Public Interest">Software in the Public Interest</a> corporation uses the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> for internal referendums and to elect its board of directors</li> <li>The <a href="/wiki/Gentoo_Linux" title="Gentoo Linux">Gentoo Foundation</a> uses the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> for internal referendums and to elect its board of trustees and its council</li> <li><a href="/wiki/Kingman_Hall" title="Kingman Hall">Kingman Hall</a> and <a href="/wiki/Hillegass_Parker_House" class="mw-redirect" title="Hillegass Parker House">Hillegass Parker House</a>, two loosely affiliated <a href="/wiki/Student_housing_cooperative" title="Student housing cooperative">student housing cooperatives</a>, each use the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a> to elect their management teams.</li> <li>The <a href="/wiki/Kubernetes" title="Kubernetes">Kubernetes</a> community uses Elekto's implementation of the <a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a>.<sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup></li> <li><i>The <a href="/wiki/Schulze_method#Usage" title="Schulze method">Schulze method</a> article has a longer list of users of that method.</i></li></ul></li></ul> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=21" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1266661725">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="mw-image-border noviewer" typeof="mw:File"><a href="/wiki/File:A_coloured_voting_box.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/en/thumb/0/01/A_coloured_voting_box.svg/28px-A_coloured_voting_box.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/0/01/A_coloured_voting_box.svg/42px-A_coloured_voting_box.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/0/01/A_coloured_voting_box.svg/56px-A_coloured_voting_box.svg.png 2x" data-file-width="160" data-file-height="160" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Politics" title="Portal:Politics">Politics portal</a></span></li></ul> <ul><li><a href="/wiki/Condorcet_loser_criterion" title="Condorcet loser criterion">Condorcet loser criterion</a></li> <li><a href="/wiki/Condorcet%27s_jury_theorem" title="Condorcet&#39;s jury theorem">Condorcet's jury theorem</a></li> <li><a href="/wiki/Ramon_Llull" title="Ramon Llull">Ramon Llull</a> (1232–1315) who, with the 2001 discovery of his lost manuscripts <i>Ars notandi</i>, <i>Ars eleccionis</i>, and <i>Alia ars eleccionis</i>, was given credit for discovering the Borda count and Condorcet criterion (Llull winner) in the 13th century</li> <li><a href="/wiki/Multiwinner_voting" title="Multiwinner voting">Multiwinner voting</a>—contains information on some multiwinner variants of Condorcet methods.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Footnotes">Footnotes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=22" title="Edit section: Footnotes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text">The largest bloc (<a href="/wiki/Plurality_(voting)" title="Plurality (voting)">plurality</a>) of first place votes is 42% for Memphis; no other rankings are considered. So even though 58%—a true majority—would be inconvenienced by having the capital at the most remote location, Memphis wins.</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">Chattanooga (15%) is eliminated in the first round; votes transfer to Knoxville. Nashville (26%) eliminated in the second around; votes transfer to Knoxville. Knoxville wins with 58%.</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=23" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGehrleinValognes2001" class="citation journal cs1">Gehrlein, William V.; Valognes, Fabrice (2001). "Condorcet efficiency: A preference for indifference". <i>Social Choice and Welfare</i>. <b>18</b>: <span class="nowrap">193–</span>205. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs003550000071">10.1007/s003550000071</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10493112">10493112</a>. <q>The Condorcet winner in an election is the candidate who would be able to defeat all other candidates in a series of pairwise elections.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Social+Choice+and+Welfare&amp;rft.atitle=Condorcet+efficiency%3A+A+preference+for+indifference&amp;rft.volume=18&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E193-%3C%2Fspan%3E205&amp;rft.date=2001&amp;rft_id=info%3Adoi%2F10.1007%2Fs003550000071&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10493112%23id-name%3DS2CID&amp;rft.aulast=Gehrlein&amp;rft.aufirst=William+V.&amp;rft.au=Valognes%2C+Fabrice&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGehrlein2006" class="citation book cs1">Gehrlein, William V. (2006). <i>Condorcet's paradox</i>. Theory and decision library Series C, Game theory, mathematical programming and operations research. Berlin Heidelberg: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-540-33798-0" title="Special:BookSources/978-3-540-33798-0"><bdi>978-3-540-33798-0</bdi></a>. <q>And, this is why the PMRW is commonly referred to as the Condorcet Winner.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Condorcet%27s+paradox&amp;rft.place=Berlin+Heidelberg&amp;rft.series=Theory+and+decision+library+Series+C%2C+Game+theory%2C+mathematical+programming+and+operations+research&amp;rft.pub=Springer&amp;rft.date=2006&amp;rft.isbn=978-3-540-33798-0&amp;rft.aulast=Gehrlein&amp;rft.aufirst=William+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTidemanPlassmann2011" class="citation journal cs1">Tideman, T. Nicolaus; Plassmann, Florenz (2011). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.2139/ssrn.1627787">"Modeling the Outcomes of Vote-Casting in Actual Elections"</a>. <i>SSRN Electronic Journal</i>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2139%2Fssrn.1627787">10.2139/ssrn.1627787</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1556-5068">1556-5068</a>. <q>A common definition of a voting cycle is the absence of a strict pairwise majority rule winner (SPMRW) … if no candidate beats all other candidates in pairwise comparisons.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=SSRN+Electronic+Journal&amp;rft.atitle=Modeling+the+Outcomes+of+Vote-Casting+in+Actual+Elections&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.2139%2Fssrn.1627787&amp;rft.issn=1556-5068&amp;rft.aulast=Tideman&amp;rft.aufirst=T.+Nicolaus&amp;rft.au=Plassmann%2C+Florenz&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.2139%2Fssrn.1627787&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreen-Armytage2011" class="citation web cs1">Green-Armytage, James (2011). <a rel="nofollow" class="external text" href="http://www.votingmatters.org.uk/ISSUE29/I29P1.pdf">"Four Condorcet-Hare Hybrid Methods for Single-Winner Elections"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:15220771">15220771</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20130603095453/http://www.votingmatters.org.uk/ISSUE29/I29P1.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2013-06-03.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Four+Condorcet-Hare+Hybrid+Methods+for+Single-Winner+Elections&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A15220771%23id-name%3DS2CID&amp;rft.aulast=Green-Armytage&amp;rft.aufirst=James&amp;rft_id=http%3A%2F%2Fwww.votingmatters.org.uk%2FISSUE29%2FI29P1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWallis2014" class="citation book cs1">Wallis, W. D. (2014). <a rel="nofollow" class="external text" href="https://link.springer.com/chapter/10.1007/978-3-319-09810-4_3">"Simple Elections II: Condorcet's Method"</a>. <i>The Mathematics of Elections and Voting</i>. <a href="/wiki/Springer_Nature" title="Springer Nature">Springer</a>. pp.&#160;<span class="nowrap">19–</span>32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-09810-4_3">10.1007/978-3-319-09810-4_3</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-09809-8" title="Special:BookSources/978-3-319-09809-8"><bdi>978-3-319-09809-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Simple+Elections+II%3A+Condorcet%27s+Method&amp;rft.btitle=The+Mathematics+of+Elections+and+Voting&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E19-%3C%2Fspan%3E32&amp;rft.pub=Springer&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-09810-4_3&amp;rft.isbn=978-3-319-09809-8&amp;rft.aulast=Wallis&amp;rft.aufirst=W.+D.