CINXE.COM

Three-dimensional integrated circuit - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Three-dimensional integrated circuit - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ed8ac583-ec6b-4524-badd-7ea6c05d5273","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Three-dimensional_integrated_circuit","wgTitle":"Three-dimensional integrated circuit","wgCurRevisionId":1253035433,"wgRevisionId":1253035433,"wgArticleId":15367982,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive template wayback links","CS1 maint: archived copy as title","CS1: long volume value","Articles with short description","Short description is different from Wikidata","Articles containing potentially dated statements from 2022","All articles containing potentially dated statements","All articles with dead external links","Articles with dead external links from February 2020","Articles with permanently dead external links", "CS1 errors: periodical ignored","Integrated circuits","Semiconductor device fabrication","Packaging (microfabrication)","Japanese inventions","MOSFETs"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Three-dimensional_integrated_circuit","wgRelevantArticleId":15367982,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false, "wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q229370","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init": "ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Three-dimensional integrated circuit - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Three-dimensional_integrated_circuit"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Three-dimensional_integrated_circuit rootpage-Three-dimensional_integrated_circuit skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Three-dimensional+integrated+circuit" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Three-dimensional+integrated+circuit" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Three-dimensional+integrated+circuit" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Three-dimensional+integrated+circuit" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Types" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Types"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Types</span> </div> </a> <button aria-controls="toc-Types-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Types subsection</span> </button> <ul id="toc-Types-sublist" class="vector-toc-list"> <li id="toc-3D_ICs_vs._3D_packaging" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#3D_ICs_vs._3D_packaging"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>3D ICs vs. 3D packaging</span> </div> </a> <ul id="toc-3D_ICs_vs._3D_packaging-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-3D_SiCs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#3D_SiCs"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>3D SiCs</span> </div> </a> <ul id="toc-3D_SiCs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Monolithic_3D_ICs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Monolithic_3D_ICs"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Monolithic 3D ICs</span> </div> </a> <ul id="toc-Monolithic_3D_ICs-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Manufacturing_technologies_for_3D_SiCs" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Manufacturing_technologies_for_3D_SiCs"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Manufacturing technologies for 3D SiCs</span> </div> </a> <ul id="toc-Manufacturing_technologies_for_3D_SiCs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Benefits" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Benefits"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Benefits</span> </div> </a> <ul id="toc-Benefits-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Challenges" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Challenges"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Challenges</span> </div> </a> <ul id="toc-Challenges-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Design_styles" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Design_styles"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Design styles</span> </div> </a> <ul id="toc-Design_styles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Demonstrations_(1983–2012)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Demonstrations_(1983–2012)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Demonstrations (1983–2012)</span> </div> </a> <ul id="toc-Demonstrations_(1983–2012)-sublist" class="vector-toc-list"> <li id="toc-Japan_(1983–2005)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Japan_(1983–2005)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.1</span> <span>Japan (1983–2005)</span> </div> </a> <ul id="toc-Japan_(1983–2005)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Europe_(1988–2005)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Europe_(1988–2005)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.2</span> <span>Europe (1988–2005)</span> </div> </a> <ul id="toc-Europe_(1988–2005)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-United_States_(1999–2012)" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#United_States_(1999–2012)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1.3</span> <span>United States (1999–2012)</span> </div> </a> <ul id="toc-United_States_(1999–2012)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Commercial_3D_ICs_(2004–present)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Commercial_3D_ICs_(2004–present)"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Commercial 3D ICs (2004–present)</span> </div> </a> <ul id="toc-Commercial_3D_ICs_(2004–present)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Further_reading" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Further_reading"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Further reading</span> </div> </a> <ul id="toc-Further_reading-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Three-dimensional integrated circuit</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 8 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-8" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">8 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AF%D8%A7%D8%B1%D8%A9_%D9%85%D8%AA%D9%83%D8%A7%D9%85%D9%84%D8%A9_%D8%AB%D9%84%D8%A7%D8%AB%D9%8A%D8%A9_%D8%A7%D9%84%D8%A3%D8%A8%D8%B9%D8%A7%D8%AF" title="دارة متكاملة ثلاثية الأبعاد – Arabic" lang="ar" hreflang="ar" data-title="دارة متكاملة ثلاثية الأبعاد" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Circuit_integrat_tridimensional" title="Circuit integrat tridimensional – Catalan" lang="ca" hreflang="ca" data-title="Circuit integrat tridimensional" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/3D-Integration" title="3D-Integration – German" lang="de" hreflang="de" data-title="3D-Integration" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Kolmem%C3%B5%C3%B5tmeline_integraall%C3%BClitus" title="Kolmemõõtmeline integraallülitus – Estonian" lang="et" hreflang="et" data-title="Kolmemõõtmeline integraallülitus" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Chip_tridimensional_(3D)" title="Chip tridimensional (3D) – Spanish" lang="es" hreflang="es" data-title="Chip tridimensional (3D)" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/3%EC%B0%A8%EC%9B%90_%EC%A7%91%EC%A0%81_%ED%9A%8C%EB%A1%9C" title="3차원 집적 회로 – Korean" lang="ko" hreflang="ko" data-title="3차원 집적 회로" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Circuito_integrado_tridimensional" title="Circuito integrado tridimensional – Portuguese" lang="pt" hreflang="pt" data-title="Circuito integrado tridimensional" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%B8%89%E7%B6%AD%E6%99%B6%E7%89%87" title="三維晶片 – Chinese" lang="zh" hreflang="zh" data-title="三維晶片" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q229370#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Three-dimensional_integrated_circuit" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Three-dimensional_integrated_circuit" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Three-dimensional_integrated_circuit"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Three-dimensional_integrated_circuit"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Three-dimensional_integrated_circuit" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Three-dimensional_integrated_circuit" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;oldid=1253035433" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Three-dimensional_integrated_circuit&amp;id=1253035433&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FThree-dimensional_integrated_circuit"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FThree-dimensional_integrated_circuit"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Three-dimensional_integrated_circuit&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q229370" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Integrated circuit composed of several vertically stacked chips</div> <p>A <b>three-dimensional integrated circuit</b> (<b>3D IC</b>) is a <a href="/wiki/MOSFET" title="MOSFET">MOS</a> (metal-oxide semiconductor) <a href="/wiki/Integrated_circuit" title="Integrated circuit">integrated circuit</a> (IC) manufactured by stacking as many as 16 or more ICs and interconnecting them vertically using, for instance, <a href="/wiki/Through-silicon_via" title="Through-silicon via">through-silicon vias</a> (TSVs) or Cu-Cu connections,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> so that they behave as a single device to achieve performance improvements at reduced power and smaller footprint than conventional two dimensional processes. The 3D&#160;IC is one of several 3D integration schemes that exploit the z-direction to achieve electrical performance benefits in <a href="/wiki/Microelectronics" title="Microelectronics">microelectronics</a> and <a href="/wiki/Nanoelectronics" title="Nanoelectronics">nanoelectronics</a>. </p><p>3D integrated circuits can be classified by their level of interconnect hierarchy at the global (<a href="/wiki/Integrated_circuit_packaging" title="Integrated circuit packaging">package</a>), intermediate (bond pad) and local (<a href="/wiki/Transistor" title="Transistor">transistor</a>) level.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> In general, 3D integration is a broad term that includes such technologies as 3D wafer-level packaging (3DWLP); 2.5D and 3D interposer-based integration; 3D stacked ICs (3D-SICs); 3D heterogeneous integration; and 3D systems integration;<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AutoRE-24_5-0" class="reference"><a href="#cite_note-AutoRE-24-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> as well as true monolithic 3D&#160;ICs. </p><p>International organizations such as the Jisso Technology Roadmap Committee (JIC) and the <a href="/wiki/International_Technology_Roadmap_for_Semiconductors" title="International Technology Roadmap for Semiconductors">International Technology Roadmap for Semiconductors</a> (ITRS) have worked to classify the various 3D integration technologies to further the establishment of standards and roadmaps of 3D integration.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> As of the 2010s, 3D&#160;ICs are widely used for <a href="/wiki/NAND_flash" class="mw-redirect" title="NAND flash">NAND</a> <a href="/wiki/Flash_memory" title="Flash memory">flash memory</a> and in <a href="/wiki/Mobile_device" title="Mobile device">mobile devices</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Types">Types</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=1" title="Edit section: Types"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="3D_ICs_vs._3D_packaging">3D&#160;ICs vs. 3D packaging</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=2" title="Edit section: 3D ICs vs. 3D packaging"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>3D packaging refers to 3D integration schemes that rely on traditional interconnection methods such as <a href="/wiki/Wire_bonding" title="Wire bonding">wire bonding</a> and <a href="/wiki/Flip_chip" title="Flip chip">flip chip</a> to achieve vertical stacking. 3D packaging can be divided into 3D <a href="/wiki/System_in_package" class="mw-redirect" title="System in package">system in package</a> (3D SiP) and 3D <a href="/wiki/Wafer_level_package" class="mw-redirect" title="Wafer level package">wafer level package</a> (3D WLP). 3D SiPs that have been in mainstream manufacturing for some time and have a well-established infrastructure include stacked memory dies interconnected with wire bonds and <a href="/wiki/Package_on_package" class="mw-redirect" title="Package on package">package on package</a> (PoP) configurations interconnected with wire bonds or flip chip technology. PoP is used for vertically integrating disparate technologies. 3D WLP uses wafer level processes such as <a href="/wiki/Redistribution_layer" title="Redistribution layer">redistribution layers</a> (RDLs) and wafer bumping processes to form interconnects. </p><p>2.5D <a href="/wiki/Interposer" title="Interposer">interposer</a> is a 3D WLP that interconnects dies side-by-side on a silicon, glass, or organic interposer using through silicon vias (TSVs) and an RDL. In all types of 3D packaging, chips in the package communicate using off-chip signaling, much as if they were mounted in separate packages on a normal printed circuit board. The interposer may be made of silicon, and is under the dies it connects together. A design can be split into several dies, and then mounted on the interposer with micro bumps.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p><p>3D&#160;ICs can be divided into 3D Stacked ICs (3D SIC), which refers to <a href="/wiki/Advanced_packaging_(semiconductors)" title="Advanced packaging (semiconductors)">advanced packaging</a> techniques<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> stacking IC chips using TSV interconnects, and monolithic 3D&#160;ICs, which use fab processes to realize 3D interconnects at the local levels of the on-chip wiring hierarchy as set forth by the ITRS, this results in direct vertical interconnects between device layers. The first examples of a monolithic approach are seen in <a href="/wiki/Samsung_Electronics" title="Samsung Electronics">Samsung</a>'s 3D <a href="/wiki/V-NAND" class="mw-redirect" title="V-NAND">V-NAND</a> devices.<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>As of the 2010s, 3D&#160;IC packages are widely used for <a href="/wiki/NAND_flash" class="mw-redirect" title="NAND flash">NAND flash</a> memory in <a href="/wiki/Mobile_devices" class="mw-redirect" title="Mobile devices">mobile devices</a>.<sup id="cite_ref-James_14-0" class="reference"><a href="#cite_note-James-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:3DS_die_stacking_concept_model.PNG" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/3DS_die_stacking_concept_model.PNG/220px-3DS_die_stacking_concept_model.PNG" decoding="async" width="220" height="97" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/25/3DS_die_stacking_concept_model.PNG/330px-3DS_die_stacking_concept_model.PNG 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/25/3DS_die_stacking_concept_model.PNG/440px-3DS_die_stacking_concept_model.PNG 2x" data-file-width="1000" data-file-height="440" /></a><figcaption>One master die and three slave dies</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="3D_SiCs">3D SiCs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=3" title="Edit section: 3D SiCs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The digital electronics market requires a higher density <a href="/wiki/Semiconductor_memory" title="Semiconductor memory">semiconductor memory</a> chip to cater to recently released <a href="/wiki/Central_processing_unit" title="Central processing unit">CPU</a> components, and the multiple die stacking technique has been suggested as a solution to this problem. <a href="/wiki/JEDEC" title="JEDEC">JEDEC</a> disclosed the upcoming <a href="/wiki/Dynamic_random-access_memory" title="Dynamic random-access memory">DRAM</a> technology includes the "3D SiC" die stacking plan at "Server Memory Forum", November 1–2, 2011, Santa Clara, CA. In August 2014, <a href="/wiki/Samsung_Electronics" title="Samsung Electronics">Samsung Electronics</a> started producing 64<span class="nowrap">&#160;</span>GB <a href="/wiki/SDRAM" class="mw-redirect" title="SDRAM">SDRAM</a> modules for servers based on emerging <a href="/wiki/DDR4" class="mw-redirect" title="DDR4">DDR4</a> (double-data rate 4) memory using 3D TSV package technology.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> Newer proposed standards for 3D stacked DRAM include Wide I/O, Wide I/O 2, <a href="/wiki/Hybrid_Memory_Cube" title="Hybrid Memory Cube">Hybrid Memory Cube</a>, <a href="/wiki/High_Bandwidth_Memory" title="High Bandwidth Memory">High Bandwidth Memory</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Monolithic_3D_ICs">Monolithic 3D ICs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=4" title="Edit section: Monolithic 3D ICs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>True monolithic 3D ICs are built in layers on a single <a href="/wiki/Wafer_(electronics)" title="Wafer (electronics)">semiconductor wafer</a>, which is then <a href="/wiki/Wafer_dicing" class="mw-redirect" title="Wafer dicing">diced</a> into 3D&#160;ICs. There is only one substrate, hence no need for aligning, thinning, bonding, or <a href="/wiki/Through-silicon_via" title="Through-silicon via">through-silicon vias</a>. In general, monolithic 3D ICs are still a developing technology and are considered by most to be several years away from production. </p><p>Process temperature limitations can be addressed by partitioning the transistor fabrication into two phases. A high temperature phase which is done before layer transfer followed by a layer transfer using <a rel="nofollow" class="external text" href="http://www.monolithic3d.com/ion-cut-the-building-block.html">ion-cut</a>, also known as layer transfer, which has been used to produce <a href="/wiki/Silicon_on_insulator" title="Silicon on insulator">Silicon on Insulator (SOI)</a> wafers for the past two decades. Multiple thin (10s–100s nanometer scale) layers of virtually defect-free Silicon can be created by utilizing low temperature (&lt;400&#160;°C) bond and cleave techniques, and placed on top of active transistor circuitry, followed by permanent finalization of the transistors using etch and deposition processes. This monolithic 3D&#160;IC technology has been researched at <a href="/wiki/Stanford_University" title="Stanford University">Stanford University</a> under a <a href="/wiki/DARPA" title="DARPA">DARPA</a>-sponsored grant. </p><p>CEA-Leti also developed monolithic 3D&#160;IC approaches, called sequential 3D&#160;IC. In 2014, the French research institute introduced its CoolCube™, a low-temperature process flow that provides a true path to 3DVLSI.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p>At Stanford University, researchers designed monolithic 3D&#160;ICs using carbon nanotube (CNT) structures vs. silicon using a wafer-scale low temperature CNT transfer processes that can be done at 120&#160;°C.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Manufacturing_technologies_for_3D_SiCs">Manufacturing technologies for 3D SiCs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=5" title="Edit section: Manufacturing technologies for 3D SiCs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are several methods for 3D IC design, including recrystallization and wafer bonding methods. There are two major types of wafer bonding, Cu-Cu connections (copper-to-copper connections between stacked ICs, used in TSVs)<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Reif_19-0" class="reference"><a href="#cite_note-Reif-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Through-silicon_via" title="Through-silicon via">through-silicon via</a> (TSV). 3D ICs with TSVs may use solder microbumps, small solder balls as an interface between two individual dies in a 3D IC.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> As of 2014, a number of memory products such as <a href="/wiki/High_Bandwidth_Memory" title="High Bandwidth Memory">High Bandwidth Memory</a> (HBM) and the <a href="/wiki/Hybrid_Memory_Cube" title="Hybrid Memory Cube">Hybrid Memory Cube</a> have been launched that implement 3D&#160;IC stacking with TSVs. There are a number of key stacking approaches being implemented and explored. These include die-to-die, die-to-wafer, and wafer-to-wafer. </p> <dl><dt>Die-to-Die</dt> <dd>Electronic components are built on multiple die, which are then aligned and bonded. Thinning and TSV creation may be done before or after bonding. One advantage of die-to-die is that each component die can be tested first, so that one bad die does not ruin an entire stack.<sup id="cite_ref-AutoRE-5_21-0" class="reference"><a href="#cite_note-AutoRE-5-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Moreover, each die in the 3D&#160;IC can be binned beforehand, so that they can be mixed and matched to optimize power consumption and performance (e.g. matching multiple dice from the low power process corner for a mobile application).</dd> <dt>Die-to-Wafer</dt> <dd>Electronic components are built on two semiconductor wafers. One wafer is diced; the singulated <a href="/wiki/Die_(integrated_circuit)" title="Die (integrated circuit)">dice</a> are aligned and bonded onto die sites of the second wafer. As in the wafer-on-wafer method, thinning and TSV creation are performed either before or after bonding. Additional die may be added to the stacks before dicing.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Wafer-to-Wafer</dt> <dd><a href="/wiki/Electronic_component" title="Electronic component">Electronic components</a> are built on two or more <a href="/wiki/Wafer_(electronics)" title="Wafer (electronics)">semiconductor wafers</a>, which are then aligned, bonded, and <a href="/wiki/Wafer_dicing" class="mw-redirect" title="Wafer dicing">diced</a> into 3D&#160;ICs. Each wafer may be thinned before or after bonding. Vertical <a href="/wiki/Electrical_connection" class="mw-redirect" title="Electrical connection">connections</a> are either built into the wafers before bonding or else created in the stack after bonding. These "<a href="/wiki/Through-silicon_via" title="Through-silicon via">through-silicon vias</a>" (TSVs) pass through the silicon substrate(s) between active layers and/or between an active layer and an external bond pad. Wafer-to-wafer bonding can reduce yields, since if any 1 of <i>N</i> chips in a 3D&#160;IC are defective, the entire 3D&#160;IC will be defective. Moreover, the wafers must be the same size, but many exotic materials (e.g. III-Vs) are manufactured on much smaller wafers than <a href="/wiki/CMOS_logic" class="mw-redirect" title="CMOS logic">CMOS logic</a> or <a href="/wiki/Dynamic_random-access_memory" title="Dynamic random-access memory">DRAM</a> (typically 300&#160;mm), complicating heterogeneous integration.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Benefits">Benefits</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=6" title="Edit section: Benefits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>While traditional <a href="/wiki/CMOS" title="CMOS">CMOS</a> scaling processes improves signal propagation speed, scaling from current manufacturing and chip-design technologies is becoming more difficult and costly, in part because of power-density constraints, and in part because interconnects do not become faster while transistors do.<sup id="cite_ref-AutoRE-6_23-0" class="reference"><a href="#cite_note-AutoRE-6-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> 3D&#160;ICs address the scaling challenge by stacking 2D dies and connecting them in the 3rd dimension. This promises to speed up communication between layered chips, compared to planar layout.<sup id="cite_ref-AutoRE-7_24-0" class="reference"><a href="#cite_note-AutoRE-7-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> 3D&#160;ICs promise many significant benefits, including: </p> <dl><dt>Footprint</dt> <dd>More functionality fits into a small space. The smaller form factors are of great importance in embedded devices such as mobile phones, IoT systems for which 3D non-volatile memory stacks have been developed (e.g. 3D NAND chips) <a rel="nofollow" class="external autonumber" href="https://www.electronicdesign.com/technologies/embedded/article/21247462/electronic-design-3d-nand-memory-chips-stacked-high-at-micron">[1]</a>&#160;:: <b>Moore's Law Extension</b>: The increased number of transistors being packed in the same footprint is seen as an extension to <a href="/wiki/Moore%27s_law" title="Moore&#39;s law">Moore's law</a> by some researchers. This enables extending the Moore's Law without its traditional pair of Dennard Scaling towards a new generation of chips with increased computing capacity for the same footprint.<a rel="nofollow" class="external autonumber" href="https://spectrum.ieee.org/3d-cmos">[2]</a>:</dd> <dt>Cost</dt> <dd>Partitioning a large chip into multiple smaller dies with 3D stacking can improve the yield and reduce the fabrication cost if individual dies are tested separately.<sup id="cite_ref-AutoRE-8_25-0" class="reference"><a href="#cite_note-AutoRE-8-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AutoRE-9_26-0" class="reference"><a href="#cite_note-AutoRE-9-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Heterogeneous Integration</dt> <dd>Circuit layers can be built with different processes, or even on different types of wafers. This means that components can be optimized to a much greater degree than if they were built together on a single wafer. Moreover, components with incompatible manufacturing could be combined in a single 3D&#160;IC.<sup id="cite_ref-AutoRE-10_27-0" class="reference"><a href="#cite_note-AutoRE-10-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AutoRE-24_5-1" class="reference"><a href="#cite_note-AutoRE-24-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Shorter Interconnect</dt> <dd>The average wire length is reduced. Common figures reported by researchers are on the order of 10–15%, but this reduction mostly applies to longer interconnect, which may affect circuit delay by a greater amount. Given that 3D wires have much higher capacitance than conventional in-die wires, circuit delay may or may not improve.</dd> <dt>Power</dt> <dd>Keeping a signal on-chip can reduce its <a href="/wiki/Power_consumption" class="mw-redirect" title="Power consumption">power consumption</a> by 10–100 times.