CINXE.COM
Search results for: Bayesian method
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Bayesian method</title> <meta name="description" content="Search results for: Bayesian method"> <meta name="keywords" content="Bayesian method"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Bayesian method" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Bayesian method"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19123</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Bayesian method</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19123</span> Identification of Bayesian Network with Convolutional Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Raouf%20Benmakrelouf">Mohamed Raouf Benmakrelouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Karouche"> Wafa Karouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Rynkiewicz"> Joseph Rynkiewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose an alternative method to construct a Bayesian Network (BN). This method relies on a convolutional neural network (CNN classifier), which determinates the edges of the network skeleton. We train a CNN on a normalized empirical probability density distribution (NEPDF) for predicting causal interactions and relationships. We have to find the optimal Bayesian network structure for causal inference. Indeed, we are undertaking a search for pair-wise causality, depending on considered causal assumptions. In order to avoid unreasonable causal structure, we consider a blacklist and a whitelist of causality senses. We tested the method on real data to assess the influence of education on the voting intention for the extreme right-wing party. We show that, with this method, we get a safer causal structure of variables (Bayesian Network) and make to identify a variable that satisfies the backdoor criterion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20network" title="Bayesian network">Bayesian network</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20learning" title=" structure learning"> structure learning</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20search" title=" optimal search"> optimal search</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20inference" title=" causal inference"> causal inference</a> </p> <a href="https://publications.waset.org/abstracts/151560/identification-of-bayesian-network-with-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19122</span> Factorization of Computations in Bayesian Networks: Interpretation of Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linda%20Smail">Linda Smail</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Azouz"> Zineb Azouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given a Bayesian network relative to a set I of discrete random variables, we are interested in computing the probability distribution P(S) where S is a subset of I. The general idea is to write the expression of P(S) in the form of a product of factors where each factor is easy to compute. More importantly, it will be very useful to give an interpretation of each of the factors in terms of conditional probabilities. This paper considers a semantic interpretation of the factors involved in computing marginal probabilities in Bayesian networks. Establishing such a semantic interpretations is indeed interesting and relevant in the case of large Bayesian networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title="Bayesian networks">Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=D-Separation" title=" D-Separation"> D-Separation</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20two%20Bayesian%20networks" title=" level two Bayesian networks"> level two Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=factorization%20of%20computation" title=" factorization of computation"> factorization of computation</a> </p> <a href="https://publications.waset.org/abstracts/18829/factorization-of-computations-in-bayesian-networks-interpretation-of-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19121</span> Bayesian Reliability of Weibull Regression with Type-I Censored Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20Omari%20Moahmmed%20Ahmed">Al Omari Moahmmed Ahmed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the Bayesian, we developed an approach by using non-informative prior with covariate and obtained by using Gauss quadrature method to estimate the parameters of the covariate and reliability function of the Weibull regression distribution with Type-I censored data. The maximum likelihood seen that the estimators obtained are not available in closed forms, although they can be solved it by using Newton-Raphson methods. The comparison criteria are the MSE and the performance of these estimates are assessed using simulation considering various sample size, several specific values of shape parameter. The results show that Bayesian with non-informative prior is better than Maximum Likelihood Estimator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-informative%20prior" title="non-informative prior">non-informative prior</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20method" title=" Bayesian method"> Bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=type-I%20censoring" title=" type-I censoring"> type-I censoring</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss%20quardature" title=" Gauss quardature"> Gauss quardature</a> </p> <a href="https://publications.waset.org/abstracts/18728/bayesian-reliability-of-weibull-regression-with-type-i-censored-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19120</span> Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wanhyun%20Cho">Wanhyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonja%20Kang"> Soonja Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangkyoon%20Kim"> Sangkyoon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Soonyoung%20Park"> Soonyoung Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20action%20recognition" title="human action recognition">human action recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20HMM" title=" Bayesian HMM"> Bayesian HMM</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirichlet%20process%20mixture%20model" title=" Dirichlet process mixture model"> Dirichlet process mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian-Wishart%20emission%20model" title=" Gaussian-Wishart emission model"> Gaussian-Wishart emission model</a>, <a href="https://publications.waset.org/abstracts/search?q=Variational%20Bayesian%20inference" title=" Variational Bayesian inference"> Variational Bayesian inference</a>, <a href="https://publications.waset.org/abstracts/search?q=prior%20distribution%20and%20approximate%20posterior%20distribution" title=" prior distribution and approximate posterior distribution"> prior distribution and approximate posterior distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=KTH%20dataset" title=" KTH dataset"> KTH dataset</a> </p> <a