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-3-319-09810-4_3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGehrleinFishburn1976" class="citation journal cs1">Gehrlein, William V.; Fishburn, Peter C. (1976). "Condorcet's Paradox and Anonymous Preference Profiles". <i>Public Choice</i>. <b>26</b>: <span class="nowrap">1–</span>18. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01725789">10.1007/BF01725789</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/30022874?seq=1">30022874?seq&#61;1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:153482816">153482816</a>. <q>Condorcet's paradox [6] of simple majority voting occurs in a voting situation [...] if for every alternative there is a second alternative which more voters prefer to the first alternative than conversely.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Public+Choice&amp;rft.atitle=Condorcet%27s+Paradox+and+Anonymous+Preference+Profiles&amp;rft.volume=26&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1-%3C%2Fspan%3E18&amp;rft.date=1976&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A153482816%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F30022874%3Fseq%3D1%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.1007%2FBF01725789&amp;rft.aulast=Gehrlein&amp;rft.aufirst=William+V.&amp;rft.au=Fishburn%2C+Peter+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson2005" class="citation web cs1">Johnson, Paul E. (May 27, 2005). <a rel="nofollow" class="external text" href="http://pj.freefaculty.org/Papers/Ukraine/PJ3_VotingSystemsEssay.pdf">"Voting Systems"</a> <span class="cs1-format">(PDF)</span>. <q>Formally, the <b>Smith set</b> is defined as the smaller of two sets:<br />1. The set of all alternatives, X.<br />2. A subset A ⊂ X such that each member of A can defeat every member of X that is not in A, which we call B=X − A.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Voting+Systems&amp;rft.date=2005-05-27&amp;rft.aulast=Johnson&amp;rft.aufirst=Paul+E.&amp;rft_id=http%3A%2F%2Fpj.freefaculty.org%2FPapers%2FUkraine%2FPJ3_VotingSystemsEssay.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFG._Hägele_and_F._Pukelsheim2001" class="citation journal cs1">G. Hägele and F. Pukelsheim (2001). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20060207154726/http://www.math.uni-augsburg.de/stochastik/pukelsheim/2001a.html">"Llull's writings on electoral systems"</a>. <i>Studia Lulliana</i>. <b>41</b>: <span class="nowrap">3–</span>38. Archived from <a rel="nofollow" class="external text" href="http://www.math.uni-augsburg.de/stochastik/pukelsheim/2001a.html">the original</a> on 2006-02-07.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Studia+Lulliana&amp;rft.atitle=Llull%27s+writings+on+electoral+systems&amp;rft.volume=41&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E3-%3C%2Fspan%3E38&amp;rft.date=2001&amp;rft.au=G.+H%C3%A4gele+and+F.+Pukelsheim&amp;rft_id=http%3A%2F%2Fwww.math.uni-augsburg.de%2Fstochastik%2Fpukelsheim%2F2001a.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFColomer2013" class="citation journal cs1">Colomer, Josep (2013). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/220007301">"Ramon Llull: From Ars Electionis to Social Choice Theory"</a>. <i><a href="/wiki/Social_Choice_and_Welfare" title="Social Choice and Welfare">Social Choice and Welfare</a></i>. <b>40</b> (2): <span class="nowrap">317–</span>328. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00355-011-0598-2">10.1007/s00355-011-0598-2</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/10261%2F125715">10261/125715</a></span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43015882">43015882</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Social+Choice+and+Welfare&amp;rft.atitle=Ramon+Llull%3A+From+Ars+Electionis+to+Social+Choice+Theory&amp;rft.volume=40&amp;rft.issue=2&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E317-%3C%2Fspan%3E328&amp;rft.date=2013&amp;rft_id=info%3Ahdl%2F10261%2F125715&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43015882%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00355-011-0598-2&amp;rft.aulast=Colomer&amp;rft.aufirst=Josep&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F220007301&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcLeanUrken1992" class="citation journal cs1">McLean, Iain; Urken, Arnold B. (1992). "Did Jefferson or Madison understand Condorcet's theory of social choice?". <i>Public Choice</i>. <b>73</b> (4): <span class="nowrap">445–</span>457. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01789561">10.1007/BF01789561</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:145167169">145167169</a>. <q>Binary procedures of the Jefferson/Robert variety will select the Condorcet winner if one exists</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Public+Choice&amp;rft.atitle=Did+Jefferson+or+Madison+understand+Condorcet%27s+theory+of+social+choice%3F&amp;rft.volume=73&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E445-%3C%2Fspan%3E457&amp;rft.date=1992&amp;rft_id=info%3Adoi%2F10.1007%2FBF01789561&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A145167169%23id-name%3DS2CID&amp;rft.aulast=McLean&amp;rft.aufirst=Iain&amp;rft.au=Urken%2C+Arnold+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGehrlein,_William_V.2011" class="citation book cs1">Gehrlein, William V. (2011). <i>Voting paradoxes and group coherence&#160;: the condorcet efficiency of voting rules</i>. Lepelley, Dominique. Berlin: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783642031076" title="Special:BookSources/9783642031076"><bdi>9783642031076</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/695387286">695387286</a>. <q>empirical studies ... indicate that some of the most common paradoxes are relatively unlikely to be observed in actual elections. ... it is easily concluded that Condorcet's Paradox should very rarely be observed in any real elections on a small number of candidates with large electorates, as long as voters' preferences reflect any reasonable degree of group mutual coherence</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Voting+paradoxes+and+group+coherence+%3A+the+condorcet+efficiency+of+voting+rules&amp;rft.place=Berlin&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft_id=info%3Aoclcnum%2F695387286&amp;rft.isbn=9783642031076&amp;rft.au=Gehrlein%2C+William+V.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDarlington2018" class="citation arxiv cs1">Darlington, Richard B. (2018). "Are Condorcet and minimax voting systems the best?". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1807.01366">1807.01366</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/physics.soc-ph">physics.soc-ph</a>]. <q>CC [Condorcet] systems typically allow tied ranks. If a voter fails to rank a candidate, they are typically presumed to rank them below anyone whom they did rank explicitly.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Are+Condorcet+and+minimax+voting+systems+the+best%3F&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1807.01366&amp;rft.aulast=Darlington&amp;rft.aufirst=Richard+B.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHazewinkel2007" class="citation book cs1">Hazewinkel, Michiel (2007-11-23). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=ujnhBwAAQBAJ&amp;pg=PA110"><i>Encyclopaedia of Mathematics, Supplement III</i></a>. Springer Science &amp; Business Media. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-306-48373-8" title="Special:BookSources/978-0-306-48373-8"><bdi>978-0-306-48373-8</bdi></a>. <q>Briefly, one can say candidate <i>A</i> <i>defeats</i> candidate <i>B</i> if a majority of the voters prefer A to B. With only two candidates [...] barring ties [...] one of the two candidates will defeat the other.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Encyclopaedia+of+Mathematics%2C+Supplement+III&amp;rft.pub=Springer+Science+%26+Business+Media&amp;rft.date=2007-11-23&amp;rft.isbn=978-0-306-48373-8&amp;rft.aulast=Hazewinkel&amp;rft.aufirst=Michiel&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DujnhBwAAQBAJ%26pg%3DPA110&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWangCuffKulkarni2013" class="citation web cs1">Wang, Tiance; Cuff, P.; Kulkarni, Sanjeev (2013). <a rel="nofollow" class="external text" href="https://www.princeton.edu/~cuff/publications/wang_strategic_voting.pdf">"Condorcet Methods are Less Susceptible to Strategic Voting"</a> <span class="cs1-format">(PDF)</span>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8230466">8230466</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211102025031/https://www.princeton.edu/~cuff/publications/wang_strategic_voting.