CINXE.COM

Search results for: rheological modeling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rheological modeling</title> <meta name="description" content="Search results for: rheological modeling"> <meta name="keywords" content="rheological modeling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rheological modeling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rheological modeling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4208</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rheological modeling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4208</span> The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Rabhi">Mohamed Rabhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kouider%20Halim%20Benrahou"> Kouider Halim Benrahou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMC" title="CMC">CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20modeling" title=" rheological modeling"> rheological modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Ostwald%20model" title=" Ostwald model"> Ostwald model</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20model" title=" cross model"> cross model</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/52311/the-influence-of-the-concentration-and-temperature-on-the-rheological-behavior-of-carbonyl-methylcellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4207</span> The Effect of the Flow Pipe Diameter on the Rheological Behavior of a Polymeric Solution (CMC)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Abchiche">H. Abchiche</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mellal"> M. Mellal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to study the parameters that influence the rheological behavior of a complex fluid (sodium Carboxyméthylcellulose solution), on a capillary rheometer. An installation has been made to be able to vary the diameter of trial conducts. The obtained results allowed us to deduce that: the diameter of trial conducts have a remarkable effect on the rheological responds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bingham%E2%80%99s%20fluid" title="bingham’s fluid">bingham’s fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=CMC" title=" CMC"> CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20conduit" title=" cylindrical conduit"> cylindrical conduit</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20behavior" title=" rheological behavior"> rheological behavior</a> </p> <a href="https://publications.waset.org/abstracts/22683/the-effect-of-the-flow-pipe-diameter-on-the-rheological-behavior-of-a-polymeric-solution-cmc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4206</span> Rheological Modeling for Shape-Memory Thermoplastic Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hosseini">H. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Berdyshev"> B. V. Berdyshev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Iskopintsev"> I. Iskopintsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20deformation" title="elastic deformation">elastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20polymers" title=" shape-memory polymers"> shape-memory polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20behavior" title=" stress-strain behavior"> stress-strain behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20model" title=" viscoelastic model"> viscoelastic model</a> </p> <a href="https://publications.waset.org/abstracts/34080/rheological-modeling-for-shape-memory-thermoplastic-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4205</span> Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vedat%20Senol">Vedat Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Gursoy%20Turan"> Gursoy Turan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Helmersson"> Anders Helmersson</a>, <a href="https://publications.waset.org/abstracts/search?q=Vortechz%20Andersson"> Vortechz Andersson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20modeling" title="uncertainty modeling">uncertainty modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20control" title=" structural control"> structural control</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20Damper" title=" MR Damper"> MR Damper</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E" title=" H∞"> H∞</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20control" title=" robust control"> robust control</a> </p> <a href="https://publications.waset.org/abstracts/111738/magneto-rheological-damper-based-semi-active-robust-h-control-of-civil-structures-with-parametric-uncertainties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4204</span> Numerical Investigation of Wastewater ‎Rheological Characteristics on Flow Field ‎Inside a Sewage Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Mohammad-Kazem%20Emami">Seyed-Mohammad-Kazem Emami</a>, <a href="https://publications.waset.org/abstracts/search?q=Behrang%20Saki"> Behrang Saki</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Mohammadian"> Majid Mohammadian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastewater flow field inside a sewage network including pipe and ‎manhole was investigated using a Computational Fluid Dynamics ‎‎(CFD) model. The numerical model is developed by incorporating a ‎rheological model to calculate the viscosity of wastewater fluid by ‎means of open source toolbox OpenFOAM. The rheological ‎properties of prepared wastewater fluid suspensions are first measured ‎using a BrookField LVDVII Pro+ viscometer with an enhanced UL ‎adapter and then correlated the suitable rheological viscosity model ‎values from the measured rheological properties. The results show the ‎significant effects of rheological characteristics of wastewater fluid on ‎the flow domain of sewer system. Results were compared and ‎discussed with the commonly used Newtonian model to evaluate the ‎differences for velocity profile, pressure and shear stress. ‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Non-Newtonian%20flows" title="Non-Newtonian flows">Non-Newtonian flows</a>, <a