href="https://publications.waset.org/abstracts/49713/human-action-recognition-using-variational-bayesian-hmm-with-dirichlet-process-mixture-of-gaussian-wishart-emission-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19119</span> BART Matching Method: Using Bayesian Additive Regression Tree for Data Matching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gianna%20Zou">Gianna Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Propensity score matching (PSM), introduced by Paul R. Rosenbaum and Donald Rubin in 1983, is a popular statistical matching technique which tries to estimate the treatment effects by taking into account covariates that could impact the efficacy of study medication in clinical trials. PSM can be used to reduce the bias due to confounding variables. However, PSM assumes that the response values are normally distributed. In some cases, this assumption may not be held. In this paper, a machine learning method - Bayesian Additive Regression Tree (BART), is used as a more robust method of matching. BART can work well when models are misspecified since it can be used to model heterogeneous treatment effects. Moreover, it has the capability to handle non-linear main effects and multiway interactions. In this research, a BART Matching Method (BMM) is proposed to provide a more reliable matching method over PSM. By comparing the analysis results from PSM and BMM, BMM can perform well and has better prediction capability when the response values are not normally distributed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BART" title="BART">BART</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=matching" title=" matching"> matching</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/149989/bart-matching-method-using-bayesian-additive-regression-tree-for-data-matching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19118</span> A Two-Stage Bayesian Variable Selection Method with the Extension of Lasso for Geo-Referenced Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgiana%20Onicescu">Georgiana Onicescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuqian%20Shen"> Yuqian Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the complex nature of geo-referenced data, multicollinearity of the risk factors in public health spatial studies is a commonly encountered issue, which leads to low parameter estimation accuracy because it inflates the variance in the regression analysis. To address this issue, we proposed a two-stage variable selection method by extending the least absolute shrinkage and selection operator (Lasso) to the Bayesian spatial setting, investigating the impact of risk factors to health outcomes. Specifically, in stage I, we performed the variable selection using Bayesian Lasso and several other variable selection approaches. Then, in stage II, we performed the model selection with only the selected variables from stage I and compared again the methods. To evaluate the performance of the two-stage variable selection methods, we conducted a simulation study with different distributions for the risk factors, using geo-referenced count data as the outcome and Michigan as the research region. We considered the cases when all candidate risk factors are independently normally distributed, or follow a multivariate normal distribution with different correlation levels. Two other Bayesian variable selection methods, Binary indicator, and the combination of Binary indicator and Lasso were considered and compared as alternative methods. The simulation results indicated that the proposed two-stage Bayesian Lasso variable selection method has the best performance for both independent and dependent cases considered. When compared with the one-stage approach, and the other two alternative methods, the two-stage Bayesian Lasso approach provides the highest estimation accuracy in all scenarios considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lasso" title="Lasso">Lasso</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20analysis" title=" Bayesian analysis"> Bayesian analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20analysis" title=" spatial analysis"> spatial analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20selection" title=" variable selection"> variable selection</a> </p> <a href="https://publications.waset.org/abstracts/105063/a-two-stage-bayesian-variable-selection-method-with-the-extension-of-lasso-for-geo-referenced-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19117</span> A Safety Analysis Method for Multi-Agent Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching%20Louis%20Liu">Ching Louis Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmund%20Kazmierczak"> Edmund Kazmierczak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Miller"> Tim Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Safety analysis for multi-agent systems is complicated by the, potentially nonlinear, interactions between agents. This paper proposes a method for analyzing the safety of multi-agent systems by explicitly focusing on interactions and the accident data of systems that are similar in structure and function to the system being analyzed. The method creates a Bayesian network using the accident data from similar systems. A feature of our method is that the events in accident data are labeled with HAZOP guide words. Our method uses an Ontology to abstract away from the details of a multi-agent implementation. Using the ontology, our methods then constructs an “Interaction Map,” a graphical representation of the patterns of interactions between agents and other artifacts. Interaction maps combined with statistical data from accidents and the HAZOP classifications of events can be converted into a Bayesian Network. Bayesian networks allow designers to explore “<em>what it</em>” scenarios and make design trade-offs that maintain safety. We show how to use the Bayesian networks, and the interaction maps to improve multi-agent system designs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent%20system" title="multi-agent system">multi-agent system</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20analysis" title=" safety analysis"> safety analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20model" title=" safety model"> safety model</a>, <a href="https://publications.waset.org/abstracts/search?q=integration%20map" title=" integration map"> integration map</a> </p> <a href="https://publications.waset.org/abstracts/29024/a-safety-analysis-method-for-multi-agent-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19116</span> Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20Omari%20Moahmmed%20Ahmed">Al Omari Moahmmed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weibull%20distribution" title="weibull distribution">weibull distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20method" title=" bayesian method"> bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain%20mote%20carlo" title=" markov chain mote carlo"> markov chain mote carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions" title=" survival and hazard functions"> survival and hazard functions</a> </p> <a href="https://publications.waset.org/abstracts/31291/bayesian-using-markov-chain-monte-carlo-and-lindleys-approximation-based-on-type-i-censored-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19115</span> Fault Tree Analysis and Bayesian Network for Fire and Explosion of Crude Oil Tanks: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Zerouali">B. Zerouali</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kara"> M. Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Hamaidi"> B. Hamaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mahdjoub"> H. Mahdjoub</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Rouabhia"> S. Rouabhia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a safety analysis for crude oil tanks to prevent undesirable events that may cause catastrophic accidents. The estimation of the probability of damage to industrial systems is carried out through a series of steps, and in accordance with a specific methodology. In this context, this work involves developing an assessment tool and risk analysis at the level of crude oil tanks system, based primarily on identification of various potential causes of crude oil tanks fire and explosion by the use of Fault Tree Analysis (FTA), then improved risk modelling by Bayesian Networks (BNs). Bayesian approach in the evaluation of failure and quantification of risks is a dynamic analysis approach. For this reason, have been selected as an analytical tool in this study. Research concludes that the Bayesian networks have a distinct and effective method in the safety analysis because of the flexibility of its structure; it is suitable for a wide variety of accident scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20networks" title="bayesian networks">bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil%20tank" title=" crude oil tank"> crude oil tank</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20tree" title=" fault tree"> fault tree</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/30636/fault-tree-analysis-and-bayesian-network-for-fire-and-explosion-of-crude-oil-tanks-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">660</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19114</span> Optimal Bayesian Control of the Proportion of Defectives in a Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viliam%20Makis">Viliam Makis</a>, <a href="https://publications.waset.org/abstracts/search?q=Farnoosh%20Naderkhani"> Farnoosh Naderkhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Jafari"> Leila Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a model and an algorithm for the calculation of the optimal control limit, average cost, sample size, and the sampling interval for an optimal Bayesian chart to control the proportion of defective items produced using a semi-Markov decision process approach. Traditional p-chart has been widely used for controlling the proportion of defectives in various kinds of production processes for many years. It is well known that traditional non-Bayesian charts are not optimal, but very few optimal Bayesian control charts have been developed in the literature, mostly considering finite horizon. The objective of this paper is to develop a fast computational algorithm to obtain the optimal parameters of a Bayesian p-chart. The decision problem is formulated in the partially observable framework and the developed algorithm is illustrated by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20control%20chart" title="Bayesian control chart">Bayesian control chart</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-Markov%20decision%20process" title=" semi-Markov decision process"> semi-Markov decision process</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20observable%20process" title=" partially observable process"> partially observable process</a> </p> <a href="https://publications.waset.org/abstracts/49751/optimal-bayesian-control-of-the-proportion-of-defectives-in-a-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19113</span> The Effect of Institutions on Economic Growth: An Analysis Based on Bayesian Panel Data Estimation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Anwar">Mohammad Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shah%20Waliullah"> Shah Waliullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated panel data regression models. This paper used Bayesian and classical methods to study the impact of institutions on economic growth from data (1990-2014), especially in developing countries. Under the classical and Bayesian methodology, the two-panel data models were estimated, which are common effects and fixed effects. For the Bayesian approach, the prior information is used in this paper, and normal gamma prior is used for the panel data models. The analysis was done through WinBUGS14 software. The estimated results of the study showed that panel data models are valid models in Bayesian methodology. In the Bayesian approach, the effects of all independent variables were positively and significantly affected by the dependent variables. Based on the standard errors of all models, we must say that the fixed effect model is the best model in the Bayesian estimation of panel data models. Also, it was proved that the fixed effect model has the lowest value of standard error, as compared to other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title="Bayesian approach">Bayesian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20effect" title=" common effect"> common effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20effect" title=" fixed effect"> fixed effect</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20effect" title=" random effect"> random effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Dynamic%20Random%20Effect%20Model" title=" Dynamic Random Effect Model"> Dynamic Random Effect Model</a> </p> <a href="https://publications.waset.org/abstracts/161692/the-effect-of-institutions-on-economic-growth-an-analysis-based-on-bayesian-panel-data-estimation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19112</span> New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suparman%20Suparman">Suparman Suparman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autoregressive%20%28AR%29%20model" title="autoregressive (AR) model">autoregressive (AR) model</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20white%20Noise" title=" exponential white Noise"> exponential white Noise</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian" title=" bayesian"> bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20jump%20Markov%20Chain%20Monte%20Carlo%20%28MCMC%29" title=" reversible jump Markov Chain Monte Carlo (MCMC)"> reversible jump Markov Chain Monte Carlo (MCMC)</a> </p> <a href="https://publications.waset.org/abstracts/71720/new-estimation-in-autoregressive-models-with-exponential-white-noise-by-using-reversible-jump-mcmc-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19111</span> Bayesian