<sup id="cite_ref-AutoRE-11_28-0" class="reference"><a href="#cite_note-AutoRE-11-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Shorter wires also reduce power consumption by producing less <a href="/wiki/Parasitic_capacitance" title="Parasitic capacitance">parasitic capacitance</a>.<sup id="cite_ref-AutoRE-12_29-0" class="reference"><a href="#cite_note-AutoRE-12-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> Reducing the power budget leads to less heat generation, extended battery life, and lower cost of operation.</dd> <dt>Design</dt> <dd>The vertical dimension adds a higher order of connectivity and offers new design possibilities.<sup id="cite_ref-AutoRE-24_5-2" class="reference"><a href="#cite_note-AutoRE-24-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Circuit Security</dt> <dd>3D integration can achieve <a href="/wiki/Security_through_obscurity" title="Security through obscurity">security through obscurity</a>; the stacked structure complicates attempts to <a href="/wiki/Reverse_engineering" title="Reverse engineering">reverse engineer</a> the circuitry. Sensitive circuits may also be divided among the layers in such a way as to obscure the function of each layer.<sup id="cite_ref-AutoRE-13_30-0" class="reference"><a href="#cite_note-AutoRE-13-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> Moreover, 3D integration allows to integrate dedicated, <a href="/wiki/System_monitor" title="System monitor">system monitor</a>-like features in separate layers.<sup id="cite_ref-AutoRE-24_5-3" class="reference"><a href="#cite_note-AutoRE-24-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> The objective here is to implement some kind of hardware <a href="/wiki/Firewall_(computing)" title="Firewall (computing)">firewall</a> for any commodity components/chips to be monitored at runtime, seeking to protect the whole <a href="/wiki/Electronic_system" class="mw-redirect" title="Electronic system">electronic system</a> against run-time attacks as well as malicious hardware modifications.</dd> <dt><a href="/wiki/Bandwidth_(signal_processing)" title="Bandwidth (signal processing)">Bandwidth</a></dt> <dd>3D integration allows large numbers of vertical vias between the layers. This allows construction of wide bandwidth <a href="/wiki/Bus_(computing)" title="Bus (computing)">buses</a> between functional blocks in different layers. A typical example would be a processor+memory 3D stack, with the cache memory stacked on top of the processor. This arrangement allows a bus much wider than the typical 128 or 256 bits between the cache and processor.<sup id="cite_ref-AutoRE-14_31-0" class="reference"><a href="#cite_note-AutoRE-14-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup> Wide buses in turn alleviate the <a href="/wiki/Memory_wall" class="mw-redirect" title="Memory wall">memory wall</a> problem.<sup id="cite_ref-AutoRE-15_32-0" class="reference"><a href="#cite_note-AutoRE-15-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p><b>Modularity</b> </p><p>3D integration modular integration a wide range of custom stacks through standardizing the layer interfaces for numerous stacking options. As a result, custom stack designs can be manufactured with modular building blocks (e.g. custom number of DRAM or eDRAM layers, custom accelerator layers, customizable Non-Volatile Memory layers can be integrated to meet different design requirements). This provides design and cost advantages to semiconductor firms.<a rel="nofollow" class="external autonumber" href="https://ieeexplore.ieee.org/abstract/document/5510586">[3]</a> </p><p>Other potential advantages include better integration of neuromorphic chips in computing systems. Despite being low power alternatives to general purpose CPUs and GPUs, neuromorphic chips use a fundamentally different "spike-based" computation, which is not directly compatible with legacy digital computation. 3D integration provides key opportunities in this integration.<a rel="nofollow" class="external autonumber" href="https://physicsworld.com/a/are-neuromorphic-systems-the-future-of-high-performance-computing/">[4]</a> </p> <div class="mw-heading mw-heading2"><h2 id="Challenges">Challenges</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=7" title="Edit section: Challenges"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Because this technology is new, it carries new challenges, including: </p> <dl><dt>Cost</dt> <dd>While cost is a benefit when compared with scaling, it has also been identified as a challenge to the commercialization of 3D&#160;ICs in mainstream consumer applications. However, work is being done to address this. Although 3D technology is new and fairly complex, the cost of the manufacturing process is surprisingly straightforward when broken down into the activities that build up the entire process. By analyzing the combination of activities that lay at the base, cost drivers can be identified. Once the cost drivers are identified, it becomes a less complicated endeavor to determine where the majority of cost comes from and, more importantly, where cost has the potential to be reduced.<sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Yield</dt> <dd>Each extra manufacturing step adds a risk for defects. In order for 3D&#160;ICs to be commercially viable, defects could be repaired or tolerated, or defect density can be improved.<sup id="cite_ref-AutoRE-16_34-0" class="reference"><a href="#cite_note-AutoRE-16-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-leedt09_35-0" class="reference"><a href="#cite_note-leedt09-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Heat</dt> <dd>Heat building up within the stack must be dissipated. This is an inevitable issue as electrical proximity correlates with thermal proximity. Specific thermal hotspots must be more carefully managed.</dd> <dt>Design Complexity</dt> <dd>Taking full advantage of 3D integration requires sophisticated design techniques and new <a href="/wiki/Computer-aided_design" title="Computer-aided design">CAD</a> tools.<sup id="cite_ref-AutoRE-17_36-0" class="reference"><a href="#cite_note-AutoRE-17-36"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>TSV-introduced Overhead</dt> <dd><a href="/wiki/Through-silicon_via" title="Through-silicon via">TSVs</a> are large compared to gates and impact <a href="/wiki/Floorplan_(microelectronics)" title="Floorplan (microelectronics)">floorplans</a>. At the 45&#160;nm technology node, the area footprint of a 10μm x 10μm TSV is comparable to that of about 50 gates.<sup id="cite_ref-kim09_37-0" class="reference"><a href="#cite_note-kim09-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Furthermore, manufacturability demands landing pads and keep-out zones which further increase TSV area footprint. Depending on the technology choices, TSVs block some subset of layout resources.<sup id="cite_ref-kim09_37-1" class="reference"><a href="#cite_note-kim09-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Via-first TSVs are manufactured before metallization, thus occupy the device layer and result in placement obstacles. Via-last TSVs are manufactured after metallization and pass through the chip. Thus, they occupy both the device and metal layers, resulting in placement and routing obstacles. While the usage of TSVs is generally expected to reduce wirelength, this depends on the number of TSVs and their characteristics.<sup id="cite_ref-kim09_37-2" class="reference"><a href="#cite_note-kim09-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> Also, the granularity of inter-die partitioning impacts wirelength. It typically decreases for moderate (blocks with 20-100 modules) and coarse (block-level partitioning) granularities, but increases for fine (gate-level partitioning) granularities.<sup id="cite_ref-kim09_37-3" class="reference"><a href="#cite_note-kim09-37"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup></dd> <dt>Testing</dt> <dd>To achieve high overall yield and reduce costs, separate testing of independent dies is essential.<sup id="cite_ref-leedt09_35-1" class="reference"><a href="#cite_note-leedt09-35"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-S._Borkar,_2011,_pp._214_38-0" class="reference"><a href="#cite_note-S._Borkar,_2011,_pp._214-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> However, tight integration between adjacent active layers in 3D&#160;ICs entails a significant amount of interconnect between different sections of the same circuit module that were partitioned to different dies. Aside from the massive overhead introduced by required TSVs, sections of such a module, e.g., a multiplier, cannot be independently tested by conventional techniques. This particularly applies to timing-critical paths laid out in 3D.</dd> <dt>Lack of Standards</dt> <dd>There are few standards for TSV-based 3D&#160;IC design, manufacturing, and packaging, although this issue is being addressed.<sup id="cite_ref-AutoRE-18_39-0" class="reference"><a href="#cite_note-AutoRE-18-39"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AutoRE-19_40-0" class="reference"><a href="#cite_note-AutoRE-19-40"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup> In addition, there are many integration options being explored such as via-last, via-first, via-middle;<sup id="cite_ref-AutoRE-20_41-0" class="reference"><a href="#cite_note-AutoRE-20-41"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Interposer" title="Interposer">interposers</a><sup id="cite_ref-AutoRE-21_42-0" class="reference"><a href="#cite_note-AutoRE-21-42"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup> or direct bonding; etc.</dd> <dt>Heterogeneous Integration Supply Chain</dt> <dd>In heterogeneously integrated systems, the delay of one part from one of the different parts suppliers delays the delivery of the whole product, and so delays the revenue for each of the 3D&#160;IC part suppliers.</dd> <dt>Lack of Clearly Defined Ownership</dt> <dd>It is unclear who should own the 3D&#160;IC integration and packaging/assembly. It could be assembly houses like <a href="/wiki/Advanced_Semiconductor_Engineering" class="mw-redirect" title="Advanced Semiconductor Engineering">ASE</a> or the product <a href="/wiki/OEM" class="mw-redirect" title="OEM">OEMs</a>.</dd></dl> <p><b>Thermomechanical Stress and Reliability</b> </p><p>3D stacks have more complex material compositions and thermomechanical profiles compared to 2D designs. The stacking of multiple thinned silicon layers, multiple wiring (BEOL) layers, insulators, through silicon vias, micro-C4s result in complex thermomechanical forces and stress patterns being exerted to the 3D stacks. As a result, local heating in one part of the stack (e.g. on thinned device layers) may result reliability challenges. This requires design-time analysis and reliability-aware design processes. <a rel="nofollow" class="external autonumber" href="https://ieeexplore.ieee.org/abstract/document/7955018">[5]</a> </p> <div class="mw-heading mw-heading2"><h2 id="Design_styles">Design styles</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=8" title="Edit section: Design styles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Depending on partitioning granularity, different design styles can be distinguished. Gate-level integration faces multiple challenges and currently appears less practical than block-level integration.<sup id="cite_ref-knechtel11_43-0" class="reference"><a href="#cite_note-knechtel11-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dt>Gate-level Integration</dt> <dd>This style partitions standard cells between multiple dies. It promises wirelength reduction and great flexibility. However, wirelength reduction may be undermined unless modules of certain minimal size are preserved. On the other hand, its adverse effects include the massive number of necessary TSVs for interconnects. This design style requires 3D <a href="/wiki/Place_and_route" title="Place and route">place-and-route</a> tools, which are unavailable yet. Also, partitioning a design block across multiple dies implies that it cannot be fully <a href="/wiki/Semiconductor_fabrication#Device_test" class="mw-redirect" title="Semiconductor fabrication">tested</a> before die stacking. After die stacking (post-bond testing), a single failed die can render several good dies unusable, undermining yield. This style also amplifies the impact of <a href="/wiki/Process_variation_(semiconductor)" title="Process variation (semiconductor)">process variation</a>, especially inter-die variation. In fact, a 3D layout may yield more poorly than the same circuit laid out in 2D, contrary to the original promise of 3D&#160;IC integration.<sup id="cite_ref-AutoRE-22_44-0" class="reference"><a href="#cite_note-AutoRE-22-44"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup> Furthermore, this design style requires to redesign available Intellectual Property, since existing <a href="/wiki/Semiconductor_intellectual_property_core" title="Semiconductor intellectual property core">IP blocks</a> and EDA tools do not provision for 3D integration.</dd> <dt>Block-level Integration</dt> <dd>This style assigns entire design blocks to separate dies. Design blocks subsume most of the <a href="/wiki/Netlist" title="Netlist">netlist</a> connectivity and are linked by a small number of global interconnects. Therefore, block-level integration promises to reduce TSV overhead. Sophisticated 3D systems combining heterogeneous dies require distinct manufacturing processes at different technology nodes for fast and low-power random logic, several memory types, analog and RF circuits, etc. Block-level integration, which allows separate and optimized manufacturing processes, thus appears crucial for 3D integration. Furthermore, this style might facilitate the transition from current 2D design towards 3D&#160;IC design. Basically, 3D-aware tools are only needed for partitioning and thermal analysis.<sup id="cite_ref-AutoRE-23_45-0" class="reference"><a href="#cite_note-AutoRE-23-45"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup> Separate dies will be designed using (adapted) 2D tools and 2D blocks. This is motivated by the broad availability of reliable IP blocks. It is more convenient to use available 2D IP blocks and to place the mandatory TSVs in the unoccupied space between blocks instead of redesigning IP blocks and embedding TSVs.<sup id="cite_ref-knechtel11_43-1" class="reference"><a href="#cite_note-knechtel11-43"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Design_for_test" class="mw-redirect" title="Design for test">Design-for-testability</a> structures are a key component of IP blocks and can therefore be used to facilitate testing for 3D&#160;ICs. Also, critical paths can be mostly embedded within 2D blocks, which limits the impact of TSV and inter-die variation on manufacturing yield. Finally, modern chip design often requires <a href="/wiki/Engineering_Change_Order#Chip_design" class="mw-redirect" title="Engineering Change Order">last-minute engineering changes</a>. Restricting the impact of such changes to single dies is essential to limit cost.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=9" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Several years after the <a href="/wiki/MOS_integrated_circuit" class="mw-redirect" title="MOS integrated circuit">MOS integrated circuit</a> (MOS IC) chip was first proposed by <a href="/wiki/Mohamed_Atalla" class="mw-redirect" title="Mohamed Atalla">Mohamed Atalla</a> at <a href="/wiki/Bell_Labs" title="Bell Labs">Bell Labs</a> in 1960,<sup id="cite_ref-Moskowitz_46-0" class="reference"><a href="#cite_note-Moskowitz-46"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup> the concept of a three-dimensional MOS integrated circuit was proposed by <a href="/wiki/Texas_Instruments" title="Texas Instruments">Texas Instruments</a> researchers Robert W. Haisty, Rowland E. Johnson and Edward W. Mehal in 1964.<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup> In 1969, the concept of a three-dimensional MOS integrated circuit <a href="/wiki/Memory_chip" class="mw-redirect" title="Memory chip">memory chip</a> was proposed by <a href="/wiki/NEC" title="NEC">NEC</a> researchers Katsuhiro Onoda, Ryo Igarashi, Toshio Wada, Sho Nakanuma and Toru Tsujide.<sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Arm_(company)" class="mw-redirect" title="Arm (company)">Arm</a> has made a high-density 3D logic test chip,<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> and <a href="/wiki/Intel" title="Intel">Intel</a> with its Foveros 3D logic chip packing is planning to ship CPUs using it.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup> IBM demonstrated a fluid that could be used for both power delivery and cooling 3D ICs.<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Demonstrations_(1983–2012)"><span id="Demonstrations_.281983.E2.80.932012.29"></span>Demonstrations (1983–2012)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=10" title="Edit section: Demonstrations (1983–2012)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Japan_(1983–2005)"><span id="Japan_.281983.E2.80.932005.29"></span>Japan (1983–2005)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=11" title="Edit section: Japan (1983–2005)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>3D ICs were first successfully demonstrated in <a href="/wiki/1980s_in_Japan" title="1980s in Japan">1980s Japan</a>, where <a href="/wiki/Research_and_development" title="Research and development">research and development</a> (R&amp;D) on 3D&#160;ICs was initiated in 1981 with the "Three Dimensional Circuit Element R&amp;D Project" by the Research and Development Association for Future (New) Electron Devices.<sup id="cite_ref-Kada8_52-0" class="reference"><a href="#cite_note-Kada8-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> There were initially two forms of 3D&#160;IC design being investigated, recrystallization and <a href="/wiki/Wafer_bonding" title="Wafer bonding">wafer bonding</a>, with the earliest successful demonstrations using recrystallization.<sup id="cite_ref-Reif_19-1" class="reference"><a href="#cite_note-Reif-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> In October 1983, a <a href="/wiki/Fujitsu" title="Fujitsu">Fujitsu</a> research team including S. Kawamura, Nobuo Sasaki and T. Iwai successfully <a href="/wiki/Semiconductor_device_fabrication" title="Semiconductor device fabrication">fabricated</a> a three-dimensional <a href="/wiki/Complementary_metal%E2%80%93oxide%E2%80%93semiconductor" class="mw-redirect" title="Complementary metal–oxide–semiconductor">complementary metal–oxide–semiconductor</a> (CMOS) integrated circuit, using laser beam recrystallization. It consisted of a structure in which one type of <a href="/wiki/Transistor" title="Transistor">transistor</a> is fabricated directly above a transistor of the opposite type, with separate gates and an insulator in between. A double-layer of <a href="/wiki/Silicon_nitride" title="Silicon nitride">silicon nitride</a> and <a href="/wiki/Phosphosilicate_glass" title="Phosphosilicate glass">phosphosilicate glass</a> (PSG) film was used as an intermediate insulating layer between the top and bottom devices. This provided the basis for realizing a multi-layered 3D device composed of vertically stacked transistors, with separate gates and an insulating layer in between.<sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup> In December 1983, the same Fujitsu research team fabricated a 3D integrated circuit with a <a href="/wiki/Silicon-on-insulator" class="mw-redirect" title="Silicon-on-insulator">silicon-on-insulator</a> (SOI) CMOS structure.<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup> The following year, they fabricated a 3D <a href="/wiki/Gate_array" title="Gate array">gate array</a> with vertically stacked dual SOI/CMOS structure using beam recrystallization.<sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 1986, <a href="/wiki/Mitsubishi_Electric" title="Mitsubishi Electric">Mitsubishi Electric</a> researchers Yoichi Akasaka and Tadashi Nishimura laid out the basic concepts and proposed technologies for 3D&#160;ICs.<sup id="cite_ref-Garrou_56-0" class="reference"><a href="#cite_note-Garrou-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>57<span class="cite-bracket">&#93;</span></a></sup> The following year, a Mitsubishi research team including Nishimura, Akasaka and <a href="/wiki/Osaka_University" title="Osaka University">Osaka University</a> graduate Yasuo Inoue fabricated an <a href="/wiki/Image_signal_processor" class="mw-redirect" title="Image signal processor">image signal processor</a> (ISP) on a 3D&#160;IC, with an array of <a href="/wiki/Photosensors" class="mw-redirect" title="Photosensors">photosensors</a>, CMOS <a href="/wiki/A-to-D_converter" class="mw-redirect" title="A-to-D converter">A-to-D converters</a>, <a href="/wiki/Arithmetic_logic_unit" title="Arithmetic logic unit">arithmetic logic units</a> (ALU) and <a href="/wiki/Shift_registers" class="mw-redirect" title="Shift registers">shift registers</a> arranged in a three-layer structure.<sup id="cite_ref-58" class="reference"><a href="#cite_note-58"><span class="cite-bracket">&#91;</span>58<span class="cite-bracket">&#93;</span></a></sup> In 1989, an <a href="/wiki/NEC" title="NEC">NEC</a> research team led by Yoshihiro Hayashi fabricated a 3D&#160;IC with a four-layer structure using laser beam crystallisation.<sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>59<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Garrou_56-1" class="reference"><a href="#cite_note-Garrou-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup> In 1990, a <a href="/wiki/Panasonic" title="Panasonic">Matsushita</a> research team including K. Yamazaki, Y. Itoh and A. Wada fabricated a <a href="/wiki/Parallel_processing_(DSP_implementation)" title="Parallel processing (DSP implementation)">parallel</a> image signal processor on a four-layer 3D&#160;IC, with SOI (<a href="/wiki/Silicon-on-insulator" class="mw-redirect" title="Silicon-on-insulator">silicon-on-insulator</a>) layers formed by laser recrystallization, and the four layers consisting of an <a href="/wiki/Optical_sensor" class="mw-redirect" title="Optical sensor">optical sensor</a>, level detector, <a href="/wiki/Semiconductor_memory" title="Semiconductor memory">memory</a> and ALU.<sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>60<span class="cite-bracket">&#93;</span></a></sup> </p><p>The most common form of 3D IC design is wafer bonding.<sup id="cite_ref-Reif_19-2" class="reference"><a href="#cite_note-Reif-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> Wafer bonding was initially called "cumulatively bonded IC" (CUBIC), which began development in 1981 with the "Three Dimensional Circuit Element R&amp;D Project" in Japan and was completed in 1990 by Yoshihiro Hayashi's NEC research team, who demonstrated a method where several <a href="/wiki/Thin-film" class="mw-redirect" title="Thin-film">thin-film</a> devices are bonded cumulatively, which would allow a large number of device layers. They proposed fabrication of separate devices in separate wafers, reduction in the thickness of the wafers, providing front and back leads, and connecting the thinned <a href="/wiki/Die_(integrated_circuit)" title="Die (integrated circuit)">die</a> to each other. They used CUBIC technology to fabricate and test a two active layer device in a top-to-bottom fashion, having a bulk-Si <a href="/wiki/NMOS_FET" class="mw-redirect" title="NMOS FET">NMOS FET</a> lower layer and a thinned NMOS FET upper layer, and proposed CUBIC technology that could fabricate 3D&#160;ICs with more than three active layers.<sup id="cite_ref-Garrou_56-2" class="reference"><a href="#cite_note-Garrou-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kada8_52-1" class="reference"><a href="#cite_note-Kada8-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>61<span class="cite-bracket">&#93;</span></a></sup> </p><p>The first 3D IC stacked chips fabricated with a <a href="/wiki/Through-silicon_via" title="Through-silicon via">through-silicon via</a> (TSV) process were invented in 1980s Japan. <a href="/wiki/Hitachi" title="Hitachi">Hitachi</a> filed a Japanese patent in 1983, followed by Fujitsu in 1984. In 1986, a Japanese patent filed by Fujitsu described a stacked chip structure using TSV.<sup id="cite_ref-Kada8_52-2" class="reference"><a href="#cite_note-Kada8-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> In 1989, Mitsumasa Koyonagi of <a href="/wiki/Tohoku_University" title="Tohoku University">Tohoku University</a> pioneered the technique of wafer-to-wafer bonding with TSV, which he used to fabricate a 3D <a href="/wiki/Large-scale_integration" class="mw-redirect" title="Large-scale integration">LSI</a> chip in 1989.<sup id="cite_ref-Kada8_52-3" class="reference"><a href="#cite_note-Kada8-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Fukushima_62-0" class="reference"><a href="#cite_note-Fukushima-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>63<span class="cite-bracket">&#93;</span></a></sup> In 1999, the Association of Super-Advanced Electronics Technologies (ASET) in Japan began funding the development of 3D&#160;IC chips using TSV technology, called the "R&amp;D on High Density Electronic System Integration Technology" project.<sup id="cite_ref-Kada8_52-4" class="reference"><a href="#cite_note-Kada8-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Takahashi_64-0" class="reference"><a href="#cite_note-Takahashi-64"><span class="cite-bracket">&#91;</span>64<span class="cite-bracket">&#93;</span></a></sup> The term "through-silicon via" (TSV) was coined by Tru-Si Technologies researchers Sergey Savastiouk, O. Siniaguine, and E. Korczynski, who proposed a TSV method for a 3D <a href="/wiki/Wafer-level_packaging" title="Wafer-level packaging">wafer-level packaging</a> (WLP) solution in 2000.<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>65<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Koyanagi Group at <a href="/wiki/Tohoku_University" title="Tohoku University">Tohoku University</a>, led by Mitsumasa Koyanagi, used TSV technology to fabricate a three-layer <a href="/wiki/Memory_chip" class="mw-redirect" title="Memory chip">memory chip</a> in 2000, a three-layer artificial retina chip in 2001, a three-layer <a href="/wiki/Microprocessor" title="Microprocessor">microprocessor</a> in 2002, and a ten-layer memory chip in 2005.