href="https://publications.waset.org/abstracts/search?q=Wastewater" title=" Wastewater"> Wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=Numerical%20simulation" title=" Numerical simulation"> Numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Rheology" title=" Rheology"> Rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=Sewage%20Network" title=" Sewage Network"> Sewage Network</a> </p> <a href="https://publications.waset.org/abstracts/124723/numerical-investigation-of-wastewater-rheological-characteristics-on-flow-field-inside-a-sewage-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4203</span> Online Monitoring Rheological Property of Polymer Melt during Injection Molding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chung-Chih%20Lin">Chung-Chih Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Liang%20Wu"> Chien-Liang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=injection%20molding" title="injection molding">injection molding</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20viscosity" title=" melt viscosity"> melt viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20rate" title=" shear rate"> shear rate</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a> </p> <a href="https://publications.waset.org/abstracts/23196/online-monitoring-rheological-property-of-polymer-melt-during-injection-molding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4202</span> Rheological and Computational Analysis of Crude Oil Transportation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Satish%20Kumar"> Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jashanpreet%20Singh"> Jashanpreet Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation of unrefined crude oil from the production unit to a refinery or large storage area by a pipeline is difficult due to the different properties of crude in various areas. Thus, the design of a crude oil pipeline is a very complex and time consuming process, when considering all the various parameters. There were three very important parameters that play a significant role in the transportation and processing pipeline design; these are: viscosity profile, temperature profile and the velocity profile of waxy crude oil through the crude oil pipeline. Knowledge of the Rheological computational technique is required for better understanding the flow behavior and predicting the flow profile in a crude oil pipeline. From these profile parameters, the material and the emulsion that is best suited for crude oil transportation can be predicted. Rheological computational fluid dynamic technique is a fast method used for designing flow profile in a crude oil pipeline with the help of computational fluid dynamics and rheological modeling. With this technique, the effect of fluid properties including shear rate range with temperature variation, degree of viscosity, elastic modulus and viscous modulus was evaluated under different conditions in a transport pipeline. In this paper, two crude oil samples was used, as well as a prepared emulsion with natural and synthetic additives, at different concentrations ranging from 1,000 ppm to 3,000 ppm. The rheological properties was then evaluated at a temperature range of 25 to 60 &deg;C and which additive was best suited for transportation of crude oil is determined. Commercial computational fluid dynamics (CFD) has been used to generate the flow, velocity and viscosity profile of the emulsions for flow behavior analysis in crude oil transportation pipeline. This rheological CFD design can be further applied in developing designs of pipeline in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactant" title="surfactant">surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=natural" title=" natural"> natural</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/57573/rheological-and-computational-analysis-of-crude-oil-transportation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4201</span> Rheology Study of Polyurethane (COAPUR 6050) For Composite Materials Usage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Boutaleb">Sabrina Boutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Kouider%20Halim%20Benrahou"> Kouider Halim Benrahou</a>, <a href="https://publications.waset.org/abstracts/search?q=Fran%C3%A7ois%20Schosseler"> François Schosseler</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelouahed%20Tounsi"> Abdelouahed Tounsi</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Abbas%20Adda%20Bedia"> El Abbas Adda Bedia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of polyurethane in different areas becomes more frequent. This is due to significant advantages they have including their lightness and resistance. However, their use requires a mastery of their mechanical performance. We will present in this work, a COAPUR 6050 which can be used to develop composite materials. COAPUR 6050 is an associative polyurethane thickener allowing fine rheological adjustment of flat or semi-gloss paints. COAPUR 6050 is characterised by its thickening efficiency at low shear rate. It is a solvent-free liquid product. It promotes good paint pick up, while maintaining a low yield point after shearing, and consequently a good levelling. We will then determine its rheological behaviour experimentally using different annular gaps. The rheological properties of COAPUR 6050 were researched by rotational rheometer (Rheometer-Mars III) using different annular gaps. There is the influence of the size of the annular gap on the behaviour as well as on the rheological parameters of the COAPUR 6050. The rheological properties data of COAPUR 6050 were regressed by nonlinear regression method and their rheological models were established, are characterized by yield pseudoplastic model. In this case, it is essential to make a viscometric correction. The latter was developed and presented in the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COAPUR%206050" title="COAPUR 6050">COAPUR 6050</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%E2%80%99s%20couette" title=" flow’s couette"> flow’s couette</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title=" polyurethane"> polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20behaviours" title=" rheological behaviours"> rheological behaviours</a> </p> <a href="https://publications.waset.org/abstracts/38781/rheology-study-of-polyurethane-coapur-6050-for-composite-materials-usage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4200</span> Rheological Properties of PP/EVA Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20Y.