Approach for Moving Extremes Ranked Set Sampling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Ali%20Al-Hadhrami">Said Ali Al-Hadhrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Ibrahim%20Al-Omari"> Amer Ibrahim Al-Omari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, Bayesian estimation for the mean of exponential distribution is considered using Moving Extremes Ranked Set Sampling (MERSS). Three priors are used; Jeffery, conjugate and constant using MERSS and Simple Random Sampling (SRS). Some properties of the proposed estimators are investigated. It is found that the suggested estimators using MERSS are more efficient than its counterparts based on SRS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title="Bayesian">Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=moving%20extreme%20ranked%20set%20sampling" title=" moving extreme ranked set sampling"> moving extreme ranked set sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=ranked%20set%20sampling" title=" ranked set sampling"> ranked set sampling</a> </p> <a href="https://publications.waset.org/abstracts/30733/bayesian-approach-for-moving-extremes-ranked-set-sampling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19110</span> Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Watcharin%20Sangma">Watcharin Sangma</a>, <a href="https://publications.waset.org/abstracts/search?q=Onsiri%20Chanmuang"> Onsiri Chanmuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitsanu%20Tongkhow"> Pitsanu Tongkhow</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=forecasting%20model" title="forecasting model">forecasting model</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20demand%20uncertainty" title=" steel demand uncertainty"> steel demand uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20Bayesian%20framework" title=" hierarchical Bayesian framework"> hierarchical Bayesian framework</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20smoothing%20method" title=" exponential smoothing method"> exponential smoothing method</a> </p> <a href="https://publications.waset.org/abstracts/10196/forecasting-models-for-steel-demand-uncertainty-using-bayesian-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19109</span> Optimized Dynamic Bayesian Networks and Neural Verifier Test Applied to On-Line Isolated Characters Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Redouane%20Tlemsani">Redouane Tlemsani</a>, <a href="https://publications.waset.org/abstracts/search?q=Redouane"> Redouane</a>, <a href="https://publications.waset.org/abstracts/search?q=Belkacem%20Kouninef"> Belkacem Kouninef</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Benyettou"> Abdelkader Benyettou </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, our system is a Markovien system which we can see it like a Dynamic Bayesian Networks. One of the major interests of these systems resides in the complete training of the models (topology and parameters) starting from training data. The Bayesian Networks are representing models of dubious knowledge on complex phenomena. They are a union between the theory of probability and the graph theory in order to give effective tools to represent a joined probability distribution on a set of random variables. The representation of knowledge bases on description, by graphs, relations of causality existing between the variables defining the field of study. The theory of Dynamic Bayesian Networks is a generalization of the Bayesians networks to the dynamic processes. Our objective amounts finding the better structure which represents the relationships (dependencies) between the variables of a dynamic bayesian network. In applications in pattern recognition, one will carry out the fixing of the structure which obliges us to admit some strong assumptions (for example independence between some variables). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabic%20on%20line%20character%20recognition" title="Arabic on line character recognition">Arabic on line character recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20Bayesian%20network" title=" dynamic Bayesian network"> dynamic Bayesian network</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern%20recognition" title=" pattern recognition"> pattern recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=networks" title=" networks "> networks </a> </p> <a href="https://publications.waset.org/abstracts/34593/optimized-dynamic-bayesian-networks-and-neural-verifier-test-applied-to-on-line-isolated-characters-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19108</span> Forecasting Stock Indexes Using Bayesian Additive Regression Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darren%20Zou">Darren Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BART" title="BART">BART</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=predict" title=" predict"> predict</a>, <a href="https://publications.waset.org/abstracts/search?q=stock" title=" stock"> stock</a> </p> <a href="https://publications.waset.org/abstracts/124504/forecasting-stock-indexes-using-bayesian-additive-regression-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19107</span> Spatial Time Series Models for Rice and Cassava Yields Based on Bayesian Linear Mixed Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panudet%20Saengseedam">Panudet Saengseedam</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanthachai%20Kantanantha"> Nanthachai Kantanantha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20method" title="Bayesian method">Bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20mixed%20model" title=" linear mixed model"> linear mixed model</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20conditional%20autoregressive%20model" title=" multivariate conditional autoregressive model"> multivariate conditional autoregressive model</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20time%20series" title=" spatial time series"> spatial time series</a> </p> <a href="https://publications.waset.org/abstracts/11875/spatial-time-series-models-for-rice-and-cassava-yields-based-on-bayesian-linear-mixed-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19106</span> Risk Factors for Defective Autoparts Products Using Bayesian Method in Poisson Generalized Linear Mixed Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pitsanu%20Tongkhow">Pitsanu Tongkhow</a>, <a href="https://publications.waset.org/abstracts/search?q=Pichet%20Jiraprasertwong"> Pichet Jiraprasertwong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates risk factors for defective products in autoparts factories. Under a Bayesian framework, a generalized linear mixed model (GLMM) in which the dependent variable, the number of defective products, has a Poisson distribution is adopted. Its performance is compared with the Poisson GLM under a Bayesian framework. The factors considered are production process, machines, and workers. The products coded RT50 are observed. The study found that the Poisson GLMM is more appropriate than the Poisson GLM. For the production Process factor, the highest risk of producing defective products is Process 1, for the Machine factor, the highest risk is Machine 5, and for the Worker factor, the highest risk is Worker 6. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defective%20autoparts%20products" title="defective autoparts products">defective autoparts products</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20framework" title=" Bayesian framework"> Bayesian framework</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20linear%20mixed%20model%20%28GLMM%29" title=" generalized linear mixed model (GLMM)"> generalized linear mixed model (GLMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors "> risk factors </a> </p> <a href="https://publications.waset.org/abstracts/10195/risk-factors-for-defective-autoparts-products-using-bayesian-method-in-poisson-generalized-linear-mixed-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19105</span> A Reasoning Method of Cyber-Attack Attribution Based on Threat Intelligence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Qiang">Li Qiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Ze-Ming"> Yang Ze-Ming</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Bao-Xu"> Liu Bao-Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiang%20Zheng-Wei"> Jiang Zheng-Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing complexity of cyberspace security, the cyber-attack attribution has become an important challenge of the security protection systems. The difficult points of cyber-attack attribution were forced on the problems of huge data handling and key data missing. According to this situation, this paper presented a reasoning method of cyber-attack attribution based on threat intelligence. The method utilizes the intrusion kill chain model and Bayesian network to build attack chain and evidence chain of cyber-attack on threat intelligence platform through data calculation, analysis and reasoning. Then, we used a number of cyber-attack events which we have observed and analyzed to test the reasoning method and demo system, the result of testing indicates that the reasoning method can provide certain help in cyber-attack attribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reasoning" title="reasoning">reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20networks" title=" Bayesian networks"> Bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber-attack%20attribution" title=" cyber-attack attribution"> cyber-attack attribution</a>, <a href="https://publications.waset.org/abstracts/search?q=Kill%20Chain" title=" Kill Chain"> Kill Chain</a>, <a href="https://publications.waset.org/abstracts/search?q=threat%20intelligence" title=" threat intelligence"> threat intelligence</a> </p> <a href="https://publications.waset.org/abstracts/50175/a-reasoning-method-of-cyber-attack-attribution-based-on-threat-intelligence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19104</span> Learning a Bayesian Network for Situation-Aware Smart Home Service: A Case Study with a Robot Vacuum Cleaner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eu%20Tteum%20Ha">Eu Tteum Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyoung%20Kim"> Seyoung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeongmin%20Kim"> Jeongmin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Ryel%20Ryu"> Kwang Ryel Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The smart home environment backed up by IoT (internet of things) technologies enables intelligent services based on the awareness of the situation a user is currently in. One of the convenient sensors for recognizing the situations within a home is the smart meter that can monitor the status of each electrical appliance in real time. This paper aims at learning a Bayesian network that models the causal relationship between the user situations and the status of the electrical appliances. Using such a network, we can infer the current situation based on the observed status of the appliances. However, learning the conditional probability tables (CPTs) of the network requires many training examples that cannot be obtained unless the user situations are closely monitored by any means. This paper proposes a method for learning the CPT entries of the network relying only on the user feedbacks generated occasionally. In our case study with a robot vacuum cleaner, the feedback comes in whenever the user gives an order to the robot adversely from its preprogrammed setting. Given a network with randomly initialized CPT entries, our proposed method uses this feedback information to adjust relevant CPT entries in the direction of increasing the probability of recognizing the desired situations. Simulation experiments show that our method can rapidly improve the recognition performance of the Bayesian network using a relatively small number of feedbacks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20network" title="Bayesian network">Bayesian network</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=situation%20-awareness" title=" situation -awareness"> situation -awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20home" title=" smart home"> smart home</a> </p> <a href="https://publications.waset.org/abstracts/23000/learning-a-bayesian-network-for-situation-aware-smart-home-service-a-case-study-with-a-robot-vacuum-cleaner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23000.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19103</span> Using Dynamic Bayesian Networks to Characterize and Predict Job Placement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xupin%20Zhang">Xupin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Caterina%20Bramati"> Maria Caterina Bramati</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrest%20Fokoue"> Enrest Fokoue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the career placement of graduates from the university is crucial for both the qualities of education and ultimate satisfaction of students. In this research, we adapt the capabilities of dynamic Bayesian networks to characterize and predict students’ job placement using data from various universities. We also provide elements of the estimation of the indicator (score) of the strength of the network. The research focuses on overall findings as well as specific student groups including international and STEM students and their insight on the career path and what changes need to be made. The derived Bayesian network has the potential to be used as a tool for simulating the career path for students and ultimately helps universities in both academic advising and career counseling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20bayesian%20networks" title="dynamic bayesian networks">dynamic bayesian networks</a>, <a href="https://publications.waset.org/abstracts/search?q=indicator%20estimation" title=" indicator