<sup id="cite_ref-Fukushima_62-1" class="reference"><a href="#cite_note-Fukushima-62"><span class="cite-bracket">&#91;</span>62<span class="cite-bracket">&#93;</span></a></sup> The same year, a <a href="/wiki/Stanford_University" title="Stanford University">Stanford University</a> research team consisting of <a href="/wiki/Kaustav_Banerjee" title="Kaustav Banerjee">Kaustav Banerjee</a>, Shukri J. Souri, Pawan Kapur and Krishna C. Saraswat presented a novel 3D chip design that exploits the vertical dimension to alleviate the interconnect related problems and facilitates heterogeneous integration of technologies to realize a <a href="/wiki/System-on-a-chip" class="mw-redirect" title="System-on-a-chip">system-on-a-chip</a> (SoC) design.<sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>66<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>67<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2001, a <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a> research team including T. Imoto, M. Matsui and C. Takubo developed a "System Block Module" wafer bonding process for manufacturing 3D&#160;IC packages.<sup id="cite_ref-Garrou_56-3" class="reference"><a href="#cite_note-Garrou-56"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>68<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Europe_(1988–2005)"><span id="Europe_.281988.E2.80.932005.29"></span>Europe (1988–2005)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=12" title="Edit section: Europe (1988–2005)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Fraunhofer_Society" title="Fraunhofer Society">Fraunhofer</a> and <a href="/wiki/Siemens" title="Siemens">Siemens</a> began research on 3D&#160;IC integration in 1987.<sup id="cite_ref-Kada8_52-5" class="reference"><a href="#cite_note-Kada8-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> In 1988, they fabricated 3D CMOS IC devices based on re-crystallization of poly-silicon.<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>69<span class="cite-bracket">&#93;</span></a></sup> In 1997, the inter-chip via (ICV) method was developed by a Fraunhofer–Siemens research team including Peter Ramm, Manfred Engelhardt, Werner Pamler, Christof Landesberger and Armin Klumpp.<sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>70<span class="cite-bracket">&#93;</span></a></sup> It was a first industrial 3D&#160;IC process, based on Siemens CMOS fab wafers. A variation of that TSV process was later called TSV-SLID (solid liquid inter-diffusion) technology.<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>71<span class="cite-bracket">&#93;</span></a></sup> It was an approach to 3D&#160;IC design based on low temperature wafer bonding and vertical integration of IC devices using inter-chip vias, which they patented. </p><p>Ramm went on to develop industry-academic consortia for production of relevant 3D integration technologies. In the German funded cooperative VIC project between Siemens and Fraunhofer, they demonstrated a complete industrial 3D&#160;IC stacking process (1993–1996). With his Siemens and Fraunhofer colleagues, Ramm published results showing the details of key processes such as 3D metallization [T. Grassl, P. Ramm, M. Engelhardt, Z. Gabric, O. Spindler, First International Dielectrics for VLSI/ULSI Interconnection Metallization Conference – DUMIC, Santa Clara, CA, 20–22 Feb, 1995] and at ECTC 1995 they presented early investigations on stacked memory in processors.<sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>72<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the early 2000s, a team of Fraunhofer and Infineon Munich researchers investigated 3D TSV technologies with particular focus on die-to-substrate stacking within the German/Austrian EUREKA project VSI and initiated the European Integrating Projects e-CUBES, as a first European 3D technology platform, and e-BRAINS with a.o., Infineon, Siemens, EPFL, IMEC and Tyndall, where heterogeneous 3D integrated system demonstrators were fabricated and evaluated. A particular focus of the e-BRAINS project was the development of novel low-temperature processes for highly reliable 3D integrated sensor systems.<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>73<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="United_States_(1999–2012)"><span id="United_States_.281999.E2.80.932012.29"></span>United States (1999–2012)</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=13" title="Edit section: United States (1999–2012)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Copper-to-copper wafer bonding, also called Cu-Cu connections or Cu-Cu wafer bonding, was developed at <a href="/wiki/MIT" class="mw-redirect" title="MIT">MIT</a> by a research team consisting of Andy Fan, Adnan-ur Rahman and Rafael Reif in 1999.<sup id="cite_ref-Reif_19-3" class="reference"><a href="#cite_note-Reif-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>74<span class="cite-bracket">&#93;</span></a></sup> Reif and Fan further investigated Cu-Cu wafer bonding with other MIT researchers including Kuan-Neng Chen, Shamik Das, Chuan Seng Tan and Nisha Checka during 2001–2002.<sup id="cite_ref-Reif_19-4" class="reference"><a href="#cite_note-Reif-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> In 2003, <a href="/wiki/DARPA" title="DARPA">DARPA</a> and the Microelectronics Center of North Carolina (MCNC) began funding R&amp;D on 3D&#160;IC technology.<sup id="cite_ref-Kada8_52-6" class="reference"><a href="#cite_note-Kada8-52"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2004, Tezzaron Semiconductor<sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>75<span class="cite-bracket">&#93;</span></a></sup> built working 3D devices from six different designs.<sup id="cite_ref-AutoRE-31_76-0" class="reference"><a href="#cite_note-AutoRE-31-76"><span class="cite-bracket">&#91;</span>76<span class="cite-bracket">&#93;</span></a></sup> The chips were built in two layers with "via-first" tungsten TSVs for vertical interconnection. Two wafers were stacked face-to-face and bonded with a copper process. The top wafer was thinned and the two-wafer stack was then diced into chips. The first chip tested was a simple memory register, but the most notable of the set was an 8051 processor/memory stack<sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>77<span class="cite-bracket">&#93;</span></a></sup> that exhibited much higher speed and lower power consumption than an analogous 2D assembly. </p><p>In 2004, <a href="/wiki/Intel" title="Intel">Intel</a> presented a 3D version of the <a href="/wiki/Pentium_4" title="Pentium 4">Pentium 4</a> CPU.<sup id="cite_ref-AutoRE-1_78-0" class="reference"><a href="#cite_note-AutoRE-1-78"><span class="cite-bracket">&#91;</span>78<span class="cite-bracket">&#93;</span></a></sup> The chip was manufactured with two dies using face-to-face stacking, which allowed a dense via structure. Backside TSVs are used for I/O and power supply. For the 3D floorplan, designers manually arranged functional blocks in each die aiming for power reduction and performance improvement. Splitting large and high-power blocks and careful rearrangement allowed to limit thermal hotspots. The 3D design provides 15% performance improvement (due to eliminated pipeline stages) and 15% power saving (due to eliminated repeaters and reduced wiring) compared to the 2D Pentium 4. </p><p>The <a href="/wiki/Teraflops_Research_Chip" title="Teraflops Research Chip">Teraflops Research Chip</a> introduced in 2007 by Intel is an experimental 80-core design with stacked memory. Due to the high demand for memory bandwidth, a traditional I/O approach would consume 10 to 25&#160;W.<sup id="cite_ref-S._Borkar,_2011,_pp._214_38-1" class="reference"><a href="#cite_note-S._Borkar,_2011,_pp._214-38"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup> To improve upon that, Intel designers implemented a TSV-based memory bus. Each core is connected to one memory tile in the <a href="/wiki/Static_random-access_memory" title="Static random-access memory">SRAM</a> die with a link that provides 12&#160;GB/s bandwidth, resulting in a total bandwidth of 1&#160;TB/s while consuming only 2.2&#160;W. </p><p>An academic implementation of a 3D processor was presented in 2008 at the <a href="/wiki/University_of_Rochester" title="University of Rochester">University of Rochester</a> by Professor Eby Friedman and his students. The chip runs at a 1.4&#160;GHz and it was designed for optimized vertical processing between the stacked chips which gives the 3D processor abilities that the traditional one layered chip could not reach.<sup id="cite_ref-AutoRE-2_79-0" class="reference"><a href="#cite_note-AutoRE-2-79"><span class="cite-bracket">&#91;</span>79<span class="cite-bracket">&#93;</span></a></sup> One challenge in manufacturing of the three-dimensional chip was to make all of the layers work in harmony without any obstacles that would interfere with a piece of information traveling from one layer to another.<sup id="cite_ref-AutoRE-3_80-0" class="reference"><a href="#cite_note-AutoRE-3-80"><span class="cite-bracket">&#91;</span>80<span class="cite-bracket">&#93;</span></a></sup> </p><p>In ISSCC 2012, two 3D-IC-based multi-core designs using <a href="/wiki/GlobalFoundries" title="GlobalFoundries">GlobalFoundries</a>' 130&#160;nm process and Tezzaron's FaStack technology were presented and demonstrated: </p> <ul><li>3D-MAPS,<sup id="cite_ref-AutoRE-4_81-0" class="reference"><a href="#cite_note-AutoRE-4-81"><span class="cite-bracket">&#91;</span>81<span class="cite-bracket">&#93;</span></a></sup> a 64 custom core implementation with two-logic-die stack, was demonstrated by researchers from the School of Electrical and Computer Engineering at <a href="/wiki/Georgia_Institute_of_Technology" class="mw-redirect" title="Georgia Institute of Technology">Georgia Institute of Technology</a>.</li> <li>Centip3De,<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>82<span class="cite-bracket">&#93;</span></a></sup> near-threshold design based on ARM Cortex-M3 cores, was from the Department of Electrical Engineering and Computer Science at <a href="/wiki/University_of_Michigan" title="University of Michigan">University of Michigan</a>.</li></ul> <p>Though released much layer IBM Research and Semiconductor Research and Development Groups design and manufactured a number of 3D processor stacks successfully starting from 2007-2008. These stacks (dubbed Escher internally) have demonstrated successful implementation of eDRAM, logic and processor stacks as well as key experiments in power, thermal, noise and reliability characterization of 3D chips. <a rel="nofollow" class="external autonumber" href="https://ieeexplore.ieee.org/abstract/document/6176968">[6]</a> </p> <div class="mw-heading mw-heading3"><h3 id="Commercial_3D_ICs_(2004–present)"><span id="Commercial_3D_ICs_.282004.E2.80.93present.29"></span>Commercial 3D ICs (2004–present)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=14" title="Edit section: Commercial 3D ICs (2004–present)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Psp-1000.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Psp-1000.jpg/220px-Psp-1000.jpg" decoding="async" width="220" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/46/Psp-1000.jpg/330px-Psp-1000.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/46/Psp-1000.jpg/440px-Psp-1000.jpg 2x" data-file-width="3840" data-file-height="2180" /></a><figcaption><a href="/wiki/Sony" title="Sony">Sony</a>'s <a href="/wiki/PlayStation_Portable" title="PlayStation Portable">PlayStation Portable</a> (PSP) <a href="/wiki/Handheld_game_console" title="Handheld game console">handheld game console</a>, released in 2004, is the earliest commercial product to use a 3D&#160;IC, an <a href="/wiki/EDRAM" title="EDRAM">eDRAM</a> <a href="/wiki/Memory_chip" class="mw-redirect" title="Memory chip">memory chip</a> manufactured by <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a> in a 3D <a href="/wiki/System-in-package" class="mw-redirect" title="System-in-package">system-in-package</a>.</figcaption></figure> <p>The earliest known commercial use of a 3D&#160;IC chip was in <a href="/wiki/Sony" title="Sony">Sony</a>'s <a href="/wiki/PlayStation_Portable" title="PlayStation Portable">PlayStation Portable</a> (PSP) <a href="/wiki/Handheld_game_console" title="Handheld game console">handheld game console</a>, released in 2004. The <a href="/wiki/PSP_hardware" class="mw-redirect" title="PSP hardware">PSP hardware</a> includes <a href="/wiki/EDRAM" title="EDRAM">eDRAM</a> (embedded <a href="/wiki/Dynamic_random-access_memory" title="Dynamic random-access memory">DRAM</a>) <a href="/wiki/Computer_memory" title="Computer memory">memory</a> manufactured by <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a> in a 3D <a href="/wiki/System-in-package" class="mw-redirect" title="System-in-package">system-in-package</a> chip with two <a href="/wiki/Die_(integrated_circuit)" title="Die (integrated circuit)">dies</a> stacked vertically.<sup id="cite_ref-James_14-1" class="reference"><a href="#cite_note-James-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Toshiba called it "semi-embedded DRAM" at the time, before later calling it a stacked "<a href="/wiki/Package_on_package" class="mw-redirect" title="Package on package">chip-on-chip</a>" (CoC) solution.<sup id="cite_ref-James_14-2" class="reference"><a href="#cite_note-James-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>83<span class="cite-bracket">&#93;</span></a></sup> </p><p>In April 2007, Toshiba commercialized an eight-layer 3D&#160;IC, the 16<span class="nowrap">&#160;</span><a href="/wiki/Gibibyte" class="mw-redirect" title="Gibibyte">GB</a> THGAM <a href="/wiki/Embedded_system" title="Embedded system">embedded</a> <a href="/wiki/NAND_flash" class="mw-redirect" title="NAND flash">NAND flash</a> memory chip, which was manufactured with eight stacked 2<span class="nowrap">&#160;</span>GB NAND flash chips.<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>84<span class="cite-bracket">&#93;</span></a></sup> In September 2007, <a href="/wiki/Hynix" class="mw-redirect" title="Hynix">Hynix</a> introduced 24-layer 3D&#160;IC technology, with a 16<span class="nowrap">&#160;</span>GB flash memory chip that was manufactured with 24 stacked NAND flash chips using a wafer bonding process.<sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>85<span class="cite-bracket">&#93;</span></a></sup> Toshiba also used an eight-layer 3D&#160;IC for their 32<span class="nowrap">&#160;</span>GB THGBM flash chip in 2008.<sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>86<span class="cite-bracket">&#93;</span></a></sup> In 2010, Toshiba used a 16-layer 3D&#160;IC for their 128<span class="nowrap">&#160;</span>GB THGBM2 flash chip, which was manufactured with 16 stacked 8<span class="nowrap">&#160;</span>GB chips.<sup id="cite_ref-toshiba2010_87-0" class="reference"><a href="#cite_note-toshiba2010-87"><span class="cite-bracket">&#91;</span>87<span class="cite-bracket">&#93;</span></a></sup> In the 2010s, 3D&#160;ICs came into widespread commercial use in the form of <a href="/wiki/Multi-chip_package" class="mw-redirect" title="Multi-chip package">multi-chip package</a> and <a href="/wiki/Package_on_package" class="mw-redirect" title="Package on package">package on package</a> solutions for <a href="/wiki/NAND_flash" class="mw-redirect" title="NAND flash">NAND flash</a> memory in <a href="/wiki/Mobile_devices" class="mw-redirect" title="Mobile devices">mobile devices</a>.<sup id="cite_ref-James_14-3" class="reference"><a href="#cite_note-James-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Elpida_Memory" class="mw-redirect" title="Elpida Memory">Elpida Memory</a> developed the first 8<span class="nowrap">&#160;</span><a href="/wiki/Gibibyte" class="mw-redirect" title="Gibibyte">GB</a> DRAM chip (stacked with four <a href="/wiki/DDR3" class="mw-redirect" title="DDR3">DDR3</a> <a href="/wiki/SDRAM" class="mw-redirect" title="SDRAM">SDRAM</a> dies) in September 2009, and released it in June 2011.<sup id="cite_ref-Kada15_88-0" class="reference"><a href="#cite_note-Kada15-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/TSMC" title="TSMC">TSMC</a> announced plans for 3D&#160;IC production with TSV technology in January 2010.<sup id="cite_ref-Kada15_88-1" class="reference"><a href="#cite_note-Kada15-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> In 2011, <a href="/wiki/SK_Hynix" title="SK Hynix">SK Hynix</a> introduced 16<span class="nowrap">&#160;</span>GB DDR3 SDRAM (<a href="/wiki/40_nanometer" class="mw-redirect" title="40 nanometer">40<span class="nowrap">&#160;</span>nm</a> class) using TSV technology,<sup id="cite_ref-hynix2010s_89-0" class="reference"><a href="#cite_note-hynix2010s-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/Samsung_Electronics" title="Samsung Electronics">Samsung Electronics</a> introduced 3D-stacked 32<span class="nowrap">&#160;</span>GB DDR3 (<a href="/wiki/32_nanometer" class="mw-redirect" title="32 nanometer">30<span class="nowrap">&#160;</span>nm</a> class) based on TSV in September, and then Samsung and <a href="/wiki/Micron_Technology" title="Micron Technology">Micron Technology</a> announced TSV-based <a href="/wiki/Hybrid_Memory_Cube" title="Hybrid Memory Cube">Hybrid Memory Cube</a> (HMC) technology in October.<sup id="cite_ref-Kada15_88-2" class="reference"><a href="#cite_note-Kada15-88"><span class="cite-bracket">&#91;</span>88<span class="cite-bracket">&#93;</span></a></sup> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:High_Bandwidth_Memory_schematic.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/High_Bandwidth_Memory_schematic.svg/220px-High_Bandwidth_Memory_schematic.svg.png" decoding="async" width="220" height="124" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/b5/High_Bandwidth_Memory_schematic.svg/330px-High_Bandwidth_Memory_schematic.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b5/High_Bandwidth_Memory_schematic.svg/440px-High_Bandwidth_Memory_schematic.svg.png 2x" data-file-width="960" data-file-height="540" /></a><figcaption>Cut through a <a href="/wiki/Graphics_card" title="Graphics card">graphics card</a> that uses <a href="/wiki/High_Bandwidth_Memory" title="High Bandwidth Memory">High Bandwidth Memory</a> (HBM), based on <a href="/wiki/Through-silicon_via" title="Through-silicon via">through-silicon via</a> (TSV) 3D&#160;IC technology.</figcaption></figure> <p><a href="/wiki/High_Bandwidth_Memory" title="High Bandwidth Memory">High Bandwidth Memory</a> (HBM), developed by Samsung, <a href="/wiki/AMD" title="AMD">AMD</a>, and SK Hynix, uses stacked chips and TSVs. The first HBM memory chip was manufactured by SK Hynix in 2013.<sup id="cite_ref-hynix2010s_89-1" class="reference"><a href="#cite_note-hynix2010s-89"><span class="cite-bracket">&#91;</span>89<span class="cite-bracket">&#93;</span></a></sup> In January 2016, <a href="/wiki/Samsung_Electronics" title="Samsung Electronics">Samsung Electronics</a> announced early mass production of <a href="/wiki/HBM2" class="mw-redirect" title="HBM2">HBM2</a>, at up to 8&#160;GB per stack.<sup id="cite_ref-samsung-hbm2_90-0" class="reference"><a href="#cite_note-samsung-hbm2-90"><span class="cite-bracket">&#91;</span>90<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-extremetech=hbm2_91-0" class="reference"><a href="#cite_note-extremetech=hbm2-91"><span class="cite-bracket">&#91;</span>91<span class="cite-bracket">&#93;</span></a></sup> </p><p>In 2017, Samsung Electronics combined 3D&#160;IC stacking with its 3D&#160;<a href="/wiki/V-NAND" class="mw-redirect" title="V-NAND">V-NAND</a> technology (based on <a href="/wiki/Charge_trap_flash" title="Charge trap flash">charge trap flash</a> technology), manufacturing its 512<span class="nowrap">&#160;</span>GB KLUFG8R1EM flash memory chip with eight stacked 64-layer V-NAND chips.<sup id="cite_ref-anandtech-samsung-2017_92-0" class="reference"><a href="#cite_note-anandtech-samsung-2017-92"><span class="cite-bracket">&#91;</span>92<span class="cite-bracket">&#93;</span></a></sup> In 2019, Samsung produced a 1<span class="nowrap">&#160;</span><a href="/wiki/Terabyte" class="mw-redirect" title="Terabyte">TB</a> flash chip with 16 stacked V-NAND dies.<sup id="cite_ref-electronicsweekly-samsung_93-0" class="reference"><a href="#cite_note-electronicsweekly-samsung-93"><span class="cite-bracket">&#91;</span>93<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-anandtech-samsung-2018_94-0" class="reference"><a href="#cite_note-anandtech-samsung-2018-94"><span class="cite-bracket">&#91;</span>94<span class="cite-bracket">&#93;</span></a></sup> As of 2018, Intel is considering the use of 3D&#160;ICs to improve performance.<sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>95<span class="cite-bracket">&#93;</span></a></sup> As of 2022<sup class="plainlinks noexcerpt noprint asof-tag update" style="display:none;"><a class="external text" href="https://en.wikipedia.org/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit">&#91;update&#93;</a></sup>, 232-layer NAND, i.e. memory device, chips are made by Micron,<sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>96<span class="cite-bracket">&#93;</span></a></sup> that previously in April 2019 were making 96-layer chips; and Toshiba made 96-layer devices in 2018. </p><p>In 2022, AMD has introduced <a href="/wiki/Zen_4" title="Zen 4">Zen 4</a> processors, and some Zen 4 processors have 3D Cache included. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Advanced_packaging_(semiconductors)" title="Advanced packaging (semiconductors)">Advanced packaging (semiconductors)</a></li> <li><a href="/wiki/Charge_trap_flash" title="Charge trap flash">Charge trap flash</a> (CTF)</li> <li><a href="/wiki/FinFET" class="mw-redirect" title="FinFET">FinFET</a> (3D transistor)</li> <li><a href="/wiki/MOSFET" title="MOSFET">MOSFET</a></li> <li><a href="/wiki/Multigate_device" title="Multigate device">Multigate device</a> (MuGFET)</li> <li><a href="/wiki/V-NAND" class="mw-redirect" title="V-NAND">V-NAND</a> (3D NAND)</li></ul> <div style="clear:both;" class=""></div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=16" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHuLiuLiiRebibis2012" class="citation book cs1">Hu, Y.H.; Liu, C.S.; Lii, M.J.; Rebibis, K. J.; Jourdain, A.; La Manna, A.; Beyne, E.; Yu, C.H. (2012). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/6251571">"Cu-Cu hybrid bonding as option for 3D IC stacking"</a>. <i>2012 IEEE International Interconnect Technology Conference</i>. pp.&#160;1–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIITC.2012.6251571">10.1109/IITC.2012.6251571</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4673-1137-3" title="Special:BookSources/978-1-4673-1137-3"><bdi>978-1-4673-1137-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Cu-Cu+hybrid+bonding+as+option+for+3D+IC+stacking&amp;rft.btitle=2012+IEEE+International+Interconnect+Technology+Conference&amp;rft.pages=1-3&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1109%2FIITC.2012.6251571&amp;rft.isbn=978-1-4673-1137-3&amp;rft.aulast=Hu&amp;rft.aufirst=Y.H.&amp;rft.au=Liu%2C+C.S.&amp;rft.au=Lii%2C+M.J.&amp;rft.au=Rebibis%2C+K.+J.&amp;rft.au=Jourdain%2C+A.&amp;rft.au=La+Manna%2C+A.&amp;rft.au=Beyne%2C+E.&amp;rft.au=Yu%2C+C.H.&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F6251571&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation book cs1"><a rel="nofollow" class="external text" href="https://books.google.com/books?id=62fyCAAAQBAJ&amp;dq=cu+cu+bonding&amp;pg=PA184"><i>Wafer Bonding: Applications and Technology</i></a>. Springer. 9 March 2013. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-662-10827-7" title="Special:BookSources/978-3-662-10827-7"><bdi>978-3-662-10827-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Wafer+Bonding%3A+Applications+and+Technology&amp;rft.pub=Springer&amp;rft.date=2013-03-09&amp;rft.isbn=978-3-662-10827-7&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D62fyCAAAQBAJ%26dq%3Dcu%2Bcu%2Bbonding%26pg%3DPA184&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.semi.org/cms/groups/public/documents/web_content/ctr_033139.pdf">"SEMI.ORG"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150924100353/http://www.semi.org/cms/groups/public/documents/web_content/ctr_033139.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2015-09-24.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=SEMI.ORG&amp;rft_id=http%3A%2F%2Fwww.semi.org%2Fcms%2Fgroups%2Fpublic%2Fdocuments%2Fweb_content%2Fctr_033139.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.3dincites.com/3d-incites-knowledge-portal/what-is-3d-integration/">"What is 3D Integration? - 3D InCites"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141230233541/http://www.3dincites.com/3d-incites-knowledge-portal/what-is-3d-integration/">Archived</a> from the original on 2014-12-30.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=What+is+3D+Integration%3F+-+3D+InCites&amp;rft_id=http%3A%2F%2Fwww.3dincites.com%2F3d-incites-knowledge-portal%2Fwhat-is-3d-integration%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-24-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-AutoRE-24_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AutoRE-24_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-AutoRE-24_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-AutoRE-24_5-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">J. Knechtel, O. Sinanoglu, I. M. Elfadel, J. Lienig, C. C. N. Sze, <a rel="nofollow" class="external text" href="http://www.ifte.de/mitarbeiter/lienig/IPSJ_Trans_2017.pdf">"Large-Scale 3D Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170807152805/http://www.ifte.de/mitarbeiter/lienig/IPSJ_Trans_2017.pdf">Archived</a> 2017-08-07 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, in IPSJ Transactions on System LSI Design Methodology, vol. 10, pp. 45–62, Aug. 2017</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20141230234546/http://www.itrs.net/Links/2011itrs/2011Chapters/2011Design.pdf">"INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS 2011 EDITION"</a> <span class="cs1-format">(PDF)</span>. Archived from <a rel="nofollow" class="external text" href="http://www.itrs.net/Links/2011itrs/2011Chapters/2011Design.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-12-30<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-12-30</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=INTERNATIONAL+TECHNOLOGY+ROADMAP+FOR+SEMICONDUCTORS+2011+EDITION&amp;rft_id=http%3A%2F%2Fwww.itrs.net%2FLinks%2F2011itrs%2F2011Chapters%2F2011Design.