%20Alothman">Othman Y. Alothman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study aims to investigate the effects of blend ratio, VA content and temperature on the rheological properties of PPEVA blends. The results show that all pure polymers and their blends show typical shear thinning behaviour. All neat polymers exhibit power-low type flow behaviour, with the viscosity order as EVA328 > EVA206 > PP in almost all frequency ranges. As temperature increases, the viscosity of all polymers decreases as expected, and the viscosity becomes more sensitive to the addition of EVA. Two different regions can be observed on the flow curve of some of the polymers and their blends, which is thought to be due to slip-stick transition or melt fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypropylene" title="polypropylene">polypropylene</a>, <a href="https://publications.waset.org/abstracts/search?q=ethylene%20vinyl%20acetate" title=" ethylene vinyl acetate"> ethylene vinyl acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=blends" title=" blends"> blends</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/7141/rheological-properties-of-ppeva-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4199</span> The Influence of the Diameter of the Flow Conducts on the Rheological Behavior of a Non-Newtonian Fluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hacina%20Abchiche">Hacina Abchiche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Mellal"> Mounir Mellal</a>, <a href="https://publications.waset.org/abstracts/search?q=Imene%20Bouchelkia"> Imene Bouchelkia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of the rheological behavior of the used products in different fields is essential, both in digital simulation and the understanding of phenomenon involved during the flow of these products. The fluids presenting a nonlinear behavior represent an important category of materials used in the process of food-processing, chemical, pharmaceutical and oil industries. The issue is that the rheological characterization by classical rheometer cannot simulate, or take into consideration, the different parameters affecting the characterization of a complex fluid flow during real-time. The main objective of this study is to investigate the influence of the diameter of the flow conducts or pipe on the rheological behavior of a non-Newtonian fluid and Propose a mathematical model linking the rheologic parameters and the diameter of the conduits of flow. For this purpose, we have developed an experimental system based on the principal of a capillary rheometer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rh%C3%A9ologie" title="rhéologie">rhéologie</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20stady" title=" experimental stady"> experimental stady</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=cylindrical%20%20conducts" title=" cylindrical conducts"> cylindrical conducts</a> </p> <a href="https://publications.waset.org/abstracts/32878/the-influence-of-the-diameter-of-the-flow-conducts-on-the-rheological-behavior-of-a-non-newtonian-fluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4198</span> Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boudjenane"> N. Boudjenane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhallou"> N. Benhallou</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Houjedje"> R. Houjedje</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Reffis"> R. Reffis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhadri"> M. Belhadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=clays" title=" clays"> clays</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20kinetic%20model" title=" structural kinetic model"> structural kinetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=thixotropy" title=" thixotropy"> thixotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/31716/modeling-the-time-dependent-rheological-behavior-of-clays-used-in-fabrication-of-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4197</span> Impact of the Xanthan Gum on Rheological Properties of Ceramic Slip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souad%20%20Hassene%20Daouadji">Souad Hassene Daouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Larbi%20%20Hammadi"> Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkrim%20%20Hazzab"> Abdelkrim Hazzab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The slips intended for the manufacture of ceramics must have rheological properties well-defined in order to bring together the qualities required for the casting step (good fluidity for feeding the molds easily settles while generating a regular settling of the dough and for the dehydration phase of the dough in the mold a setting time relatively short is required to have a sufficient refinement which allows demolding both easy and fast). Many additives haveadded in slip of ceramic in order to improve their rheological properties. In this study, we investigated the impact of xanthan gumon rheological properties of ceramic Slip. The modified Cross model is used to fit the stationary flow curves of ceramic slip at different concentration of xanthan added. The thixotropic behavior studied of mixture ceramic slip-xanthan gumat constant temperature is analyzed by using a structural kinetic model (SKM) in order to account for time dependent effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20slip" title="ceramic slip">ceramic slip</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthan%20gum" title=" xanthan gum"> xanthan gum</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20cross%20model" title=" modified cross model"> modified