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2021-11-02.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Condorcet+Methods+are+Less+Susceptible+to+Strategic+Voting&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8230466%23id-name%3DS2CID&amp;rft.aulast=Wang&amp;rft.aufirst=Tiance&amp;rft.au=Cuff%2C+P.&amp;rft.au=Kulkarni%2C+Sanjeev&amp;rft_id=https%3A%2F%2Fwww.princeton.edu%2F~cuff%2Fpublications%2Fwang_strategic_voting.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-:2-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-:2_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:2_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-:2_15-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPacuit2019" class="citation cs2">Pacuit, Eric (2019), <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/fall2019/entries/voting-methods/">"Voting Methods"</a>, in Zalta, Edward N. (ed.), <i>The Stanford Encyclopedia of Philosophy</i> (Fall 2019&#160;ed.), Metaphysics Research Lab, Stanford University<span class="reference-accessdate">, retrieved <span class="nowrap">2020-10-16</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Voting+Methods&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.edition=Fall+2019&amp;rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&amp;rft.date=2019&amp;rft.aulast=Pacuit&amp;rft.aufirst=Eric&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Ffall2019%2Fentries%2Fvoting-methods%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://economics.stanford.edu/sites/g/files/sbiybj9386/f/publications/cook_hthesis2011.pdf">Thesis</a> <sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged March 2022">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup> "IRV satisfies the later-no-harm criterion and the Condorcet loser criterion but fails monotonicity, independence of irrelevant alternatives, and the Condorcet criterion."</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.equal.vote/condorcet">"Condorcet"</a>. <i>Equal Vote Coalition</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2021-04-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Equal+Vote+Coalition&amp;rft.atitle=Condorcet&amp;rft_id=https%3A%2F%2Fwww.equal.vote%2Fcondorcet&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIgersheimDurandHamlinLaslier2022" class="citation journal cs1">Igersheim, Herrade; Durand, François; Hamlin, Aaron; Laslier, Jean-François (January 2022). <a rel="nofollow" class="external text" href="https://halshs.archives-ouvertes.fr/halshs-01972097/document">"Comparing voting methods: 2016 US presidential election"</a>. <i>European Journal of Political Economy</i>. <b>71</b>: 102057. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ejpoleco.2021.102057">10.1016/j.ejpoleco.2021.102057</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=European+Journal+of+Political+Economy&amp;rft.atitle=Comparing+voting+methods%3A+2016+US+presidential+election&amp;rft.volume=71&amp;rft.pages=102057&amp;rft.date=2022-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ejpoleco.2021.102057&amp;rft.aulast=Igersheim&amp;rft.aufirst=Herrade&amp;rft.au=Durand%2C+Fran%C3%A7ois&amp;rft.au=Hamlin%2C+Aaron&amp;rft.au=Laslier%2C+Jean-Fran%C3%A7ois&amp;rft_id=https%3A%2F%2Fhalshs.archives-ouvertes.fr%2Fhalshs-01972097%2Fdocument&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-:0-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMackie,_Gerry.2003" class="citation book cs1">Mackie, Gerry. (2003). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=q2U8jd2AJkEC&amp;pg=PA6"><i>Democracy defended</i></a>. Cambridge, UK: Cambridge University Press. p.&#160;6. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0511062648" title="Special:BookSources/0511062648"><bdi>0511062648</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/252507400">252507400</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Democracy+defended&amp;rft.place=Cambridge%2C+UK&amp;rft.pages=6&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2003&amp;rft_id=info%3Aoclcnum%2F252507400&amp;rft.isbn=0511062648&amp;rft.au=Mackie%2C+Gerry.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dq2U8jd2AJkEC%26pg%3DPA6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNurmi2012" class="citation cs2">Nurmi, Hannu (2012), "On the Relevance of Theoretical Results to Voting System Choice", in Felsenthal, Dan S.; Machover, Moshé (eds.), <i>Electoral Systems</i>, Studies in Choice and Welfare, Springer Berlin Heidelberg, pp.&#160;<span class="nowrap">255–</span>274, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-642-20441-8_10">10.1007/978-3-642-20441-8_10</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9783642204401" title="Special:BookSources/9783642204401"><bdi>9783642204401</bdi></a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12562825">12562825</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=On+the+Relevance+of+Theoretical+Results+to+Voting+System+Choice&amp;rft.btitle=Electoral+Systems&amp;rft.series=Studies+in+Choice+and+Welfare&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E255-%3C%2Fspan%3E274&amp;rft.pub=Springer+Berlin+Heidelberg&amp;rft.date=2012&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12562825%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-642-20441-8_10&amp;rft.isbn=9783642204401&amp;rft.aulast=Nurmi&amp;rft.aufirst=Hannu&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-:1-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_21-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoung1988" class="citation journal cs1">Young, H. P. (1988). <a rel="nofollow" class="external text" href="https://www.cs.cmu.edu/~arielpro/15896s15/docs/paper4a.pdf">"Condorcet's Theory of Voting"</a> <span class="cs1-format">(PDF)</span>. <i>American Political Science Review</i>. <b>82</b> (4): <span class="nowrap">1231–</span>1244. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F1961757">10.2307/1961757</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-0554">0003-0554</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a>&#160;<a rel="nofollow" class="external text" href="https://www.jstor.org/stable/1961757">1961757</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14908863">14908863</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181222192924/http://www.cs.cmu.edu/~arielpro/15896s15/docs/paper4a.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2018-12-22.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=American+Political+Science+Review&amp;rft.atitle=Condorcet%27s+Theory+of+Voting&amp;rft.volume=82&amp;rft.issue=4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E1231-%3C%2Fspan%3E1244&amp;rft.date=1988&amp;rft.issn=0003-0554&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14908863%23id-name%3DS2CID&amp;rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F1961757%23id-name%3DJSTOR&amp;rft_id=info%3Adoi%2F10.2307%2F1961757&amp;rft.aulast=Young&amp;rft.aufirst=H.+P.&amp;rft_id=https%3A%2F%2Fwww.cs.cmu.edu%2F~arielpro%2F15896s15%2Fdocs%2Fpaper4a.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHogben1913" class="citation journal cs1">Hogben, G. (1913). <a rel="nofollow" class="external text" href="http://rsnz.natlib.govt.nz/volume/rsnz_46/rsnz_46_00_005780.html">"Preferential Voting in Single-member Constituencies, with Special Reference to the Counting of Votes"</a>. <i>Transactions and Proceedings of the Royal Society of New Zealand</i>. <b>46</b>: <span class="nowrap">304–</span>308.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+and+Proceedings+of+the+Royal+Society+of+New+Zealand&amp;rft.atitle=Preferential+Voting+in+Single-member+Constituencies%2C+with+Special+Reference+to+the+Counting+of+Votes&amp;rft.volume=46&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E304-%3C%2Fspan%3E308&amp;rft.date=1913&amp;rft.aulast=Hogben&amp;rft.aufirst=G.&amp;rft_id=http%3A%2F%2Frsnz.natlib.govt.nz%2Fvolume%2Frsnz_46%2Frsnz_46_00_005780.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://electowiki.org/wiki/Smith//Score">"Smith Score - electowiki"</a>. <i>electowiki.