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Lau, John &amp; Tzeng, Pei-Jer &amp; Lee, Ching-Kuan &amp; Zhan, C. &amp; Li, Ming &amp; Cline, J. &amp; Saito, K. &amp; Hsin, Y. &amp; Chang, P. &amp; Chang, Yiu-Hsiang &amp; Chen, J. &amp; Chen, Shang-Chun &amp; Wu, C. &amp; Chang, H. &amp; Chien, C. &amp; Lin, C. &amp; Ku, Tzu Kun &amp; Lo, Robert &amp; Kao, M.. (2013). Redistribution layers (RDLs) for 2.5D/3D IC integration. International Symposium on Microelectronics. 2013. 000434-000441. 10.4071/isom-2013-WA12.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://semiwiki.com/semiconductor-manufacturers/tsmc/2918-xilinx-and-tsmc-volume-production-of-3d-parts/">"Xilinx and TSMC: Volume Production of 3D Parts"</a>. 31 July 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Xilinx+and+TSMC%3A+Volume+Production+of+3D+Parts&amp;rft.date=2023-07-31&amp;rft_id=https%3A%2F%2Fsemiwiki.com%2Fsemiconductor-manufacturers%2Ftsmc%2F2918-xilinx-and-tsmc-volume-production-of-3d-parts%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLau2019" class="citation book cs1">Lau, John H. (3 April 2019). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SCGQDwAAQBAJ"><i>Heterogeneous Integrations</i></a>. Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9789811372247" title="Special:BookSources/9789811372247"><bdi>9789811372247</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Heterogeneous+Integrations&amp;rft.pub=Springer&amp;rft.date=2019-04-03&amp;rft.isbn=9789811372247&amp;rft.aulast=Lau&amp;rft.aufirst=John+H.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSCGQDwAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://semiengineering.com/knowledge_centers/packaging/advanced-packaging/">"Advanced Packaging"</a>. <i>Semiconductor Engineering</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Semiconductor+Engineering&amp;rft.atitle=Advanced+Packaging&amp;rft_id=https%3A%2F%2Fsemiengineering.com%2Fknowledge_centers%2Fpackaging%2Fadvanced-packaging%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://semiengineering.com/next-gen-3d-chip-packaging-race-begins/">"Next-Gen 3D Chip/Packaging Race Begins"</a>. 31 January 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Next-Gen+3D+Chip%2FPackaging+Race+Begins&amp;rft.date=2022-01-31&amp;rft_id=https%3A%2F%2Fsemiengineering.com%2Fnext-gen-3d-chip-packaging-race-begins%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://semiwiki.com/semiconductor-manufacturers/tsmc/306329-advanced-2-5d-3d-packaging-roadmap/">"Advanced 2.5D/3D Packaging Roadmap"</a>. 31 July 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Advanced+2.5D%2F3D+Packaging+Roadmap&amp;rft.date=2023-07-31&amp;rft_id=https%3A%2F%2Fsemiwiki.com%2Fsemiconductor-manufacturers%2Ftsmc%2F306329-advanced-2-5d-3d-packaging-roadmap%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.3dincites.com/2013/08/comparing-samsungs-3d-nand-with-traditional-3d-ics/">"Comparing Samsung's 3D NAND with Traditional 3D ICs"</a>. 2013-08-16.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Comparing+Samsung%27s+3D+NAND+with+Traditional+3D+ICs&amp;rft.date=2013-08-16&amp;rft_id=http%3A%2F%2Fwww.3dincites.com%2F2013%2F08%2Fcomparing-samsungs-3d-nand-with-traditional-3d-ics%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-James-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-James_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-James_14-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-James_14-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-James_14-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJames2014" class="citation book cs1">James, Dick (2014). <a rel="nofollow" class="external text" href="https://www.researchgate.net/publication/271453642">"3D ICs in the real world"</a>. <i>25th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2014)</i>. pp.&#160;113–119. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FASMC.2014.6846988">10.1109/ASMC.2014.6846988</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4799-3944-2" title="Special:BookSources/978-1-4799-3944-2"><bdi>978-1-4799-3944-2</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:42565898">42565898</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=3D+ICs+in+the+real+world&amp;rft.btitle=25th+Annual+SEMI+Advanced+Semiconductor+Manufacturing+Conference+%28ASMC+2014%29&amp;rft.pages=113-119&amp;rft.date=2014&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A42565898%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FASMC.2014.6846988&amp;rft.isbn=978-1-4799-3944-2&amp;rft.aulast=James&amp;rft.aufirst=Dick&amp;rft_id=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271453642&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.pcworld.com/article/2599700/samsung-starts-production-of-3d-ddr4-dram-modules.html">"Samsung starts production of 3D DDR4 DRAM modules"</a>. 2014-08-27. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141231012258/http://www.pcworld.com/article/2599700/samsung-starts-production-of-3d-ddr4-dram-modules.html">Archived</a> from the original on 2014-12-31.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Samsung+starts+production+of+3D+DDR4+DRAM+modules&amp;rft.date=2014-08-27&amp;rft_id=http%3A%2F%2Fwww.pcworld.com%2Farticle%2F2599700%2Fsamsung-starts-production-of-3d-ddr4-dram-modules.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMichallet" class="citation web cs1">Michallet, Jean-Eric. <a rel="nofollow" class="external text" href="https://www.3dincites.com/2015/03/coolcube-a-true-3dvlsi-alternative-to-scaling/">"CoolCube™: A True 3DVLSI Alternative to Scaling"</a>. <i>www.3DInCites.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160122234232/http://www.3dincites.com/2015/03/coolcube-a-true-3dvlsi-alternative-to-scaling/">Archived</a> from the original on January 22, 2016<span class="reference-accessdate">. Retrieved <span class="nowrap">March 24,</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.3DInCites.com&amp;rft.atitle=CoolCube%E2%84%A2%3A+A+True+3DVLSI+Alternative+to+Scaling&amp;rft.aulast=Michallet&amp;rft.aufirst=Jean-Eric&amp;rft_id=http%3A%2F%2Fwww.3dincites.com%2F2015%2F03%2Fcoolcube-a-true-3dvlsi-alternative-to-scaling%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Trapp2015" class="citation web cs1">von Trapp, Francoise (2015-03-16). <a rel="nofollow" class="external text" href="https://www.3dincites.com/2015/03/monolithic-3d-ic-heats-up-at-date-2015/">"Monolithic 3D IC Heats Up at DATE 2015"</a>. <i>3D InCites</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150402031755/http://www.3dincites.com/2015/03/monolithic-3d-ic-heats-up-at-date-2015/">Archived</a> from the original on April 2, 2015<span class="reference-accessdate">. Retrieved <span class="nowrap">March 16,</span> 2015</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=3D+InCites&amp;rft.atitle=Monolithic+3D+IC+Heats+Up+at+DATE+2015&amp;rft.date=2015-03-16&amp;rft.aulast=von+Trapp&amp;rft.aufirst=Francoise&amp;rft_id=http%3A%2F%2Fwww.3dincites.com%2F2015%2F03%2Fmonolithic-3d-ic-heats-up-at-date-2015%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMaestre_CaroTravalyMaesBorghs2011" class="citation book cs1">Maestre Caro, A.; Travaly, Y.; Maes, G.; Borghs, G.; Armini, S. (2011). "Enabling Cu-Cu connection in (Dual) damascene interconnects by selective deposition of two different SAM molecules". <i>2011 IEEE International Interconnect Technology Conference</i>. pp.&#160;1–3. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIITC.2011.5940263">10.1109/IITC.2011.5940263</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4577-0503-8" title="Special:BookSources/978-1-4577-0503-8"><bdi>978-1-4577-0503-8</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:30235970">30235970</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Enabling+Cu-Cu+connection+in+%28Dual%29+damascene+interconnects+by+selective+deposition+of+two+different+SAM+molecules&amp;rft.btitle=2011+IEEE+International+Interconnect+Technology+Conference&amp;rft.pages=1-3&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A30235970%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FIITC.2011.5940263&amp;rft.isbn=978-1-4577-0503-8&amp;rft.aulast=Maestre+Caro&amp;rft.aufirst=A.&amp;rft.au=Travaly%2C+Y.&amp;rft.au=Maes%2C+G.&amp;rft.au=Borghs%2C+G.&amp;rft.au=Armini%2C+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-Reif-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-Reif_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Reif_19-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Reif_19-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Reif_19-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Reif_19-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReifTanFanChen2002" class="citation journal cs1">Reif, Rafael; Tan, Chuan Seng; Fan, Andy; Chen, Kuan-Neng; Das, Shamik; Checka, Nisha (2002). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190715235342/https://pdfs.semanticscholar.org/e996/825ace86fa01a3492950f2d61fcbf780f515.pdf">"3-D Interconnects Using Cu Wafer Bonding: Technology and Applications"</a> <span class="cs1-format">(PDF)</span>. <i>Advanced Metallization Conference</i>: 37–44. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:2514964">2514964</a>. Archived from <a rel="nofollow" class="external text" href="https://pdfs.semanticscholar.org/e996/825ace86fa01a3492950f2d61fcbf780f515.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 15 July 2019<span class="reference-accessdate">. Retrieved <span class="nowrap">15 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Advanced+Metallization+Conference&amp;rft.atitle=3-D+Interconnects+Using+Cu+Wafer+Bonding%3A+Technology+and+Applications&amp;rft.pages=37-44&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A2514964%23id-name%3DS2CID&amp;rft.aulast=Reif&amp;rft.aufirst=Rafael&amp;rft.au=Tan%2C+Chuan+Seng&amp;rft.au=Fan%2C+Andy&amp;rft.au=Chen%2C+Kuan-Neng&amp;rft.au=Das%2C+Shamik&amp;rft.au=Checka%2C+Nisha&amp;rft_id=https%3A%2F%2Fpdfs.semanticscholar.org%2Fe996%2F825ace86fa01a3492950f2d61fcbf780f515.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYoonKuSuthiwongsunthornMarimuthu2009" class="citation book cs1">Yoon, Seung Wook; Ku, Jae Hoon; Suthiwongsunthorn, Nathapong; Marimuthu, Pandi Chelvam; Carson, Flynn (2009). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/5306554">"Fabrication and packaging of microbump interconnections for 3D TSV"</a>. <i>2009 IEEE International Conference on 3D System Integration</i>. pp.&#160;1–5. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F3DIC.2009.5306554">10.1109/3DIC.2009.5306554</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4244-4511-0" title="Special:BookSources/978-1-4244-4511-0"><bdi>978-1-4244-4511-0</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11139525">11139525</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Fabrication+and+packaging+of+microbump+interconnections+for+3D+TSV&amp;rft.btitle=2009+IEEE+International+Conference+on+3D+System+Integration&amp;rft.pages=1-5&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11139525%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2F3DIC.2009.5306554&amp;rft.isbn=978-1-4244-4511-0&amp;rft.aulast=Yoon&amp;rft.aufirst=Seung+Wook&amp;rft.au=Ku%2C+Jae+Hoon&amp;rft.au=Suthiwongsunthorn%2C+Nathapong&amp;rft.au=Marimuthu%2C+Pandi+Chelvam&amp;rft.au=Carson%2C+Flynn&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F5306554&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-5-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-5_21-0">^</a></b></span> <span class="reference-text">Real World Technologies. "3D Integration: A Revolution in Design". May 2, 2007. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://realworldtech.com/page.cfm?ArticleID=RWT050207213241&amp;p=6">"3D Integration: A Revolution in Design"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20101222052241/http://realworldtech.com/page.cfm?ArticleID=RWT050207213241&amp;p=6">Archived</a> from the original on 2010-12-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-03-18</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D+Integration%3A+A+Revolution+in+Design&amp;rft_id=http%3A%2F%2Frealworldtech.com%2Fpage.cfm%3FArticleID%3DRWT050207213241%26p%3D6&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFChenChiouChenWang2009" class="citation book cs1">Chen, D.Y.; Chiou, W.C.; Chen, M.F.; Wang, T.D.; Ching, K.M.; Tu, H.J.; Wu, W.J.; Yu, C.L.; Yang, K.F.; Chang, H.B.; Tseng, M.H.; Hsiao, C.W.; Lu, Y.J.; Hu, H.P.; Lin, Y.C.; Hsu, C.S.; Shue, Winston S.; Yu, C.H. (2009). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/5424350">"Enabling 3D-IC foundry technologies for 28 nm node and beyond: Through-silicon-via integration with high throughput die-to-wafer stacking"</a>. <i>2009 IEEE International Electron Devices Meeting (IEDM)</i>. pp.&#160;1–4. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIEDM.2009.5424350">10.1109/IEDM.2009.5424350</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4244-5639-0" title="Special:BookSources/978-1-4244-5639-0"><bdi>978-1-4244-5639-0</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:35980364">35980364</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Enabling+3D-IC+foundry+technologies+for+28+nm+node+and+beyond%3A+Through-silicon-via+integration+with+high+throughput+die-to-wafer+stacking&amp;rft.btitle=2009+IEEE+International+Electron+Devices+Meeting+%28IEDM%29&amp;rft.pages=1-4&amp;rft.date=2009&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A35980364%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FIEDM.2009.5424350&amp;rft.isbn=978-1-4244-5639-0&amp;rft.aulast=Chen&amp;rft.aufirst=D.Y.&amp;rft.au=Chiou%2C+W.C.&amp;rft.au=Chen%2C+M.F.&amp;rft.au=Wang%2C+T.D.&amp;rft.au=Ching%2C+K.M.&amp;rft.au=Tu%2C+H.J.&amp;rft.au=Wu%2C+W.J.&amp;rft.au=Yu%2C+C.L.&amp;rft.au=Yang%2C+K.F.&amp;rft.au=Chang%2C+H.B.&amp;rft.au=Tseng%2C+M.H.&amp;rft.au=Hsiao%2C+C.W.&amp;rft.au=Lu%2C+Y.J.&amp;rft.au=Hu%2C+H.P.&amp;rft.au=Lin%2C+Y.C.&amp;rft.au=Hsu%2C+C.S.&amp;rft.au=Shue%2C+Winston+S.&amp;rft.au=Yu%2C+C.H.&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F5424350&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-6-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-6_23-0">^</a></b></span> <span class="reference-text">Developer, Shed. "3D Processors, Stacking Core". September 20, 2005. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120316002322/http://www.devhardware.com/c/a/Computer-Processors/3D-Processor-Technology/">"3D Processors, Stacking Cores"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.devhardware.com/c/a/Computer-Processors/3D-Processor-Technology/">the original</a> on 2012-03-16<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-10-29</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D+Processors%2C+Stacking+Cores&amp;rft_id=http%3A%2F%2Fwww.devhardware.com%2Fc%2Fa%2FComputer-Processors%2F3D-Processor-Technology%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span>,</span> </li> <li id="cite_note-AutoRE-7-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-7_24-0">^</a></b></span> <span class="reference-text">Developer, Shed. "3D Processors, Stacking Core". September 20, 2005. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20110709015720/http://www.devhardware.com/c/a/Computer-Processors/3D-Processor-Technology/1/">"Page 2 - 3D Processors, Stacking Cores"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.devhardware.com/c/a/Computer-Processors/3D-Processor-Technology/1/">the original</a> on 2011-07-09<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-02-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Page+2+-+3D+Processors%2C+Stacking+Cores&amp;rft_id=http%3A%2F%2Fwww.devhardware.com%2Fc%2Fa%2FComputer-Processors%2F3D-Processor-Technology%2F1%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-8-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-8_25-0">^</a></b></span> <span class="reference-text">Xiangyu Dong and Yuan Xie, "System-level Cost Analysis and Design Exploration for 3D ICs", Proc. of Asia and South Pacific Design Automation Conference, 2009, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100424202047/http://www.cse.psu.edu/~yuanxie/3d.html">"Yuan Xie's 3D IC Research Page"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.cse.psu.edu/~yuanxie/3d.html">the original</a> on 2010-04-24<span class="reference-accessdate">. Retrieved <span class="nowrap">2010-05-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Yuan+Xie%27s+3D+IC+Research+Page&amp;rft_id=http%3A%2F%2Fwww.cse.psu.edu%2F~yuanxie%2F3d.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-9-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-9_26-0">^</a></b></span> <span class="reference-text">"3D IC Technology Delivers The Total Package" <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20101031055533/http://electronicdesign.com/article/engineering-essentials/3d_ic_technology_delivers_the_total_package.aspx">"3D IC Technology Delivers the Total Package"</a>. Archived from <a rel="nofollow" class="external text" href="http://electronicdesign.com/article/engineering-essentials/3d_ic_technology_delivers_the_total_package.aspx">the original</a> on 2010-10-31<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-01-27</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D+IC+Technology+Delivers+the+Total+Package&amp;rft_id=http%3A%2F%2Felectronicdesign.com%2Farticle%2Fengineering-essentials%2F3d_ic_technology_delivers_the_total_package.aspx&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span> Electronic Design July 02, 2010</span> </li> <li id="cite_note-AutoRE-10-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-10_27-0">^</a></b></span> <span class="reference-text">James J-Q Lu, Ken Rose, &amp; Susan Vitkavage "3D Integration: Why, What, Who, When?" <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080212184059/http://www.future-fab.com/documents.asp?d_ID=4396">"3D Integration: Why, What, Who, When?"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.future-fab.com/documents.asp?d_ID=4396">the original</a> on 2008-02-12<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-01-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D+Integration%3A+Why%2C+What%2C+Who%2C+When%3F&amp;rft_id=http%3A%2F%2Fwww.future-fab.com%2Fdocuments.asp%3Fd_ID%3D4396&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span> Future Fab Intl. Volume 23, 2007</span> </li> <li id="cite_note-AutoRE-11-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-11_28-0">^</a></b></span> <span class="reference-text">William J. Dally, "Future Directions for On-Chip Interconnection Networks" page 17, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.ece.ucdavis.edu/~ocin06/talks/dally.pdf">"Archived copy"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20100612190558/http://www.ece.ucdavis.edu/~ocin06/talks/dally.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2010-06-12<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-01-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Archived+copy&amp;rft_id=http%3A%2F%2Fwww.ece.ucdavis.edu%2F~ocin06%2Ftalks%2Fdally.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span> Computer Systems Laboratory Stanford University, 2006</span> </li> <li id="cite_note-AutoRE-12-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-12_29-0">^</a></b></span> <span class="reference-text">Johnson, R Colin. "3-D chip stacks standardized". July 10, 2008. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120930192649/http://www.eetimes.com/electronics-news/4077835/3-D-chip-stacks-standardized">"3-D chip stacks standardized"</a>. Archived from <a rel="nofollow" class="external text" href="http://www.eetimes.com/electronics-news/4077835/3-D-chip-stacks-standardized">the original</a> on 2012-09-30<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3-D+chip+stacks+standardized&amp;rft_id=http%3A%2F%2Fwww.eetimes.com%2Felectronics-news%2F4077835%2F3-D-chip-stacks-standardized&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-13-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-13_30-0">^</a></b></span> <span class="reference-text">"3D-ICs and Integrated Circuit Security" <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.tezzaron.com/about/papers/3D-ICs_and_Integrated_Circuit_Security.pdf">"Archived copy"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080907062545/http://www.tezzaron.com/about/papers/3D-ICs_and_Integrated_Circuit_Security.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2008-09-07<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-02-08</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Archived+copy&amp;rft_id=http%3A%2F%2Fwww.tezzaron.com%2Fabout%2Fpapers%2F3D-ICs_and_Integrated_Circuit_Security.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_web" title="Template:Cite web">cite web</a>}}</code>: CS1 maint: archived copy as title (<a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">link</a>)</span> Tezzaron Semiconductor, 2008</span> </li> <li id="cite_note-AutoRE-14-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-14_31-0">^</a></b></span> <span class="reference-text">Dong Hyuk Woo, Nak Hee Seong, Dean L. Lewis, and Hsien-Hsin S. Lee. "An Optimized 3D-Stacked Memory Architecture by Exploiting Excessive, High-Density TSV Bandwidth". In Proceedings of the 16th International Symposium on High-Performance Computer Architecture, pp. 429–440, Bangalore, India, January 2010.</span> </li> <li id="cite_note-AutoRE-15-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-15_32-0">^</a></b></span> <span class="reference-text">"Predicting the Performance of a 3D Processor-Memory Chip Stack" Jacob, P., McDonald, J.F. et al. Design &amp; Test of Computers, IEEE Volume 22, Issue 6, Nov.–Dec. 2005 Page(s):540–547</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text">A. Palesko, The Cost of 3D ICs, 3D InCites Knowledge Portal, January 9, 2015 <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.3dincites.com/2015/01/cost-3d-ics-2/">"The Cost of 3D ICs"</a>. 2015-01-09. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20150109231028/http://www.3dincites.com/2015/01/cost-3d-ics-2/">Archived</a> from the original on 2015-01-09<span class="reference-accessdate">. Retrieved <span class="nowrap">2015-01-09</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=The+Cost+of+3D+ICs&amp;rft.date=2015-01-09&amp;rft_id=http%3A%2F%2Fwww.3dincites.com%2F2015%2F01%2Fcost-3d-ics-2%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-16-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-16_34-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRobert_Patti2007" class="citation magazine cs1">Robert Patti (2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140517121030/http://www.future-fab.com/documents.asp?d_ID=4415">"Impact of Wafer-Level 3D Stacking on the Yield of ICs"</a>. <i>Future Fab International</i>. No.&#160;23. Archived from <a rel="nofollow" class="external text" href="http://www.future-fab.com/documents.asp?d_ID=4415">the original</a> on 2014-05-17<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Future+Fab+International&amp;rft.atitle=Impact+of+Wafer-Level+3D+Stacking+on+the+Yield+of+ICs&amp;rft.issue=23&amp;rft.date=2007&amp;rft.au=Robert+Patti&amp;rft_id=http%3A%2F%2Fwww.future-fab.com%2Fdocuments.asp%3Fd_ID%3D4415&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-leedt09-35"><span class="mw-cite-backlink">^ <a href="#cite_ref-leedt09_35-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-leedt09_35-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Hsien-Hsin S. Lee and Krishnendu Chakrabarty, "Test challenges for 3D integrated circuits", IEEE Design and Test of Computers, Special issue on 3D IC Design and Test, vol. 26, no. 5, pp. 26–35, Sep/Oct 2009</span> </li> <li id="cite_note-AutoRE-17-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-17_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.eetasia.com/ART_8800485666_480300_NT_fcb98510.HTM">"<span class="cs1-kern-left"></span>"EDA's big three unready for 3D chip packaging". EE Times Asia, October 25, 2007"</a>. Eetasia.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20080718203711/http://www.eetasia.com/ART_8800485666_480300_NT_fcb98510.HTM">Archived</a> from the original on July 18, 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%22EDA%27s+big+three+unready+for+3D+chip+packaging%22.+EE+Times+Asia%2C+October+25%2C+2007&amp;rft.pub=Eetasia.com&amp;rft_id=http%3A%2F%2Fwww.eetasia.com%2FART_8800485666_480300_NT_fcb98510.HTM&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-kim09-37"><span class="mw-cite-backlink">^ <a href="#cite_ref-kim09_37-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-kim09_37-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-kim09_37-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-kim09_37-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text">D. H. Kim, S. Mukhopadhyay, S. K. Lim, "Through-silicon-via aware interconnect prediction and optimization for 3D stacked ICs", in Proc. of Int. Workshop Sys.-Level Interconn. Pred., 2009, pp. 85–92.</span> </li> <li id="cite_note-S._Borkar,_2011,_pp._214-38"><span class="mw-cite-backlink">^ <a href="#cite_ref-S._Borkar,_2011,_pp._214_38-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-S._Borkar,_2011,_pp._214_38-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">S. Borkar, "3D integration for energy efficient system design", in Proc. Design Autom. Conf., 2011, pp. 214–219.</span> </li> <li id="cite_note-AutoRE-18-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-18_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20120930192649/http://www.eetimes.com/electronics-news/4077835/3-D-chip-stacks-standardized">"<span class="cs1-kern-left"></span>"3-D chip stacks standardized". EE Times November 7, 2008"</a>. Eetimes.com. 2014-05-09. Archived from <a rel="nofollow" class="external text" href="http://www.eetimes.com/electronics-news/4077835/3-D-chip-stacks-standardized">the original</a> on September 30, 2012<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%223-D+chip+stacks+standardized%22.+EE+Times+November+7%2C+2008&amp;rft.pub=Eetimes.com&amp;rft.date=2014-05-09&amp;rft_id=http%3A%2F%2Fwww.eetimes.com%2Felectronics-news%2F4077835%2F3-D-chip-stacks-standardized&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-19-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-19_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.semi.org/en/press/CTR_042145?id=highlights">"<span class="cs1-kern-left"></span>"SEMI International Standards Program Forms 3D Stacked IC Standards Committee". SEMI press release December 7, 2010"</a>. Semi.org. 2010-12-07. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140517121812/http://www.semi.org/en/press/CTR_042145?id=highlights">Archived</a> from the original on May 17, 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%22SEMI+International+Standards+Program+Forms+3D+Stacked+IC+Standards+Committee%22.