cross model</a>, <a href="https://publications.waset.org/abstracts/search?q=thixotropy" title=" thixotropy"> thixotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/146505/impact-of-the-xanthan-gum-on-rheological-properties-of-ceramic-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4196</span> Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Benyounes">K. Benyounes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benmounah"> A. Benmounah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheology" title="rheology">rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20grout" title=" cement grout"> cement grout</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer" title=" superplasticizer"> superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress "> yield stress </a> </p> <a href="https://publications.waset.org/abstracts/18440/effect-of-bentonite-on-the-rheological-behavior-of-cement-grout-in-presence-of-superplasticizer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4195</span> Simple Rheological Method to Estimate the Branch Structures of Polyethylene under Reactive Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Golriz">Mahdi Golriz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to estimate the change in molecular structure of linear low-density polyethylene (LLDPE) during peroxide modification can be detected by a simple rheological method. For this purpose a commercial grade LLDPE (Exxon MobileTM LL4004EL) was reacted with different doses of dicumyl peroxide (DCP). The samples were analyzed by size-exclusion chromatography coupled with a light scattering detector. The dynamic shear oscillatory measurements showed a deviation of the δ-׀G ׀٭curve from that of the linear LLDPE, which can be attributed to the presence of long-chain branching (LCB). By the use of a simple rheological method that utilizes melt rheology, transformations in molecular architecture induced on an originally linear low density polyethylene during the early stages of reactive modification were indicated. Reasonable and consistent estimates are obtained, concerning the degree of LCB, the volume fraction of the various molecular species produced in peroxide modification of LLDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20low-density%20polyethylene" title="linear low-density polyethylene">linear low-density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20modification" title=" peroxide modification"> peroxide modification</a>, <a href="https://publications.waset.org/abstracts/search?q=long-chain%20branching" title=" long-chain branching"> long-chain branching</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20method" title=" rheological method"> rheological method</a> </p> <a href="https://publications.waset.org/abstracts/123353/simple-rheological-method-to-estimate-the-branch-structures-of-polyethylene-under-reactive-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4194</span> Transient Response of Rheological Properties of a CI-Water Based Magnetorheological Fluid under Different Operating Modes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Shekhar%20Maurya">Chandra Shekhar Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiranjit%20Sarkar"> Chiranjit Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transient response of rheological properties of a carbonyl iron (CI)-water-based magnetorheological fluid (MRF) was studied under shear rate, shear stress, and shear strain working mode subjected to step-change in an applied magnetic field. MR fluid is a kind of smart material whose rheological properties change under an applied magnetic field. We prepared an MR fluid comprising of CI 65 weight %, water 35 weight %, and OPTIGEL WX used as an additive by changing the weight %. It was found that the MR effect of the CI/water suspension was enhanced by using an additive. A transient shear stress response was observed by switched on and switched off of the magnetic field to see the stability, relaxation behavior, and resulting change in rheological properties. When the magnetic field is on, a sudden increase in the shear stress was observed due to the fast motion of magnetic structures that describe the transition from the liquidlike state to the solid-like state due to an increase in dipole-dipole interaction of magnetic particles. Simultaneously, the complete reverse transition occurs due to instantaneous breakage of the chain structure once the magnetic field is switched off. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20fluid" title="magnetorheological fluid">magnetorheological fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=shears%20stress" title=" shears stress"> shears stress</a>, <a href="https://publications.waset.org/abstracts/search?q=shears%20strain" title=" shears strain"> shears strain</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/141853/transient-response-of-rheological-properties-of-a-ci-water-based-magnetorheological-fluid-under-different-operating-modes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4193</span> Influence of the Mixer on the Rheological Properties of the Fresh Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Nitsche">Alexander Nitsche</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr-Robert%20Lazik"> Piotr-Robert Lazik</a>, <a href="https://publications.waset.org/abstracts/search?q=Harald%20Garrecht"> Harald Garrecht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The viscosity of the concrete has a great influence on the properties of the fresh concrete. Fresh concretes with low viscosity have a good flowability, whereas high viscosity has a lower flowability. Clearly, viscosity is directly linked to other parameters such as consistency, compaction, and workability of the concrete. The above parameters also depend very much on the energy induced during the mixing process and, of course, on the installation of the mixer itself. The University of Stuttgart has decided to investigate the influence of different mixing systems on the viscosity of various types of concrete, such as road concrete, self-compacting