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-12-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=electowiki.org&amp;rft.atitle=Smith+Score+-+electowiki&amp;rft_id=https%3A%2F%2Felectowiki.org%2Fwiki%2FSmith%2F%2FScore&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBehrensKistnerNitscheSwierczek2014" class="citation web cs1">Behrens, Jan; Kistner, Axel; Nitsche, Andreas; Swierczek, Bjorn (2014). <a rel="nofollow" class="external text" href="https://principles.liquidfeedback.org/The_Principles_of_LiquidFeedback_1st_edition_online_version.pdf">"The Principles of Liquid Feedback"</a> <span class="cs1-format">(PDF)</span> (1&#160;ed.).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Principles+of+Liquid+Feedback&amp;rft.edition=1&amp;rft.date=2014&amp;rft.aulast=Behrens&amp;rft.aufirst=Jan&amp;rft.au=Kistner%2C+Axel&amp;rft.au=Nitsche%2C+Andreas&amp;rft.au=Swierczek%2C+Bjorn&amp;rft_id=https%3A%2F%2Fprinciples.liquidfeedback.org%2FThe_Principles_of_LiquidFeedback_1st_edition_online_version.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoodall" class="citation journal cs1">Woodall, D R. <a rel="nofollow" class="external text" href="http://www.mcdougall.org.uk/VM/ISSUE3/P5.HTM">"Properties of Preferential Election Rules"</a>. <i>Voting Matters</i> (3): <span class="nowrap">8–</span>15<span class="reference-accessdate">. Retrieved <span class="nowrap">2024-12-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Voting+Matters&amp;rft.atitle=Properties+of+Preferential+Election+Rules&amp;rft.issue=3&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E8-%3C%2Fspan%3E15&amp;rft.aulast=Woodall&amp;rft.aufirst=D+R&amp;rft_id=http%3A%2F%2Fwww.mcdougall.org.uk%2FVM%2FISSUE3%2FP5.HTM&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFelsenthalTideman2014" class="citation journal cs1">Felsenthal, Dan S.; Tideman, Nicolaus (2014). "Weak Condorcet winner(s) revisited". <i>Public Choice</i>. <b>160</b> (<span class="nowrap">3–</span>4): <span class="nowrap">313–</span>326. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11127-014-0180-4">10.1007/s11127-014-0180-4</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:154447142">154447142</a>. <q>A weak Condorcet winner (WCW) is an alternative, y, that no majority of voters rank below any other alternative, z, but is not a SCW [Condorcet winner].</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Public+Choice&amp;rft.atitle=Weak+Condorcet+winner%28s%29+revisited&amp;rft.volume=160&amp;rft.issue=%3Cspan+class%3D%22nowrap%22%3E3%E2%80%93%3C%2Fspan%3E4&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E313-%3C%2Fspan%3E326&amp;rft.date=2014&amp;rft_id=info%3Adoi%2F10.1007%2Fs11127-014-0180-4&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A154447142%23id-name%3DS2CID&amp;rft.aulast=Felsenthal&amp;rft.aufirst=Dan+S.&amp;rft.au=Tideman%2C+Nicolaus&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTruchon1998" class="citation web cs1">Truchon, Michel (October 1998). <a rel="nofollow" class="external text" href="https://core.ac.uk/download/pdf/7227054.pdf">"AN EXTENSION OF THE CONDORCET CRITERION AND KEMENY ORDERS"</a> <span class="cs1-format">(PDF)</span>. <q>A first objective of this paper is to propose a formalization of this idea, called the Extended Condorcet Criterion (XCC). In essence, it says that if the set of alternatives can be partitioned in such a way that all members of a subset of this partition defeat all alternatives belonging to subsets with a higher index, then the former should obtain a better rank than the latter.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=AN+EXTENSION+OF+THE+CONDORCET+CRITERION+AND+KEMENY+ORDERS&amp;rft.date=1998-10&amp;rft.aulast=Truchon&amp;rft.aufirst=Michel&amp;rft_id=https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F7227054.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-:02-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-:02_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNanson1882" class="citation journal cs1">Nanson, E. J. (1882). <a rel="nofollow" class="external text" href="https://archive.org/details/transactionsproc1719roya/page/207">"Methods of election"</a>. <i>Transactions and Proceedings of the Royal Society of Victoria</i>. <b>19</b>: <span class="nowrap">207–</span>208. <q>although Ware's method cannot return the worst, it may return the next worst.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+and+Proceedings+of+the+Royal+Society+of+Victoria&amp;rft.atitle=Methods+of+election&amp;rft.volume=19&amp;rft.pages=%3Cspan+class%3D%22nowrap%22%3E207-%3C%2Fspan%3E208&amp;rft.date=1882&amp;rft.aulast=Nanson&amp;rft.aufirst=E.+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftransactionsproc1719roya%2Fpage%2F207&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text">Satterthwaite, Mark. "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions".</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGreen-Armytage" class="citation news cs1">Green-Armytage, James. "Why majoritarian election methods should be Condorcet-efficient". <i>Economics</i>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:18348996">18348996</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Economics&amp;rft.atitle=Why+majoritarian+election+methods+should+be+Condorcet-efficient&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A18348996%23id-name%3DS2CID&amp;rft.aulast=Green-Armytage&amp;rft.aufirst=James&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchulze2018" class="citation arxiv cs1">Schulze, Markus (2018). "The Schulze Method of Voting". p.&#160;351. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1804.02973">1804.02973</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/cs.GT">cs.GT</a>]. <q>The Condorcet criterion for single-winner elections (section 4.7) is important because, when there is a Condorcet winner b ∈ A, then it is still a Condorcet winner when alternatives a1,...,an ∈ A \ {b} are removed. So an alternative b ∈ A doesn't owe his property of being a Condorcet winner to the presence of some other alternatives. Therefore, when we declare a Condorcet winner b ∈ A elected whenever a Condorcet winner exists, we know that no other alternatives a1,...,an ∈ A \ {b} have changed the result of the election without being elected.</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=The+Schulze+Method+of+Voting&amp;rft.pages=351&amp;rft.date=2018&amp;rft_id=info%3Aarxiv%2F1804.02973&amp;rft.aulast=Schulze&amp;rft.aufirst=Markus&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcLean2002" class="citation cs2">McLean (2002), <a rel="nofollow" class="external text" href="http://www.nuff.ox.ac.uk/Politics/papers/2002/w23/mclean.pdf"><i>Australian electoral reform and two concepts of representation</i></a> <span class="cs1-format">(PDF)</span> (paper), UK: Ox<span class="reference-accessdate">, retrieved <span class="nowrap">2015-06-27</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Australian+electoral+reform+and+two+concepts+of+representation&amp;rft.place=UK&amp;rft.pub=Ox&amp;rft.date=2002&amp;rft.au=McLean&amp;rft_id=http%3A%2F%2Fwww.nuff.ox.ac.uk%2FPolitics%2Fpapers%2F2002%2Fw23%2Fmclean.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://legislature.vermont.gov/bill/status/2024/H.424">"Bill Status H.424"</a>. <i>legislature.vermont.gov</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2023-12-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=legislature.vermont.gov&amp;rft.atitle=Bill+Status+H.424&amp;rft_id=https%3A%2F%2Flegislature.vermont.gov%2Fbill%2Fstatus%2F2024%2FH.424&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://lpwa.org/wp-content/uploads/2022/07/LPWA_Constitution_updated_at_convention_26March2022.pdf#page=10">"Constitution of the Libertarian Party of Washington State"</a> <span class="cs1-format">(PDF)</span>. <i>Libertarian Party of Washington</i>. March 26, 2022. p.&#160;10. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220914201737/https://lpwa.org/wp-content/uploads/2022/07/LPWA_Constitution_updated_at_convention_26March2022.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-09-14. <q>then the vote shall be performed using either a Condorcet voting system or a score voting system, as the participants shall decide</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Libertarian+Party+of+Washington&amp;rft.atitle=Constitution+of+the+Libertarian+Party+of+Washington+State&amp;rft.pages=10&amp;rft.date=2022-03-26&amp;rft_id=https%3A%2F%2Flpwa.org%2Fwp-content%2Fuploads%2F2022%2F07%2FLPWA_Constitution_updated_at_convention_26March2022.pdf%23page%3D10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.usenet.org.uk/voting.html">"Guidelines for Group Creation for uk.