+SEMI+press+release+December+7%2C+2010&amp;rft.pub=Semi.org&amp;rft.date=2010-12-07&amp;rft_id=http%3A%2F%2Fwww.semi.org%2Fen%2Fpress%2FCTR_042145%3Fid%3Dhighlights&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-20-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-20_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20140517114521/http://www.i-micronews.com/reports/3D-TSV-Technologies-Scenarios-Via-or-Via-Last-2010-report/108/">"<span class="cs1-kern-left"></span>"ADVANCED PACKAGING: 3D TSV Technologies Scenarios: Via First or Via Last? 2010 report". Yole report, 2010"</a>. I-micronews.com. 2010-01-01. Archived from <a rel="nofollow" class="external text" href="http://www.i-micronews.com/reports/3D-TSV-Technologies-Scenarios-Via-or-Via-Last-2010-report/108/">the original</a> on 2014-05-17<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=%22ADVANCED+PACKAGING%3A+3D+TSV+Technologies+Scenarios%3A+Via+First+or+Via+Last%3F+2010+report%22.+Yole+report%2C+2010&amp;rft.pub=I-micronews.com&amp;rft.date=2010-01-01&amp;rft_id=http%3A%2F%2Fwww.i-micronews.com%2Freports%2F3D-TSV-Technologies-Scenarios-Via-or-Via-Last-2010-report%2F108%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-21-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-21_42-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.electroiq.com/index/display/packaging-article-display/3806393153/articles/advanced-packaging/packaging0/integration/tsv/2010/august/si_-glass_interposers.html">"Si, glass interposers for 3D packaging: analysts' takes". Advanced Packaging August 10, 2010</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20110314192927/http://www.electroiq.com/index/display/packaging-article-display/3806393153/articles/advanced-packaging/packaging0/integration/tsv/2010/august/si_-glass_interposers.html">Archived</a> March 14, 2011, at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></span> </li> <li id="cite_note-knechtel11-43"><span class="mw-cite-backlink">^ <a href="#cite_ref-knechtel11_43-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-knechtel11_43-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">J. Knechtel, I. L. Markov, J. Lienig, <a rel="nofollow" class="external text" href="http://www.ifte.de/mitarbeiter/lienig/TCAD_Feb2012_pp.228-241.pdf">"Assembling 2D Blocks into 3D Chips"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304073535/http://www.ifte.de/mitarbeiter/lienig/TCAD_Feb2012_pp.228-241.pdf">Archived</a> 2016-03-04 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, in IEEE Trans. on CAD of ICs and Systems, vol. 31, no. 2, pp. 228–241, Feb. 2012</span> </li> <li id="cite_note-AutoRE-22-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-22_44-0">^</a></b></span> <span class="reference-text">S. Garg, D. Marculescu, "3D-GCP: An analytical model for the impact of process variations on the critical path delay distribution of 3D ICs", in Proc. Int. Symp. Quality Electron. Des., 2009, pp. 147–155</span> </li> <li id="cite_note-AutoRE-23-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-23_45-0">^</a></b></span> <span class="reference-text">L. K. Scheffer, "CAD implications of new interconnect technologies", in Proc. Design Autom. Conf., 2007, pp. 576–581.</span> </li> <li id="cite_note-Moskowitz-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Moskowitz_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMoskowitz2016" class="citation book cs1">Moskowitz, Sanford L. (2016). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=2STRDAAAQBAJ&amp;pg=PA165"><i>Advanced Materials Innovation: Managing Global Technology in the 21st century</i></a>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. pp.&#160;165–167. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-470-50892-3" title="Special:BookSources/978-0-470-50892-3"><bdi>978-0-470-50892-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Materials+Innovation%3A+Managing+Global+Technology+in+the+21st+century&amp;rft.pages=165-167&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2016&amp;rft.isbn=978-0-470-50892-3&amp;rft.aulast=Moskowitz&amp;rft.aufirst=Sanford+L.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D2STRDAAAQBAJ%26pg%3DPA165&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US3613226">U.S. patent 3,613,226</a></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><span><a rel="nofollow" class="external text" href="https://patents.google.com/patent/US3651490">U.S. patent 3,651,490</a></span></span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://fuse.wikichip.org/news/5588/a-look-at-trishul-arms-first-high-density-3d-logic-stacked-test-chip/">"A Look At Trishul: Arm's First High-Density 3D Logic Stacked Test-Chip"</a>. <i>WikiChip Fuse</i>. 2021-06-11<span class="reference-accessdate">. Retrieved <span class="nowrap">2022-10-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=WikiChip+Fuse&amp;rft.atitle=A+Look+At+Trishul%3A+Arm%27s+First+High-Density+3D+Logic+Stacked+Test-Chip&amp;rft.date=2021-06-11&amp;rft_id=https%3A%2F%2Ffuse.wikichip.org%2Fnews%2F5588%2Fa-look-at-trishul-arms-first-high-density-3d-logic-stacked-test-chip%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLobo2018" class="citation web cs1">Lobo, Savia (2018-12-13). <a rel="nofollow" class="external text" href="https://hub.packtpub.com/intel-unveils-the-first-3d-logic-chip-packaging-technology-foveros-powering-its-new-10nm-chips-sunny-cove/">"Intel unveils the first 3D Logic Chip packaging technology, 'Foveros', powering its new 10nm chips, 'Sunny Cove'<span class="cs1-kern-right"></span>"</a>. <i>Packt Hub</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-10-05</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Packt+Hub&amp;rft.atitle=Intel+unveils+the+first+3D+Logic+Chip+packaging+technology%2C+%27Foveros%27%2C+powering+its+new+10nm+chips%2C+%27Sunny+Cove%27&amp;rft.date=2018-12-13&amp;rft.aulast=Lobo&amp;rft.aufirst=Savia&amp;rft_id=https%3A%2F%2Fhub.packtpub.com%2Fintel-unveils-the-first-3d-logic-chip-packaging-technology-foveros-powering-its-new-10nm-chips-sunny-cove%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://arstechnica.com/gadgets/2015/11/5d-electronic-blood-ibms-secret-sauce-for-computers-with-biological-brain-like-efficiency/">"IBM is trying to solve all of computing's scaling issues with 5D electronic blood"</a>. 7 November 2015.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=IBM+is+trying+to+solve+all+of+computing%27s+scaling+issues+with+5D+electronic+blood&amp;rft.date=2015-11-07&amp;rft_id=https%3A%2F%2Farstechnica.com%2Fgadgets%2F2015%2F11%2F5d-electronic-blood-ibms-secret-sauce-for-computers-with-biological-brain-like-efficiency%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-Kada8-52"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kada8_52-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kada8_52-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kada8_52-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Kada8_52-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Kada8_52-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Kada8_52-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Kada8_52-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKada2015" class="citation book cs1">Kada, Morihiro (2015). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20211023015301/https://onecellonelightradio.files.wordpress.com/2018/11/three-dimensional-integration-of-semiconductors-2015.pdf">"Research and Development History of Three-Dimensional Integration Technology"</a> <span class="cs1-format">(PDF)</span>. <i>Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications</i>. Springer. pp.&#160;8–13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-18675-7" title="Special:BookSources/978-3-319-18675-7"><bdi>978-3-319-18675-7</bdi></a>. Archived from <a rel="nofollow" class="external text" href="https://onecellonelightradio.files.wordpress.com/2018/11/three-dimensional-integration-of-semiconductors-2015.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2021-10-23<span class="reference-accessdate">. Retrieved <span class="nowrap">2019-07-19</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Research+and+Development+History+of+Three-Dimensional+Integration+Technology&amp;rft.btitle=Three-Dimensional+Integration+of+Semiconductors%3A+Processing%2C+Materials%2C+and+Applications&amp;rft.pages=8-13&amp;rft.pub=Springer&amp;rft.date=2015&amp;rft.isbn=978-3-319-18675-7&amp;rft.aulast=Kada&amp;rft.aufirst=Morihiro&amp;rft_id=https%3A%2F%2Fonecellonelightradio.files.wordpress.com%2F2018%2F11%2Fthree-dimensional-integration-of-semiconductors-2015.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-53">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKawamuraSasakiIwaiNakano1983" class="citation journal cs1">Kawamura, S.; Sasaki, Nobuo; Iwai, T.; Nakano, M.; Takagi, M. (October 1983). "Three-dimensional CMOS IC's Fabricated by using beam recrystallization". <i>IEEE Electron Device Letters</i>. <b>4</b> (10): 366–368. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983IEDL....4..366K">1983IEDL....4..366K</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FEDL.1983.25766">10.1109/EDL.1983.25766</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0741-3106">0741-3106</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:35184408">35184408</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEEE+Electron+Device+Letters&amp;rft.atitle=Three-dimensional+CMOS+IC%27s+Fabricated+by+using+beam+recrystallization&amp;rft.volume=4&amp;rft.issue=10&amp;rft.pages=366-368&amp;rft.date=1983-10&amp;rft_id=info%3Adoi%2F10.1109%2FEDL.1983.25766&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A35184408%23id-name%3DS2CID&amp;rft.issn=0741-3106&amp;rft_id=info%3Abibcode%2F1983IEDL....4..366K&amp;rft.aulast=Kawamura&amp;rft.aufirst=S.&amp;rft.au=Sasaki%2C+Nobuo&amp;rft.au=Iwai%2C+T.&amp;rft.au=Nakano%2C+M.&amp;rft.au=Takagi%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-54">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKawamuraSasakiIwaiMukai1983" class="citation book cs1">Kawamura, S.; Sasaki, N.; Iwai, T.; Mukai, R.; Nakano, M.; Takagi, M. (December 1983). "3-Dimensional SOI/CMOS IC's fabricated by beam recrystallization". <i>1983 International Electron Devices Meeting</i>. pp.&#160;364–367. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIEDM.1983.190517">10.1109/IEDM.1983.190517</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11689645">11689645</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=3-Dimensional+SOI%2FCMOS+IC%27s+fabricated+by+beam+recrystallization&amp;rft.btitle=1983+International+Electron+Devices+Meeting&amp;rft.pages=364-367&amp;rft.date=1983-12&amp;rft_id=info%3Adoi%2F10.1109%2FIEDM.1983.190517&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11689645%23id-name%3DS2CID&amp;rft.aulast=Kawamura&amp;rft.aufirst=S.&amp;rft.au=Sasaki%2C+N.&amp;rft.au=Iwai%2C+T.&amp;rft.au=Mukai%2C+R.&amp;rft.au=Nakano%2C+M.&amp;rft.au=Takagi%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-55">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKawamuraSasakiIwaiMukai1984" class="citation book cs1">Kawamura, S.; Sasaki, Nobuo; Iwai, T.; Mukai, R.; Nakano, M.; Takagi, M. (1984). <a rel="nofollow" class="external text" href="https://ieeexplore.ieee.org/document/4480691"><i>3-Dimensional Gate Array with Vertically Stacked Dual SOI/CMOS Structure Fabricated by Beam Recrystallization</i></a>. pp.&#160;44–45.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=3-Dimensional+Gate+Array+with+Vertically+Stacked+Dual+SOI%2FCMOS+Structure+Fabricated+by+Beam+Recrystallization&amp;rft.pages=44-45&amp;rft.date=1984&amp;rft.aulast=Kawamura&amp;rft.aufirst=S.&amp;rft.au=Sasaki%2C+Nobuo&amp;rft.au=Iwai%2C+T.&amp;rft.au=Mukai%2C+R.&amp;rft.au=Nakano%2C+M.&amp;rft.au=Takagi%2C+M.&amp;rft_id=https%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F4480691&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-Garrou-56"><span class="mw-cite-backlink">^ <a href="#cite_ref-Garrou_56-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Garrou_56-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Garrou_56-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Garrou_56-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGarrou2008" class="citation book cs1">Garrou, Philip (6 August 2008). <a rel="nofollow" class="external text" href="https://application.wiley-vch.de/books/sample/3527332650_c01.pdf">"Introduction to 3D Integration"</a> <span class="cs1-format">(PDF)</span>. <i>Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits</i>. <a href="/wiki/Wiley-VCH" title="Wiley-VCH">Wiley-VCH</a>. p.&#160;4. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F9783527623051.ch1">10.1002/9783527623051.ch1</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-62305-1" title="Special:BookSources/978-3-527-62305-1"><bdi>978-3-527-62305-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Introduction+to+3D+Integration&amp;rft.btitle=Handbook+of+3D+Integration%3A+Technology+and+Applications+of+3D+Integrated+Circuits&amp;rft.pages=4&amp;rft.pub=Wiley-VCH&amp;rft.date=2008-08-06&amp;rft_id=info%3Adoi%2F10.1002%2F9783527623051.ch1&amp;rft.isbn=978-3-527-62305-1&amp;rft.aulast=Garrou&amp;rft.aufirst=Philip&amp;rft_id=https%3A%2F%2Fapplication.wiley-vch.de%2Fbooks%2Fsample%2F3527332650_c01.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><b><a href="#cite_ref-57">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAkasakaNishimura1986" class="citation book cs1">Akasaka, Yoichi; Nishimura, T. (December 1986). "Concept and basic technologies for 3-D IC structure". <i>1986 International Electron Devices Meeting</i>. pp.&#160;488–491. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIEDM.1986.191227">10.1109/IEDM.1986.191227</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10393330">10393330</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Concept+and+basic+technologies+for+3-D+IC+structure&amp;rft.btitle=1986+International+Electron+Devices+Meeting&amp;rft.pages=488-491&amp;rft.date=1986-12&amp;rft_id=info%3Adoi%2F10.1109%2FIEDM.1986.191227&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10393330%23id-name%3DS2CID&amp;rft.aulast=Akasaka&amp;rft.aufirst=Yoichi&amp;rft.au=Nishimura%2C+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-58"><span class="mw-cite-backlink"><b><a href="#cite_ref-58">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNishimuraInoueSugaharaKusunoki1987" class="citation book cs1">Nishimura, T.; Inoue, Yasuo; Sugahara, K.; Kusunoki, S.; Kumamoto, T.; Nakagawa, S.; Nakaya, M.; Horiba, Yasutaka; Akasaka, Yoichi (December 1987). "Three dimensional IC for high performance image signal processor". <i>1987 International Electron Devices Meeting</i>. pp.&#160;111–114. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIEDM.1987.191362">10.1109/IEDM.1987.191362</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:12936958">12936958</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Three+dimensional+IC+for+high+performance+image+signal+processor&amp;rft.btitle=1987+International+Electron+Devices+Meeting&amp;rft.pages=111-114&amp;rft.date=1987-12&amp;rft_id=info%3Adoi%2F10.1109%2FIEDM.1987.191362&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A12936958%23id-name%3DS2CID&amp;rft.aulast=Nishimura&amp;rft.aufirst=T.&amp;rft.au=Inoue%2C+Yasuo&amp;rft.au=Sugahara%2C+K.&amp;rft.au=Kusunoki%2C+S.&amp;rft.au=Kumamoto%2C+T.&amp;rft.au=Nakagawa%2C+S.&amp;rft.au=Nakaya%2C+M.&amp;rft.au=Horiba%2C+Yasutaka&amp;rft.au=Akasaka%2C+Yoichi&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><b><a href="#cite_ref-59">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHayashiKunioOyamaMorimoto1989" class="citation book cs1">Hayashi, Yoshihiro; Kunio, T.; Oyama, K.; Morimoto, M. (December 1989). "Three dimensional ICs, having four stacked active device layers". <i>International Technical Digest on Electron Devices Meeting</i>. pp.&#160;837–840. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIEDM.1989.74183">10.1109/IEDM.1989.74183</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:113995937">113995937</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Three+dimensional+ICs%2C+having+four+stacked+active+device+layers&amp;rft.btitle=International+Technical+Digest+on+Electron+Devices+Meeting&amp;rft.pages=837-840&amp;rft.date=1989-12&amp;rft_id=info%3Adoi%2F10.1109%2FIEDM.1989.74183&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A113995937%23id-name%3DS2CID&amp;rft.aulast=Hayashi&amp;rft.aufirst=Yoshihiro&amp;rft.au=Kunio%2C+T.&amp;rft.au=Oyama%2C+K.&amp;rft.au=Morimoto%2C+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><b><a href="#cite_ref-60">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYamazakiItohWadaMorimoto1990" class="citation journal cs1">Yamazaki, K.; Itoh, Y.; Wada, A.; Morimoto, K.; Tomita, Y. (December 1990). "4-layer 3-D IC technologies for parallel signal processing". <i>International Technical Digest on Electron Devices</i>: 599–602. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FIEDM.1990.237127">10.1109/IEDM.1990.237127</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:114856400">114856400</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Technical+Digest+on+Electron+Devices&amp;rft.atitle=4-layer+3-D+IC+technologies+for+parallel+signal+processing&amp;rft.pages=599-602&amp;rft.date=1990-12&amp;rft_id=info%3Adoi%2F10.1109%2FIEDM.1990.237127&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A114856400%23id-name%3DS2CID&amp;rft.aulast=Yamazaki&amp;rft.aufirst=K.&amp;rft.au=Itoh%2C+Y.&amp;rft.au=Wada%2C+A.&amp;rft.au=Morimoto%2C+K.&amp;rft.au=Tomita%2C+Y.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><b><a href="#cite_ref-61">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHayashiWadaKajiyanaOyama1990" class="citation journal cs1">Hayashi, Yoshihiro; Wada, S.; Kajiyana, K.; Oyama, K.; Koh, R.; Takahashi, S.; Kunio, T. (1990). "Fabrication of three-dimensional IC using 'cumulatively bonded IC' (CUBIC) technology". <i>Digest of Technical Papers.1990 Symposium on VLSI Technology</i>: 95–96. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FVLSIT.1990.111025">10.1109/VLSIT.1990.111025</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:27465273">27465273</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Digest+of+Technical+Papers.1990+Symposium+on+VLSI+Technology&amp;rft.atitle=Fabrication+of+three-dimensional+IC+using+%27cumulatively+bonded+IC%27+%28CUBIC%29+technology&amp;rft.pages=95-96&amp;rft.date=1990&amp;rft_id=info%3Adoi%2F10.1109%2FVLSIT.1990.111025&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A27465273%23id-name%3DS2CID&amp;rft.aulast=Hayashi&amp;rft.aufirst=Yoshihiro&amp;rft.au=Wada%2C+S.&amp;rft.au=Kajiyana%2C+K.&amp;rft.au=Oyama%2C+K.&amp;rft.au=Koh%2C+R.&amp;rft.au=Takahashi%2C+S.&amp;rft.au=Kunio%2C+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-Fukushima-62"><span class="mw-cite-backlink">^ <a href="#cite_ref-Fukushima_62-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Fukushima_62-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFukushimaTanakaKoyanagi2007" class="citation web cs1">Fukushima, T.; Tanaka, T.; Koyanagi, Mitsumasa (2007). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170516221221/http://sematech.org/meetings/archives/3d/8334/pres/Fukushima.pdf">"Thermal Issues of 3D ICs"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/wiki/SEMATECH" title="SEMATECH">SEMATECH</a></i>. <a href="/wiki/Tohoku_University" title="Tohoku University">Tohoku University</a>. Archived from <a rel="nofollow" class="external text" href="http://sematech.org/meetings/archives/3d/8334/pres/Fukushima.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 16 May 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">16 May</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=SEMATECH&amp;rft.atitle=Thermal+Issues+of+3D+ICs&amp;rft.date=2007&amp;rft.aulast=Fukushima&amp;rft.aufirst=T.&amp;rft.au=Tanaka%2C+T.&amp;rft.au=Koyanagi%2C+Mitsumasa&amp;rft_id=http%3A%2F%2Fsematech.org%2Fmeetings%2Farchives%2F3d%2F8334%2Fpres%2FFukushima.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><b><a href="#cite_ref-63">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTanakaLeeFukushimaKoyanagi2011" class="citation journal cs1 cs1-prop-long-vol">Tanaka, Tetsu; Lee, Kang Wook; Fukushima, Takafumi; Koyanagi, Mitsumasa (2011). <a rel="nofollow" class="external text" href="https://search.ieice.org/bin/index.php?category=C&amp;lang=W&amp;vol=J94-C&amp;num=11&amp;abst=j">"3D Integration Technology and Heterogeneous Integration"</a>. <i>IEICE Transactions on Electronics</i>. J94-C (11): 355–364. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62780117">62780117</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=IEICE+Transactions+on+Electronics&amp;rft.atitle=3D+Integration+Technology+and+Heterogeneous+Integration&amp;rft.volume=J94-C&amp;rft.issue=11&amp;rft.pages=355-364&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62780117%23id-name%3DS2CID&amp;rft.aulast=Tanaka&amp;rft.aufirst=Tetsu&amp;rft.au=Lee%2C+Kang+Wook&amp;rft.au=Fukushima%2C+Takafumi&amp;rft.au=Koyanagi%2C+Mitsumasa&amp;rft_id=https%3A%2F%2Fsearch.ieice.org%2Fbin%2Findex.php%3Fcategory%3DC%26lang%3DW%26vol%3DJ94-C%26num%3D11%26abst%3Dj&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-Takahashi-64"><span class="mw-cite-backlink"><b><a href="#cite_ref-Takahashi_64-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTakahashiTanida2011" class="citation book cs1">Takahashi, Kenji; Tanida, Kazumasa (2011). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=jtp_oFKsChgC&amp;pg=PA339">"Vertical Interconnection by ASET"</a>. <i>Handbook of 3D Integration, Volume 1: Technology and Applications of 3D Integrated Circuits</i>. John Wiley &amp; Sons. p.&#160;339. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-62306-8" title="Special:BookSources/978-3-527-62306-8"><bdi>978-3-527-62306-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Vertical+Interconnection+by+ASET&amp;rft.btitle=Handbook+of+3D+Integration%2C+Volume+1%3A+Technology+and+Applications+of+3D+Integrated+Circuits&amp;rft.pages=339&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2011&amp;rft.isbn=978-3-527-62306-8&amp;rft.aulast=Takahashi&amp;rft.aufirst=Kenji&amp;rft.au=Tanida%2C+Kazumasa&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Djtp_oFKsChgC%26pg%3DPA339&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><b><a href="#cite_ref-65">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSavastionkSiniaguineKorczynski2000" class="citation book cs1">Savastionk, S.; Siniaguine, O.; Korczynski, E. (2000). "Thru-silicon vias for 3D WLP". <i>Proceedings International Symposium on Advanced Packaging Materials Processes, Properties and Interfaces (Cat. No.00TH8507)</i>. pp.&#160;206–207. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FISAPM.2000.869271">10.1109/ISAPM.2000.869271</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-930815-59-9" title="Special:BookSources/0-930815-59-9"><bdi>0-930815-59-9</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:110397071">110397071</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Thru-silicon+vias+for+3D+WLP&amp;rft.btitle=Proceedings+International+Symposium+on+Advanced+Packaging+Materials+Processes%2C+Properties+and+Interfaces+%28Cat.+No.00TH8507%29&amp;rft.pages=206-207&amp;rft.date=2000&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A110397071%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FISAPM.2000.869271&amp;rft.isbn=0-930815-59-9&amp;rft.aulast=Savastionk&amp;rft.aufirst=S.&amp;rft.au=Siniaguine%2C+O.&amp;rft.au=Korczynski%2C+E.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><b><a href="#cite_ref-66">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLavanyashree2016" class="citation journal cs1">Lavanyashree, B.J. (August 2016). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20190304081038/http://pdfs.semanticscholar.org/d85c/cb16cf71395410d98de0d6cb9a5c1740e487.pdf">"3-Dimensional (3D) ICs: A Survey"</a> <span class="cs1-format">(PDF)</span>. <i>International Journal of Digital Application &amp; Contemporary Research</i>. <b>5</b> (1). Archived from <a rel="nofollow" class="external text" href="http://pdfs.semanticscholar.org/d85c/cb16cf71395410d98de0d6cb9a5c1740e487.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2019-03-04.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Digital+Application+%26+Contemporary+Research&amp;rft.atitle=3-Dimensional+%283D%29+ICs%3A+A+Survey&amp;rft.volume=5&amp;rft.issue=1&amp;rft.date=2016-08&amp;rft.aulast=Lavanyashree&amp;rft.aufirst=B.J.&amp;rft_id=http%3A%2F%2Fpdfs.semanticscholar.org%2Fd85c%2Fcb16cf71395410d98de0d6cb9a5c1740e487.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><b><a href="#cite_ref-67">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBanerjeeSouriKapurSaraswat2001" class="citation journal cs1"><a href="/wiki/Kaustav_Banerjee" title="Kaustav Banerjee">Banerjee, Kaustav</a>; Souri, Shukri J.; Kapur, Pawan; Saraswat, Krishna C. (2001). "3-D ICs: a novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration". <i>Proceedings of the IEEE</i>. <b>89</b> (5): 602–633. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F5.929647">10.1109/5.929647</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0018-9219">0018-9219</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5786126">5786126</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+IEEE&amp;rft.atitle=3-D+ICs%3A+a+novel+chip+design+for+improving+deep-submicrometer+interconnect+performance+and+systems-on-chip+integration&amp;rft.volume=89&amp;rft.issue=5&amp;rft.pages=602-633&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5786126%23id-name%3DS2CID&amp;rft.issn=0018-9219&amp;rft_id=info%3Adoi%2F10.1109%2F5.929647&amp;rft.aulast=Banerjee&amp;rft.aufirst=Kaustav&amp;rft.au=Souri%2C+Shukri+J.&amp;rft.au=Kapur%2C+Pawan&amp;rft.au=Saraswat%2C+Krishna+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><b><a href="#cite_ref-68">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFImotoMatsuiTakuboAkejima2001" class="citation journal cs1">Imoto, T.; Matsui, M.; Takubo, C.; Akejima, S.; Kariya, T.; Nishikawa, T.; Enomoto, R. (2001). <a rel="nofollow" class="external text" href="https://www.tib.eu/en/search/id/BLCP%3ACN039662991/Development-of-3-Dimensional-Module-Package-System/">"Development of 3-Dimensional Module Package, "System Block Module"<span class="cs1-kern-right"></span>"</a>. <i>Electronic Components and Technology Conference</i> (51). <a href="/wiki/Institute_of_Electrical_and_Electronics_Engineers" title="Institute of Electrical and Electronics Engineers">Institute of Electrical and Electronics Engineers</a>: 552–7. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0780370384" title="Special:BookSources/0780370384"><bdi>0780370384</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Electronic+Components+and+Technology+Conference&amp;rft.atitle=Development+of+3-Dimensional+Module+Package%2C+%22System+Block+Module%22&amp;rft.issue=51&amp;rft.pages=552-7&amp;rft.date=2001&amp;rft.isbn=0780370384&amp;rft.aulast=Imoto&amp;rft.aufirst=T.&amp;rft.au=Matsui%2C+M.&amp;rft.au=Takubo%2C+C.&amp;rft.au=Akejima%2C+S.&amp;rft.au=Kariya%2C+T.&amp;rft.au=Nishikawa%2C+T.&amp;rft.au=Enomoto%2C+R.&amp;rft_id=https%3A%2F%2Fwww.tib.eu%2Fen%2Fsearch%2Fid%2FBLCP%253ACN039662991%2FDevelopment-of-3-Dimensional-Module-Package-System%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><b><a href="#cite_ref-69">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRamm2016" class="citation web cs1">Ramm, Peter (22 January 2016). <a rel="nofollow" class="external text" href="https://www.3dincites.com/2016/01/fraunhofer-emft-our-early-and-ongoing-work-in-3d-integration/">"Fraunhofer EMFT: Our Early and Ongoing Work in 3D Integration"</a>. <i>3D InCites</i><span class="reference-accessdate">. Retrieved <span class="nowrap">22 September</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=3D+InCites&amp;rft.atitle=Fraunhofer+EMFT%3A+Our+Early+and+Ongoing+Work+in+3D+Integration&amp;rft.date=2016-01-22&amp;rft.aulast=Ramm&amp;rft.aufirst=Peter&amp;rft_id=https%3A%2F%2Fwww.3dincites.com%2F2016%2F01%2Ffraunhofer-emft-our-early-and-ongoing-work-in-3d-integration%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><b><a href="#cite_ref-70">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRammBollmannBraunBuchner1997" class="citation journal cs1 cs1-prop-long-vol">Ramm, P.; Bollmann, D.; Braun, R.; Buchner, R.; Cao-Minh, U.; et&#160;al. (November 1997). "Three dimensional metallization for vertically integrated circuits". <i>Microelectronic Engineering</i>. 37–38: 39–47. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0167-9317%2897%2900092-0">10.1016/S0167-9317(97)00092-0</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:22232571">22232571</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Microelectronic+Engineering&amp;rft.atitle=Three+dimensional+metallization+for+vertically+integrated+circuits&amp;rft.volume=37-38&amp;rft.pages=39-47&amp;rft.date=1997-11&amp;rft_id=info%3Adoi%2F10.1016%2FS0167-9317%2897%2900092-0&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A22232571%23id-name%3DS2CID&amp;rft.aulast=Ramm&amp;rft.aufirst=P.&amp;rft.au=Bollmann%2C+D.&amp;rft.au=Braun%2C+R.&amp;rft.au=Buchner%2C+R.&amp;rft.au=Cao-Minh%2C+U.&amp;rft.au=Engelhardt%2C+M.&amp;rft.au=Errmann%2C+G.&amp;rft.au=Gra%C3%9Fl%2C+T.&amp;rft.au=Hieber%2C+K.&amp;rft.au=H%C3%BCbner%2C+H.&amp;rft.au=Kawala%2C+G.&amp;rft.au=Kleiner%2C+M.&amp;rft.au=Klumpp%2C+A.&amp;rft.au=K%C3%BChn%2C+S.&amp;rft.au=Landesberger%2C+C.&amp;rft.au=Lezec%2C+H.&amp;rft.au=Muth%2C+W.&amp;rft.au=Pamler%2C+W.&amp;rft.au=Popp%2C+R.&amp;rft.au=Renner%2C+E.&amp;rft.au=Ruhl%2C+G.&amp;rft.au=S%C3%A4nger%2C+A.&amp;rft.au=Scheler%2C+U.&amp;rft.au=Schertel%2C+A.&amp;rft.au=Schmidt%2C+C.&amp;rft.au=Schwarzl%2C+S.&amp;rft.au=Weber%2C+J.&amp;rft.au=Weber%2C+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><b><a href="#cite_ref-71">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMacchioloAndricekMoserNisius2012" class="citation journal cs1">Macchiolo, A.; Andricek, L.; Moser, H. G.; Nisius, R.; Richter, R. H.; Weigell, P. (1 January 2012). "SLID-ICV Vertical Integration Technology for the ATLAS Pixel Upgrades". <i>Physics Procedia</i>. <b>37</b>: 1009–1015. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1202.6497">1202.6497</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2012PhPro..37.1009M">2012PhPro..37.1009M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.phpro.2012.02.444">10.1016/j.phpro.2012.02.444</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1875-3892">1875-3892</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:91179768">91179768</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physics+Procedia&amp;rft.atitle=SLID-ICV+Vertical+Integration+Technology+for+the+ATLAS+Pixel+Upgrades&amp;rft.volume=37&amp;rft.pages=1009-1015&amp;rft.date=2012-01-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A91179768%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2012PhPro..37.1009M&amp;rft_id=info%3Aarxiv%2F1202.6497&amp;rft.issn=1875-3892&amp;rft_id=info%3Adoi%2F10.1016%2Fj.phpro.2012.02.444&amp;rft.aulast=Macchiolo&amp;rft.aufirst=A.&amp;rft.au=Andricek%2C+L.&amp;rft.au=Moser%2C+H.+G.&amp;rft.au=Nisius%2C+R.&amp;rft.au=Richter%2C+R.+H.&amp;rft.au=Weigell%2C+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><b><a href="#cite_ref-72">^</a></b></span> <span class="reference-text">M.B. Kleiner, S.A. Kuehn, P. Ramm, W. Weber, IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 19, No. 4 (1996)</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><b><a href="#cite_ref-73">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.e-brains.org">"HOME"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=HOME&amp;rft_id=http%3A%2F%2Fwww.e-brains.org&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><b><a href="#cite_ref-74">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFanRahmanReif1999" class="citation journal cs1">Fan, Andy; Rahman, Adnan-ur; Reif, Rafael (February 2, 1999). "Copper Wafer Bonding". <i>Electrochemical and Solid-State Letters</i>. <b>2</b> (10): 534. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1149%2F1.1390894">10.1149/1.1390894</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:98300746">98300746</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Electrochemical+and+Solid-State+Letters&amp;rft.atitle=Copper+Wafer+Bonding&amp;rft.volume=2&amp;rft.issue=10&amp;rft.pages=534&amp;rft.date=1999-02-02&amp;rft_id=info%3Adoi%2F10.1149%2F1.1390894&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A98300746%23id-name%3DS2CID&amp;rft.aulast=Fan&amp;rft.aufirst=Andy&amp;rft.au=Rahman%2C+Adnan-ur&amp;rft.au=Reif%2C+Rafael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><b><a href="#cite_ref-75">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.tezzaron.com">"Tezzaron Semiconductor: The Z Path Forward"</a>. <i>Tezzaron Semiconductor</i><span class="reference-accessdate">. Retrieved <span class="nowrap">19 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Tezzaron+Semiconductor&amp;rft.atitle=Tezzaron+Semiconductor%3A+The+Z+Path+Forward&amp;rft_id=http%3A%2F%2Fwww.tezzaron.com&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-31-76"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-31_76-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.eetimes.com/document.asp?doc_id=1195090">"Six 3D designs precede 90% power-saving claims from Tezzaron - EE Times"</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141031023542/http://www.eetimes.com/document.asp?doc_id=1195090">Archived</a> from the original on 2014-10-31.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Six+3D+designs+precede+90%25+power-saving+claims+from+Tezzaron+-+EE+Times&amp;rft_id=http%3A%2F%2Fwww.eetimes.com%2Fdocument.asp%3Fdoc_id%3D1195090&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><b><a href="#cite_ref-77">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCole2005" class="citation web cs1">Cole, Bernard (22 May 2005). <a rel="nofollow" class="external text" href="https://www.eetimes.com/terrazon-applies-3d-stacking-technology-to-8051-mcu-core/">"Terrazon applies 3D stacking technology to 8051 MCU core"</a>. EETimes<span class="reference-accessdate">. Retrieved <span class="nowrap">10 August</span> 2020</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Terrazon+applies+3D+stacking+technology+to+8051+MCU+core&amp;rft.pub=EETimes&amp;rft.date=2005-05-22&amp;rft.aulast=Cole&amp;rft.aufirst=Bernard&amp;rft_id=https%3A%2F%2Fwww.eetimes.com%2Fterrazon-applies-3d-stacking-technology-to-8051-mcu-core%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-1-78"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-1_78-0">^</a></b></span> <span class="reference-text">B. Black, D. Nelson, C. Webb, and N. Samra, "3D Processing Technology and Its Impact on iA32 Microprocessors", in Proc. of Int. Conf. on Computer Design, pp. 316–318, 2004.</span> </li> <li id="cite_note-AutoRE-2-79"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-2_79-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSteve_Seguin2008" class="citation web cs1">Steve Seguin (2008-09-16). <a rel="nofollow" class="external text" href="http://www.tomshardware.com/news/rochester-3d-processor,6369.html">"Seguin, Steve. "World's First Stacked 3D Processor Created". September 16, 2008"</a>. Tomshardware.com<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Seguin%2C+Steve.+%22World%27s+First+Stacked+3D+Processor+Created%22.+September+16%2C+2008&amp;rft.pub=Tomshardware.com&amp;rft.date=2008-09-16&amp;rft.au=Steve+Seguin&amp;rft_id=http%3A%2F%2Fwww.tomshardware.com%2Fnews%2Frochester-3d-processor%2C6369.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-3-80"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-3_80-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.sciencedaily.com/releases/2008/09/080915105733.htm">"Science Daily. "3-D Computer Processor: 'Rochester Cube' Points Way To More Powerful Chip Designs". September 17, 2008"</a>. Sciencedaily.com. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20140517121643/http://www.sciencedaily.com/releases/2008/09/080915105733.htm">Archived</a> from the original on May 17, 2014<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Science+Daily.+%223-D+Computer+Processor%3A+%27Rochester+Cube%27+Points+Way+To+More+Powerful+Chip+Designs%22.+September+17%2C+2008&amp;rft.pub=Sciencedaily.com&amp;rft_id=https%3A%2F%2Fwww.sciencedaily.com%2Freleases%2F2008%2F09%2F080915105733.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-AutoRE-4-81"><span class="mw-cite-backlink"><b><a href="#cite_ref-AutoRE-4_81-0">^</a></b></span> <span class="reference-text">3D-MAPS project webpage at Georgia Tech <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20150308155800/http://arch.ece.gatech.edu/research/3dmaps/3dmaps.html">"3D-MAPS Many-Core Processor"</a>. Archived from <a rel="nofollow" class="external text" href="http://arch.ece.gatech.edu/research/3dmaps/3dmaps.html">the original</a> on 2015-03-08<span class="reference-accessdate">. Retrieved <span class="nowrap">2012-04-02</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D-MAPS+Many-Core+Processor&amp;rft_id=http%3A%2F%2Farch.ece.gatech.edu%2Fresearch%2F3dmaps%2F3dmaps.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><b><a href="#cite_ref-82">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://blaauw.engin.umich.edu/wp-content/uploads/sites/342/2017/11/486.pdf">"Centip3De: A 64-Core, 3D Stacked, Near-Threshold System"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Centip3De%3A+A+64-Core%2C+3D+Stacked%2C+Near-Threshold+System&amp;rft_id=http%3A%2F%2Fblaauw.engin.umich.edu%2Fwp-content%2Fuploads%2Fsites%2F342%2F2017%2F11%2F486.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><b><a href="#cite_ref-83">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100403003319/http://www.toshiba-components.com/ASIC/SiP.html">"System-in-Package (SiP)"</a>. <i><a href="/wiki/Toshiba" title="Toshiba">Toshiba</a></i>. Archived from <a rel="nofollow" class="external text" href="http://www.toshiba-components.com/ASIC/SiP.html">the original</a> on 3 April 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">3 April</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Toshiba&amp;rft.atitle=System-in-Package+%28SiP%29&amp;rft_id=http%3A%2F%2Fwww.toshiba-components.com%2FASIC%2FSiP.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><b><a href="#cite_ref-84">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20101123023805/http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp">"TOSHIBA COMMERCIALIZES INDUSTRY'S HIGHEST CAPACITY EMBEDDED NAND FLASH MEMORY FOR MOBILE CONSUMER PRODUCTS"</a>. <i><a href="/wiki/Toshiba" title="Toshiba">Toshiba</a></i>. April 17, 2007. Archived from <a rel="nofollow" class="external text" href="http://www.toshiba.com/taec/news/press_releases/2007/memy_07_470.jsp">the original</a> on November 23, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">23 November</span> 2010</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Toshiba&amp;rft.atitle=TOSHIBA+COMMERCIALIZES+INDUSTRY%27S+HIGHEST+CAPACITY+EMBEDDED+NAND+FLASH+MEMORY+FOR+MOBILE+CONSUMER+PRODUCTS&amp;rft.date=2007-04-17&amp;rft_id=http%3A%2F%2Fwww.toshiba.com%2Ftaec%2Fnews%2Fpress_releases%2F2007%2Fmemy_07_470.jsp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><b><a href="#cite_ref-85">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.koreatimes.co.kr/www/news/biz/2007/09/123_9628.html">"Hynix Surprises NAND Chip Industry"</a>. <i><a href="/wiki/Korea_Times" class="mw-redirect" title="Korea Times">Korea Times</a></i>. 5 September 2007<span class="reference-accessdate">. Retrieved <span class="nowrap">8 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Korea+Times&amp;rft.atitle=Hynix+Surprises+NAND+Chip+Industry&amp;rft.date=2007-09-05&amp;rft_id=https%3A%2F%2Fwww.koreatimes.co.kr%2Fwww%2Fnews%2Fbiz%2F2007%2F09%2F123_9628.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><b><a href="#cite_ref-86">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.toshiba.co.jp/about/press/2008_08/pr0701.htm">"Toshiba Launches the Largest Density Embedded NAND Flash Memory Devices"</a>. <a href="/wiki/Toshiba" title="Toshiba">Toshiba</a>. 7 August 2008<span class="reference-accessdate">. Retrieved <span class="nowrap">21 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Toshiba+Launches+the+Largest+Density+Embedded+NAND+Flash+Memory+Devices&amp;rft.date=2008-08-07&amp;rft_id=https%3A%2F%2Fwww.toshiba.co.jp%2Fabout%2Fpress%2F2008_08%2Fpr0701.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-toshiba2010-87"><span class="mw-cite-backlink"><b><a href="#cite_ref-toshiba2010_87-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation news cs1"><a rel="nofollow" class="external text" href="https://www.toshiba.co.jp/about/press/2010_06/pr1701.htm">"Toshiba Launches Industry's Largest Embedded NAND Flash Memory Modules"</a>. <i><a href="/wiki/Toshiba" title="Toshiba">Toshiba</a></i>. 17 June 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">21 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Toshiba&amp;rft.atitle=Toshiba+Launches+Industry%27s+Largest+Embedded+NAND+Flash+Memory+Modules&amp;rft.date=2010-06-17&amp;rft_id=https%3A%2F%2Fwww.toshiba.co.jp%2Fabout%2Fpress%2F2010_06%2Fpr1701.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-Kada15-88"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kada15_88-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kada15_88-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Kada15_88-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKada2015" class="citation book cs1">Kada, Morihiro (2015). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=JaUvCwAAQBAJ&amp;pg=PA15">"Research and Development History of Three-Dimensional Integration Technology"</a>. <i>Three-Dimensional Integration of Semiconductors: Processing, Materials, and Applications</i>. Springer. pp.&#160;15–8. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-18675-7" title="Special:BookSources/978-3-319-18675-7"><bdi>978-3-319-18675-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Research+and+Development+History+of+Three-Dimensional+Integration+Technology&amp;rft.btitle=Three-Dimensional+Integration+of+Semiconductors%3A+Processing%2C+Materials%2C+and+Applications&amp;rft.pages=15-8&amp;rft.pub=Springer&amp;rft.date=2015&amp;rft.isbn=978-3-319-18675-7&amp;rft.aulast=Kada&amp;rft.aufirst=Morihiro&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJaUvCwAAQBAJ%26pg%3DPA15&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-hynix2010s-89"><span class="mw-cite-backlink">^ <a href="#cite_ref-hynix2010s_89-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hynix2010s_89-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20210517040328/https://www.skhynix.com/eng/about/history2010.jsp">"History: 2010s"</a>. <i><a href="/wiki/SK_Hynix" title="SK Hynix">SK Hynix</a></i>. Archived from <a rel="nofollow" class="external text" href="https://www.skhynix.com/eng/about/history2010.jsp">the original</a> on 17 May 2021<span class="reference-accessdate">. Retrieved <span class="nowrap">8 July</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=SK+Hynix&amp;rft.atitle=History%3A+2010s&amp;rft_id=https%3A%2F%2Fwww.skhynix.com%2Feng%2Fabout%2Fhistory2010.jsp&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-samsung-hbm2-90"><span class="mw-cite-backlink"><b><a href="#cite_ref-samsung-hbm2_90-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://news.samsung.com/global/samsung-begins-mass-producing-worlds-fastest-dram-based-on-newest-high-bandwidth-memory-hbm-interface">"Samsung Begins Mass Producing World's Fastest DRAM&#160;– Based on Newest High Bandwidth Memory (HBM) Interface"</a>. <i>news.samsung.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=news.samsung.com&amp;rft.atitle=Samsung+Begins+Mass+Producing+World%27s+Fastest+DRAM+%E2%80%93+Based+on+Newest+High+Bandwidth+Memory+%28HBM%29+Interface&amp;rft_id=https%3A%2F%2Fnews.samsung.com%2Fglobal%2Fsamsung-begins-mass-producing-worlds-fastest-dram-based-on-newest-high-bandwidth-memory-hbm-interface&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-extremetech=hbm2-91"><span class="mw-cite-backlink"><b><a href="#cite_ref-extremetech=hbm2_91-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHruska2016" class="citation news cs1">Hruska, Joel (19 January 2016). <a rel="nofollow" class="external text" href="http://www.extremetech.com/extreme/221473-samsung-announces-mass-production-of-next-generation-hbm2-memory">"Samsung announces mass production of next-generation HBM2 memory&#160;– ExtremeTech"</a>. <i>Extremetech</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Extremetech&amp;rft.atitle=Samsung+announces+mass+production+of+next-generation+HBM2+memory+%E2%80%93+ExtremeTech&amp;rft.date=2016-01-19&amp;rft.aulast=Hruska&amp;rft.aufirst=Joel&amp;rft_id=http%3A%2F%2Fwww.extremetech.com%2Fextreme%2F221473-samsung-announces-mass-production-of-next-generation-hbm2-memory&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-anandtech-samsung-2017-92"><span class="mw-cite-backlink"><b><a href="#cite_ref-anandtech-samsung-2017_92-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShilov2017" class="citation news cs1">Shilov, Anton (December 5, 2017). <a rel="nofollow" class="external text" href="https://www.anandtech.com/show/12120/samsung-starts-production-of-512-gb-ufs-chips">"Samsung Starts Production of 512 GB UFS NAND Flash Memory: 64-Layer V-NAND, 860 MB/s Reads"</a>. <i><a href="/wiki/AnandTech" title="AnandTech">AnandTech</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">23 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=AnandTech&amp;rft.atitle=Samsung+Starts+Production+of+512+GB+UFS+NAND+Flash+Memory%3A+64-Layer+V-NAND%2C+860+MB%2Fs+Reads&amp;rft.date=2017-12-05&amp;rft.aulast=Shilov&amp;rft.aufirst=Anton&amp;rft_id=https%3A%2F%2Fwww.anandtech.com%2Fshow%2F12120%2Fsamsung-starts-production-of-512-gb-ufs-chips&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-electronicsweekly-samsung-93"><span class="mw-cite-backlink"><b><a href="#cite_ref-electronicsweekly-samsung_93-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFManners2019" class="citation news cs1">Manners, David (30 January 2019). <a rel="nofollow" class="external text" href="https://www.electronicsweekly.com/news/business/samsung-makes-1tb-flash-module-2019-01/">"Samsung makes 1TB flash eUFS module"</a>. <i><a href="/wiki/Electronics_Weekly" title="Electronics Weekly">Electronics Weekly</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">23 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Electronics+Weekly&amp;rft.atitle=Samsung+makes+1TB+flash+eUFS+module&amp;rft.date=2019-01-30&amp;rft.aulast=Manners&amp;rft.aufirst=David&amp;rft_id=https%3A%2F%2Fwww.electronicsweekly.com%2Fnews%2Fbusiness%2Fsamsung-makes-1tb-flash-module-2019-01%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-anandtech-samsung-2018-94"><span class="mw-cite-backlink"><b><a href="#cite_ref-anandtech-samsung-2018_94-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTallis2018" class="citation news cs1">Tallis, Billy (October 17, 2018). <a rel="nofollow" class="external text" href="https://www.anandtech.com/show/13497/samsung-shares-ssd-roadmap-for-qlc-nand-and-96layer-3d-nand">"Samsung Shares SSD Roadmap for QLC NAND And 96-layer 3D NAND"</a>. <i><a href="/wiki/AnandTech" title="AnandTech">AnandTech</a></i><span class="reference-accessdate">. Retrieved <span class="nowrap">27 June</span> 2019</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=AnandTech&amp;rft.atitle=Samsung+Shares+SSD+Roadmap+for+QLC+NAND+And+96-layer+3D+NAND&amp;rft.date=2018-10-17&amp;rft.aulast=Tallis&amp;rft.aufirst=Billy&amp;rft_id=https%3A%2F%2Fwww.anandtech.com%2Fshow%2F13497%2Fsamsung-shares-ssd-roadmap-for-qlc-nand-and-96layer-3d-nand&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><b><a href="#cite_ref-95">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.engadget.com/2018/12/12/intel-foverus-3d-chip/">"Intel unveils a groundbreaking way to make 3D chips"</a>. <i>Engadget</i>. 8 August 2019.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Engadget&amp;rft.atitle=Intel+unveils+a+groundbreaking+way+to+make+3D+chips&amp;rft.date=2019-08-08&amp;rft_id=https%3A%2F%2Fwww.engadget.com%2F2018%2F12%2F12%2Fintel-foverus-3d-chip%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><b><a href="#cite_ref-96">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith" class="citation web cs1">Smith, Ryan. <a rel="nofollow" class="external text" href="https://www.anandtech.com/show/17509/microns-232-layer-nand-now-shipping">"Micron's 232 Layer NAND Now Shipping: 1Tbit, 6-Plane Dies With 50% More I/O Bandwidth"</a>. <i>www.anandtech.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2022-08-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.anandtech.com&amp;rft.atitle=Micron%27s+232+Layer+NAND+Now+Shipping%3A+1Tbit%2C+6-Plane+Dies+With+50%25+More+I%2FO+Bandwidth&amp;rft.aulast=Smith&amp;rft.aufirst=Ryan&amp;rft_id=https%3A%2F%2Fwww.anandtech.com%2Fshow%2F17509%2Fmicrons-232-layer-nand-now-shipping&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=17" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239549316">.mw-parser-output .refbegin{margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li{margin-left:0;padding-left:3.2em;text-indent:-3.2em}.mw-parser-output .refbegin-hanging-indents ul,.mw-parser-output .refbegin-hanging-indents ul li{list-style:none}@media(max-width:720px){.mw-parser-output .refbegin-hanging-indents>ul>li{padding-left:1.6em;text-indent:-1.6em}}.mw-parser-output .refbegin-columns{margin-top:0.3em}.mw-parser-output .refbegin-columns ul{margin-top:0}.mw-parser-output .refbegin-columns li{page-break-inside:avoid;break-inside:avoid-column}@media screen{.mw-parser-output .refbegin{font-size:90%}}</style><div class="refbegin" style=""> <ul><li><a rel="nofollow" class="external text" href="http://pc.watch.impress.co.jp/docs/column/kaigai/20111107_488696.html">JEDECが「DDR4」とTSVを使う「3DS」メモリ技術の概要を明らかに</a> - 後藤弘茂のWeekly海外ニュース Impress Watch Co. (issued:2011-11-08, 2011-11-08)</li> <li><a rel="nofollow" class="external text" href="http://www.oki.com/jp/otr/2007/n211/pdf/211_r17.pdf">貫通電極を用いたチップ積層技術の開発</a> (Japanese)&#160;&#8211;&#32; oki technical review #211 Vol.74 #3 (issued:2007-10, 2011-11-08)</li> <li><a rel="nofollow" class="external text" href="http://www.a-elpida.com/ja/technology/tsv.html">TSV (Through Silicon Via:Si貫通電極)</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20120425154900/http://www.a-elpida.com/ja/technology/tsv.html">Archived</a> 2012-04-25 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> (Japanese)&#160;&#8211;&#32; Akita Elpida Memory, inc (2011-11-08)</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Further_reading">Further reading</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=18" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Philip Garrou, Christopher Bower, Peter Ramm: <i>Handbook of 3D Integration, Technology and Applications of 3D Integrated Circuits</i> Vol. 1 and Vol. 2, Wiley-VCH, Weinheim 2008, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-32034-9" title="Special:BookSources/978-3-527-32034-9">978-3-527-32034-9</a>.</li> <li>Yuan Xie, Jason Cong, Sachin Sapatnekar: <i>Three-Dimensional Integrated Circuit Design: Eda, Design And Microarchitectures</i>, Publisher: Springer, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1-4419-0783-1" title="Special:BookSources/1-4419-0783-1">1-4419-0783-1</a>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4419-0783-7" title="Special:BookSources/978-1-4419-0783-7">978-1-4419-0783-7</a>, 978–1441907837, Publishing Date: Dec. 2009.</li> <li>Philip Garrou, Mitsumasa Koyanagi, Peter Ramm: <i>Handbook of 3D Integration, 3D Process Technology</i> Vol. 3, Wiley-VCH, Weinheim 2014, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-33466-7" title="Special:BookSources/978-3-527-33466-7">978-3-527-33466-7</a>.</li> <li>Paul D. Franzon, Erik Jan Marinissen, Muhannad S. Bakir, Philip Garrou, Mitsumasa Koyanagi, Peter Ramm: Handbook of 3D Integration: "Design, Test, and Thermal Management of 3D Integrated Circuits", Vol. 4, Wiley-VCH, Weinheim 2019, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-33855-9" title="Special:BookSources/978-3-527-33855-9">978-3-527-33855-9</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Three-dimensional_integrated_circuit&amp;action=edit&amp;section=19" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuronymous2007" class="citation web cs1">Euronymous (2007-05-02). <a rel="nofollow" class="external text" href="http://realworldtech.com/page.cfm?ArticleID=RWT050207213241">"3D Integration: A Revolution in Design"</a>. Real World Technologies<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D+Integration%3A+A+Revolution+in+Design&amp;rft.pub=Real+World+Technologies&amp;rft.date=2007-05-02&amp;rft.au=Euronymous&amp;rft_id=http%3A%2F%2Frealworldtech.com%2Fpage.cfm%3FArticleID%3DRWT050207213241&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSemiconductors2006" class="citation web cs1">Semiconductors (2006). <a rel="nofollow" class="external text" href="https://archive.today/20130131192505/http://sst.pennnet.com/Articles/Article_Display.cfm?ARTICLE_ID=254615">"Mapping progress in 3D IC integration"</a>. Solid State Technology. Archived from <a rel="nofollow" class="external text" href="http://sst.pennnet.com/Articles/Article_Display.cfm?ARTICLE_ID=254615">the original</a> on January 31, 2013<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Mapping+progress+in+3D+IC+integration&amp;rft.pub=Solid+State+Technology&amp;rft.date=2006&amp;rft.au=Semiconductors&amp;rft_id=http%3A%2F%2Fsst.pennnet.com%2FArticles%2FArticle_Display.cfm%3FARTICLE_ID%3D254615&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_Ramm2010" class="citation book cs1">Peter Ramm; et&#160;al. (2010-09-16). "3D Integration technology: Status and application development". <i>2010 Proceedings of ESSCIRC</i>. IEEE. pp.