concrete, and lightweight concrete, using a rheometer and other testing methods. Each type is tested with three different mixers, and the rheological properties, namely consistency, and viscosity are determined. The aim of the study is to show that different types of concrete mixed with different types of mixers reach completely different yield points. Therefore, a 3 step procedure will be introduced. At first, various types of concrete mixtures and their differences are introduced. Then, the chosen suspension mixer and conventional mixers, which are going to be used in this paper, will be discussed. Lastly, the influence of the mixing system on the rheological properties of each of the select mix designs, as well as on fresh concrete, in general, will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title="rheological properties">rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=flowability" title=" flowability"> flowability</a>, <a href="https://publications.waset.org/abstracts/search?q=suspension%20mixer" title=" suspension mixer"> suspension mixer</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/118870/influence-of-the-mixer-on-the-rheological-properties-of-the-fresh-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4192</span> A Comparative Study on Creep Modeling in Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roham%20Rafiee">Roham Rafiee</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Mazhari"> Behzad Mazhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite structures, having incredible properties, have gained considerable popularity in the last few decades. Among all types, polymer matrix composites are being used extensively due to their unique characteristics including low weight, convenient fabrication process and low cost. Having polymer as matrix, these type of composites show different creep behavior when compared to metals and even other types of composites since most polymers undergo creep even in room temperature. One of the most challenging topics in creep is to introduce new techniques for predicting long term creep behavior of materials. Depending on the material which is being studied the appropriate method would be different. Methods already proposed for predicting long term creep behavior of polymer matrix composites can be divided into five categories: (1) Analytical Modeling, (2) Empirical Modeling, (3) Superposition Based Modeling (Semi-empirical), (4) Rheological Modeling, (5) Finite Element Modeling. Each of these methods has individual characteristics. Studies have shown that none of the mentioned methods can predict long term creep behavior of all PMC composites in all circumstances (loading, temperature, etc.) but each of them has its own priority in different situations. The reason to this issue can be found in theoretical basis of these methods. In this study after a brief review over the background theory of each method, they are compared in terms of their applicability in predicting long-term behavior of composite structures. Finally, the explained materials are observed through some experimental studies executed by other researchers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20study" title=" comparative study"> comparative study</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a> </p> <a href="https://publications.waset.org/abstracts/1400/a-comparative-study-on-creep-modeling-in-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4191</span> Genome of Bio-Based Construction Adhesives and Complex Rheological Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellie%20Fini">Ellie Fini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahour%20Parast"> Mahour Parast</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Oldham"> Daniel Oldham</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrzad%20Hosseinnezhad"> Shahrzad Hosseinnezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the relationship between molecular species of four different bio-based adhesives (made from Swine Manure, Miscanthus Pellet, Corn Stover, and Wood Pellet) and their rheological behavior before and after they undergo extensive oxidative aging. To study the effect of oxidative aging on the chemical structure of bio-adhesives, Infrared Attenuated Total Reflectance Spectroscopy (Fourier transform infrared) was utilised. In addition, a Drop Shape Analyser, Rotational Viscometer, and Dynamic Shear Rheometer were used to evaluate the surface properties and rheological behaviour of each bio-adhesive. Overall, bio-adhesives were found to be significantly different in terms of their ageing characteristics. Accordingly, their surface and rheological properties were found to be ranked differently before and after ageing. The results showed that the bio-adhesive from swine manure is less susceptible to aging compared to plant-based bio-oils. This can be further attributed to the chemical structure and the high lipid contents of the bio-adhesive from swine manure, making it less affected by oxidative ageing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-adhesive" title="bio-adhesive">bio-adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-mass" title=" bio-mass"> bio-mass</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20genome" title=" material genome"> material genome</a> </p> <a href="https://publications.waset.org/abstracts/55277/genome-of-bio-based-construction-adhesives-and-complex-rheological-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4190</span> Rheological Study of Natural Sediments: Application in Filling of Estuaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Serhal">S. Serhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Melinge"> Y. Melinge</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Rangeard"> D. Rangeard</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hage%20Chehadeh"> F. Hage Chehadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filling of estuaries is an international problem that can cause economic and environmental damage. This work aims the study of the rheological structuring mechanisms of natural