estimation"> indicator estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=job%20placement" title=" job placement"> job placement</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20networks" title=" social networks"> social networks</a> </p> <a href="https://publications.waset.org/abstracts/61886/using-dynamic-bayesian-networks-to-characterize-and-predict-job-placement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19102</span> Employing Bayesian Artificial Neural Network for Evaluation of Cold Rolling Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Kooche%20Baghy">P. Kooche Baghy</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Eskandari"> S. Eskandari</a>, <a href="https://publications.waset.org/abstracts/search?q=E.javanmard"> E.javanmard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neural network has been used as a predictive means of cold rolling force in this dissertation. Thus, imposed average force on rollers as a mere input and five pertaining parameters to its as a outputs are regarded. According to our study, feed-forward multilayer perceptron network has been selected. Besides, Bayesian algorithm based on the feed-forward back propagation method has been selected due to noisy data. Further, 470 out of 585 all tests were used for network learning and others (115 tests) were considered as assessment criteria. Eventually, by 30 times running the MATLAB software, mean error was obtained 3.84 percent as a criteria of network learning. As a consequence, this the mentioned error on par with other approaches such as numerical and empirical methods is acceptable admittedly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian" title=" Bayesian"> Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20rolling" title=" cold rolling"> cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20evaluation" title=" force evaluation"> force evaluation</a> </p> <a href="https://publications.waset.org/abstracts/47601/employing-bayesian-artificial-neural-network-for-evaluation-of-cold-rolling-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19101</span> A Bayesian Approach for Analyzing Academic Article Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Lien%20Hsu">Jia-Lien Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiung-Wen%20Chang"> Chiung-Wen Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Research articles may follow a simple and succinct structure of organizational patterns, called move. For example, considering extended abstracts, we observe that an extended abstract usually consists of five moves, including Background, Aim, Method, Results, and Conclusion. As another example, when publishing articles in PubMed, authors are encouraged to provide a structured abstract, which is an abstract with distinct and labeled sections (e.g., Introduction, Methods, Results, Discussions) for rapid comprehension. This paper introduces a method for computational analysis of move structures (i.e., Background-Purpose-Method-Result-Conclusion) in abstracts and introductions of research documents, instead of manually time-consuming and labor-intensive analysis process. In our approach, sentences in a given abstract and introduction are automatically analyzed and labeled with a specific move (i.e., B-P-M-R-C in this paper) to reveal various rhetorical status. As a result, it is expected that the automatic analytical tool for move structures will facilitate non-native speakers or novice writers to be aware of appropriate move structures and internalize relevant knowledge to improve their writing. In this paper, we propose a Bayesian approach to determine move tags for research articles. The approach consists of two phases, training phase and testing phase. In the training phase, we build a Bayesian model based on a couple of given initial patterns and the corpus, a subset of CiteSeerX. In the beginning, the priori probability of Bayesian model solely relies on initial patterns. Subsequently, with respect to the corpus, we process each document one by one: extract features, determine tags, and update the Bayesian model iteratively. In the testing phase, we compare our results with tags which are manually assigned by the experts. In our experiments, the promising accuracy of the proposed approach reaches 56%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20English%20writing" title="academic English writing">academic English writing</a>, <a href="https://publications.waset.org/abstracts/search?q=assisted%20writing" title=" assisted writing"> assisted writing</a>, <a href="https://publications.waset.org/abstracts/search?q=move%20tag%20analysis" title=" move tag analysis"> move tag analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title=" Bayesian approach"> Bayesian approach</a> </p> <a href="https://publications.waset.org/abstracts/42221/a-bayesian-approach-for-analyzing-academic-article-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19100</span> Intelligent Computing with Bayesian Regularization Artificial Neural Networks for a Nonlinear System of COVID-19 Epidemic Model for Future Generation Disease Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Nawaz%20Cheema">Tahir Nawaz Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Baleanu"> Dumitru Baleanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Raza"> Ali Raza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research work, we design intelligent computing through Bayesian Regularization artificial neural networks (BRANNs) introduced to solve the mathematical modeling of infectious diseases (Covid-19). The dynamical transmission is due to the interaction of people and its mathematical representation based on the system's nonlinear differential equations. The generation of the dataset of the Covid-19 model is exploited by the power of the explicit Runge Kutta method for different countries of the world like India, Pakistan, Italy, and many more. The generated dataset is approximately used for training, testing, and validation processes for every frequent update in Bayesian Regularization backpropagation for numerical behavior of the dynamics of the Covid-19 model. The performance and effectiveness of designed methodology BRANNs are checked through mean squared error, error histograms, numerical solutions, absolute error, and regression analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20models" title="mathematical models">mathematical models</a>, <a href="https://publications.waset.org/abstracts/search?q=beysian%20regularization" title=" beysian regularization"> beysian regularization</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian-regularization%20backpropagation%20networks" title=" bayesian-regularization backpropagation networks"> bayesian-regularization backpropagation networks</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20computing" title=" numerical computing"> numerical computing</a> </p> <a