&#160;9–16. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2FESSCIRC.2010.5619857">10.1109/ESSCIRC.2010.5619857</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<a rel="nofollow" class="external text" href="https://hdl.handle.net/11250%2F2463188">11250/2463188</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4244-6664-1" title="Special:BookSources/978-1-4244-6664-1"><bdi>978-1-4244-6664-1</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:1239311">1239311</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=3D+Integration+technology%3A+Status+and+application+development&amp;rft.btitle=2010+Proceedings+of+ESSCIRC&amp;rft.pages=9-16&amp;rft.pub=IEEE&amp;rft.date=2010-09-16&amp;rft_id=info%3Ahdl%2F11250%2F2463188&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A1239311%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1109%2FESSCIRC.2010.5619857&amp;rft.isbn=978-1-4244-6664-1&amp;rft.au=Peter+Ramm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMingjie_LinAbbas_El_GamalYi-chang_LuSimon_Wong2006" class="citation book cs1">Mingjie Lin; Abbas El Gamal; Yi-chang Lu &amp; Simon Wong (2006-02-22). "Performance benefits of monolithically stacked 3D-FPGA". <i>Proceedings of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate arrays</i>. Vol.&#160;26. p.&#160;113. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1117201.1117219">10.1145/1117201.1117219</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1595932925" title="Special:BookSources/1595932925"><bdi>1595932925</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:7818893">7818893</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Performance+benefits+of+monolithically+stacked+3D-FPGA&amp;rft.btitle=Proceedings+of+the+2006+ACM%2FSIGDA+14th+international+symposium+on+Field+programmable+gate+arrays&amp;rft.pages=113&amp;rft.date=2006-02-22&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7818893%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F1117201.1117219&amp;rft.isbn=1595932925&amp;rft.au=Mingjie+Lin&amp;rft.au=Abbas+El+Gamal&amp;rft.au=Yi-chang+Lu&amp;rft.au=Simon+Wong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.amkor.com/index.cfm?objectid=437C1C10-5056-AA0A-E2626E3C762307FF">"Joint Project for Mechanical Qualification of Next Generation High Density Package-on-Package (PoP) with Through Mold Via Technology"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Joint+Project+for+Mechanical+Qualification+of+Next+Generation+High+Density+Package-on-Package+%28PoP%29+with+Through+Mold+Via+Technology&amp;rft_id=http%3A%2F%2Fwww.amkor.com%2Findex.cfm%3Fobjectid%3D437C1C10-5056-AA0A-E2626E3C762307FF&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged February 2020">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.amkor.com/index.cfm?objectid=8A586C38-F4D0-4CD8-7AD50C7BA98E3417">"Advancements in Stacked Chip Scale Packaging (S-CSP), Provides System-in-a-Package Functionality for Wireless and Handheld Applications"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Advancements+in+Stacked+Chip+Scale+Packaging+%28S-CSP%29%2C+Provides+System-in-a-Package+Functionality+for+Wireless+and+Handheld+Applications&amp;rft_id=http%3A%2F%2Fwww.amkor.com%2Findex.cfm%3Fobjectid%3D8A586C38-F4D0-4CD8-7AD50C7BA98E3417&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged February 2020">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmith2010" class="citation web cs1">Smith, Lee (July 6, 2010). <a rel="nofollow" class="external text" href="http://www.amkor.com/index.cfm?objectid=9A9D6655-E2FD-713C-AE2761D3B9EFB250">"Achieving the 3rd Generation From 3D Packaging to 3D IC Architectures"</a>. <i>Future Fab International</i>. Amkor Technology<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Future+Fab+International&amp;rft.atitle=Achieving+the+3rd+Generation+From+3D+Packaging+to+3D+IC+Architectures&amp;rft.date=2010-07-06&amp;rft.aulast=Smith&amp;rft.aufirst=Lee&amp;rft_id=http%3A%2F%2Fwww.amkor.com%2Findex.cfm%3Fobjectid%3D9A9D6655-E2FD-713C-AE2761D3B9EFB250&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged February 2020">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.amkor.com/index.cfm?objectid=AC1A3242-F9FC-76B7-D0D77E166839BF9B">"Factors Affecting Electromigration and Current Carrying Capacity of Flip Chip and 3D IC Interconnects"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Factors+Affecting+Electromigration+and+Current+Carrying+Capacity+of+Flip+Chip+and+3D+IC+Interconnects&amp;rft_id=http%3A%2F%2Fwww.amkor.com%2Findex.cfm%3Fobjectid%3DAC1A3242-F9FC-76B7-D0D77E166839BF9B&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged February 2020">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.amkor.com/index.cfm?objectid=B173A68F-A106-490B-70B5650D6ACFB6DE">"Evaluation for UV Laser Dicing Process and its Reliability for Various Designs of Stack Chip Scale Package"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Evaluation+for+UV+Laser+Dicing+Process+and+its+Reliability+for+Various+Designs+of+Stack+Chip+Scale+Package&amp;rft_id=http%3A%2F%2Fwww.amkor.com%2Findex.cfm%3Fobjectid%3DB173A68F-A106-490B-70B5650D6ACFB6DE&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged February 2020">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.amkor.com/index.cfm?objectid=CAB8D948-F34D-8E73-72961B951D0877D7">"High Density PoP (Package-on-Package) and Package Stacking Development"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=High+Density+PoP+%28Package-on-Package%29+and+Package+Stacking+Development&amp;rft_id=http%3A%2F%2Fwww.amkor.com%2Findex.cfm%3Fobjectid%3DCAB8D948-F34D-8E73-72961B951D0877D7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span><sup class="noprint Inline-Template"><span style="white-space: nowrap;">&#91;<i><a href="/wiki/Wikipedia:Link_rot" title="Wikipedia:Link rot"><span title="&#160;Dead link tagged February 2020">permanent dead link</span></a></i><span style="visibility:hidden; color:transparent; padding-left:2px">&#8205;</span>&#93;</span></sup></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20081203230736/http://www.edn.com/article/CA410764.html">"3D Interconnect Technology Coming to Light"</a>. EDN. 2004. Archived from <a rel="nofollow" class="external text" href="http://www.edn.com/article/CA410764.html">the original</a> on 2008-12-03<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-01-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D+Interconnect+Technology+Coming+to+Light&amp;rft.pub=EDN&amp;rft.date=2004&amp;rft_id=http%3A%2F%2Fwww.edn.com%2Farticle%2FCA410764.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.eedesign.com/article/showArticle.jhtml?articleId=17408808">"Three-dimensional SoCs perform for future"</a>. EE Design. 2003<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Three-dimensional+SoCs+perform+for+future&amp;rft.pub=EE+Design&amp;rft.date=2003&amp;rft_id=http%3A%2F%2Fwww.eedesign.com%2Farticle%2FshowArticle.jhtml%3FarticleId%3D17408808&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://archive.today/20130121221433/http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=53700960">"MagnaChip, Tezzaron form partnership for 3D chips"</a>. EE Times. 2004. Archived from <a rel="nofollow" class="external text" href="http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=53700960">the original</a> on 2013-01-21.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=MagnaChip%2C+Tezzaron+form+partnership+for+3D+chips&amp;rft.pub=EE+Times&amp;rft.date=2004&amp;rft_id=http%3A%2F%2Fwww.eetimes.com%2Fnews%2Fsemi%2FshowArticle.jhtml%3FarticleID%3D53700960&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080515200141/http://www.eetimes.com/story/OEG20011219S0041">"Matrix preps 64-Mbyte write-once memory"</a>. EE Times. 2001. Archived from <a rel="nofollow" class="external text" href="http://www.eetimes.com/story/OEG20011219S0041">the original</a> on 2008-05-15<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Matrix+preps+64-Mbyte+write-once+memory&amp;rft.pub=EE+Times&amp;rft.date=2001&amp;rft_id=http%3A%2F%2Fwww.eetimes.com%2Fstory%2FOEG20011219S0041&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130818084414/http://www.electroiq.com/articles/sst/2013/08/monolithic-3d-is-now-in-production-samsung-starts-mass-producing-first-3d-vertical-nand-flash.html">"Samsung starts mass producing first 3D vertical NAND flash, August 2013"</a>. Electroiq.com. 2013-08-06. Archived from <a rel="nofollow" class="external text" href="https://www.electroiq.com/articles/sst/2013/08/monolithic-3d-is-now-in-production-samsung-starts-mass-producing-first-3d-vertical-nand-flash.html">the original</a> on 2013-08-18<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Samsung+starts+mass+producing+first+3D+vertical+NAND+flash%2C+August+2013&amp;rft.pub=Electroiq.com&amp;rft.date=2013-08-06&amp;rft_id=http%3A%2F%2Fwww.electroiq.com%2Farticles%2Fsst%2F2013%2F08%2Fmonolithic-3d-is-now-in-production-samsung-starts-mass-producing-first-3d-vertical-nand-flash.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130819075724/http://www.electroiq.com/articles/sst/2013/08/monolithic-3d-is-now-on-the-roadmap-for-2019.html">"CEA Leti placed monolithic 3D as the next generation technology as alternative to dimension scaling, August 2013"</a>. Electroiq.com. Archived from <a rel="nofollow" class="external text" href="https://www.electroiq.com/articles/sst/2013/08/monolithic-3d-is-now-on-the-roadmap-for-2019.html">the original</a> on 2013-08-19<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=CEA+Leti+placed+monolithic+3D+as+the+next+generation+technology+as+alternative+to+dimension+scaling%2C+August+2013&amp;rft.pub=Electroiq.com&amp;rft_id=http%3A%2F%2Fwww.electroiq.com%2Farticles%2Fsst%2F2013%2F08%2Fmonolithic-3d-is-now-on-the-roadmap-for-2019.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://archive.today/20130122085527/http://www.electroiq.com/index/display/article-display/366226/articles/advanced-packaging/packaging0/equipment/die-bonding-equipment/3d-integration-a-status-report.html/">"3D integration: A status report"</a>. 2009. Archived from <a rel="nofollow" class="external text" href="https://www.electroiq.com/index/display/article-display/366226/articles/advanced-packaging/packaging0/equipment/die-bonding-equipment/3d-integration-a-status-report.html/">the original</a> on 2013-01-22<span class="reference-accessdate">. Retrieved <span class="nowrap">2011-01-21</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=3D+integration%3A+A+status+report&amp;rft.date=2009&amp;rft_id=http%3A%2F%2Fwww.electroiq.com%2Findex%2Fdisplay%2Farticle-display%2F366226%2Farticles%2Fadvanced-packaging%2Fpackaging0%2Fequipment%2Fdie-bonding-equipment%2F3d-integration-a-status-report.html%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeepak_C._SekarZvi_Or-Bach" class="citation web cs1">Deepak C. Sekar &amp; Zvi Or-Bach. <a rel="nofollow" class="external text" href="http://www.monolithic3d.com/uploads/6/0/5/5/6055488/ieee_3d_ic_conference_invited_monolithic_3d.pdf">"Monolithic 3D-ICs with Single Crystal Silicon Layers"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Monolithic+3D-ICs+with+Single+Crystal+Silicon+Layers&amp;rft.au=Deepak+C.+Sekar&amp;rft.au=Zvi+Or-Bach&amp;rft_id=http%3A%2F%2Fwww.monolithic3d.com%2Fuploads%2F6%2F0%2F5%2F5%2F6055488%2Fieee_3d_ic_conference_invited_monolithic_3d.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100901192936/http://www.prweb.com/releases/3D_chips/3D_IC/prweb4400904.htm">"Global 3D Chips/3D IC Market to Reach US$5.2 Billion by 2015"</a>. PRWeb. 2010. Archived from <a rel="nofollow" class="external text" href="http://www.prweb.com/releases/3D_chips/3D_IC/prweb4400904.htm">the original</a> on September 1, 2010<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Global+3D+Chips%2F3D+IC+Market+to+Reach+US%245.2+Billion+by+2015&amp;rft.pub=PRWeb&amp;rft.date=2010&amp;rft_id=http%3A%2F%2Fwww.prweb.com%2Freleases%2F3D_chips%2F3D_IC%2Fprweb4400904.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.samsung.com/us/business/semiconductor/newsView.do?news_id=1231">"Samsung Develops 30nm-class 32GB Green DDR3 for Next-generation Servers, Using TSV Package Technology"</a>. Samsung.com. 2011<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Samsung+Develops+30nm-class+32GB+Green+DDR3+for+Next-generation+Servers%2C+Using+TSV+Package+Technology&amp;rft.pub=Samsung.com&amp;rft.date=2011&amp;rft_id=http%3A%2F%2Fwww.samsung.com%2Fus%2Fbusiness%2Fsemiconductor%2FnewsView.do%3Fnews_id%3D1231&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20100304084239/http://www.semiconductor.net/article/202251-How_Might_3_D_ICs_Come_Together_.php">"How Might 3-D ICs Come Together?"</a>. Semiconductor International. 2008. Archived from <a rel="nofollow" class="external text" href="http://www.semiconductor.net/article/202251-How_Might_3_D_ICs_Come_Together_.php">the original</a> on 2010-03-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2009-06-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=How+Might+3-D+ICs+Come+Together%3F&amp;rft.pub=Semiconductor+International&amp;rft.date=2008&amp;rft_id=http%3A%2F%2Fwww.semiconductor.net%2Farticle%2F202251-How_Might_3_D_ICs_Come_Together_.php&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20080212184730/http://www.semiconductor.net/article/CA604503.html">"Three-Dimensional ICs Solve the Interconnect Paradox"</a>. Semiconductor International. 2005. Archived from <a rel="nofollow" class="external text" href="http://www.semiconductor.net/article/CA604503.html">the original</a> on 2008-02-12<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-01-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Three-Dimensional+ICs+Solve+the+Interconnect+Paradox&amp;rft.pub=Semiconductor+International&amp;rft.date=2005&amp;rft_id=http%3A%2F%2Fwww.semiconductor.net%2Farticle%2FCA604503.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20071106080914/http://www.semiconductor.net/article/CA6431663.html">"Ziptronix, Raytheon Prove 3-D Integration of 0.5 µm CMOS Device"</a>. Semiconductor International. 2007. Archived from <a rel="nofollow" class="external text" href="http://www.semiconductor.net/article/CA6431663.html">the original</a> on 2007-11-06<span class="reference-accessdate">. Retrieved <span class="nowrap">2008-01-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Ziptronix%2C+Raytheon+Prove+3-D+Integration+of+0.5+%C2%B5m+CMOS+Device&amp;rft.pub=Semiconductor+International&amp;rft.date=2007&amp;rft_id=http%3A%2F%2Fwww.semiconductor.net%2Farticle%2FCA6431663.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPeter_RammArmin_KlumppJosef_WeberMaaike_Taklo2010" class="citation journal cs1">Peter Ramm; Armin Klumpp; Josef Weber; Maaike Taklo (2010). "3D System-on-Chip Technologies for More than Moore Systems". <i>Journal of Microsystem Technologies</i>. <b>16</b> (7): 1051–1055. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010MiTec..16.1051R">2010MiTec..16.1051R</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00542-009-0976-1">10.1007/s00542-009-0976-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55824967">55824967</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Microsystem+Technologies&amp;rft.atitle=3D+System-on-Chip+Technologies+for+More+than+Moore+Systems&amp;rft.volume=16&amp;rft.issue=7&amp;rft.pages=1051-1055&amp;rft.date=2010&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55824967%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs00542-009-0976-1&amp;rft_id=info%3Abibcode%2F2010MiTec..16.1051R&amp;rft.au=Peter+Ramm&amp;rft.au=Armin+Klumpp&amp;rft.au=Josef+Weber&amp;rft.au=Maaike+Taklo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPhilip_Garrou,_James_LuPeter_Ramm2012" class="citation book cs1">Philip Garrou, James Lu &amp; Peter Ramm (2012). <a rel="nofollow" class="external text" href="http://www.wiley-vch.de/publish/dt/books/newTitles201201/3-527-32646-4/?sID=p2qlnooj68su7htl8qrrc2qjt3">"Chapter 15"</a>. <i>Three-Dimensional Integration</i>. Wiley-VCH<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-05-15</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Chapter+15&amp;rft.btitle=Three-Dimensional+Integration&amp;rft.pub=Wiley-VCH&amp;rft.date=2012&amp;rft.au=Philip+Garrou%2C+James+Lu&amp;rft.au=Peter+Ramm&amp;rft_id=http%3A%2F%2Fwww.wiley-vch.de%2Fpublish%2Fdt%2Fbooks%2FnewTitles201201%2F3-527-32646-4%2F%3FsID%3Dp2qlnooj68su7htl8qrrc2qjt3&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AThree-dimensional+integrated+circuit" class="Z3988"></span> <span class="cs1-visible-error citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_book" title="Template:Cite book">cite book</a>}}</code>: </span><span class="cs1-visible-error citation-comment"><code class="cs1-code">&#124;work=</code> ignored (<a href="/wiki/Help:CS1_errors#periodical_ignored" title="Help:CS1 errors">help</a>)</span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Emerging_technologies" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align: center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Emerging_technologies" title="Template:Emerging technologies"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Emerging_technologies" title="Template talk:Emerging technologies"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Emerging_technologies" title="Special:EditPage/Template:Emerging technologies"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Emerging_technologies" style="font-size:114%;margin:0 4em"><a href="/wiki/Emerging_technologies" title="Emerging technologies">Emerging technologies</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><div style="display: inline-block; line-height: 1.2em; padding: .1em 0;"><a href="/wiki/Information_and_communications_technology" title="Information and communications technology">Information and<br />communications</a></div></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ambient_intelligence" title="Ambient intelligence">Ambient intelligence</a> <ul><li><a href="/wiki/Internet_of_things" title="Internet of things">Internet of things</a></li></ul></li> <li><a href="/wiki/Artificial_intelligence" title="Artificial intelligence">Artificial intelligence</a> <ul><li><a href="/wiki/Applications_of_artificial_intelligence" title="Applications of artificial intelligence">Applications of artificial intelligence</a></li> <li><a href="/wiki/Machine_translation" title="Machine translation">Machine translation</a></li> <li><a href="/wiki/Machine_vision" title="Machine vision">Machine vision</a></li> <li><a href="/wiki/Mobile_translation" title="Mobile translation">Mobile translation</a></li> <li><a href="/wiki/Progress_in_artificial_intelligence" title="Progress in artificial intelligence">Progress in artificial intelligence</a></li> <li><a href="/wiki/Semantic_Web" title="Semantic Web">Semantic Web</a></li> <li><a href="/wiki/Speech_recognition" title="Speech recognition">Speech recognition</a></li></ul></li> <li><a href="/wiki/Atomtronics" title="Atomtronics">Atomtronics</a></li> <li><a href="/wiki/Carbon_nanotube_field-effect_transistor" title="Carbon nanotube field-effect transistor">Carbon nanotube field-effect transistor</a></li> <li><a href="/wiki/Cybermethodology" title="Cybermethodology">Cybermethodology</a></li> <li><a href="/wiki/Extended_reality" title="Extended reality">Extended reality</a></li> <li><a href="/wiki/Optical_disc#Fourth-generation" title="Optical disc">Fourth-generation optical discs</a> <ul><li><a href="/wiki/3D_optical_data_storage" title="3D optical data storage">3D optical data storage</a></li> <li><a href="/wiki/Holographic_data_storage" title="Holographic data storage">Holographic data storage</a></li></ul></li> <li><a href="/wiki/General-purpose_computing_on_graphics_processing_units" title="General-purpose computing on graphics processing units">GPGPU</a></li> <li>Memory <ul><li><a href="/wiki/Programmable_metallization_cell" title="Programmable metallization cell">CBRAM</a></li> <li><a href="/wiki/Electrochemical_RAM" title="Electrochemical RAM">ECRAM</a></li> <li><a href="/wiki/Ferroelectric_RAM" title="Ferroelectric RAM">FRAM</a></li> <li><a href="/wiki/Millipede_memory" title="Millipede memory">Millipede</a></li> <li><a href="/wiki/Magnetoresistive_RAM" title="Magnetoresistive RAM">MRAM</a></li> <li><a href="/wiki/Nano-RAM" title="Nano-RAM">NRAM</a></li> <li><a href="/wiki/Phase-change_memory" title="Phase-change memory">PRAM</a></li> <li><a href="/wiki/Racetrack_memory" title="Racetrack memory">Racetrack memory</a></li> <li><a href="/wiki/Resistive_random-access_memory" title="Resistive random-access memory">RRAM</a></li> <li><a href="/wiki/SONOS" title="SONOS">SONOS</a></li> <li><a href="/wiki/UltraRAM" title="UltraRAM">UltraRAM</a></li></ul></li> <li><a href="/wiki/Optical_computing" title="Optical computing">Optical computing</a></li> <li><a href="/wiki/Radio-frequency_identification" title="Radio-frequency identification">RFID</a> <ul><li><a href="/wiki/Chipless_RFID" title="Chipless RFID">Chipless RFID</a></li></ul></li> <li><a href="/wiki/Software-defined_radio" title="Software-defined radio">Software-defined radio</a></li> <li><a class="mw-selflink selflink">Three-dimensional integrated circuit</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Topics</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Automation" title="Automation">Automation</a></li> <li><a href="/wiki/Collingridge_dilemma" title="Collingridge dilemma">Collingridge dilemma</a></li> <li><a href="/wiki/Differential_technological_development" title="Differential technological development">Differential technological development</a></li> <li><a href="/wiki/Disruptive_innovation" title="Disruptive innovation">Disruptive innovation</a></li> <li><a href="/wiki/Ephemeralization" title="Ephemeralization">Ephemeralization</a></li> <li><a href="/wiki/Ethics_of_technology" title="Ethics of technology">Ethics</a> <ul><li><a href="/wiki/Bioethics" title="Bioethics">Bioethics</a></li> <li><a href="/wiki/Cyberethics" title="Cyberethics">Cyberethics</a></li> <li><a href="/wiki/Neuroethics" title="Neuroethics">Neuroethics</a></li> <li><a href="/wiki/Robot_ethics" title="Robot ethics">Robot ethics</a></li></ul></li> <li><a href="/wiki/Exploratory_engineering" title="Exploratory engineering">Exploratory engineering</a></li> <li><a href="/wiki/Proactionary_principle" title="Proactionary principle">Proactionary principle</a></li> <li><a href="/wiki/Technological_change" title="Technological change">Technological change</a> <ul><li><a href="/wiki/Technological_unemployment" title="Technological unemployment">Technological unemployment</a></li></ul></li> <li><a href="/wiki/Technological_convergence" title="Technological convergence">Technological convergence</a></li> <li><a href="/wiki/Technological_evolution" title="Technological evolution">Technological evolution</a></li> <li><a href="/wiki/Technological_paradigm" title="Technological paradigm">Technological paradigm</a></li> <li><a href="/wiki/Technology_forecasting" title="Technology forecasting">Technology forecasting</a> <ul><li><a href="/wiki/Accelerating_change" title="Accelerating change">Accelerating change</a></li> <li><a href="/wiki/Future-oriented_technology_analysis" title="Future-oriented technology analysis">Future-oriented technology analysis</a></li> <li><a href="/wiki/Horizon_scanning" title="Horizon scanning">Horizon scanning</a></li> <li><a href="/wiki/Moore%27s_law" title="Moore&#39;s law">Moore's law</a></li> <li><a href="/wiki/Technological_singularity" title="Technological singularity">Technological singularity</a></li> <li><a href="/wiki/Technology_scouting" title="Technology scouting">Technology scouting</a></li></ul></li> <li><a href="/wiki/Technology_in_science_fiction" title="Technology in science fiction">Technology in science fiction</a></li> <li><a href="/wiki/Technology_readiness_level" title="Technology readiness level">Technology readiness level</a></li> <li><a href="/wiki/Technology_roadmap" title="Technology roadmap">Technology roadmap</a></li> <li><a href="/wiki/Transhumanism" title="Transhumanism">Transhumanism</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align: center;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Digital_electronics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Digital_electronics" title="Template:Digital electronics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Digital_electronics" title="Template talk:Digital electronics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Digital_electronics" title="Special:EditPage/Template:Digital electronics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Digital_electronics" style="font-size:114%;margin:0 4em"><a href="/wiki/Digital_electronics" title="Digital electronics">Digital electronics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electronic_component" title="Electronic component">Components</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transistor" title="Transistor">Transistor</a></li> <li><a href="/wiki/Resistor" title="Resistor">Resistor</a></li> <li><a href="/wiki/Inductor" title="Inductor">Inductor</a></li> <li><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a></li> <li><a href="/wiki/Printed_electronics" title="Printed electronics">Printed electronics</a></li> <li><a href="/wiki/Printed_circuit_board" title="Printed circuit board">Printed circuit board</a></li> <li><a href="/wiki/Electronic_circuit" title="Electronic circuit">Electronic circuit</a></li> <li><a href="/wiki/Flip-flop_(electronics)" title="Flip-flop (electronics)">Flip-flop</a></li> <li><a href="/wiki/Memory_cell_(computing)" title="Memory cell (computing)">Memory cell</a></li> <li><a href="/wiki/Combinational_logic" title="Combinational logic">Combinational logic</a></li> <li><a