sedimentary liquid-solid mixture in estuaries in order to better understand their filling. The estuary of the Rance river, located in Brittany, France is particularly targeted by the study. The aim is to provide answers on the rheological behavior of natural sediments by detecting structural factors influencing the rheological parameters. So we can better understand the fillings estuarine areas and especially consider sustainable solutions of ‘cleansing’ of these areas. The sediments were collected from the trap of Lyvet in Rance estuary. This trap was created by the association COEUR (Comité Opérationnel des Elus et Usagers de la Rance) in 1996 in order to facilitate the cleansing of the estuary. It creates a privileged area for the deposition of sediments and consequently makes the cleansing of the estuary easier. We began our work with a preliminary study to establish the trend of the rheological behavior of the suspensions and to specify the dormant phase which precedes the beginning of the biochemical reactivity of the suspensions. Then we highlight the visco-plastic character at younger age using the Kinexus rheometer, plate-plate geometry. This rheological behavior of suspensions is represented by the Bingham model using dynamic yield stress and viscosity which can be a function of volume fraction, granular extent, and chemical reactivity. The evolution of the viscosity as a function of the solid volume fraction is modeled by the Krieger-Dougherty model. On the other hand, the analysis of the dynamic yield stress showed a fairly functional link with the solid volume fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estuaries" title="estuaries">estuaries</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20behavior" title=" rheological behavior"> rheological behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinexus%20rheometer" title=" Kinexus rheometer"> Kinexus rheometer</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingham%20model" title=" Bingham model"> Bingham model</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a> </p> <a href="https://publications.waset.org/abstracts/97288/rheological-study-of-natural-sediments-application-in-filling-of-estuaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97288.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4189</span> The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%BDymantas%20Rud%C5%BEionis">Žymantas Rudžionis</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulius%20Grigali%C5%ABnas"> Paulius Grigaliūnas</a>, <a href="https://publications.waset.org/abstracts/search?q=Danut%C4%97%20Vai%C4%8Diukynien%C4%97"> Danutė Vaičiukynienė</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self%20compacting%20concrete" title="self compacting concrete">self compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20fiber%20reinforced%20concrete" title=" steel fiber reinforced concrete"> steel fiber reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolitic%20waste" title=" zeolitic waste"> zeolitic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological" title=" rheological"> rheological</a>, <a href="https://publications.waset.org/abstracts/search?q=properties%20of%20concrete" title=" properties of concrete"> properties of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=slump%20flow" title=" slump flow"> slump flow</a> </p> <a href="https://publications.waset.org/abstracts/4267/the-influence-of-zeolitic-spent-refinery-admixture-on-the-rheological-and-technological-properties-of-steel-fiber-reinforced-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4188</span> Role of Sodium Concentration, Waiting Time and Constituents’ Temperature on the Rheological Behavior of Alkali Activated Slag Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20M.%20Erdem">Muhammet M. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdo%C4%9Fan%20%C3%96zbay"> Erdoğan Özbay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20H.%20Durmu%C5%9F"> Ibrahim H. Durmuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Erdemir"> Mustafa Erdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Bik%C3%A7e"> Murat Bikçe</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%BCzeyyen%20Bal%C3%A7%C4%B1kanl%C4%B1"> Müzeyyen Balçıkanlı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, rheological behavior of alkali activated slag concretes were investigated depending on the sodium concentration (SC), waiting time (WT) after production, and constituents&rsquo; temperature (CT) parameters. For this purpose, an experimental program was conducted with four different SCs of 1.85, 3.0, 4.15, and 5.30%, three different WT of 0 (just after production), 15, and 30 minutes and three different CT of 18, 30, and 40 &deg;C. Solid precursors are activated by water glass and sodium hydroxide solutions with silicate modulus (Ms = SiO<sub>2</sub>/Na<sub>2</sub>O) of 1. Slag content and (water + activator solution)/slag ratio were kept constant in all mixtures. Yield stress and plastic viscosity values were defined for each mixture by using the ICAR rheometer. Test results were demonstrated that all of the three studied parameters have tremendous effect on the yield stress and plastic viscosity values of the alkali activated slag concretes. Increasing the SC, WT, and CT drastically augmented the rheological parameters. At the 15 and 30 minutes WT after production, most of the alkali activated slag concretes were set instantaneously, and rheological measurements were not performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20activation" title="alkali activation">alkali activation</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20stress" title=" yield stress"> yield stress</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20viscosity" title=" plastic viscosity"> plastic viscosity</a> </p> <a href="https://publications.waset.org/abstracts/54616/role-of-sodium-concentration-waiting-time-and-constituents-temperature-on-the-rheological-behavior-of-alkali-activated-slag-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4187</span> Rheological and Morphological