*"</a>. <i>www.usenet.org.uk</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-12-13</span></span>. <q>For a vote between several mutually exclusive options, the votetaking organisation will establish, for each possible pair of options A and B, how many voters prefer A over B and vice versa. … The method of determining the result when there are several mutually exclusive options, as described in paragraph 4 of The Result, is essentially that devised by the French mathematician the Marquis de Condorcet (1743-94).</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.usenet.org.uk&amp;rft.atitle=Guidelines+for+Group+Creation+for+uk.%2A&amp;rft_id=http%3A%2F%2Fwww.usenet.org.uk%2Fvoting.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-:04-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-:04_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNanson1882" class="citation journal cs1">Nanson, E. J. (1882). <a rel="nofollow" class="external text" href="https://archive.org/details/transactionsproc1719roya/page/217/mode/1up">"Methods of election"</a>. <i>Transactions and Proceedings of the Royal Society of Victoria</i>. <b>19</b>: 217.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Transactions+and+Proceedings+of+the+Royal+Society+of+Victoria&amp;rft.atitle=Methods+of+election&amp;rft.volume=19&amp;rft.pages=217&amp;rft.date=1882&amp;rft.aulast=Nanson&amp;rft.aufirst=E.+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftransactionsproc1719roya%2Fpage%2F217%2Fmode%2F1up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a class="external text" href="https://meta.wikimedia.org/wiki/Wikimedia_Foundation_elections_2013/Results">"Wikimedia Foundation elections 2013/Results – Meta"</a>. <i>meta.wikimedia.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2017-01-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=meta.wikimedia.org&amp;rft.atitle=Wikimedia+Foundation+elections+2013%2FResults+%E2%80%93+Meta&amp;rft_id=https%3A%2F%2Fmeta.wikimedia.org%2Fwiki%2FWikimedia_Foundation_elections_2013%2FResults&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://elekto.dev">"Goldydocs"</a>. <i>Elekto</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-12-14</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Elekto&amp;rft.atitle=Goldydocs&amp;rft_id=https%3A%2F%2Felekto.dev&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=24" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBlack1958" class="citation book cs1">Black, Duncan (1958). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/theoryofcommitte0000blac"><i>The Theory of Committees and Elections</i></a></span>. Cambridge University Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Theory+of+Committees+and+Elections&amp;rft.pub=Cambridge+University+Press&amp;rft.date=1958&amp;rft.aulast=Black&amp;rft.aufirst=Duncan&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofcommitte0000blac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFarquarson1969" class="citation book cs1">Farquarson, Robin (1969). <i>Theory of Voting</i>. Oxford.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+Voting&amp;rft.place=Oxford&amp;rft.date=1969&amp;rft.aulast=Farquarson&amp;rft.aufirst=Robin&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: CS1 maint: location missing publisher (<a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">link</a>)</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSen1970" class="citation book cs1">Sen, Amartya Kumar (1970). <i>Collective Choice and Social Welfare</i>. Holden-Day. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-8162-7765-0" title="Special:BookSources/978-0-8162-7765-0"><bdi>978-0-8162-7765-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Collective+Choice+and+Social+Welfare&amp;rft.pub=Holden-Day&amp;rft.date=1970&amp;rft.isbn=978-0-8162-7765-0&amp;rft.aulast=Sen&amp;rft.aufirst=Amartya+Kumar&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=25" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnson" class="citation cs2">Johnson, Paul E, <a rel="nofollow" class="external text" href="http://pj.freefaculty.org/Ukraine/PJ3_VotingSystemsEssay.pdf"><i>Voting Systems</i></a> <span class="cs1-format">(PDF)</span>, Free faculty<span class="reference-accessdate">, retrieved <span class="nowrap">2015-06-27</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Voting+Systems&amp;rft.pub=Free+faculty&amp;rft.aulast=Johnson&amp;rft.aufirst=Paul+E&amp;rft_id=http%3A%2F%2Fpj.freefaculty.org%2FUkraine%2FPJ3_VotingSystemsEssay.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLanphier" class="citation cs2">Lanphier, Robert ‘Rob’, <a rel="nofollow" class="external text" href="http://robla.net/1996/politics/condorcet.html"><i>Condorcet's Method</i></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Condorcet%27s+Method&amp;rft.aulast=Lanphier&amp;rft.aufirst=Robert+%E2%80%98Rob%E2%80%99&amp;rft_id=http%3A%2F%2Frobla.net%2F1996%2Fpolitics%2Fcondorcet.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLoring" class="citation cs2">Loring, Robert ‘Rob’, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20041030073537/http://www.accuratedemocracy.com/"><i>Accurate Democracy</i></a>, archived from <a rel="nofollow" class="external text" href="http://accuratedemocracy.com/">the original</a> on 2004-10-30<span class="reference-accessdate">, retrieved <span class="nowrap">2004-11-02</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Accurate+Democracy&amp;rft.aulast=Loring&amp;rft.aufirst=Robert+%E2%80%98Rob%E2%80%99&amp;rft_id=http%3A%2F%2Faccuratedemocracy.com%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcKinnon" class="citation cs2">McKinnon, Ron, <a rel="nofollow" class="external text" href="http://condorcet.ca/"><i>Condorcet Canada Initiative</i></a>, CA<span class="reference-accessdate">, retrieved <span class="nowrap">2019-01-08</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Condorcet+Canada+Initiative&amp;rft.place=CA&amp;rft.aulast=McKinnon&amp;rft.aufirst=Ron&amp;rft_id=http%3A%2F%2Fcondorcet.ca%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>. Multipage description of Condorcet method and Ranked Pairs from a Canadian perspective.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPerez" class="citation cs2">Perez, Joaquin, <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160303171153/http://www3.uah.es/docecon/documentos/DT1.pdf"><i>A strong No Show Paradox is a common flaw in Condorcet voting correspondences</i></a> <span class="cs1-format">(PDF)</span>, ES: UAH, archived from <a rel="nofollow" class="external text" href="http://www2.uah.es/docecon/documentos/DT1.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2016-03-03<span class="reference-accessdate">, retrieved <span class="nowrap">2015-06-27</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+strong+No+Show+Paradox+is+a+common+flaw+in+Condorcet+voting+correspondences&amp;rft.place=ES&amp;rft.pub=UAH&amp;rft.aulast=Perez&amp;rft.aufirst=Joaquin&amp;rft_id=http%3A%2F%2Fwww2.uah.es%2Fdocecon%2Fdocumentos%2FDT1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrabhakar2010" class="citation cs2">Prabhakar, Ernest (2010-06-28), <a rel="nofollow" class="external text" href="http://radicalcentrism.org/resources/maximum-majority-voting/"><i>Maximum Majority Voting (a Condorcet method)</i></a>, Radical centrism<span class="reference-accessdate">, retrieved <span class="nowrap">2015-06-27</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Maximum+Majority+Voting+%28a+Condorcet+method%29&amp;rft.pub=Radical+centrism&amp;rft.date=2010-06-28&amp;rft.aulast=Prabhakar&amp;rft.aufirst=Ernest&amp;rft_id=http%3A%2F%2Fradicalcentrism.org%2Fresources%2Fmaximum-majority-voting%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchulze" class="citation cs2">Schulze, Markus, <a rel="nofollow" class="external text" href="http://m-schulze.9mail.de/schulze1.pdf"><i>A New Monotonic, Clone-Independent, Reversal Symmetric, and Condorcet-Consistent Single-Winner Election Method</i></a> <span class="cs1-format">(PDF)</span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+New+Monotonic%2C+Clone-Independent%2C+Reversal+Symmetric%2C+and+Condorcet-Consistent+Single-Winner+Election+Method&amp;rft.aulast=Schulze&amp;rft.aufirst=Markus&amp;rft_id=http%3A%2F%2Fm-schulze.9mail.de%2Fschulze1.