href="https://publications.waset.org/abstracts/145835/intelligent-computing-with-bayesian-regularization-artificial-neural-networks-for-a-nonlinear-system-of-covid-19-epidemic-model-for-future-generation-disease-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19099</span> Bayesian Analysis of Topp-Leone Generalized Exponential Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najrullah%20Khan">Najrullah Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Athar%20Ali%20Khan"> Athar Ali Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Topp-Leone distribution was introduced by Topp- Leone in 1955. In this paper, an attempt has been made to fit Topp-Leone Generalized exponential (TPGE) distribution. A real survival data set is used for illustrations. Implementation is done using R and JAGS and appropriate illustrations are made. R and JAGS codes have been provided to implement censoring mechanism using both optimization and simulation tools. The main aim of this paper is to describe and illustrate the Bayesian modelling approach to the analysis of survival data. Emphasis is placed on the modeling of data and the interpretation of the results. Crucial to this is an understanding of the nature of the incomplete or 'censored' data encountered. Analytic approximation and simulation tools are covered here, but most of the emphasis is on Markov chain based Monte Carlo method including independent Metropolis algorithm, which is currently the most popular technique. For analytic approximation, among various optimization algorithms and trust region method is found to be the best. In this paper, TPGE model is also used to analyze the lifetime data in Bayesian paradigm. Results are evaluated from the above mentioned real survival data set. The analytic approximation and simulation methods are implemented using some software packages. It is clear from our findings that simulation tools provide better results as compared to those obtained by asymptotic approximation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20Inference" title="Bayesian Inference">Bayesian Inference</a>, <a href="https://publications.waset.org/abstracts/search?q=JAGS" title=" JAGS"> JAGS</a>, <a href="https://publications.waset.org/abstracts/search?q=Laplace%20Approximation" title=" Laplace Approximation"> Laplace Approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=LaplacesDemon" title=" LaplacesDemon"> LaplacesDemon</a>, <a href="https://publications.waset.org/abstracts/search?q=posterior" title=" posterior"> posterior</a>, <a href="https://publications.waset.org/abstracts/search?q=R%20Software" title=" R Software"> R Software</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/77532/bayesian-analysis-of-topp-leone-generalized-exponential-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19098</span> Bayesian Semiparametric Geoadditive Modelling of Underweight Malnutrition of Children under 5 Years in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endeshaw%20Assefa%20Derso">Endeshaw Assefa Derso</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Gabriella%20Campolo"> Maria Gabriella Campolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Alibrandi"> Angela Alibrandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives:Early childhood malnutrition can have long-term and irreversible effects on a child's health and development. This study uses the Bayesian method with spatial variation to investigate the flexible trends of metrical covariates and to identify communities at high risk of injury. Methods: Cross-sectional data on underweight are collected from the 2016 Ethiopian Demographic and Health Survey (EDHS). The Bayesian geo-additive model is performed. Appropriate prior distributions were provided for scall parameters in the models, and the inference is entirely Bayesian, using Monte Carlo Markov chain (MCMC) stimulation. Results: The results show that metrical covariates like child age, maternal body mass index (BMI), and maternal age affect a child's underweight non-linearly. Lower and higher maternal BMI seem to have a significant impact on the child’s high underweight. There was also a significant spatial heterogeneity, and based on IDW interpolation of predictive values, the western, central, and eastern parts of the country are hotspot areas. Conclusion: Socio-demographic and community- based programs development should be considered compressively in Ethiopian policy to combat childhood underweight malnutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesX" title="bayesX">bayesX</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a>, <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title=" malnutrition"> malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=MCMC" title=" MCMC"> MCMC</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-parametric%20bayesian%20analysis" title=" semi-parametric bayesian analysis"> semi-parametric bayesian analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20distribution" title=" spatial distribution"> spatial distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=P-%20splines" title=" P- splines"> P- splines</a> </p> <a href="https://publications.waset.org/abstracts/174148/bayesian-semiparametric-geoadditive-modelling-of-underweight-malnutrition-of-children-under-5-years-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19097</span> Understanding Mathematics Achievements among U. S. Middle School Students: A Bayesian Multilevel Modeling Analysis with Informative Priors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Yuan">Jing Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Yang"> Hongwei Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to understand U.S. middle school students’ mathematics achievements by examining relevant student and school-level predictors. Through a variance component analysis, the study first identifies evidence supporting the use of multilevel modeling. Then, a multilevel analysis is performed under Bayesian statistical inference where prior information is incorporated into the modeling process. During the analysis, independent variables are entered sequentially in the order of theoretical importance to create a hierarchy of models. By evaluating each model using Bayesian fit indices, a best-fit and most parsimonious model is selected where Bayesian statistical inference is performed for the purpose of result interpretation and discussion. The primary dataset for Bayesian modeling is derived from the Program for International Student Assessment (PISA) in 2012 with a secondary PISA dataset from 2003 analyzed under the traditional ordinary least squares method to provide the information needed to specify informative priors for a subset of the model parameters. The dependent variable is a composite measure of mathematics literacy, calculated from an exploratory factor analysis of all five PISA 2012 mathematics achievement plausible values for which multiple evidences are found supporting data unidimensionality. The independent variables include demographics variables and content-specific variables: mathematics efficacy, teacher-student ratio, proportion of girls in the school, etc. Finally, the entire analysis is performed using the MCMCpack and MCMCglmm packages in R. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20multilevel%20modeling" title="Bayesian multilevel modeling">Bayesian multilevel modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematics%20education" title=" mathematics education"> mathematics education</a>, <a href="https://publications.waset.org/abstracts/search?q=PISA" title=" PISA"> PISA</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel" title=" multilevel"> multilevel</a> </p> <a href="https://publications.waset.org/abstracts/67623/understanding-mathematics-achievements-among-u-s-middle-school-students-a-bayesian-multilevel-modeling-analysis-with-informative-priors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19096</span> The Bayesian Premium Under Entropy Loss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farouk%20Metiri">Farouk Metiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Halim%20Zeghdoudi"> Halim Zeghdoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Riad%20Remita"> Mohamed Riad Remita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Credibility theory is an experience rating technique in actuarial science which can be seen as one of quantitative tools that allows the insurers to perform experience rating, that is, to adjust future premiums based on past experiences. It is used usually in automobile insurance, worker's compensation premium, and IBNR (incurred but not reported claims to the insurer) where credibility theory can be used to estimate the claim size amount. In this study, we focused on a popular tool in credibility theory which is the Bayesian premium estimator, considering Lindley distribution as a claim distribution. We derive this estimator under entropy loss which is asymmetric and squared error loss which is a symmetric loss function with informative and non-informative priors. In a purely Bayesian setting, the prior distribution represents the insurer’s prior belief about the insured’s risk level after collection of the insured’s data at the end of the period. However, the explicit form of the Bayesian premium in the case when the prior is not a member of the exponential family could be quite difficult to obtain as it involves a number of integrations which are not analytically solvable. The paper finds a solution to this problem by deriving this estimator using numerical approximation (Lindley approximation) which is one of the suitable approximation methods for solving such problems, it approaches the ratio of the integrals as a whole and produces a single numerical result. Simulation study using Monte Carlo method is then performed to evaluate this estimator and mean squared error technique is made to compare the Bayesian premium estimator under the above loss functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayesian%20estimator" title="bayesian estimator">bayesian estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=credibility%20theory" title=" credibility theory"> credibility theory</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20loss" title=" entropy loss"> entropy loss</a>, <a href="https://publications.waset.org/abstracts/search?q=monte%20carlo%20simulation" title=" monte carlo simulation"> monte carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/47704/the-bayesian-premium-under-entropy-loss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47704.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19095</span> Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nada%20Souissi">Nada Souissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Mroua"> Mourad Mroua</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Financial%20asset%20return%20predictability" title="Financial asset return predictability">Financial asset return predictability</a>, <a href="https://publications.waset.org/abstracts/search?q=Economic%20factors" title=" Economic factors"> Economic factors</a>, <a href="https://publications.waset.org/abstracts/search?q=Investor%27s%20psychology%20index" title=" Investor's psychology index"> Investor's psychology index</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title=" Bayesian approach"> Bayesian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Probabilistic%20networks" title=" Probabilistic networks"> Probabilistic networks</a>, <a href="https://publications.waset.org/abstracts/search?q=Parametric%20learning" title=" Parametric learning"> Parametric learning</a> </p> <a href="https://publications.waset.org/abstracts/123056/financial-assets-return-economic-factors-and-investors-behavioral-indicators-relationships-modeling-a-bayesian-networks-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19094</span> Design of Bayesian MDS Sampling Plan Based on the Process Capability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davood%20Shishebori">Davood Shishebori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saber%20Fallah%20Nezhad"> Mohammad Saber Fallah Nezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sina%20Seifi"> Sina Seifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a variable multiple dependent state (MDS) sampling plan is developed based on the process capability index using Bayesian approach. The optimal parameters of the developed sampling plan with respect to constraints related to the risk of consumer and producer are presented. Two comparison studies have been done. First, the methods of double sampling model, sampling plan for resubmitted lots and repetitive group sampling (RGS) plan are elaborated and average sample numbers of the developed MDS plan and other classical methods are compared. A comparison study between the developed MDS plan based on Bayesian approach and the exact probability distribution is carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MDS%20sampling%20plan" title="MDS sampling plan">MDS sampling plan</a>, <a href="https://publications.waset.org/abstracts/search?q=RGS%20plan" title=" RGS plan"> RGS plan</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20plan%20for%20resubmitted%20lots" title=" sampling plan for resubmitted lots"> sampling plan for resubmitted lots</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability%20index%20%28PCI%29" title=" process capability index (PCI)"> process capability index (PCI)</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20sample%20number%20%28ASN%29" title=" average sample number (ASN)"> average sample number (ASN)</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title=" Bayesian approach"> Bayesian approach</a> </p> <a href="https://publications.waset.org/abstracts/74571/design-of-bayesian-mds-sampling-plan-based-on-the-process-capability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=637">637</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=638">638</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Bayesian%20method&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>