Properties of Investment Casting Pattern Material Based on Paraffin Wax Fortified with Linear Low-Density Polyethylene and Filled with Poly Methyl Methacrylate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Kimutai%20Tewo">Robert Kimutai Tewo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Limo%20Rutto"> Hilary Limo Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rheological and morphological properties of paraffin wax, linear low-density polyethylene (LLDPE), and poly (methyl methacrylate) (PMMA) microbeads formulations were prepared via an extrusion process. The blends were characterized by rheometry, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the viscosity of the blends increased as compared to that of neat wax. SEM confirmed that LLDPE alters the wax crystal habit at higher concentrations. The rheological experimental data fitted with predicted data using the modified Krieger and Dougherty expression. The SEM micrograph of wax/LLDPE/PMMA revealed a near-perfect spherical nature for the filler particles in the wax/EVA polymer matrix. The FT-IR spectra show the deformation vibrations stretch of a long-chain aliphatic hydrocarbon (C-H) and also the presence of carbonyls absorption group denoted by -C=O- stretch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investment%20casting%20pattern" title="investment casting pattern">investment casting pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin%20wax" title=" paraffin wax"> paraffin wax</a>, <a href="https://publications.waset.org/abstracts/search?q=LLDPE" title=" LLDPE"> LLDPE</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20Krieger%20and%20Dougherty%20expression" title=" modified Krieger and Dougherty expression"> modified Krieger and Dougherty expression</a> </p> <a href="https://publications.waset.org/abstracts/116320/rheological-and-morphological-properties-of-investment-casting-pattern-material-based-on-paraffin-wax-fortified-with-linear-low-density-polyethylene-and-filled-with-poly-methyl-methacrylate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4186</span> Rheological Properties of Red Beet Root Juice Squeezed from Ultrasounicated Red Beet Root Slices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C3%87evik">M. Çevik</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabanc%C4%B1"> S. Sabancı</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Tezcan"> D. Tezcan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20%C3%87elebi"> C. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20%C4%B0%C3%A7ier"> F. İçier</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasound technology is the one of the non-thermal food processing method in recent years which has been used widely in the food industry. Ultrasound application in the food industry is divided into two groups: low and high intensity ultrasound application. While low intensity ultrasound is used to obtain information about physicochemical properties of foods, high intensity ultrasound is used to extract bioactive components and to inactivate microorganisms and enzymes. In this study, the ultrasound pre-treatment at a constant power (1500 W) and fixed frequency (20 kHz) was applied to the red beetroot slices having the dimension of 25×25×50 mm at the constant temperature (25°C) for different application times (0, 5, 10, 15 and 20 min). The red beet root slices pretreated with ultrasonication was squeezed immediately. The changes on rheological properties of red beet root juice depending on ultrasonication duration applied to slices were investigated. Rheological measurements were conducted by using Brookfield viscometer (LVDV-II Pro, USA). Shear stress-shear rate data was obtained from experimental measurements for 0-200 rpm range by using spindle 18. Rheological properties of juice were determined by fitting this data to some rheological models (Newtonian, Bingham, Power Law, Herschel Bulkley). It was investigated that the best model was Power Law model for both untreated red beet root juice (R2=0.991, χ2=0.0007, RMSE=0.0247) and red beetroot juice produced from ultrasonicated slices (R2=0.993, χ2=0.0006, RMSE=0.0216 for 20 min pre-treatment). k (consistency coefficient) and n (flow behavior index) values of red beetroot juices were not affected from the duration of ultrasonication applied to the slices. Ultrasound treatment does not result in any changes on the rheological properties of red beetroot juice. This can be explained by lack of ability to homogenize of the intensity of applied ultrasound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasonication" title="ultrasonication">ultrasonication</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20beet%20root%20slice" title=" red beet root slice"> red beet root slice</a>, <a href="https://publications.waset.org/abstracts/search?q=juice" title=" juice"> juice</a> </p> <a href="https://publications.waset.org/abstracts/12857/rheological-properties-of-red-beet-root-juice-squeezed-from-ultrasounicated-red-beet-root-slices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4185</span> Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Howaidi%20M.%20Al-Otaibi">Howaidi M. Al-Otaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Al-Suhaibani"> Abdulrahman S. Al-Suhaibani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20date%20palm%20fiber" title="cellulose date palm fiber">cellulose date palm fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20modified%20asphalt" title=" fiber modified asphalt"> fiber modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/48756/physical-and-rheological-properties-of-asphalt-modified-with-cellulose-date-palm-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4184</span> Amelioration of Stability and Rheological Properties of a Crude Oil-Based Drilling Mud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Larbi">Hammadi Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bergane%20Cheikh"> Bergane Cheikh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling for oil is done through many mechanisms. The goal is first to dig deep and then, after arriving