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Software">Software</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Condorcet_method&amp;action=edit&amp;section=26" title="Edit section: Software"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.bipartivox.com"><i>BipartiVox</i></a> (Free &amp; Simple Online Condorcet Voting using the Bipartisan/Range method)</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=BipartiVox&amp;rft_id=https%3A%2F%2Fwww.bipartivox.com&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://civs1.civs.us/"><i>CIVS, a free web poll service using the Condorcet method</i></a>, Cornell</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=CIVS%2C+a+free+web+poll+service+using+the+Condorcet+method&amp;rft.pub=Cornell&amp;rft_id=https%3A%2F%2Fcivs1.civs.us%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://github.com/julien-boudry/Condorcet"><i>Condorcet PHP</i></a> (Open-source command line application and <a href="/wiki/PHP" title="PHP">PHP</a> <a href="/wiki/Library_(computing)" title="Library (computing)">library</a> for computing multiple Condorcet methods and others), 22 October 2021</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Condorcet+PHP&amp;rft.date=2021-10-22&amp;rft_id=https%3A%2F%2Fgithub.com%2Fjulien-boudry%2FCondorcet&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://moodle.org/plugins/mod_sortvoting"><i>Preference Sort Voting</i></a> (Open-source plugin for <a href="/wiki/Moodle" title="Moodle">Moodle</a>), Odei Alba, 2 June 2023</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Preference+Sort+Voting&amp;rft.pub=Odei+Alba&amp;rft.date=2023-06-02&amp;rft_id=https%3A%2F%2Fmoodle.org%2Fplugins%2Fmod_sortvoting&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.condorcet.vote/"><i>Condorcet.Vote</i></a> (A free web poll application using the original Condorcet method and many others like Schulze method.)</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Condorcet.Vote&amp;rft_id=https%3A%2F%2Fwww.condorcet.vote%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.debian.org/vote/"><i>DEbian VOTe EnginE</i></a> (A Free Software vote engine using the Schulze method.)</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=DEbian+VOTe+EnginE&amp;rft_id=https%3A%2F%2Fwww.debian.org%2Fvote%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGorr" class="citation cs2">Gorr, Eric, <a rel="nofollow" class="external text" href="http://condorcet.ericgorr.net/"><i>Condorcet Voting Calculator</i></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Condorcet+Voting+Calculator&amp;rft.aulast=Gorr&amp;rft.aufirst=Eric&amp;rft_id=http%3A%2F%2Fcondorcet.ericgorr.net%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.thehivemind.com/"><i>Hivemind</i></a> (A free mobile app for ranked choice voting that uses the Condorcet method.)</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Hivemind&amp;rft_id=https%3A%2F%2Fwww.thehivemind.com%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://stv.sourceforge.net/"><i>STV</i></a> (software for computing Condorcet methods and STV), Sourceforge</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=STV&amp;rft.pub=Sourceforge&amp;rft_id=http%3A%2F%2Fstv.sourceforge.net%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="http://www.votefair.org/surveys.html"><i>VoteFair surveys</i></a> (Free ranking service that calculates <a href="/wiki/Condorcet_Kemeny" class="mw-redirect" title="Condorcet Kemeny">Condorcet–Kemeny</a> results), VoteFair</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=VoteFair+surveys&amp;rft.pub=VoteFair&amp;rft_id=http%3A%2F%2Fwww.votefair.org%2Fsurveys.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://github.com/cpsolver/VoteFair-ranking-cpp"><i>VoteFair Ranking</i></a> (Open-source C++ election software that calculates <a href="/wiki/Condorcet_Kemeny" class="mw-redirect" title="Condorcet Kemeny">Condorcet–Kemeny</a> results.), VoteFair, 25 September 2021</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=VoteFair+Ranking&amp;rft.pub=VoteFair&amp;rft.date=2021-09-25&amp;rft_id=https%3A%2F%2Fgithub.com%2Fcpsolver%2FVoteFair-ranking-cpp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://dev.entrouvert.org/projects/wcs"><i>w.c.s.</i></a> (A free web poll application using OpenSTV for voting algorithms), Entr'ouvert</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=w.c.s.&amp;rft.pub=Entr%27ouvert&amp;rft_id=https%3A%2F%2Fdev.entrouvert.org%2Fprojects%2Fwcs&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ACondorcet+method" class="Z3988"></span></li></ul> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Electoral_systems390" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electoral_systems_footer" title="Template:Electoral systems footer"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electoral_systems_footer" title="Template talk:Electoral systems footer"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electoral_systems_footer" title="Special:EditPage/Template:Electoral systems footer"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electoral_systems390" style="font-size:114%;margin:0 4em"><a href="/wiki/Electoral_system" title="Electoral system">Electoral systems</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div><i>Part of the <a href="/wiki/Portal:Politics" title="Portal:Politics">politics</a> and <a href="/wiki/Portal:Economics" title="Portal:Economics">Economics</a> series</i></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Single-winner_voting_system" class="mw-redirect" title="Single-winner voting system">Single-winner</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Approval_voting" title="Approval voting">Approval voting</a> <ul><li><a href="/wiki/Combined_approval_voting" title="Combined approval voting">Combined approval voting</a></li> <li><a href="/wiki/Unified_primary" title="Unified primary">Unified primary</a></li></ul></li> <li><a href="/wiki/Borda_count" title="Borda count">Borda count</a></li> <li><a href="/wiki/Bucklin_voting" title="Bucklin voting">Bucklin voting</a></li> <li><a href="/wiki/Condorcet_methods" class="mw-redirect" title="Condorcet methods">Condorcet methods</a> <ul><li><a href="/wiki/Copeland%27s_method" title="Copeland&#39;s method">Copeland's method</a></li> <li><a href="/wiki/Dodgson%27s_method" title="Dodgson&#39;s method">Dodgson's method</a></li> <li><a href="/wiki/Kemeny%E2%80%93Young_method" title="Kemeny–Young method">Kemeny–Young method</a></li> <li><a href="/wiki/Minimax_Condorcet_method" title="Minimax Condorcet method">Minimax Condorcet method</a></li> <li><a href="/wiki/Nanson%27s_method" title="Nanson&#39;s method">Nanson's method</a></li> <li><a href="/wiki/Ranked_pairs" title="Ranked pairs">Ranked pairs</a></li> <li><a href="/wiki/Schulze_method" title="Schulze method">Schulze method</a></li></ul></li> <li><a href="/wiki/Exhaustive_ballot" title="Exhaustive ballot">Exhaustive ballot</a></li> <li><a href="/wiki/First-past-the-post_voting" title="First-past-the-post voting">First-past-the-post voting</a></li> <li><a href="/wiki/Instant-runoff_voting" title="Instant-runoff voting">Instant-runoff voting</a> <ul><li><a href="/wiki/Coombs%27_method" title="Coombs&#39; method">Coombs' method</a></li> <li><a href="/wiki/Contingent_vote" title="Contingent vote">Contingent vote</a></li> <li><a href="/wiki/Supplementary_vote" class="mw-redirect" title="Supplementary vote">Supplementary vote</a></li></ul></li> <li><a href="/wiki/Majority_rule" title="Majority rule">Simple majoritarianism</a></li> <li><a href="/wiki/Plurality_voting_system" class="mw-redirect" title="Plurality voting system">Plurality</a></li> <li><a href="/wiki/Positional_voting_system" class="mw-redirect" title="Positional voting system">Positional voting system</a></li> <li><a href="/wiki/Score_voting" title="Score voting">Score voting</a></li> <li><a href="/wiki/STAR_voting" title="STAR voting">STAR voting</a></li> <li><a href="/wiki/Two-round_system" title="Two-round system">Two-round system</a></li> <li><a href="/wiki/Graduated_majority_judgment" title="Graduated majority judgment">Graduated majority judgment</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Proportional_representation" title="Proportional representation">Proportional</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Systems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mixed-member_proportional_representation" title="Mixed-member proportional representation">Mixed-member</a></li> <li><a href="/wiki/Mixed_single_vote#Proportional_systems" title="Mixed