href="/wiki/Sequential_logic" title="Sequential logic">Sequential logic</a></li> <li><a href="/wiki/Logic_gate" title="Logic gate">Logic gate</a></li> <li><a href="/wiki/Boolean_circuit" title="Boolean circuit">Boolean circuit</a></li> <li><a href="/wiki/Integrated_circuit" title="Integrated circuit">Integrated circuit</a> (IC)</li> <li><a href="/wiki/Hybrid_integrated_circuit" title="Hybrid integrated circuit">Hybrid integrated circuit</a> (HIC)</li> <li><a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">Mixed-signal integrated circuit</a></li> <li><a class="mw-selflink selflink">Three-dimensional integrated circuit</a> (3D IC)</li> <li><a href="/wiki/Emitter-coupled_logic" title="Emitter-coupled logic">Emitter-coupled logic</a> (ECL)</li> <li><a href="/wiki/Erasable_programmable_logic_device" class="mw-redirect" title="Erasable programmable logic device">Erasable programmable logic device</a> (EPLD)</li> <li><a href="/wiki/Macrocell_array" title="Macrocell array">Macrocell array</a></li> <li><a href="/wiki/Programmable_logic_array" title="Programmable logic array">Programmable logic array</a> (PLA)</li> <li><a href="/wiki/Programmable_logic_device" title="Programmable logic device">Programmable logic device</a> (PLD)</li> <li><a href="/wiki/Programmable_Array_Logic" title="Programmable Array Logic">Programmable Array Logic</a> (PAL)</li> <li><a href="/wiki/Generic_Array_Logic" title="Generic Array Logic">Generic Array Logic</a> (GAL)</li> <li><a href="/wiki/Complex_programmable_logic_device" title="Complex programmable logic device">Complex programmable logic device</a> (CPLD)</li> <li><a href="/wiki/Field-programmable_gate_array" title="Field-programmable gate array">Field-programmable gate array</a> (FPGA)</li> <li><a href="/wiki/Field-programmable_object_array" title="Field-programmable object array">Field-programmable object array</a> (FPOA)</li> <li><a href="/wiki/Application-specific_integrated_circuit" title="Application-specific integrated circuit">Application-specific integrated circuit</a> (ASIC)</li> <li><a href="/wiki/Tensor_Processing_Unit" title="Tensor Processing Unit">Tensor Processing Unit</a> (TPU)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Theory</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Digital_signal" title="Digital signal">Digital signal</a></li> <li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Logic_synthesis" title="Logic synthesis">Logic synthesis</a></li> <li><a href="/wiki/Logic_in_computer_science" title="Logic in computer science">Logic in computer science</a></li> <li><a href="/wiki/Computer_architecture" title="Computer architecture">Computer architecture</a></li> <li><a href="/wiki/Digital_signal_(signal_processing)" title="Digital signal (signal processing)">Digital signal</a> <ul><li><a href="/wiki/Digital_signal_processing" title="Digital signal processing">Digital signal processing</a></li></ul></li> <li><a href="/wiki/Circuit_minimization_for_Boolean_functions" class="mw-redirect" title="Circuit minimization for Boolean functions">Circuit minimization</a></li> <li><a href="/wiki/Switching_circuit_theory" title="Switching circuit theory">Switching circuit theory</a></li> <li><a href="/wiki/Gate_equivalent" title="Gate equivalent">Gate equivalent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electronics_design" class="mw-redirect" title="Electronics design">Design</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Logic_synthesis" title="Logic synthesis">Logic synthesis</a></li> <li><a href="/wiki/Place_and_route" title="Place and route">Place and route</a> <ul><li><a href="/wiki/Placement_(electronic_design_automation)" title="Placement (electronic design automation)">Placement</a></li> <li><a href="/wiki/Routing_(electronic_design_automation)" title="Routing (electronic design automation)">Routing</a></li></ul></li> <li><a href="/wiki/Transaction-level_modeling" title="Transaction-level modeling">Transaction-level modeling</a></li> <li><a href="/wiki/Register-transfer_level" title="Register-transfer level">Register-transfer level</a> <ul><li><a href="/wiki/Hardware_description_language" title="Hardware description language">Hardware description language</a></li> <li><a href="/wiki/High-level_synthesis" title="High-level synthesis">High-level synthesis</a></li></ul></li> <li><a href="/wiki/Formal_equivalence_checking" title="Formal equivalence checking">Formal equivalence checking</a></li> <li><a href="/wiki/Synchronous_circuit" title="Synchronous circuit">Synchronous logic</a></li> <li><a href="/wiki/Asynchronous_circuit" title="Asynchronous circuit">Asynchronous logic</a></li> <li><a href="/wiki/Finite-state_machine" title="Finite-state machine">Finite-state machine</a> <ul><li><a href="/wiki/Hierarchical_state_machine" class="mw-redirect" title="Hierarchical state machine">Hierarchical state machine</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Applications</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Computer_hardware" title="Computer hardware">Computer hardware</a> <ul><li><a href="/wiki/Hardware_acceleration" title="Hardware acceleration">Hardware acceleration</a></li></ul></li> <li><a href="/wiki/Digital_audio" title="Digital audio">Digital audio</a> <ul><li><a href="/wiki/Digital_radio" title="Digital radio">radio</a></li></ul></li> <li><a href="/wiki/Digital_photography" title="Digital photography">Digital photography</a></li> <li><a href="/wiki/Telephony#Digital_telephony" title="Telephony">Digital telephone</a></li> <li><a href="/wiki/Digital_video" title="Digital video">Digital video</a> <ul><li><a href="/wiki/Digital_cinematography" title="Digital cinematography">cinematography</a></li> <li><a href="/wiki/Digital_television" title="Digital television">television</a></li></ul></li> <li><a href="/wiki/Electronic_literature" title="Electronic literature">Electronic literature</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Design issues</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Metastability_(electronics)" title="Metastability (electronics)">Metastability</a></li> <li><a href="/wiki/Runt_pulse" title="Runt pulse">Runt pulse</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Electronic_components" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Electronic_components" title="Template:Electronic components"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Electronic_components" title="Template talk:Electronic components"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Electronic_components" title="Special:EditPage/Template:Electronic components"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Electronic_components" style="font-size:114%;margin:0 4em"><a href="/wiki/Electronic_component" title="Electronic component">Electronic components</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Semiconductor_device" title="Semiconductor device">Semiconductor<br />devices</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/MOSFET" title="MOSFET">MOS <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Transistor" title="Transistor">Transistor</a></li> <li><a href="/wiki/NMOS_logic" title="NMOS logic">NMOS</a></li> <li><a href="/wiki/PMOS_logic" title="PMOS logic">PMOS</a></li> <li><a href="/wiki/BiCMOS" title="BiCMOS">BiCMOS</a></li> <li><a href="/wiki/Bio-FET" title="Bio-FET">BioFET</a></li> <li><a href="/wiki/Chemical_field-effect_transistor" title="Chemical field-effect transistor">Chemical field-effect transistor</a> (ChemFET)</li> <li><a href="/wiki/CMOS" title="CMOS">Complementary MOS</a> (CMOS)</li> <li><a href="/wiki/Depletion-load_NMOS_logic" title="Depletion-load NMOS logic">Depletion-load NMOS</a></li> <li><a href="/wiki/FinFET" class="mw-redirect" title="FinFET">Fin field-effect transistor</a> (FinFET)</li> <li><a href="/wiki/Floating-gate_MOSFET" title="Floating-gate MOSFET">Floating-gate MOSFET</a> (FGMOS)</li> <li><a href="/wiki/Insulated-gate_bipolar_transistor" title="Insulated-gate bipolar transistor">Insulated-gate bipolar transistor</a> (IGBT)</li> <li><a href="/wiki/ISFET" title="ISFET">ISFET</a></li> <li><a href="/wiki/LDMOS" title="LDMOS">LDMOS</a></li> <li><a href="/wiki/MOSFET" title="MOSFET">MOS field-effect transistor</a> (MOSFET)</li> <li><a href="/wiki/Multigate_device" title="Multigate device">Multi-gate field-effect transistor</a> (MuGFET)</li> <li><a href="/wiki/Power_MOSFET" title="Power MOSFET">Power MOSFET</a></li> <li><a href="/wiki/Thin-film_transistor" title="Thin-film transistor">Thin-film transistor</a> (TFT)</li> <li><a href="/wiki/VMOS" title="VMOS">VMOS</a></li> <li><a href="/wiki/Power_MOSFET#UMOS" title="Power MOSFET">UMOS</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Transistor" title="Transistor">Other <br />transistors</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bipolar_junction_transistor" title="Bipolar junction transistor">Bipolar junction transistor</a> (BJT)</li> <li><a href="/wiki/Darlington_transistor" title="Darlington transistor">Darlington transistor</a></li> <li><a href="/wiki/Diffused_junction_transistor" title="Diffused junction transistor">Diffused junction transistor</a></li> <li><a href="/wiki/Field-effect_transistor" title="Field-effect transistor">Field-effect transistor</a> (FET) <ul><li><a href="/wiki/JFET" title="JFET">Junction Gate FET (JFET)</a></li> <li><a href="/wiki/Organic_field-effect_transistor" title="Organic field-effect transistor">Organic FET (OFET)</a></li></ul></li> <li><a href="/wiki/Light-emitting_transistor" title="Light-emitting transistor">Light-emitting transistor</a> (LET) <ul><li><a href="/wiki/Organic_light-emitting_transistor" title="Organic light-emitting transistor">Organic LET (OLET)</a></li></ul></li> <li><a href="/wiki/Pentode_transistor" title="Pentode transistor">Pentode transistor</a></li> <li><a href="/wiki/Point-contact_transistor" title="Point-contact transistor">Point-contact transistor</a></li> <li><a href="/wiki/Programmable_unijunction_transistor" title="Programmable unijunction transistor">Programmable unijunction transistor</a> (PUT)</li> <li><a href="/wiki/Static_induction_transistor" title="Static induction transistor">Static induction transistor</a> (SIT)</li> <li><a href="/wiki/Tetrode_transistor" title="Tetrode transistor">Tetrode transistor</a></li> <li><a href="/wiki/Unijunction_transistor" title="Unijunction transistor">Unijunction transistor</a> (UJT)</li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Diode" title="Diode">Diodes</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Avalanche_diode" title="Avalanche diode">Avalanche diode</a></li> <li><a href="/wiki/Constant-current_diode" title="Constant-current diode">Constant-current diode</a> (CLD, CRD)</li> <li><a href="/wiki/Gunn_diode" title="Gunn diode">Gunn diode</a></li> <li><a href="/wiki/Laser_diode" title="Laser diode">Laser diode</a> (LD)</li> <li><a href="/wiki/Light-emitting_diode" title="Light-emitting diode">Light-emitting diode</a> (LED)</li> <li><a href="/wiki/OLED" title="OLED">Organic light-emitting diode</a> (OLED)</li> <li><a href="/wiki/Photodiode" title="Photodiode">Photodiode</a></li> <li><a href="/wiki/PIN_diode" title="PIN diode">PIN diode</a></li> <li><a href="/wiki/Schottky_diode" title="Schottky diode">Schottky diode</a></li> <li><a href="/wiki/Step_recovery_diode" title="Step recovery diode">Step recovery diode</a></li> <li><a href="/wiki/Zener_diode" title="Zener diode">Zener diode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other <br />devices</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Printed_electronics" title="Printed electronics">Printed electronics</a></li> <li><a href="/wiki/Printed_circuit_board" title="Printed circuit board">Printed circuit board</a></li> <li><a href="/wiki/DIAC" title="DIAC">DIAC</a></li> <li><a href="/wiki/Heterostructure_barrier_varactor" title="Heterostructure barrier varactor">Heterostructure barrier varactor</a></li> <li><a href="/wiki/Integrated_circuit" title="Integrated circuit">Integrated circuit</a> (IC)</li> <li><a href="/wiki/Hybrid_integrated_circuit" title="Hybrid integrated circuit">Hybrid integrated circuit</a></li> <li><a href="/wiki/Light_emitting_capacitor" class="mw-redirect" title="Light emitting capacitor">Light emitting capacitor</a> (LEC)</li> <li><a href="/wiki/Memistor" title="Memistor">Memistor</a></li> <li><a href="/wiki/Memristor" title="Memristor">Memristor</a></li> <li><a href="/wiki/Memtransistor" title="Memtransistor">Memtransistor</a></li> <li><a href="/wiki/Memory_cell_(computing)" title="Memory cell (computing)">Memory cell</a></li> <li><a href="/wiki/Metal-oxide_varistor" class="mw-redirect" title="Metal-oxide varistor">Metal-oxide varistor</a> (MOV)</li> <li><a href="/wiki/Mixed-signal_integrated_circuit" title="Mixed-signal integrated circuit">Mixed-signal integrated circuit</a></li> <li><a href="/wiki/MOS_integrated_circuit" class="mw-redirect" title="MOS integrated circuit">MOS integrated circuit</a> (MOS IC)</li> <li><a href="/wiki/Organic_semiconductor" title="Organic semiconductor">Organic semiconductor</a></li> <li><a href="/wiki/Photodetector" title="Photodetector">Photodetector</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a></li> <li><a href="/wiki/RF_CMOS" title="RF CMOS">RF CMOS</a></li> <li><a href="/wiki/Silicon_controlled_rectifier" title="Silicon controlled rectifier">Silicon controlled rectifier</a> (SCR)</li> <li><a href="/wiki/Solaristor" title="Solaristor">Solaristor</a></li> <li><a href="/wiki/Static_induction_thyristor" title="Static induction thyristor">Static induction thyristor</a> (SITh)</li> <li><a class="mw-selflink selflink">Three-dimensional integrated circuit</a> (3D IC)</li> <li><a href="/wiki/Thyristor" title="Thyristor">Thyristor</a></li> <li><a href="/wiki/Trancitor" title="Trancitor">Trancitor</a></li> <li><a href="/wiki/TRIAC" title="TRIAC">TRIAC</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Voltage_regulator" title="Voltage regulator">Voltage regulators</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Linear_regulator" title="Linear regulator">Linear regulator</a></li> <li><a href="/wiki/Low-dropout_regulator" title="Low-dropout regulator">Low-dropout regulator</a></li> <li><a href="/wiki/Switching_regulator" class="mw-redirect" title="Switching regulator">Switching regulator</a></li> <li><a href="/wiki/Buck_converter" title="Buck converter">Buck</a></li> <li><a href="/wiki/Boost_converter" title="Boost converter">Boost</a></li> <li><a href="/wiki/Buck%E2%80%93boost_converter" title="Buck–boost converter">Buck–boost</a></li> <li><a href="/wiki/Split-pi_topology" title="Split-pi topology">Split-pi</a></li> <li><a href="/wiki/%C4%86uk_converter" title="Ćuk converter">Ćuk</a></li> <li><a href="/wiki/Single-ended_primary-inductor_converter" title="Single-ended primary-inductor converter">SEPIC</a></li> <li><a href="/wiki/Charge_pump" title="Charge pump">Charge pump</a></li> <li><a href="/wiki/Switched_capacitor" title="Switched capacitor">Switched capacitor</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acorn_tube" title="Acorn tube">Acorn tube</a></li> <li><a href="/wiki/Audion" title="Audion">Audion</a></li> <li><a href="/wiki/Beam_tetrode" title="Beam tetrode">Beam tetrode</a></li> <li><a href="/wiki/Hot-wire_barretter" title="Hot-wire barretter">Barretter</a></li> <li><a href="/wiki/Compactron" title="Compactron">Compactron</a></li> <li><a href="/wiki/Vacuum_diode" class="mw-redirect" title="Vacuum diode">Diode</a></li> <li><a href="/wiki/Fleming_valve" title="Fleming valve">Fleming valve</a></li> <li><a href="/wiki/Neutron_generator" title="Neutron generator">Neutron tube</a></li> <li><a href="/wiki/Nonode" title="Nonode">Nonode</a></li> <li><a href="/wiki/Nuvistor" title="Nuvistor">Nuvistor</a></li> <li><a href="/wiki/Pentagrid_converter" title="Pentagrid converter">Pentagrid</a> (Hexode, Heptode, Octode)</li> <li><a href="/wiki/Pentode" title="Pentode">Pentode</a></li> <li><a href="/wiki/Photomultiplier_tube" title="Photomultiplier tube">Photomultiplier</a></li> <li><a href="/wiki/Phototube" title="Phototube">Phototube</a></li> <li><a href="/wiki/Tetrode" title="Tetrode">Tetrode</a></li> <li><a href="/wiki/Triode" title="Triode">Triode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Vacuum_tube" title="Vacuum tube">Vacuum tubes</a> (<a href="/wiki/Electromagnetic_radiation" title="Electromagnetic radiation">RF</a>)</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Backward-wave_oscillator" title="Backward-wave oscillator">Backward-wave oscillator</a> (BWO)</li> <li><a href="/wiki/Cavity_magnetron" title="Cavity magnetron">Cavity magnetron</a></li> <li><a href="/wiki/Crossed-field_amplifier" title="Crossed-field amplifier">Crossed-field amplifier</a> (CFA)</li> <li><a href="/wiki/Gyrotron" title="Gyrotron">Gyrotron</a></li> <li><a href="/wiki/Inductive_output_tube" title="Inductive output tube">Inductive output tube</a> (IOT)</li> <li><a href="/wiki/Klystron" title="Klystron">Klystron</a></li> <li><a href="/wiki/Maser" title="Maser">Maser</a></li> <li><a href="/wiki/Sutton_tube" title="Sutton tube">Sutton tube</a></li> <li><a href="/wiki/Traveling-wave_tube" title="Traveling-wave tube">Traveling-wave tube</a> (TWT)</li> <li><a href="/wiki/X-ray_tube" title="X-ray tube">X-ray tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Cathode-ray_tube" title="Cathode-ray tube">Cathode-ray tubes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Beam_deflection_tube" title="Beam deflection tube">Beam deflection tube</a></li> <li><a href="/wiki/Charactron" title="Charactron">Charactron</a></li> <li><a href="/wiki/Iconoscope" title="Iconoscope">Iconoscope</a></li> <li><a href="/wiki/Magic_eye_tube" title="Magic eye tube">Magic eye tube</a></li> <li><a href="/wiki/Monoscope" title="Monoscope">Monoscope</a></li> <li><a href="/wiki/Selectron_tube" title="Selectron tube">Selectron tube</a></li> <li><a href="/wiki/Storage_tube" title="Storage tube">Storage tube</a></li> <li><a href="/wiki/Trochotron" class="mw-redirect" title="Trochotron">Trochotron</a></li> <li><a href="/wiki/Video_camera_tube" title="Video camera tube">Video camera tube</a></li> <li><a href="/wiki/Williams_tube" title="Williams tube">Williams tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Gas-filled_tube" title="Gas-filled tube">Gas-filled tubes</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cold_cathode" title="Cold cathode">Cold cathode</a></li> <li><a href="/wiki/Crossatron" title="Crossatron">Crossatron</a></li> <li><a href="/wiki/Dekatron" title="Dekatron">Dekatron</a></li> <li><a href="/wiki/Ignitron" title="Ignitron">Ignitron</a></li> <li><a href="/wiki/Krytron" title="Krytron">Krytron</a></li> <li><a href="/wiki/Mercury-arc_valve" title="Mercury-arc valve">Mercury-arc valve</a></li> <li><a href="/wiki/Neon_lamp" title="Neon lamp">Neon lamp</a></li> <li><a href="/wiki/Nixie_tube" title="Nixie tube">Nixie tube</a></li> <li><a href="/wiki/Thyratron" title="Thyratron">Thyratron</a></li> <li><a href="/wiki/Trigatron" title="Trigatron">Trigatron</a></li> <li><a href="/wiki/Voltage-regulator_tube" title="Voltage-regulator tube">Voltage-regulator tube</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Adjustable</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Potentiometer" title="Potentiometer">Potentiometer</a> <ul><li><a href="/wiki/Digital_potentiometer" title="Digital potentiometer">digital</a></li></ul></li> <li><a href="/wiki/Variable_capacitor" title="Variable capacitor">Variable capacitor</a></li> <li><a href="/wiki/Varicap" title="Varicap">Varicap</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;">Passive</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Connector <ul><li><a href="/wiki/Audio_and_video_interfaces_and_connectors" title="Audio and video interfaces and connectors">audio and video</a></li> <li><a href="/wiki/AC_power_plugs_and_sockets" title="AC power plugs and sockets">electrical power</a></li> <li><a href="/wiki/RF_connector" title="RF connector">RF</a></li></ul></li> <li><a href="/wiki/Electrolytic_detector" title="Electrolytic detector">Electrolytic detector</a></li> <li><a href="/wiki/Ferrite_core" title="Ferrite core">Ferrite</a></li> <li><a href="/wiki/Antifuse" title="Antifuse">Antifuse</a></li> <li><a href="/wiki/Fuse_(electrical)" title="Fuse (electrical)">Fuse</a> <ul><li><a href="/wiki/Resettable_fuse" title="Resettable fuse">resettable</a></li> <li><a href="/wiki/EFUSE" class="mw-redirect" title="EFUSE">eFUSE</a></li></ul></li> <li><a href="/wiki/Resistor" title="Resistor">Resistor</a></li> <li><a href="/wiki/Switch" title="Switch">Switch</a></li> <li><a href="/wiki/Thermistor" title="Thermistor">Thermistor</a></li> <li><a href="/wiki/Transformer" title="Transformer">Transformer</a></li> <li><a href="/wiki/Varistor" title="Varistor">Varistor</a></li> <li><a href="/wiki/Wire" title="Wire">Wire</a> <ul><li><a href="/wiki/Wollaston_wire" title="Wollaston wire">Wollaston wire</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align:center;"><a href="/wiki/Electrical_reactance" title="Electrical reactance">Reactive</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Capacitor" title="Capacitor">Capacitor</a> <ul><li><a href="/wiki/Capacitor_types" title="Capacitor types">types</a></li></ul></li> <li><a href="/wiki/Ceramic_resonator" title="Ceramic resonator">Ceramic resonator</a></li> <li><a href="/wiki/Crystal_oscillator" title="Crystal oscillator">Crystal oscillator</a></li> <li><a href="/wiki/Inductor" title="Inductor">Inductor</a></li> <li><a href="/wiki/Parametron" title="Parametron">Parametron</a></li> <li><a href="/wiki/Relay" title="Relay">Relay</a> <ul><li><a href="/wiki/Reed_relay" title="Reed relay">reed relay</a></li> <li><a href="/wiki/Mercury_relay" title="Mercury relay">mercury relay</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐5wc7x Cached time: 20241122142852 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.073 seconds Real time usage: 1.201 seconds Preprocessor visited node count: 8511/1000000 Post‐expand include size: 292813/2097152 bytes Template argument size: 9187/2097152 bytes Highest expansion depth: 15/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 401419/5000000 bytes Lua time usage: 0.614/10.000 seconds Lua memory usage: 6078386/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 986.041 1 -total 53.57% 528.197 1 Template:Reflist 23.04% 227.140 64 Template:Cite_web 19.40% 191.326 21 Template:Cite_book 11.12% 109.660 5 Template:Navbox 9.93% 97.961 1 Template:Emerging_technologies 7.85% 77.396 1 Template:Short_description 7.64% 75.355 12 Template:Cite_journal 4.97% 48.963 6 Template:Dead_link 4.27% 42.151 6 Template:Fix --> <!-- Saved in parser cache with key enwiki:pcache:idhash:15367982-0!canonical and timestamp 20241122142852 and revision id 1253035433. Rendering was triggered because: unknown --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Three-dimensional_integrated_circuit&amp;oldid=1253035433">https://en.wikipedia.org/w/index.php?title=Three-dimensional_integrated_circuit&amp;oldid=1253035433</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Integrated_circuits" title="Category:Integrated circuits">Integrated circuits</a></li><li><a href="/wiki/Category:Semiconductor_device_fabrication" title="Category:Semiconductor device fabrication">Semiconductor device fabrication</a></li><li><a href="/wiki/Category:Packaging_(microfabrication)" title="Category:Packaging (microfabrication)">Packaging (microfabrication)</a></li><li><a href="/wiki/Category:Japanese_inventions" title="Category:Japanese inventions">Japanese inventions</a></li><li><a href="/wiki/Category:MOSFETs" title="Category:MOSFETs">MOSFETs</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:CS1_maint:_archived_copy_as_title" title="Category:CS1 maint: archived copy as title">CS1 maint: archived copy as title</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Articles_containing_potentially_dated_statements_from_2022" title="Category:Articles containing potentially dated statements from 2022">Articles containing potentially dated statements from 2022</a></li><li><a href="/wiki/Category:All_articles_containing_potentially_dated_statements" title="Category:All articles containing potentially dated statements">All articles containing potentially dated statements</a></li><li><a href="/wiki/Category:All_articles_with_dead_external_links" title="Category:All articles with dead external links">All articles with dead external links</a></li><li><a href="/wiki/Category:Articles_with_dead_external_links_from_February_2020" title="Category:Articles with dead external links from February 2020">Articles with dead external links from February 2020</a></li><li><a href="/wiki/Category:Articles_with_permanently_dead_external_links" title="Category:Articles with permanently dead external links">Articles with permanently dead external links</a></li><li><a href="/wiki/Category:CS1_errors:_periodical_ignored" title="Category:CS1 errors: periodical ignored">CS1 errors: periodical ignored</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 24 October 2024, at 01:41<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Three-dimensional_integrated_circuit&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-rf9q5","wgBackendResponseTime":155,"wgPageParseReport":{"limitreport":{"cputime":"1.073","walltime":"1.201","ppvisitednodes":{"value":8511,"limit":1000000},"postexpandincludesize":{"value":292813,"limit":2097152},"templateargumentsize":{"value":9187,"limit":2097152},"expansiondepth":{"value":15,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":401419,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 986.041 1 -total"," 53.57% 528.197 1 Template:Reflist"," 23.04% 227.140 64 Template:Cite_web"," 19.40% 191.326 21 Template:Cite_book"," 11.12% 109.660 5 Template:Navbox"," 9.93% 97.961 1 Template:Emerging_technologies"," 7.85% 77.396 1 Template:Short_description"," 7.64% 75.355 12 Template:Cite_journal"," 4.97% 48.963 6 Template:Dead_link"," 4.27% 42.151 6 Template:Fix"]},"scribunto":{"limitreport-timeusage":{"value":"0.614","limit":"10.000"},"limitreport-memusage":{"value":6078386,"limit":52428800}},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-5wc7x","timestamp":"20241122142852","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Three-dimensional integrated circuit","url":"https:\/\/en.wikipedia.org\/wiki\/Three-dimensional_integrated_circuit","sameAs":"http:\/\/www.wikidata.org\/entity\/Q229370","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q229370","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2008-01-22T20:11:25Z","dateModified":"2024-10-24T01:41:55Z","headline":"integrated circuit with vertical interconnections"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10