at the oil source, to simply suck it up. And for this, it is important to know the role of oil-based drilling muds, which had many benefits for the drilling tool and for drilling generally, and also and essentially to know the rheological behavior of the emulsion system in particular water-in-oil inverse emulsions (Water/crude oil). This work contributes to the improvement of the stability and rheological properties of crude oil-based drilling mud by organophilic clay. Experimental data from steady-state flow measurements of crude oil-based drilling mud are classically analyzed by the Herschel-Bulkley model. The effects of organophilic clay type VG69 are studied. Microscopic observation showed that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leads to the stability of inverse Water/Oil emulsions; on the other hand, for quantities greater than 3g, the emulsions are destabilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drilling" title="drilling">drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=organophilic%20clay" title=" organophilic clay"> organophilic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title=" crude oil"> crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/157950/amelioration-of-stability-and-rheological-properties-of-a-crude-oil-based-drilling-mud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4183</span> Rheological and Self-Healing Properties of Poly (Vinyl Butyral)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunatda%20Arayachukiat">Sunatda Arayachukiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Shogo%20Nobukawa"> Shogo Nobukawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Yamaguchi"> Masayuki Yamaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new self-healing material was developed utilizing molecular entanglements for poly(vinyl butyral) (PVB) containing plasticizers. It was found that PVB shows autonomic self-healing behavior even below the glass transition temperature Tg because of marked molecular motion at surface. Moreover, the plasticizer addition enhances the chain mobility, leading to good healing behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poly%28vinyl%20butyral%29%20%28PVB%29" title="Poly(vinyl butyral) (PVB)">Poly(vinyl butyral) (PVB)</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing%20behaviour" title=" self-healing behaviour"> self-healing behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20diffusion" title=" molecular diffusion"> molecular diffusion</a> </p> <a href="https://publications.waset.org/abstracts/16016/rheological-and-self-healing-properties-of-poly-vinyl-butyral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4182</span> Rheological Behavior of Oxidized Vegetable Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ioana%20Stanciu">Ioana Stanciu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the study of the rheological behavior of oxidized and non-oxidized vegetable oils at high temperatures and increasing shear rates. The largest increases in the dynamic viscosity of oxidized oils, in relation to the values that characterize non-oxidized oils, are recorded for soybean oil, followed by corn oil. Oxidized olive and rapeseed oils do not register significant increases in dynamic viscosity compared to non-oxidized oils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidized" title=" oxidized"> oxidized</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable" title=" vegetable"> vegetable</a> </p> <a href="https://publications.waset.org/abstracts/161523/rheological-behavior-of-oxidized-vegetable-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4181</span> Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Babalghaith">Ali M. Babalghaith</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Al-Suhaibani"> Abdulrahman S. Al-Suhaibani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20modified%20asphalt" title="polymer modified asphalt">polymer modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SBS" title=" SBS"> SBS</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=EE-2" title=" EE-2"> EE-2</a> </p> <a href="https://publications.waset.org/abstracts/44713/comparison-of-rheological-properties-for-polymer-modified-asphalt-produced-in-riyadh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4180</span> Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meor%20Othman%20Hamzah">Meor Othman Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillian%20Gungat"> Lillian Gungat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Izzi%20Md.%20Yusoff"> Nur Izzi Md. Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Valentin"> Jan Valentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture&rsquo;s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt" title="recycled asphalt">recycled asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20mix%20additive" title=" warm mix additive"> warm mix additive</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological" title=" rheological"> rheological</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20performance" title=" mixture performance"> mixture performance</a> </p> <a href="https://publications.waset.org/abstracts/36104/recycled-asphalt-pavement-with-warm-mix-additive-for-sustainable-road-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4179</span> Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Levitsky">S. Levitsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20propagation" title="sound propagation">sound propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20bubbles" title=" gas bubbles"> gas bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20liquid" title=" polymeric liquid"> polymeric liquid</a> </p> <a href="https://publications.waset.org/abstracts/28205/liquid-temperature-effect-on-sound-propagation-in-polymeric-solution-with-gas-bubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=140">140</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=141">141</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rheological%20modeling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10