single vote">Mixed single vote</a></li> <li><a href="/wiki/Party-list_proportional_representation" title="Party-list proportional representation">Party-list</a></li> <li><a href="/wiki/Proportional_approval_voting" title="Proportional approval voting">Proportional approval voting</a></li> <li><a href="/wiki/Rural%E2%80%93urban_proportional_representation" title="Rural–urban proportional representation">Rural–urban</a></li> <li><a href="/wiki/Sequential_proportional_approval_voting" title="Sequential proportional approval voting">Sequential proportional approval voting</a></li> <li><a href="/wiki/Single_transferable_vote" title="Single transferable vote">Single transferable vote</a> <ul><li><a href="/wiki/CPO-STV" title="CPO-STV">CPO-STV</a></li> <li><a href="/wiki/Hare%E2%80%93Clark_electoral_system" title="Hare–Clark electoral system">Hare-Clark</a></li> <li><a href="/wiki/Schulze_STV" title="Schulze STV">Schulze STV</a></li></ul></li> <li><a href="/wiki/Spare_vote" title="Spare vote">Spare vote</a></li> <li><a href="/wiki/Indirect_single_transferable_voting" title="Indirect single transferable voting">Indirect single transferable voting</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Allocation</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Highest_averages_method" title="Highest averages method">Highest averages method</a> <ul><li><a href="/wiki/Sainte-Lagu%C3%AB_method" title="Sainte-Laguë method">Webster/Sainte-Laguë</a></li> <li><a href="/wiki/D%27Hondt_method" title="D&#39;Hondt method">D'Hondt</a></li></ul></li> <li><a href="/wiki/Largest_remainders_method" class="mw-redirect" title="Largest remainders method">Largest remainders method</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quotas</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Droop_quota" title="Droop quota">Droop quota</a></li> <li><a href="/wiki/Hagenbach-Bischoff_quota" class="mw-redirect" title="Hagenbach-Bischoff quota">Hagenbach-Bischoff quota</a></li> <li><a href="/wiki/Hare_quota" title="Hare quota">Hare quota</a></li> <li><a href="/wiki/Imperiali_quota" title="Imperiali quota">Imperiali quota</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Mixed_electoral_system" title="Mixed electoral system">Mixed</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Parallel_voting" title="Parallel voting">Parallel voting</a></li> <li><a href="/wiki/Mixed-member_proportional_representation" title="Mixed-member proportional representation">MMP</a></li> <li><a href="/wiki/Additional_member_system" class="mw-redirect" title="Additional member system">Additional member system</a></li> <li><a href="/wiki/Alternative_vote_plus" title="Alternative vote plus">Alternative vote plus</a></li> <li><a href="/wiki/Mixed_single_vote" title="Mixed single vote">Mixed single vote</a></li> <li><a href="/wiki/Mixed_ballot_transferable_vote" title="Mixed ballot transferable vote">Mixed ballot transferable vote</a></li> <li><a href="/wiki/Scorporo" title="Scorporo">Scorporo</a></li> <li><a href="/wiki/Vote_linkage_mixed_system" class="mw-redirect" title="Vote linkage mixed system">Vote linkage mixed system</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Semi-proportional_representation" title="Semi-proportional representation">Semi-proportional</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Single_non-transferable_vote" title="Single non-transferable vote">Single non-transferable vote</a></li> <li><a href="/wiki/Limited_voting" title="Limited voting">Limited voting</a></li> <li><a href="/wiki/Cumulative_voting" title="Cumulative voting">Cumulative voting</a></li> <li><a href="/wiki/Satisfaction_approval_voting" title="Satisfaction approval voting">Satisfaction approval voting</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Criteria</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Condorcet_winner_criterion" title="Condorcet winner criterion">Condorcet winner criterion</a></li> <li><a href="/wiki/Condorcet_loser_criterion" title="Condorcet loser criterion">Condorcet loser criterion</a></li> <li><a href="/wiki/Consistency_criterion" class="mw-redirect" title="Consistency criterion">Consistency criterion</a></li> <li><a href="/wiki/Independence_of_clones_criterion" title="Independence of clones criterion">Independence of clones</a></li> <li><a href="/wiki/Independence_of_irrelevant_alternatives" title="Independence of irrelevant alternatives">Independence of irrelevant alternatives</a></li> <li><a href="/wiki/Independence_of_Smith-dominated_alternatives" title="Independence of Smith-dominated alternatives">Independence of Smith-dominated alternatives</a></li> <li><a href="/wiki/Later-no-harm_criterion" title="Later-no-harm criterion">Later-no-harm criterion</a></li> <li><a href="/wiki/Majority_favorite_criterion" class="mw-redirect" title="Majority favorite criterion">Majority criterion</a></li> <li><a href="/wiki/Majority_loser_criterion" title="Majority loser criterion">Majority loser criterion</a></li> <li><a href="/wiki/Monotonicity_criterion" class="mw-redirect" title="Monotonicity criterion">Monotonicity criterion</a></li> <li><a href="/wiki/Mutual_majority_criterion" title="Mutual majority criterion">Mutual majority criterion</a></li> <li><a href="/wiki/Participation_criterion" class="mw-redirect" title="Participation criterion">Participation criterion</a></li> <li><a href="/wiki/Plurality_criterion" class="mw-redirect" title="Plurality criterion">Plurality criterion</a></li> <li><a href="/wiki/Resolvability_criterion" title="Resolvability criterion">Resolvability criterion</a></li> <li><a href="/wiki/Reversal_symmetry" class="mw-redirect" title="Reversal symmetry">Reversal symmetry</a></li> <li><a href="/wiki/Smith_criterion" class="mw-redirect" title="Smith criterion">Smith criterion</a></li> <li><a href="/wiki/Seats-to-votes_ratio" title="Seats-to-votes ratio">Seats-to-votes ratio</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ballot" title="Ballot">Ballot</a></li> <li><a href="/wiki/Election_threshold" class="mw-redirect" title="Election threshold">Election threshold</a></li> <li><a href="/wiki/First-preference_votes" title="First-preference votes">First-preference votes</a></li> <li><a href="/wiki/Liquid_democracy" title="Liquid democracy">Liquid democracy</a></li> <li><a href="/wiki/Spoilt_vote" title="Spoilt vote">Spoilt vote</a></li> <li><a href="/wiki/Sortition" title="Sortition">Sortition</a></li> <li><a href="/wiki/Unseating" title="Unseating">Unseating</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Comparison</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Comparison_of_electoral_systems" class="mw-redirect" title="Comparison of electoral systems">Comparison of voting systems</a></li> <li><a href="/wiki/List_of_electoral_systems_by_country" title="List of electoral systems by country">Voting systems by country</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><a href="/wiki/Portal:Politics" title="Portal:Politics">Portal</a></b> — <b><a href="/wiki/Wikipedia:WikiProject_Politics" title="Wikipedia:WikiProject Politics">Project</a></b></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐b766959bd‐fb8dm Cached time: 20250214104931 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.021 seconds Real time usage: 1.179 seconds Preprocessor visited node count: 6167/1000000 Post‐expand include size: 239289/2097152 bytes Template argument size: 8381/2097152 bytes Highest expansion depth: 17/100 Expensive parser function count: 15/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 224849/5000000 bytes Lua time usage: 0.668/10.000 seconds Lua memory usage: 20501722/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1004.209 1 -total 32.23% 323.608 2 Template:Reflist 16.50% 165.651 13 Template:Cite_journal 13.08% 131.380 1 Template:Electoral_systems_sidebar 12.87% 129.258 1 Template:Sidebar_with_collapsible_lists 10.51% 105.513 1 Template:IPA 9.46% 94.982 22 Template:Citation 6.75% 67.806 7 Template:Citation_needed 6.45% 64.814 1 Template:Short_description 6.40% 64.240 9 Template:Fix --> <!-- Saved in parser cache with key enwiki:pcache:44446:|#|:idhash:canonical and timestamp 20250214104931 and revision id 1275671704. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Condorcet_method&amp;oldid=1275671704">https://en.wikipedia.org/w/index.php?title=Condorcet_method&amp;oldid=1275671704</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Single-winner_electoral_systems" title="Category:Single-winner electoral systems">Single-winner electoral systems</a></li><li><a href="/wiki/Category:Condorcet_methods" title="Category:Condorcet methods">Condorcet methods</a></li><li><a href="/wiki/Category:Preferential_electoral_systems" title="Category:Preferential electoral systems">Preferential electoral systems</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_March_2022" title="Category:Articles with dead external links from March 2022">Articles with dead external links from March 2022</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Pages_with_French_IPA" title="Category:Pages with French IPA">Pages with French IPA</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_April_2012" title="Category:Articles with unsourced statements from April 2012">Articles with unsourced statements from April 2012</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_May_2021" title="Category:Articles with unsourced statements from May 2021">Articles with unsourced statements from May 2021</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_March_2021" title="Category:Articles needing additional references from March 2021">Articles needing additional references from March 2021</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_March_2024" title="Category:Articles with unsourced statements from March 2024">Articles with unsourced statements from March 2024</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2020" title="Category:Articles with unsourced statements from October 2020">Articles with unsourced statements from October 2020</a></li><li><a href="/wiki/Category:Wikipedia_articles_with_style_issues_from_November_2020" title="Category:Wikipedia articles with style issues from November 2020">Wikipedia articles with style issues from November 2020</a></li><li><a href="/wiki/Category:All_articles_with_style_issues" title="Category:All articles with style issues">All articles with style issues</a></li><li><a href="/wiki/Category:CS1_maint:_location_missing_publisher" title="Category:CS1 maint: location missing publisher">CS1 maint: location missing publisher</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 14 February 2025, at 10:49<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Condorcet_method&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" lang="en" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><picture><source media="(min-width: 500px)" srcset="/w/resources/assets/poweredby_mediawiki.svg" width="88" height="31"><img src="/w/resources/assets/mediawiki_compact.svg" alt="Powered by MediaWiki" width="25" height="25" loading="lazy"></picture></a></li> </ul> </footer> </div> </div> </div> <div class="vector-header-container vector-sticky-header-container"> <div id="vector-sticky-header" class="vector-sticky-header"> <div class="vector-sticky-header-start"> <div class="vector-sticky-header-icon-start vector-button-flush-left vector-button-flush-right" aria-hidden="true"> <button class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-sticky-header-search-toggle" tabindex="-1" data-event-name="ui.vector-sticky-search-form.icon"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </button> </div> <div role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box"> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail"> <form action="/w/index.php" id="vector-sticky-search-form" class="cdx-search-input cdx-search-input--has-end-button"> <div class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia"> <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <div class="vector-sticky-header-context-bar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-sticky-header-toc" class="vector-dropdown mw-portlet mw-portlet-sticky-header-toc vector-sticky-header-toc vector-button-flush-left" > <input type="checkbox" id="vector-sticky-header-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-sticky-header-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-sticky-header-toc-label" for="vector-sticky-header-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-sticky-header-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div class="vector-sticky-header-context-bar-primary" aria-hidden="true" ><span class="mw-page-title-main">Condorcet method</span></div> </div> </div> <div class="vector-sticky-header-end" aria-hidden="true"> <div class="vector-sticky-header-icons"> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-talk-sticky-header" tabindex="-1" data-event-name="talk-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbles mw-ui-icon-wikimedia-speechBubbles"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-subject-sticky-header" tabindex="-1" data-event-name="subject-sticky-header"><span class="vector-icon mw-ui-icon-article mw-ui-icon-wikimedia-article"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-history-sticky-header" tabindex="-1" data-event-name="history-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-history mw-ui-icon-wikimedia-wikimedia-history"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only mw-watchlink" id="ca-watchstar-sticky-header" tabindex="-1" data-event-name="watch-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-star mw-ui-icon-wikimedia-wikimedia-star"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-edit-sticky-header" tabindex="-1" data-event-name="wikitext-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-wikiText mw-ui-icon-wikimedia-wikimedia-wikiText"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-ve-edit-sticky-header" tabindex="-1" data-event-name="ve-edit-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-edit mw-ui-icon-wikimedia-wikimedia-edit"></span> <span></span> </a> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only" id="ca-viewsource-sticky-header" tabindex="-1" data-event-name="ve-edit-protected-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-editLock mw-ui-icon-wikimedia-wikimedia-editLock"></span> <span></span> </a> </div> <div class="vector-sticky-header-buttons"> <button class="cdx-button cdx-button--weight-quiet mw-interlanguage-selector" id="p-lang-btn-sticky-header" tabindex="-1" data-event-name="ui.dropdown-p-lang-btn-sticky-header"><span class="vector-icon mw-ui-icon-wikimedia-language mw-ui-icon-wikimedia-wikimedia-language"></span> <span>16 languages</span> </button> <a href="#" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive" id="ca-addsection-sticky-header" tabindex="-1" data-event-name="addsection-sticky-header"><span class="vector-icon mw-ui-icon-speechBubbleAdd-progressive mw-ui-icon-wikimedia-speechBubbleAdd-progressive"></span> <span>Add topic</span> </a> </div> <div class="vector-sticky-header-icon-end"> <div class="vector-user-links"> </div> </div> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-b766959bd-2d9xr","wgBackendResponseTime":135,"wgPageParseReport":{"limitreport":{"cputime":"1.021","walltime":"1.179","ppvisitednodes":{"value":6167,"limit":1000000},"postexpandincludesize":{"value":239289,"limit":2097152},"templateargumentsize":{"value":8381,"limit":2097152},"expansiondepth":{"value":17,"limit":100},"expensivefunctioncount":{"value":15,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":224849,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1004.209 1 -total"," 32.23% 323.608 2 Template:Reflist"," 16.50% 165.651 13 Template:Cite_journal"," 13.08% 131.380 1 Template:Electoral_systems_sidebar"," 12.87% 129.258 1 Template:Sidebar_with_collapsible_lists"," 10.51% 105.513 1 Template:IPA"," 9.46% 94.982 22 Template:Citation"," 6.75% 67.806 7 Template:Citation_needed"," 6.45% 64.814 1 Template:Short_description"," 6.40% 64.240 9 Template:Fix"]},"scribunto":{"limitreport-timeusage":{"value":"0.668","limit":"10.000"},"limitreport-memusage":{"value":20501722,"limit":52428800},"limitreport-logs":"table#1 {\n [\"size\"] = \"tiny\",\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-b766959bd-fb8dm","timestamp":"20250214104931","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Condorcet method","url":"https:\/\/en.wikipedia.org\/wiki\/Condorcet_method","sameAs":"http:\/\/www.wikidata.org\/entity\/Q868720","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q868720","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-09-27T19:31:51Z","dateModified":"2025-02-14T10:49:28Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/8\/82\/Electoral-systems-gears.svg","headline":"pairwise-comparison electoral system"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10